VEFComb 1.3 —the program which simplifies the virtual font management

A.S. Berdnikov

Institute of Analytical Instrumentation
Rizsky pr. 26, 198103 St.Petersburg, Russia

berd@ianin.spb.su

S.B. Turtia

Institute of Analytical Instrumentation
Rizsky pr. 26, 198103 St.Petersburg, Russia

turtia@ianin.spb.su

The MS DOS program VFComb enables one to
simplify the design of the virtual fonts.[1]' Its main
purpose was to facilitate the integration of CM
fonts with Cyrillic LL fonts created by O. Lapko
and A. Khodulev [2, 3] but it can be used for
other applications too. It uses the information from
.tfm files (converted to ASCII form by TFtoPL)
and the ASCII data files created by the User on
its input, and produces the .vpl file on its output
(the .vpl file can be converted later to the virtual
font using VPtoVF). The characteristic feature of
the program is that it can assemble the ligature
tables and metric information from various fonts and
combine it with the user-defined metric information
and ligature/kerning data. VFComb supports the
full syntax of .pl files and .vpl files as it was
defined by D.E. Knuth and adds new commands like
symbolic variables or conditional operators, which
simplifies the creation and the debugging of the
virtual fonts.

The description of the previous version 1.2
(which is the first version distributed far outside
the home computer) can be found in [4]. This
version has only the Russian manual which prevents
its wide distribution among TEX community. The
current version has the English manual, but except
this “new feature” a lot of additional improvements
are added. The main features of the program are
described below while the complete information can
be found inside the manual.

The program will be put on the CTAN archives
following TUG 96 together with the source code and
will be available to TEX community on a freeware
basis. Since this MS DOS program is written on
Borland Pascal and uses some specific features of
this language, it is hardly portable to any other

1 It is assumed that you are familiar with the virtual fonts.
If it is not so, it is highly recommended that you read [1]
before proceeding further.

platform “asis”, but it is not too difficult to transfer
it to portable ANSI C (volunteers are welcome).

Virtual fonts for TEX formats with national
alphabets

Although everything which can be done by VFComb
could be realized also by explicit usage of PL and
VPL file syntax (as well as everything which can
be done manually by .pl and .vpl files can be
done with VFComb), some typical operations with
the virtual fonts are performed with its help easier
than by manual editing of .pl and .vpl The typical
problem of this type is the adaptation of standard
TEX formats to national alphabets — this problem
is especially important for Cyrillic alphabets since
most Cyrillic letters cannot be created as the com-
bination of the Latin (English) letters with some
accents.

The standard solution of this problem is to
combine the English part taken from Computer
Modern family with the national fonts which extend
the Computer Modern family and which contain
in the upper part of ASCII table (codes 128—-255)
the national symbols. The best way how to do
it is to create the wirtual font whose lower part
refers to original CM fonts, and upper part refers
to the national fonts—it is just the way which was
recommended by D. Knuth.[1] The advantage of this
approach is that it is possible to keep the changes
in CM fonts and in national fonts separately, and
in addition, it is possible to economize disk space
since it is not necessary to keep two copies of each
Computer Modern character—one as the original
CM font which is necessary for original TEX formats,
and the second one as the lower part in the combined
national font.

The combination of the lower part of one font
and the upper part of another font, or even the
joining all the characters from one font and all

120 TUGboat, 17, Number 2— Proceedings of the 1996 Annual Meeting



VFComb 1.3—the program which simplifies the virtual font management

the characters from another font (provided that no
character code is encountered twice) can be done by
VFComb using few commands. If some characters
are to be discarded from the font or moved to
the different positions of the ASCII table, it does
not makes the command script more complicated.
The resulting virtual font contains proper metric
information for each character borrowed from the
source metric information and the correct mapping
of the characters into individual real fonts.

The similar operation can be performed also by
the program TFMerge (IHEP TEXware, Protvino),
but VFComb performs additional operations. That
is, in addition to joining metric and ligature/kerning
information from each font into one virtual font, it
is necessary to add cross-ligature and cross-kerning
information for the pairs of characters taken from
different fonts. VFComb enables one to add metric,
ligature and kerning data taken from its script file
(which makes the original script a little bit more
complicated). The important feature is that this
additional data can contain wvariables and logical
structures, from which one can generate the whole
CM family of the virtual typefaces with national
characters using just the same pseudo-program writ-
ten on VFComb command language.

Except the operations described above, VF-
Comb is capable of performing the following opera-
tions if it is specified by the user in its script:

e discard the ligature tables of some real fonts;

e include in the virtual font the full ligature table
of the real font;

e include in the virtual font only those characters
which are declared explicitly in user-defined
data, and discard the elements of the ligature
tables which correspond to non-included char-
acters of the real font;

e automatically add to the virtual fonts the char-
acters which are not included explicitly by the
user but which are joined with the already in-
cluded characters through ligature table data,
or by specifications NEXTLARGER and VARCHAR.

These features allow creation of the desired virtual
fonts for national alphabets with less effort and with
more reliability than by manual manipulations with
.pl and .vpl files.

Virtual fonts for colored printing

Another problem is the application of the virtual
fonts to multicolored printing. Suppose that it is
necessary to print text where different characters
have different colors. From TgX-compiler’s point
of view it means that the characters with different

colors are assigned to different fonts, and it is a task
for the dvi driver to decide how to print these fonts
in desired colors.

The colored printing is collected from the over-
lapped sheets where each sheet of text or graphics
is printed by individual monocolor passes. To make
the templates for monocolor printing it is necessary
to organize the output of the .dvi file so that in one
pass only yellow characters are printed, in another
pass only blue characters are printed, etc., while
the characters which have the green color are to be
printed twice—in blue as well as in yellow. The
easiest way to teach dvi driver how to do it is to
create different subdirectories with virtual fonts—
one subdirectory for each elementary color. The
virtual font files placed in the subdirectory for yellow
printing (which corresponds to the yellow fonts) will
refer to the actual *. pk files if and only if the yellow
color is assigned to this character —otherwise it will
refer to empty character. The subdirectories for
other colors are organized similarly. As soon as
the yellow printing is performed, the dvi driver is
configured so that it takes the virtual fonts from the
“yellow” subdirectory, and for the output in other
colors a corresponding reconfiguration of the dvi
driver is performed.

If the mapping of the empty characters into the
dummy font is performed, it results to the wrong
behaviour of the dvi driver: the characters in the
dummy font have zero size, and this means that the
next character after the empty character is shifted
to the left (as compared with the desired behaviour)
a the distance equal to the width of the skipped
character. To prevent this effect it is necessary to
insert into the virtual font the explicit dvi com-
mands which move the current output position to
the right by the distance representing the width of
the skipped character. This operation is performed
by VFComb by a single command: the user assigns
the attribute NULLCHARACTER to the corresponding
real font, and for the characters of this font the
empty mapping will be performed instead of map-
ping the real font characters.

Substitution of CM fonts instead of
PostScript fonts for DVI Viewers

The next problem where the usage of the virtual
fonts is advantageous is the visualization of the doc-
ument which was compiled using PostScript fonts.
Generally, the screen viewer cannot process the
PostScript characters, and it is necessary to remap
the PostScript font characters into some .pk font
which can be displayed by the viewer —say, some
typefaces from the Computer Modern family.

TUGboat, 17, Number 2— Proceedings of the 1996 Annual Meeting 121



A.S. Berdnikov and S.B. Turtia

Such remapping can be performed using virtual
font mechanism, but if it is done without special
precautions the screen view can be far from the
printed output. The reason is that CM characters
have a width different from the PostScript font (the
fact that they have a different graphical image is
not so essential). As in the previous case, the screen
output will be shifted to the left on the distance
which is the difference between the width of the
PostScript character and the CM character if no
special precautions are taken. To make the correct
output, it is necessary to add to the virtual font
the explicit dvi commands which correct the current
output position.

To make corresponding virtual font automati-
cally, VFComb allows the user to specify for the real
fonts two .pl files with the metric information: the
first one is for the nominal characters which are used
by TEX to compile the .dvi file (in our case it is the
PostScript .afm file converted to .tfm format), and
the second one is for the real characters which are
used when the .dvi file is displayed (or printed).
If such information is specified by the user, the
commands to correct properly the current output
position are inserted into the virtual font.

This operation works if both fonts have the
same coding scheme—namely, the characters used
by TEX and the characters used by dvi viewer have
the same code value. If not, the operation of re-
mapping inside an already-mapped font is required,
and this could be very complicated and result in a
very complicated scheme of virtual font generation.
To solve this problem, it is assumed that the correct
metric information for the “true” font (i.e., for the
font used in compilation of the .dvi file), is already
available. The special operators in VFComb enable
the user to load this information and to correct the
proper character width.

Other features

The other features incorporated in VFComb 1.3 are:

e improved syntax for VFComb commands;

e improved logical operators:

e implementation of string variables in VFComb
script files;

e specification of variable values in command line
among other parameters;

e specification of the names of the real and virtual
fonts inside VFComb scripts instead of com-
mand line;

e correction of some bugs, including the obliga-
tory conversion to uppercase all input charac-
ters together with the font names;

e automatic computation of the metric informa-
tion for the characters composed from user-
defined dvi commands.

All of these improvements ensure easier use of the
program. For example, after implementation of the
new features, the generation of the virtual fonts for
the LL/LH family (used in the CyrTUG Cyrillic
version of TEX/ITEX/ AMS-TEX) is performed us-
ing just one script file of VFComb instead multiple
header files (see the example below).

Comparison with FontInst

There is another package for manipulating with
virtual fonts—namely, FontInst by Alan Jeffrey.
Although there are many similar features between
FontInst and VFComb, these tools are designed to
solve different tasks.

The main purpose of Fontlnst is to create new
font families for IMTEX 2¢ using existing PostScript
fonts. FontInst contains high-level operators which
enable one to perform this task in several com-
mands, and it is written totally in TgX, which
guarantees its high portability. In addition, FontInst
contains special TEX macro commands which enable
the user to do nearly anything with virtual fonts,
without direct editing of .vpl files; but, in this case
the “program” written in FontInst commands may
be comparable in length to the .vpl file.

VFComb is designad to solve different prob-
lems —it was designed mainly to simplify the in-
tegration of new alphabets into TEX so that the
Latin part of Computer Modern Typefaces is left
unchanged. It cannot read .afm files and it cannot
create . fd files. If you wish to use it to create virtual
fonts for PostScript, you can do so, but you need
some additional utilities (afm2tfm) and many more
manual operations than you need with FontInst.

Similarly, you can make virtual fonts like that
created by VFComb using FontInst as well, but this
will require manual manipulations which are com-
parable to the direct editing of .vpl files. Although
one can expect in future more convergence between
FontInst and VFComb, currently these programs do
not intersect in this respect. If you wish to create
virtual fonts for font families derived from Post-
Script, please use FontInst, and you will economize
a lot of your time. If you wish to make virtual fonts
which solves any of the problems described in this
paper, VFComb may be more suitable.

Example

The syntax of VFComb commands is similar to that
of .vpl files. It means that it is more suitable

122 TUGboat, 17, Number 2— Proceedings of the 1996 Annual Meeting



VFComb 1.3—the program which simplifies the virtual font management

for computers than for people. The following ex-
ample is extracted from the file 1hfonts.tbf used
to generate the full family of Cyrillic virtual fonts
demonstrates the VFComb syntax.

Suppose that the program VFComb is called as
vicomb lhfonts.tbf font=1hri10

which means that the script file 1hfonts.tbf is used
as a source of VFComb commands, and that the user
asks to generate the virtual font 1hr10 which is a
combination of the Latin part taken from cmr10 and
the Cyrillic part taken from 11r10. The fact that the
virtual font has the name 1hr10 and that it is com-
posed from cmr10 and 11r10 is described inside the
script file 1hfonts.tbf. Actually the command line
shown above specifies only the fact that the string
variable font is defined with the initial value 1hr10,
before the script file 1hfonts.tbf is processed.
The head of the file 1hfonts.tbf contains the
commands
(IF-DEF font)
(VARIABLE (STRING FONT @V font))
(ELSE)
(MESSAGE Variable FONT is not defined)
(HALTPGM)
(ENDIF)

These commands check that the user does not
forget to specify the variable font=... at the
command line, and assign its value to the string
variable FONT (uppercase and lowercase letters are
distinguished by variable names, and the prefix @V
means the value of the string variable).

Similarly, the commands
(IF-DEF type)
(VARIABLE (STRING TYPE @V type))
(ELSE)
(VARIABLE (STRING TYPE NEW))
(MESSAGE TYPE = NEW is assumed)
(ENDIF)

analyzes the contents of the variable type if it
is specified at the command line, and assigns the
default value NEW if there is no expression type=. ..
at the command line.

The commands
(VTITLE CyrTUG freeware LH font family)
(OUTPUT @V FONT)
(HEADER (FONT D 1))
(MAPFONT D O (LOWPART))
(MAPFONT D 1 (HIGHPART))

specify the title of the virtual font and the name
of the output virtual font. The header of the virtual
font is similar to that of the font D 1 if there are
no other commands which modify the contents of

the header. The commands MAPFONT state that two
fonts are used to create the virtual fonts where the
characters 0—127 are taken from one font and the
characters 128 —255 are taken from the other font.

The actual names of the real fonts ‘0’ and ‘1’ are
specified after the following analysis of the contents
of the variable FONT:

(IFS-CASE @F @V FONT)
(CASE LHR)
(MAPFONT D O (FONTNAME @+ CMR QP @V FONT))
(MAPFONT D 1 (FONTNAME @+ LLR @GP @V FONT))
(HEADER (FAMILY LHR))
(VARIABLE (BYTE FLKERN 0))
(BREAK)
(CASE LHTI)
(MAPFONT D O (FONTNAME @+ CMTI @P @V FONT))
(MAPFONT D 1 (FONTNAME @+ LLTI @P @V FONT))
(HEADER (FAMILY LHTI))
(VARIABLE (BYTE FLKERN 1))
(BREAK)
(ELSE)
(MESSAGE Unknown font family @F @V FONT)
(HALTPGM)
(ENDIF)

Here the prefix commands @F @V FONT extract
the non-digital component of the font name which
is analysed by the CASE operators (note that the
comparison of text strings by the operator IFS-CASE
does not distinguish between uppercase and lower-
case letters). If the non-digital font component is
equal to LHR (as it is in our case for font=1hr10),
the first font gets the name CMR. . ., and the second
font gets the name LLR... where the dots are
substituted by the font design size: the prefix @P
@V FONT extracts the value ‘10’ from 1hri10 (like
@F @V FONT extracts ‘lhr’ from the same value),
and the prefix @+ performs the concatenation of two
strings. In the same command block, the header
field FAMILY gets the value LHR, and the byte vari-
able FLKERN gets the value 0 (it is used later to
construct the additional entries for ligature table
which corresponds to the ligature/kerning data for
the characters taken from different real fonts). The
font names LHTI... are analyzed similarly, and
analogous commands (skipped here) are specified for
every legal font family.

The following commands specify the symbolic
names for some Cyrillic letters which are used later
in the ligature tables. Note the the coding scheme
specified here depends on the value of the expression
type=. .. specified in the command line:

(IFS-EQ @V TYPE OLD)
(VARIABLE
(BYTE CYR_open_quote D 243)
(BYTE CYR_close_quote D 244)

TUGboat, 17, Number 2— Proceedings of the 1996 Annual Meeting 123



A.S. Berdnikov and S.B. Turtia

(BYTE CYR_Number D 245)
)
(ELSE) (COMMENT TYPE = NEW)
(VARIABLE
(BYTE CYR_open_quote D 250)
(BYTE CYR_close_quote D 251)
(BYTE CYR_Number D 252)
)
(ENDIF)
(VARIABLE

(BYTE CYR_GHE D 131)
(BYTE CYR_ghe D 163)
(BYTE CYR_ER D 144)
(BYTE CYR_er D 224)

The following commands analyze the value of
the variable FONT and assign the value for the real
variable u# and for the logical variable monospace,
which are used to construct the ligature data for the
pairs of characters taken from different fonts:

(IFS-CASE @V FONT)
(CASE LHR5)
(COMMENT Font LHR5)
(VAR
(REAL u# A/ A/ R 12.5 R 36 R 5)
(BYTE monospace D 0)
)
(BREAK)
(CASE LHR6)
(COMMENT Font LHR6)
(VAR
(REAL u# A/ A/ R 14 R 36 R 6)
(BYTE monospace D 0)
)
(BREAK)

(ENDIF)

The arithmetic expressions in these commands
are constructed using the “Polish notation” struc-
ture. That is, the prefix A/ is the division of the
two arguments which follow it (A+ is addition, A-
is subtraction, A* is multiplication and R is a real
number), and each of these arguments can be the
arithmetic expression starting with an arithmetic
prefix as well. For example, the value of the variable
u# for the font LHR5 is equal to A/ A/ R 12.5 R 36
R 5 =((12.5/36)/5) = 0.069444444444.

Finally, the commands which specify the addi-
tional ligature data for the pairs of characters taken
from different fonts are added:

(IF-EQ V monospace D 0)

(IF-CASE V FLKERN)

(CASE D 0) (COMMENT KERN Roman)
(VARIABLE

(REAL k# A* R -0.5 V u#)
(REAL kk# A* R -1.5 V u#)

(REAL kkk# A* R -2.0 V u#)

)

(LIGTABLE
(LABEL V CYR_GHE)
(KRN C . V kk#)
(KRN C , V kk#)
(KRN C : V kk#)
(KRN C ; V kk#)
(STOP)

)

(LIGTABLE
(LABEL V CYR_ER)
(KRN C . V kk#)

)

(BREAK)

(CASE D 1) (COMMENT KERN Italic)

(ENDIF)
(ENDIF)

The syntax of these commands is similar to that
of .vpl files except that the variable values are used
(some variables are calculated depending on the
variable u# defined above) and the logical operators
analyze what data should be included depending
on the current values of the variables FLKERN and
monospace.

Acknowledgements

All new improvements of VFComb (except the En-
glish manual) are the result of the contacts and
discussions which were held during the EuroTpX-
95 meeting. So we would like to thank Kees van der
Laan for his giant efforts to organise the visit to the
EuroTgX-95 by the delegation from Russia and for
his patient attention to Russian colleagues before,
during and after the EuroTEX-95.

It is not so easy to recall all participants of this
conference whose opinions made an impact on the
preparation of the new version of VFComb. Among
other persons we would like to thank Phil Taylor and
S. Znamensky for their valuable suggestions which
led to improvements in the program. We would
like also to thank O.A. Lapko, S.A. Strelkov and
I.A. Makhovaya for their efforts spent on the Cyrillic
TEX project which actually inspired our work.

This research was partially supported by a
grant from the Dutch Organization for Scientific
Research (NWO grant No 07-30-007).

References

[1] D. Knuth, “Virtual Fonts: More Fun for Grand

124 TUGboat, 17, Number 2— Proceedings of the 1996 Annual Meeting



VFComb 1.3—the program which simplifies the virtual font management

Wizards”, TUGBoat 11 (1993), No. 1, pp.13—
23.

[2] A. Khodulev, I. Mahovaya. “On TEX experience
of MIR Publishers”, Proceedings of the 7th Eu-
roTEX Conference, Prague, 1992.

[3] O.Lapko. “MAKEFONT as a part of CyrTUG—
EmTEX package”, Proceedings of the 8th Eu-
roTEX Conference, Gdansk, 1994.

[4] A.S. Berdnikov, S.B. Turtia. “VFComb— a pro-
gram for design of virtual fonts”, Proceedings of
the 9th EuroTEX Conference, Arnhem, 1995.

TUGboat, 17, Number 2— Proceedings of the 1996 Annual Meeting 125



