
Survey

Computer Typesetting

or Electronic Publishing?

New trends in scienti�c publication*

Philip Taylor

Abstract

W ci �agu ostatnich 15 lat sk lad tekstu wspomagany
komputerowo ca lkowicie wyeliminowa l stosowanie
tradycyjnych technik drukarskich. Obecnie stoimy
przed jeszcze bardziej radykaln �a rewolucj �a techno-
logiczn �a, jak �a stanowi pojawienie si�e wydawnictw
elektronicznych (electronic publishing { w skr�ocie
e.p.).

* This paper was �rst presented as an invited talk
at a combined meeting of the Polish Mathematical
Society and EmNet Project (Euromath Trust),
Torun, Poland, 1995. It has subsequently
been published in English in GUST (Grupa
U_zytkownik�ow Systemu TEX); Biuletyn Zeszyt
6, pp. 12-27, and in Polish translation in Pro

Dialog , August 1996. It is republished with the
permission of the author, the editors, and the
commissioning organization.

TUGboat, Volume 17 (1996), No. 4 367

W przeciwie�nstwie do sk ladu komputerowego
i tradycyjnego, publikacje elektroniczne w og�ole nie
wykorzystuj �a papieru, no�snikem informacji staje si�e
ekran komputera.

Potencjalne korzy�sci p lyn �ace z zastosowania
tej nowej metody publikacji wydaj �a si�e oczywiste:
znaczna redukcja koszt�ow i niemal natychmiastowa
dystrybucja do zainteresowanych odbiorc�ow. Nie
mo_zna jednak pomin �a�c i wad, takich jak: mo_zliwo�s�c
bezprawnego kopiowania, latwo�s�c plagiat�ow i nie-
legalnej redystrybucji.

Obie wspomniane metody publikacji r�o_zni �a si�e
w spos�ob zasadniczy: o ile systemy sk ladu tekstu
z g�ory narzucaj �a posta�c ko�ncow �a strony, to systemy
publikacji elektronicznych stwarzaj �a jej bardziej
niezale_zn �a reprezentacj�e, w kt�orej ostateczna forma
zale_zy raczej od programu prezentuj �acego dokument
(tzw. viewera, czy po polsku { przegl �adarki).

W niniejszej pracy om�owione s �a najnowsze
osi �agni�ecia zar�owno w dziedzinie sk ladu komput-
erowego jak i publikacji elektronicznych. Wska-
zuje si�e r�ownie_z na r�o_znice tych dw�och metod
rozpowszechniania.

A Brief History of TEX

Until about �fteen years ago, typesetting was virtu-
ally ignored by the vast majority of mathematicians,
scientists, and scholars in general: manuscripts
were prepared using a typewriter, the more eso-
teric symbols (which meant almost all symbols for
mathematicians) were laboriously inserted by hand,
and the whole was then simply dispatched to the
publisher. Some time later galleys would be re-
turned, emendations noted in the margin, and once
again the whole would be sent to the publisher. A
similar but shorter cycle was probably repeated for
the page proofs, and �nally the author's intentions
appeared in �nal form in the �nished book. At
no point did the author and the typesetter commu-
nicate directly, and indeed the former was almost
certainly virtually unaware of the latter's existence.

The typesetter, however, was only too aware of
the author: mathematical copy is traditionally
referred to as `penalty copy' in the printing
trade, since it is notoriously di�cult to set
correctly. In the time that his colleague could
set ten pages of straight text, the mathematical
typesetter was barely able to accomplish a single
page, and even when set he knew that there was
every possibility that it would have to be re-set
more than once, since mathematicians are only too
keen to invent new symbols of their own when no
existing symbol seems entirely appropriate. And

since the typesetter would never have encountered
such a symbol before, he would (quite reasonably)
assume that it was simply a badly drawn version of
a symbol with which he was familiar, and substitute
the latter: : :

Needless to say, some of the more aware authors
began experimenting with computer technology as
soon as it became generally accessible, and for
a while the academic world seemed convinced
that if it were possible to get just a couple
more symbols onto the daisy-wheel of a Diablo
printer, all would become possible: there were even
specialist companies who would re-mould a daisy-
wheel, replacing an apparently unwanted glyph
with one which its owner deemed indispensable. Of
course, the approach was doomed to failure: one
can no more set mathematics with a �xed set of 144
glyphs than can one with a set of 128, and despite
the best e�orts of all concerned, the daisy-wheel
printer was soon consigned to the scrap bin.

In parallel with this, the dot-matrix printer
manufacturers �rst began to have a signi�cant
impact. With a 7 � 5 dot matrix, there are
potentially

35X
i=0

�
35

i

�
= 235

di�erent characters (a very large number indeed!),
but unfortunately a number of these are virtually
indistinguishable: a single dot at co-ordinates (4; 3)
looks astonishingly like another single dot at at
co-ordinates (4; 4) to even the most astute reader
(I believe that there are 33 034 338 305 distinct

characters, as opposed to a total of 34 359 738 368
characters, where a character is regarded as distinct
if it's not simply the result of sliding another
character horizontally, vertically, or both: this
�gure is based on an analysis by Dr Warren
Dicks of the Autonomous University of Barcelona).
Furthermore, the print quality of a 7 � 5 dot
matrix printer is so appallingly bad that no attempt
should ever be made to set a book using one {
unfortunately this well-meant advice was seldom
heeded at the time.

Of course, in order to exploit these techno-
logical revolutions, suitable software had to be
written, and the Unix world in particular decided to
standardise on ROFF and its derivatives: NROFF,
TROFF and �nally DITROFF all made their mark.
Unfortunately none of the ROFF derivatives ever
directly supported the typesetting of mathemat-
ics, and so adjunct programs such as EQN and
TBL had to be used to add mathematical func-
tionality. There were also commercial systems,

368 TUGboat, Volume 17 (1996), No. 4

used to set publications such as the Transactions

of the American Mathematical Society , but these
were both expensive and arcane, using a rather
non-mnemonic syntax to represent the possible
mathematical constructions.

Fortunately (as is absolutely clear in retro-
spect), at least one eminent mathematician believed
that something better not only could, but should ,
be created; and being not only a mathematician
but a computer scientist, he decided to create it.
His name was Knuth, and his creation was TEX.

Yet had it not been for a happy co-incidence,
TEX might never have been born. At the time,
Knuth was working on his opus magnum, a
seven-book series entitled The Art of Computer

Programming , and by 1977 the popularity of the
early volumes of this series had proved so great
that Volume 2 had already run to a second
edition. Unfortunately the timing of this was
such that whilst the �rst edition had been set using
traditional hot-lead technology, the second edition
was produced using one of the �rst phototypesetters
[an aside to readers: throughout this paper I use the
term typesetter to mean both the person performing
the task of setting type, and the equipment used
to achieve that end: I hope that it is always
clear from the context which of these two meanings
is to be inferred, since there is no other word
which could easily and felicitously be substituted
for either of these usages]. And whilst the new
phototypesetter was more than capable in theory

of achieving results as good as, if not better than,
the traditional hot lead device used previously,
the results in practice left a great deal to be
desired. Knuth, as mathematician and computer
scientist, was convinced that the fault lay not in
the technology but in the software used to drive it,
and he decided that rather than see his life's work
appear in second-rate format, he would devote a
short portion of his professional life to developing
a suite of software which would exploit the full
potential of the phototypesetter. Little did he know
when he took this brave decision that it was to
take not the anticipated one year but at least ten,
although he most certainly had a demonstrably
working version within his anticipated time-frame.

The �rst published reference to TEX is proba-
bly Mathematical Typography , published as report
STAN-CS-78-648 by the Computer Science Depart-
ment of Stanford University; in the bibliography to
this, Knuth gives the de�nitive reference as being
Tau Epsilon Chi, a system for technical text which
was at the time \in preparation" and is now sadly
out of print. For those interested in the subject, the

former paper makes fascinating reading, and the
bibliography alone makes it a more than worthwhile
acquisition; it was reproduced in the Bulletin of the

American Mathematical Society , in which form it
should still be available.

TEX was both typical and atypical of programs
of its era: it was typical in that it was completely
script-oriented, pre-dating as it did any widely-
used graphical user interface; it was atypical in
that it was a completely programmable macro

programming language, in which there were no
reserved words, and in which even individual
characters could change their semantics on the

y. Thus a TEX document consisted both
of the text to be typeset and the commands
to accomplish that typesetting, and only TEX
itself could unambiguously determine whether
any particular element of the document was to
be interpreted as `program' or `data'.

Despite being created primarily in order to
accomplish one particular end { the typesetting of
Volume 2 of The Art of Computer Programming

{ TEX rapidly took on a life of its own, and
soon became the de facto standard for typesetting
within much of Stanford University. Before long
its fame had spread, and by 1980 the TEX Users
Group had sprung into existence, with members
of the Steering Committee drawn from far beyond
the restricted domain of Stanford faculty. The
American Mathematical Society were represented
on that Committee, and liaison between the AMS

and Knuth was very close: Knuth assigned the
TEX logo to the AMS who then applied for
trademark protection to prevent it being used
to describe any unauthorised modi�cation of TEX {
unfortunately this application was rejected because
of a prior registration of TEX (sic) by Honeywell,
but despite this lack of formal registration, Knuth's
high pro�le and high standing ensure that the
TEX logo (or its non-typeset equivalent, TeX) is
universally recognised and respected.

Within a couple of years, it became clear that
the initial implementation of TEX left something
to be desired, both in terms of functionality and
in terms of portability, and Knuth set out to
redress both by re-implementing TEX from scratch.
This time he decided to eschew SAIL (`Stanford
Arti�cial Intelligence Language') as the language of
implementation, and instead to adopt the far more
widely available programming language Pascal. To
further increase its portability, he adopted only a
strict subset of Pascal, encompassing only those
features which he was con�dent could be found
(or easily emulated) on all Pascal implementations;

TUGboat, Volume 17 (1996), No. 4 369

but he also decided to take this opportunity to
render the program in a form which he termed
`literate': that is, he wanted people to be able
to read the source of TEX in the same way that
they might read a book, and to therefore be able
to bene�t by being exposed to a major piece of
software engineering presented in a highly literate
manner. Once again Knuth decided that there were
no adequate tools available for this, and once again
he digressed from the main project by breaking o�
to design and implement the concept of a WEB

program, together with its two adjunct programs
TANGLE and WEAVE.

A WEB program consists of a highly stylised
dialect of Pascal, interspersed by lengthy comments
describing the purpose and function of every element
and module of the program (I suspect that Knuth
would deny this, and say that a WEB program
consists of a highly elaborate description of
the workings of the program, interspersed by
occasional fragments of Pascal which implement
that functionality: and I suspect that he would
almost certainly be right!). By permitting the
elements of a Pascal program to be presented in
arbitrary order (as opposed to the strict order
of presentation required by the Pascal standard),
WEB allows the programmer the opportunity to
present the elements of a program in a natural
and logical order, as opposed to the arti�cial order
imposed by the Pascal design criterion of `e�cient
compilability': it is then the task of TANGLE

to paste together these fragments in the order
required by Pascal, and the task of WEAVE to
bring together both the program fragments and
the comment fragments into a form which can
immediately be typeset by TEX.

Thus for the �rst time TEX became self-refer-
ential: in order to be able to produce the Pascal
code from the WEB source, one needed a working
version of TANGLE; to be able to produce a literate
listing of the WEB source, one needed a working
copy of WEAVE; but both TANGLE and WEAVE are
themselves written in WEB, so to produce a working
TANGLE one needs a working TANGLE, and so ad

in�nitum. Of course `bootstrapping' (as the tech-
nique is generally termed) is well understood in the
Computer Science world, and it was estimated that
the task of `hand compiling' TANGLE from the WEB

source was well within the competence of `the av-
erage implementor': however, I remember only too
clearly the trauma through which a colleague went
when he attempted this bootstrapping for himself: : :

During the re-implementation, Knuth re-wrote
almost the complete TEX program: he had learned

much about its limitations during the �rst couple
of years of use, and by 1982 a completely re-written
TEX had emerged. This version of TEX (often
referred to as TEX 82, to di�erentiate it from the
earlier version which analogously became known
as TEX 78) was rapidly ported to a wide range
of machines, and is quite possibly the most widely
available program in the world today, being available
on every class of system from the smallest PC to
the largest super-computer. Its almost universal
acceptance as the standard package for computer
typesetting is almost certainly the result of a large
set of very positive attributes: the source of the
program, and the vast majority of implementations,
are available either free of charge or at a modest
cost which covers no more than the media on which
they are supplied; the program is virtually bug-free,
a claim which Knuth backed up until very recently
by o�ering a cheque for every bug found, the value
of the cheque doubling each year since the scheme's
inception (he still o�ers a cheque, but the value no
longer doubles, since he estimated that before too
long it might exceed the total Federal reserves: : :);
the program is highly stable (there were virtually
no major changes during the period 1982{90, and
similarly there have been virtually no changes at
all since 1990, nor will there be at any point in
the future); and there are an enormous number
of users throughout the world, most of whom are
only too keen to pass on their expertise to any who
need it, so any real problems resulting from a lack
of experience with TEX can be rapidly resolved by
a message to any one of a number of TEX-related
mailing lists and news groups (even those without
network access are not cut o�, as the TUG (TEX
Users Group) o�ce o�ers telephone support from
03:00 in the morning until late in the evening {
a service which is not restricted to members of
TUG).

So, during the 1980's, TEX emerged as the

standard package for computer typesetting: it
was available on almost every conceivable system,
device drivers were written for everything from dot-
matrix printers to 2400 dpi phototypesetters (but
not daisy wheel printers!), and an ever-increasing
number of publications appeared which were either
typeset using TEX, or were about TEX, or both.
Many scienti�c journals adopted it (or one of its
derivatives such as LATEX, which may be thought
of as a somewhat restrictive but more user-friendly
`front end' to TEX) as the standard format in
which papers were to be prepared. Since an
author could very easily proof a paper using a
local implementation of TEX, and since TEX was

370 TUGboat, Volume 17 (1996), No. 4

guaranteed to produce identical results no matter on
which system it was run, the number of iterations
between author and publisher was reduced to the
bare minimum, and all bene�tted. And since
TEX has been designed by a mathematician, and
since a part of its raison d'être had been to
allow mathematics to be typeset almost as easily
as running text, its take-up by the mathematical
community was if anything even faster than its
take-up by the scienti�c and academic communities
in general.

To give a simple example of why TEX is ideally
suited to the typesetting of mathematics, consider
the following set of equations:

�Z 1
�1

e�x
2

dx

�2
=

Z 1
�1

Z 1
�1

e�(x
2+y2) dx dy

=

Z 2�

0

Z 1
0

e�r
2

r dr d�

=

Z 2�

0

�
�

e�r
2

2

����
r=1

r=0

�
d�

= �: (11)

A mathematician writing this by hand would
almost certainly start with the left-most element
of the �rst line, proceed from left to right,
and alternate between baseline, subscript and
superscript elements as logic dictated; a pure
WYSIWYG (`What you see is what you get')
word processor, on the other hand, would require
the typist to analyse each row of the equations
into horizontal strata (thus the top stratum
might contain only 1, 2, 1 and 1, for
example) and to enter these stratum by stratum;
since, in general, WYSIWYG systems do not
automatically displace preceding or following lines
of text horizontally when an intervening line is
shortened or lengthened, the correction of such
equations is tedious and error-prone in the extreme.
More recent, WYSIWYG-like, systems require a
di�erent approach in which the author has to enter
the formula in the order dictated by its parse-
tree; needless to say, this approach too demands
more of the author than should reasonably be
expected.

TEX allows the mathematician to enter the
formul� in the most natural manner, starting at
the left and �nishing at the right; alignment is
automatically maintained if insertions or deletions
are made, and even the horizontal alignment of the
four primary = signs is performed automatically,
virtually regardless of the length of individual left-

or right elements. To clarify this, here is the exact
TEX source which was used to set the table:

$$

\eqalignno

{\biggl(

\int_{-\infty}^\infty e^{-x^2}\,dx

\biggr)^2

&=\int_{-\infty}^\infty

\int_{-\infty}^\infty

e^{-(x^2+y^2)}\,dx\,dy \cr

&=\int_0^{2\pi}\int_0^\infty

e^{-r^2}r\,dr\,d\theta \cr

&=\int_0^{2\pi}

\biggl(

-{e^{-r^2}\over 2}

\bigg \vert_{r=0}^{r=\infty}\,

\biggr)

\,d\theta \cr

&=\pi.&(11)\cr

}

$$

It is worth noting that TEX completely ignores
any spaces in mathematical text, since the rules
for typesetting mathematics are complex, and
cannot be expected to be understood by mere
mathematicians! Thus the layout of the equations
above is simply for the convenience of the author,
and is completely ignored by TEX, which is far
more concerned by special characters such as
dollars, backslashes, braces, underscores, carets
and ampersands. And whilst each of these
characters has a distinct meaning to TEX (a
dollar symbol, for example, both introduces and
terminates a stretch of mathematical text), that
meaning may at any time be overridden, and
either assigned to a di�erent character or, if not
needed, turned o� completely. So, for example, if
some particular computer lacked a backslash key, it
would be trivial to assign the semantics of backslash
to some other key (say, yen, if a Japanese keyboard
were to be used).

Furthermore, it can be seen that TEX is highly
mnemonic in its choice of control sequences
(`commands', preceded by a backslash); to pick
out just a few examples, \int represents an
integral sign, \infty an in�nity, \exp the exp
operator (representing the exponential e) and so
on. Compound subscripts and superscripts are
presented in logical order, rather than in order
of their appearance vertically on the page; and
facilities are provided for the author to give TEX
hints about the logical structure of the expression, so
that (for example), \, is used to set o� di�erentials

TUGboat, Volume 17 (1996), No. 4 371

such as d� from the preceding text by a little extra
white space, thereby improving both the appearance
and the legibility of the expression.

Thus the attraction of TEX for mathematicians
is clear: a highly logical markup language, capable
of being entered from any keyboard; access to a very
wide range of mathematical symbols; professional
standards of layout; widespread acceptability by
journals; and the ability to proof on anything from
a dot-matrix printer to a 600 dpi laser printer. Add
to this the now universal ability to preview the
document on the computer screen (something the
early advocates of TEX could only dream of), and
it is hard to explain why any mathematician with
access to a computer would not typeset his papers
using TEX!

However, use of TEX is restricted neither to
mathematicians nor to North Americans, and at the
TEX User Group conference in 1989, an in
uential
and voluble group of European TEX users ganged
up on Knuth and succeeded in convincing him
that, despite his assertion on the previous day
of the conference that the development of TEX
was �nished, there were features missing from the
current implementation which made TEX entirely
useless to the majority of the world, since whilst it
behaved perfectly in unaccented languages, it was
grossly de�cient for typesetting any language which
made more than occasional use of diacritics. And
Knuth, recognising the validity of this argument,
agreed that something had to be done.

The result of all this was TEX 3: TEX 82 became
known simply as TEX 2, and TEX 3 became the One
True TEX. In practice, this just didn't happen:
those who had no need for the extended diacritic
support o�ered by TEX 3 simply continued to use
TEX 2, and for quite a while TEX macro writers had
to write very defensive code which �rst checked the
environment before making any assumptions about
(for example) the number of distinct characters
with which TEX could internally deal (this was 128
prior to TEX 3, and 256 thereafter). With the
release of TEX 3, Knuth made it absolutely clear
that this really did represent the end of the TEX
evolutionary line: he had better things to do with
his time, and TEX was now frozen (modulo any
essential bug �xes, which he undertook to continue
to make if and only if it could be shewn that
their �xing was essential). Furthermore he made
it equally plain that TEX could not be further
evolved by anyone else: he wished to leave for
his children, and for his children's children, and
for all perpetuity, TEX as his creation, and not as
his-creation-as-modi�ed-by-someone-else.

In general, the TEX world took this in good
part: Knuth is enormously highly respected by
those who use TEX, and there were very few
who advocated ignoring his wishes and who were
prepared to suggest modifying TEX. But there
were also a quite signi�cant number of TEX users,
among them the present author, who felt that if
TEX did not evolve, then it would simply die.
Not because of any fundamental de�ciencies in
TEX { it is generally accepted that there are very
few { but because the world had moved on since
1978, and whilst a script-driven language might
have been state-of-the-art then, it most certainly
was not state-of-the-art now. Furthermore, despite
increasing the number of distinct internal characters
from 128 to 256, Knuth had done little if anything
to enhance TEX to deal with Asian languages, in
which the number of distinct characters may be
measured in thousands if not in tens of thousands.
And �nally, there were those who felt that there
were some areas in which a very signi�cant increase
in functionality could be gained (particularly from
the perspective of the macro programmer, who is
also known as a `format writer' when the suite of
macros provides a complete functional system in its
own right) with relatively little investment in terms
of modifying TEX.

The implementation of these ideas probably
represents the leading edge of TEX technology
today: companies such as Blue Sky have produced
instantaneous/incremental TEX interpreters, which
are capable of displaying the e�ects of a change
to the source code of a TEX document in real
time; Advent Publishing have produced 3B2, which
allows both a graphical and a textual speci�cation
of a layout, automatically updating one to re
ect
changes in the other; John Plaice and Yannis
Haralambous have implemented a 64-bit version of
TEX which uses Unicode internally; and the group
with which I am most closely associated (the NTS

group, where NTS stands for `New Typesetting
System') have produced a completely compatible
successor to TEX, called e-TEX, which adds
functionality without compromising compatibility
(the NTS group also wish to re-implement TEX
from scratch, using a modern rapid-prototyping
language such as Prolog or CLOS, the idea being
to allow rapid experimentation with alternative
typesetting algorithms or paradigms). Whether or
not any of these ideas will catch on remains to be
seen, although among Apple Macintosh a�cionados

Classic Textures (the Blue Sky product referred
to above) is already highly thought of. One
fundamental question is that of stability: since one

372 TUGboat, Volume 17 (1996), No. 4

of the great strengths of TEX is its stability, how
will the world feel about systems which encompass
TEX but which are speci�cally intended to remain
evolutionary and responsive, rather than fossilised
and unyielding? Only time will tell.

What is perhaps worth noting is that all of
these projects have ensured that Knuth's wishes are
honoured not only in the letter but in the spirit:
none seeks to call itself TEX (indeed, that of John
Plaice and Yannis Haralambous is called Omega,
which could never be confused with TEX), yet all
acknowledge the debt which they owe to Knuth and
to TEX: without them, none of these other projects
would ever have seen the light of day.

Parallel Developments

Of course, while TEX was evolving, the rest of
the world did not stand still: computer science
continued to develop, and computer networking
moved from the laboratory to the military and
the Universities and ultimately to the whole world.
Line-oriented editors fell by the wayside, and were
replaced by full-screen editors (except in the rather
time-warped world of MS/DOS, which continued to
o�er only EDLIN until comparatively recently).
Script-oriented markup languages such as the
ROFF family referred to earlier were challenged
by increasingly sophisticated word-processors, and
WYSIWYG (`What You See is What You Get'), GUI

(`Graphical User Interface'), and WIMP (`Windows,
Icons, Menus and Pull-down lists') became the order
of the day.

At about the same time that Knuth was
starting work on TEX, John Warnock and Martin
Newell re-implemented an earlier language (`the
Design System') as `JaM' (`John and Martin' !)
whilst working at Xerox PARC, and from this
cloistered beginning ultimately emerged both the
Interpress (Xerox printing protocol) and PostScript
languages. Whilst Interpress remained relatively
unfamiliar, Adobe PostScript took the computing
world by storm: for the �rst time there was a
de facto page description language, which allowed
complex pages to be described algorithmically (and
thus very e�ciently). Although Hewlett Packard's
Printer Control Language (PCL) continued (and
continues) to be both widely supported and widely
emulated, PostScript rapidly established itself as
the standard for high-level printers (by which I
mean laser printers and better), and fairly quickly
printer manufacturers sought to provide either Post-
Script interpreters or PostScript emulators for their
high-end products. Unfortunately (for the emulator

writers) PostScript is a complex language, and
many of the earlier emulations were de�cient in one
or more respects; Adobe, of course, as designers of
the language had far fewer problems in this respect,
although even they released improved versions of
their interpreter as time went by.

For a long while parts of PostScript remained
a closely guarded secret: the mysterious eexec

operator was undocumented, and whilst the Post-
Script manual gave information on the format of
so-called `Type 3' fonts, the equally mysterious
`Type 1' fonts remained undocumented. Of course,
reverse engineering is a well-understood tool, and
�nally the barriers were broken: descriptions of
eexec started to appear in the press, and
ultimately Adobe themselves relented and gave
full documentation of both eexec and their Type 1
fonts.

Before long, Type 1 fonts established them-
selves as as much a standard for fonts as PostScript
was a standard for page-description languages; com-
panies such as Corel started to release Type 1 fonts
of their own, closely modelled on industry-standard
fonts but su�ciently di�erent (at least in name)
to avoid accusations of font piracy (although this
latter problem continues to worry top font designers
such as Hermann Zapf to this day). All the major
font foundries started to o�er their fonts in Type 1
format, and many gave a commitment to have all of
their fonts in Type 1 format within the foreseeable
future. The so-called `font magic' which enabled
early Adobe fonts to render well even on relatively
low resolution devices such as 300 dpi laser printers
was renamed `font hinting', and this too was eventu-
ally documented by Adobe. New features continued
to be added to the PostScript language, and in
1990, Adobe announced a completely new version
of the PostScript language, `PostScript Level 2'.
This new version uni�ed all previous additions to
the language, and added many new features as
well, such as the ability to have compact (binary)
representations of a PostScript document as well
as the earlier (ASCII) representation; new colour
models were introduced, and support was added for
composite fonts.

PostScript was originally conceived as an
embedded language for printers, but before long
it became clear that a version of PostScript which
could drive a computer screen would be extremely
useful. Adobe created their own version of this
called `Display PostScript', but in the meantime
L. Peter Deutsch had started work on a PostScript
interpreter of his own, called `Ghostscript', and
fundamental to its functionality was the ability to

TUGboat, Volume 17 (1996), No. 4 373

drive the screen of any computer on which it was
used (it also contained drivers for a wide-range
of non-PostScript printers, as well as pseudo-
drivers for some of the more popular graphics
interchange formats). During 1995 Peter �nally
announced Ghostscript version 3, which provided
almost a complete Level 2 emulation, and whilst the
o�cial Adobe interpreter remained a licensed (and
relatively expensive) product, Ghostscript was and
remains free of charge to those who do not use it for
pro�t-making purposes; a very signi�cant debt of
gratitude is owed by the computer world to L. Peter
Deutsch, both to his skill in writing Ghostscript and
to his generosity in making it so freely available,
and also to the many individuals who have donated
their own drivers and/or enhancements to the
Ghostscript project (PS-View, from Bogus law
Jackowski and Piotr Pianowski warrants special
mention).

From the ARPAnet to the Web

A few years before Knuth started work on TEX, the
American military as personi�ed by [D]ARPA (the
[Defence] Advanced Research Projects Agency),
had initiated a pilot project to link computers
over very wide distances; whilst local computer
links were not uncommon, links across thousands
of miles were unheard of, but [D]ARPA realised
the potential military importance of such links
and therefore initiated a whole series of research
projects aimed at making this a reality. Whilst
these projects initially started in isolation, as soon
as the pilot network was available the project
gained a momentum { indeed, a very existence {
of its own, and the whole development strategy
henceforth was established by discussion across , as
well as about , the network. This network, known
as the ARPAnet for obvious reasons, evolved a
mechanism for distributed discussion and voting
known as the `Request for Comments' (`RFC'), and
any new idea for anything from a protocol to a
picnic was likely to �nd itself the subject of an
RFC. From these RFCs emerged some of the most
important de facto standards on which we still to
this day: TCP (`Transmission Control Protocol'), IP

(`Internet Protocol'), SMTP (`Simple Mail Transfer
Protocol') and so on were all enshrined in the
published versions of the RFCs, and each was
allocated a unique number: electronic mail, for
example, was addressed by and speci�ed in, RFC

822.

Although the American military launched the
networking initiative, it was the American univer-
sities which were actually the primary contributors
to its success, and once the network was well estab-
lished it ceased to be `the ARPAnet' and became
instead `the Internet', the name by which it is still
known today. Strictly speaking, the Internet is
not a network per se, but a network-of-networks;
however, the distinction is of little signi�cance, and
most now regard the Internet simply as the interna-
tional computer network. From its military origins,
where permission-to-connect almost required a per-
sonal interview with a �ve-star general, the Internet
has now become the network to which even the most
humble private citizen may aspire to gain access:
Internet service providers have sprung up across
much of the Western world, and connecting to the
Internet today requires little more formality than a
letter (and a fairly modest cheque!) to an Internet
service provider, together with the purchase of a
equally modest personal computer and a modem: at
the time of writing, there are Internet connections
from something like 150 countries throughout the
world (the number of actual Internet nodes is far

harder to gauge, but it is already estimated to lie
between �ve and ten million).

Initially the protocols used, and services
provided, on the Internet were very primitive:
FTP (`File Transfer Protocol'), TELNET (remote
terminal access), PING (check if a remote node is
alive), and SMTP were probably the most common,
with FINGER (check if a remote user is logged
in) coming not far behind. But whilst the end-
user protocols were fairly simple, the underlying
mechanisms were not, and the DNS (`Domain Name
Service') provided a quite sophisticated mechanism
for a distributed node lookup protocol. As more
experience was gained, the range of protocols and
services increased, and things such as Usenet News
(a distributed bulletin board) and NFS (`Network
File System', providing remote access to a complete
�le system) were added. Then the information
explosion really took o�, and tools for information
retrieval and display began to proliferate: GOPHER

and WAIS (`Go for', and `Wide Area Information
Service, respectively) were early candidates, shortly
followed by WWW (the `World Wide Web', now
usually shortened to `the Web'). It should be
emphasised that there is no connection between
WEB programs and the World Wide Web; within
this document at least, the former is consistently
shewn in upper case, whilst the latter is consistently
shewn in mixed case.

374 TUGboat, Volume 17 (1996), No. 4

With the advent of the Web came one major
breakthrough: whereas previously each protocol
had speci�ed its own unique method of identifying a
remote resource, WWW brought with it the concept
of the URL (the `Universal Resource Locator'), so
that from within a single program (the `browser'),
almost any Internet resource could be speci�ed. For
example, a remote FTP resource would commence
ftp://, a remote GOPHER resource would be
gopher://, and the Web's native resource, HTTP

(`HyperText Transfer Protocol') would commence
http:// (aware readers may appreciate that this is
a slight over-simpli�cation, but the deviations from
reality are essentially very small).

With the Web and URLs came uni�ed browsers:
tools such as MOSAIC which allowed access to a wide
range of Internet resources from a single graphical
front end. Even if a resource had no unique URL,
it was still possible to associate with it an adjunct
renderer which would display it correctly: thus,
for example, although there is no unique URL for
an MPEG �le (`Motion Picture Expert Group': a
compact standard for encoding and storing full-
motion video), a correctly con�gured browser such
as MOSAIC could identify an MPEG resource from
its �le type (the portion of the �le name which
follows the period), and on down-loading such a
resource would then spawn o� an instantiation of
the appropriate renderer, so that down-loading and
viewing were essentially indivisible entities.

Native-mode documents for access over the
Web are coded in a language called HTML

(`HyperText Markup Language'): this is a di-
rect derivative of an earlier (but still current)
speci�cation for a generalised markup language
called SGML (`Standard Generalised Markup Lan-
guage'), and a conformant HTML document is also
normally a conformant SGML document, although
as is often the case the converse does not necessarily
obtain. Both HTML and (typical but not all) SGML

documents are characterised by the frequent occur-
rence of tags which are enclosed in angle-brackets:
they therefore resemble the `metalinguistic vari-
ables' of a much earlier standard { the BNF (or
Backus Naur/Normal Form) of the original Algol-60
report { although they do not perform the same
function. In an HTML document, each tag speci�es
the nature of the entity to which it refers: whilst
this can be augmented by a speci�cation of how
the entity should appear, in the purest form only
the nature of the entity is speci�ed, and it is left
to the browser to determine how the entity should
appear. This represents a very signi�cant philo-
sophical breakthrough: no longer need a document

be formatted by its author, the reader then requir-
ing the technology to resolve that format; instead,
using HTML, a document is simply tagged using
high-level content-oriented markup, and the reader
may then display that document using whatever
technology is available. For example, most Internet
systems are capable of running a browser called
LYNX: this is a purely textual browser, and so
it makes no attempt to represent subtleties of the
document; it simply takes advantage of whatever
text-mode functionality is available to it (for ex-
ample, emboldening or underlining) to display the
document to the best of its ability. Images which
would normally require a graphics mode browser to
resolve are simply displayed as the word IMAGE.
On more sophisticated systems, graphics mode
browsers such as MOSAIC (previously referred to),
or the now ubiquitous NETSCAPE, can be used:
these will exploit the graphics capability of their
platforms to the full, and are capable of display-
ing full-colour, and even motion-picture-insertions,
either using inherent functionality or through the
medium of adjunct software which has been used to
customise the browser.

But an HTML document is far more than just a
passive entity: elements of it can be designated
as `hot spots', and if a hot spot is selected
(using the mouse on a graphical system, or the
tab and/or cursor keys on a line-mode system), a
further document may be downloaded and displayed
entirely automatically: the document containing the
hot spot and the document referred to by the hot
spot do not need to originate from, or be stored
at, the same site: a document stored at (say)
the University of Western Ontario can reference,
through a hot spot, another document stored at
(say) the University of Queensland. Furthermore,
although the discussion so far has been concerned
with `documents', hot spots can in fact be linked
to any Internet resource, provided only that the
resource is speci�able via a URL. Thus a document
which was fetched using HTTP can reference another
document that can be fetched using only GOPHER;
that document could specify a third document
which is accessible only via FTP: that could contain
a reference to a Usenet Newsgroup; and so on.

Yet even this does not represent the limits of a
Web document: such documents can also be forms ,
with �elds which must be completed by the reader;
when the form is completed, a further hot spot
can transfer it to a remote site, where it will be
interpreted and acted upon. In this way, the original
ARCHIE protocol (ARCHIE is an Internet tool for
locating �les available via anonymous FTP) has

TUGboat, Volume 17 (1996), No. 4 375

been extended from its traditional usage in which
it is launched from a command line invocation
specifying the �le of interest and some constraints
on the manner of search; with the HTML version
(a.k.a. `Archiplex'), the Archie user invokes his
preferred Web browser to fetch an Archie form from
a convenient server; he then completes the form, and
uses a hot spot to return it to the Archie server; the
latter then locates the �le of interest, and returns a
list of places at which it can be found, where the list
of places is possibly constrained by options selected
on the form by the user (for example, he may say
that he's only interested in copies of the �le that
can be found within his own domain). The list
of hits is then displayed by the browser, and once
again using the mouse, tab key and/or cursor keys,
the user selects one instance of the �le of interest;
the �le has associated with it a hot spot, so the
instant he selects the �le from the list, a request is
issued to retrieve the �le; assuming that there are
no hiccups, the �le is fetched entirely automatically
and displayed on the originating screen. If the �le
is not displayable for some reason (perhaps it is an
executable image, or something else for which the
concept of `display' is ill-de�ned), the browser will
inform the user and ask if he wishes to save it to a
local disk.

Whilst previous introductions such as GOPHER

and WAIS had a relatively modest impact on overall
use of the Internet, which in general continued
to be used mainly by academics and hackers, the
introduction of HTML and the concept of the
Web brought about a revolution in Internet usage:
commercial companies clamoured to get on-line,
governments put up their own Web pages, and
every man and his dog suddenly appeared to be
beset by the need to create a unique and highly
individualistic `home page' (Web documents are
often regarded as being divided into pages, by
analogy with a paper document, and a `home page'
is a (usually brief) document giving information
about the individual who owns it; many institutions
provide facilities whereby each user can create his
or her own home page without formal approval).
The reason for this sudden change in usage patterns
is not hard to explain: whereas the more traditional
Internet tools such as FTP required a modicum of
expertise before they could be successfully used, the
various Web browsers were intentionally designed to
be `user friendly' from the very outset, and this user
friendliness together with the ability to seamlessly
down-load and display documents in an astonishing
variety of formats without any expertise whatsoever
resulted in an unprecedented rate of take-up and

an almost universal acceptance. There can be
little doubt that the current near-exponential rise
in Internet registrations and usage results almost
entirely from the concept and ease of use of the
Web.

The Web and Publishing: Unlikely

Bedfellows?

Whilst it might initially seem that the two themes
of this paper represent quite distinct branches
of the evolutionary tree, it did not take long
for those involved in publishing to realise the
untapped potential of the Web: even prior
to the establishment of the Web there had
been some experimental use of the Internet for
electronic publishing. In particular, the so-
called e-journal EJournal (subtitled Electronic
Journal for Humanists) was a direct electronic
analogue of a more traditional journal, containing
scholarly essays as well as shorter \letters to the
editor". However, EJournal uses simply ASCII

text as the communications medium, whilst the
Web potentially allows even greater richness of
medium than any traditionally produced journal,
since unlike a paper journal a Web journal could
contain not only text and static graphics but full
motion video and sound as well.

In July 1994 the American Mathematical So-
ciety launched a project entitled \New Media",
chaired by Frank Quinn of Virginia Tech., to inves-
tigate the possibility of developing a multimedium,
interactive, hypertextual version of TEX: the brief
of the sub-committee established to investigate this
was to \co[-]ordinate the development of a technical
authoring tool which will integrate text, graphics
video, non[-]linear documents, hypertext links, and
interactive computation. [The] tool should share
the characteristics of the TEX typesetting system
which have made it so remarkably useful: open �le
structures, open and portable source code, a stable
standard core, and an uncompromising commitment
to the highest quality. [It] is expected to be an
extension of TEX.".

The rationale behind this proposal is also inter-
esting: \Educational communities need interactive
texts. Technical communities need hypertext and
non[-]linear document types to tie together complex
or cumulative e�orts. Users of computation need
better ways to document and illustrate programs.
All these capabilities are available now in primi-
tive forms, and authors are pushing ahead. Some
are writing interactive texts using computer math-
ematics programs. Others are experimenting with

376 TUGboat, Volume 17 (1996), No. 4

hypertext extensions of TEX, [WWW] documents,
etc. Commercial publishers are experimenting
with hypertext, CD ROM publication, and linked
databases. In a few years we can expect pow-
erful tools for constructing interactive multimedia
documents. But they may be `accessible' in the
same sense that typesetting was accessible before
TEX: publishers will use expensive proprietary sys-
tems with closed �le formats, and authors will use
a multitude of free or inexpensive systems which
require professional resetting to get professional re-
sults. Our experience with TEX shows that this
fragmentation is undesirable and unnecessary. The
HyperMath Project is being organized to avoid it.".

The introductory document for the project
then went on to explain: \The HyperMath Project
is primarily a framework to co[-]ordinate work
already in progress. Several groups have already
incorporated simple hypertext links into versions of
TEX. The NTS (New Typesetting System) group
is exploring improvements to traditional paper-and-
ink typesetting. Most implementations of TEX
have methods for incorporating graphic material,
and there are publicly available packages which do
this. The `Interactive Mathematics Text' project
and many groups in the calculus reform movement
are using Mathematica, Maple, MatLab, and other
programs to write interactive texts. These and
similar initiatives can be brought together in the
development of a general tool. But the opportunity
is limited. As development proceeds, the costs of
switching to a common standard increase, and the
bene�ts become less obvious. We should not let
this opportunity pass. The Project will sponsor
working groups and conferences. The working
groups will develop standards and goals, and
work on prototypes. Communications among
working groups will be maintained to ensure
coherence and uniformity. And contacts will
be developed between developers and end-users
to ensure that real needs are being addressed.
Working groups are planned in the following areas:
traditional text; non[-]linear documents (including
hypertext); inclusions (graphics, video, and sound);
interactivity; and users. The �rst HyperMath
conference is planned for the San Francisco area
in conjunction with the combined math society
meeting early in January, 1995, contingent on
funding. The `New Media' subcommittee of the
Publications Policy Committee of the American
Mathematical Society will serve as the advisory
board for the HyperMath Project."

This was heady stu�: sadly by September of
the same year it had been abandoned as being \too

ambitious", and replaced by a more incremental
approach, now entitled \non-traditional forms of
publication". Whereas the earlier project had been
predicated on the development and adoption of
enhanced TEX, the new project proposed that \the
AMS should adopt the Adobe portable document
format 2.0 as the standard (output) format for
electronic publication of documents". It then went
on to explain that \This does not mean giving up
TEX, nor does it solve all TEX problems. It is a
proposed replacement for DVI as output, not the
use of TEX source in authoring." What did this
mean?

The �rst thing to realise is that by now
all three threads of this paper have �nally come
together: TEX, Adobe, and the Web. Whilst
Adobe had been very successful in developing
PostScript as a page-description language, and
marketing embedded PostScript interpreters for
incorporation in laser printers and the like, it had
been somewhat less successful in ensuring that
Display PostScript became established as another
de facto standard. Indeed, with the advent
of Ghostscript, a signi�cant future for Display
PostScript was by no means certain, and the
proliferation of Web-based browsers (MOSAIC,
NETSCAPE and the like) which could slave
Ghostscript was a further challenge to Adobe's
position in the marketplace. Unlike Adobe's Post-
Script interpreters and Display PostScript systems,
Web browsers were (and remain) freely available:
that is, they are literally available free of charge,
even when they are as sophisticated as NETSCAPE

(which is developed and supplied by a commercial
organisation). Whilst Adobe could maintain its
niche as a supplier of PostScript interpreters, it
was becoming clear this was a limited, and possibly
even diminishing, market: if Web-based publication
rather than paper-based publication ever became
the norm, the rôle of PostScript printers and
image setters might be seriously challenged as more
and more documents were read from a computer
screen rather than from paper. It was therefore
no great surprise when Adobe �nally announced
(there had been clues previously, such as their
work on so-called `multiple master fonts' and
Carousel) their alternative to a Web browser as
a universal document rendering engine: Adobe
Acrobat. Just as with the Web browsers, Adobe
Acrobat is available free of charge (indeed, they
send complete CD ROMs containing a full multi-
lingual installation kit at the slightest provocation).
And, rather like NETSCAPE, who seek to recover
the costs of developing their browser by selling their

TUGboat, Volume 17 (1996), No. 4 377

Web server, Adobe will endeavour to recover the
cost of the development and production of their
Acrobat reader by selling the technology which is
required to produce an Acrobat document in the
�rst place.

And what is an Acrobat document? The
very same thing that the AMS are investigating
as a possible standard for their mathematical
publications: something written in Adobe Portable
Document Format (PDF). And although in theory
one can develop applications of one's own which
will write PDF, in practice many will elect
simply to purchase Adobe Acrobat (which acts
as a pseudo-printer driver for MicroSoft Windows,
Apple Macintosh or Unix systems), or Adobe
Acrobat Pro[fessional] (which also includes Adobe's
\Distiller" to convert PostScript documents into
PDF documents), or Adobe Acrobat Capture
(which uses the TWAIN protocol for scanners to
generate PDF documents directly from a scanner).
Thus despite their apparent generosity in giving
away Acrobat free of charge, Adobe are (of course)
really seeking to increase their market share by
encouraging the purchase of other Adobe products.

HTML or PDF?

With HTML and PDF emerging as the two portable
hypertext exchange standards, organisations (and,
to a lesser extent, individuals) are going to be
forced to make a choice. It may well be that for
some applications the choice will be clear-cut, but
for others there may seem little to choose between
the two. It is therefore worth exploring the basic
di�erences between HTML and PDF, in order to
better allow an informed choice to be made.

HTML, being SGML, is essentially a very high
level, content-oriented, markup language: its forte

is the speci�cation of the content of a document,
and its weakness is the relatively little control that
an HTML author has over the �nal appearance of
the document. Because it is so high level, it is
not possible using the current received wisdom of
computer science to automatically generate HTML

from an arbitrary document: if a word-processor,
for example, is used to prepare a document, and if
that document has been created ex nihilo without
consideration for its logical structure, so that only
the �nal appearance of the document has been
considered, then it is almost certainly impossible
to reverse-engineer the document to ascertain its
logical structure: in these circumstances HTML

would have little option but to represent it as
an indivisible bit-map, thereby e�ectively wasting

almost all of HTML's functionality. Despite this
restriction, HTML has much to o�er, for two main
reasons: (1) the tools needed to generate it are
already in the public domain, although the interface
between those tools and pre-existing software such
as word-processors is unlikely to be available (it is
far more likely that word-processor packages will
start to be shipped with HTML drivers, but their use
may require a major re-think by the user concerning
the the way in which a document is created); and
(2) high-level markup is increasingly recognised as
being the way in which to mark up a document: as
experience of the use of typesetting systems such as
TEX/LATEX is gained, it becomes ever more clear
that low-level, form-oriented, markup is simply a
dead-end and should rapidly be expunged from the
practices of responsible authors.

PDF, on the other hand, consists essentially
of a strict subset of PostScript with the added
functionality of hypertext: PDF documents can
reference other PDF documents using hot spots,
rather like HTML. According to the PDF blurb
(this paper is written before my copy of Adobe
Acrobat Pro has arrived, so what follows must be
taken as speculative at the moment):

� Create electronic documents as easily as
printing from existing applications with PDF

Writer.
� Protect �les with passwords; control access,

printing, changing the document, adding and
changing notes, copying text and graphics.

� Find exactly what is needed across multiple
PDF �les by searching on keywords, author,
title, subject synonyms, etc.

� Re-use information easily by extracting, copy-
ing, reordering and replacing pages among
PDF �les { with bookmarks, links and notes
preserved.

� Create custom views into information.
� Add value, set priorities and maintain a dy-

namic information network with links, book-
marks, notes and connections to external
applications and documents.

� Take advantage of third-party plug-ins to add
new features to Acrobat.

� Integrate Acrobat with desktop applications
with Acrobat's support for OLE automation,
Notes F/X, AppleEvents, and more.

Although perhaps it is too soon to compare
HTML and PDF with any real accuracy, it would
seem that at the moment they are intended for,
and best suited for, rather di�erent applications:
HTML documents can either be created ex nihilo

378 TUGboat, Volume 17 (1996), No. 4

(for those who have no better way, simply cloning
and modifying an existing HTML document is an
excellent way to get started), or by using an
HTML editor (of which there are already several
in the public domain), or by using a package or
packages (for example, a suitable word-processor)
for which an HTML driver already exists. PDF

documents may be created using one of the Adobe
tools { Acrobat Writer, Distiller or Capture {
depending on whether or not the source documents
pre-exist. As HTML allows only a degree of
control in the formatting and placement of entities,
it is not really suitable for the presentation of
anything other than simple mathematics, although
HTML 3 demonstrates that the designers of HTML

are aware of many of the limitations of the previous
version, and are working towards a speci�cation
which may ultimately allow arbitrarily complex
formul� to be displayed. [A comment in the
HTML 3 discussion document reads \Including
support for equations and formul� in HTML 3

adds relatively little complexity to a browser. The
proposed format is strongly in
uenced by TEX."].
Of course, since HTML allows reference to be
made to non-HTML documents, many of these
di�culties can be overcome: an HTML browser
such as NETSCAPE can be con�gured to invoke
an external renderer if no internal renderer is
suitable for the entity referenced, and in that way
both DVI (from TEX) and PostScript documents
can be referenced from, and displayed from
within, an HTML document. Since both DVI

and PostScript are equally suited to the accurate
representation of mathematical material, there is no
real reason why a mathematical document should
not be displayed from within an HTML framework
by an HTML browser con�gured with a suitable
external renderer. PDF, on the other hand, has no
need for external renderers, since its native mode of
operation uses a strict subset of PostScript; indeed,
Adobe Acrobat is intended to be con�gurable as

an external renderer for HTML browsers such as
NETSCAPE ! By using Adobe's `multiple master'
font technology, Acrobat can generate a reasonable
substitute for any font speci�ed in a PDF document,
even if that font is not available within the system
on which the document is being displayed. It
is by no means unlikely that before very long a
DVI-to-PDF driver will emerge, and in the true
tradition of TEX it is also extremely likely that such
a driver will be placed in the public domain; DVI-
to-HTML is an unlikely eventuality, however, since
by the time a TEX document has been converted
into DVI, too much information has been lost to

allow the high-level structure of the document to be
re-created.

On the other hand, we can certainly envision
a format being created for TEX which embeds
\specials in the DVI �le to convey information
about the high-level structure of the source
document: since the user interface would be
completely una�ected by the presence of these
specials, such a format could appear to the
user exactly like any of the present formats or
format variants which support appropriate high-
level markup (AMS-TEX, LATEX, AMS-LATEX,
LAMS-TEX, etc.). Such specials could then
be directly mapped into HTML constructs, and
thus a TEX-to-HTML route is neither impossible
nor unlikely; indeed, it is surprising that no
such extended format has yet been announced
(at least, to my knowledge). Finally it is
worth remembering that HTML is essentially
a distributed markup language; it is primarily
intended for documents which need to reference
other documents which may be anywhere on the
Internet; PDF, on the other hand, is essentially
Internet-unaware, and whilst it can transparently
reference other documents that are visible through
(say) NFS (or, using ALEX, anonymous FTP),
it makes no assumptions that documents might
be anywhere other than the local �lestore or
on a Microsoft-compatible network. [This last
sentence is somewhat tentative: in the absence
of the de�nitive PDF speci�cation, it is somewhat
di�cult to accurately interpret the claim that Adobe
Acrobat allows one to \Add value, set priorities
and maintain a dynamic information network with
links, bookmarks, notes and connections to external
applications and documents', but I suspect that
the `dynamic information network' does not allow
the transparent referencing of arbitrary Internet
resources, although this may well come in time.]

Computer Typesetting or Electronic

Publishing: Pros and Cons

Computer typeset material, particularly that type-
set using TEX or a functionally equivalent system,
represents the �nest in typeset quality that can be
easily accomplished today; where such computer
typesetting software is unavailable, comparable
results can only be accomplished by a skilled
professional using either old-fashioned technology
(e.g. hot lead) or a modern but proprietary system.
This is not to say that the use of a system such as
TEX guarantees professional quality results: there
are far too many counter-examples in existence

TUGboat, Volume 17 (1996), No. 4 379

which demonstrate that in completely unskilled
hands, TEX and comparable systems are capable
of generating absolutely appalling results. None
the less, in reasonably skilled hands, and/or using
a format package which prevents the author from
making design decisions, TEX is capable of gener-
ating results which meet the highest professional
standards, particularly in the �eld of mathematics
where TEX essentially performs as an `expert sys-
tem'. The disadvantage of such a system is that in
its intermediate form (DVI), a TEX document is not
fully portable: a DVI �le contains references to, but
no instances of, fonts; at the point where the DVI

�le is converted into its �nal form (usually paper,
but on-screen preview is now also ubiquitous), the
same fonts which were used to create the document
must be available in order to render it correctly;
in their absence, only a poor approximation of the
intended document is possible. [It is worth noting
that the creator and the viewer/printer of a TEX
document need a common set of fonts, but each
needs a quite di�erent representation of those fonts:
the creator needs only the font metrics , which spec-
ify the height, depth and width of each glyph, and
kerning and ligaturing information for the glyph set;
the viewer/printer of the document can normally
get by without the metrics, but instead needs the
actual glyph set, either as bitmaps or as outlines.]

Electronic publishing, on the other hand, and
particularly e.p. accomplished through the medium
of HTML, does not place any emphasis on the quality
of the end product: indeed, HTML voluntarily cedes
control over the appearance of the �nal document
to the browser used to render it, although there are
some placement options which allow the author a
little control over the �nal appearance (and there
are considerably more such options in HTML 3).
Within an HTML document there is no font infor-
mation per se (again, this is true only of current
HTML: HTML 3 adds the concept of style sheets,
which will \[: : :] eventually lead to smart layout
under the author's control, with rich magazine style
layouts for full screen viewing, switching to simpler
layouts when the window is shrunk"); instead the
document consists of a set of high-level markup tags,
which are mapped by the browser to a particular
font or font variant. Whereas a DVI �le is a mono-
lithic entity, and makes no reference to any external
resources other than fonts, an HTML �le is fre-
quently little more than a container for other HTML

�les, and may make reference to an extremely wide
range of resources (further HTML �les, images, AFS

�les, Usenet newsgroups, e-mail addresses, FTP-
accessible �les, etc.) which may be anywhere on the

network, and which may themselves contain further
references and so ad in�nitum.

PDF is essentially a reasonable compromise
between the two: the creator of the document
speci�es its appearance, and the PDF reader
then displays that document to the best of
its ability: if the fonts needed to display it
properly are embedded, or if they are resident
on the target system, then the document will be
displayed exactly as the author intended; if the
fonts are not accessible, then Adobe's proprietary
`multiple master' technology will be used to
interpolate a substitute for the missing font(s)
which allows the original line-breaks, leading, etc.,
to be retained. A PDF document may reference
further PDF documents, but these are assumed
to be available on the local �lestore; there is no
apparent support for the automated fetching of
remote Internet documents, although the absence
of the PDF documentation at the time of writing
makes analysis of this feature rather more of an
informed guess than a de�nitive statement.

All three formats discussed allow searching to
be conducted; within a DVI �le there is no intrinsic
support for indexing, but it would not be at all
di�cult for a DVI viewer to create a dynamic index
to the document being viewed. Both HTML and
PDF allow fully indexed documents to be referenced.

Publication in the Twenty-First Century

It is no longer possible to assume, as countless
previous generations of scientists have done, that
\publication" involves printing on sheets of paper
which are ultimately distributed as a part of a
journal or as a book: increasingly both economic
and environmental pressures will dictate that only
essential information be committed to paper, and
anything even slightly ephemeral will be restricted
to electronic distribution. At least two de facto

standards have already emerged for electronic
publication: HTML, which originates in the
distributed and anarchic world of the Internet;
and PDF, which originates in the commercial
world. At the time of writing, HTML is the
better established, and two freeware browsers are
widely used (MOSAIC and NETSCAPE), with a
third (ARENA), being developed speci�cally to
support HTML 3; for PDF, there is only one
reader currently available (Acrobat), and that too
is classi�ed as freeware. HTML devolves to the
browser most of the decisions concerning the actual
appearance of a document; PDF allows the author
to make most of those decisions, but reserves the

380 TUGboat, Volume 17 (1996), No. 4

right to substitute interpolated fonts if the genuine
article are not available at the point of rendering.
HTML is essentially a distributed protocol, and
will allow bibliographies to reference cited texts no
matter where they are in the world (so long as
they are on-line), thereby adding truly incalculable
value to the bibliography of a document; PDF, it
would appear, is essentially a local protocol; whilst
bibliographies could still cite full-text sources, those
sources would need to be available to the system on
which the bibliography is being read.

Many issues remain to be resolved before the
world can truly move to electronic publishing as
the mainstream form: Internet access in every
home, o�ce, library, vehicle, and restaurant
will be just a start. There remains the very
contentious issue of copyright: whilst there are
usually economic costs associated with the photo-
copying of a printed document, the costs of copying
an electronic document are virtually nil, and
therefore the enforcement of copyright for electronic
publications is a major concern. It is highly
likely that some form of encryption and licensing
will emerge to prevent the unauthorised copying
and/or re-distribution of electronic texts. From
the psychological and physiological point of view,
displays will need to become signi�cantly better (in
many senses: weight, resolution, glare, portability,
etc.) before the electronic book completely replaces
the printed equivalent: few of us, going on
holiday today, would choose to take a notebook
computer with a CD ROM containing the complete
works of Shakespeare in preference to a couple
of (disposable) paperbacks: : : Although originally
developed as front ends for the generation of printed
material, typesetting systems such as TEX will
almost certainly have a major rôle to play as front
ends for electronic publishing, since (for example)
the linear representation of mathematical formul�
is equally convenient and applicable whether one's
mathematics are eventually to appear on paper or
on a computer screen. Within ten years, HTML

and PDF will appear pass�e: new standards emerge
faster than most of us can keep up, and today's
technology is tomorrow's door-prop. But the future
of the book (or even the newspaper) as the normal
means of communication is surely as doomed as
that of the petrol-driven car as the normal means
of conveyance; the �rst to guess exactly what form
the replacement will take may become as rich as
today's newspaper magnates and publishing house
principals; or perhaps the converse will occur,
and the Internet will �nally cause the collapse of
the publishing empires, as academics and authors

suddenly realise that they are no longer beholden
to the few. Self-publishing may become the norm,
or peer review may take on an entirely di�erent
form; perhaps a two-tier hierarchy of electronic
publishing will emerge, with unrefereed papers
being available via each academic's home page
whilst those that have survived the refereeing
process will be available from prestigious and
highly accredited archives. What is certain is
that almost all of the readers of this paper will
�nd out for themselves what the future holds, at
least as regards computer typesetting and electronic
publishing: the future is just around the corner,
and approaching at an ever increasing speed.

Addendum

Within the last forty-eight hours, I have learned of
two new facts which signi�cantly impinge on the
material above: NETSCAPE have licensed the use
of PDF technology from Adobe, which will allow
them to incorporate a PDF renderer within their
HTML browser, and Michel Goossens & Sebastian
Rahtz have demonstrated the feasibility of using
Adobe's `multiple master' fonts from with TEX;
further details of the latter, including very useful
information on multiple master fonts, are given in
the Baskerville issue cited in the Bibliography.

Acknowledgements.

I would like to thank Professor Adam Jakubowski
and Jerzy Ludwichowski for making it possible for
me to present this paper, to El_zbieta Kuczy�nska
and Bogumi la Rykaczewska-Wiorog�orska (University
of Warszawa) for kindly providing two alternative
translations of the abstract into Polish, and to
Professors Adam Jakubowski and Andrzej Jonscher
for providing reverse translations into English to enable
me to check the accuracy of the initial translation. I
would like to thank Dr Warren Dicks of the Autonomous
University of Barcelona for his analysis of the problem
of the number of visually distinguishable con�gurations
of an m� n matrix, as used to establish the number of
distinct characters which can be generated by a 7 � 5
dot matrix printer. I would like to thank Dr Frank
Quinn of Virginia Tech. and the American Mathematical
Society for granting me permission to reproduce extracts
from their documents on \The New Media" and \Non-
traditional forms of publication", and �nally I would
like to thank Barbara Beeton of that same Society for
allowing herself to be persuaded to review the paper
before publication and for her many helpful comments;
needless to say, any errors which remain are solely my
responsibility.

TUGboat, Volume 17 (1996), No. 4 381

Bibliography

I have not given formal references in the text, since
I feel that they are inappropriate in a paper of
this nature; however, the following short list of
publications may be of interest to those who wish
to pursue further the topics discussed here.

Mathematical Typography by Donald E. Knuth,
Bulletin of the American Mathematical Society

(new series) 1 (March 1979), 337{372.
[Reprinted as part 1 of TEX and METAFONT:

New Directions in Typesetting (Providence, R.I:
American Mathematical Society, and Bedford,
Mass: Digital Press, 1979).]

Tau Epsilon Chi, a system for technical text by
Donald E. Knuth, Stanford Computer Science
Report 675 (Stanford, California, September
1978), 198 pp. [Reprinted as part 2 of TEX and

METAFONT , the book cited above.]

The WEB system of structured documentation by
Donald E. Knuth, Stanford Computer Science
Report 980 (Stanford, California, September
1983), 206 pp.

Literate programming by Donald E. Knuth, The
Computer Journal 27 (1984), 97{111.

Using Adobe Type 1 Multiple Master fonts with

TEX by Michel Goossens and Sebastian Rahtz,
Baskerville Vol. 5, No. 3 (UK TEX Users' Group,
June 1995, ISSN 1354-5930), 4{8.

HTTP: A Protocol for Networked Information
http://www.w3.org/WWW/Protocols/HTTP/

HTTP2.html

A Quick Review of HTML 3.0
http://www.w3.org/hypertext/WWW/Arena/

tour/start.html

HyperText Markup Language Speci�cation
Version 3.0 http://www.hpl.hp.co.uk/people/

dsr/html3/CoverPage/html

Document Type De�nition for the HyperText
Markup Language (HTML DTD)
http://www.w3.org/hypertext/WWW/MarkUp/

html3-dtd.txt

Adobe Acrobat http://www.adobe.com/Acrobat/
Acrobat0.html

� Philip Taylor
Royal Holloway & Bedford New

College, University of London
P.Taylor@Alpha1.Rhbnc.Ac.Uk

