New font tools for TEX

Werner Lemberg

Kleine Beurhausstr. 1
D-44137 Dortmund

Germany
a79714280Qunet.univie.ac.at

Abstract

The following font tools will be described in this paper:

e VFlib, the Vector Font Library, which has been written by KAkucawa Hi-
rotsugu (FJI] #5¢X). This library together with an included suite of demo
applications is aimed to provide a uniform interface for accessing fonts in
many different formats. With the help of configuration files it is possible to
access fonts with other encodings, to define new (virtual) fonts, and others.
Using VFlib as a basis for dvi drivers, it will be no longer necessary to have
pk files for any font format except for METAFONT.

o FreeType, developed by David TURNER, Robert WILHELM, and the author
of this paper. This is a platform-independent library to render bitmaps
from TrueType fonts. What makes it different from other freely available
TrueType tools is a TrueType interpreter to process hints.

e ttf2pk and hbf2gf, maintained resp. written by the author. Both programs
are part of the CJK package and are used to convert CJK TrueType and HBF
fonts into TEX fonts.

Introduction Today, we have many font files and many dif-
ferent font file formats. When we need soft-
ware to display or print characters which does
not depend on a windowing system and/or
an operating system, we must write interface
routines for accessing font files in each appli-
cation software again and again. To do this,
programmers must have knowledge of font file
formats; it will be a hard task for program-
mers if the number of font formats that an
application software supports becomes large.

None of the tools are really new, but until now they
either have not been presented to the (English) TEX
community or have been hidden in other packages.
Most of them are work in progress, and there is a
good chance that this paper is already out of date
when it is printed.

All of them have a CJK! background more or
less; KAKUGAWA originally wanted easy Japanese
font support for dvi drivers, my two programs are
still only useful for CJK fonts, and FreeType was
also soon extended to manage CJK TrueType fonts.
Nevertheless, work is going on to internationalize the
tools, making them useful for a broader audience.

In the bibliography you can find the locations
from which to download the packages.

VFlib is a font library written in C pro-
viding several functions to obtain bitmaps of
characters. VFIlib hides the font format of font
files and provides a unified API for all sup-
ported font formats. Thus, programmers for
VFlib application software need not have knowledge
on font file formats. Instead, any software us-
ing VFlib can support various font file formats
immediately.

Until recently documentation was only available in
Japanese (see [2]) — the main reason why this great
tool is virtually unknown outside of Japan. Now a
translation into English has been made; this quote [...]
from basic.txt tells what VFlib is:2

I Chinese/Japanese/Korean
2 In general, I’'m following the documentation files very
closely, omitting not so important or too technical details.

Currently, VFIib supports the following font
file formats: PCF, BDF, HBF, TrueType,
GF, PK, TFM, ShotaiKurabu (2 {H 3830,

206 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

a vector font format for Japanese Kanji),?
and JG (another vector font format for Japa-
nese Kanji). Especially, VFlib can be used as
a font module for drivers/previewers of dvi
files (TEX/IYTEX); part of this package is a
sample dvi previewer for X Windows writ-
ten with only 400 lines of C code.

VFlib stands for Vector Font library — earlier
versions of the library have supported Japanese vec-
tor fonts only, hence the name.

Basic concepts. The VFlib module consists of two
parts: the library itself which must be linked to the
application program, and a font database file (called
‘vflibcap’ since the file format resembles the format
of a termcap database; see below for an example).
Font classes and font drivers. VFlib can handle
multiple font file formats. Reading a font file is done
by an internal module in VFlib corresponding to the
font file format. This internal module is called a
‘font, driver’. Service units provided by font drivers
are called ‘font classes’. From an end-user’s point of
view, font formats are distinguished by the names
of font classes. Font drivers themself are not visible
for end-users.

Some font drivers may not read font files on

disk; they may generate glyphs and outlines by in-
ternal computation only. In addition, some font
drivers may return glyphs which are obtained as
glyphs by another font class.
Font names and searching. In VFlib, a font is
specified by a ‘font name’ on opening. First, VFlib
checks if the font name is given in vflibcap or not. If
the font name is found, VFIib reads the description
for the font in vflibcap, invokes a font driver corre-
sponding to the font class name and opens the font
file.

If the font name is not given in a vflibcap file, a
font searching mechanism is invoked. Since there are
so many font files for X Window and TgX, this fea-
ture has been introduced to avoid writing an entry
for each font file. Various font drivers will be called
to see whether the font can be opened; a list of font
drivers for font searching is given in the vflibcap file.

Fonts described in a vflibcap file are called ‘ex-
plicit fonts’ and fonts that are searched by the font
search feature are called ‘implicit fonts’.

For TEX fonts, the kpathsea library will be used
for searching.

The vflibcap database. Each (virtual) font as
provided by VFIlib has its inherent information on
point size, pixel size, and resolution of the target

3 Other transcription forms are SyotaiKurabu or Syotai-
Club.

New font tools for TEX

device. In addition to these font metrics are defined
for each glyph.

Some font file formats do not have such con-
cepts; in this case, missing information either is
given in a vflibcap file or the specific font driver pro-
vides default values. For instance, a TrueType font
is a vector font and is not restricted to a certain
point size and resolution of the target device (since
vector fonts can be scaled to any size). Another ex-
ample is the ShotaiKurabu font format which does
not have font metric information at all: a font driver
for this font format generates virtual font metrics
using the data given in a vflibcap file.

Here a small excerpt of a vflibcap file suitable
for Japanese TEX (JTEX); omissions are indicated
with three dots.

VFlib-Defaults:\
:implicit-font-classes=ascii-jtex-kanji,\
gf/pk:\
:extension-hints=pk=ascii-jtex-kanji,\
gf=ascii-jtex-kanji,\
pk=gf/pk,\
gf=gf/pk,\
Sttf=ttf:\
:variables-default-values=\
$TeX_KPATHSEA_PROGRAM=\
/usr/local/teTeX/bin/x1dvi:

TeX-Defaults:\
:kpathsea-mode=1jfour:\
:dpi=600:\
:kpathsea-program-name=\

$TeX_KPATHSEA_PROGRAM:

TrueType-Defaults:\
rextension=.ttf:\
raspect=1:\
:dpi=600:\
:font-directories=\
/dos/texmf/fonts/truetype/japanese:\
:platform=microsoft:

mincho-jtex:\
:font-class=ttf:\
:font-file=uwjmg3.ttf:\
:magnification=0.92:\
:writing-direction=h:\
:character-set=jisx0208_1983:\
rencoding-force=sjis:

mincho-5pt:\
:point-size=5:\
:inheritance=mincho-jtex:

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 207

Werner Lemberg

mincho-10pt:\
:point-size=10:\
:inheritance=mincho-jtex:

min:\
:font-class=ascii-jtex-kanji:\
:kanji-adjustment-file=\
/usr/local/VFlib/ascii-jtex/ttf.adj:

min5:\
:kanji-font=mincho-5pt:\
:inheritance=min:

mini0:\
:kanji-font=mincho-10pt:\
:inheritance=min:

The format of a capability file is somewhat
strange: each entry must be formally on one line
(which can be split with a trailing backslash). The
name of a capability entry is the first name starting
a line; all capability descriptions then follow in the
format

A single colon ‘:’ is equivalent to the construction

“: (whitespace) :’, making it convenient to break a
line after the colon. Capability descriptions have
the format

(cap description)=(cap value)

The first equal sign separates the description from
the value (which can be e.g. a list containing equal
signs too).

The capability entry ‘VFlib-Defaults’ defines
global default values for VFIlib. ‘implicit-font-classes’
specifies a list of font classes for implicit font search;
the font class drivers are invoked in the order of that
list for searching. ‘extension-hints’ gives an ordered
list of pairs indicating which extension of an implicit
font needs which driver to handle. In the above ex-
ample there are e.g. two entries for files ending with
pk: one for Japanese TEX and one for standard TEX.
If the first driver fails, the second will be called.
Finally, ‘variables-default-values’ gives a list of de-
fault values which can be overridden at run-time if
supplied as an argument string to the initialization
function of VFlib.

‘TeX-Defaults’ primarily gives initialization val-
ues for kpathsea. Users of web2c and teTEX should
be quite familiar with the description names and its
meanings.

All other entries are used to define a Japa-
nese TrueType font as a font for JTEX. The final
JTEX font is built from various layers, starting with
the entry ‘mincho-jtex’ which defines the TrueType
font name, the writing direction, the character set,
etc. ‘mincho-5pt’ is an example of how to inherit
font capabilities: only a point size declaration has
been added. Then the ‘min’ base font class is speci-
fied, calling the ‘ascii-jtex-kanji’ font driver and us-
ing an adjustment file ttf.adj for all fonts of this
class.* Note that in ‘min’ no fonts are defined —
the concept is similar to object oriented languages
where some base classes are defined on which vir-
tual classes are built. With ‘min5’ or ‘minl(’ the
top level is reached, using all previously constructed
font classes.

NFSS would not require size quantization of the
font; it’s easy to add a proper entry like this:

min-nfss:\

:kanji-font=mincho-jtex:\
:inheritance=min:
A font defined in this way can then be used at any
size; VFlib would scale the font appropriately.

The VFlib API. The number of functions is small
due to the identical interface for all font formats.
Before opening any font you have to call VF_Init
to initialize the library with a vflibcap file. Open-
ing and closing of a font are handled with the func-
tions VF_OpenFont and VF_CloseFont respectively.
A glyph bitmap can be accessed in two ways. Either
you specify bitmap sizes in pixels (VF_GetBitmap2),
or you pass the resolution (in dpi) together with the
point size as parameters (VF_GetBitmapl). Simi-
lar commands exist for getting outline (vector) data
(VF_GetOutline) and for obtaining information on
metrics (VF_GetMetricl, VF_GetMetric2). All the
functions take the character code as a mandatory
parameter.

Auxiliary functions are provided to free bitmap
or metrics objects, to copy or scale bitmaps, and
to ‘dump’ the glyph using ASCII characters to get
similar output as gftype.

Finally, you can write your own font driver (to
be installed with VF_InstallFontDriver). Font
drivers must provide a small set of glyph manipulat-
ing functions,® and pointers to those functions are
then passed to the VFlib engine. Using the function
VF_GetProp it’s easy to extract font-class-specific

4 This file compensates the mono-width of Japanese
glyphs with small offsets for certain character classes like
CJK punctuation characters to improve typographical out-
put. Character classes are a special feature of JTEX.

5 With ‘glyph’ an empty box can be meant also e.g. for
writing a tfm driver.

208 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

entries from the vflibcap file to control the new font
driver.

Limitations and planned features. Many parts
of the VFIib package are still undocumented, or doc-
umentation is only available in Japanese. For in-
stance, VFlib contains a complete library for inter-
preting dvi files (with specials) which further sim-
plifies the writing of dvi drivers. A suite of dvi
previewers and dvi drivers is also included.

Currently, VFIib is limited to UNIX-like operat-
ing systems, but it should not be difficult to port it
to other platforms because no real dependencies on
UNIX features are built in.

Another useful tool yet to be written is a mod-
ule or program for creating tfm files from the bitmap
and vector fonts.

Planned for the near future are modules for pro-
cessing PostScript fonts and TEX virtual fonts; sup-
port for € metrics files is already implemented, but
without a vf module its use is rather academic.

FreeType

The report on FreeType (see [6]) will cover only the
basics without going too much into detail —the fi-
nal end-user API has not been defined yet. It is not
really linked to TgX, and if you are not interested
in how a rasterizer works, you should skip this sec-
tion. Nevertheless, it is linked to typography, and
the text presents some general principles of how out-
line glyphs will be handled to yield bitmaps.

FreeType is developed in a rather unusual way.
The package provides the complete library code and
some tools which demonstrate the use of the library
in two programming languages, namely in C and in
Pascar. We try to keep the library small (about
60 kByte if compiled for maximal speed with gcc);
nevertheless it is highly portable since the C part
is written in ANSI C, having only a few architec-
ture dependencies which can be adjusted with a few
global macro definitions.

The rasterizer. A rasterizer converts the vector
data of a glyph into a pixel representation. In
this short overview all complications (drop-out con-
trol, wrong contour direction, sub-banding of pro-
files etc.) are omitted.® This part of the FreeType
engine is quite generic and could be adapted to, say,
PostScript fonts too.

Glyphs as stored in a TrueType font (see [5] for
a reference) consist of vectorial information (straight
lines and Bézier curves of second order”) together

6 The original document is raster.doc of the FreeType
package, written by David TURNER.
7 PostScript fonts use third-order Bézier curves.

New font tools for TEX

with hinting instructions which move the points de-
termining the glyph contours to device resolution
dependent locations before rasterization.

We now assume that all point moving has been
done, and that the x and y coordinates of the points
are stored in a list together with a flag to indicate
whether the point is on or off the curve. See Fig-
ure 1.8

A scanline is a pixel line in the target bitmap.
An outline, also called contour, is a closed line that
delimits an inner and an outer region of the glyph.
The best way to fill a shape is to decompose it into
simple horizontal segments, called spans. Spans are
computed for each scanline. This is usually done
from the top to the bottom of the shape, in a move-
ment called sweep (see Figure 2). It’s easy to see
that there is typically more than one span per scan-
line. For each scanline during the sweep operation
we need the horizontal (x) coordinates of the start
and end points of all spans. These are computed
before the sweep, in a phase called ‘decomposition’
which converts the glyph contours into profiles.

Profiles are sections of the contours which are
either only ascending or only descending, i.e. mono-
tonic in the vertical direction (we will also say y-
monotonic). It can easily be deduced from Figure 3
that it is possible to resolve any contour into vertical
profiles and horizontal lines (which are not part of
a profile).

Each profile inherits the direction of the par-
ent contour (this is necessary to decide whether a
point is inside or outside of a contour, see below).
Figure 4 shows that a contour can have multiple pro-
files. Profiles are also called ‘edges’ or ‘edgelists’ in
other graphics libraries.

The rasterizer stores a profile as an array of
x coordinates of the intersection points of the pro-
file and the affected scanlines. To allocate a profile
array without wasting memory we must know the
height of that profile; with other words, we have to
compute the vertical extrema (minimum and max-
imum). This can be done very easily for straight
lines, but it is not trivial for Bézier arcs because

8 A second-order Bézier curve (also called quadratic
spline) is fully specified with the starting point of the curve,
a control point usually off the line, and the end point of the
curve. It is possible to have two consecutive off-points in
the points list; in this case a virtual on-point between the
two off-points will be constructed. The parametric form of a
quadratic spline is

p(t) = (1 —t)*p1 +2t(1 — t)p2 + t2ps ;

t denotes a real number in the range [0,1], p1 is the start
point, p2 the control point, and p3 the end point.

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 209

Werner Lemberg

e

Two ‘on’ points

Two ‘on’ points and one ‘off’ point

o

Two ‘on’ points with two ‘off’ points between.
The box indicates a virtual point not in the list.

Figure 1: Possible ‘on’ and ‘off” point combinations in a FreeType font

A A

Figure 2: Filling a shape with spans. The arrow indicates the sweeping direction.

- -

A y >

N\

Figure 3: Decomposition of a contour into profiles

KO

Figure 4: A contour with multiple profiles

they are not monotonic in the general case.” Nev-
ertheless, a Bézier arc can be split into two subarcs
with very little computation. Both subarcs are again
Bézier arcs, and one of them is guaranteed to be y-
monotonic. Look at Figure 5: p; denote the points
belonging to the original curve, ¢; and r; then define
the subarcs (i being 1, 2, or 3). The following for-
mule give the relationship between an arc and its
subarcs:
Qo =p1; @ =(p+p2)/2
r3 =p3; T2 = (p2+ps3)/2
a3 =11 = (g2 +72)/2

We stop if either all subarcs are monotonic or the
subarcs become too small; in both cases we’ve found
an extremum. This process is called flattening.

The next step is to compute all intersection
points of profiles and scanlines. In the case of lines
this is straightforward, but it is a little more compli-
cated for splines. Fortunately we can use arc split-
ting again. Consider Figure 6. The horizontal lines
represent scanlines, and a short segment of a profile
is shown. If we continue splitting until each subarc

9 A quadratic spline is y-monotonic if and only if the y co-
ordinates of the points pi, p2, and ps are monotonic, i.e.
p1, < p2, <ps, orpi, >p2, >p3,. lfp1, =p2, =p3,
the arc degenerates into a horizontal line.

210 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

p3 = g3

Figure 5: splitting a Bézier arc into two subarcs

crosses only one scanline, we can safely approximate
the subarcs with straight lines for which the compu-
tational effort is minimal. Internally this has been
realized with a Bézier arc stack; if the topmost arc
can be replaced with a line, the intersection point is
computed and the arc is popped off the stack. Oth-
erwise the arc is popped off, then split, and the two
new subarcs are pushed on the stack. This will be
repeated until the stack is empty.

y+3

A
A
/ y

d

Figure 6: the stepping process: replacing
sufficiently small subarcs with lines

We are done. The contours have been resolved
into profiles, and the profiles have been decomposed
into intersection points of the profiles and the scan-
lines. One last thing must be taken into account:
how can we decide which side of the countour is in-
terior and which is exterior? The TrueType specifi-
cation defines that the interior is always on the right
side of the contour (see Figure 7). Having an inter-
section point together with the contour direction, we
can decide simply which pixels must be blackened.

New font tools for TEX

scanline

Figure 7: the interior of a glyph must always be
to the right of the contour

The instruction interpreter. In figure 8 you can
see what instructions basically do. To avoid drop-
outs or ugly shapes, points are moved to new (reso-
lution dependent) locations before rendering, assur-
ing that even for low resolutions good optical results
can be computed. It has turned out that the True-
Type specifications are often very fuzzy about cer-
tain instructions. Long debugging sessions with well
hinted TrueType fonts were needed, comparing the
results with rendered bitmaps of other (commercial)
TrueType engines, to find out the undocumented
behaviour of those instructions. Nevertheless, af-
ter mastering these obstacles, most glyphs are now
rendered equally well with FreeType as with the ras-
terizers of Windows and the Mac.

To be added in the near future is instruction
support for composite glyphs. Again the specifica-
tions are too fuzzy to allow a straightforward imple-
mentation without testing undocumented instruc-
tion properties—for instance, should the instruc-
tion code of the subglyphs be executed or only the
instructions for the composite glyph? The TrueType
specification says nothing about this problem.

Font tools from CJK

Both programs discussed in this section are part of
the CJK package ([3]). They are specialized to CJK
fonts, but work is going on to internationalize them.
Script file skeletons of MakeTeXPK et al. are delivered
with these utilities for on-the-fly font generation.

ttf2pk. It is currently a special tool for converting
CJK TrueType fonts into tfm and pk files, but later

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 211

Werner Lemberg

an instructed ‘v’

an uninstructed ‘v’

Figure 8: comparison between a hinted and an
unhinted glyph

on it will use FreeType to process all kinds of True-
Type fonts. The original author is LIN Yaw-Jen who
modeled ttf2pk after ttf2bmp and pbmtopk.
ttf2pk takes a non-composite CJK TrueType
font in Big 5, EUC,' or SJIS encoding and converts
a certain contiguous subrange (at most 256 charac-
ters) into a pk and a tfm file. The program has a
lot of command switches; a typical call looks like
ttf2pk ntukaiOl.pk ntukaiOl.tfm 600 1.0 \
0xA140 256 -e Bigh ntu_kai.ttf

‘ntukaiOl’ is the first subfont of the ntukai font,
‘600’ is the resolution in dpi, ‘1.0’ a vertical scaling
factor (for printers with different horizontal and ver-
tical resolutions), ‘0xA140’ the first character code
of the subfont, and ‘256’ the number of characters
in the subfont. The switch -e selects the encoding
of the TrueType font, and the last parameter is a
full path to the TrueType font file.

Most of the other options not shown here have
been inherited from pnmtopk; one parameter (‘-r’)
has been added to rotate the glyphs by 90 degrees,
enabling faked vertical typesetting with TEX.!!

CJK subfonts as used in the CJK package are
discussed in another paper of the proceedings ([4]).

hbf2gf. Similarly to ttf2pk, hbf2gf is used to split
CJK bitmap fonts into subfonts. Its source code is
written in CWEB; the format used by this tool is
the Hanzi Bitmap Font format (HBF, see [1] for a
complete reference). Basically the format consists of
the bitmap files and a header file describing the font.
Here an example of an HBF header file, describing
a Chinese font with the character set CNS plane 7:

10 BUC stands for Extended UNIX code; examples are Chi-
nese GB, Japanese JIS, Korean KS encoding.

1 Alas, only Big 5 encoding has both horizontal and ver-
tical punctuation marks, but even here the set is not com-
plete. For typographically satisfying results you need a font
intended for vertical typesetting.

HBF_START_FONT 1.1

HBF_CODE_SCHEME CNS11643-92p5

FONT cns40st-5

SIZE 40 150 150
HBF_BITMAP_BOUNDING_BOX 40 40 0 -6
FONTBOUNDINGBOX 40 40 0 -6
STARTPROPERTIES 23

FONTNAME_REGISTRY ""

FOUNDRY "CBS"

FAMILY_NAME "Song"

WEIGHT _NAME "medium"

SLANT "r"

SETWIDTH_NAME "normal"
ADD_STYLE_NAME "fantizi"

PIXEL_SIZE 40

POINT_SIZE 400

RESOLUTION_X 75

RESOLUTION_Y 75

SPACING "c"

AVERAGE_WIDTH 400

CHARSET_REGISTRY "CNS11643.92p5"
CHARSET_ENCODING "O"

WEIGHT 19329

RESOLUTION 110

X_HEIGHT 34

QUAD_WIDTH 40

FONT_ASCENT 34

FONT_DESCENT 6

DEFAULT_CHAR 0x2121

ENDPROPERTIES

COMMENT "This HBF header file is in the"
COMMENT "public domain."
HBF_START_BYTE_2_RANGES 1
HBF_BYTE_2_RANGE 0x21-0x7E
HBF_END_BYTE_2_RANGES
HBF_START_CODE_RANGES 1
HBF_CODE_RANGE 0x2121-0x7C51 4040w5.bin O
HBF_END_CODE_RANGES

COMMENT

COMMENT Rarely used characters defined by
COMMENT Ministry of Education of Taiwan,
COMMENT said to be disjoint from the
COMMENT previous planes.

COMMENT 8603 characters, 2121--7C51.
COMMENT

HBF_END_FONT

The syntax is very similar to the format of a
BDF header (bitmap fonts used with X Windows);
a small set of keywords (starting with ‘HBF_’; all oth-
ers are BDF specific) have been added to accommo-
date the special needs of CJK files. As an example,
the line

HBF_CODE_RANGE 0x2121-0x7C51 4040w5.bin O
says that the file 4040w5.bin contains glyphs with
the character codes 0x2121-0x7C51, starting at off-

set 0. ‘HBF_BYTE_2_RANGE’ specifies the valid range
of the second bytes of the double byte font encoding

212 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

(see [3] for more details). Both keywords can appear
more than once.

hbf2gf can be called in two ‘modes’: the first
creates a complete set of subfonts for a particular
HBF font, and the second computes the gf and
tfm file of one subfont (to be used in MakeTeX. ..
scripts). In both cases, a configuration file is used
to avoid lengthy parameter lists.

We continue the example from above with an
hbf2gf configuration file using the just defined CNS
font (long lines are splitted and marked with a final
backslash for clarification):

hbf_header \
$TEXMF/fonts/hbf/chinese/cns40/cns40-5.hbf

comment \
CNS plane 5 song 40x40 pixel font \
scaled and adapted to 12pt

mag_x 1
design_size 12.0
x_offset 2
y_offset -8
output_name cbsol2
checksum 123456789
dpi_x 300
pk_files no
tfm_files yes

pk_directory \
$TEXMF/fonts/pk/modeless/chinese/c5so012/
tfm_directory \
$TEXMF/fonts/tfm/chinese/c5s012/

Keywords must start a line; a line not start-
ing with a known keyword is ignored. Environment
variables can be specified with a starting dollar sign.

An important concept to understand hbf2gf
configuration files is the difference between ‘magni-
fication’ and ‘scaling’.!? The former denotes a scal-
ing factor to reach the design size of the font (in the
above example it is 1.0 to get 12pt). Offset values
(given in pixels) refer to this size. The latter then
scales the font to its final size, indicated with dpi_x
(and optionally dpi_y).

It is also possible to create fonts with slanted
and rotated glyphs; additionally the next version
will be able to produce 2 virtual fonts.

12 The wording is a bit unfortunate because the meaning
is different in TEX.

New font tools for TEX

Conclusion

In a not too distant future the utilities and libraries
described in this paper will more or less merge, pro-
viding a vital basis for handling fonts under 2 and
TEX. With VFIib as the framework it will be possi-
ble to access already existing fonts in Unicode encod-
ing regardless of the original encoding, create virtual
fonts on the fly as needed for text processing with
mixed writing directions (both horizontal and verti-
cal), sophisticated space handling between fonts and
much more.

With FreeType a new font world will be opened
to TEX users working on UNIX like operating sys-
tems — after the integration of FreeType ttf2pk will
be (hopefully) as useful as pstopk or gsftopk.

References
[1] Nelson Chin et al. Hanzi Bitmap Font
(HBF) file format version 1.1. Avail-

able electronically from ftp://ftp.ifcss.org/
pub/software/info/HBF-1.1.tar.gz, Septem-
ber 1994.

[2] Kakugawa Hirotsugu (#8 X f/I[). The VFlib
package. Available from ftp://gull.se.
hiroshima-u.ac.jp/1997.

[3] Werner Lemberg. The CJK package. Available
from CTAN, language/chinese, 1997.

[4] Werner Lemberg. The CJK package for
ITEX 2¢ — multilingual support beyond babel.
In Proceedings of TUG 97, July 1997.

[5] Microsoft corporation. TrueType 1.0 font
files. Available electronically from ftp://ftp.
microsoft.com/developr/drg/TrueType/
ttspec.zip, November 1995.

[6] David Turner, Robert Wilhelm, and Werner
Lemberg. The FreeType package. Available
from ftp://ftp.physiol.med.tu-muenchen.
de/pub/freetype, 1997.

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 213

