
TUGBOAT

Volume 17, Number 2 / June 1996

1996 Annual Meeting Proceedings

Opening Address 91 Michel Goossens / Opening Words by the President

Fonts 92 Karel Ṕı̌ska / Cyrillic alphabets

99 Jörg Knappen / The dc fonts 1.3: Move towards stability and completeness

102 Fukui Rei / TIPA: A system for processing phonetic symbols in LATEX

115 A.S. Berdnikov / Computer Modern Typefaces as Multiple Master Fonts

120 A.S. Berdnikov / VFComb 1.3—the program which simplifies virtual font

management

Encoding and

Multilingual

Support

126 Yannis Haralambous / ΩTimes and ΩHelvetica fonts under development:

Step One

147 Richard J. Kinch / Extending TEX for Unicode

161 L. N. Znamenskaya and S. V. Znamenskii / Russian encoding plurality problem

and a new Cyrillic font set

166 Peter A. Ovchenkov / Cyrillic TEX files: interplatform portability

172 Michael M. Vinogradov / A user-friendly multi-function TEX interface based on

Multi-Edit

174 Olga G. Lapko / Full Cyrillic: How many languages?

TEX Systems 181 John Plaice and Yannis Haralambous / The latest developments in Ω

184 Dag Langmyhr / StarTEX—a TEX for beginners

191 Gabriel Valiente Feruglio / Do journals honor LATEX submissions?

200 Sergei V. Znamenskii and Denis E. Leinartas / A new approach to the

TEX-related programs: A user-friendly interface

204 Ivan G. Vsesvetsky / The strait gate to TEX

206 Laurent Siebenmann / DVI-based electronic publication

215 Kees van der Laan / BLUe’s format—the off-off alternative

Graphics 222 Kees van der Laan / Turtle graphics and TEX—a child can do it

229 A.S. Berdnikov, O.A. Grineva and S.B. Turtia / Some useful macros which

extend the LATEX picture environment

News &

Announcements

90 Mimi Burbank / Production notes

233 Calendar

TUG Business 234 Institutional members

Advertisements 235 TEX consulting and production services

TEX Users Group

Memberships and Subscriptions

TUGboat (ISSN 0896-3207) is published quarterly
by the TEX Users Group, Flood Building, 870
Market Street, #801; San Francisco, CA 94102,
U.S.A.

1996 dues for individual members are as follows:
Ordinary members: $55
Students: $35

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat
for the year in which membership begins or is
renewed. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in the annual election.
TUGboat subscriptions are available to organi-

zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: $70 a year, including air mail delivery.
Periodicals postage paid at San Francisco, CA,

and additional mailing offices. Postmaster: Send
address changes to TUGboat, TEX Users Group,
1850 Union Street, #1637, San Francisco, CA
94123, U.S.A.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office.

TUGboat c© Copyright 1996, TEX Users Group

Permission is granted to make and distribute verbatim

copies of this publication or of individual items from this

publication provided the copyright notice and this permission

notice are preserved on all copies.

Permission is granted to copy and distribute modified

versions of this publication or of individual items from

this publication under the conditions for verbatim copying,

provided that the entire resulting derived work is distributed

under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute transla-

tions of this publication or of individual items from this

publication into another language, under the above condi-

tions for modified versions, except that this permission notice

may be included in translations approved by the TEX Users

Group instead of in the original English.

Some individual authors may wish to retain traditional

copyright rights to their own articles. Such articles can be

identified by the presence of a copyright notice thereon.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Michel Goossens, President∗

Judy Johnson∗, Vice President
Mimi Jett∗, Treasurer
Sebastian Rahtz∗, Secretary
Barbara Beeton
Karl Berry
Mimi Burbank
Michael Ferguson
Peter Flynn
George Greenwade
Yannis Haralambous
Jon Radel
Tom Rokicki
Norm Walsh
J́ı̌ri Zlatuška
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

Addresses

All correspondence,
payments, parcels,
etc.

TEX Users Group
1850 Union Street, #1637
San Francisco,
CA 94123 USA

If you are visiting:
TEX Users Group
Flood Building
870 Market Street, #801
San Francisco,
CA 94102, USA

Telephone

+1 415 982-8449

Fax

+1 415 982-8559

Electronic Mail

(Internet)
General correspondence:
TUG@tug.org

Submissions to TUGboat:
TUGboat@AMS.org

TEX is a trademark of the American Mathematical
Society.

1996 Annual Meeting Proceedings

TEX Users Group

Seventeenth Annual Meeting

Dubna, Russia, July 28–August 2, 1996

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON
PROCEEDINGS EDITORS MIMI BURBANK

CHRISTINA THIELE

VOLUME 17, NUMBER 2 • JUNE 1996

SAN FRANCISCO • CALIFORNIA • U.S.A.

Production Notes

What’s different this year?

My goodness—much! This is the second annual
TUGmeeting to be held outside North America, and
the first meeting that takes place in a country with
a non-Latin alphabet.
This is also the first (and probably the last)

year to attempt to present the Proceedings issue of
TUGboat before the actual meeting. We have had
varying success in this regard, and will most likely
return to our former schedule in 1997, if only be-
cause a pre-conference publication schedule does not
allow authors and editors sufficient time to properly
fine-tune the final version of a text. As a result of the
delay in receiving articles from some authors, there
are articles in this issue which have not been re-
viewed. Russian typographic styles differ from those
of TUGboat, and these differences may be noted in
a variety of articles in this issue.
Many of our speakers present material that is

actually “work-in-progress” and is in some cases de-
pendent upon discussions and input from others in
a particular area of expertise who attend the annual
meetings. Therefore, some of the material to be pre-
sented at the conference in Dubna will be appearing
in future issues of TUGboat. Look in the next issue
for a more detailed report of the TUG’96 Conference
in Dubna and list of participants.
Of the total number of articles submitted, four-

teen were by Russian authors, thirrteen were by au-
thors whose primary language was not English, and
two articles were submitted by North American au-
thors—surely a tribute to the international flavor
of TUG.1

Macros

During the three-month process of editing these pro-
ceedings, I’ve had the opportunity to use at least
three different versions of LATEX2ε macros. Look in
the next issue for an article by Robin Fairbairns on
the current state of the TUGboat style files.
Only five articles were submitted as plain TEX

source; the others were submitted as LATEX2ε.

Fonts

A large area of focus at the TUG’96 meeting will
be on “languages”, “encoding” and “fonts”. The is-
sue is set primarily in Computer Modern (or DC,

1 What an experience for someone whose first language is

’merkan and who speaks English as a ‘second language’.

version 1.3) fonts, using Malyshev’s BaKoMa Post-
Script Type 1 versions.2 The Ω article by Haralam-
bous necessitated the creation of proper .tfm files
from .afm files provided by the author. The arti-
cle by O. Lapko used special Cyrillic fonts, a result
of the ongoing Russian Cyrillic font project. The
wncyr fonts developed at the University of Washing-
ton and distributed by the American Mathematical
Society were also widely used in this issue.
Owing to the wide variation in Cyrillic fonts

(the two mentioned above are far from being the
only ones in existence) and methods for using them,
many of the Cyrillic examples were included in the
form of PostScript graphics prepared by the authors,
so that additional fonts would not have to be in-
stalled and incorporated into the TUGboat styles
for just one use.

Output

The editor will have to confess to many problems
during the editing and production of this issue and
any remaining errors are mine (MB). Without help
from my co-editor, Christina Thiele, and all of the
production team members, final output would have
been impossible. Final output was prepared at SCRI
on an IBM RS6000 running AIX, using the Web2C
implementation of TEX. Output was printed on a
QMS 680 print system at 600 dpi.

⋄ Mimi Burbank

Supercomputer Computations

Research Institute

Florida State University

Tallahassee, FL 32306–4502

mimi@scri.fsu.edu

⋄ Christina Thiele

15 Wiltshire Circle

Nepean, Ontario

K2J 4K9, Canada

cthiele@ccs.carleton.ca

2 Jörge Knappen’s article on page 99 required the upgrade

from 1.2 to 1.3 for this issue.

90 TUGboat, Volume 17 (1996), No. 2—Proceedings of the 1996 Annual Meeting

Opening Words by the President

Michel Goossens
CERN, Geneva, Switzerland

goossens@cern.ch

A lot has happened in those twelve months since the
last TUG Conference (the 16th) in St. Petersburg
(Florida). We now know that the revolution in
the area of electronic documents is here to stay.
It becomes more and more commonplace to find
individuals connecting from home computers to the
Internet, and even in Europe “going global” starts
to become affordable, with most PTT’s now offering
ISDN lines at prices comparable to normal telephone
connections and many cable operators providing
Internet services.
TEX users worldwide are finally beginning to

profit fully from these electronic wonders, and can
now download everything they need from a CTAN
site via the Internet, or put one of several CD-ROMs
which appeared over the last twelve months (one
for MS-DOS by NTG, one containing the CTAN
archives by DANTE, and a TDS-based plug-and-
play one for Unix by TUG, GUTenberg and UK-
TUG) in their CD-drive. Efforts to regularly update
these CD-ROMs and extending the target domain
to Microsoft Windows (NT and 95), and Macintosh
are already underway, so that I have good hopes
that dealing with TEX will one day become almost as
simple as running Word, WordPerfect, or other easy-
to-install commercial products. At the same time
translation programs between LATEX sources and
various electronic hyper-formats, such as HTML,
Acrobat, have been further improved. It is thus fair
to say that LATEX users are certainly not the worst
placed to fully profit in an almost effortless manner
from both the typographic excellence of the TEX en-
gine and the easy integration of their documents in
the global information hyperhighway. Therefore, I
would like to thank all individuals who have worked
hard to develop these important tools and I can
only hope that they will contribute to make TEX
better known in the PC commodity market, where
the action in the world of electronic publishing (and
computing in general) will be more and more con-
centrated in the future.
I am writing these words a fews weeks before

the start of TUG’96, the 17th TUG Annual Meet-
ing, taking place in the Joint Institute for Nuclear
Research (JINR) in Dubna (Russia). It is only the

second time that TUG’s Annual Meeting has taken
place outside of North America (the first time was
in 1993, in Aston, Birmingham, United Kingdom).
Moreover, this time we are moving beyond the Eng-
lish-speaking world altogether, as we are guests in
the heart of Russia, the largest country in the world,
spanning eleven time zones, and where the majority
of the 150 million inhabitants speak Russian, which
is written using the non-Latin Cyrillic alphabet. I
sincerely thank CyrTUG for the invitation to come
to Russia, and JINR for helping with the technical
organization of the Conference. It shows that TEX is
truly international and knows no borders, and that
it is an ideal vehicle to promote friendship, and fos-
ter cultural exchanges and scientific collaboration.
The subject area covered by the papers at this

Conference shows the diversity of the TEX culture in
the world, more particularly in Central and Eastern
Europe. When reading the articles, one may some-
times be struck by a “funny” or “unexpected” not-
very-English-sounding expression, but this merely
shows the true richness of all contributions. It
underlines the fact that various approaches exist
to attain a certain goal, and reading about these
solutions often opens up new horizons. And then
there are the “classics”, like Omega, the dc fonts,
“Blue”, whose steady improvements we have been
following over the years, as well as the efforts of
the LATEX3-team providing us each semester with a
more robust LATEX2ε, and the promises of eTEX, as
announced at TUG’95. All this makes it clear that
TEX is more alive than ever, and looking for a seat
on the front row when Unicode, hypersurfing, and
virtual (ir)reality take over the world.
Let me conclude by expressing my gratitude

to the TUGboat Production Team, especially Mimi
and Christina, for their tremendous effort on the
present proceedings. I also want to thank all au-
thors, for their continued support by communicat-
ing their work to the wider TEX community, thus
increasing the pool of TEX-pertise available to ev-
erybody. And, last but not least, let me mention
the support of DANTE, GUTenberg, NTG, and
UKTUG, who donated funds to the TUG Bursary
or otherwise contributed in kind to the Conference.

TUGboat, Volume 17 (1996), No. 2—Proceedings of the 1996 Annual Meeting 91

Cyrillic Alphabets

Karel Ṕı̌ska
Institute of Physics, Academy of Sciences
180 40 Prague, Czech Republic
piska@fzu.cz, piska@cern.ch

URL: http://www-hep.fzu.cz/~piska/

Abstract

A collection of Cyrillic-based language alphabets is presented. The contribution
contains the data about more than 50 languages using Cyrillic script. A “Unicode-
like” coded font is used for the rendering of the Cyrillic texts. The aim is to take
part in creating a universal Cyrillic font for TEX and the Ω project and to further
help languages using Cyrillic join the TEX community.

Introduction

Cyrillic-based alphabets are (or have been) used by
nations in the Russian Federation, and a number
of nations in Europe and Asia, including many
nations of the former USSR now beyond the Russian
border. The article aims to present a list of currently
existing written languages using the Cyrillic script
and having a codified literary form.
Most of the character encoding systems for

Cyrillic used in Russia, Ukraine, Belarus, and also
the UCS/Unicode [5] standard are based on the
Russian alphabet. They contain a continuous or-
dered code sequence only for Russian letters. Other
characters are non-standard, they are missing or
they are coded “accidentally”. I will call these char-
acters “additional” (relative to the usual computer
encoding standards!). Many Cyrillic alphabets were
borrowed from the Russian alphabet. We can con-
sider their “non-Russian” letters being “additional”
or “new”, often they were created (appended) as
“new” characters. Of course, the previous assertion
is not true for languages which have traditionally
used Cyrillic script –Belarusian, Ukrainian, Serbian,
Macedonian and Bulgarian.
One of my most important sources has been

 .!. �8;O@52A:89 and �.!. �@82=8= (1960). Un-
fortunately this unique book may be obsolete today.
I would be very grateful for corrections and remarks
and also references to another sources; especially
if the reader is an expert in any language. Please
contact me by email. More information about lan-
guages can be found on myWWW Home Page (e.g.,
complete alphabetical orders). And please overlook
my lack of knowledge of English.

Language Names and Codes

The ISO standard 639-2 (1993) and the Ethnologue
base eth (1990) contain the English names of lan-
guages and also their three-letter codes. Another
source of language names I have used is Webster’s
Dictionary (1989). Unfortunately the English and
international terminology is not stabilized. When
I began translation from Russian I could not find
unambiguous names for languages in English. On
the other hand, the Russian names are fixed in most
cases.
One example, “04K359A:89 (O7K:)”, is evident

in Russian – but I have not selected the best exam-
ples from the following variants: Adyghe, Adyge,
Adygey, Adygei, Adighe, Circassian, Lower Cir-
cassian, West Circassian, Kinkh, Kjkax, Cherkes.
Therefore, I have decided to present one (rarely two)
language name(s) in Russian and one (maximally
two) name(s) in English (often selected “arbitrar-
ily”). The ISO and eth language codes are also
shown in the table of languages which use Cyrillic.
If the first code (ISO) is not defined or the codes are
different then the second code (eth) is presented.

Real Font

The B5 font family (borrowing from the Computer
Modern) is a bank of Cyrillic glyphs corresponding
to the Ω project (Haralambous and Plaice, 1995).
The proposed encoding of a real 8-bit font is based
on Unicode (ISO-IEC 10646-1, 1993)—more ex-
actly, "04xx mod "100. Thus the character codes
are well defined and standardized. This can simplify
communication between authors supporting and im-
proving the fonts.
The table of the b5r12 font (Computer Modern

Cyrillic Roman 12 point) is on the last page of the

92 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Cyrillic Alphabets

article. I repeat: the real font is only a bank of
glyphs and cannot be used autonomously in a simple
and effective way.

Virtual Font

A virtual font was created for the present article to
enable access to Cyrillic letters using ASCII char-
acters. For creating .tfm files for virtual fonts,
the program VFComb (Berdnikov and Turtia, 1995)
was used. It allows the definition (or redefinition),
mapping, ligature and kerning data once for all font
sizes, and then merging them with metric informa-
tion of the real fonts (reading proper list files). It is
necessary to mention that every font in TEX (real or
virtual) can contain no more than 256 characters
and it is complicated, or impossible, using fonts
with many characters. This is a good reason for
introducing Ω – the 16-bit extension of TEX. The
virtual font used in this article combines a real font
with Unicode-like encoding (mod "100), a font with
alternative glyphs (located separately) and several
characters from the original CM (e.g., parentheses).
The way of referencing the “I’s” is shown in the
following example.
A segment from the .tbf file (input file for VF-
Comb)

(LIGTABLE

(LABEL C I)

(LIG C 1 O 006)

(LIG C 2 O 007)

(LIG C 3 O 300)

(LIG C 4 O 342)

(LIG C 5 O 344)

(STOP)

(LABEL C i)

(LIG C 1 O 022)

(LIG C 2 O 211)

(LIG C 4 O 343)

(LIG C 5 O 345)

(STOP)

)

results
‘Ii’ => �8 % “Standard” ‘I’
‘I1i1’ => �V % Ukrainian/Belarusian ‘I’
‘I2i2’ => �W % Ukrainian ‘YI’
‘I3’ => À % Caucasian aspiration sign “?0;>G:0”
‘I4i4’ => âã % Tadzhik ‘I’ with stress
‘I5i5’ => äå

Cyrillic Character Set and Unicode

The ISO/IEC 10646-1/Unicode (1993 E) covers
most of the letters used in current living written

languages uses a Cyrillic-alphabet (in my opinion).
I would like to add the following comments:

• I have no data about other characters; for
example, punctuation marks, special signs and
other symbols.

• I don’t present information about additional
characters not in current use.

• Old Cyrillic is omitted and is not a subject of
inquiry in this paper.

• Regarding the variant forms: more alternative
glyphs may be stored in a font bank and then
selected to depict a particular character. This
problem is solvable in TEX.

• Regarding letters with diacritics: there are im-
portant differences in the three distinct appli-
cations of diacritical marks (with possible dis-
agreement in different languages).

1. The accented symbol denotes the distinct
letter as opposed to the same symbol with-
out an accent and it may even be posi-
tioned independently in the alphabet.

2. An accent can be used to modify the sym-
bols representing vowels and consonants:
for example; vowels can be marked for
length or nasalization, consonants can be
marked for palatalization. The presence of
the accent when writing is significant but
unlike the above item, the combination
does not constitute a new or special letter,
and therefore would be alphabetized in the
same position as the letter without such a
diacritic.

3. An accent is used to mark stress. These
“stressed” letters are not part of the writ-
ing system but are, nevertheless, necessary
for entries in dictionaries and textbooks.
A few examples illustrate the use of stress
marks (above, right or below):

0:Fé=B, ��&�′�"
ac′cent mark′, r Akze.nt

Alphabetical Orders and Sort

The greater number of languages using Cyrillic in
Russia and the former USSR have adopted words
from Russian or, with modifications, in the original
form (especially proper names) and their alphabets
include all Russian letters. Not often exceptions are
Ukrainian, Belarusian, Moldaviancyror Abkhazian.
Alphabetical orders of distinct languages may

be different. “Additional” letters have been ap-
pended to the end or may occur in the middle
of alphabets. Two letters may be located in the

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 93

Karel Ṕı̌ska

opposite order. And then the order of similar or
even identical words in dictionaries or indexes may
be different.
Examples (1960, 1990)1 2

Russian Ukrainian
,L < .N < /O .N < /O < ,L
20;LA < 20;OBLAO 20;OB8AO < 20;LA
?>;LA:89 < ?>;NA ?>;NA < ?>;LAL:89
A0;L=K9 < A0;NB A0;NB < A0;L=89

Correspondence Cyrillic vs. Latin

Many languages now written in Cyrillic used Latin-
like alphabets in the 1930s (e.g., Tatar or Kazakh).
Several languages have used both Latin and Cyrillic
alphabets—at the last count these included Serbo-
Croatian, Kurdish, Moldavian, and Azerbaijani.
Several nations are preparing projects to migrate
from Cyrillic to Latin. The alphabetical orders
for Cyrillic and Latin are different but I am sure
it will be possible to define algorithms for auto-
matic transliteration, use of common hyphenation
patterns and compile and print texts from the one
source, in either writing system, to produce for a
reader the script with which she/he is familiar.

Cyrillic Letters and Symbols

The table contains the Cyrillic characters defined in
the Unicode standard. Russian letters (used in most
alphabets) and old Cyrillic letters and symbols are
omitted in the list. Corresponding symbolic names
of characters can be found in [5, 6]. It would too
long to present them here.
Example: CYRILLIC CAPITAL LETTER IO is the
Unicode name for "0401 => �.

Explanatory notes and comments

cyr The Cyrillic-alphabet languages presented here
also uses other alphabets (usually Latin-like).
Languages using the following letters are unknown
(to me):
1. ÁÂ
2. for òó I have two candidates – 2 letters undefined
in Unicode:
#̃C̃(=�^)? in Chuvash and
Uu (=�^)? in Karachay-Balkar.

1 Referee’s note: The Ukrainian Academy of Sciences
changed the official order of the Ukrainian alphabet in 1991
(or thereabouts), and the soft sign is no longer the last letter
of the alphabet.

2 Author’s note: Reworking and reprinting of all the
dictionaries of any language will not be easy. I will keep
this example to demonstrate “real life” changes.

The confusion perhaps may be in my sources or in
Unicode.

Unicode codes

"0401 "0451 � Q Many languages use the
letter �Q. The list of the languages �Q is
not used in is shorter:
Ukrainian, Bulgarian, Serbo-Croatiancyr,
Macedonian, Kurdishcyr, Moldaviancyr,
Azerbaijani, Abkhazian, Abazin(?)

"0402 "0452 � R Serbo-Croatiancyr

"0403 "0453 � S Macedonian

"0404 "0454 � T Ukrainian

"0405 "0455 � U Macedonian

"0406 "0456 � V Ukrainian, Belarusian,
Kazakh, Khakass, Komi (Zyrian),
Komi-Permyak

"0407 "0457 � W Ukrainian
"0408 "0458 � X Serbo-Croatiancyr,

Macedonian, Azerbaijani, Altaic (Oirot)

"0409 "0459 	Y Serbo-Croatiancyr,
Macedonian

"040A "045A
Z Serbo-Croatiancyr,
Macedonian

"040B "045B � [Serbo-Croatiancyr

"040C "045C � \ Macedonian
"040D "045D (This position shall not be used)

"040E "045E � ^ Belarusian, Uzbek,
Dungan

"040F "045F � _ Serbo-Croatiancyr,
Macedonian, Abkhazian

"0410.."042F uppercase Russian
"0430.."044F lowercase Russian
"0460.."0486 Old Cyrillic

"0490 "0491 � � Ukrainian (now used
again!)

"0492 "0493 � � Tadzhik, Uzbek, Uighur,
Kazakh, Azerbaijani, Khakass,(Bashkir),
(Karakalpak)

variant G g Bashkir, Karakalpak

"0494 "0495 � � Yakut (Sakha),
Abkhazian, Eskimo (Yuit)cyr

"0496 "0497 �� Uighur, Turkmen,
Tatar, Kalmyk, Dungan

94 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Cyrillic Alphabets

"0498 "0499 � � Bashkir

variant Z z Bashkir

"049A "049B � � Tadzhik, Uzbek, Uighur,
Kazakh, Karakalpak, Abkhazian

variant K k
"049C "049D � � Azerbaijani

"049E "049F � � Abkhazian

"04A0 "04A1 ¡ Bashkir

"04A2 "04A3 ¢ £ Uighur, Kazakh,
Turkmen, Kirghiz, Tatar, Bashkir,
Khakass, Tuva (Soyot), Kalmyk, Dungan

"04A4 "04A5 ¤ ¥ Altaic (Oirot),
Yakut (Sakha), Mari-low

"04A6 "04A7 ¦§ Abkhazian

"04A8 "04A9 ¨ © Abkhazian

"04AA "04AB ª « Chuvash, Bashkir

variant S s Bashkir

"04AC "04AD ¬ ­ Abkhazian

"04AE "04AF ® ¯ Uighur, Kazakh,
Turkmen, Kirghiz, Azerbaijani, Tatar,
Bashkir, Tuva (Soyot), Yakut (Sakha),
Mongoliancyr, Buryat, Kalmyk, Dungan

"04B0 "04B1 ° ± Kazakh

"04B2 "04B3 ² ³ Tadzhik, Uzbek,
Karakalpak, Abkhazian, Eskimo (Yuit)cyr

variant X x
"04B4 "04B5 ´ µ Abkhazian

"04B6 "04B7 ¶ · Tadzhik, Abkhazian

"04B8 "04B9 ¸ ¹ Azerbaijani

"04BA "04BB º » Kurdishcyr, Uighur,
Kazakh, Azerbaijani, Tatar, Bashkir,
Yakut (Sakha), Buryat, Kalmyk

"04BC "04BD ¼ ½ Abkhazian

"04BE "04BF ¾ ¿ Abkhazian

"04C0 À Abazin, Adyge,
Kabardian-Circassian, Avar(ic), Lezgin,
Lak(i), Dargwa, Tabasaran, Chechen,
Ingush

"04C1 "04C2 ÁÂ ???

"04C3 "04C4 Ã Ä Khanty-Vakhi, Chukcha,
Eskimo (Yuit)cyr, Koryak (Nymylan)

"04C5 "04C6 (This position shall not be used)

"04C7 "04C8 Ç È Khanty (Ostyak),
Chukcha, Eskimo (Yuit)cyr ,
Koryak (Nymylan)

"04C9 "04CA (This position shall not be used)

"04CB "04CC Ë Ì Khakass

"04D0 "04D1 Ð Ñ Chuvash

"04D2 "04D3 Ò Ó Mari-high,
Khanty (Ostyak), (Kalmyk)

"04D4 "04D5 Ô Õ Ossetic

"04D6 "04D7 Ö × Chuvash

"04D8 "04D9 Ø Ù Kurdishcyr, Uighur,
Kazakh, Turkmen, Azerbaijani, Tatar,
Bashkir, Kalmyk, Khanty (Ostyak),
Abkhazian, Dungan

"04DA "04DB Ú Û Khanty (Ostyak)

"04DC "04DD ÜÝ Udmurt (Votyak)

"04DE "04DF Þ ß Udmurt (Votyak)

"04E0 "04E1 à á Abkhazian

"04E2 "04E3 â ã Tadzhik

"04E4 "04E5 ä å Udmurt (Votyak)

"04E6 "04E7 æ ç Kurdishcyr,
Altaic (Oirot), Khakass, Mari-
low, Mari-high, Udmurt (Votyak),
Komi (Zyrian), Komi-Permyak,
Khanty-Vakhi, (Kalmyk)

"04E8 "04E9 è é Uighur, Kazakh,
Turkmen, Kirghiz, Azerbaijani, Tatar,
Bashkir, Tuva (Soyot), Yakut (Sakha),
Mongoliancyr, Buryat, Kalmyk,
Khanty (Ostyak)

"04EA "04EB ê ë Khanty (Ostyak)
"04EC "04ED (This position shall not be used)

"04EE "04EF î ï Tadzhik

"04F0 "04F1 ð ñ Khakass, Mari-low,
Mari-high, Khanty-Vakhi, Altaic (Oirot),
(Kalmyk)

"04F2 "04F3 ò ó ???

"04F4 "04F5 ô õ Udmurt (Votyak)
"04F6 "04F7 (This position shall not be used)

"04F8 "04F9 ø ù Mari-high

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 95

Karel Ṕı̌ska

Languages Using Cyrillic Script

The following table contains a short overview of Cyrillic-alphabet languages and their “additional” letters
(according to ‘usual’ standard encoding systems). ISO (ISO Committee Draft 639-2, 1993)/eth (Ethnologue,
1990)are two different three-letter language codes. The order is “quasi-linguistic-geographical-historical”
(“cognate” or “neighbouring” nations being together).

Indo-European Group Codes Additional characters
Slavic Languages / !;02O=A:85 O7K:8 ISO/eth
• Russian @CAA:89 rus (�Q)
• Ukrainian C:@08=A:89 ukr �� �T �V �W (’)
• Belarusian 15;>@CAA:89 bel/ruw �V �^
• Bulgarian 1>;30@A:89 bul/blg

• Serbo-Croatiancyr A5@1A:>E>@20BA:89 src �R �X 	Y
Z �[�_
• Macedonian <0:54>=A:89 mac/mkj �S �U �X �\ 	Y
Z �_

Iranian Languages / �@0=A:85 O7K:8
• Ossetic >A5B8=A:89 oss/ose ÔÕ
◦ Kurdishcyr :C@4A:89 kur ØÙ æç º» º’»’ Qq Ww
• Tadzhik B0468:A:89 tgk/pet �� âã �� îï ²³ ¶·

Romance Languages / ><0=A:85 O7K:8
◦ Moldaviancyr <>;402A:89 mol

Altaic Group
Turkic Languages / "N@:A:85 O7K:8
• Uzbek C715:A:89 uzb �^ �� �� ²³
• Uighur C93C@A:89 uig �� ¢£ �� ®¯ èé �� ØÙ º»
• Kazakh :070EA:89 kaz ØÙ �� �� ¢£ èé °± ®¯ º» �V
• Turkmen BC@:<5=A:89 tuk/tck �� ¢£ èé ®¯ ØÙ
• Kirghiz :8@387A:89 kir/kdo ¢£ èé ®¯
◦ Azerbaijani 075@109460=A:89 aze �� ØÙ �X �� èé ®¯ º» ¸¹ ’
• Tatar B0B0@A:89 tat/ttr ØÙ èé ®¯ �� ¢£ º»
• Bashkir 10H:8@A:89 bak/bxk Gg (=��) Zz (=��) ¡ ¢£

èé Ss (=ª«) ®¯ º» ØÙ
• Karachay-Balkar :0@0G052>-10;:0@A:89 krc (Uu =)�^
• Kumyk :C<K:A:89 ksk

• Nogay =>309A:89 nog

• Karakalpak :0@0:0;?0:A:89 kaa/kac �� Gg (=��) ²³
• Altaic (Oirot) 0;B09A:89 alt �X ¤¥ æç ðñ
• Khakass E0:0AA:89 kjh �� İ V (=�V) (�J =J=) ¢£ æç

ðñ (¶·=) ËÌ
• Tuva (Soyot) BC28=A:89 tyv/tun ¢£ èé ®¯
• Chuvash GC20HA:89 chv/cju ÐÑ Ö× ª« #̃C̃(=�^)
• Yakut (Sakha) O:CBA:89 sah/ukt �� ¤¥ èé º» ®¯

Mongolian Languages / �>=3>;LA:85 O7K:8
• Mongoliancyr <>=3>;LA:89 mon/khk èé ®¯
• Buryat 1C@OBA:89 bua/mnb èé ®¯ º»
• Kalmyk :0;<KF:89 kgz ØÙ º» �� ¢£ èé ®¯

96 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Cyrillic Alphabets

Tungusic-Manchu Languages / "C=3CA>-<0=LG6C@A:85 O7K:8
• Evenki (Tungus) M25=:89A:89 evn

• Even (Lamut) M25=A:89 eve

• Nanai (Gold) =0=09A:89 gld

Uralic Group
Finno-Ugric Languages / $8==>-C3>@LA:85 O7K:8
• Mari-low <0@89A:89 ;C3>2>9 mal ¤¥ æç ðñ
• Mari-high <0@89A:89 3>@=K9 mrj ÒÓ æç ðñ øù
• Mordvin-Erzya <>@4>2A:89 M@7O=A:89 myv

• Mordvin-Moksha <>@4>2A:89 <>:H0=A:89 mdf

• Udmurt (Votyak) C4<C@BA:89 udm ÜÝ Þß äå æç ôõ
• Komi (Zyrian) :><8 kpv �V æç
• Komi-Permyak :><8-?5@<OF:89 koi �V æç
• Mansi (Vogul) <0=A89A:89 mns

• Khanty-Vakhi E0=BK9A:89-20E>2A:89 kca ÒÓ ÃÄ ÇÈ æç èé êë ðñ ØÙ ÚÛ
• -Kazim -:07K<A:89 ÒÓ ØÙ ÚÛ ÇÈ èé êë
• -Shurishkar -HC@8H:0@A:89

Samoyedic Languages / !0<>489A:85 O7K:8
• Nenets (Yurak) =5=5F:89 yrk

• Selkup A5;L:C?A:89 sel/sak

Caucasian Languages / �02:07A:85 O7K:8
• Abkhazian 01E07A:89 abk �� �_ ¼½ ¾¿ àá �� ��

¨© ¦§ ¬­ ²³ ´µ ¶· ØÙ
• Abazin 01078=A:89 abq À
• Adyge 04K359A:89 ady À
• Kabardian-Circassian :010@48=>-G5@:5AA:89 kab À

• Avar(ic) 020@A:89 ava/avr À
• Lezgin ;5738=A:89 lez À
• Lak(i) ;0:A:89 lbe À
• Dargwa 40@38=A:89 dar À
• Tabasaran B010A0@0=A:89 tab À

• Chechen G5G5=A:89 che/cjc À
• Ingush 8=3CHA:89 inh À

Sino-Tibetan Group / �8B09A:>-B815BA:85 O7K:8
• Dungan 4C=30=A:89 ØÙ �� ¢£ �^ ®¯

Paleo-Asiatic Languages / �0;5>0780BA:85 O7K:8
• Chukcha GC:>BA:89 ckt ÃÄ ÇÈ ’
• Eskimo (Yuit)cyr MA:8<>AA:89 ess (�’3’=) �� (�’:’=) ÃÄ

(�’=’=) ÇÈ (%’E’=) ²³ ’
• Koryak (Nymylan) :>@O:A:89 kpy (�’ 2’) (�’ 3’) ÃÄ ÇÈ

(�’ :’) (�’ =’)
• Nivkh (Gilyak) =82EA:89 ’

Explanatory notes
◦ the language is migrating (again!) to Latin writing
(�Q) a character not used today (particularly or entirely)
(=��) variant not preferred
(�’ 3’=) a former variant

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 97

Karel Ṕı̌ska

b5r12 Font Table

(Computer Modern Roman 12 point)
Modern Cyrillic Part of ISO 10646-1/Unicode

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́

0́0x � � � � � � �
˝0x

0́1x � 	
 � � � �
0́2x � � � � � � � �

˝1x
0́3x � � � � � � � �
0́4x ! " # $ % & '

˝2x
0́5x () * + , - . /
0́6x 0 1 2 3 4 5 6 7

˝3x
0́7x 8 9 : ; < = > ?
1́0x @ A B C D E F G

˝4x
1́1x H I J K L M N O
1́2x Q R S T U V W

˝5x
1́3x X Y Z [\ ^ _
1́4x ` a b c d e f g

˝6x
1́5x h i j k l m
1́6x p q r s t u v w

˝7x
1́7x

2́0x
˝8x

2́1x

2́2x � � � � � � � �
˝9x

2́3x � � � � � � � �
2́4x ¡ ¢ £ ¤ ¥ ¦ §

˝Ax
2́5x ¨ © ª « ¬ ­ ® ¯
2́6x ° ± ² ³ ´ µ ¶ ·

˝Bx
2́7x ¸ ¹ º » ¼ ½ ¾ ¿
3́0x À Á Â Ã Ä Ç

˝Cx
3́1x È Ë Ì
3́2x Ð Ñ Ò Ó Ô Õ Ö ×

˝Dx
3́3x Ø Ù Ú Û Ü Ý Þ ß
3́4x à á â ã ä å æ ç

˝Ex
3́5x è é ê ë î ï
3́6x ð ñ ò ó ô õ

˝Fx
3́7x ø ù

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

Comments
Alternative glyphs referenced in the article

(Gg Kk Xx Zz Ss Uu) are located in the additional
separate font.
The old Cyrillic part ("60.."86) is not used in

the article and has not been completed.

Conclusion

I think the Cyrillic portion of the Unicode Mapping
Table covers quite a good character set for most of
the languages using the Cyrillic alphabet today. On
the other hand UCS/Unicode does not offer a so-
phisticated solution for alphabetical ordering. And
I am afraid that the situation with special symbols,
particularities, and multiple accents for dictionaries
and textbooks, etc., will be more complicated.

Acknowledgements

I would like to thank Prof. Donald E. Knuth for
providing TEX, METAFONT and the Computer Mod-
ern Fonts, Michel Goossens for important docu-
ments about languages and Unicode standard, Yan-
nis Haralambous, Olga Lapko and other authors
for METAFONT sources of Cyrillic fonts, Aleksandr
Berdnikov for the program VFComb (See his article
on VFComb in this issue), and Mimi Burbank for
help with the English text.

References

[1] ISO Committee Draft 639-2. Code for the repre-
sentation of names of languages. Part 2: Alpha-
3 code. International Information Centre for
Terminology (INFOTERM), Wien 1993. (pre-
liminary draft, not published)

[2] Ethnologue Database, ftp://ftp.std.com/
obi/Ethnologue/eth.Z, 19 February 1990.

[3] Webster’s Encyclopedic Unabridged Dictionary
of the English language, Portland House, New
York, 1989.

[4] Yannis Haralambous, John Plaice, ’Ω + Vir-
tual METAFONT = Unicode + Typography’,
Cahiers GUTenberg n21, juin 1995.

[5] International Organization for Standardization.
“Information technology–Universal Multiple-
Octet Coded Character Set (UCS) –Part 1:
Architecture and Basic Multilingual Plane”,
ISO/IEC 10646-1 : 1993, (First edition, 1993-
05-01), Geneva, 1993, (Unicode).

[6] ftp://unicode.org/pub/MappingTables/
UnicodeDataCurrent.txt.Z, 21 May 1996.

[7] .!. �8;O@52A:89, �.!. �@82=8=,
‘�?@545;8B5;L O7K:>2 <8@0 ?> ?8AL<5==>-
ABO<’, �740B5;LAB2> 2>AB>G=>9 ;8B5@0BC@K,
�>A:20 1960.

[8] A.S. Berdnikov, S.B. Turtia: VFComb - a pro-
gram for design of virtual fonts. Proceedings of
the Ninth European TEX Conference, Arnhem
1995.

98 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

TIPA: A System for Processing Phonetic Symbols in LATEX

Fukui Rei
Department of Asian and Pacific Linguistics, Institute of Cross-Cultural Studies, Faculty of Letters,
University of Tokyo, Hongo 7-3-1, Bunkyo-ku, TOKYO 113 Japan
fkr@tooyoo.l.u-tokyo.ac.jp

Introduction

TIPA
1 is a system for processing IPA (International

Phonetic Alphabet) symbols in LATEX. It is based
on TSIPA2 but both METAFONT source codes and
LATEX macros have been thoroughly rewritten so
that it can be considered as a new system.
Among many features of TIPA, the following

are the new features as compared with TSIPA or any
other existing systems for processing IPA symbols.

• A new 256 character encoding for phonetic sym-
bols (‘T3’), which includes all the symbols and
diacritics found in the recent versions of IPA
and some non-IPA symbols.

• Complete support of LATEX2ε.

• Roman, slanted, bold, bold extended and sans
serif font styles.

• Easy input method in the IPA environment.

• Extended macros for accents and diacritics.3

• A flexible system of macros for ‘tone letters’.

• An optional package (vowel.sty) for drawing
vowel diagrams.4

• A slightly modified set of fonts that go well
when used with Times Roman and Helvetica
fonts.

1 TIPA stands for TEX IPA or Tokyo IPA. The primary
ftp site in which the latest version of TIPA is placed is
ftp://tooyoo.L.u-tokyo.ac.jp/pub/TeX/tipa, and also it
is mirrored onto the directory fonts/tipa of the CTAN
archives.

2 TSIPA was made in 1992 by Kobayashi Hajime, Fukui
Rei and Shirakawa Shun. It is available from a CTAN archive.
One problem with TSIPA was that symbols already in-

cluded in OT1, T1 or Math fonts are excluded, because of
the limitation of its 128 character encoding. As a result, a
string of phonetic representation had to be often composed
of symbols from different fonts, disabling the possibility of
automatic inter-word kerning. And also too many symbols
had to be realized as macros.

3 These macros are now defined in a separate file called
‘exaccent.sty’ in order for the authors of other packages to
be able to make use of them. The idea of separating these
macros from other ones was suggested by Frank Mittelbach.

4 This package (vowel.sty) can be used independently
from the TIPA package. Documentation is also made sepa-
rately in ‘vowel.tex’ so that no further mention will be made
here.

TIPA Encoding

Selection of symbols The selection of TIPA pho-
netic symbols5 was made based on the following
works.

• Phonetic Symbol Guide [9] (henceforth abbre-
viated as PSG).

• The official IPA charts of ’49, ’79, ’89 and ’93
versions.

• Recent articles published in the JIPA6, such
as “Report on the 1989 Kiel Convention” [6],
“Further report on the 1989 Kiel Convention”
[7], “Computer Codes for Phonetic Symbols”
[3], “Council actions on revisions of the IPA”
[8], etc.

• An unpublished paper by J. C. Wells: “Com-
puter-coding the IPA: a proposed extension of
SAMPA” [10].

• Popular textbooks on phonetics.

More specifically, TIPA contains all the sym-
bols, including diacritics, defined in the ’79, ’89 and
’93 versions of IPA. And in the case of the ’49 version
of IPA, which is described in the Principles [5],
there are too many obsolete symbols and only those
symbols that had had some popularity at least for
some time or for some group of people are included.
Besides IPA symbols, TIPA also contains sym-

bols that are useful for the following areas of pho-
netics and linguistics.

• Symbols used in the American phonetics (e.g.
¯, £, ±, «, etc.).
• Symbols used in the historical study of Indo-
European languages (e.g. þ, ß, ÿ, Þ, º, », and
accents such as �	a, �e, etc.).
• Symbols used in the phonetic description of
languages in East Asia (e.g. ¥, §, ¢, ­, µ, etc.).
• Diacritics used in ‘extIPA Symbols for Disor-
dered Speech’ [4] and ‘VoQS (Voice Quality
Symbols)’ [1] (e.g.

�
n�, f

""
, ��m, etc).

It should be also noted that TIPA includes all
the necessary elements of ‘tone letters’, enabling

5 In the case of TSIPA, the selection of symbols was based
on “Computer coding of the IPA: Supplementary Report” [2].

6 Journal of the International Phonetic Association.

102 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

TIPA: A System for Processing Phonetic Symbols in LATEX

all the theoretically possible combinations of the
tone letter system. In the recent publication of the
International Phonetic Association tone letters are
admitted as an official way of representing tones
but the treatment of tone letters is quite insuffi-
cient in that only a limited number of combina-
tion is allowed. This is apparently due to the fact
that there has been no ‘portable’ way of combining
symbols that can be used across various computer
environments. Therefore TEX’s productive system
of macro is an ideal tool for handling a system like
tone letters.
In the process of writing METAFONT source

codes for TIPA phonetic symbols there have been
many problems besides the one with the selection
of symbols. One of such problems was that some-
times the exact shape of a symbol was unclear.
For example, the shapes of the symbols such as Â
(Stretched C), J (Curly-tail J) differ according to
sources. This is partly due to the fact that the
IPA has been continuously revised for the past few
decades, and partly due to the fact that different
ways of computerizing phonetic symbols on different
systems have resulted in the diversity of the shapes
of phonetic symbols.
Although there is no definite answer to such a

problem yet, it seems to me that it is a privilege of
those working with METAFONT to have a systematic
way of controlling the shapes of phonetic symbols.

Encoding The 256 character encoding of TIPA is
now officially called the ‘T3’ encoding.7 In deciding
this new encoding, care is taken to harmonize with
existing other encodings, especially with the T1
encoding. Also the easiness of inputting phonetic
symbols is taken into consideration in such a way
that frequently used symbols can be input with
small number of keystrokes.
Table 1 shows the layout of the T3 encoding.
The basic structure of the encoding found in the

first half of the table (character codes ’000-’177)
is based on normal text encodings (ASCII, OT1
and T1) in that sectioning of this area into several
groups such as the section for accents and diacritics,
the section for punctuation marks, the section for
numerals, the sections for uppercase and lowercase
letters is basically the same with these encodings.
Note also that the T3 encoding contains not

only phonetic symbols but also usual punctuation
marks that are used with phonetic symbols, and in
such cases the same codes are assigned as the normal

7 In a discussion with the LATEX2ε team it was suggested
that the 128 character encoding used in WSUIPA would be
refered to as the OT3 encoding.

’0 ’1 ’2 ’3 ’4 ’5 ’6 ’7

’00x

Accents and diacritics
’04x

’05x Punctuation marks
’06x Basic IPA symbols I (vowels)
’07x Diacritics, etc.
’10x

Basic IPA symbols II

’13x Diacritics, etc.
’14x Pct.

Basic IPA symbols III
(lowercase letters)

’17x Diacr.
’20x

Tone letters and other

’23x suprasegmentals

’24x

Old IPA, non-IPA symbols
’27x

’30x

Extended IPA symbols
’33x Gmn.
’34x

Basic IPA symbols IV
’37x Gmn.

Pct. = Punctuation marks, Diacr. = Diacritics, Gmn. =

Symbols for Germanic languages.

Table 1: Layout of the T3 encoding

text encodings. However it is a matter of trade-off to
decide which punctuation marks are to be included.
For example ‘:’ and ‘;’ might have been preserved in
T3 but in this case ‘:’ has been traditionally used as
a substitute for the length mark ‘:’ so that I decided
to exclude ‘:’ in favor of the easiness of inputting the
length mark by a single keystroke.
The encoding of the section for accents and

diacritics is closely related to T1 in that the accents
commonly included in T1 and T3 have the same
encoding.
The sections for numerals and uppercase letters

are filled with phonetic symbols that are used fre-
quently in many languages, because numerals and
uppercase letters are usually not used as phonetic
symbols. And the assignments made here are used
as the ‘shortcut characters’, which will be explained
in the section entitled “Ordinary phonetic symbols”
(page 105).

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 103

Fukui Rei

ASCII : ; "

TIPA : ; "
ASCII 0 1 2 3 4 5 6 7 8 9

TIPA 0 1 2 3 4 5 6 7 8 9
ASCII @ A B C D E F G H I

TIPA @ A B C D E F G H I
ASCII J K L M N O P Q R S

TIPA J K L M N O P Q R S
ASCII T U V W X Y Z |

TIPA T U V W X Y Z |

Table 2: TIPA shortcut characters

As for the section for uppercase letters in the
usual text encoding, a series of discussion among
the members of the ling-tex mailing list revealed
that there seem to be a certain amount of consensus
on what symbols are to be assigned to each code.
For example they were almost unanimous for the
assignments such as A for A, B for B, D for D, S for S,
T for T, etc. For more details, see table 2.
The encoding of the section for numerals was

more difficult than the above case. One of the
possibilities was to assign symbols based on the
resemblance of shapes. One can easily think of
assignments such as 3 for 3 á for 6, etc. But the re-
semblance of shape alone does not serve as a criteria
for all the assignments. So I decided to assign basic
vowel symbols to this section.8 Fortunately the
resemblance of shape is to some extent maintained
as is shown in table 2.
The encoding of the section for lowercase letters

poses no problem since they are all used as phonetic
symbols. Only one symbol, namely ‘g’, needs some
attention because its shape should be ‘g’, rather
than ‘g’, as a phonetic symbol.9

The second half of the table (character codes
’200-’377) is divided into four sections. The first
section is devoted to the elements of tone letters and
other suprasegmental symbols.
Among the remaining three sections the last

section ’340-’377 contains more basic symbols than
the other two sections. This is a result of assigning
the same character codes as latin-1 (ISO8859-1) and
T1 encodings to the symbols that are commonly
included in TIPA, latin-1 and T1 encoded fonts.10

These are the cases of æ, ø, œ, ç and þ. And
within each section symbols are arraneged largely
in alphabetical order.

8 This idea was influenced by the above mentioned article
by J. C. Wells [10].

9 But the alternative shape ‘¤’ is preserved in other section
and can be used as \textg.
10 This is based on a suggestion by Jörg Knappen.

For a table of the T3 encoding, see Appendix C
(page 114).

TIPA fonts

This version of TIPA includes two families of IPA
fonts, tipa and xipa. The former family of fonts
is for normal use with LATEX, and the latter family
is intended to be used with ‘times.sty’(PSNFSS).
They all have the same T3 encoding as explained in
the previous section.

• tipa

Roman: tipa8, tipa9, tipa10, tipa12,
tipa17

Slanted: tipasl8, tipasl9, tipasl10,
tipasl12

Bold extended: tipabx8, tipabx9,
tipabx10, tipabx12

Sans serif: tipass8, tipass9, tipass10,
tipass12, tipass17

Bold: tipab10

• xipa

Roman: xipa10
Slanted: xipasl10
Bold: xipab10
Sans serif: xipass10

All these fonts are made by METAFONT, based
on the Computer Modern font series. In the case
of the xipa series, parameters are adjusted so as
to look fine when used with Times Roman (in the
cases of xipa10, xipasl10, xipab10) and Helvetica
(in the case of xipass10).

Usage

Declaration of TIPA package In order to use
TIPA, first declare TIPA package at the preamble of
a document.

\documentclass{article}

\usepackage{tipa}

Encoding options The above declaration uses OT1
as the default text encoding. If you want to use TIPA
symbols with T1, specify the option ‘T1’.

\documentclass{article}

\usepackage[T1]{tipa}

If you want to use a more complex form of
encoding, declare the use of fontenc package by
yourself and specify the option ‘noenc’. In this
case the option ‘T3’, which represents the TIPA
encoding, must be included as an option to the
fontenc package. For example, if you want to use
TIPA and the University Washington Cyrillic (OT2)
with the T1 text encoding, the following command
will do this.

104 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

TIPA: A System for Processing Phonetic Symbols in LATEX

\documentclass{article}

\usepackage[T3,OT2,T1]{fontenc}

\usepackage[noenc]{tipa}

By default, TIPA includes the fontenc package
internally but the option noenc suppresses this.

Using TIPA with PSNFSS In order to use TIPA
with times.sty, declare the use of times.sty be-
fore declaring tipa packages.

\documentclass{article}

\usepackage{times}

\usepackage{tipa}

Font description files T3ptm.fd and T3phv.fd
are automatically loaded by the above declaration.

Other options TIPA can be extended by the op-
tions tone, extra.
If you want to use the optional package for

‘tone letters’, add ‘tone’ option to the \usepackage
command that declares tipa package.

\usepackage[tone]{tipa}

And if you want to use diacritics for extIPA and
VoQS, specify ‘extra’ option.

\usepackage[extra]{tipa}

Finally there is one more option called ‘safe’,
which is used to suppress definitions of some possibly
‘dangerous’ commands of TIPA.

\usepackage[safe]{tipa}

More specifically, the following commands are
suppressed by declaring the safe option. Explana-
tion on the function of each command will be given
later.

• \s (equivalent to \textsyllabic)
• * (already defined in plain TEX)
• \|, \:, \;, \! (already defined in LATEX)

Input Commands for Phonetic Symbols

Ordinary phonetic symbols TIPA phonetic sym-
bols can be input by the following two ways.

1. Input macro names in the normal text environ-
ment.

2. Input macro names or shortcut characters with-
in the follwoing groups or environment.

• \textipa{...}11

• {\tipaencoding ...}

• \begin{IPA} ... \end{IPA}

(These groups and environment will be hence-
forth refered to as the IPA environment.)

11 I personally prefer a slightly shorter name like \ipa
rather than \textipa but this command was named after
the general convention of LATEX2ε. The same can be said to
all the symbol names beginning with \text.

A shortcut character refers to a single character
that is assigned to a specific phonetic symbol and
that can be directly input by an ordinary keyboard.
In TIPA fonts, the character codes for numerals
and uppercase letters in the normal ASCII encoding
are assigned to such shortcut characters, because
numerals and uppercase letters are usually not used
as phonetic symbols. And additional shortcut char-
acters for symbols such as æ, œ, ø may also be used if
you are using a T1 encoded font and an appropriate
input system for it.
The following pair of examples show the same

phonetic transcription of a English word that are
input by the above mentioned two input methods.

Input1 : [\textsecstress\textepsilon kspl
\textschwa\textprimstress ne

\textsci\textesh\textschwa n]

Output1 : [�Ekspl@"neIS@n]

Input2 : \textipa{[""Ekspl@"neIS@n]}

Output2 : [�Ekspl@"neIS@n]

It is apparent that inputting in the IPA en-
vironment is far easier than in the normal text
environment. Moreover, although the outputs of
the above examples look almost the same, they are
not identical, exactly speaking. This is because
in the IPA environment automatic kerning between
symbols is enabled, as is illustrated by the following
pair of examples.

Input1 : v\textturnv v w\textsca w
y\textturny y [\textesh]

Output1 : v2v wÀw yLy [S]

Input2 : \textipa{v2v w\textsca w yLy [S]}

Output2 : v2v wÀw yLy [S]

Table 2 shows most of the shortcut characters
together with the corresponding characters in the
ASCII encoding.

Naming of phonetic symbols Every TIPA pho-
netic symbol has a unique symbol name, such as
Turned A, Hooktop B, Schwa.12Also each symbol
has a corresponding control sequence name, such
as \textturna, \texthtb, \textschwa. The name
used as a control sequence is usually an abbreviated
form of the corresponding symbol name with a prefix
\text. The conventions used in the abbreviation are
as follows.

• Suffixes and endings such as ‘-ive’, ‘-al’, ‘-ed’
are omitted.

12 The naming was made based on the literature listed in
the section entitled “Selection of Symbols” (page 102). And
users of TSIPA should be careful because TIPA’s naming is
slightly modified from that of TSIPA.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 105

Fukui Rei

Symbol name Macro name Symbol

Turned A \textturna 5
Glottal Stop \textglotstop P
Right-tail D \textrtaild ã
Small Capital G \textscg å
Hooktop B \texthtb á
Curly-tail C \textctc C
Crossed H \textcrh è
Old L-Yogh Ligature \textOlyoghlig ¬
Beta \textbeta B

Table 3: Naming of TIPA symbols

• ‘right’, ‘left’ are abbreviated to r, l respec-
tively.

• For ‘small capital’ symbols, prefix sc is added.

• A symbol with a hooktop is abbreviated as ht...

• A symbol with a curly-tail is abbreviated as
ct...

• A ‘crossed’ symbol is abbreviated as cr...

• A ligature is abbreviated as ...lig.

• For an old version of a symbol, prefix O is added.

Note that the prefix O (old) should be given in
uppercase letter.
Table 3 shows some examples of correspondence

between symbol names and control sequence names.

Ligatures Just like the symbols such as “, ”, –, —,
fi, ff are realized as ligatures by inputting ‘‘, ’’,
--, ---, fi, ff in TEX, two of the TIPA symbols,
namely Secondary Stress and Double Pipe, and
double quotation marks13 can be input as ligatures
in the IPA environment.

Input : \textipa{" "" | || ‘‘ ’’}

Output : " � | { `̀ ''

Special macros *, \;, \: and \! TIPA defines
*, \;, \: and \! as special macros in order to
easily input phonetic symbols that do not have a
shortcut character explained above. Before explain-
ing how to use these macros, it is necessary to note
that these macros are primarily intended to be used
by linguists who usually do not care about things
in math mode. And they can be ‘dangerous’ in
that they override existing LATEX commands used
in the math mode. So if you want to preserve the
original meaning of these commands, daclare the
option ‘safe’ at the preamble.

13 Although TIPA fonts do not include the symbols “ and ”,
a negative value of kerning is automatically inserted between
‘ and ‘, ’ and ’, so that the same results can be obtained as
in the case of the normal text font.

The macro * is used in three different ways.
First, when this macro is followed by one of the
letters f, k, r, t or w, it results in a turned symbol.14

Input : \textipa{*f *k *r *t *w}

Output : Í © ô Ø û

Secondly, when this macro is followed by one of
the letters j, n, h, l or z, it results in a frequently used
symbol that has otherwise no easy way to input.

Input : \textipa{*j *n *h *l *z}

Output : é ñ è ì Ð

Thirdly, when this macro is followed by letters
other than the above cases, they are turned into the
symbols of the default text font. This is useful in
the IPA environment to select symbols temporarily
from the normal text font.

Input : \textipa{*A dOg, *B k\ae{}t,
ma\super{*{214}}}

Output : A dOg, B kæt, ma214

The remaining macros \;, \: and \! are used
to make small capital symbols, retroflex symbols,
and implosives or clicks, respectively.

Input : \textipa{\;B \;E \;A \;H \;L \;R}

Output : à £ À Ë Ï ö
Input : \textipa{\:d \:l \:n \:r \:s \:z}

Output : ã í ï ó ù ü
Input : \textipa{\!b \!d \!g \!j \!G \!o}

Output : á â ä ê É ò

Punctuation marks The following punctuation
marks and text symbols that are normally included
in the text encoding are also included in the T3
encoding so that they can be directly input in the
IPA environment.

Input : \textipa{! ’ () * + , - .\ / = ?
[] ‘}

Output : ! ' () * + , - . / = ? [] `

All the other punctuation marks and text sym-
bols that are not included in T3 need to be input
with a prefix * explained in the last section when
they appear in the IPA environment.

Input : \textipa{*; *: *@ *\# *\$
*\& *\% *\{ *\}}

Output : ; : @ # $ & % { }

Accents and diacritics Table 4 shows how to
input accents and diacritics in TIPA with some
examples. Here again, there are two kinds of input
methods; one for the normal text environment, and
the other for the IPA environment.
In the IPA environment, most of the accents

and diacritics can be input more easily than in the

14 This idea was pointed out by Jörg Knappen.

106 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

TIPA: A System for Processing Phonetic Symbols in LATEX

Input in the normal Input in the IPA Output

text environment environment

\’a \’a �a
\"a \"a �a
\ a \~a �a
\r{a} \r{a} �a
\textsyllabic{m} \s{m} m

"\textsubumlaut{a} \"*a a
�\textsubtilde{a} \~*a a
�\textsubring{a} \r*a a
�\textdotacute{e} \.’e �e

\textgravedot{e} \‘.e �e
\textacutemacron{a} \’=a �	a
\textcircumdot{a} \^.a �
a
\texttildedot{a} \~.a �
a
\textbrevemacron{a} \u=a �	a

Table 4: Examples of inputting accents

normal text environment, especially in the cases of
subscript symbols that are normally placed over a
symbol and in the cases of combined accents, as
shown in the table.
As can be seen by the above examples, most of

the accents that are normally placed over a symbol
can be placed under a symbol by adding an *
to the corresponding accent command in the IPA
environment.
The advantage of IPA environment is further

exemplified by the all-purpose accent \|, which is
used as a macro prefix to provide shortcut inputs
for the diacritics that otherwise have to be input
by lengthy macro names. Table 5 shows examples
of such accents. Note that the macro \| is also
‘dangerous’ in that it has been already defined as
a math symbol of LATEX. So if you want to preserve
the original meaning of this macro, declare ‘safe’
option at the preamble.
Finally, examples of words with complex ac-

cents that are input in the IPA environment are
shown below.

Input : \textipa{*\|c{k}\r*mt\’om
*bhr\’=at\=er}

Output : *�km
�
t�om *bhr�	at	er

For a full list of accents and diacritics, see
Appendix A

Superscript symbols In the normal text environ-
ment, superscript symbols can be input by a macro
called \textsuperscript, which has been newly
introduced in the recent version of LATEX2ε. This
macro takes one argument which can be either a
symbol or a string of symbols, and can be nested.

Input in the normal Input in the IPA Output

text environment environment

\textsubbridge{t} \|[t t�
\textinvsubbridge{t} \|]t t�
\textsublhalfring{a} \|(a a�
\textsubrhalfring{a} \|)a a�
\textroundcap{k} \|c{k} �k
\textsubplus{o} \|+o o�
\textraising{e} \|’e e�
\textlowering{e} \|‘e e�
\textadvancing{o} \|<o o�
\textretracting{a} \|>a a�
\textovercross{e} \|x{e} �e
\textsubw{k} \|w{k} k�
\textseagull{t} \|m{t} t�

Table 5: Examples of the accent prefix \|

Since the name of this macro is too long, TIPA
provides an abbreviated form of this macro called
\super.

Input1 : t\textsuperscript h
k\textsuperscript w

abc

a\textsuperscript{b%

c}

Output1 : th kw abc ab
c

Input2 : \textipa{t\super{h} k\super{w}
a\super{bc} a\super{b\super{c}}}

Output2 : th kw abc ab
c

These macros automatically select the correct
size of superscript font no matter what size of the
text font is used.

Tone letters TIPA provides a flexible system of
macros for ‘tone letters’. A tone letter is represented
by a macro called ‘\tone’, which takes one argument
consisting of a string of numbers ranging from 1 to
5. These numbers denote pitch levels, 1 being the
lowest and 5 the highest. Within this range, any
combination is allowed and there is no limit in the
length of combination.
As an example of the usage of tone letter macro,

the four tones of Chinese are show below.

Input : \tone{55}ma ‘‘mother’’,
\tone{35}ma ‘‘hemp’’,

\tone{214}ma ‘‘horse’’,

\tone{51}ma ‘‘scold’’

Output :
�
|ma “mother”, �|ma “hemp”,
��|ma “horse”, �|ma “scold”

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 107

Fukui Rei

Roman

\textipa{f@"nEtIks} f@"nEtIks
Slanted

\textipa{\slshape f@"nEtIks} f@"nEtIks or
\textipa{\textsl{f@"nEtIks} f@"nEtIks or
\textsl{\textipa{f@"nEtIks} f@"nEtIks

Bold extended

\textipa{\bfseries f@"nEtIks} f@"nEtIks or
\textipa{\textbf{f@"nEtIks} f@"nEtIks or
\textbf{\textipa{f@"nEtIks} f@"nEtIks

Sans Serif

\textipa{\sffamily f@"nEtIks} f@"nEtIks or
\textipa{\textsf{f@"nEtIks} f@"nEtIks or
\textsf{\textipa{f@"nEtIks} f@"nEtIks

Table 6: Examples of font switching

How easy to input phonetic symbols?

Let us briefly estimate here how much easy (or
difficult) to input phonetic symbols with TIPA in
terms of the number of keystrokes.
The following table shows statistics for all the

phonetic symbols that appear in the ’93 version of
IPA chart (diacritics and symbols for suprasegmen-
tals excluded). It is assumed here that each symbol
is input within the IPA environment and the safe
option is not specified.

keystrokes number examples

1 65 a, b, @, A, B, etc.
2 2 ø, {
3 30 æ, ú, à, á, etc.
5 1 ç

more than 5 7 Å, Ü, }, î, etc.

As is shown in the table, about 92% of the
symbols can be input within three keystrokes.

Changing font styles

This version of TIPA includes five styles of fonts, i.e.
roman, slanted, bold, bold extended and sans serif.
These styles can be switched in much the same way
as in the normal text fonts (see table 6).
The bold fonts are usually not used within the

standard LATEX class packages so that if you want
to use them, it is necessary to use low-level font
selection commands of LATEX2ε.

Input : {\fontseries{b}\selectfont
abcdefg \textipa{ABCDEFG}}

Output : abcdefg ABCDEFG

Note also that slanting of TIPA symbols should
correctly work even in the cases of combined accents
and in the cases of symbols made up by macros.

Input : \textsl{\textipa{\’{\"{\u*{e}}}}}

Output : ��e
�

Input : \textsl{\textdoublebaresh}

Output : S (This symbol is composed by a macro.)

Internal commands

Some of the internal commands of TIPA are defined
without the letter @ in order to allow a user to extend
the capability of TIPA.

\ipabar Some TIPA symbols such as \textbarb
b, \textcrtwo 2 are defined by using an internal
macro command \ipabar. This command is useful
when you want to make barred or crossed symbols
not defined in TIPA.
This command requires the following five pa-

rameters to control the position of the bar.

• #1 the symbol to be barred

• #2 the height of the bar (in dimen)

• #3 bar width

• #4 left kern added to the bar

• #5 right kern added to the bar

Parameters #3, #4, #5 are to be given in a
scaling factor to the width of the symbol, which
is equal to 1 if the bar has the same width with
the symbol in question. For example, the following
command states a barred b (b) of which the bar
position in the y-coordinate is .5ex and the width
of the bar is slightly larger than that of the letter b.

% Barred B

\newcommand\textbarb{%

\ipabar{{\tipaencoding b}}%

{.5ex}{1.1}{}{}}

Note that the parameters #4 and #5 can be left
blank if the value is equal to 0.
And the next example declares a barred c (c)

of which the bar width is a little more than half
as large as the letter c and it has the same size of
kerning at the right.

% Barred C

\newcommand\textbarc{%

\ipabar{{\tipaencoding c}}%

{.5ex}{.55}{}{.55}}

More complex examples with the \ipabar com-
mand are found in T3enc.def.

\tipaloweraccent, \tipaupperaccent These two
commands are used in the definitions of TIPA ac-
cents and diacritics. They are special forms of the
commands \loweraccent and \upperaccent that
are defined in exaccent.sty. The difference be-
tween the commands with the prefix tipa and the
ones without it is that the former commands select

108 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

TIPA: A System for Processing Phonetic Symbols in LATEX

accents from a T3 encoded font while the latter ones
do so from the current text font.
These commands take two parameters, the code

of the accent (in decimal, octal or hexadecimal
number) and the symbol to be accented, as shown
below.

Input : \tipaupperaccent{0}{a}

Output : �a

Optionally, these commands can take a extra
parameter to adjust the vertical position of the
accent. Such an adjustment is sometimes necessary
in the definition of a nested accent. The next
example shows TIPA’s definition of the ‘Circumflex
Dot Accent’ (e.g. �
a).

% Circumflex Dot Accent

\newcommand\textcircumdot[1]%

{\tipaupperaccent[-.2ex]{2}%

{\tipaupperaccent[-.1ex]{10}{#1}}}

This definition states that a dot accent is placed
over a symbol thereby reducing the vertical distance
between the symbol and the dot by .1ex and a
circumflex accent is placed over the dot and the
distance between the two accents is reduced by .2ex.
If you want to make a combined accent not

included in TIPA, you can do so fairly easily by using
these two commands together with the optional
parameter. For more examples of these commands,
see tipa.sty and extraipa.sty.

\tipaLoweraccent, \tipaUpperaccent These two
commands differ from the two commands explaind
above in that the first parameter should be a symbol
(or any other things, typically an \hbox), rather
than the code of the accent. They are special cases
of the commands \Loweraccent and \Upperaccent
and the difference between the two pairs of com-
mands is the same as before.
The next example makes a schwa an accent.

Input : \tipaUpperaccent[.2ex]%
{\lower.8ex\hbox{%

\textipa{\super@}}}{a}

Output :
@
a

Acknowledgments

First of all, many thanks are due to the co-authors
of TSIPA, Kobayashi Hajime and Shirakawa Shun.
Kobayashi Hajime was the main font designer of
TSIPA. Shirakawa Shun worked very hard in de-
ciding encoding, checking the shapes of symbols and
writing the Japanese version of document. TIPA was
impossible without TSIPA.
I would like to thank also Jörg Knappen whose

insightful comments helped greatly in many ways

the development of TIPA. I was also helped and
encouraged by Christina Thiele, Martin Haase, Kirk
Sullivan and many other members of the ling-tex
mailing list.
At the last stage of the development of TIPA

Frank Mittelbach gave me precious comments on
how to incorporate various TIPA commands into the
NFSS. I would like to thank also Barbara Beeton
who kindly read over the preliminary draft of this
document and gave me useful comments.

References

[1] Martin J. Ball, John Esling, and Craig Dickson.
VoQS: Voice Quality Symbols. 1994, 1994.

[2] John Esling. Computer coding of the IPA: Sup-
plementary report. Journal of the International
Phonetic Association, 20(1):22–26, 1990.

[3] John H. Esling and Harry Gaylord. Computer
codes for phonetic symbols. Journal of the
International Phonetic Association, 23(2):83–
97, 1993.

[4] ICPLA. extIPA Symbols for Disorderd Speech.
1994, 1994.

[5] IPA. The Principles of the International Pho-
netic Association, 1949.

[6] IPA. Report on the 1989 Kiel Convention.
Journal of the International Phonetic Associ-

ation, 19(2):67–80, 1989.

[7] IPA. Further report on the 1989 Kiel Con-
vention. Journal of the International Phonetic
Association, 20(2):22–24, 1990.

[8] IPA. Council actions on revisions of the IPA.
Journal of the International Phonetic Associa-

tion, 23(1):32–34, 1993.

[9] Geoffrey K. Pullum and William A. Ladusaw.
Phonetic Symbol Guide. The University of
Chicago Press, 1986.

[10] John C. Wells. Computer-coding the IPA: a
proposed extension of SAMPA. Revised draft
1995 04 28, 1995.

Appendix

A A List of TIPA Symbols

For each symbol the following information is shown:
(1) the symbol, (2) input method in the normal text
environment (and a shortcut method that can be
used within the IPA environment in parenthesis),
(3) the name of the symbol.

Vowels and Consonants

a a Lower-case A

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 109

Fukui Rei

5 \textturna(5) Turned A
A \textscripta(A) Script A
6 \textturnscripta(6) Turned Script A
æ \ae Ash
À \textsca(\;A) Small Capital A15

2 \textturnv(2) Turned V16

b b Lower-case B
º \textsoftsign Soft Sign
» \texthardsign Hard Sign
á \texthtb(\!b) Hooktop B
à \textscb(\;B) Small Capital B
 \textcrb Crossed B
b \textbarb Barred B
B \textbeta(B) Beta
c c Lower-case C
c \textbarc Barred C
Á \texthtc Hooktop C
�c \v{c} C Wedge
ç \c{c} C Cedilla
C \textctc(C) Curly-tail C
Â \textstretchc Stretched C17

d d Lower-case D
¡ \textcrd Crossed D
d \textbard Barred D
â \texthtd(\!d) Hooktop D
ã \textrtaild(\:d) Right-tail D
¢ \textctd Curly-tail D
dz \textdzlig D-Z Ligature
dý \textdctzlig D-Curly-tail Z Ligature
Ã \textdyoghlig D-Yogh Ligature
¢ý \textctdctzlig

Curly-tail D-Curly-tail Z Ligature
D \dh (D) Eth
e e Lower-case E
@ \textschwa(@) Schwa
Ä \textrhookschwa Right-hook Schwa
9 \textreve(9) Reversed E
£ \textsce(\;E) Small Capital E
E \textepsilon(E) Epsilon
Å \textcloseepsilon Closed Epsilon
3 \textrevepsilon(3) Reversed Epsilon
Ç \textrhookrevepsilon

Right-hook Reversed Epsilon
Æ \textcloserevepsilon

Closed Reversed Epsilon

15 This symbol is fairly common among Chinese phoneti-
cians.
16 In PSG this symbol is called ‘Inverted V’ but it is

apparently a mistake.
17 The shape of this symbol differs according to the

sources. In PSG and recent articles in JIPA, it is ‘stretched’
toward both the ascender and descender regions and the
whole shape looks like a thick staple. In the old days,
however, it was streched only toward the ascender and the
whole shape looked more like a stretched c.

f f Lower-case F
g \textg(g) Lower-case G
g \textbarg Barred G
g \textcrg Crossed G
ä \texthtg(\!g) Hooktop G
¤ g (\textg) Text G
å \textscg(\;G) Small Capital G
É \texthtscg(\!G) Hooktop Small Capital G
G \textgamma(G) Gamma
È \textbabygamma Baby Gamma
7 \textramshorns(7) Ram’s Horns
h h Lower-case H
ÿ \texthvlig H-V Ligature
è \textcrh Crossed H
H \texthth(H) Hooktop H
Ê \texththeng Hooktop Heng
4 \textturnh(4) Turned H
Ë \textsch(\;H) Small Capital H
i i Lower-case I
� \i Undotted I
1 \textbari(1) Barred I
Ì \textiota Iota
¥ \textlhti Left-hooktop I18

¦ \textlhtlongi Left-hooktop Long I
§ \textvibyi Viby I19

§ \textraisevibyi Raised Viby I
I \textsci(I) Small Capital I
j j Lower-case J
� \j Undotted J
J \textctj(J) Curly-tail J20

¨ \textscj(\;J) Small Capital J
�� \v{\j} J Wedge
é \textbardotlessj Barred Dotless J
Í \textObardotlessj Old Barred Dotless J
ê \texthtbardotlessj(\!j)

Hooktop Barred Dotless J21

k k Lower-case K
Î \texthtk Hooktop K
© \textturnk(*k) Turned K
l l Lower-case L

18 The four symbols ¥, ¦, § and § are mainly used among
Chinese linguists. These symbols are based on “det svenska
landsm̊alsalfabetet” and introduced to China by Bernhard
Karlgren. The original shapes of these symbols were in italic
as was always the case with “det svenska landsm̊alsalfabetet”.
It seems that the Chinese linguists who wanted to continue
to use these symbols in IPA changed their shapes upright.
19 I call this symbol ‘Viby I’, based on the following

description by Bernhard Karlgren: “Une voyelle très analogue
à § se rencontre dans certains dial. suédois; on l’appelle ‘i de
Viby’.”(Études sur la phonologie chinoise, 1915–26, p. 295)
20 In the official IPA charts of ’89 and ’93, this symbol has

a dish serif on top of the stem, rather than the normal sloped
serif found in the letter j. I found no reason why it should
have a dish serif here, so I changed it to a normal sloped serif.
21 In PSG the shape of this symbol slightly differs. Here I

followed the shape found in IPA ’89, ’93.

110 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

TIPA: A System for Processing Phonetic Symbols in LATEX

ë \textltilde(\|~l) L with Tilde
ª \textbarl Barred L
ì \textbeltl Belted L
í \textrtaill(\:l) Right-tail L
Ð \textlyoghlig L-Yogh Ligature
¬ \textOlyoghlig Old L-Yogh Ligature
Ï \textscl(\;L) Small Capital L
« \textlambda Lambda
« \textcrlambda Crossed Lambda
m m Lower-case M
M \textltailm(M) Left-tail M (at right)
W \textturnm(W) Turned M
î \textturnmrleg Turned M, Right Leg
n n Lower-case N
® \textnrleg N, Right Leg
�n \~n N with Tilde
ñ \textltailn Left-tail N (at left)
N \ng (N) Eng
ï \textrtailn(\:n) Right-tail N
­ \textctn Curly-tail N
ð \textscn(\;N) Small Capital N
o o Lower-case O
ò \textbullseye(\!o) Bull’s Eye
8 \textbaro(8) Barred O
ø \o Slashed O
÷ \oe O-E Ligature
× \textscoelig(\OE)

Small Capital O-E Ligature
O \textopeno(O) Open O
¯ \textturncelig Turned C(Open O)-E Ligature
° \textomega Omega
± \textscomega Small Capital Omega
Ñ \textcloseomega Closed Omega
p p Lower-case P
ß \textwynn Wynn
þ \textthorn(\th) Thorn
Ò \texthtp Hooktop P
F \textphi(F) Phi
q q Lower-case Q
Ó \texthtq Hooktop Q
² \textscq(\;Q) Small Capital Q22

r r Lower-case R
R \textfishhookr(R) Fish-hook R
Ô \textlonglegr Long-leg R
ó \textrtailr(\:r) Right-tail R
ô \textturnr(*r) Turned R
õ \textturnrrtail(\:R) Turned R, Right Tail
Õ \textturnlonglegr Turned Long-leg R

22 Suggested by Prof S. Tsuchida for Austronesian lan-
guages in Taiwan. In PSG ‘Female Sign’ and ‘Uncrossed
Female Sign’(pp. 110–111) are noted for pharyngeal stops,
as proposed by Trager (1964). Also I’m not sure about the
difference between an epiglottal plosive and a pharyngeal
stop.

ö \textscr(\;R) Small Capital R
K \textinvscr(K) Inverted Small Capital R
s s Lower-case S
�s \v{s} S Wedge
ù \textrtails(\:s) Right-tail S (at left)
S \textesh(S) Esh
S \textdoublebaresh Doube-barred Esh
³ \textctesh Curly-tail Esh
t t Lower-case T
Ö \texthtt Hooktop T
´ \textlhookt Left-hook T
ú \textrtailt(\:t) Right-tail T
tC \texttctclig T-Curly-tail C Ligature
¶ \texttslig T-S Ligature
Ù \textteshlig T-Esh Ligature
Ø \textturnt(*t) Turned T
µ \textctt Curly-tail T
µC \textcttctclig

Curly-tail T-Curly-tail C Ligature
T \texttheta(T) Theta
u u Lower-case U
0 \textbaru(0) Barred U
U \textupsilon(U) Upsilon
Ú \textscu(\;U) Small Capital U
v v Lower-case V
V \textscriptv(V) Script V
w w Lower-case W
û \textturnw(*w) Turned W
x x Lower-case X
X \textchi(X) Chi
y y Lower-case Y
L \textturny(L) Turned Y
Y \textscy(Y) Small Capital Y
· \textvibyy Viby Y23

z z Lower-case Z
Þ \textcommatailz Comma-tail Z
�z \v{z} Z Wedge
ý \textctz Curly-tail Z
¹ \textrevyogh Reversed Yogh
ü \textrtailz(\:z) Right-tail Z
Z \textyogh(Z) Yogh
¸ \textctyogh Curly-tail Yogh
2 \textcrtwo Crossed 2
P \textglotstop(P) Glottal Stop
¼ \textraiseglotstop Superscript Glottal Stop
Ü \textbarglotstop Barred Glottal Stop
Û \textinvglotstop Inverted Glottal Stop
Û \textcrinvglotstop

Crossed Inverted Glottal Stop
Q \textrevglotstop(Q) Reversed Glottal Stop
Ý \textbarrevglotstop

Barred Reversed Glottal Stop

23 See explanations in footnote 19.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 111

Fukui Rei

| \textpipe(|) Pipe
} \textdoublebarpipe Double-barred Pipe
=/ \textdoublebarslash Double-barred Slash
{ \textdoublepipe(||) Double Pipe
! ! Exclamation Point

Suprasegmentals

" \textprimstress(") Vertical Stroke (Superior)
� \textsecstress("") Vertical Stroke (Inferior)
: \textlengthmark(:) Length Mark
; \texthalflength(;) Half-length Mark
� \textvertline Vertical Line
� \textdoublevertline Double Vertical Line

< \textbottomtiebar(\t*{}) Bottom Tie Bar
� \textglobfall Downward Diagonal Arrow
� \textglobrise Upward Diagonal Arrow
� \textdownstep Down Arrow24

� \textupstep Up Arrow

Accents and Diacritics

�e \‘e Grave Accent
�e \’e Acute Accent
�e \^e Circumflex Accent
�e \~e Tilde
�e \"e Umlaut
�e \H{e} Double Acute Accent
�e \r{e} Ring
�e \v{e} Wedge
�e \u{e} Breve
	e \=e Macron

e \.e Dot
e� \c{e} Cedille
e� \textpolhook{e}(\k{e})

Polish Hook (Ogonek Accent)

e \textdoublegrave{e}(\H*e)

Double Grave Accent
e
�
\textsubgrave{e}(\‘*e)

Subscript Grave Accent
e
�
\textsubacute{e}(\’*e)

Subscript Acute Accent
e
�
\textsubcircum{e}(\^*e)

Subscript Circumflex Accent
�g \textroundcap{g}(\|c{g}) Round Cap
�	a \textacutemacron{a}(\’=a)

Acute Accent with Macron
�a \textvbaraccent{a} Vertical Bar Accent
�a \textdoublevbaraccent{a}

Double Vertical Bar Accent
�e \textgravedot{e}(\‘.e) Grave Dot Accent
�e \textdotacute{e}(\’.e) Dot Acute Accent
�
a \textcircumdot{a}(\^.a)

Circumflex Dot Accent
24 The shapes of \textdownstep and \textupstep differ

according to sources. Here I followed the shapes found in the
recent IPA charts.

�
a \texttildedot{a}(\~.a) Tilde Dot Accent
�	a \textbrevemacron{a}(\u=a)

Breve Macron Accent
�	a \textringmacron{a}(\r=a)

Ring Macron Accent
��s \textacutewedge{s}(\v’s)

Acute Wedge Accent

�a \textdotbreve{a} Dot Breve Accent
t� \textsubbridge{t}(\|[t) Subscript Bridge
d� \textinvsubbridge{d}(\|]t)

Inverted Subscript Bridge
n� \textsubsquare{n} Subscript Square
o� \textsubrhalfring{o}(\|)o)

Subscript Right Half-ring25

o� \textsublhalfring{o}(\|(o)
Subscript Left Half-ring

k� \textsubw{k}(\|w{k}) Subscript W�
g \textoverw{g} Over W
t� \textseagull{t}(\|m{t}) Seagull
�e \textovercross{\e}(\|x{e}) Over-cross
O� \textsubplus{\textopeno}(\|+O)

Subscript Plus26

E� \textraising{\textepsilon}(\|’E)
Raising Sign

e� \textlowering{e}(\|‘e) Lowering Sign
u� \textadvancing{u}(\|<u) Advancing Sign
@� \textretracting{\textschwa}(\|>@)

Retracting Sign
e
�
\textsubtilde{e}(\~*e) Subscript Tilde

e
�
\textsubumlaut{e}(\"*e) Subscript Umlaut

u
�
\textsubring{u}(\r*u) Subscript Ring

e
�
\textsubwedge{e}(\v*e) Subscript Wedge

e
	
\textsubbar{e}(\=*e) Subscript Bar

e

\textsubdot{e}(\.*e) Subscript Dot

e
�
\textsubarch{e} Subscript Arch

m
"
\textsyllabic{m}(\s{m}) Syllabicity Mark

t& \textsuperimposetilde{t}(\|~{t})
Superimposed Tilde

t^ t\textcorner Corner
t_ t\textopencorner Open Corner
@~ \textschwa\rhoticity Rhoticity
b b\textceltpal Celtic Palatalization Mark
k½ k\textlptr Left Pointer
k¾ k\textrptr Right Pointer
p p\textrectangle Rectangle27

25 Diacritics \textsubrhalfring and \textsublhalfring
can be placed after a symbol by inputting, for example,
[e\textsubrhalfring{}] [e�].
26 The diacritics such as \textsubplus, \textraising,

\textlowering \textadvancing and \textretracting can be
placed after a symbol by inputting [e\textsubplus{}] [e�],
for example.
27 This symbol is used among Japanese linguists as a dia-

critical symbol indicating no audible release (IPA ^), because
the symbol ^ is used to indicate pitch accent in Japanese.

112 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

TIPA: A System for Processing Phonetic Symbols in LATEX

>
gb \texttoptiebar{gb}(\t{gb}) Top Tie Bar
' ’ Apostrophe
\ \textrevapostrophe Reversed Apostrophe
. . Period
\texthooktop Hooktop
$ \textrthook Right Hook
% \textpalhook Palatalization Hook
ph ph(p\super h)

Superscript H
kw kw(k\super w)

Superscript W
tj tj(t\super j)

Superscript J
tG t\textgamma(t\super G)

Superscript Gamma
dQ d\textrevglotstop
(d\super Q) Superscript Reversed Glottal Stop

dn dn(d\super n)
Superscript N

dl dl(d\super l)
Superscript L

Tone letters

The tones illustrated here are only a representative
sample of what is possible. For more details see the
section entitled “Tone Letters” (page 107).

�
| \tone{55} Extra High Tone
�
| \tone{44} High Tone
�| \tone{33} Mid Tone
�| \tone{22} Low Tone
�| \tone{11} Extra Low Tone
�| \tone{51} Falling Tone
�| \tone{15} Rising Tone
�| \tone{45} High Rising Tone
�| \tone{12} Low Rising Tone
��
| \tone{454} High Rising Falling Tone

Diacritics for extIPA, VoQS

In order to use diacritics listed in this section, it
is necessary to specify the option ‘extra’ at the
preamble (See the section entitled “Other options”
on page 105). Note also that some of the diacritics
are defined by using symbols from fonts other than
TIPA so that they may not look quite satisfactory
and/or may not be slanted (e.g. \whistle{s} s

↑
).

s
↔
\spreadlips{s} Left Right Arrow�

v \overbridge{v} Overbridge�
n� \bibridge{n} Bibridge
t
		
\subdoublebar{t} Subscript Double Bar

f
""
\subdoublevert{f}

Subscript Double Vertical Line
v
^
\subcorner{v} Subscript Corner

s
↑
\whistle{s} Up Arrow

Ts
→
\sliding{\ipa{Ts}} Right Arrow

��m \crtilde{m} Crossed tilde
..�a \dottedtilde{a} Dotted Tilde
��s \doubletilde{s} Double Tilde
n� ��
\partvoiceless{n} Parenthesis + Ring

n�
�
\inipartvoiceless{n} Parenthesis + Ring

n��
\finpartvoiceless{n} Parenthesis + Ring

s� ��
\partvoice{s} Parenthesis + Subwedge

s��
\inipartvoice{s} Parenthesis + Subwedge

s��
\finpartvoice{s} Parenthesis + Subwedge

J
½
\sublptr{J} Subscript Left Pointer

J
¾
\subrptr{J} Subscript Right Pointer

B B Symbols not included in TIPA

There are about 40 symbols that appear in PSG
but are not included or defined in TIPA (ordinary
capital letters, Greek letters and punctuation marks
excluded). Most of such symbols are the ones that
have been proposed by someone but never or rarely
been followed by other people.
Some of such symbols can be realized by writing

appropriate macros, while some others cannot be
realized without resorting to the Metafont.
This section discusses these problems by classi-

fying such symbols into three categories, as shown
below.

1. Symbols that can be realized by TEX’s macro
level and/or by using symbols from other fonts.

2. Symbols that can be imitated by TEX’s macro
level and/or by using symbols from other fonts
(but may not look quite satisfactory).

3. Symbols that cannot be realized at all, without
creating a new font.

The following table shows symbols that belong
to the first category. For each symbol, an example
of input method and its output is also given. Note
that barred or crossed symbols can be easily made
by TIPA’s \ipabar macro.

Script Lowe-case F
{\itshape f} f

Barred Small Capital I
\ipabar{\textsci}{.5ex}{1.1}{}{} I
Barred J
\ipabar{j}{.5ex}{1.1}{}{} j
Crossed K
\ipabar{k}{1.2ex}{.6}{}{.4} k
Barred Open O
\ipabar{\textopeno}{.5ex}{.6}{.4}{} O
Barred Small Capital Omega
\ipabar{\textscomega}{.5ex}{1.1}{}{} ±
Barred P

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 113

Fukui Rei

\ipabar{p}{.5ex}{1.1}{}{} p
Half-barred U
\ipabar{u}{.5ex}{.5}{}{.5} u
Barred Small Capital U
\ipabar{\textscu}{.5ex}{1.1}{}{} Ú
Null Sign
\emptyset ∅
Double Slash
/\kern-.25em/ //
Triple Slash
/\kern-.25em/\kern-.25em/ ///
Pointer (Upward)
k\super{\tiny\wedge} k∧

Pointer (Downward)
k\super{\tiny\vee} k∨

Superscript Arrow
k\super{\super{\leftarrow}} k

←

Symbols that belong to the second category are
shown below. Note that slashed symbols can be in
fact easily made by a macro. For example, a slashd b
i.e. b/ can be made by \ipaclap{b}{/}. The reason
why slashed symbols are not included in TIPA is
as follows: first, a simple overlapping of a symbol
and a slash does not always result in a good shape,
and secondly, it doesn’t seem significant to devise
fine-tuned macros for symbols which were created
essentialy for typewriters.

Right-hook A a$
Slashed B b/
Slashed C c/
Slashed D d/
Small Capital Delta ∆

Right-hook E e$
Right-hook Epsilon E$
Small Capital F f

Female Sign
Uncrossed Female Sign
Right-hook Open O
Slashed U u/
Slashed W w/

And finally, symbols that cannot be realized at
all are as follows.

• Reversed Turned Script A

• A-O Ligature

• Inverted Small Capital A

• Small Capital A-O Ligature

• D with Upper-left Hook

• Hooktop H with Rightward Tail

• Heng

• Hooktop J

• Front-bar N

• Inverted Lower-case Omega

• Reversed Esh with Top Loop

• T with Upper Left Hook

• Turned Small Capital U

• Bent-tail Yogh

• Turned 2

• Turned 3

C C TIPA encoding (T3)

’0 ’1 ’2 ’3 ’4 ’5 ’6 ’7

’00x � � � � � � � �
’01x � 	
 � �
 � �
’02x � � � � � � � �
’03x � � � � � � � �
’04x ! " # $ % & '
’05x () * + , - . /
’06x 0 1 2 3 4 5 6 7
’07x 8 9 : ; < = > ?
’10x @ A B C D E F G
’11x H I J K L M N O
’12x P Q R S T U V W
’13x X Y Z [\] ^ _
’14x ` a b c d e f g
’15x h i j k l m n o
’16x p q r s t u v w
’17x x y z { | } ~ �
’20x � � � � � � � �
’21x � � � � � � � �
’22x � � � � � � � �
’23x � � � � � � � �
’24x ¡ ¢ £ ¤ ¥ ¦ §
’25x ¨ © ª « ¬ ­ ® ¯
’26x ° ± ² ³ ´ µ ¶ ·
’27x ¸ ¹ º » ¼ ½ ¾
’30x À Á Â Ã Ä Å Æ Ç
’31x È É Ê Ë Ì Í Î Ï
’32x Ð Ñ Ò Ó Ô Õ Ö ×
’33x Ø Ù Ú Û Ü Ý Þ ß
’34x à á â ã ä å æ ç
’35x è é ê ë ì í î ï
’36x ð ñ ò ó ô õ ö ÷
’37x ø ù ú û ü ý þ ÿ

114 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Computer Modern Typefaces as the Multiple Master Fonts

A.S. Berdnikov
Institute of Analytical Instrumentation
Rizsky pr. 26, 198103 St.Petersburg, Russia
berd@ianin.spb.su

O.A. Grineva
Institute of Analytical Instrumentation
Rizsky pr. 26, 198103 St.Petersburg, Russia
olga@ianin.spb.su

Introduction

Several years ago Adobe Inc. announced its new
Multiple Master font format which enabled one to
vary smoothly the font characteristics (say, weight
from light to black, width from condensed to ex-
panded, etc.) and create a unique font which suites
the User’s demands. Like many other “new” inven-
tions in computer-assisted typography,1 the roots of
this idea can be found inside TEX—namely, in the
Computer Modern font family created by D. Knuth
in 1977– 1985 [1]. These fonts are parametrized
using 62 (!!!) parameters most of which are in-
dependent. It can be seen easily that it exceeds
the flexibility of any multiple master font which has
been created up to now or even will be created by
somebody in future.
The METAFONT source code and the parame-

ters for the Computer Modern series were created
using the advice of such professional font designers
as Hermann Zapf, Matthew Carter, Charles Bigelow
and others. The METAFONT source code is designed
so that the parameter files are separated from the
main source code; all the parameters together with
the relations between them are totally documented
[1], and the font variations (provided that they have
a name different from the original CM fonts) are
encouraged by the author. The parametric repre-
sentation of the parameters for canonical Computer
Modern typefaces created by John Sauter and Karl
Berry (sauter fonts [2]), and, on a different basis,
by Jörg Knappen and Norbert Schwarz in European
Computer Modern typefaces [3], enables one to vary
smoothly the font size in a wide range without
loosing high quality of the resulting fonts. All these
facts provide the basis of the LATEXmacrosmff.sty,

1 For example, Microsoft Word 6.0 was announced as the

first program which enables to mark some place in the text

by a special marker and then to refer to its position in a form:

“see page . . . ”.

which enables one to treat Computer Modern type-
faces like multiple master fonts.
The mff.sty macros follow the ideas imple-

mented in the MFPIC package and allows specifica-
tion of new fonts dynamically within a LATEX docu-
ment without dealing with the details of METAFONT
programming and without manual manipulations of
each of 62 parameters used in METAFONT source
files. Like MFPIC, the first pass of LATEX creates
the METAFONT source file (substituting font dummy
instead of the user-defined font), the METAFONT
source file is processed by METAFONT, and at the
second pass the generated font is used to format the
document properly.
The user can vary the font shape smoothly

between CMR, CMBX, CMSL, CMSS, CMTT and
CMFF font families, specify the weight, width, height
and contrast of the output font independently, and in
addition he/she can play with the character charac-
teristics so that the resulting output does not look
like the canonical Computer Modern typefaces at
all. Although originally the package was created
for internal purposes to facilitate the investigation
of the possibilities hidden inside Computer Modern
source code, it can be useful for professional typo-
graphic purposes too.

Font series with the arbitrary design size

Suppose that there is a smooth approximation for
Computer Modern Roman (CMR) which enables
one to calculate the METAFONT font parameters
for an arbitrtary design size even with weak TEX
arithmetical capabilities. The desired font size is
specified as the input parameter, all the internal
calculations of the font parameters are performed
by TEX, and the result is a METAFONT ready-to-
run font header file for a new font. When this new
font header file is processed by METAFONT, it can

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 115

A.S. Berdnikov and O.A. Grineva

be used in TEX documents like other generic TEX
fonts.

This operation is performed by the command

\FontMFF[fntscaled]{fntcmd}{filename}{size}

The command fntcmd will switch to the desired font
as is done by the LATEX commands \bf, \sl, \sf,
etc. The file filename.mf will contain the META-
FONT source for a new font (please, never use the
font name which is already used in CM or DC or
some other standard fonts!). The parameter size
specifies the design size of the new font, and the
optional parameter fntscaled specifies the additional
scaling of this font in LATEX document. Using the
commands described in the following sections the
user can vary the shape of the font characters in a
wide range.
It is interesting to compare the possibilities

of this simplest form of parametrization of CMR
fonts and the PostScript vector fonts. The ne-
arly-proportional changing of the font dimensions
with respect to the magnification parameter is the
analog of the linear scaling of the PostScript fonts.
The non-linear relationship of the inter-character
spacing from the font size imitates the tracking
mechanism implemented in PostScript fonts (which
is not taken into account in most cases by text
processors). The fact that the ratio height/width
is a non-constant (and non-linear) function of the
font size is a serious advantage of these pseudo-
CMR fonts in comparison with the linearly scaled
PostScript fonts since it enables one to make the
font proportions more suitable for the human eye (it
is well known that for good eye recognition, small
letters are to be more expanded and have greater
inter-character spacing).
There are at least two ready-to-use font ap-

proximations available from CTAN. The first one
is the METAFONT sauter font package [2]. It
uses the smooth functions composed from constant,
linear and quadratic pieces which are constructed
so that for canonical font sizes they produce nearly
the same *.mf files as the ones used by the original
Computer Modern typefaces. Although the latest
version of sauter is dated 1992, and in 1995 the
parameters of Computer Modern fonts were again
slightly changed, it seems still to be the most reliable
source of the fonts with intermediate design sizes.
The other approximation is realized in dc and

tc fonts by by Jörg Knappen and Norbert Schwarz
[3]. It is based on cubic splines—Lagrange cubic
splines or canonical cubic splines—using the pa-
rameters of Computer Modern typefaces as the base
points. Although generally piecewise-cubic func-

0 A B C a b c
Q R S q r s

1/3 A B C a b c
Q R S q r s

2/3 A B C a b c
Q R S q r s

1 A B C a b c
Q R S q r s
Figure 1: CMSS series

tions produce good quality approximations, it is not
so with the data extracted from Computer Modern
METAFONT files. The plots of the parameters, with
respect to the design size, are “noisy” functions
with some abrupt jumps since these parameters
were selected manually to optimize the font shape,
not the mathematical plots. As a result the cubic
smooth approximations obey parasitic local minima
and maxima and do not work far outside the range
of design sizes used as the base data points. The dc
and tc fonts with intermediate font sizes are visually
good even with these “mathematical” defects, but
for some specific reasons these defects could work
badly when implemented in mff.sty.
The first version of mff.sty was based on pie-

cewise-linear and piecewise-cubic (Lagrange splines)
functions using Computer Modern typefaces as the
reference data. To eliminate the parasitic local
minima and maxima, some data points were slightly
changed, and new data points were added to guar-
antee a good behavour of the approximating expres-
sions outside the range 5pt– 17.28pt. The current
version of mff.sty is based on the sauter-type ap-
proximation with some modifications (especially for
cmff and cmfib fonts).2 As an option the piecewise-
linear and the piecewise-cubic approximations based
on dc data could be be included in futher versions of
mff.sty while the variated Computer Modern data
used in the intermediate versions becames more-or-
less obsolete.

2 The reason to use sauter was the following: it is not a

good idea to modify voluntary the original Computer Modern

parameters.

116 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Computer Modern Typefaces as the Multiple Master Fonts

0 A B C a b c
Q R S q r s

1/3 A B C a b c
Q R S q r s

2/3 A B C a b c
Q R S q r s

1 A B C a b c
Q R S q r s

Figure 2: CMTT series

Mixture of independent fonts

The Computer Modern fonts roman, bold, slanted,
sans serif, typewriter, funny, dunhill, and quota-
tion use the same METAFONT programs but with
different values for font parameters. For each font
series it is possible to construct the smooth ap-
proximations (similar to CMR font approximation
mentioned in the previous section) which enables
creation of a METAFONT header file with arbitrary
design size.
Suppose that there are such smooth approxima-

tions, and it is possible to calculate for some fixed
design size the parameters of legal CMR, CMBX,
CMTT and CMSS fonts. All these fonts are gener-
ated by METAFONT without errors, and it can be
supposed that the weighted sum of the parameters
corresponding to these fonts also can be processed
by METAFONT without error messages—at least we
can expect it with good probability.
The CMTT fonts have nearly rectangular serifs,

nearly no contrast between thin and thick lines, and
are a little compressed in the vertical direction. The
CMSS fonts have no serifs at all, their width is
less than that of CMR fonts, and, although they
also have no contrast, the thickness of their lines is
greater as compared with CMTT. Other fonts have
their own specific features, but in spite of this fact
they can be “added” together—at least mathemat-
ically. The resulting font is no longer CMR, CMBX,
CMTT, etc., but is something intermediate with a
unique shape.
The CMBX fonts can be subdivided (to some

extend artificially) into two independent font se-

I A B C I J K
a b c i j k

II A B C I J K
a b c i j k

III A B C I J K
a b c i j k

Figure 3: Font Modifications

ries—one for “boldness” (i.e., weight) and one
for “extension” (i.e., width). It makes the total
scheme more closely related to the NFSS realized in
LATEX2ǫ. So in mff.sty the CMBX font sequence is
decomposed into CMB′ (fonts which are as bold as
CMBX and as wide as CMR, but which are different
from the standard CMB10 font) and CMX (fonts
which are as wide as CMBX and as bold as CMR).
The mixture of fonts is performed by the com-

mand \MFFcompose{α1}{α2}. . .{α6} where α1 –α6
are some numerical values. The value α1 corre-
sponds to CMB, α2 to CMX, α3 to CMSS (sans serif
font), α4 to CMTT (typewriter font), α5 to CMFIB
(“Fibonacci” font), and α6 to CMFF (funny font).
If some parameter has the numerical value pcmr for
CMR font, pcmb for CMB font with the same design
size, etc., the mixture value is calculated as

p∗ = pcmr + α1 (pcmb − pcmr) + α2 (pcmx − pcmr)
+α3 (pcmss − pcmr) + α4 (pcmtt − pcmr)
+α5 (pcmfib − pcmr) + α6 (pcmff − pcmr)

It enables one, for example, to make the font
“less bold” than CMR or “more bold” and “more
extended” than CMBX by assignment of values
which are less than 0 or greater than 1, and to create
the “mutant” combinations of nearly incompatible
font families. In Fig. 1 the result of a mixture of
cmr10 and cmss10 is shown, and in Fig. 2 a similar
series is constructed for cmr10 and cmtt10.

Manual font modification

In addition to the weighted mixture of font ingre-
dients it is possible to vary some font parameters
which are responsible for the specific effects.
The inclination of the characters depends on the

single font parameter slant#, and its value can be
set explicitly as a ratio ∆y/∆x or as the inclination
angle (specified in degrees).
The width of the CMR font can be varied by

mixing with the CMX font, but it also can be

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 117

A.S. Berdnikov and O.A. Grineva

scaled explicitly by some factor specified by the user.
Although this scaling skips some fine tuning of the
font parameters, it can be advantageous to use it
in some situations. For example, if we deal with
CMTT fonts or CMSS fonts, mixing with CMX
results also in some variation of the character shapes
which can have an undesirable effect.
Similarly, the weight, i.e., the “boldness” of the

characters, which can be controlled by mixing with
CMB, can be defined also as a direct scaling of the
font parameters which are responsible for this effect.
The weight of “thin lines” and “thick lines” can
be scaled independently, and in addition the user
can specify explicitly the contrast—i.e., the ratio
between thick and thin strokes of the characters.
The height of the vertical elements of the char-

acters can be varied by the user with greater flexi-
bility. That is, it is possible to scale independently

• the general height and the depth of the charac-
ters;

• the height of the capital characters, brackets,
digits, etc., and the ascenders of the characters
like ‘b’, ‘t’;

• the depth of commas and the ascenders of the
characters like ‘Q’, ‘y’;

• the height of digits and the position of the
horizontal bar for mathematical signs like +,
−.

If several height factors are specified, their effect is
combined. For example, the font cmdunh10 can be
derived exactly from cmr10 by proper specification
of all these factors.
Finally, the special scaling factors can be used

to produce the special effects:

• scale the fine connection between thin and thick
lines in ‘h’, ‘m’, ‘n’;

• scale the thickness of sharp corners in letters
‘A’, ‘V’, ‘w’;

• scale the diameters of dots in ‘i’, ‘:’ and bulbs
in ‘a’, ‘c’;

• scale the curvature of the serif footnotes.

and the logical flags can control the level of ligatures
and to switch on/off square dots, sans serif mode,
monospace mode, etc.
Fig. 3 demonstrates the examples of such mod-

ifications:

• font (I) is the standard cmr10 scaled at 1.8
times,

• font (II) differs from cmr10 by scaling the width
by 0.8, the height by 1.2 and the width of bold
lines by 1.5;

• font (III) differs from cmr10 by scaling the
width by 1.2, the height by 0.8, the ascenders
and descenders by 1.25, the width of bold lines
by 0.8 and the width of thin lines by 2.4.

All the commands which allow performance of these
modifications are described in mff.sty manual in
details.

Automatic check of font parameters

Each specification of mff.sty parameters produces
a unique font which belongs to the CMR/MF (Com-
puter Modern Roman Master Font) font family and
with a unique name specified by the user. Not all of
these fonts are too pleasant, and not each variation
of the parameters result to a font which is well-
distinguished from the others. But at least it is an
interesting toy for font maniacs.
There is a list of mutual relations between font

parameters which are assumed implicitly in META-
FONT programs for Computer Modern typefaces [1].
Although in reality most METAFONT source files
violate these conditions, it is safer if the font pa-
rameters calculated by mff.sty satisfy them. The
command \MFFcheck sets the mode when these
conditions are checked and the variable values are
corrected if necessary. Nethertheless, several inter-
esting effects can be achieved only without such au-
tomatic correction. The mode of automatic checking
can be switched off by the command \MFFcheck.

Switch to other font classes

The LATEX2ε NFSS classifies TEX font families in a
way which is different from the logical structure of
METAFONT programs. That is, the italic and small
caps are at the same family roman, together with
bold and slanted fonts, although they are pro-
duced by a different driver files. Similarly, roman,
typewriter and sans serif fonts are different families
while they are generated by the same METAFONT
script and their parameters can be varied so that
one family is smoothly converted to another family.
In mff.sty, there is no sharp boundary be-

tween roman, bold, slanted, typewriter, sans
serif, quotation, funny and dunhill fonts—each font
is smoothly converted to another one, while italic
and small caps fonts are quite different. The
mff.sty macros assign different classes to these
fonts to distinguish such differences from the font
families used in NFSS. The following font classes
can be used:

CMR Computer Modern Roman;

CMTI Computer Modern Text Italic;

CMCSC Computer Modern Small Caps;

118 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Computer Modern Typefaces as the Multiple Master Fonts

CMRZ CMZ Computer Modern Roman/Cyrillic
by N. Glonti and A. Samarin;

CMRIZ CMZ Computer Modern Text Italic/Cy-
rillic;

CMCCSC CMZ Computer Modern Small Caps/
Cyrillic;

LHR LH Computer Modern Roman/Cyrillic by
O. Lapko and A. Khodulev;

LHTI LH Computer Modern Text Italic/Cyrillic;

LHCSC LH Computer Modern Small Caps/Cyril-
lic.

The interface for DC fonts [3] is under development.

The set of font classes can be extended easily
when the METAFONT program is based on the same
set of parameters as Computer Modern fonts: The
only thing to do is to specify the macro which
writes the font identifier value and the operator
generate with the corresponding file name.

Acknowledgements

The authors would like to express their warmest
thanks to Kees van der Laan for organization and
realization of the Euro-Bus project which enabled
the Russian delegation to take part in EuroTEX-95,
and to Ph.Taylor for his activity in breaking down
the barriers between West and East.
This research was partially supported by a

grant from the Dutch Organization for Scientific
Research (NWO grant No 07-30-007).

References

[1] Donald E. Knuth. Computer Modern Type-
faces, (Computers & Typesetting series). Ad-
dison-Wesley, 1986.

[2] John Sauter. Building Computer Modern fonts.
TUGboat, 7 (1986), pp. 151 – 152.

[3] Jörg Knappen. The release 1.2 of the Cork en-
coded DC fonts and the text companion symbol

fonts. Proceedings of the 9th EuroTEX Confer-
ence, Arnhem, 1995.

[4] A. Khodulev and I. Mahovaya. On TEX experi-
ence in MIR Publishers. Proceedings of the 7th
EuroTEX Conference, Prague, 1992.

[5] O. Lapko.MAKEFONT as a part of CyrTUG –
EmTEX package. Proceedings of the 8th Eu-
roTEX Conference, Gdańsk, 1994.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 119

VFComb 1.3—the program which simplifies the virtual font management

A.S. Berdnikov
Institute of Analytical Instrumentation

Rizsky pr. 26, 198103 St.Petersburg, Russia

berd@ianin.spb.su

S.B. Turtia
Institute of Analytical Instrumentation

Rizsky pr. 26, 198103 St.Petersburg, Russia

turtia@ianin.spb.su

The MS DOS program VFComb enables one to
simplify the design of the virtual fonts.[1]1 Its main
purpose was to facilitate the integration of CM
fonts with Cyrillic LL fonts created by O. Lapko
and A. Khodulev [2, 3] but it can be used for
other applications too. It uses the information from
.tfm files (converted to ASCII form by TFtoPL)
and the ASCII data files created by the User on
its input, and produces the .vpl file on its output
(the .vpl file can be converted later to the virtual
font using VPtoVF). The characteristic feature of
the program is that it can assemble the ligature
tables and metric information from various fonts and
combine it with the user-defined metric information
and ligature/kerning data. VFComb supports the
full syntax of .pl files and .vpl files as it was
defined by D.E. Knuth and adds new commands like
symbolic variables or conditional operators, which
simplifies the creation and the debugging of the
virtual fonts.
The description of the previous version 1.2

(which is the first version distributed far outside
the home computer) can be found in [4]. This
version has only the Russian manual which prevents
its wide distribution among TEX community. The
current version has the English manual, but except
this “new feature” a lot of additional improvements
are added. The main features of the program are
described below while the complete information can
be found inside the manual.
The program will be put on the CTAN archives

following TUG’96 together with the source code and
will be available to TEX community on a freeware
basis. Since this MS DOS program is written on
Borland Pascal and uses some specific features of
this language, it is hardly portable to any other

1 It is assumed that you are familiar with the virtual fonts.
If it is not so, it is highly recommended that you read [1]
before proceeding further.

platform “as is”, but it is not too difficult to transfer
it to portable ANSI C (volunteers are welcome).

Virtual fonts for TEX formats with national

alphabets

Although everything which can be done by VFComb
could be realized also by explicit usage of PL and
VPL file syntax (as well as everything which can
be done manually by .pl and .vpl files can be
done with VFComb), some typical operations with
the virtual fonts are performed with its help easier
than by manual editing of .pl and .vpl The typical
problem of this type is the adaptation of standard
TEX formats to national alphabets—this problem
is especially important for Cyrillic alphabets since
most Cyrillic letters cannot be created as the com-
bination of the Latin (English) letters with some
accents.
The standard solution of this problem is to

combine the English part taken from Computer
Modern family with the national fonts which extend
the Computer Modern family and which contain
in the upper part of ASCII table (codes 128– 255)
the national symbols. The best way how to do
it is to create the virtual font whose lower part
refers to original CM fonts, and upper part refers
to the national fonts— it is just the way which was
recommended by D. Knuth.[1] The advantage of this
approach is that it is possible to keep the changes
in CM fonts and in national fonts separately, and
in addition, it is possible to economize disk space
since it is not necessary to keep two copies of each
Computer Modern character—one as the original
CM font which is necessary for original TEX formats,
and the second one as the lower part in the combined
national font.
The combination of the lower part of one font

and the upper part of another font, or even the
joining all the characters from one font and all

120 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

VFComb 1.3—the program which simplifies the virtual font management

the characters from another font (provided that no
character code is encountered twice) can be done by
VFComb using few commands. If some characters
are to be discarded from the font or moved to
the different positions of the ASCII table, it does
not makes the command script more complicated.
The resulting virtual font contains proper metric
information for each character borrowed from the
source metric information and the correct mapping
of the characters into individual real fonts.
The similar operation can be performed also by

the program TFMerge (IHEP TEXware, Protvino),
but VFComb performs additional operations. That
is, in addition to joining metric and ligature/kerning
information from each font into one virtual font, it
is necessary to add cross-ligature and cross-kerning
information for the pairs of characters taken from
different fonts. VFComb enables one to add metric,
ligature and kerning data taken from its script file
(which makes the original script a little bit more
complicated). The important feature is that this
additional data can contain variables and logical
structures, from which one can generate the whole
CM family of the virtual typefaces with national
characters using just the same pseudo-programwrit-
ten on VFComb command language.
Except the operations described above, VF-

Comb is capable of performing the following opera-
tions if it is specified by the user in its script:

• discard the ligature tables of some real fonts;

• include in the virtual font the full ligature table
of the real font;

• include in the virtual font only those characters
which are declared explicitly in user-defined
data, and discard the elements of the ligature
tables which correspond to non-included char-
acters of the real font;

• automatically add to the virtual fonts the char-
acters which are not included explicitly by the
user but which are joined with the already in-
cluded characters through ligature table data,
or by specifications NEXTLARGER and VARCHAR.

These features allow creation of the desired virtual
fonts for national alphabets with less effort and with
more reliability than by manual manipulations with
.pl and .vpl files.

Virtual fonts for colored printing

Another problem is the application of the virtual
fonts to multicolored printing. Suppose that it is
necessary to print text where different characters
have different colors. From TEX-compiler’s point
of view it means that the characters with different

colors are assigned to different fonts, and it is a task
for the dvi driver to decide how to print these fonts
in desired colors.
The colored printing is collected from the over-

lapped sheets where each sheet of text or graphics
is printed by individual monocolor passes. To make
the templates for monocolor printing it is necessary
to organize the output of the .dvi file so that in one
pass only yellow characters are printed, in another
pass only blue characters are printed, etc., while
the characters which have the green color are to be
printed twice— in blue as well as in yellow. The
easiest way to teach dvi driver how to do it is to
create different subdirectories with virtual fonts—
one subdirectory for each elementary color. The
virtual font files placed in the subdirectory for yellow
printing (which corresponds to the yellow fonts) will
refer to the actual *.pk files if and only if the yellow
color is assigned to this character—otherwise it will
refer to empty character. The subdirectories for
other colors are organized similarly. As soon as
the yellow printing is performed, the dvi driver is
configured so that it takes the virtual fonts from the
“yellow” subdirectory, and for the output in other
colors a corresponding reconfiguration of the dvi
driver is performed.
If the mapping of the empty characters into the

dummy font is performed, it results to the wrong
behaviour of the dvi driver: the characters in the
dummy font have zero size, and this means that the
next character after the empty character is shifted
to the left (as compared with the desired behaviour)
a the distance equal to the width of the skipped
character. To prevent this effect it is necessary to
insert into the virtual font the explicit dvi com-
mands which move the current output position to
the right by the distance representing the width of
the skipped character. This operation is performed
by VFComb by a single command: the user assigns
the attribute NULLCHARACTER to the corresponding
real font, and for the characters of this font the
empty mapping will be performed instead of map-
ping the real font characters.

Substitution of CM fonts instead of

PostScript fonts for DVI Viewers

The next problem where the usage of the virtual
fonts is advantageous is the visualization of the doc-
ument which was compiled using PostScript fonts.
Generally, the screen viewer cannot process the
PostScript characters, and it is necessary to remap
the PostScript font characters into some .pk font
which can be displayed by the viewer—say, some
typefaces from the Computer Modern family.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 121

A.S. Berdnikov and S.B. Turtia

Such remapping can be performed using virtual
font mechanism, but if it is done without special
precautions the screen view can be far from the
printed output. The reason is that CM characters
have a width different from the PostScript font (the
fact that they have a different graphical image is
not so essential). As in the previous case, the screen
output will be shifted to the left on the distance
which is the difference between the width of the
PostScript character and the CM character if no
special precautions are taken. To make the correct
output, it is necessary to add to the virtual font
the explicit dvi commands which correct the current
output position.
To make corresponding virtual font automati-

cally, VFComb allows the user to specify for the real
fonts two .pl files with the metric information: the
first one is for the nominal characters which are used
by TEX to compile the .dvi file (in our case it is the
PostScript .afm file converted to .tfm format), and
the second one is for the real characters which are
used when the .dvi file is displayed (or printed).
If such information is specified by the user, the
commands to correct properly the current output
position are inserted into the virtual font.
This operation works if both fonts have the

same coding scheme–namely, the characters used
by TEX and the characters used by dvi viewer have
the same code value. If not, the operation of re-
mapping inside an already-mapped font is required,
and this could be very complicated and result in a
very complicated scheme of virtual font generation.
To solve this problem, it is assumed that the correct
metric information for the “true” font (i.e., for the
font used in compilation of the .dvi file), is already
available. The special operators in VFComb enable
the user to load this information and to correct the
proper character width.

Other features

The other features incorporated in VFComb 1.3 are:

• improved syntax for VFComb commands;

• improved logical operators:

• implementation of string variables in VFComb
script files;

• specification of variable values in command line
among other parameters;

• specification of the names of the real and virtual
fonts inside VFComb scripts instead of com-
mand line;

• correction of some bugs, including the obliga-
tory conversion to uppercase all input charac-
ters together with the font names;

• automatic computation of the metric informa-
tion for the characters composed from user-
defined dvi commands.

All of these improvements ensure easier use of the
program. For example, after implementation of the
new features, the generation of the virtual fonts for
the LL/LH family (used in the CyrTUG Cyrillic
version of TEX/LATEX/AMS-TEX) is performed us-
ing just one script file of VFComb instead multiple
header files (see the example below).

Comparison with FontInst

There is another package for manipulating with
virtual fonts—namely, FontInst by Alan Jeffrey.
Although there are many similar features between
FontInst and VFComb, these tools are designed to
solve different tasks.
The main purpose of FontInst is to create new

font families for LATEX2ε using existing PostScript
fonts. FontInst contains high-level operators which
enable one to perform this task in several com-
mands, and it is written totally in TEX, which
guarantees its high portability. In addition, FontInst
contains special TEX macro commands which enable
the user to do nearly anything with virtual fonts,
without direct editing of .vpl files; but, in this case
the “program” written in FontInst commands may
be comparable in length to the .vpl file.
VFComb is designad to solve different prob-

lems— it was designed mainly to simplify the in-
tegration of new alphabets into TEX so that the
Latin part of Computer Modern Typefaces is left
unchanged. It cannot read .afm files and it cannot
create .fd files. If you wish to use it to create virtual
fonts for PostScript, you can do so, but you need
some additional utilities (afm2tfm) and many more
manual operations than you need with FontInst.
Similarly, you can make virtual fonts like that

created by VFComb using FontInst as well, but this
will require manual manipulations which are com-
parable to the direct editing of .vpl files. Although
one can expect in future more convergence between
FontInst and VFComb, currently these programs do
not intersect in this respect. If you wish to create
virtual fonts for font families derived from Post-
Script, please use FontInst, and you will economize
a lot of your time. If you wish to make virtual fonts
which solves any of the problems described in this
paper, VFComb may be more suitable.

Example

The syntax of VFComb commands is similar to that
of .vpl files. It means that it is more suitable

122 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

VFComb 1.3—the program which simplifies the virtual font management

for computers than for people. The following ex-
ample is extracted from the file lhfonts.tbf used
to generate the full family of Cyrillic virtual fonts
demonstrates the VFComb syntax.

Suppose that the program VFComb is called as

vfcomb lhfonts.tbf font=lhr10

which means that the script file lhfonts.tbf is used
as a source ofVFComb commands, and that the user
asks to generate the virtual font lhr10 which is a
combination of the Latin part taken from cmr10 and
the Cyrillic part taken from llr10. The fact that the
virtual font has the name lhr10 and that it is com-
posed from cmr10 and llr10 is described inside the
script file lhfonts.tbf. Actually the command line
shown above specifies only the fact that the string
variable font is defined with the initial value lhr10,
before the script file lhfonts.tbf is processed.
The head of the file lhfonts.tbf contains the

commands

(IF-DEF font)

(VARIABLE (STRING FONT @V font))

(ELSE)

(MESSAGE Variable FONT is not defined)

(HALTPGM)

(ENDIF)

These commands check that the user does not
forget to specify the variable font=... at the
command line, and assign its value to the string
variable FONT (uppercase and lowercase letters are
distinguished by variable names, and the prefix @V
means the value of the string variable).

Similarly, the commands

(IF-DEF type)

(VARIABLE (STRING TYPE @V type))

(ELSE)

(VARIABLE (STRING TYPE NEW))

(MESSAGE TYPE = NEW is assumed)

(ENDIF)

analyzes the contents of the variable type if it
is specified at the command line, and assigns the
default value NEW if there is no expression type=...
at the command line.

The commands

(VTITLE CyrTUG freeware LH font family)

(OUTPUT @V FONT)

(HEADER (FONT D 1))

(MAPFONT D 0 (LOWPART))

(MAPFONT D 1 (HIGHPART))

specify the title of the virtual font and the name
of the output virtual font. The header of the virtual
font is similar to that of the font D 1 if there are
no other commands which modify the contents of

the header. The commands MAPFONT state that two
fonts are used to create the virtual fonts where the
characters 0 – 127 are taken from one font and the
characters 128– 255 are taken from the other font.
The actual names of the real fonts ‘0’ and ‘1’ are

specified after the following analysis of the contents
of the variable FONT:

(IFS-CASE @F @V FONT)

(CASE LHR)

(MAPFONT D 0 (FONTNAME @+ CMR @P @V FONT))

(MAPFONT D 1 (FONTNAME @+ LLR @P @V FONT))

(HEADER (FAMILY LHR))

(VARIABLE (BYTE FLKERN 0))

(BREAK)

(CASE LHTI)

(MAPFONT D 0 (FONTNAME @+ CMTI @P @V FONT))

(MAPFONT D 1 (FONTNAME @+ LLTI @P @V FONT))

(HEADER (FAMILY LHTI))

(VARIABLE (BYTE FLKERN 1))

(BREAK)

......

(ELSE)

(MESSAGE Unknown font family @F @V FONT)

(HALTPGM)

(ENDIF)

Here the prefix commands @F @V FONT extract
the non-digital component of the font name which
is analysed by the CASE operators (note that the
comparison of text strings by the operator IFS-CASE
does not distinguish between uppercase and lower-
case letters). If the non-digital font component is
equal to LHR (as it is in our case for font=lhr10),
the first font gets the name CMR..., and the second
font gets the name LLR... where the dots are
substituted by the font design size: the prefix @P
@V FONT extracts the value ‘10’ from lhr10 (like
@F @V FONT extracts ‘lhr’ from the same value),
and the prefix @+ performs the concatenation of two
strings. In the same command block, the header
field FAMILY gets the value LHR, and the byte vari-
able FLKERN gets the value 0 (it is used later to
construct the additional entries for ligature table
which corresponds to the ligature/kerning data for
the characters taken from different real fonts). The
font names LHTI... are analyzed similarly, and
analogous commands (skipped here) are specified for
every legal font family.
The following commands specify the symbolic

names for some Cyrillic letters which are used later
in the ligature tables. Note the the coding scheme
specified here depends on the value of the expression
type=... specified in the command line:

(IFS-EQ @V TYPE OLD)

(VARIABLE

(BYTE CYR_open_quote D 243)

(BYTE CYR_close_quote D 244)

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 123

A.S. Berdnikov and S.B. Turtia

(BYTE CYR_Number D 245)

)

(ELSE) (COMMENT TYPE = NEW)

(VARIABLE

(BYTE CYR_open_quote D 250)

(BYTE CYR_close_quote D 251)

(BYTE CYR_Number D 252)

)

(ENDIF)

(VARIABLE

(BYTE CYR_GHE D 131)

(BYTE CYR_ghe D 163)

(BYTE CYR_ER D 144)

(BYTE CYR_er D 224)

......

)

The following commands analyze the value of
the variable FONT and assign the value for the real
variable u# and for the logical variable monospace,
which are used to construct the ligature data for the
pairs of characters taken from different fonts:

(IFS-CASE @V FONT)

(CASE LHR5)

(COMMENT Font LHR5)

(VAR

(REAL u# A/ A/ R 12.5 R 36 R 5)

(BYTE monospace D 0)

)

(BREAK)

(CASE LHR6)

(COMMENT Font LHR6)

(VAR

(REAL u# A/ A/ R 14 R 36 R 6)

(BYTE monospace D 0)

)

(BREAK)

...

(ENDIF)

The arithmetic expressions in these commands
are constructed using the “Polish notation” struc-
ture. That is, the prefix A/ is the division of the
two arguments which follow it (A+ is addition, A-
is subtraction, A* is multiplication and R is a real
number), and each of these arguments can be the
arithmetic expression starting with an arithmetic
prefix as well. For example, the value of the variable
u# for the font LHR5 is equal to A/ A/ R 12.5 R 36
R 5 = ((12.5/36)/5) = 0.069444444444.
Finally, the commands which specify the addi-

tional ligature data for the pairs of characters taken
from different fonts are added:

(IF-EQ V monospace D 0)

(IF-CASE V FLKERN)

(CASE D 0) (COMMENT KERN Roman)

(VARIABLE

(REAL k# A* R -0.5 V u#)

(REAL kk# A* R -1.5 V u#)

(REAL kkk# A* R -2.0 V u#)

......

)

(LIGTABLE

(LABEL V CYR_GHE)

(KRN C . V kk#)

(KRN C , V kk#)

(KRN C : V kk#)

(KRN C ; V kk#)

(STOP)

)

(LIGTABLE

(LABEL V CYR_ER)

(KRN C . V kk#)

.....

)

.....

(BREAK)

(CASE D 1) (COMMENT KERN Italic)

......

(ENDIF)

(ENDIF)

The syntax of these commands is similar to that
of .vpl files except that the variable values are used
(some variables are calculated depending on the
variable u# defined above) and the logical operators
analyze what data should be included depending
on the current values of the variables FLKERN and
monospace.

Acknowledgements

All new improvements of VFComb (except the En-
glish manual) are the result of the contacts and
discussions which were held during the EuroTEX-
95 meeting. So we would like to thank Kees van der
Laan for his giant efforts to organise the visit to the
EuroTEX-95 by the delegation from Russia and for
his patient attention to Russian colleagues before,
during and after the EuroTEX-95.
It is not so easy to recall all participants of this

conference whose opinions made an impact on the
preparation of the new version of VFComb. Among
other persons we would like to thank Phil Taylor and
S. Znamensky for their valuable suggestions which
led to improvements in the program. We would
like also to thank O.A. Lapko, S.A. Strelkov and
I.A. Makhovaya for their efforts spent on the Cyrillic
TEX project which actually inspired our work.
This research was partially supported by a

grant from the Dutch Organization for Scientific
Research (NWO grant No 07-30-007).

References

[1] D. Knuth, “Virtual Fonts: More Fun for Grand

124 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

VFComb 1.3—the program which simplifies the virtual font management

Wizards”, TUGBoat 11 (1993), No. 1, pp.13 –
23.

[2] A. Khodulev, I. Mahovaya. “On TEX experience
of MIR Publishers”, Proceedings of the 7th Eu-
roTEX Conference, Prague, 1992.

[3] O. Lapko. “MAKEFONT as a part of CyrTUG–
EmTEX package”, Proceedings of the 8th Eu-
roTEX Conference, Gdańsk, 1994.

[4] A.S. Berdnikov, S.B. Turtia. “VFComb—a pro-
gram for design of virtual fonts”, Proceedings of
the 9th EuroTEX Conference, Arnhem, 1995.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 125

ΩTimes and ΩHelvetica Fonts Under Development: Step One

Yannis Haralambous
Atelier Fluxus Virus, 187, rue Nationale, F-59 800 Lille, France
Yannis.Haralambous@univ-lille1.fr

John Plaice
Département d’informatique, Université Laval, Ste-Foy (Québec) Canada G1K 7P4
John.Plaice@ift.ulaval.ca

The Truth Is Out There

—Chris CARTER, The X-Files (1993)

Introduction

ΩTimes and ΩHelvetica will be public domain
virtual Times- and Helvetica-like fonts based upon
real PostScript fonts, which we call “Glyph Con-
tainers”. They will contain all necessary characters
for typesetting efficiently (that is, with TEX quality)
in all languages and systems using the Latin, Greek,
Cyrillic, Arabic, Hebrew and Tifinagh alphabets and
their derivatives. All Unicode characters will be
covered, although the set of glyphs of our Ω fonts
will not be limited to these; after all, our goal is high-
quality typography, which requires more glyphs than
would be required for mere information interchange.
Other alphabets will follow (the obvious first

candidates are Coptic, Armenian and Georgian) as
well as mathematical symbols, dingbats, etc.

Why PostScript instead of METAFONT? META-
FONT is the ultimate tool for font development.
Extending Computer Modern fonts to the Unicode
encoding is still one of our goals. We have started
developing a set of fonts we call “Unicode Com-
puter Modern” fonts, using techniques such as Vir-
tual METAFONT (virtual fonts are created directly
by METAFONT using the gftotxt utility for text
output). Nevertheless, we realized that the task
of writing METAFONT code for some thousands of
characters (including code for typewriter style) is a
tremendous task, which will take several years.
So we have decided to take a small break

from METAFONTing, and to develop in a limited
time period PostScript fonts that will cover a
maximum number of languages and will give the
TEX community a good reason to switch to Ω.

Why Times and Helvetica? First of all because,
after Computer Modern, they are the most widely
used fonts in the TEX community. Many journals

and publishers request that their texts be typeset
in Times; Helvetica (especially the bold series) is
often used as a titling font. Like Computer Modern,
Times is a very neutral font that can be used in a
wide range of documents, ranging from poetry to
technical documentation. . .
It would surely be more fun to prepare a

Bembo- or Stempel Garamond-like font for the serifs
part and a Gill Sans- or Univers-like one for the
sans-serifs part; but these can hardly be used in the
scientific/technical area, and that’s perhaps where
TEX (and hence potentially Ω) is used the most.

When will the Ω fonts be finished? The
development of ΩTimes and ΩHelvetica fonts is
divided into four steps:

1. Drawing of PostScript outlines and packaging
of Glyph Container fonts.

2. Development of virtual code, based on the real
fonts of step one.

3. Kerning of virtual fonts.

4. Development of LATEX code and Ω Translation
Processes necessary for the use of these fonts.

For the time being (June 1996) we have done
the biggest part of step one, and this is what we
present in this paper. We hope to have finished with
steps two, three and four before the next teTEX CD-
ROM in December 1996.

We want your support! Please keep in mind:

The choice and shapes of glyphs presented in
this paper are only a first attempt. We need
your feedback to improve them, so that you
can use them efficiently.

In the tables we present only Times family and
medium series fonts (except in the case of Tifinagh,
which is also presented in the Helvetica family).
Up-to-date tables of the remaining fonts can be
consulted on our Ω WWW server

http://www.ens.fr/omega

126 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

ΩTimes and ΩHelvetica Fonts Under Development: Step One

Figure 1: Italic-style letters with ogonek (Polish
and Lithuanian)

You can also retrieve the PostScript code from the
same address, or from

ftp://ftp.ens.fr/pub/tex/yannis/omega

General remarks on the fonts

To prevent confusion, the word “font” in this section
is meant in the sense of the PostScript Type 1 font
structure; and not of TEX text or math fonts: the
fonts we describe in this paper will never be used
directly for typesetting. Their raison d’être is to
provide glyphs for the virtual Unicode+Typography
Ω fonts which we will develop in steps two–four.
Hence, there is no need to look in the tables for
a ‘é’: this character will be assembled by the virtual
font, using the glyphs of letter ‘e’ and of the acute
accent.
The same stands for the letter ‘c’ with cedilla:

it can be assembled out of the two corresponding
glyphs; however, this is not true for letters with
ogonek: the shape of the ogonek changes while it
gets attached to the letter; that is why you find
letters with ogonek in the Glyph Containers and
not letters with cedilla. In Fig. 1 the reader can
see examples of letters in italic style, carrying an
ogonek accent.
In Fig. 2 the reader can find the general

structure of the fonts:1 On the left, the 16-bit
Unicode+Typography virtual font, on the right a
certain number of Glyph Containers, that is 8-bit
PostScript fonts.
The reader will notice that a certain number of

glyphs are repeated in the different Glyph Contain-
ers. This is because we want to minimize the number
of Glyph Containers used for a single-alphabet text.
For example, accents for all fonts are stored in Glyph

1 In the figure, the reader will notice real font “Adobe
Zapf Dingbats”. In fact, the glyphs of this font have become
Unicode characters (0x2701–0x27be) and we see no reason to
redraw them since this font is widely available. Hence the
virtual 16-bit font will also point to the standard Adobe Zapf
Dingbats font.

Container “Common”; theoretically, to produce an
acute-accented Latin letter and an acute-accented
Cyrillic letter, one would use three Glyph Contain-
ers: one for the accent, and one for each alphabet.
To avoid this, we store all accents relevant to a given
alphabet, in the alphabet’s Glyph Container. The
same method is used for shapes that are similar in
the different alphabets: Latin, Greek and Cyrillic al-
phabets share the letter ‘A’, Latin, IPA and Cyrillic
alphabets share the letter ‘a’.2

The “Common” Glyph Container

The “Common” Glyph Container, shown in Table 1,
contains glyphs that will be used potentially in
conjunction with all alphabets. These are described
in the following subsections.

Punctuation, digits, editorial marks Special
care has been taken to distinguish between “typo-
graphical” punctuation and “typewriter/computer
terminal-derived” one: compare the typographical
double quotes lm and the straight ‘ASCII’ ones ".
This table covers all Unicode punctuation

marks from the ASCII and ISO 8859-1 tables as
well as from the general punctuation table
(0x2010–0x2046). We have not included a few
punctuation marks specific to a single alphabet:
Arabic asterisk, inverted comma and semicolon,
Hebrew colon, Greek upper dot. These will be found
in the corresponding Glyph Containers.
In Fig. 3 the reader can see how regular

curly braces have been transformed into square
brackets with quill, by simply reflecting the
central part of the brace.

Commonly adopted Latin alphabet derived

symbols Symbols like A use Latin alphabet letters
but are used in many non-Latin-alphabet based
languages. Symbol z is an even stranger example:
although the glyph ‘N’ does not exist in Cyrillic,
this symbol is used mainly in Cyrillic-alphabet
languages.

2 We will use a totally different approach when dvips
and Adobe Acrobat are able to use 16-bit PostScript fonts.
Instead of having many ‘small’ PostScript fonts and one
‘big’ virtual font, we will use a single ‘big’ PostScript font,
in Unicode+Typography encoding. In that font, accented
letters and repeated identical shapes will be obtained by the
PostScript font technique of composite characters. This will
allow Acrobat users to select and copy Unicode-encoded text
directly from the document window.
Since the two techniques (16-bit + 8-bit real, vs. 16-

bit composite real) will share the same .tfm metrics for
characters, it will be possible to convert .dvi files from one
format to the other, so that files obtained today by the
first method will be “Acrobat-ready” later, whenever Acrobat
switches to Unicode (hopefully soon!).

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 127

Yannis Haralambous and John Plaice

OmegaTimesCommon

OmegaTimesLatin

OmegaTimesIPA

OmegaTimesGreek

OmegaTimesCyrillic

OmegaTimesHebrew

OmegaTimesTifinagh

Adobe™ ZapfDingbats

…

ΩTimes

virtual font

(Unicode

encoding +

characters

needed for

typography)

PostScript fonts

16-bit

8-bit

8-bit

8-bit

8-bit

8-bit

8-bit

8-bit

8-bit

8-bit

OmegaTimesArabicOne, …

Figure 2: General structure of the ΩTimes fonts (idem for ΩHelvetica)

Figure 3: The left and right square
brackets with quill were drawn by reflecting
the central part of regular curly braces

In Fig. 4 the reader can see our small tribute
to the GNU foundation: the “copyleft” symbol. We
hope that this character will soon be included in the
letter-like symbols section of Unicode.

—Q. Why not use the \reflectbox macro to
reflect the “copyright” glyph into a “copyleft” one?

—A. Because we want to treat “copyleft” as a
separate character in the virtual font, which may
be searched inside a .dvi or PDF file. In other
cases, such as B, used in the A BBA logo and the
cobar construction in Algebraic Topology, one can

128 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

ΩTimes and ΩHelvetica Fonts Under Development: Step One

Figure 4: The GNU “copyleft” symbol

Figure 5: The estimated symbol was drawn
inside a perfect circle

easily use PostScript-manipulation macros without
damage.
Finally, in Fig. 5 the reader can see how the

estimated symbol fits inside a perfect circle (in
red, for readers of a color version of this paper).

Currency symbols Among currencies having
proprietary symbols, there are strong and weaker
ones. The strong ones have made it into ISO 8859-
1 (you-know-who made it even into ASCII itself,
and is used by a well-known typesetting language

Letter ‘O’
Letter ‘C’

Letter ‘e’

C

e

Figure 6: How shapes ‘C’, ‘O’ and ‘e’ were used
for the design of the latin and cyrillic capital
letter shwa

to enter math mode. . .), the remaining ones have
found their home in the currency symbols section
of Unicode.
We have included them all (even the Thai

currency symbol è, which looks suspiciously Latin)
in the “Common” Glyph Container. Note that the
symbol Ñ for French Franc is virtually unknown in
France. . .

Diacritics The zone 0xa0–0xe2 of the “Common”
Glyph Container is dedicated to combining diacrit-
ics. These diacritics are supposed to be useful
for more than one alphabet; whenever a diacritic
belongs specifically to one alphabet, it has been
included only in the corresponding Glyph Container
(this is the case, for example, of Vietnamese dou-
ble accents, Greek spirit+accent combinations, and
Slavonic accents). Thanks to the diacritics in the
“Common” Glyph Container we will be able to con-
struct all latin extended additional Unicode
characters (0x1e00–0x1ef9) virtually, by combining
them with letters from the “Latin” Glyph Con-
tainer. This Unicode region covers Welsh, Viet-
namese and transcriptions of Indic and other lan-
guages.

The “Latin” Glyph Container

The “Latin” Glyph Container, shown in Table 2,
contains glyphs of letters for Latin alphabet lan-
guages. These are described in the following sub-
sections.

Letters for Latin alphabet languages All
glyphs necessary to typeset Western and Central
European, Nordic, Baltic, African languages, Viet-
namese and Zhuang.
Some African characters are derived from the

International Phonetic Alphabet. It is a fascinating
challenge to design uppercase and italic-style forms
for these characters (for example, see in Fig. 6 the

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 129

Yannis Haralambous and John Plaice

Figure 7: The African letter f with hook in
roman upper- and lowercase, as well as in italic
lowercase form

Figure 8: Capital letter b with topbar
(which shares the same glyph as cyrillic
capital letter be) small letter b with
topbar and cyrillic small letter be

uppercase version of letter © letter which derives
from the phonetic shwa, and in Fig. 7 the straight
uppercase and straight lowercase versions of an
African letter that becomes a standard f in italic
style).
Sometimes, although a Greek form (or a form

derived from Greek) is used for the lowercase, the
uppercase does not follow the Greek model: for
example, the uppercase of African letters ™ and ≠
(the former is 100% Greek, while the latter looks
more like a “phonetic gamma”) are ä and ç.
Inversely, sometimes a Greek form is used for

the uppercase only: ô is the uppercase form of the
integral-like π, a character derived from the IPA, for
which one can hardly imagine an obvious uppercase
form—taking a Greek letter for that purpose is the
easiest solution.
It is quite interesting how the lowercase of the

Latin letter Å differs from that of the Cyrillic letter
sharing the same glyph (see Fig. 8).
Special attention has been paid to the notorious

Dutch ligature ‘ij’, in italic Times lowercase form
and in Helvetica uppercase form (see Fig. 9).

Figure 9: Italic letter ‘y’ with umlaut accent
followed by the Dutch ligature ‘ij’ in Times italic,
Helvetica medium uppercase and Helvetica bold
uppercase form

Figure 10: The Vietnamese small letter o
with horn was designed using the glyphs of the
ring accent, the apostrophe and letter ‘o’

In the former case, we have connected the two
letters, creating an intentional confusion with a ‘y’
letter with umlaut accent. In Fig. 9 the reader
can compare these two constructions. On the other
hand, the shape of the uppercase sans serif ‘IJ’ is
derived from that of the letter ‘U’: this is common
Dutch titling practice.
The characters ^ and ~ are used in Breton.

They are not (yet) included in Unicode, and have
been brought to our attention by Jacques André.
Finally, in Fig. 10 the reader can see how the

“horn” of Vietnamese letters has been designed,
using graphical elements from the font: in this case,
the ring accent and the apostrophe.

Ligatures Besides the “standard five” ligatures Ã,
Õ, Œ, œ, –, we have included ligatures for the case
where:

• the second or third letter is an ‘i’ with ogonek:
—, “, useful in Lithuanian;

• the second or third letter is a stroked ‘l’ : ”, ‘,
useful in Polish;

• the second or third letter is a ‘j’: ’, ÷;

• instead of an ‘i’ one has an ‘ij’ ligature: ◊,ÿ,
useful in Dutch;

• instead of ‘f’ one has a long ‘s’: Ÿ, ⁄, ¤, ‹,
›. We haven’t (yet) included any ‘f’ + ‘long s’
combinations.

130 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

ΩTimes and ΩHelvetica Fonts Under Development: Step One

Figure 11: French ligatures ‘st’ and ‘ct’ in Times
and Helvetica fonts

Finally we couldn’t resist the temptation of
making “French” ligatures fi, fl, of course, both
in Times and Helvetica (!) font families. These
ligatures are well-known because of their use (in the
Garamond typeface) in the Pléiade book collection.
One can argue about their reason for being in
Times (and especially in Helvetica) style, which
has absolutely no historical background. . . Consider
them an experiment, and trust us for not making
them automatic in default text mode!

Diacritics Accents 0xf8–0xff are used for Viet-
namese only. Diacritics occupying positions 0xe8–
0xf6 are shared with the “Common” Glyph Con-
tainer.

The “IPA” Glyph Container

The “IPA” Glyph Container, shown in Table 3,
contains a collection of glyphs needed for the
International Phonetic Alphabet. They have been
found in different sources: Unicode encoding,
literature on phonetics (in particular we covered the
complete table of characters of the French classic
Initiation à la phonétique, by J.-M.-C. Thomas, L.
Bouquiaux and F. Cloarec-Heiss, PUF, 1976). Only
a small number of these characters are contained in
the Unicode encoding. We would be grateful for
any feedback from scholars on additional characters
or corrections of the existing ones.
Since IPA is so. . . international, we have as-

sumed that one can encounter phonetic insertions
in text written in any language. Hence, we have in-
cluded all glyphs needed, including lowercase Latin
alphabet letters, and small capitals—the latter be-
ing included only whenever these are significantly
different from their lowercase counterparts: includ-
ing, for example, small caps ‘s’, ‘x’, ‘z’ would be

Figure 13: Three closely-related glyphs: German
‘sz’, IPA ‘beta’ (not a Unicode character), Greek
lowercase ‘beta’

Figure 14: Different types of ‘gamma’: the first
one from the Greek alphabet, the others from the
IPA

useless since they are indistinguishable from lower-
case ‘s’, ‘x’, ‘z’.
This point deserves some explanation: one

should not confuse small capitals used for text and
IPA small capitals. The former are a stylistic
enhancement of text; they appear only in words
entirely in small capitals style; their height is not
equal to the x-height of the font, generally they are
slightly higher. The latter are phonetic characters
used together with authentic lowercase letters: they
must have exactly the same height.
In Fig. 12 the reader can see some small caps we

have designed for the ΩTimes IPA Glyph Container.
It may not be obvious from the figure, but stroke
widths of the small caps are exactly the same as
the ones of lowercase letters (see lowercase letter ‘a’
to compare, as well as glyph ‘v’, which is used to
represent both a lowercase and a small caps ‘v’). On
the second line of the figure, one can see the same
letters obtained as ‘fake’ small capitals.
We had a lot of fun designing these characters.

In some cases, they just had to look a little different
from their Greek counterparts: for example, in
Fig. 13 the reader can see how the ‘phonetic beta’
has been inspired by the German ‘sz’, and not by the
‘real’ Greek beta; in Fig. 14 we present a collection

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 131

Yannis Haralambous and John Plaice

Figure 12: On the first line, lowercase letters ‘a’ and ‘v’ and specially designed IPA small capitals; on the
second line, uppercase letters reduced 68%

Figure 15: Two IPA symbols of different origin:
inverted letter ‘f’ and dotless ‘j’ with stroke

of gamma-like glyphs, as well as the ‘real’ Greek
letter gamma.
In some cases we were not very sure about

the origin of some IPA characters and made several
attempts: for example, in Fig. 15 one can see two
symbols with a superficial resemblance: an inverted
‘f’ and a dotless stroked ‘j’. Which one is used in
phonetics? The choice is left to the user.
Finally there was one case where we had to solve

a real design problem: the one of the ‘l with retroflex
hook’ and ‘ezh’ ligature (not a Unicode character).
In most real-life examples we had the opportunity
to see, the letter ‘ezh’ was sadly squeezed so that its
tail remains higher than the retroflex hook of the ‘l’;
we find it bad typographical practice to squeeze the
‘ezh’ and propose three solutions (only one of which

Figure 16: Which one is the best ‘l with retroflex
hook+ezh’ ligature? (Three proposals)

of course will survive in the final Glyph Container).
In Fig. 16 the reader can see: (a) the tail of ‘ezh’
merged with the retroflex hook of the ‘l’, (b) the
retroflex hook of the ‘l’ continuing deep enough for
it to be seen under the tail of ‘ezh’, (c) the retroflex
hook rising higher so that it fits between the tail of
‘ezh’ and the baseline. In cases (a) and (c) the risk
may be that the ‘l with retroflex hook’ be taken for
an ‘ordinary l’ (compare ù, ¯ and ö); in case (b) we
are going too deep under the baseline. . .
Anyhow, we expect your feedback to resolve

this issue.

The “Greek” Glyph Container

The “Greek” Glyph Container, shown in Table 4,
contains glyphs needed for the Greek language,
ancient and modern. The problem with most

132 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

ΩTimes and ΩHelvetica Fonts Under Development: Step One

Figure 17: Two forms of Greek circumflex accent:
the first used in modern Greek typesetting, the
second one used in a number of scholarly typefaces

commercial Greek fonts is that they are either made
for modern Greek use, or for ancient Greek use by
non-Greek scholars. There is a third possibility:
fonts made for ancient Greek use by Greek scholars.
In this Glyph Container we have tried to satisfy

all three categories of users. Of course, this font
can be used both for monotonic and polytonic text
(there is a straight monotonic accent, while the
acute one can be used as well). But we have
gone even farther, by including two versions of the
circumflex accent, shown in Fig. 17: the tilde-like
one, used in Greece, and the cap-like one used in
scholarly Western editions.3

Faithful to the first TUGboat paper by one of
the authors (Haralambous and Thull, 1989), we have
included the inverted iota with circumflex accent,
found in certain 19th-century editions of modern
Greek (see Fig. 18).
Version 1.0 of the Unicode standard contained

uppercase versions of Greek numerals, just as roman
numerals were provided in upper- and lowercase;
in ISO 10646 these characters were removed, ap-
parently by decision of the Greek delegation. We
find this action absurd (there are many examples of
uppercase numerals in literature) and have of course
included the relevant glyphs in the Glyph Container.

3 This brings us to a nice typographical joke: the Greek
“circumflex” accent is either “tilde”-like or “cap”-like, but
never actually. . . “circumflex”-like!

Figure 18: The inverted ‘iota with circumflex’
(not a Unicode character) used in 19th-century
modern Greek printing

Figure 20: The different variant forms of Greek
letters: beta, theta, phi, rho, kappa

In fact, we have included all known variants of Greek
numerals: stigma, digamma, qoppa and sampi (see
Fig. 19, next page), and the upper and lower nu-
meral signs.
Greek letters are also very common in math-

ematics and physics. Some variant forms are used
for different purposes in these fields (rho with curved
or straight tail, open/closed phi, open/closed theta,
curly or straight kappa). To these we add a variant
form used in regular text: the initial and medial
beta (b vs. 1). All variant forms of lowercase letters
are shown in Fig. 20.
There is also a variant form of the letter sigma:

the so-called “lunate” sigma. This character is used
in some scholarly editions to avoid the distinction
between ordinary medial and final sigmas. In Fig. 21
we compare it with Latin letter ‘c’: the lowercase of
lunate sigma has no bulb and the upper one, no serif

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 133

Yannis Haralambous and John Plaice

Figure 19: Collection of glyphs used for Greek numerals; on the first line: lowercase stigma, digamma (2
variants), qoppa (2 variants), sampi; on the second line: uppercase stigma, digamma, qoppa, sampi

Figure 21: The glyphs of Greek lunate sigma and
Latin letter ‘c’ (in upper- and lowercase)

(and hence the Greek and Latin letters are identical
in the Helvetica family).
The reader may ask why on positions 0x80–

0x8d and 0xa0–0xad of the Glyph Container table
we have accented letters, while on positions 0x90–
0x9d there are only accents and no letters. The
answer is very simple: accents on Greek letters
sometimes change shape according to the width of
the letter. Greek vowels can be roughly divided
into three width classes: narrow ones (the iota),
wide ones (the omega) and medium ones (all the
remaining). On row 8 and a we have placed accents
for narrow and wide letters, respectively; on row
9 we have placed the ordinary accents. And since
rows 8 and a have been made for unique vowels,
we have prefered to include complete accent+letter
combinations (letters being aliases, of course) so
that the virtual font doesn’t need to make the
construction.

The same reason justifies positions 0x5e and
0x5f: the dieresis (dialytika, in Greek) does not
have the same width, depending on whether it is
placed on an iota or an upsilon.
Finally, in the table there are also the specifi-

cally Greek guillemets (round ones), the upper dot,
and the two forms of “subscript” iota: for low-
ercase letters (ypogegrammeni) and for uppercase
ones (prosgegrammeni).

The “Cyrillic” Glyph Container

The “Cyrillic” Glyph Container, shown in Table 5,
contains glyphs needed for all languages using
the Cyrillic alphabet, whether European or Asian.
Characters for pre-Lenin Russian (fita, izhitsa, yat)
have also been included, as well as “modernized”
versions of Slavonic characters. As in the case of the
Latin ‘st’, ‘ct’ ligatures, one may argue the necessity
of modernizing Slavonic script, especially when it
comes to drawing the Helvetica version. It happens
that these characters have been included in Unicode
(like the Coptic ones), and this is already reason
enough to draw the font; it is up to the user to
actually adopt the “modern” font, or use beautiful
traditional Slavonic typefaces.
What was fascinating when designing Slavonic

letters was their relation to Greek ones. In Fig. 22
we compare Slavonic and Greek Xi and Psi: at
a first glance, Slavonic Xi bears a resemblance
to Greek lowercase xi, it is quite surprising that

134 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

ΩTimes and ΩHelvetica Fonts Under Development: Step One

Figure 22: Comparing Slavonic letters Xi and Psi
with the corresponding Greek ones

the Slavonic xi is reflected with respect to the
Greek one. Uppercase Psi letters are identical,
and lowercase Slavonic psi has a heavier stem
(with serif, while Greek lowercase letters never have
serifs). Uppercase Slavonic Omega + is a magnified
lowercase omega (where we have placed a serif on
the central stem). For the lower part of the Slavonic
Yus / we have used an inverted Psi: this is a small
designer’s secret allowing better integration of the
letter in the Times (resp. Helvetica) font family.
Another design initiative of ours was to use

graphic elements from the Serbian letter ! 1, for
the Asian Cyrillic å ú, § ¥, Ø ø. We expect user
feedback to validate or deny this choice.

The “Arabic” Glyph Container

The “Arabic” Glyph Container, shown in Tables 6–
8 contains the glyphs that are necessary to typeset
in any language using the Arabic alphabet.4 The
design of these Ω Arabic fonts doesn’t actually
have much in common the Times and Helvetica
families; in fact, we have used popular modern
designs, which can be used both for technical and
literary text, and which allow easy readability in
small sizes. Fat and thin stroke width, ascender
height and descender depth have all been calculated
with respect to the corresponding parameters of the
Latin/Greek/Cyrillic fonts.
In Fig. 23 the reader can see the metrical

relationship between the Latin, Arabic and Hebrew
fonts: we want these characters to fit with one other,

4 We have also included undotted versions of letters ba,
fa, qaf, for typesetting of old manuscripts.

so that multilingual texts using the three scripts will
produce typographically acceptable results.
Concerning diacritics we have included all

vowels, and combinations with shadda and hamza,
as well as some special cases: madda, wesla, vertical
fatha, vertical fatha + shadda, and other diacritics
used in Arabic spellings of African languages,
Kurdish, Baluchi, Kashmiri, Uigur and Kazakh.5

Esthetic Ligatures We have included a very small
number of esthetic ligatures (fewer than 150): ba-
like letters followed by a final noon-like, initial fa-
like letters followed by a ya-like, an initial lam-
meem ligature, and the llah ligature with and
without vertical fatha + shadda. We are not
convinced that heavy ligaturing of these fonts, in
the manner of traditional Naskhi fonts, would be
esthetically judicious. Nevertheless, we are open to
any suggestion on possible ligatures that might be
added.

The “Tifinagh” Glyph Container

The “Tifinagh” Glyph Container, shown in Tables 9
and 10, contains the glyphs needed for typesetting
the Tamazight (alias Berber) language. A complete
description of the Berber TEX system developed by
Haralambous [2].
The glyphs shown on the tables warrant some

explanation. Tifinagh script has always been
written in a non-serif style. On table 9 we show
a “Helvetica” version of the script, in the sense
that everything has been done to bring these glyphs
closer to the Latin/Cyrillic/Greek Helvetica types.
This approach is quite safe, and— in all modesty—
the result should not surprise any speaker of Berber.
On the other hand, table 10 shows a 100%

experimental font! The main idea was to say:
“What would Tifinagh letters look like today if
they had followed the same evolution as Latin
ones?” See Fig. 24 for a closer comparison
of some Tifinagh letters in both Helvetica and
Times styles. Admittedly, the result seems weird,
and a lot of corrections have to be made before
these drawings actually can be called Tifinagh
glyphs. . . Nevertheless, the Berber language is
being typeset more and more in its traditional
script, often together with other scripts. As a
result, the problem of homogenization with Western
typographical traditions must be faced; the style of
the Times typeface is one of the first challenges.

5 We have not included diacritics used for the Qur’ān,
as we believe that these should be printed using very specific
traditional typefaces; nevertheless, the diacritics provided are
sufficient for excerpts from the Qur’ān.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 135

Yannis Haralambous and John Plaice

Figure 23: Capital height, x-height, baseline and descender depth of Latin, Arabic and Hebrew letters

Figure 24: On line 1: Tifinagh letters in Helvetica style, with shapes identical to Greek and Latin ones;
on line 2: idem. but shapes become stranger; on lines 3 and 4: the same letters, in Times style, using
“evolutional logic”

The “Hebrew” Glyph Container

The “Hebrew” Glyph Container, shown in Table 11,
contains the glyphs needed for Hebrew, Yiddish
(both in the Russian or American YIVO spelling)
and Ladino. The font design is based on a—
very popular in Israel—modern Hebrew typeface.
Once again we have adapted the stroke widths
and character dimensions of Latin/Greek/Cyrillic
glyphs. In Fig. 23, the reader can compare the size

and weight of Hebrew letters with those of Latin and
Arabic.6

We have not included Masoretic signs in the
font, because we believe that the Bible should be
typeset in traditional “square” fonts. Nevertheless,
we have included letters with dagesh which appear
only in a few isolated positions in the Bible, as well
as the inverted nun. We have also included two

6 It should be noted that the height of Hebrew letters is
exactly equal to the half distance between that of upper- and
lowercase Latin letters.

136 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

ΩTimes and ΩHelvetica Fonts Under Development: Step One

different forms of the lamed-aleph ligature (with and
without left stroke), used in older texts.

References

[1] Haralambous, Yannis and Klaus Thull. “Type-
setting modern Greek with 128-character codes.”
TUGboat 10,3 (1989), pages 354—359.

[2] Haralambous, Yannis. Un système TEX

berbère. Actes de la table ronde internationale
pPhonologie et notation usuelle dans le domaine
berbèreq. Paris: Institut National des Langues
et Civilisations Orientales, 1993. [Forthcoming
in the Cahiers GUTenberg thematic issue on
Semitic scripts.]

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 137

Yannis Haralambous and John Plaice

"x0 "x1 "x2 "x3 "x4 "x5 "x6 "x7

"2x ! " # $ % & '
() * + , - . /

"3x 0 1 2 3 4 5 6 7
8 9 : ; < = > ?

"4x @ A B C D E F G
H I J K L M N O

"5x P Q R S T U V W
X Y Z [\] ^ _

"6x ` a b c d e f g
h i j k l m n o

"7x p q r s t u v w
x y z { | } ~

"8x Ä Å Ç É Ñ Ö Ü á
à â ä ã å ç é è

"9x ê ë

"Ax † ° ¢ £ § • ¶ ß
® © ™ ´ ¨ ≠ Æ Ø

"Bx ∞ ± ≤ ≥ ¥ µ ∂ ∑
∏ π ∫ ª º Ω æ ø

"Cx ¿ ¡ ¬ √ ƒ ≈ ∆ «
» … À Ã Õ Œ œ

"Dx – — “ ” ‘ ’ ÷ ◊
ÿ Ÿ ⁄ ¤ ‹ › fi fl

"Ex ‡ ·

"x8 "x9 "xA "xB "xC "xD "xE "xF

Table 1: Tentative OmegaTimesCommon Glyph Container Table (June 10, 1996).

138 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

ΩTimes and ΩHelvetica Fonts Under Development: Step One

"x0 "x1 "x2 "x3 "x4 "x5 "x6 "x7

"2x ! " # $ % & '
() * + , - . /

"3x 1 2 3 4 5 6 7
8 9 : ; < = > ?

"4x @ A B C D E F G
H I J K L M N O

"5x P Q R S T U V W
X Y Z [\] ^

"6x ` a b c d e f g
h i j k l m n o

"7x p q r s t u v w
x y z { | } ~

"8x Ä Å Ç É Ñ Ö Ü á
à â ä ã å ç é è

"9x ê ë í ì î ï ñ ó
ò ô ö õ ú ù û ü

"Ax † ° ¢ £ § • ¶ ß
® © ™ ´ ¨ ≠ Æ Ø

"Bx ∞ ± ≤ ≥ ¥ µ ∂ ∑
∏ π ∫ ª º Ω æ ø

"Cx ¿ ¡ ¬ √ ƒ ≈ ∆ «
» Ã Õ Œ œ

"Dx – — “ ” ‘ ’ ÷ ◊
ÿ Ÿ ⁄ ¤ ‹ › fi fl

"Ex ‡ · ‚ „ ‰ Â Ê Á
Ë È Í Î Ï Ì Ó Ô

"Fx  Ò Ú Û Ù ı ˆ ˜
¯ ˘ ˙ ˚ ¸ ˝ ˛ ˇ
"x8 "x9 "xA "xB "xC "xD "xE "xF

Table 2: Tentative OmegaTimesLatin Glyph Container Table (June 10, 1996).

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 139

Yannis Haralambous and John Plaice

"x0 "x1 "x2 "x3 "x4 "x5 "x6 "x7

"2x ! " # $ % & '
() * + , - . /

"3x 0 1 2 3 4 5 6 7
8 9 : ; < = > ?

"4x @ A B C D E F G
H I J K L M N O

"5x P Q R S T U V W
X Y Z [\] ^ _

"6x ` a b c d e f g
h i j k l m n o

"7x p q r s t u v w
x y z { | } ~

"8x Ä Å Ç É Ñ Ö Ü á
à â ä ã å ç é è

"9x ê ë í ì î ï ñ ó
ò ô ö õ ú ù û ü

"Ax † ° ¢ £ § • ¶ ß
® © ™ ´ ¨ ≠ Æ Ø

"Bx ∞ ± ≤ ≥ ¥ µ ∂ ∑
∏ π ∫ ª º Ω æ ø

"Cx ¿ ¡ ¬ √ ƒ ≈ ∆ «
» … À Ã Õ Œ œ

"Dx – — “ ” ‘ ’ ÷ ◊
ÿ Ÿ ⁄ ¤ ‹ › fi fl

"Ex ‡ · ‚ „ ‰ Â Ê Á
Ë È Í Î Ï Ì Ó Ô

"Fx  Ò Ú Û Ù ı ˆ ˜

¯
"x8 "x9 "xA "xB "xC "xD "xE "xF

Table 3: Tentative OmegaTimesIPA Glyph Container Table (June 10, 1996).

140 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

ΩTimes and ΩHelvetica Fonts Under Development: Step One

"x0 "x1 "x2 "x3 "x4 "x5 "x6 "x7

"3x 0 1 2 3 4 5 6 7
8 9 ; < = > ?

"4x A B C D E F G
H I J K L M N O

"5x P Q R S T U V W
X Y Z [\] ^ _

"6x a b c d e f g
h i j k l m n o

"7x p q r s t u v w
x y z { | } ~

"8x Ä Å Ç É Ñ Ö Ü á
à â ä ã å ç é è

"9x ê ë í ì î ï ñ ó
ò ô ö õ ú ù û

"Ax † ° ¢ £ § • ¶ ß
® © ™ ´ ¨ ≠

"Bx ∞ ± ≤ ≥ ¥ µ ∂ ∑
∏ π ∫ ª º Ω
"x8 "x9 "xA "xB "xC "xD "xE "xF

Table 4: Tentative OmegaTimesGreek Glyph Container Table (June 10, 1996).

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 141

Yannis Haralambous and John Plaice

"x0 "x1 "x2 "x3 "x4 "x5 "x6 "x7

"2x ! " # $ % & '
() * + , - . /

"3x 0 1 2 3 4 5 6 7
8 9 : ; < = > ?

"4x @ A B C D E F G
H I J K L M N O

"5x P Q R S T U V W
X Y Z [\] ^

"6x ` a b c d e f g
h i j k l m n o

"7x p q r s t u v w
x y z { | } ~

"8x Ä Å Ç É Ñ Ö Ü á
à â ä ã å ç é è

"9x ê ë í ì î ï ñ ó
ò ô ö õ ú ù û ü

"Ax † ° ¢ £ § • ¶ ß
® © ™ ´ ¨ ≠ Æ Ø

"Bx ∞ ± ≤ ≥ ¥ µ ∂ ∑
∏ π ∫ ª º Ω æ ø

"Cx ¿ ¡ ¬ √ ƒ ≈ ∆ «
»

"Dx – — “ ” ‘ ’ ÷ ◊
ÿ

"Ex ‡ · ‚ „ ‰ Â Ê Á
Ë È Í
"x8 "x9 "xA "xB "xC "xD "xE "xF

Table 5: Tentative OmegaTimesCyrillic Glyph Container Table (June 10, 1996).

142 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

ΩTimes and ΩHelvetica Fonts Under Development: Step One

"x0 "x1 "x2 "x3 "x4 "x5 "x6 "x7

"2x ! " # $ % & '

"3x 0 1 2 3 4 5 6 7
8 9 > ?

"4x @ A B C D E F G
H I J K L M N O

"5x P Q R S T U V W
X Y Z [\] ^ _

"6x ` a b c d e f g
h i j k l m n o

"7x p q r s t u v w
x y z { | } ~

"8x Ä Å Ç É Ñ Ö Ü á
à â ä ã å ç é è

"9x ê ë í ì î ï ñ ó
ò ô ö õ ú ù û ü

"Ax † ° ¢ £ § • ¶ ß
® © ™ ´ ¨ ≠ Æ Ø

"Bx ∞ ± ≤ ≥ ¥ µ ∂ ∑
∏ π ∫ ª º Ω æ ø

"Cx ¿ ¡ ¬ √ ƒ ≈ ∆ «
» … À Ã Õ Œ œ

"Dx – — “ ” ‘ ’ ÷ ◊
ÿ Ÿ ⁄ ¤ ‹ › fi fl

"Ex ‡ · ‚ „ ‰ Â Ê Á
Ë È Í Î Ï Ì Ó Ô

"Fx  Ò Ú Û Ù ı ˆ ˜
¯ ˘ ˙ ˚ ¸ ˝ ˛ ˇ
"x8 "x9 "xA "xB "xC "xD "xE "xF

Table 6: Tentative OmegaTimesArabicOne Glyph Container Table (June 10, 1996).

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 143

Yannis Haralambous and John Plaice

"x0 "x1 "x2 "x3 "x4 "x5 "x6 "x7

"2x ! " # $ % & '
() * + , - . /

"3x 0 1 2 3 4 5 6 7
8 9 : ; < = > ?

"4x @ A B C D E F G
H I J K L M N O

"5x P Q R S T U V W
X Y Z [\] ^ _

"6x ` a b c d e f g
h i j k l m n o

"7x p q r s t u v w
x y z { | } ~

"8x Ä Å Ç É Ñ Ö Ü á
à â ä ã å ç é è

"9x ê ë í ì î ï ñ ó
ò ô ö õ ú ù û ü

"Ax † ° ¢ £ § • ¶ ß
® © ™ ´ ¨ ≠ Æ Ø

"Bx ∞ ± ≤ ≥ ¥ µ ∂ ∑
∏ π ∫ ª º Ω æ ø

"Cx ¿ ¡ ¬ √ ƒ ≈ ∆ «
» … À Ã Õ Œ œ

"Dx – — “ ” ‘ ’ ÷ ◊
ÿ Ÿ ⁄ ¤ ‹ › fi fl

"Ex ‡ · ‚ „ ‰ Â Ê Á
Ë È Í Î Ï Ì Ó Ô

"Fx  Ò Ú Û Ù ı ˆ ˜
¯ ˘ ˙ ˚ ¸ ˝ ˛ ˇ
"x8 "x9 "xA "xB "xC "xD "xE "xF

Table 7: Tentative OmegaTimesArabicTwo Glyph Container Table (June 10, 1996).

144 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

ΩTimes and ΩHelvetica Fonts Under Development: Step One

"x0 "x1 "x2 "x3 "x4 "x5 "x6 "x7

"2x ! " # $ % & '
() * +

"8x Ä Å Ç É Ñ Ö Ü á
à â ä ã å ç é è

"9x ê ë í ì î ï ñ ó
ò ô ö õ ú
"x8 "x9 "xA "xB "xC "xD "xE "xF

Table 8: Tentative OmegaTimesArabicThree Glyph Container Table (June 10, 1996).

"x0 "x1 "x2 "x3 "x4 "x5 "x6 "x7

"2x ! " # $ % & '

() * + , - . /

"3x 0 1 2 3 4 5 6 7

8 9 : ; < = > ?

"4x @ A B C D E F G

H I J K L M N O

"5x P Q R S T U V W

X Y Z [\] ^ _

"6x ` a b c d e f g

h i j k l m
"x8 "x9 "xA "xB "xC "xD "xE "xF

Table 9: Tentative OmegaHelveticaTifinagh Glyph Container Table (June 10, 1996).

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 145

Yannis Haralambous and John Plaice

"x0 "x1 "x2 "x3 "x4 "x5 "x6 "x7

"2x ! " # $ % & '

() * + , - . /

"3x 0 1 2 3 4 5 6 7

8 9 : ; < = > ?

"4x @ A B C D E F G

H I J K L M N O

"5x P Q R S T U V W

X Y Z [\] ^ _

"6x ` a b c d e f g

h i j k l m
"x8 "x9 "xA "xB "xC "xD "xE "xF

Table 10: Tentative OmegaTimesTifinagh Glyph Container Table (June 10, 1996).

"x0 "x1 "x2 "x3 "x4 "x5 "x6 "x7

"2x ! " $ % & '
() * + , - .

"3x 0 1 2 3 4 5 6 7
8 9 : < = > ?

"4x @ A B C D E F G
H I J K L M N O

"5x P Q R S T U V W
X Y Z [\

"6x ` a b c d e f g
h i j k l m n o

"7x p q r t v w
x y z { | } ~
"x8 "x9 "xA "xB "xC "xD "xE "xF

Table 11: Tentative OmegaTimesHebrew Glyph Container Table (June 10, 1996).

146 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Extending TEX for Unicode

Richard J. Kinch
6994 Pebble Beach Ct
Lake Worth FL 33467 USA
Telephone (561) 966-8400
FAX (561) 966-0962
kinch@holonet.net

URL: http://styx.ios.com/~kinch

Abstract

TEX began its “childhood” with 7-bit-encoded fonts, and has entered adolescence
with 8-bit encodings such as the Cork standard. Adulthood will require TEX
to embrace 16-bit encoding standards such as Unicode. Omega has debuted as
a well-designed extension of the TEX formatter to accommodate Unicode, but
much new work remains to extend the fonts and DVI translation that make up
the bulk of a complete TEX implementation. Far more than simply doubling the
width of some variables, such an extension implies a massive reorganization of
many components of TEX.
We describe the many areas of development needed to bring TEX fully into

multi-byte encoding. To describe and illustrate these areas, we introduce the
TrueTEX

r© Unicode edition, which implements many of the extensions using
the Windows Graphics Device Interface and TrueType scalable font technology.

Integrating TEX and Unicode

You cannot use TEX for long without discovering
that character encoding is a big, messy issue in every
implementation. The promise of Unicode, a 16-bit
character-encoding standard [15, 14], is to clean up
the mess and simplify the issues.
While Omega [5, 13] has upgraded TEX-to-DVI

translation to handle Unicode [3], the fonts and
DVI-to-device translators are far too entrenched in
narrow encodings to be easily upgraded. This paper
will develop the concepts needed to create Unicode
TEX fonts and DVI translators, and exhibit our
progress in the TrueTEX Unicode edition.
A fully Unicode-capable TEX brings many

substantial benefits:

• TEX will work smoothly with non-TEX fonts.
While TEX already has a degree of access to
8-bit PostScript and TrueType fonts, there are
many limitations that Unicode can eliminate.

• TEX will eliminate the last vestiges of its deep-
seated bias for the English language and US ver-
sions of multilingual platforms like Windows. It
will adapt freely and instantaneously to other
languages, not just in the documents produced,
but in its run-time messages and user interface.
This flexibility is crucial to quality software,

especially to a commercial product in an inter-
national marketplace.
• With access to Unicode fonts, the natural
ability of TEX to process the large character sets
of the Asian continent will be realized. Methods
such as the Han unification will be accessible.

• TEX will install with fewer font and driver files.
Many 8-bit fonts will fit into one 16-bit font,
and in systems like Windows, which treat fonts
as a system-wide resource, fewer fonts are an
advantage. Only one application will be needed
to translate from Unicode DVI to output device.
• TEX documents will convert to other portable
forms (like PDF, OpenDoc, or HTML) and will
work with Windows OLE, without tricks and
without pain.
• Computer Modern and other TEX fonts will be
usable in non-TEX Unicode applications. The
8-bit encoding problems have broken Computer
Modern on every variety of Microsoft Windows.
• When 16-bit encodings overcome the resistance
of the past—and we have every reason to hope
that they will—TEX will play a continuing role
in software of the future, instead of becoming
an antique.

Claiming these promises involves some trouble along
the way, but without 16 bits to use for encoding, we
will never have a solid solution.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 147

Richard J. Kinch

Let us survey in the rest of this paper what is
needed to achieve these various aspects of integrat-
ing TEX and Unicode.

Omega and Unicode

The goal of our work has been to create a Unicode-
capable DVI translator, and to reorganize the TEX
fonts into a Unicode encoding. TEX itself (that
is, the formatter) already has a Unicode successor,
namely Omega.
The chief advance of Omega is that it gener-

alizes the TEX formatter to handle wider encod-
ings. What Omega is less concerned with is the
DVI format (which has always provided for wider
encodings, up to 32 bits), the encoding of the exist-
ing TEX fonts, and the translation of .dvi files for
output devices. In fact, Omega has side-stepped DVI
translation altogether with its extended xdvicopy
translation, whereby Omega operates within the old
environment of 8-bit TEX fonts and the old DVI
translators. Since Unicode rendering is supported
onWindows but not on other popular TEX platforms
(UNIX, DOS, etc.), a devotion to Omega’s porta-
bility requires that Omega use the old fonts and
DVI translators. Lacking any compulsion to extend
the DVI translators for Unicode, the Omega project
has justifiably invested most of its effort into earlier
stages of the typesetting process [4, page 426].
Our Unicode TEX fonts and Unicode DVI

translator, while having a natural connection to
Omega, are capable of connecting TEX82 to Unicode
as well. Through the mechanism of virtual fonts [11],
TEX can access Unicoded fonts while using its old
8-bit encodings itself.

What’s the fuss?

Wishing for 16 bits of Unicode sounds like, hey
presto, we just widen some integer types, double
some constants, and type “make” somewhere very,
very high in a directory tree. The task is far from
this simple for several reasons:
One, TEX and TEXware is full of 256-member

tables which enumerate all code points. These
would have to grow to 65,536 members. While
Haralambous and Plaice want us to agree that
this is “impossible” for practical reasons [6], they
assume that we are not going to re-implement the
8-bit-encoded software for sparse arrays. Applying
sparse-array techniques to manage per-character
data will avoid an impossible increase in execution
time and/or memory, although it will require an
initial extra effort to upgrade the software.

Two, these tables have to be stored in files,
and we need to carefully and deliberately extend
the file formats to handle the extensions. Not only
could we come up with a bad design that limits us
unnecessarily in the future, but all the old TEXware
has to be upgraded, and then we have to port the
upgrades.
Three, we must rationalize the old ad-hoc

character sets into a big union set. Just cataloging
and managing this data is a large task: many
tens of thousands of items, where we used to have
only hundreds before. Some degree of database
management tools must be applied to get the codes
into a form which we can compile into software; it
is not enough to just type in some array initializers
here and there.
Encoding standards are necessarily incomplete

or imprecise in some aspects, and none fit the
TEX enterprise. While many of the Unicode math
symbols were taken from TEX, many of the TEX
characters are missing from Unicode. But Unicode
is about the closest encoding to TEX math that
we can expect from an unspecialized encoding, and
with Unicode we gain a powerful connection to
multilingual character sets.

Extending Computer Modern to Unicode

A “rational” encoding establishes a mapping of char-
acter names to unique integers, and this mapping
does not vary from font to font. The Computer
Modern fonts were not encoded rationally. For
example, code 0x7b is overloaded about 8 different
characters, and character dotlessi appears in differ-
ent codes in different fonts. Given an 8-bit limit
on encoding, this was inevitable. But this makes
for many troubles; moving up to a rational, 16-bit
encoding is a clean solution.
Computer Modern is also “incomplete” in the

sense that if you made a table having on one axis
the list of all the specific styles (Roman, Italic,
typewriter, sans serif, etc.) and on the other axis
all the characters in all the fonts (A–Z, punctuation,
diacritics, math symbols, etc.), the table would have
lots of holes when it came to what METAFONT
source exists. Commercial text fonts have all of
these holes filled, or at least the regions populated
in the table are rectangular. In Computer Modern
the regions are randomly shaped.
Furthermore, the character axis of this (very

large) imaginary table is missing many characters
considered important in non-TEX encodings. For
example, ANSI characters like florin, perthousand,

148 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Extending TEX for Unicode

cent, currency, yen, brokenbar, etc., are not imple-
mented in Computer Modern. Certain of these sym-
bols can be unapologetically composed from exist-
ing Computer Modern symbols: a Roman multiply
or divide would come from the math symbol font,
trademark from the T and M of a smaller optical
size, and so on. But many other characters will
just have to be autographed anew in METAFONT
(at least one related work is in progress [6]).
The job of extending Computer Modern to be a

rational and complete set of fonts first requires that
we reorganize the existing characters into a clean,
16-bit encoding. Then we are in a strong position
to fill in the missing characters.
We not only want to give TEX access to 16-bit-

encoded fonts, we also want the converse: non-TEX
applications to have access to the Computer Modern
fonts in TrueType form. This mandates adherence
to the Unicode standard wherever possible, and
an organized method to manage the non-Unicode
characters in Computer Modern.
Here is a list of the components we consider

essential to a Unicode rationalization of Computer
Modern. In this list we take a different approach
from Haralambous’ Unicode Computer Modern
project [7], which is aimed at producing virtual fonts
which resolve to 8-bit .pk fonts from METAFONT.
Our aim is a set of Unicoded TrueType fonts.

• A METAFONT-to-outline converter, a very diffi-
cult although not impossible task, as illustrated
in MetaFog [9].

• A database system to treat the converted
Computer Modern glyphs as atoms, for input
to a TrueType font-builder.

• A database of character names which covers all
the characters in the TEX fonts and in Unicode.
We call the grand union TEX character set
TeXunion, in the same way that we denote
the Unicode characters as the Unicode char-
acter set. (We will use Small Caps to indi-
cate a formal set.) TeXunion contains 1108
characters by the present inventory. Produc-
ing this database involves some work because
there are no standards for TEX character names
(that is, single-word alphanumeric names such
as are used in PostScript encodings). The stan-
dard Unicode character descriptions are lengthy
phrases instead of single words, making them
unjoinable to the TEX names. For example, the
Unicode standard provides the verbose entry
for the code 0x00ab, “left-pointing double
angle quotation mark”. The PostScript

names1 in common use come from an assort-
ment of sources, and they exhibit inconsisten-
cies, conflicts, and ambiguities which frustrate
computation of set projections and joins.

• A database of TEX encodings, which tells which
characters appear in which TEX fonts. TEX
uses a gumbo of no less than 28 (!) distinct
encodings (Table 1). This number may come
as a surprise, but has been hidden by the web
of METAFONT source files. The sum of all TEX
encodings constitutes a database of 3415 name-
to-code pairs, each name being taken from the
1108 members of TeXunion. We designate
this set of encodings (that is, a set of mappings
of names to integers) as TeXencod.

As if the miasmic fog of encoding conventions
were not confused enough, small-caps fonts
present still more encoding problems. They
represent an axis of variation that is hardly
defined in the usual set of font parameters.
We must consider small-caps characters to be
different from their corresponding parents. If
this is not done, then there is no way to
compose virtual small-caps fonts from their
lowercase counterparts, because we would have
no way of knowing which characters are to
shrink (a jumbled set of letters and accented
letters) and which do not (punctuation and
all the rest). Thus, for each encoding used
anywhere by a small-caps font, we must make
a duplicate small-caps version (altering the
lowercase character names to small-caps names)
of the encoding in the list of all the encodings.
Thus we have a csc2 for roman2, t1csc for t1,
and so on.

To produce these duplicate encodings, we
need a rule to convert lowercase names (both
letters a–z and diacritical letters) to small-caps
lowercase names and back. We have simply
been appending “sc” to the name (this works
because there are no collisions with names that
happen already to end in “sc”). For example, a
small-caps letter “a” is “asc”.

Adobe has been appending “small” to their
names (this often causes character names to
exceed a traditional limit of 15 characters in
length), as in the MacExpert encoding [2]. This
is done in an irregular manner by appending
to the uppercase character names (for example,

1 There is an attempt at standardization in PostScript-
style names from the Association for Font Information
Interchange (AFII), but the standard is proprietary and on
paper only. The names are serial numbers as opposed to
abbreviated descriptions.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 149

Richard J. Kinch

Table 1: TEX Single-Byte Encodings
(TeXencod). Covers all Computer Modern,
AMS math symbol, and Euler fonts. Each item
maps a set of 128 or 256 character names to
integers.

Name Description

csc0 TEX caps and small caps (ligs = 0)
csc1 TEX caps and small caps (ligs = 1)
euex AMS Euler Big Operators
eufb AMS Euler Fraktur Bold†
eufm AMS Euler Fraktur
eur AMS Euler
eus AMS Euler Script
lasy LATEX symbols
lcircle LATEX circles
line LATEX lines
logo METAFONT logo
manfnt TEXbook symbols font
mathex2 TEX math extension
mathit1 TEX math italic (ligs = 1)
mathit2 TEX math italic (ligs = 2)
mathsy1 TEX math symbols (ligs = 1)
mathsy2 TEX math symbols (ligs = 2)
msam AMS symbol set A
msbm AMS symbol set B
roman0 TEX Roman (ligs = 0)
roman1 TEX Roman (ligs = 1)
roman2 TEX Roman (ligs = 2)
t1 LATEX NFSS T1 encoding
t1csc T1 with small caps
texset0 TEX “texset” encoding (ligs = 0)
textit0 TEX text italic (ligs = 0)
textit2 TEX text italic (ligs = 2)
title2 TEX 1-inch capitals (ligs = 2)
†A superset of eufm with two extra chars

the Adobe small-caps for aacute is Aacutes-
mall, while ours is aacutesc); apparently some-
one mistook appearance for semantics. Fur-
thermore, Adobe has a small-caps version of
bare diacritics in their MacExpert encoding, al-
though the diacritical character name is irregu-
larly changed to an initial capital (for example,
Adobe small-caps for acute is Acutesmall).

The LATEX T1 encoding, which was supposed
to have been uniform for all DC fonts, also has
an irrational aspect, in that the T1 encoding is
overloaded when it is applied to both lowercase
and small-caps fonts. Somewhere in the
LATEX macros is buried something tantamount
to another small-caps encoding of T1, which

indicates which codes are letters or diacritics.
Another related limitation of T1 encoding is the
lack of small-caps accents.

A wealth of code positions does not exempt
Unicode from pecksniffian absurdities. The
Unicode committee will not provide encodings
for a small-caps alphabet (small-caps being a
matter of typography and not information con-
tent), although they provide encodings for some
small-caps characters (which appear in older
encoding standards subsumed by Unicode).

• A rationalization of the TEX character sets into
their largest common subsets (Table 2). This
represents the relations between the TEX en-
codings and the character subsets as organized
in Knuth’s METAFONT sources. The first item
in each entry of Table 2 gives the TEX encoding
as given in Table 1, known by the .mf source
file used to generate the font; the remaining
items are the common subsets generated via the
METAFONT source files of the same names.

The relation set forth in Table 2 is not re-
fined for the distinctions regarding the ligature
setting. Certain of Knuth’s encodings appear
overqualified, namely, mathex2, mathit{12},
and mathsy{12} do not vary with the ligs set-
ting, although it is specified in the METAFONT
driver file.2

These decompositions of the various TEX en-
codings may be considered close to the “great-
est common” subsets, although we do not re-
quire a full decomposition here. To be com-
pletely decomposed, the {012}-numbered items
on the right should be further decomposed into
the unnumbered common set and the various
numbered differential sets. The sets on the right
column of Table 2 we will use below as the set
known as TeXpages. We have not yet made
the effort to elaborate the members of each
TeXpages set, which is needed to compute the
remaining work to complete the style axes of
Computer Modern.

• A database giving the mapping of TEX fonts
to their encodings as known above (Table 3).
The table below lists TEX font names and their
encoding name; an N indicates a wildcard for
any optical point size integer, excluding sizes of
the same style already matched earlier in the
table. If a new optical size for a font name is
not in this table, the presumption should be

2 Also, the comments at the top of romsub.mf are in error
about what happens when ligs = 2. Apparently, no one has
tried any other ligs setting!

150 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Extending TEX for Unicode

Table 2: TeXencod Decomposition into
TeXpages. Set romanlsc is romanl with
small-caps semantics; it does not actually appear
in Computer Modern. Braced digits indicate
factored suffixes.

TeXencod Covering TeXpages
Member Members
csc0 accent0 cscspu greeku punct

romand romanp romanu rom-
spu romsub0 romanlsc

csc1 accent12 comlig cscspu greeku
punct romand romanp romanu
romspu romsub1 romanlsc

mathex2 bigdel bigop bigacc
mathit{12} romanu itall greeku greekl

italms olddig romms
mathsy{12} calu symbol
roman0 accent0 greeku punct romand

romanl romanp romanu romspl
romspu romsub0

roman1 accent12 comlig greeku punct
romand romanl romanp ro-
manu romspl romspu romsub1

roman2 accent12 comlig greeku punct
romand romanl romanp ro-
manu romlig romspl romspu

texset punct romand romanl romanp
romanu tset tsetsl

textit0 accent0 greeku itald itall italp
italsp punct romanu romspu
romsub0

textit2 accent12 comlig greeku itald
italig itall italp italsp punct
romanu romspu

msam calu asymbols
msbm calu bsymbols xbbold
. . . (. . . and so on for the rest . . .)

that its encoding ought to be the lowest optical
size in the table of the same name. The wild
card “*” matches any suffix, such as variations
on style or optical size, for names which do not
match higher in the table. We designate the set
{cmb10, . . . , eusm*} as TeXfonts.

• A fuzzy-matching operator which, when join-
ing, selecting, and projecting the above data-
bases, can resolve the redundancy, synonyms,
and ambiguities in the character names and
their composition. Here is an inventory of issues
known to date:

– bar (vertical bar) vs. brokenbar (vertical
broken bar)

Table 3: Mapping of TeXfonts to TeXencod.
N indicates an optical point size; asterisk a suffix
wildcard.

TEX Font Encoding TEX Font Encoding

cmb10 roman2 cmbsy5 mathsy1
cmbsyN mathsy2 cmbxN roman2
cmbxsl10 roman2 cmbxti10 textit2
cmcscN csc1 cmdunh10 roman2
cmexN mathex2 cmff10 roman2
cmfi10 textit2 cmfib8 roman2
cminch title2 cmitt10 textit0
cmmi5 mathit1 cmmiN mathit2
cmmib5 mathit1 cmmibN mathit2
cmmr10 mathit2 cmmb10 mathit2
cmr5 roman1 cmrN roman2
cmslN roman2 cmsltt10 roman0
cmssN roman2 cmssbx10 roman2
cmssdc10 roman2 cmssiN roman2
cmssq8 roman2 cmssqi8 roman2
cmsy5 mathsy1 cmsyN mathsy2
cmtcsc10 csc0 cmtexN texset0
cmtiN textit2 cmttN roman0
cmu10 textit2 cmvtt10 roman2
lasy* lasy lcircle* lcircle
line* line logo* logo
manfnt manfnt msam10 msam
msbm10 msbm dccscN t1csc
dctcscN t1csc dc* t1
euex* euex eufb* eufb
eufm* eufm eurb* eur
eurm* eur eusb* eus
eusm* eus

– macron vs. overscore

– minus vs. hyphen vs. endash vs. sfthyphen
vs. dash

– grave vs. quoteleft in code 0x60

– space (0x40) vs. nbspace (0xa0) vs. visi-
blespace vs. spaceopenbox vs. spaceliteral

– rubout in code 0x7f

– ring vs. degree

– dotaccent vs. periodcentered vs. middot
vs. dotmath; Zdotaccent vs. Zdot, etc.

– quotesingle vs. quoteright

– slash vs. virgule

– star vs. asterisk

– oneoldstyle vs. one, etc.

– diamondmath vs. diamond vs. lozenge

– openbullet vs. degree

– nabla vs. gradient

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 151

Richard J. Kinch

– cwm vs. compoundwordmark (a T1 prob-
lem) vs. zeronobreakspace

– perzero vs. zeroinferior vs. perthousand-
zero para perthousand

– slash vs. suppress vs. polishlslash, as in
Lslash and Lsuppress

– Ng vs. Eng (and ng vs. eng)

– hungarumlaut vs. umlaut, as in Ohun-
garumlaut vs. Oumlaut

– dbar vs. thorn

– tilde vs. asciitilde

– tcaron transmogrifies to tcomma, et al.

– mu vs. mu1 vs. micro, code 0xb5

– Dslash vs. Dmacron, code 0x0110; dslash
vs. dmacron, code 0x0111

– florin (not in Unicode) vs. fscript, code
0x0192

– fraction vs. fraction1 vs. slashmath, code
0x2215

– circleR vs. registered, circlecopyrt vs.
copyright

– arrowboth vs. arrowlongboth

– aleph vs. alef vs. alephmath

– Ifractur (eus, mathsy1, mathsy2) vs. Ifrak-
tur (Unicode) vs. Rfractur (eus, mathsy1,
mathsy2, and Unicode); the spelling
should uniformly be “fraktur”

– smile vs. smileface vs. invsmileface vs.
Unicode 0x263A (unnamed)

– Omega vs. ohm, Omegainv vs. mho

– names not starting with letters: 0script
(0x2134), 2bar (0x01bb)

We represent these items in a text file hav-
ing the following format: Each line of the
file gives character name synonyms, one group
of synonyms per line. Any of the names on
one line are synonyms, and can be freely ex-
changed. For example, the line “visiblespace
spaceliteral”means that the character names
visiblespace and spaceliteral are com-
pletely equivalent names. (The former was used
in the TEX DC fonts [10], while the latter was
the PostScript name used in the Lucida Sans
Unicode TrueType font of Windows NT.)

A special case of “synonym” is the Unicode
fall-back. This is a code number which is
a “synonym” for TeXunion members not in
Unicode, and is our assignment of the Unicode
“private zone” codes for the misfits. For exam-
ple, the line “ff 0xf001 0xfb01” (Microsoft
fonts have an undocumented usage like this)

means that the character ff (which is a lig-
ature not to be found in Unicode) carries a
recommended private-zone code assignment of
0xf001 or 0xfb01. One or more such recom-
mended codes may appear, in order of pref-
erence. In resolving a private-zone conflict,
a font-building program may take the recom-
mended codes in order until a non-conflicting
code is found. Only after the recommended
codes are exhausted should the program make
a random private-zone assignment. Codes may
be given in decimal, octal (leading 0), or hex
(leading 0x) formats. Programs using these
tables take care to distinguish character codes
(which contain only hexadecimal digits if start-
ing with 0x, otherwise only octal digits if start-
ing with a leading zero, otherwise only decimal
digits) from names (anything else, including
names which start with digits). Lucida Sans
Unicode contains some names like “2500” (for
code position 0x2500); if this presents a prob-
lem we might have to prefix a letter to these
names.

A name may appear in more than one
synonym group, although such groups do not
join within the matching algorithm. The first
name in any group is the “canonical” name.
The canonical name is the name which should
be output by programs which compute set
operations on the encoding sets. This helps
to achieve a “filtered” result which does not
contain troublesome synonyms. For example,
if the synonym file contained the lines:

joseph jose yosef josephus 0xfb10

joseph joe joey

the names jose, yosef, and josephus would
have fall-back code 0xfb10, the names joe and
joey would have no fall-back code, and all the
names above would invariably be transformed
to joseph on output.

The TrueTEX filter accessory program,
joincode, performs a relational join on two
font encoding sets, making a new encoding.
It resolves the issues of a given synonym file
according to the rules we have stated.

• A database of non-TEX encodings, which tells
which characters appear in various encoding
standards such as ANSI or Unicode. This list
presently constitutes a database of 3523 entries
from a set of 1814 characters. Some of the
common examples of commercial importance
today are given in Tables 4 and 5. Having these
sets allows us to export virtual fonts for any of

152 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Extending TEX for Unicode

Table 4: Some Non-TEX Encodings.

Name Description

ase Adobe PostScript “Adobe-
StandardEncoding”, the
built-in encoding of many
Type 1 fonts

belleek Belleek [8] scheme for LATEX T1
encoding on 8-bit TrueType

belleekc Belleek with small-caps
latin1 Latin 1 (ISO 8859-1)
latin1ps Adobe PostScript “ISO-

Latin1Encoding” (which is not
ISO Latin-1!)

mac Macintosh
macexp Adobe PostScript “Mac-

Expert” encoding (used by
Acrobat in PDF [2]), containing
ligatures, small caps, fractions,
typesetting niceties

mre3 Adobe PostScript “Macin-
toshRomanEncoding” (used
by Acrobat in PDF), a subset
of “mac”, which omits some
math characters and the Apple
trademark

pdfdoc Adobe PostScript “PDFDo-
cEncoding” (used by Acrobat
in PDF), an ad-hoc encoding
used in PDF outline entries,
text annotations, and Info dic-
tionary strings, consisting of a
remapped set = {ase ∪ mre ∪
wae}

unicode 16-bit Unicode (Windows NT
and 95, AT&T Plan 9)

the encodings represented, so we can virtualize
non-Unicode, non-TEX fonts.

• A TrueType-font-builder that takes the con-
verted outlines from various TEX fonts, orga-
nizes sets of them based on an output encod-
ing, and builds binary TrueType fonts from the
reorganized glyph data.

A sub-tool for the font-builder incorporates
a redundancy-elimination feature that allows
you to specify a table listing which characters
in a given TEX font may be taken from other
TEX fonts without repeating a costly META-
FONT glyph conversion. One example of such a
redundancy is how DC fonts largely replicate
the Computer Modern fonts; it would be a

Table 5: Some Encodings Used in Windows.

Name Description

wae Adobe “WinAnsiEncoding”
(used in Acrobat in PDF),
“winansi” with bullets in
the .notdef positions, some
semantic synonyms

winansi Windows ANSI 8-bit
(US/Western Europe code
page) (Includes certain non-
ANSI characters in 0x80–0x9f
range of codes.)

winansiu Windows ANSI Unicode
(US/Western Europe code
page) (Same characters as
are present in the winansi
encoding, except the non-ANSI
characters are in their Unicode
positions.)

winmultu Windows Multi-Lingual
Unicode (Windows 95/NT)
(655 characters supporting all
Latin alphabets, Greek,
Cyrillic, OEM screen
characters.)

winNNNN Windows (for code pages num-
bered NNNN)

waste of effort to convert the glyphs twice.
Another example is that many font variants are
slanted versions of the upright face, and the
geometric slant is easily applied to an already-
converted glyph rather than slanting in META-
FONT and repeating the glyph conversion. This
technique is also used to compose accents and
letters for “purely” accented characters (where
the accent and letter do not overlap), since
the MetaFog conversion is applied only to
the accent part of such glyphs, allowing the
redundant letter conversion to be done only
once.

Another sub-tool builds these redundancy
tables by comparing the encoding tables for
sets of fonts against a target font. For
example, a DC font combines punctuation
and symbol characters spread across several
Computer Modern fonts.

In our system, we actually produce textual
versions of the binary fonts and convert them
to Type 1 and TrueType formats with separate
tools. This allows a general conversion to be

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 153

Richard J. Kinch

Table 6: DC fonts in LATEX (Rev. 1/95). The
“funny” fonts (Fibonacci Roman, etc.) are
omitted. This list is made by examining names in
*.fd from the LATEX distribution.

Font 5 6 7 8 9 10 12 17
dcb • • • • • • • •
dcbx • • • • • • •
dcbxsl • • • • • • •
dcbxti • • •
dccsc • • •
dcitt • • • • •
dcr • • • • • • • •
dcsl • • • • •
dcsltt • • • •
dcss • • • • •
dcssbx •
dcssdc •
dcssi • • • • •
dctcsc • • •
dcti • • • • • •
dctt • • • •
dcu • • • • • •

optimized for the ultimate binary format. For
example, Type 1 glyphs require knot-pivoting,
following by combing, to insert extrema tangent
points. The hinting methods also differ between
Type 1 and TrueType.

Once a binary version of a font is prepared,
containing all the glyphs, a re-encoding tool
(TrueTEX accessory program ttf_edit [17],
which is a stack-oriented TrueType font encod-
ing editor) must be applied to finish the font
for real-world use. The re-encoding stage not
only re-encodes, but can optionally adjust the
metrics and kerning information. By making
these aspects “afterthoughts” we can fine-tune
fonts without going back into the detailed con-
version process. The re-encoding stage can also
upgrade any 8-bit-encoded TrueType font to an
arbitrary Unicode encoding, which is important
since many commercial font editors can only
output 8-bit TrueType fonts.

• A notion of what TEX fonts we want to convert.
If we consider the DC fonts a good target, we
come up with quite a list (Table 6).

Rationalizing TEX fonts in Unicode sets

Let us consider the shuffling and dealing needed to
reorganize Computer Modern into a Unicode encod-
ing. With the luxury of thousands of code positions,

we can un-do the “scattering” of characters amongst
the TEX fonts. For example, the math italic set
(mathit{12}) contains the regular (not italic) low-
ercase Greek letters. Conversely, we are going to
have to scatter a few TEX fonts that happened to
combine dissimilar styles into one 7-bit font, such as
the math symbol fonts (mathsy{12}) which contain
calligraphic capitals.
In set-theoretic terms, the rationalization task

involves the following steps:

• Begin with the union of all TEX characters, the
set we have called TeXunion. Remember that
this is the set of character names, not the glyphs
themselves.

• Partition this union set into the largest subsets
which do not cross encodings. This partitioning
is a set of proper subsets of TeXunion; we
call this set TeXpages. For example, all
the uppercase letters A–Z make such a subset.
A combination of all upper- and lowercase
letters A–Z and a–z do not, because the
small-caps fonts do not contain the lowercase
letters. These subsets are equivalent to Knuth’s
Computer ModernMETAFONT “program” files,
because this was the highest level of source file
nesting in which he did not make conditional
the generation of characters.

• Encode the TEX character union set for a new,
universal 16-bit encoding. That is, we invent
a mapping of TeXunion members to unique
16-bit integer codes. Most of the members
of TeXunion appear in Unicode and so
have a natural encoding already determined.
For the TeXunion members not in Unicode
(which includes all the small-caps letters), we
shall promulgate (by fiat) assignments to the
Unicode private-zone codes. We designate this
subset of TeXunion asTeXpzone; this subset
finds its concrete representation in the private-
zone codes expressed in the character synonym
table. We have the relation

(Unicode ∪TeXpzone) ⊃ TeXunion,

since Unicode contains many characters not
used in TEX. We can compute a mapping:

TeXunion 7→ (Unicode ∪TeXpzone)

by matching character names from the left
to the names on the right; in this way we
arrive at a Unicode code number for each TEX
character. We designate this mapping (a 16-
bit number for each member of TeXunion)
as TeXeru (“TEX encodings rationalized to
Unicode”, rhymes with “kangaroo”). This

154 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Extending TEX for Unicode

mapping is the key result of rationalizing
Computer Modern into Unicode.

• We can think again of a large table having, on
one axis, the TEX fonts, on the other, the mem-
bers of TeXpages, and bullets wherever Com-
puter Modern implements METAFONT glyphs.
This table will be sparsely and irregularly pop-
ulated. The sparseness reflects the fact that
the TEX fonts cover a wide range of characters,
while the variations in style mostly are typo-
graphic distinctions on alphabets and punctu-
ation; in other words, TEX provides more than
a few symbols sets, in contrast to the simple
ANSI/Symbol set distinction in 8-bit Windows
fonts. The irregularity in this imaginary table
results from the ad-hoc arrangment of TeX-
pages among TeXfonts. The sparseness is
not a deficiency, but we ought to have some goal
in mind for the rational extension of Computer
Modern and the other TEX fonts to populate
areas of this table for the sake of regularity.
Realizing this goal would require drafting of
new METAFONT code and translation to out-
lines. This is similar to how the DC font project
extended Computer Modern to the rational T1
encoding.

• At this stage we are ready to determine a list of
actual Computer Modern Unicode fonts which
will cover TeXfonts. While Haralambous
retained 8-bit PK fonts as the actual fonts for
virtual Unicode fonts [7, 6], we will create a
converse realization, namely Unicode TrueType
fonts as the actual fonts for virtual CM, T1, or
UT1 encodings.
Using the imaginary table just described, we
can take the union of row subsets such that
columns are not overlapped. If we want to
maintain stylistic uniformity within individual
fonts, we merge rows subject to a personal
decision as to which rows “belong together”
in a stylistic sense. On the other hand, if we
want to minimize the number of actual fonts
and don’t mind different styles in a single font,
we can make a “knapsack” optimization to pack
the rows as tightly as possible. (Indeed, if we
discard the Unicode conformity, we could put
all of Computer Modern into a single Unicode
font!) In any case, this collapsing of rows
involves imprecise judgments to arrive at an
optimized reduced set of fonts.
Implicit in this reduction is the factoring of
wildcarded optical sizes that was introduced
in TeXfonts; we call this reduced set of
fonts TeXinUni, which will have a similar

wildcarding to its parent TeXfonts, but fewer
members in parallel with the reduction.

• To produce each real Unicode font (a member
of TeXinUni), we assemble the glyphs and
metrics from TeXfonts and install them via
TeXeru into each code of the mapped-to
TeXinUni member.

• We must finally produce Omega virtual fonts
(that is, .xvp files) which will map 8-bit DVI
codes from the old TEX fonts into TeXeru
codes in TeXinUni members. For this we use
the TrueTEX metric exporter to generate an
.xvp file, and XVPtoXVF to convert this to an
.xvf file; the .xfm file also produced contains
the same information as the METAFONT .tfm
and may be discarded if only TEX82 is to be
used for formatting.

Generating Unicode virtual fonts for

non-TEX fonts

Let us consider a converse task: instead of con-
verting single-byte-encoded Computer Modern fonts
into Unicode fonts, let us assume we have a Unicode
font in TrueType form, and want to make it usable
with TEX or Omega. To use a font TEX (and Omega)
require a .tfm (or .xfm) metric file and a .vf (or
.xvf) virtual font file. The virtual font is neces-
sary only if a remapped encoding or composition is
needed (usually the case).
To generate metric and virtual font files for

Unicode fonts in Windows, TrueTEX provides a
File + Export Metrics item which takes the user
through several steps which illustrate the elements
of such a translation:

• First, the user selects the font from the Win-
dows standard font-selection dialog. For exam-
ple, in Windows, standard fonts include Arial
(a Helvetica clone), Courier, and Times New
Roman (a Times Roman clone), together with
their bold and/or italic variations. Windows
will also install other TrueType fonts or (with
Adobe Type Manager) Type 1 fonts. After the
user selects a font, TrueTEX has a “font han-
dle” with which it can access all the geometric
information needed to calculate global and per-
character metric quantities for the font.

• Second, the user must select names for the
output .xvp file. Font names in Windows are
verbose strings containing several words (such
as, “Times New Roman Regular (TrueType)”),
while TEX insists on a single-word alphabetic
name; therefore TrueTEX selects a TEX-style
name for the font based on the TrueType file

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 155

Richard J. Kinch

name (such as “times”). The metric output in
this case would be a file times.xvp.

• Third, the user must specify the “input” and
“output” encodings for the virtual font. The
input encoding is the encoding of the actual
font, typically ANSI or Unicode. The output
encoding is the virtual encoding which the
user desires to construct for TEX’s point of
view, and is typically a member of TeXencod.
TrueTEX uses encodings in the form of .cod
files (each line contains a hex code field followed
by the character name field) or .afm (Adobe
Font Metric [1]) files4 To select an encoding, the
user selects an item from a list which TrueTEX
presents, each item giving a description of
the encoding (for example, “TEXRoman with
ligs = 2” corresponds to the roman2.cod file).

The user can also browse for encoding files in-
stead of selecting from the canned list. The user
can edit custom encoding files (which are just
text files in afm format), and thereby gains com-
plete flexibility of input versus output encoding
in the virtual fonts, including automatic pro-
duction of composites for missing input charac-
ters. The ttf edit [17] program originates afm
encoding tables from existing TrueType fonts,
allowing maximal compatibility with randomly-
encoded fonts.

• User input is now complete. TrueTEX begins
analysis of the information provided by forming
in-memory encoding tables from the encoding
files (using sparse-array techniques to manage
large, sparse code ranges). TrueTEX sorts and
indexes the tables for fast content-addressibility
by either code or character name, assembles the
global metrics in xvp terms for the font, and
visits each input code in the font to build a table
of per-character metrics and ligatures. xvp file
building may now begin.

• For each output character name, TrueTEX
determines if an exact match exists to an
input name, and thus to an input code.
If there is such an exact match, TrueTEX
emits xvp commands which give the character’s
metrics and which re-map the TEX PUT/SET
commands to the Unicode positions.

• For output characters which have no exact to
input characters, TrueTEX invokes the “com-
position engine.” If the composition engine can

4
.afm files need not contain metrics; they can simply

define an encoding for a dummy font, using only the C, CH,
and N fields of the CharMetrics table. We thus maintain
compatibility with other afm-reading software and avoid
inventing yet another file format.

compose or substitute a glyph for the character,
it emits the xvp commands for the metrics and
other actions. If the composition engine is
“stumped”, TrueTEX emits an xvp comment
to note that the character is unencoded.

Note that virtual fonts can use more than one
input font to produce a virtual output font. This
would allow, for example, a text font, an expert font
(such as might contain ligatures), and a symbol font
(such as might contain math symbols) to contribute
to a single TEX Unicode font. Another use for this
technique would be the assembling of a Unicode
font from the old bit-mapped PK fonts. TrueTEX
supports all of the TEX and Omega-extended virtual
font mechanisms, but does not yet directly support
multiple input fonts for metric export (or bit-
mapped fonts, for that matter), although an expert
user can merge multiple virtual-property-list files to
produce such a virtual font.

Composing missing characters

The Unicode and TeXunion sets are disjoint, but
the virtual font mechanism allows users to create
virtual TeXunion characters missing from a Uni-
code font with various composition or substitution
methods. TrueTEX uses this technique to create
completely populated virtual fonts when the under-
lying TrueType fonts are missing accented charac-
ters or ligatures.
To allow for easy upgrading, the “composition

engine” in TrueTEX uses a user-modifiable script
in a PostScript-like language to control the compo-
sition and substitution process. By changing the
script, the user can add new composition methods or
substitution rules, or adapt the methods to various
typographic conventions. TrueTEX, using its own
mini-PostScript interpreter, interprets this script at
metric-export time, which means that users who
speak PostScript and know a bit of font design
can customize the composer. A good script yields
a much better TEX virtual font, since commercial
fonts are typically missing characters that TEX con-
siders important, and the script can fill in most of
the missing pieces.
When the composition script receives control

from TrueTEX, all the encoding and metric infor-
mation for the font and input and output encodings
are defined as PostScript arrays and dictionaries.
The standard composition script in TrueTEX im-
plements the following techniques:

• Accent-plus-letter composition: if the name
implies that the character is an accented
letter, the script decomposes the name into

156 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Extending TEX for Unicode

Table 7: Composable Accent Characters.

Name Position Example

umlaut top-center ö
acute top-center ó
breve top-center ŏ
caron1 top-center ô
cedilla bottom-center o̧
circumflex top-center ô
comma top-right L’
dieresis top-center ö
dotaccent top-center ȯ
grave top-center ò
hungarumlaut top-center ő
macron top-center ō
ogonek1 bottom-right
period top-center ȯ
ring2 top-center
1For D/d/L/l, changes to comma at top-right.
2Accent is not present in the Computer Modern
fonts used in this portable document.

the letter and accent components, and (when
the letter and accent exist in the input font)
uses the geometric information and typographic
conventions to overlay the accent onto the letter
in a virtual accented character, as shown in
Table 7. Since the composer has detailed
geometric information on the glyph shape,
which is more elaborate than the bounding-box
metrics TEX uses, it can do a careful job of
placing accents.

• Ligature composition from sequence of letters:
A ligature character (not to be confused with
the ligature rules of the exported TEX metrics,
a different topic) such as the T1 character
“SS” will not usually exist in a TrueType font.
Code positions for ligatures are not part of the
Unicode standard,5 so even common ligatures
are often not present. The composition script
forms these by concatenating the component
letters within the bounding box of the TEX
character. This is applied to the ligatures: ff,
fi, fl, ffi, ffl, IJ, ij, SS, Æ, æ, Œ, and œ.

• Remapping of certain names: The synonym
table shows the problems of character names
which are not standardized. An ad-hoc section
of the composition script fixes up any ambi-

5 Unicode does contain ligatures which are phonetic
letters in certain languages, but this does not include
typographic ligatures such as the f-ligatures

guities by recognizing ambiguous names and
making the appropriate substitutions.

• Future extensions: Several more exotic com-
position methods are possible for an upgraded
composition script. A novel idea is an “emer-
gency fall-back” character generator: as a last
resort for a missing character, the script could
have a table of low-resolution renderings for
all of TeXunion, consisting of (for example)
an 8 × 16 dot-matrix or a plotter-style stick
font; virtual font commands would render these
with rules. In this method we could render any
TEX document in a crude but accurate fashion
without any fonts or special’s at all!6

Another idea would use the ability of virtual
fonts to call upon the TEX \special command.
A Bézier curve special could draw and fill
glyphs without the need for operating system
support for fonts. This would not be efficient,
and hinting would be missing on low-resolution
devices, but it would place all the scalable font
information in an XVF file.

Projecting ligature rules into TrueType

fonts

The TrueType fonts in Windows do not supply any
ligature rules such as are contained in Computer
Modern. To export metrics containing the usual
TEX ligature rules, TrueTEX considers the rules
in Table 8 when exporting the global vpl (xvp)
metrics, when the target ligatures exist in the font,
or when the ligatures can be produced by the
composition engine.

Supporting metric export formats

TrueTEX supports both .vpl (TEX Virtual Prop-
erty List) and .xvp (Omega Extended Virtual Prop-
erty List) file formats when exporting font metrics.
This is more than merely a variation in format;
when exporting to .vpl format, the encodings are
truncated to 8 bits, so that the composition process
for missing characters will likely be more intensive.
TEXware programs VPtoVF and XVPtoXVF trans-
late the property list files to their respective .tfm,
.xfm, .vf, and .xvf binary formats for use with
TEX and Omega. TrueTEX launches the appro-
priate translator after the property-list export is
complete.
TrueTEX metric export also supports the older

.pl (TEX Property List) metric file format, and the
companion program PLtoTF, should it be needed

6 This could solve the problem of rendering TEX docu-
ments in HTML browsers.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 157

Richard J. Kinch

Table 8: Ligature Rules Applied to Exported Fonts.

First Second Result Description

Dashes
hyphen hyphen endash -- to endash
endash hyphen emdash endash- to emdash

Shortcuts to national symbols
comma comma quotedblbase ,, to quotedblbase
less less guillemotleft << to left guillemot
greater greater guillemotright >> to right guillemot
exclam quoteleft exclamdown !‘ to exclamdown
question quoteleft questiondown ?‘ to questiondown

F-ligatures
f f ff ff to ff
f i fi fi to fi
f l fl fl to fl
ff i ffi ffi to ffi
ff l ffl ffl to ffl

Paired single quotes to double quotes
quoteleft quoteleft quotedblleft ‘‘ to quotedblleft
quoteright quoteright quotedblright ’’ to quotedblright

for use with older TEX software. In this case the
user can specify only an input font encoding, and the
property list reflects this encoding as applied to the
TrueType font selected, without virtual remapping.
While exporting .xvp files will connect the

TrueTEX previewer to Windows’ Unicode fonts,
the TEX82 formatter requires .tfm metric files, not
Omega .xfm files. If the output font has an 8-bit
encoding, the resulting virtual font is nevertheless
compatible with the original TEX formatter’s 8-bit
character codes, and will not require the Omega
formatter. To create a .tfm file for such a font,
a TrueTEX filter program xvptovpl truncates the
virtual codes in the .xvp file and produces a
truncated .vpl file, and via VPtoVF, a .tfm file
for use with TEX. The .vf file created in this
process is discarded, since it does not properly map
the 8-bit characters to Unicode. The .xfm and
.tfm files produced by this process will contain the
same information; the .xfm format is needed only if
Omega is to be used. TrueTEX uses the .xvf file to
map the 8-bit TEX characters to Unicode positions.

Implementing sparse metric tables

In implementing programs which use metric data,
we must take care to apply sparse-matrix techniques
to avoid enormous memory demands from nearly-
empty font-metric tables. Sixteen-bit encoded fonts
are typically sparsely populated. For example,
the Windows NT text fonts contain about 650

characters each; most codes are in the range 0–
0x2ff, with some symbols in the 0x2000 vicinity
and a few odd characters in the private zone at
0xf001 or 0xfb01. We would expect such a
segmented locality in a typical font.
One technique is to use a segmented table with

binary-search lookup; this is close to the method
used in TrueType fonts. A hash table for the two-
byte keys may be used instead of the binary search.
Segmented tables will require the least storage,
at the expense of a possible hashing performance
problem in the event of degenerate tables. Since
all Unicode-capable operating systems are advanced
enough to support virtual memory, the performance
risk does not justify the memory savings.
TrueTEX uses a 2-level pointer technique:

metrics for a 16-bit code table consist of a table of
256 pointers to metric tables with 256 entries each.
In this way a typical font having perhaps 6 or 7
contiguous code populations has very little wasted
space. The worst-case and best-case performance
are both acceptable. The lookup time is accelerated
by avoiding a null-pointer test by pointing unen-
coded pages to a dummy table of zero-width metrics.
A time-bomb of a problem looms with Omega’s

.xfm format [12], which recklessly ignores any
sparse-array issues. An .xfm file, like the older
.tfm format, keeps an unpacked char info array
which spans the smallest to largest codes (that is,

158 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Extending TEX for Unicode

the interval [bc, ec]). Since the Unicode private-
zone population typically extends through 0xfb00,
practically all fonts will have a char info of about
126 KB, almost all wasted space. This will result in
a typical .xfm file being 130 KB, instead of about
4 KB that a simple sparse-array technique would
provide. It is imperative that we upgrade the .xfm
format and xfm-reading programs to better handle
sparse encodings.7

Summary

Let us review the areas of development needed to
extend all of TEX to Unicode:

• Extending the .tfm file format and its run-
time forms to large, sparsely populated fonts,
without sacrificing backward compatibility and
without exploding file lengths. We have
seen that the .xfm format can represent the
information, although it needs improvement for
sparsely populated fonts.

• Extending Computer Modern and other meta-
fonts to fully populate the appropriate Unicode
positions. A complete Unicode text font re-
quires about 500 symbols. While it is unlikely
that all the styles of Computer Modern will re-
ceive the attention to fill the tables completely,
we can at least insert legible placeholders.

• Creating a formal database of TEX character
names, joinable to the Unicode official names.
Some standard is necessary for any develop-
ment, and there is no reason to favor anyone’s
favorite names. What is crucial is that the
registry be initiated now, so that TEX software
authors have an early start on making inter-
changeable fonts and documents. While TEX
users cannot themselves dictate the standard
Unicode names, we can at least make a stand-
in version for our own use (since none seem to
exist at present), and if an acceptable set of
Unicode names comes along, we can adopt it
later.

• Creating a formal database of all 28 TEX
font encodings and their 31 greatest common
subsets, joinable to Unicode and other encoding
standards. The TrueTEX tables are available
to all for examination and use [16]. Once these
are improved by public usage and scrutiny, they
should be adopted as a formal standard for
TEX.

7 The .vf and .xvf virtual font formats have always
packed sparse per-character information, so they need no such
attention.

• Identifying and assigning non-Unicode TEX
character names to the Unicode private zone,
thereby promoting inter-operability of Unicode
TEX implementations. These should be con-
cretely represented in a synonym table, which
also needs to be published. There are many
potential conflicts, and taking counsel from as
many different users of TEX as possible is the
only way to maximize the compatibility of the
result. The Omega project has already started
to stake out claims on the virgin Unicode real
estate [4, Table 4, page 425] for Ω-Babel. There
are no doubt synonyms and ambiguities outside
our own experience; one can only hope there is
sufficient room for all interested parties.
• Extending DVI translators to accommodate
the extended .tfm, .vf, and .dvi formats,
including sparse-array techniques for efficient
run-time performance. The Omega project has
issued this call to “DVI-ware developers” [4,
page 426, Conclusion], although with surprising
aplomb for the implications. We hereby
respond with our implementation in TrueTEX,
and invite others to build on our experience.
• Promulgating the ongoing TeXeru, the TEX-
in-Unicode mapping, based on a seasoned reg-
istry. An ongoing authority for additions and
corrections will be vital. This authority will be
responsible for registering new TEX character
names and avoiding Unicode conflicts.
• Changing the plain TEX and LaTEX macros to
accommodate the 16-bit encoding extensions,
while maintaining backward compatibility from
a single source. This is a tall order, and one we
have not touched.
• Extending \special handling for 16-bit char-
acter sets. Now we open up the carousing com-
mand of TEX to a whole new vista of revelry,
with the gift of tongues. This is another item
that we shall put off for now.
• Implementing TEX and DVI translation user in-
terfaces in selectable languages. While Omega
processes in Unicode, it talks to the user in the
old 8-bit fashion. Perhaps it is a bit much to
expect a Web2C TEX change file to incorporate
wchar t and other Unicode constructs of the C
programming language. But DVI translators
for Windows NT and other Unicode-capable
platforms should have this designed in from
the start. A properly designed application can
be reimplemented for another language by any
non-programmer who knows the application
and can translate the messages; no program-
ming or recompilation is required.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 159

Richard J. Kinch

• Establishing provisions for orderly extension
of the fonts and character sets, so that new
TEX fonts, characters, and encodings may be
incorporated into later versions. Having made
the effort to retrofit METAFONT output for
an altogether different way of encoding, we
would hope that font designers recognize the
shortcomings of the 7- and 8-bit encodings and
keep the promises of Unicode in mind.

• Rationalizing the TEX fonts into orthogonal
styles and weights (such as cmmb10 and cmmr10,
for example). As TEX users we don’t care about
this, but if Computer Modern is to be accepted
in non-TEX applications, the style axes will
have to be fully varied and populated along the
conventional ranges.

• Providing a means for creating virtual fonts
for non-TEX Unicode fonts in TrueType or
Type 1 format. Although this capability is
available now only in the commercial TrueTEX
Unicode edition, a new TEXware stand-alone
tool could interpret TrueType font files (or
whatever typeface technology is supporting
Unicode rendering) and join the encoding and
other information into an .xvp file.

References

[1] Adobe Systems Incorporated. Portable Doc-
ument Format Reference Manual. Reading,
Mass.: Addison-Wesley, 1993.

[2] Adobe Systems Incorporated. Adobe Font Met-
rics (AFM) File Format Specification, Version
4.1, October 1995. [Published in PDF and
PostScript form at ftp://ftp.adobe.com.]

[3] Fairbairns, Robin. “Omega—Why Bother with
Unicode?” TUGboat 16,3 (1995), pages 325–
328.

[4] Haralambous, Yannis, John Plaice, and Jo-
hannes Braams “Never Again Active Charac-
ters! Ω-Babel.” TUGboat 16,4 (1995), pages
418– 427.

[5] Haralambous, Yannis. “Ω, a TEX Extension
Including Unicode and Featuring Lex-like Fil-
tering Processes.” Proceedings of the Eighth
European TEX Conference, Gdańsk, Poland,
1994, pages 153– 166. [There is an Omega Web
page at http://www.ens.fr/omega. See also
the Omega FTP site [12].]

[6] Haralambous, Yannis, and John Plaice. “Ω +
Virtual METAFONT = Unicode + Typogra-
phy (First Draft).” ftp://nef.ens.fr/pub/
tex/yannis/omega/cernomeg.ps.gz, January
1996.

[7] Haralambous, Yannis. “The Unicode Computer
Modern Project.” [A document link on the
Omega Web page [5].]

[8] Kinch, Richard. “Belleek: TEX Virtual T1-
Encoded Fonts for Windows TrueType.” Avail-
able on the author’s Web site as a LATEX docu-
ment in belleek.zip. [The Belleek software is
an implementation of T1-encoded fonts using
TrueType scaling technology under Microsoft
Windows. Belleek consists of TrueType fonts
which render elements of METAFONT glyphs
in scalable form, plus TEX virtual fonts which
remap and compose T1 characters from these
elements.]

[9] Kinch, Richard. “MetaFog: Converting META-
FONT Shapes to Contours.” TUGboat 16,3
(1995), pages 233– 243.

[10] Knappen, Jörg. “The European Computer
Modern Fonts.” CTAN file: tex-archive/
fonts/dc/mf/dcdoc.tex.

[11] Knuth, Donald. “Virtual Fonts: More Fun for
Grand Wizards.” TUGboat 11,1 (1990), pages
13 – 24.

[12] Plaice, John, and Yannis Haralambous. “Draft
Documentation for the Ω System.” ftp://nef.
ens.fr/pub/tex/yannis/omega/first.tex,
February 1995. [See also the Omega Web page
[5].]

[13] Plaice, John. “Progress in the Ω Project.”
TUGboat 15,3 (1994), pages 320– 324.

[14] The Unicode Consortium, Inc. http://www.
unicode.org. [This site holds files listing codes
and descriptive phrases. There are no sample
character images, and there are no PostScript
names. A monograph gives paper images [15].]

[15] Addison-Wesley Publishing Company. The
Unicode Standard: Worldwide Character En-
coding, Version 1.0, Volumes I and II.

[16] The encodings (consisting at present of 46 en-
coding sets containing over 9000 pairs, repre-
sented in .afm format) herein listed in Tables 1,
4, and 5, are available via the author’s Web site.

[17] The programs ttf_edit and joincode for
DOS, Windows, and Linux are available via the
author’s Web site.

160 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Russian Encoding Plurality Problem and a New Cyrillic Font Set

L.N. Znamenskaya and S.V. Znamenskii
Krasnoyarsk State University, Svobodnyi prospekt 79, 660041 Krasnoyarsk, Russia

znamensk@ipsun.ras.ru

Abstract

To run TEX with cyrillic in network is a problem. Various widespread Cyrillic
coding tables under DOS, UNIX and other OS are incompartible. The ASCII
Russian text imported from a different system usually become completely un-
readable. The new set of fonts, TDS and some other tools give a solution of the
problem for the east-European Cyrillic typsertting users.

TEX has become the one of the best known means of
communication between scientific people. To solve
the problem of plural incompatible Russian TEX
systems, the Russian Foundation for Basic Research
(RFBR) proposed the idea of creation of a standard
non-commercial Russian TEX distribution. There-
fore, half a year ago the new “Russian TEX” project
was begim under RFBR support. An important
feature of the project is to determine the best system
which is able to work in a LAN, with various client
platforms and operating systems.
The new TDS (TEX Directory Structure) stan-

dard gives us the perfect base for a such system. The
problem we find here is specific for the Cyrillic-based
languages. It is the Russian encoding plurality
problem. For example there exists several widely-
used Russian coding tables under UNIX. Even
Microsoftr uses completely different coding tables
for Russian text under DOS and Windowsr on the
same PC. At the same time, in different directo-
ries on CTAN, we can find METAFONT sources for
Cyrillic fonts with the same name cmrz10 but with
different Russian letter“A” character codes.

Fonts

The first thing we have had to do was to select
an available Cyrillic extended standard TEX font
set and fix new names in order to reflect a coding
table in the name of font. As soon as we found
the CyrTUG LH fonts not to be available for non-
commercial RFBR distribution for free, we asked N.
Glonty and A. Samarin for a permission to use their
fonts, as they are the first and the most widely used
TEX fonts in Russia. After a period of a month
and a half, we received the very kind and grateful
permission to use or modify the fonts or their sources
for RFBR distribution and we appreciate very much
such a generous solution. Unfortunately, we could

not wait so long and and at this point in time,
the development of the new Russian extension of
a CM TEX font family was at the kerning stage.
It so happened that we obtained the extra Russian
extension of CM font family.
We tried to realise the following aims in this

new font set:

• to keep the original CM font sources unchange-
able to input by extension sources in order to
provide appropriate Latin text when typeset-
ting using the new fonts;

• to make text and letters more habitual for the
Russian eye, keeping the traditional CM fonts
peculiarity;

• to make letter darkness in text more uniform;

• to make all CM source based fonts, including
concrete available for Russian typesetting;

• to avoid possible low-resolution font-creation
errors causing problems while using automatic
font generation; and

• to lay the foundation for future support of all
Cyrillic-based alphabets of the Russian people.

We used CM macros, fragments of CM codes
and a bit of cmcyr code. The acroLH font family
has been used just for comparison in the first stage.
When the new fonts were almost ready it was

decided to compare their typesetting quality with
the one of the best sources of widely distributed
fonts—the Samarin and Glonty Cyrillic fonts. A
large mathematical paper has been printed at 10
and 12 points on a 600dpi HP LaserJet4 printer,
the same text in two copies printed with different
font sets. There was a blank page in each copy for
experts to write their opinion. The RFBR experts
(physicists and mathematicians) compared the two,
and determined that the both Russian font families
are of the same good quality.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 161

L.N. Znamenskaya and S.V. Znamenskii

What should we do with the new fonts names?
The first idea was to use the fontname scheme. In
this way, we made the name of extended 8-bit font
much too different from the name of corresponding
standard 7-bit CM font. As a result users would
have a problems while adopting new styles and using
the TEX primitive font selection commands. To re-
duce such problems we decided to create a font name
from RF (Russian Font + Russian Foundation); to
use the third char (digit) in the name to point to
the coding table, and to end by using the same char
sequence as that used by the corresponding CM font.
One can see the examples on tables.
The empty boxes in font tables will be filled by

other Cyrillic letters in next version of fonts. It is
impossible to support all Cyrillic-based languages by
the same 8-bit coding table—the number of differ-
ent letters is more than 256. The project is working
on a coding table which would allow typesetting
on more than sixty Cyrillic-based languages with
the use of accents or virtual fonts or \charsubdef.
The list of languages to be supported in such a
way contains all of the Cyrillic-based languages of
Russia.

Russian encoding plurality problem

We need to support the typical situation of an
entire TEX file system residing on a server, with
clients working under different operation systems
using various Russian encodings. The main problem
is to select the appropriate procedure for inputting
TEX files with any encoding.
Our way to solve this problem is to create an

executable which would recognize the Cyrillic coding
of a file in the correct way, and then recode it
automatically to conform to the local coding.
Why not? Anybody who reads Russian can

easily convert the text in the right coding from the
same text in the wrong coding. But as soon as we
try to look more carefully at the problem, we see the
multiple problems.

The coding tables one-to-one correspondence

as a part of problem If a binary file is occasion-
ally to be recoded as Cyrillic, it is useful to have
the capability of recovering an accidently-converted
file. The networking forse problem to be more diffi-
cult: multiple convertions must preserve the original
information. We cannot see a way to solve this
problem without the additional difficulty of creating
a proper conversion algorithm. It is natural to
preserve the ASCII first 128 positions of code table.
In the last 128 positions, we have to put one-to-one

correspondence between each set of coding tables in
a consistent way.
Unfortunately, this is not possible. The set

of symbols in this part of the coding tables differs
very much from one table to other. Therefore we
have to permit the Rchar to change meaning during
conversions. We try to considerably decrease the set
of possible meaning changes. The desirable solution
is to split the set of all possible char meanings of
the 128 equivalence classes such that any conver-
sion can change the symbol meaning only inside its
equivalence class. This is also impossible. Some of
the meanings will necessarily be found in different
classes and the best thing we can do is to use the
less valuable meanings for such a mess. You can see
the summary of a various available information on
Cyrillic coding tables [1]–[8] and our proposals on
the one-to-one table correspondence in a huge table
bellow. In this table the numbers 0, 1, 2, 3, 4, 5
respectively denote ISO8859-5, CP1251, PC866, -8,
MacOS, and PC855.

The problem of other Cyrillic languages There
are more then 60 Cyrillic-based languages and some
of them still have not settled coding tables. Most
of the files contains a lot of the non-text commands.
There is a lot of software which puts a non-ASCII
chars into file and the program has to distinguish,
as far as is possible, the right Cyrillic words from
the combinations of such symbols.
We therefore cannot use only the char set in-

formation of the file to discover the coding table of
document. Another problem we see is that some
coding tables use the same char set. As we need
to get a right solution for a short file, it is also
inadequate just to count the number of each letters
appearing in text. A more precise instrument would
be to count the number of each combinations of two
letters appearing in the document.
This effective approach require more them 128

kilobytes of memory for an intermediate data stor-
age. The natural algorithm to perform a proper
statistical analysis of this data includes multiple
computing of logarithms and is not fast enough–
especially on a PC. How to find a way to get the
acceptable result in a simple and fast way?
The next idea was to select two sets of pos-

sible strings of length 2: the set, A, of frequently-
appearing Cyrillic text bicharacter strings and a set,
U , of commonly unused Cyrillic text bicharacter
strings. The executable counts the numbers NA and
NU of strings from A and U , respectively, appearing
in the file. The number C = NA−NU

NA+NU
will show if this

file looks as Cyrillic text or not. Such a number can

162 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Russian Encoding Plurality Problem and a New Cyrillic Font Set

where the meaning

23 box drawings down single and right double

0145 cyrillic capital letter dje

23 right half block

0145 cyrillic capital letter gje

23 box drawings down single and left double

0145 cyrillic capital letter dze

23 left half block

0145 cyrillic capital letter byelorussian-ukrainian i

3 top half integral

01245 cyrillic capital letter yi

23 box drawings up single and right double

0145 cyrillic capital letter je

23 box drawings up double and right single

0145 cyrillic capital letter lje

23 box drawings up single and left double

0145 cyrillic capital letter nje

23 box drawings up double and left single

0145 cyrillic capital letter tshe

23 bullet operator

0145 cyrillic capital letter kje

23 box drawings vertical single and right double

0145 cyrillic capital letter dzhe

23 box drawings vertical double and right single

0145 cyrillic small letter dje

23 box drawings vertical single and left double

0145 cyrillic small letter gje

23 box drawings vertical double and left single

0145 cyrillic small letter dze

23 box drawings down single and horizontal double

0145 cyrillic small letter byelorussian-ukrainian i

3 bottom half integral

01245 cyrillic small letter yi

23 box drawings down double and horizontal single

0145 cyrillic small letter je

23 box drawings up single and horizontal double

0145 cyrillic small letter lje

23 box drawings up double and horizontal single

0145 cyrillic small letter nje

23 box drawings vertical single and horizontal double

0145 cyrillic small letter tshe

23 box drawings vertical double and horizontal single

0145 cyrillic small letter kje

23 full block *)

0145 cyrillic small letter dzhe

235 box drawings light vertical and right

14 cyrillic capital letter ghe with upturn

235 box drawings light vertical and left

14 cyrillic small letter ghe with upturn

Table 1: the non-russian letters
*) for this coding table

where the meaning

235 box drawings light up and right

14 left single quotation mark

235 box drawings light up and left

14 right single quotation mark

235 box drawings double up and left

14 left double quotation mark

235 box drawings double up and right

14 right double quotation mark

235 box drawings double down and left

14 double low-9 quotation mark

4 pound sign

235 box drawings light down and right

1 single low-9 quotation mark

Table 2: the symbols look more-or-less like
left/right coma quotation

where the meaning

3 greater-than or equal to *)

01245 cyrillic capital letter ukrainian ie

3 division sign *)

01245 cyrillic capital letter short u

3 less-than or equal to *)

01245 cyrillic small letter ukrainian ie

3 almost equal to *)

01245 cyrillic small letter short u

Table 3: pc855/pc866 splittings
*) for this coding table

where the meaning

23 box drawings down double and left single

145 left-pointing double angle quotation mark

23 box drawings down double and right single

145 right-pointing double angle quotation mark

4 less-than or equal to *)

235 box drawings double vertical and left

1 single left-pointing angle quotation mark

4 greater-than or equal to *)

235 box drawings double vertical and right

1 single right-pointing angle quotation mark

Table 4: the symbols look more-or-less
like left/right angle quotation
*) for this coding table

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 163

L.N. Znamenskaya and S.V. Znamenskii

where the meaning

3 superscript two

01245 numero sign

23 middle dot *)

0145 section sign

25 lower half block *)

134 copyright sign

235 box drawings light vertical

14 not sign

235 box drawings light vertical and horizontal

14 registered sign

235 box drawings light down and left

14 plus-minus sign

235 box drawings double horizontal

14 micro sign

235 box drawings double vertical

14 pilcrow sign

235 box drawings light down and horizontal

14 en dash

235 box drawings light up and horizontal

14 em dash

235 box drawings light horizontal

14 dagger

235 box drawings double down and right

14 bullet

235 light shade

14 horizontal ellipsis

235 box drawings double down and horizontal

14 trade mark sign

4 not equal to

235 box drawings double up and horizontal

1 double dagger

4 infinity

235 box drawings double vertical and horizontal

1 not used

4 increment

235 upper half block

1 per mille sign

012345 no-break space

4 division sign *)

235 medium shade

1 broken bar

4 latin small letter f with hook

235 dark shade

1 middle dot *)

4 almost equal to *)

235 black square

1 not used

5 full block *)

1234 degree sign

234 square root

015 soft hyphen

3 lower half block *)

1245 currency sign

Table 5: other symbols
*) for some coding tables

be computed for each known coding table and the
largest value must point to the right coding table. It
seems to be fast, easy and effective because the most
frequently used conjunctions of two characters (less
then 5% of all conjunctions) gives more then 50%
of bicharacter substrings in Russian text and ap-
proximately half of all possible conjunctions which
are practically never used in Russian. The “only”
problem remaining is to select the sets A and U
properly.

How we selected A and U A great help for us was
the unique Gilyarovskii and Grivnin book [9] with
the text samples on most of the languages. We had
to turn the samples into computer files in order to
count biletter appearance numbers. A new problem
then arose: what should we do with non-Russian
letters?
There are no fixed coding tables for most of the

languages. We also do not know about any other
attempts to use a Russian keyboard and special TEX
commands for typesetting of most of the Cyrillic
languages of Russia, Mongolia and Alaska. For each
of the languages which use non-Russian letters, we
have made two files: the first file has char represen-
tation of non-Russian letters mostly according to the
tables above, and the second file has more-or-less
better readable Russian letter sequences following
the slash char (such as /_K for “K as in beak” or
/KC for “K as in desk” or /L^ for � or /C for
�) and maximal usage of the standard TEX accent
control sequences. For the Russian language, we
used three different subject topics and a dictionary
with 51924 words. Each of the other languages was
represented by a single file. We obtained 109 files
for 64 languages.
We cannot be certain other people will use the

same codes or sequences for non-Russian letters.
Therefore, while counting the biletter strings for
each file we assign all letters with unknown codes
to a group, identify all ASCII non-letters and assign
them to another group and assign all Latin letters
unusable by Cyrillic text to a separate group. After,
counting we selected biletter strings which did not
appeared in files. They composed the set U with
695 elements.
The selection of set A was more difficult. After

several attempts to select it we got the following
algorithm. For each couple of letters and each file,
the logarithm of ‘relative frequence’ was computed.
To avoid infinity we had zero frequences changed
to a small non-zero value, as if this biletter string
appears once in a file twice as long. Then we
found the sums over all the files and used them for

164 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Russian Encoding Plurality Problem and a New Cyrillic Font Set

selection. The most frequent 314 couples consist of
only Russian letters and almost each word contains
at least one of such biletter strings. We had to
avoid the effects of possible usage of other TEX
names for non-Russian letters, or other coding tables
which may correlate only to the Russian part of our
coding table. Therefore we used only 306 of these
couples without the biletter strings which our special
notations for non-russian letters could produce.
In this way, the Cyrillic coding recognition al-

gorithm was finished.

Availability

The METAFONT sources of RF font family and
sources of cyrillic coding recognition algorithm will
be available from RFBR TEX server via anonymous
ftp: ftp.tex.math.ru.

Acknowledgements

This work was inspired and supported by Russian
Foundation for Basic Research, grant 96-07-89406.

References

[1] A. Chernov. Registration of a Cyrillic Character
Set. RFC 1489, RELCOM Development Team,
July 1993.

[2] J. Reynolds, J. Postel. Assigned Numbers. RFC
1700, USC/Information Sciences Institute, Oc-
tober 1994.

[3] T.Greenwood, J. H. Jenkins. ISO 8859-5 (1988)
to Unicode. Unicode Inc. January 1995.

[4] M. Siugnard, L. Hoerth. cp1251 WinCyrillic to
Unicode table. Unicode Inc. March 1995.

[5] M. Siugnard, L. Hoerth. cp10007 MacCyrillic to
Unicode table. Unicode Inc. March 1995.

[6] M. Siugnard, L. Hoerth. cp855 DOSCyrillic to
Unicode table. Unicode Inc. March 1995.

[7] M. Siugnard, L. Hoerth. cp866 DOSCyrillicRus-
sian to Unicode table. Unicode Inc. March 1995.

[8] P. Edberg. MacOS Ukrainian [to Unicode]. Uni-
code Inc. April 1995.

[9] R.S. Gil�rovski$i, V.S. Grivnin. Opre-

delitel~ �zykov mira po pis~mennosti.

Izd-e tret~e, ispravlennoe i dopolnennoe.

M.: Nauka, 1964.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 165

Cyrillic TEX files: interplatform portability

Peter A. Ovchenkov
Russia, Moscow 125047, Miusskaya sq. 4, M. V. Keldysh Institute of Applied Mathematics

ptr@ASoft.MSK.SU

Abstract

We consider the problems with regard to Cyrillic encoding while working
with different operatining systems. The proposed solutions can simplify the
administration and support of TEX on different platforms. The related problem
of encoding Cyrillic TEX fonts is also discussed.

Preliminary notes

A number of new Cyrillic encodings have appeared
recently. Maybe that’s all? But no—the process
needs further consideration. Why, indeed, . . . is Bill
Gates better than me? I would like to suggest trying
Cyrillic encoding for TEX fonts. If you don’t like
it, there are almost as many TEX fonts as Cyrillic
encodings. If you multiply these two numbers, you
can see fantastic potential for encodings suggestions.
I would also like to talk about the native Rus-

sian typesetting, not translitaration. The examples
I will use demonstrate only Russian letters; I do not
have enough experience to talk about letters specific
to other Cyrillic alphabets.

Problem

First of all, for historical reasons, many Cyril-
lic encodings were developed for different types of
computers (and different operating systems). To
simplify, I will speak only about computers with
8 bits/byte and with Latin characters encoded as
US-ASCII. For such machines, at least four cyrillic
encodings exist. For computers running DOS, the
most widely used encoding is the so-called alterna-
tive encoding (fig. 1). Its popularity here is because
the pseudographic symbols have the same codes as
those for extended ASCII. For MS Windows, the
original Microsoft encoding “honored Bill Gates”
(fig. 2). On UNIX machines two encodings co-
exist—KOI-8 (fig. 3) and ISO 8859-5 (fig. 4). ISO
8859-5 is the official standard (GOST). Macintoshes
use the ISO 8859-5 standard. That’s enough without
Cyrillic in EBCDIC-like encodings.
Let us consider the following problem: you need

to process TEX files on computers with different
Cyrillic encodings. Don’t worry about your .tex
files: (i) there are enough transcoder programs,
and (ii) there are enough program tools (like text
editors, etc.) that are outside TEX’s control. But

0 1 2 3 4 5 6 7 8 9 a b c d e f
0x
1x
2x ! " # $ % & ' () * + , - . /
3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4x @ A B C D E F G H I J K L M N O
5x P Q R S T U V W X Y Z [\] ^ _
6x ` a b c d e f g h i j k l m n o
7x p q r s t u v w x y z { | } ~

8x À Á Â Ã Ä È Æ Ç È É Ê Ë Ì Í Î Ï
9x Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß
ax à á â ã ä å æ ç è é ê ë ì í î ï
bx
cx
dx
ex ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ
fx ¸ ¹

Figure 1: Cyrillic encoding “alternative” (code
page 866).

0 1 2 3 4 5 6 7 8 9 a b c d e f
0x
1x
2x ! " # $ % & ' () * + , - . /
3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4x @ A B C D E F G H I J K L M N O
5x P Q R S T U V W X Y Z [\] ^ _
6x ` a b c d e f g h i j k l m n o
7x p q r s t u v w x y z { | } ~
8x
9x
ax ¸
bx ¹ º
cx À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï
dx Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß
ex à á â ã ä å æ ç è é ê ë ì í î ï
fx ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

Figure 2: Cyrillic encoding in MS Windows (code
page 1251).

166 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Cyrillic TEX files: interplatform portability

0 1 2 3 4 5 6 7 8 9 a b c d e f
0x
1x
2x ! " # $ % & ' () * + , - . /
3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4x @ A B C D E F G H I J K L M N O
5x P Q R S T U V W X Y Z [\] ^ _
6x ` a b c d e f g h i j k l m n o
7x p q r s t u v w x y z { | } ~
8x
9x
ax ¹
bx ¸
cx þ à á ö ä å ô ã õ è é ê ë ì í î
dx ï ÿ ð ñ ò ó æ â ü û ç ø ý ù ÷ ú
ex Þ Á Â Ö Ä Å Ô Ã Õ È É Ê Ë Ì Í Î
fx Ï ß Ð Ñ Ò Ó Æ Â Ü Û × Ø Ý Ù × Ú

Figure 3: Cyrillic encoding KOI8.

0 1 2 3 4 5 6 7 8 9 a b c d e f
0x
1x
2x ! " # $ % & ' () * + , - . /
3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4x @ A B C D E F G H I J K L M N O
5x P Q R S T U V W X Y Z [\] ^ _
6x ` a b c d e f g h i j k l m n o
7x p q r s t u v w x y z { | } ~
8x
9x
ax ¸
bx À Á Â Ã Ä È Æ Ç È É Ê Ë Ì Í Î Ï
cx Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß
dx à á â ã ä å æ ç è é ê ë ì í î ï
ex ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ
fx º ¹

Figure 4: Cyrillic encoding ISO 8859-5.

what about .dvi files and style files? Oh, this is
the chief problem for the TEX administrator in a
heterogeneous network. He (or she) must:

1. define as letters (catcode 11) Cyrillic letters for
all encodings in usage (during format genera-
tion)

2. transcode styles with Cyrillic styles (this would
preclude sharing LATEX styles via an electronic
network)

3. replace fonts with virtual fonts

The first two operations are simple, but if you forget
to convert a style to a Cyrillic style, for example,
you discover unusual output: and in some cases, the
mistake may be very difficult to locate.
Remapping fonts into virtual fonts is also not

without problems: for example, what do you do with
the kerning between punctuation (codes less than
127) and Cyrillic letters (codes greater than 128)?
The use of 8-bit full fonts leads to incompatibility
of .dvi files prepared on different platforms and
dramatically increases the number of fonts.

Input Flow Transformation

Let us consider a hypothetical 8-bit font: the first
half is Latin symbols (symbols with codes 00h –

79h), punctuation, and digits, etc., and the second
half contains Cyrillic letters. Let define the font
encoding as Ef . For TEX (the binary executable
program) we can define a transformation κ, such

that Ee
κ
−→Ei, where Ee is a character encoding

that TEX “sees” as input flow (i.e., “native” en-
coding of a (soft)hardware system), and Ei—TEX
internal encoding.
If we define Ei ≡ Ef , we can use the same

fonts during editing and previewing on one machine
type, and printing on another one. (This is obvious
for systems with Latin typesettings, but not for
Cyrillic!) We will had that a .dvi file (created on
a PC) can be converted by dvips on SPARCstation
without problems.
In the input flow you can refer directly to a sym-

bol in “internal” encoding (in Ei representation).
This fact allows one to create style files that can be
used on different platforms simultaneously.

Input Flow Transformation in emTEX In
emTEX, Eberhard Mattes suggests a simple way to
set up κ transformation. This is the creation of TEX
Code Page to then include this information in the
precompiled format file.
The transformation is described in the .mtc

file. Below is the beginning of the file for the al-
ternative—experimental (compare figures 1 and 5)
encoding:

%

% alt_abs.mtc

%

^^80 ^^c0

^^81 ^^c1

^^82 ^^c2

^^83 ^^c3

^^84 ^^c4

^^85 ^^c5

^^86 ^^c6

^^87 ^^c7

^^88 ^^c8

^^89 ^^c9

^^8a ^^ca

^^8b ^^cb

^^8c ^^cc

^^8d ^^cd

^^8e ^^ce

^^8f ^^cf

Here, the first column represents the character code
that TEX see as input flow, and second is the one
inside TEX. In the second column you can write
TEX commands instead of character codes.
Next the .mtc file is compiled into the .tcpfile:

C:\EMTEX\DATA> maketcp -c -8 alt_abs.mtc

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 167

Peter A. Ovchenkov

0 1 2 3 4 5 6 7 8 9 a b c d e f
0x � � � � � � � � � 	
 � �
 � �
1x � � � � � � � � � � � � � � � �
2x ! " # $ % & ' () * + , - . /
3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4x @ A B C D E F G H I J K L M N O
5x P Q R S T U V W X Y Z [\] ^ _
6x ` a b c d e f g h i j k l m n o
7x p q r s t u v w x y z { | } ~ �
8x ¸
9x �
ax ¹
bx º ½ ¾ ¿
cx À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï
dx Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß
ex à á â ã ä å æ ç è é ê ë ì í î ï
fx ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

Figure 5: Experimental font encoding (Ei ≡ Ef).

The code table is turned on while the format file is
being created:

C:\EMTEX\LATEX\BASE> latex -i -8 \

-c alt_abs -mt15000 -mp65500 latex.ltx

There are some other options that you can find in
the emTEX documentation.

Input flow transformation in UNIX-like sys-

tems On UNIX-like systems, TEX is traditionally
compiled from WEB sources. In many cases this is
done via CWEB. Here it seems there is no simple way,
as there is for emTEX. One is forced to program;
but for UNIX you always can find a C-compiler (at
least).
While TEX is translated from WEB to C, there

are applied patches from the file ctex.ch. You
can create your own variant of this file with minor
additions.
First we remap the input flow (the example

below illustrates the remapping from ISO 8859-5 en-
coding into the experimental one – see figures 4, 5):

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% [2.23] Allow any character as input.

% (Remapping by ptr)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

@x

for i:=0 to @’37 do xchr[i]:=’ ’;

for i:=@’177 to @’377 do xchr[i]:=’ ’;

@y

for i:=0 to @’37 do xchr[i]:=chr(i);

for i:=@’177 to @’237 do xchr[i]:=chr(i);

for i:=@’240 to @’357 do

xchr[i+16]:=chr(i);

for i:=@’360 to @’377 do

xchr[i-64]:=chr(i);

xchr[@’205]:=chr(@’241);{\Yo}

xchr[@’245]:=chr(@’361);{\yo}

@z

Substitute printable symbols for the non-print-
able ones, (i.e., TEX substitutes on the terminal
display, and xwrites in the .log file:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% [?.??] Modify characters cannot be

% printed -- Ptr.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

@x

@<Character |k| cannot be printed@>=

(k<" ")or(k>"~")

@y

@<Character |k| cannot be printed@>=

(k<" ")or((k>"~")and(k<@’300)

and(k<>@’270)and(k<>@’271))

@z

After that you can build TEX in the normal way.

Fonts Encoding

But there is one small thing: now we have as many
font encodings as machine ones. Now’s the time to
find a uniform Cyrillic font encoding.
The problem connected with letters of national

alphabets in Europe was solved in part with uni-
fication of TEX fonts. The arguments, pro and
contra, connected with the Cork encoding scheme,
you can find in various TUGboats, or in the LATEX
Companion.
There is no more room for Cyrillic in the Cork

encoding. That’s evident. But the experience of dc-
fonts is good (in my opinion). So I think that a good
solution is encoding similar to that in figure 5. The
first half is equivalent to the first half of the Cork
encoding, and Cyrillic is placed in the second half.
Why is there no ISO- or alternative-like encoding
here? This is due to the LATEX2ε requirement for the
difference between codes for upper- and lowercase of
the same letter to be 32, and a sequence of letters
beginning with code 128 or 192. There is no evident
preference for any machine encoding of Cyrillic, but
with an encoding as seen in figure 5 we can avoid
some of the problems with LATEX2ε.

Cyrillic in Style Files

TEX allows direct references on internal TEX encod-
ing (^^hh, hh is a pair of hex digits). This fact can be
used for writing files for the precompiled format or
for styles: such files depend only upon font encoding,
but not upon the Cyrillic encoding on computer.
For precompiled format files we can write defi-

nitions for Russian letters and then use this file on
every computer:

\def\letter#1#2{%

\catcode‘#1=11\catcode‘#2=11%

168 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Cyrillic TEX files: interplatform portability

\uccode‘#1=‘#1\lccode‘#1=‘#2%

\uccode‘#2=‘#1\lccode‘#2=‘#2%

}

\language=\l@russian

\letter{^^c0}{^^e0}%

\letter{^^c1}{^^e1}%

\letter{^^c2}{^^e2}%

\letter{^^c3}{^^e3}%

Or, we can do the same with styles:

\addto\captionsrussian{%

\def\prefacename{%

^^cf^^f0^^e5^^e4^^e0^^f1^^eb^^ee^^e2%

^^e8^^e5}%

\def\refname{%

^^cb^^e8^^f2^^e5^^f0^^e0^^f2^^f3^^f0^^e0}

\def\abstractname{%

^^c0^^ed^^ed^^ee^^f2^^e0^^f6^^e8^^ff}%

\def\bibname{%

^^c1^^e8^^e1^^e8^^eb^^e8^^ee^^e3^^f0%

^^e0^^f4^^e8^^ff}%

\def\chaptername{^^c3^^eb^^e0^^e2^^e0}%

\def\appendixname{%

^^cf^^f0^^e8^^eb^^ee^^e6^^e5^^ed^^e8^^e5}

\def\contentsname{%

^^d1^^ee^^e4^^e5^^f0^^e6^^e0^^ed^^e8^^e5}

\def\listfigurename{%

^^d1^^ef^^e8^^f1^^ee^^ea %

^^f0^^e8^^f1^^f3^^ed^^ea^^ee^^e2}%

\def\listtablename{%

^^d1^^ef^^e8^^f1^^ee^^ea %

^^f2^^e0^^e1^^eb^^e8^^f6}%

\def\indexname{^^c8^^ed^^e4^^e5^^ea^^f1}

\def\figurename{%

^^d0^^e8^^f1^^f3^^ed^^ee^^ea}%

\def\tablename{%

^^d2^^e0^^e1^^eb^^e8^^f6^^e0}%

\def\partname{^^d7^^e0^^f1^^f2^^fc}%

\def\enclname{^^e2^^ea^^eb.}%

\def\ccname{^^e8^^e7}%

\def\headtoname{^^e2}%

\def\pagename{%

^^f1^^f2^^f0^^e0^^ed^^e8^^f6^^e0}%

\def\seename{^^f1^^ec.}%

\def\alsoname{^^f1^^ec.~^^f2^^e6.}%

}

Of course, this is not very readable, but this is
done by a style developer, and only once for every
machine-specific encoding of Cyrillic fonts.
One note: this mechanism cannot be applied

to hyphenation patterns. TEX doesn’t expect
Ei-symbols representation (^^hh) inside command
\patterns.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 169

On-Screen Compile Menu

The Compile menu is activated by pressing the
corresponding key. This menu includes:
1. Compiling for formats: Plain-TEX, AMS-TEX,
LATEX or AMS-LATEX. One can also use various
compilers, for example, 286-compiler and big-
compiler. These menu items are realized by
calls of corresponding batch-files. Automatic
processing can be used to find compile errors;

2. Variants of a view. In particular, one can use
a view with manual input of options;

3. Variants of printing, similar to the view ones.
Various output devices can be used, such as
dot matrix and laser printers;

4. Additional menu items; for example, one can
include a call of Russian spell-checker.

It is easily to add, to modify or to delete menu
items by using standard Multi-Edit tools.

Automatic error handling

Errors identified during compiling are handled in
the following way:
– The cursor is positioned at the location of the
first error found;
– The corresponding error message appears in
the upper line of the window;
– The log-file displayed in the OUTPUT window
points to the corresponding error message,
which shows only the first two lines. If this
is insufficient, then the cursor in the OUTPUT
window can be moved by pressing 〈F11〉 or
〈Alt+Esc〉. In this case the OUTPUT window
will increase up to seven lines. To move the
cursor in the text window, press 〈F11〉 or
〈Alt+Esc〉 again and the OUTPUT window will
decrease up to two lines.

172 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Michael M. Vinogradov

AUser-Friendly Multi-Function TEX Interface Based on Multi-Edit

Michael M. Vinogradov
Institute of Economic Forecasting, Moscow

vin@ecfor.msk.su

Abstract

The aim of this paper is to describe the set of Multi-Edit macros created
for easily processing of TEX files. Note that the standard version of Multi-Edit
has some tools to work with TEX files, but these tools are not very convenient.
Therefore we have created our own set of macros, which allows us to process
the whole file or to compile and view any selected block of text, such as
complicated formulas, for example. Also, there are additional tools for handling
some standard situations.

To find the next compile error, simply press the
〈NxtErr〉 key.

Block Compile

To compile and view a portion of a text (for ex-
ample, a complicated formula), select the fragment
and use a special macro, invoked by pressing the
corresponding combination of keys. Various TEX
formats (Plain-TEX, AMS-TEX, LATEX or AMS-
LATEX) may be used also. The selected block may
contain user-defined TEX macros. These macros
should be placed on the beginning of the file and
the line

%%% End of Leading Block

after them. How many of the signs % is not
important. All definitions found above this line will
be added into the selected block when it is compiled.
If this line is absent, no macros and definitions will
be added. If additional definitions are placed in the
another file and then included via either \input or
\documentstyle, etc., these commands also should
be placed above the percented line just mentioned.
If one needs to omit some commands, then the
corresponding lines should be marked

%%% Skip line

For example, the typical beginning of a LATEX file
may be marked as follows:

\documentstyle[12pt,fleqn,draft]{article}

\newcommand\smbl{{\rm smbl}}

\newcommand\al{alpha}

\input footline.tex %%% Skip line

\begin{document}

%%% End of Leading Block

After the file has been compiled, the logfile contain-
ing the selected block and error messages appears
in the OUTPUT window.

Additional macros

Additional possibilities can be divided into two
types: macros that are useful for all TEX users and
those useful for Russian TEX users only.

For all TEX users.

1. A database can be used to insert some TEX
commands and macros. This database contains
a set of commonly used macros for Plain-
TEX, AMS-TEX and LATEX. Commands may
be inserted on the cursor place or so as to
surround a selected block.

2. Users can locate opening and closing parenthe-
ses or curly brackets, as well as check for any
missing opening or closing brackets.

For Russian TEX users.

1. For those whose English-language skills need
assistance, there is a a special database con-
taining more than five hundreds basic sentences
often used when writing English mathematical
papers. The idea is adapted from Sosinsky.
A part of this book is included in the HELP
system to explain how to use the database.

2. Should the Russian TEX user forget to swich
the keyboard layout, the file can still be pro-
cessed without re-typing the text in the proper
register.

3. Capitalization of a word, line or block can be
changed to either upper- or lowercase. This
macro works independently of the alphabet in
use (Russian or English).

Conclusion

Most of these abilities can also be added to Multi-
Edit for Windows. Thus we offer the TEX user a
friendly multi-function Windows interface.

References

Sosinsky, A. How to Write a Mathematical Paper in
English.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 173

A User-Friendly Multi-Function TEX Interface Based on Multi-Edit

Full Cyrillic: How Many Languages?

Olga G. Lapko
Russia, 129820, Moscow
Pervy Rizhsky per., 2
Mir Publishers
olga@mir.msk.su

A Brief History of Cyrillic

The Slavonic writing was invented by St. Cyrill and
St. Method. Now there are two well-known Slavonic
writings: Glagolitic and Cyrillic.
Historians are not sure whether the author of

both was St. Cyrill or whether Cyrillic script was
created by St. Method while St. Cyrill invented the
Glagolitic alphabet. In any case, in this paper we
will deal about the alphabet nowadays called “Cyril-
lic.”
The birthday of Cyrillic is considered to be the

end of May 863. May 24 was declared by UNESCO
as the day of Cyrillic. By coincidence, the first con-
ference of the Cyrillic TEX Users Group, CyrTUG,
was held May 24–25, 1991.
The Cyrillic alphabet is based on the Greek al-

phabet. There were 43 letters in this alphabet. Up
until the beginning of the 20th century, four addi-
tional letters existed; these are absent in the modern
Russian alphabet: ‘u’, ‘s’, ‘c’, and ‘i’.
Nowadays Cyrillic script is used not only by

Slavonic people, but also by other nations of the for-
mer USSR. Historically, many of these nations used
other scripts. Some Soviet republics such as Mid-
dle Asian republics, Azerbaijan, and the Russian
autonomic republics, used the Arabian script. In
Siberia, the old Mongolian vertical script was used in
the Buryat language, and the Dzayapandin vertical
script was used in the Kalmyk language. Soon af-
ter the October Revolution many languages started
to use the Latin script with additional letters. In
Abkhasia, the Georgian alphabet was used for a few
years. At the end of 20s and 30s, almost all lan-
guages of the USSR changed from using Latin script
to Cyrillic. In many languages new letters were cre-
ated (see fig. 1).
Outside Russia, Cyrillic is used in Bulgaria, Ser-

bia, Macedonia and Mongolia. The Bulgarian lan-
guage now uses only letters of the modern Russian
alphabet, but earlier ‘k’ and ‘c’ were also used. In
Macedonian and Serbian the following additional
letters are used: ‘j’, ‘Y’, ‘Z’, with ‘S’, ‘\’, ‘s’ in
Macedonian only, and ‘_’, ‘[’, ‘R’ in Serbian. The

Mongolian language uses Russian letters with two
additions: ‘é’, ‘¯’.
One may also find Cyrillic letters used in scripts

based on the Latin alphabet. Examples are the Chi-
nese languages: Y, Lahu, Lisu, Myao, Juang, as well
as several African languages.

History of the full Cyrillic font project

The LHFONTS1 package was created as a part of
the CyrTUG-EmTEX package, which is distributed
among Russian and non-Russian users who use
Cyrillic. LHFONTS offers the LH Cyrillic font fam-
ily; these fonts are based on the WNCYR fonts of
the CYRILLIC package—part of AMS-TEX.
The main task of the LHFONTS package was

to create the Cyrillic fonts family, an extension of
standard text fonts of Computer Modern, which also
corresponds to Russian typesetting traditions.
First this package offered two more or less

popular encoding schemes:2 Alternative—an 8-bit
Latin-Russian font encoding analogous to MS-DOS’s
Code Page 866, mainly used by Russian MS-DOS
users; and the Washington or WNCYR—a 7-bit en-
coding for typesetting with transliteration, which is
mainly used by non-Russian users.
The Cyrillic character encodings are described

in special files— lbcoding.mf (Alternate encoding)
and wncoding.mf (WNCYR encoding). One can
choose between these files by changing the value
of one of the following variables: altcoding,
vfcoding or wncoding. These variables also
determine the font layout:

altcoding Standard Computer Modern in the lower
part of table plus Russian letters and ad-
ditional punctuation marks in the upper
one; Alternate encoding: encoding file
lbcoding.mf

1 This package was originally named MAKEFONT, but
was renamed to avoid confusion with the utility of the same
name on the 4AllTEX CD-ROM, produced by the Nederland-
stalige TEX Gebruikersgroep.

2 The package also offered virtual encoding: rather condi-
tional 7-bit encoding which combines Cyrillic and Latin fonts.

174 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Full Cyrillic: How Many Languages?

vfcoding Russian letters and added punctuation
marks in the upper part of table— for the
following combining with Computer Mod-
ern in virtual font; Alternate encoding:
encoding file lbcoding.mf

wncoding Cyrillic letters for Slavonic languages with
necessary input ligatures, standard and
additional punctuation marks in the lower
part of table; WNCYR encoding: encoding
file wncoding.mf

The values of these variables are determined in
driver files (ld??font.mf) by default. The header
of these files (for ex. ldrmfont.mf) contains the
following lines:

if unknown wncoding: wncoding:=0; fi

if unknown vfcoding: vfcoding:=0; fi

...

altcoding:=1-wncoding-vfcoding;

if wncoding<>0: input wncoding;

else: input lbcoding; fi

...

Variables altcoding, vfcoding and wncoding may
be set by hand in the file header or at the start of
the METAFONT run.
The LHFONTS package contains font headers

named lh*.mf and ll*.mf
The files lh*.mf (56 files) are virtually identical

to cm*.mf except for the last line:

generate <driver-file>

that is, the standard Computer Modern driver file
was changed to the analogous file for the LH fonts.
These file headers generate a full 8-bit Latin-Cyrillic
font.
The files ll*.mf (also 56 files) contain only the

following line:

vfcoding=1; input <header-file lh*>;

thus the command vfcoding:=1; sets generation of
Russian letters and punctuation marks only.
Since theWNCYR encoding was an optional en-

coding in this package, the files wn*.mf were not
created, but documentation explains how to create
fonts with theWNCYR encoding using a similar one-
line header file as follows:

wncoding=1; input <header-file lh*>;

The LH Cyrillic font family offers typesetting
in Russian and other languages using the Russian
part of the Cyrillic alphabet—that is Virtual and
Alternate encoding.
TheWNCYR encoding also offers typesetting in

modern Slavonic texts using Cyrillic and 19th cen-
tury Russian text. But there are a lot of languages

which use the Cyrillic alphabet with added letters.
The following sections discuss this problem.

The Global Cyrillic font as the material for
Ω project

Some time ago the multilingual project Ω was
started. One of the authors of Ω, Yannis Haralam-
bous, began to create a full Cyrillic font. He offered
this font to CyrTUG for further work.
The data for this font was taken from the Cyril-

lic part of the Unicode table.3 But this table still
does not cover all Cyrillic letters; some old Cyrillic
letters and national letters are missing. Probably
the full assortment of accented vowels is necessary,
which are not included in Unicode.
The font created during this work had more

than 256 letters and marks. This font assortment
should be further extended and improved. During
the testing of this font, I created shortened variants,
or split it into a few fonts. The two Cyrillic Uni-
code fonts were extended with glyphs for characters
not included in Unicode and created by the methods
described in this paper (see the Appendix).
The methods of partial font creation may use-

fully improve the economy of use of the computer’s
memory. One may create a big 256-letter (Unicode)
font and then use a virtual font to achieve the nec-
essary encoding. Alternatively, one may create the
font immediately in its required encoding.

How TEX helps METAFONT. Creation of
coding and ligature-kerning tables

To create a font, METAFONT needs program descrip-
tions for letters (a lot of them), information about
lettercodes, and kerning and ligature data.
Now there are a few well-known encodings of

Cyrillic. They differ in which characters they hold
and in what order (see the Appendix). So, for every
encoding, a separate file is needed.
Since TEX cannot use a font containing lig-

atures or kerning information relating to external
characters, we cannot use the same table, with all
Cyrillic letters, for every font: we must create a sep-
arate table for each encoding. There are five tables
for the different font shapes of the text fonts of the
Computer Modern family: they are included in the
driver files. We must create the same number of
tables for every encoding.

3 Unicode—International Standard ISO/IEC 10646–1,
first edition, 1993.05.01. Information Technology—Univer-
sal Multiple Octet Coded Character Set (UCS) Part 1: Ar-
chitecture and Basic Multilingual Plane (Table 11, Row 04,
Cyrillic).

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 175

Olga G. Lapko

Furthermore, for each font and each encoding
we must create a header file (the Computer Modern
family has 56 text fonts).
As you can see the number of files will be very

large, and they will often duplicate each other.
The best solution is to create three files which

contain all the information that could potentially
be duplicated. The first one contains a table with
all the Cyrillic glyphs and signs and all supported
encodings. The second one contains data on liga-
ture and kerning for the complete font repertoire.
The third file contains the table of font names and
sizes and the necessary command lines for every font
header file. The data for every font in every encod-
ing would be taken from these files and the neces-
sary header files created. All these files are created
by TEX. TEX also can create the file containing all
uccodes, lccodes and mathcodes for a given font.

Preparing font headers As mentioned above, we
use the parameters of the Computer Modern text
fonts for creating Cyrillic fonts. First, the header
files for the LHFONTS package were copied from
header files of the Computer Modern family, chang-
ing the only line (See the section entitled “History
of the full Cyrillic font project”). To avoid unneces-
sary duplication, we create header files which load
the necessary Computer Modern header file, substi-
tuting the standard driver file with the driver of LH
Cyrillic fonts. This task, for example, was solved in
the Polish fonts package, in there is a special tricky
file fik_mik.mf which substitutes standard drivers
with Polish ones. One of the authors of this file, Bo-
guslav Yackovski, allowed us to use this file in the
LHFONTS package.
Now it is necessary to create header files for font

creation which include one or a few lines only.
The EmTEX package supports a command opera-

tor in its MFJob program, which enables one to write
necessary short commands for the METAFONT run.
By using this, we can avoid creation of a lot of files
with the only line:

input fik_mik_; use_driver;

For font generation on other platforms we must
create these files in any case. For quick gener-
ation of the files I used the file dcstdedt.tex
from DCFONTS. The original file includes the
table with all font names and font sizes. We
modified the file, providing a possibility to add
the line (\mainfontspecific macro), which can
switch on variables vfcoding:=1; or wncoding:=1;
when necessary, and the parameter for a few fonts,
which switch on necessary shape. To specify us-
age of different encodings we must change the font
names, so the first two letters are changed to macro

\fonttwoletters; these two letters are set by the
user according to the necessary encoding at the start
of TEX’s run. A fragment of such a file for font head-
ers is shown below:

% by default full Cyrillic Font (Unicode)

% is generated

\ifx\mainfontspecific\undefined

\def\mainfontspecific{vfcoding:=1;}\fi

\ifx\fonttwoletters\undefined

\edef\fonttwoletters{uc}\fi

\long\def\FontsToBeGenerated{

\tablevalues %

(... 8 9 10 ... 17.28[17]) %

\makefont\fonttwoletters r %

(... 8 9 10 ... 17.28[17])()

...

\makefont\fonttwoletters tt %

(... 8 9 10 ...)(specific:=0;)

}

By default there is creation of a set of file head-
ers and encoding for the global Cyrillic font in Uni-
code (see fig. 1) in this file and the file of encoding
data.

Preparing the encoding file and files of liga-
ture/kerning tables The encoding files are cre-
ated from the file which contains the table of all
Cyrillic glyphs and signs and all well-known (or at
least necessary) encodings.

% by default full Cyrillic Font (Unicode)

% is generated

\ifx\fonttwoletters\undefined

\def\fonttwoletters{uc}\fi

\def\nolettercode{*}

\long\def\CodesToBeGenerated{

\tablevalues (uc lh wn ...)

\makecod CYR_A CYRA (10 80 41[A] ...)

\makecod CYR_BE CYRB (11 81 41[B] ...)

...

\makecod CYR_LJE CYRLJE (09 * 01[LJ] ...)

}

We can see that this table is analogous to the
previous one. Macros, analogous to macros for cre-
ating font headers, were used for creating the encod-
ing files.
Now we must create tables of ligatures and

kerns. In the Computer Modern fonts these tables
are in the font driver files. In the LH fonts the tables
are in separate files. As we said above, we need to
create five tables of ligatures and kernings for text
fonts: 1) for roman and sans serif shape; 2) for italic
shape; 3) for caps and small caps shape, for which
two tables are actually necessary, separately for the

176 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Full Cyrillic: How Many Languages?

uppercase and small saps letters; and 4) for large
fonts like cminch.
The Cyrillic font is very large, but one may see

that almost all Cyrillic letters can be identified in a
few shape groups. We determined 14 groups for up-
percase letters, 14 groups for lowercase letters and
17 groups for italic letters in Cyrillic font. The let-
ters in these groups sometimes repeat the shape (or
contour) of Latin ones, so one may use the Computer
Modern table as a base.
The file of kerning and ligature data retains the

shape grouping of letters, so every new letter will be
added to an appropriate group. At the beginning
of each group we place a “typical” Latin letter as a
comment. When the new letter appears it may be
added into a necessary group:

\writeLig{if wn:}

\writeLig{ ligtable CYR_ZE: "1"=:CYR_ZHE,

"H"=:CYR_ZHE, "h"=:CYR_ZHE;} % "Z"

\writeLig{fi}

\Ligtab %A

\Letter{CYR_A} \Letter{CYR_A_acute}

\Letter{CYR_LIT_YUS}

...

%b

\Letter{CYR_HARD_SIGN}\Letter{CYR_YATZ}

...

%R

\WriteLig{if serifs:}

\Letter{CYR_BIG_YUS}

...

\WriteLig{fi}

%

%O

\Kern{CYR_O}{k#}\Kern{CYR_O_lcomma}{k#}

\Kern{CYR_O_acute}{k#}

...

\Kern{CYR_ABKH_O}{k#}

%

...

\EndLigtab

We may create a font for kern testing by taking
the characteristic examples from these letter groups
(see Appendix).
For creation of the necessary ligature and kern-

ing pair tables, we use data from the encoding file
which was created just before them. Now the liga-
tures are used inWNCYR encoding only without any
changes from the original Washington State Univer-
sity fonts.
In addition to the tables of ligature/kerning,

TEX creates a uccode/lccode/mathcode file and a
file ???cod.tex, which is used by russianb.ldf4.

4 The Russian language-specific file for the Babel system.

How METAFONT generates only necessary let-
ters TEX has thus created files necessary for en-
coding and ligature and kerning pair tables. Now
METAFONT must generate only the necessary glyphs
required for the given encoding.
From the very beginning the LH font family sup-

ported different encodings. Since in different coding
schemes Cyrillic letters occupy different places, in
character descriptions (beginchar command), ex-
plicit character codes have been replaced with their
symbolic names. For example, the description of the
lowercase Cyrillic letter ‘a’ starts with:

cmchar "Lowercase Russian letter a";

beginchar(CYR_a,9.25u#,x_height#,0);

...

In the description of uppercase letters we added
the line: if lower_case: ... fi for redefinition of
a code in the font “Small Caps”:

cmchar "Uppercase Russian letter A";

beginchar(CYR_A,13u#,cap_height#,0);

if lower_case: charcode:=CYR_a; fi

...

In plain METAFONT the definition of the
beginchar command has the following lines:

def beginchar(expr c,w_sharp,h_sharp,d_sharp) =

begingroup

charcode:=if known c: byte c else: 0 fi;

...

enddef;

which means that a letter with an unrecognized
code number is set to position ‘0’.
For the LH fonts, a letter or a sign whose code is

not recognized must be skipped, so the beginchar
command is redefined in the following way:

let plain_beginchar=beginchar;

def beginchar(expr c,w_sharp,h_sharp,d_sharp) =

iff known c: %

plain_beginchar(c,w_sharp,h_sharp,d_sharp);

enddef;

What needs to be done when it is necessary to cre-
ate the Cyrillic font only, but letters and signs of
standard Computer Modern have got code numbers
in beginchar so they are always determined? The
three variables which were mentioned in the section
on the History of the Full Cyrillic Font Project, de-
termined three different encodings. Now they may
switch on the following:

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 177

Olga G. Lapko

altcoding Standard Computer Modern in the lower
part plus Cyrillic letters and added punc-
tuation marks in necessary encoding in the
upper one

vfcoding Cyrillic letters and added punctuation
marks in the upper, lower, or in both parts
of the table— for next combining with
Latin part in virtual font or for full Cyrillic
font creation (for example Unicode)

wncoding this set was not changed—Cyrillic letters
for Slavonic languages with necessary lig-
atures, standard and additional punctua-
tion marks in the lower part of the table;
WNCYR encoding

Now the encoding files, lbcoding.mf or
wncoding.mf switched on by these variables, set
necessary selection of Cyrillic letters and their en-
coding. In fact, the file wncoding.mf for WNCYR
encoding was not changed. The file lbcoding.mf
switches the necessary encoding. When we have the
necessary files, we can create the font.

References

[1] K. M. Musaev, \Alfavity �zykov narodov
SSSR", Moskva, \Nauka", 1965.

[2] R. S. Gil�revski�, V. S. Grivnin, Opre-
delitel~ �zykov mira po pis~mennost�m,
Moskva, \Izdatel~stvo vostoqno� liter-
atury", 1960.

[3] E. I. Ubr�tova, Nekotorye voprosy grafiki
i orfografii pis~mennosti �zykov naro-
dov SSSR, pol~zu�wihs� alfavitami na
russko� osnove, Moskva, 1959.

[4] Moskovska� sinodal~na� tipografi�, Ob-
razcy liter� cerkovnyh�, rossi�skih�, gre-
qeskih�, latinskih�, gruzinskih�, evre�s-
kih�, nemeckih� i proqih�, nahod�wihs� v�
Moskovsko� sinodal~no� tipograf�i, Mos-
kva, 1826.

[5] Obrazcy xriftov, Uzbekska� SSR. Sovet
narodnyh komissarov, �ridiqeskoe izda-
tel~stvo, Tipografi�, Samarkand, 1928.

[6] Tatarski� �zyk i novye informacionnye
tehnologii. Vypusk 2, Izdatel~stvo Kazan-
skogo universiteta. 1995.

[7] �zyki narodov SSSR, 5 t., Moskva, 1966{68.
[8] Andrei B. Khodulev and Irina A. Makhovaya,
“On TEX experience in Mir Publishers”, Pro-
ceedings of the 7th EUROTEX Conference,
Prague, pp. 37–43, 1992.

[9] Olga G. Lapko, “MAKEFONT as part of
CyrTUG-EmTEX package”, Proceedings of the
8th EUROTEX Conference, Gdańsk, Poland,
pp. 110–114, 1994.

[10] Fry Edmund, “Pantographia containing ac-
curate copies of all the known alphabets in
the world together with an English explana-
tion of the regular force or power of each let-
ter, to which are added specimens of all well-
authenticated oral languages; forming a com-
prehensive digest of phonology”, Cooper and
Wilson, London, 1799.

[11] Katzner Kenneth, “The languages of the
world”, London, Henley:

[12] The World’s major languages, ed. by Bernard
Comrie, London, Sydney, 1987. Rout ledge&
KeganPaul, 1977.

[13] Y. Haralambous, J. Plaice, “Typesetting in the
Cyrillic alphabet with Ω—The Basic Ideas”,
August 24, 1994.

[14] DC-Fonts, Beschreibung der Kodebelegung:
TEX 256 Zeichen— internationaler Zeichensetz,
22. März 1992.

A Appendix

Figure 1: Unicode encoding; Cyrillic part

0: � � � � � � � �	
 � � � �
16: � � � � � �� � � � � � � � � �
32: ! " # $ % & '() *+ , -. /
48: 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
64: @ A B C D E F G H I J K L M N O
80: Q R S T U V W X Y Z [\ ^ _
96: ` a b cd e f ghij klm n o
112: p q r s t u v w x y z {| }~ �
128: � � � � � � �
144: � � � � � �� � � � � � � � � �
160: ¡ ¢ £ ¤ ¥¦ § ¨ © ª « ¬ ­ ® ¯
176: ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿
192: ÀÁ Â Ã Ä Ç È Ë Ì
208: Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú ÛÜ Ý Þ ß
224: à á â ã ä å æ ç è é ê ë î ï
240: ð ñ ò ó ô õ ø ù

Since the Latin part is unchanged and uses the TEX
encoding scheme the next examples show only the
Cyrillic part of the font.

178 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Full Cyrillic: How Many Languages?

Figure 2: Cyrillic letters which are not included
in Unicode

0: � �� � � � � � � 	
 � �

16: � � � � � � � � � �� �
32: ! " # $ % & ' () * + , - . /
48: 0 1 2 3 4 5 6 7
64: @ A B C D E F G H I J K L M N O
80: P Q R S T U V W X Y Z [\] ^ _
96: ` a b c d e f gh i j k l m n o
112: p q r s
128: � � � �� � � ������ � � �
144: � �
160: ¡ ¢
176:
192:
208:
224:
240: ó

Figure 3: MS DOS cp866 encoding

128: � � � � � �� � � � � � � � � �
144: ! " # $ % & '() *+ , -. /
160: 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
176:
192:
208:
224: @ A B C D E F G H I J K L M N O
240: � Q � T � W � ^ < > }

Figure 4: Washington encoding

0: �� � � � � � � � 	
 � �
 � �
16: �� � � � � � � � � � � � � � �
32: ! " # $ % & ' () * + , - . /
48: 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
64: @ A B C D E F G H I J K L M N O
80: P Q R S T U VWX Y Z [\] ^ _
96: ` a b c d e f g h i j k l m n o
112: p q r s t u v w x y z {| } ~ �

Figure 5: KOI-8 (Unix platform) encoding

128: < > }
144:
160: Q
176: �
192: N 0 1 F 4 5 D 3 E 8 9 : ; < = >
208: ? O @ A B C 6 2 L K 7 H M I G J
224: . � � & � � $ � % � � � � � � �
240: � / ! " #� � ,+ �(-) ' *

Figure 6: ISO 8859-5 encoding

128: < >
144:
160: � � � � � � � �	
 � � � �
176: � � � � � �� � � � � � � � � �
192: ! " # $ % & '() *+ , -. /
208: 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
224: @ A B C D E F G H I J K L M N O
240: } Q R S T U V W X Y Z [\ ^ _

Figure 7: Apple Macintosh encoding

128: � � � � � �� � � � � � � � � �
144: ! " # $ % & '() *+ , -. /
160: � � � R ­ � S
176: V � � � T � W	 Y
 Z
192: X � < > � [� \ U
208: � ^ � _ } � Q
224: 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
240: @ A B C D E F G H I J K L M N

Figure 8: Windows 1251 encoding

128: � � S 	
 � � �
144: R Y Z \ [_
160: � ^ � � � � < �
176: � V � Q } T > X � U W
192: � � � � � �� � � � � � � � � �
208: ! " # $ % & '() *+ , -. /
224: 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
240: @ A B C D E F G H I J K L M N O

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 179

Olga G. Lapko

Figure 9: Example of national encoding: Tatar
encoding

128: � � � � � �� � � � � � � � � �
144: ! " # $ % & '() *+ , -. /
160: 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
176:
192:
208:
224: @ A B C D E F G H I J K L M N O
240: � Q Ø Ù è é ° ±� � ¢ £ º » < >

180 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

StarTEX—A TEX for Beginners

Dag Langmyhr
Department of Informatics

University of Oslo

Norway

dag@ifi.uio.no

Abstract

This article describes StarTEX, a new TEX format for students writing their first
report and other novice users. Its aim is to provide a simpler and more robust
tool for users with no previous knowledge of TEX and LATEX.

The problem

Students taking courses at our department are re-
quired to write short project reports, and LATEX [2]
has been the preferred tool. Several years experi-
ence has, however, shown us that LATEX is not ideal
for this.
This project report is the first encounter most

students have with LATEX, and they face many prob-
lems:

• The major problem is the error messages. They
are very terse at best, and since they are some-
times produced by LATEX and at other times by
TEX, understanding the messages requires rea-
sonably good knowledge of both systems. Most
students tend to look only at the line numbers
when examining their error logs.

• LATEX is not very robust; trivial syntax errors
can cause a serious burst of confusing error mes-
sages, like when you forget a \\ prior to \hline
in an array environment.

You can also experience undesired effects if
you use the commands incorrectly, for instance
if you write

\abstract{text}

rather than the correct

\begin{abstract}

text

\end{abstract}

This error produces no error message, but will
cause the whole article to be set in a smaller
font.

• LATEX does not hide the primitive commands
of TEX, making it possible for the users to ac-
cess them accidentally. For example, one of our
users defined a macro for her name:

\def \else {Else Hansen}

This error alone produced more then 100 error
messages.

• LATEX uses ten special characters: #, $, %, &,
~, ^, _, {, } and \. Users need to remember
that these characters are special, and they must
learn which commands are necessary to produce
them if they are required in the text. Fewer
special characters would be an advantage.

• The command notation \xxx used in LATEX of-
ten causes problems with the space following
it.

• LATEX has borrowed its error recovery philos-
ophy from plain TEX: the user is expected to
manually correct each detected error to allow
LATEX to proceed. The problem with this ap-
proach is that you will get many confusing error
messages if you do not correct the error prop-
erly.

None of our students use this interactive re-
covery facility; they either restart after having
discovered the first error, or they let the pro-
cessing run to completion without any interac-
tion. An automatic error recovery scheme like
that employed by compilers would be a great
benefit for these users.

• LATEX provides a mixture of structural mark-
up commands as well as visual mark-up. The
advantage is that experienced users can achieve
the visual appearance they desire; the disad-
vantage is that less experienced users—partic-
ularly those who have used other document pro-
cessing tools— spend too much of their time
trying to coerce LATEX into producing exactly
the layout they think is proper.

• LATEX is a large system and running it is not as
fast as for instance plain TEX. For instance, a
21/2 page sample document takes from 2.8 sec-
onds on a Sun SparcStation20 to 8.7 seconds

184 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

StarTEX—A TEX for Beginners

on a Silicon Graphics Indy. Since novice users
tend to process their documents very frequently
to remove errors or test the effect of a feature,
execution times do matter—even in this range.

The requirements

All these problems indicate that LATEX in its present
form is not the tool we want for our students, at
least not for their first report. We want a document
processing program with the following properties:

• It must be based on TEX to achieve the desired
quality in mathematical formulae.

• It should use a different notation for its mark-
up commands; one which caused less confusion
concerning spaces and has fewer special charac-
ters.

• It must hide all the internal TEX commands;
this is the only safe way to avoid students using
them accidentally.

• It must be small and easy to understand, so
that it may easily be adapted to the particular
need of each installations.

• It should contain structural mark-up commands
only, and no visual mark-up.

• It should be robust.

• It should produce better error messages. If pos-
sible, no messages from TEX should ever ap-
pear. If this is impossible, error messages from
TEX should be preceded by a message produced
by the new tool.

• Since most students tend to just disregard all
messages about under- and over-full boxes, it
should try to reduce the number of such mes-
sages.

• It should run in nonstop mode and use auto-
matic error recovery to detect as many genuine
errors as possible.

• It should be as fast as plain TEX.

• The command handling should be insensitive to
uppercase and lowercase. This is not an impor-
tant issue, but case confusion has caused prob-
lems for some.

The solution

Attempting to achieve the goals mentioned above,
StarTEX was designed. The name was chosen to
indicate that it was a Starters’ TEX.
StarTEX is a new format, and is thus a simple

cousin of AMS-TEX [5] and LATEX. It is built on top
of the plain TEX [1] commands.

The notation

At the EuroTEX conference in Arhem in Septem-
ber last year, Philip Taylor [6] proposed a different
notation for (LA)TEX commands:

<xxx> rather than \xxx.

I decided to use this notation in StarTEX as it solves
many of our problems:

• Spaces following the command are no longer a
problem. There is no need for special rules like
“When a space comes after a control word, it is
ignored by TEX.” [1, p. 8].

• Only one special character is needed: <. The
characters #, $, %, &, ~, ^, _, {, } and \ can be
defined to be just ordinary characters.

• The command name may contain almost any
character, not just letters.

• The scheme is easy to implement: all that is re-
quired is to make < an active character, and let
the corresponding command regard everything
up to the following > as a parameter.

• Since all commands are called through this in-
terface, it is easy to make all internal TEX com-
mands invisible.

• It is easy to check whether the user command
is defined, and provide suitable error recovery
if it is not.

• It is easy to \lowercase the user command,
thus making the command handling insensitive
to case.

• This command notation is the same as in HTML
[4] with which many students are familiar.

I could have used any bracketing symbol pair, like
[xxx] or {xxx} or /xxx\, but I chose <xxx> because
it resembles HTML and because < and > are not used
very frequently.

Command parameters A few commands need a
parameter to specify non-printing matter like a file
name or a label. I chose to use square brackets for
this, as in

<ref>[label]

Using a special notation indicates more clearly that
the parameter is not to be typeset.

The command set

The set of available StarTEX commands was chosen
with the following aims in mind:

• There should be sufficient commands for writ-
ing a student report, but otherwise there should
be as few commands as possible.

• There should be no commands for visual mark-
up, only structural specifications.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 185

Dag Langmyhr

• The commands should have a form that makes
them easy to check for errors, and to automat-
ically recover from the errors.

In table 1 are listed most of the StarTEX commands
with their LATEX counterpart.

Paragraph separation It was decided to use <p>
to separate paragraphs, as in HTML. Even though
the blank line used by (LA)TEX is easier to type, it
does cause problems with indentation of the para-
graph following an environment like a list. Using
<p> alleviates this problem.
Another advantage of using the <p> notation

is that it can be employed as line separator (like
\\ in LATEX) in environments where the concept
of paragraph makes little sense, as in the <title>
or <author> environments. This provides a double
benefit: a special command for line breaking is no
longer necessary, and using <p> in a <title> envi-
ronment is now legal.

Font selection A few commands for font selection
are necessary, but my belief is that (for bold
text), <i> (for italic) and <tt> (for typewriter
text) form a sufficient set of commands. The com-
mands may of course be nested to provide for in-
stance italic typewriter text.
Some might argue that these commands are vi-

sual rather than structural, and that the HTML ap-
proach of providing a wider selection of structural
commands like <dfn> for definitions, for em-
phasis, <kbd> for keyboard input and <samp> for lit-
eral characters, is more logical. My own experience
is that there are seldom enough definitions to suit
my needs, so I will for instance use a specification
like when I really want to indicate a re-
served word in a programming language. Providing
a few simple type changing commands is simpler.

PostScript figures Since nearly all figures used in
LATEX documents at our department are PostScript
files, it seems reasonable to specialize the interface
for this. The notation

<psfig>[file name]caption text</psfig>

was chosen as only two keywords were necessary. All
figures are automatically scaled and they float to the
top of the current or following page.

Tables The notation for tables was also chosen to
be as simple as possible, and to ease error detection
and recovery. Only very regular tables are catered
for, but this is the price one has to pay for a simple
notation.
A table is a complex structure, with entries in

columns within rows inside the table, but a notation
was found which will seldom give grouping errors:

Table 2: A small table sample

Index Data

12 199
17 0

<table>caption text

<row>text<col>text<col>. . .
<row>text<col>text<col>. . .

:
</table>

Every <row> starts a new row, and each <col> starts
another column. The text prior to the first row is
regarded as the table caption.
The number of columns is determined automat-

ically. All columns are centered, and a grid of hori-
zontal and vertical rules is always added. For exam-
ple, the code

<table>

A small table sample

<row> Index <col> Data

<row> 12 <col> 199

<row> 17 <col> 0

</table>

will generate the table shown as table 2.

Document styles All documents need some adap-
tion to conform to a particular style. I propose to
let the user decide this by stating

<style>[style file]

The style file is written in plain TEX and contains
the necessary definitions and modifications. Since
the user has no visual mark-up commands at his or
her disposal, all design decisions are made by the
style designer. This makes it easier to have all re-
ports conform to the approved standard.
My hope is that each site using StarTEX will

develop styles of their own. These styles should
be comprehensive, so the user should only have to
specify that one style. For instance, our style ifi-
report defines

• the page size (A4 paper),

• Norwegian format of <today> and <now>,

• Norwegian translations of fixed texts like “Fig-
ure” and “Table”,

• the page headers and footers, and

• various minor typographic details.

Cross references StarTEX uses more or less the
same mechanisms for cross references as LATEX. In-
teresting sections, figures and tables are given a la-
bel using the <label> command, which may then
be referenced using the <ref> command.

186 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

StarTEX—A TEX for Beginners

StarTEX LATEX

Document bounds <body>text</body> \begin{document}text\end{document}

Document style \style[style file] \documentclass{style file}

Document <title>text</title> \title{text}

head <author>text</author> \author{text}

<info>text</info> \date{text}

Font text \textbf{text}

change <i>text</i> \textit{text}

<tt>text</tt> \texttt{text}

Paragraph break <p> 〈blank line〉
Mathematical $formula$ \(formula\)

formula <displaymath>formula</displaymath> \[formula\]

Sectioning <h1>text</h1> \section{text}

<h2>text</h2> \subsection{text}

<h3>text</h3> \subsubsection{text}

<h4>text</h4> \paragraph{text}

Itemized <list> \begin{itemize}

list <item> . . . \item . . .
: :

</list> \end{itemize}

Enumerated <list> \begin{enumerate}

list <numitem> . . . \item . . .
: :

</list> \end{enumerate}

Description <list> \begin{description}

list <textitem>text</textitem> . . . \item[text] . . .
: :

</list> \end{description}

PostScript <psfig>[file name]caption text \begin{figure}

figure </psfig> \caption{caption text}

\begin{center}

\epsfig{file=file name,. . . }
\end{center}

\end{figure}

Table <table>caption text \begin{table}

<row>text<col>text<col>. . . \caption{caption text}

<row>text<col>text<col>. . . \begin{center}

: \begin{tabular}{|c|. . . }\hline
</table> text& text& . . . \\ \hline

text& text& . . . \\ \hline
:

\end{tabular}

\end{center}

\end{table}

Footnote <footnote>text</footnote> \footnote{text}

Unformatted text <code>text</code> \begin{verbatim}text\end{verbatim}

Cross <label>[label] \label{label}

references <ref>[label] \ref{label}, \pageref{label}
Comments <comment>text</comment> %text〈end-of-line〉
User macro <define><name>definition〈end-of-line〉 \newcommand{\name}{definition}

Table 1: StarTEX command overview

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 187

Dag Langmyhr

Symbol StarTEX code

< <lt>

> <gt>

– <-->

— <--->

〈a tie〉 <~>

. . . <...>

〈today’s date〉 <today>

〈the present time〉 <now>

TEX <tex>

LATEX <latex>

StarTEX <startex>

Table 3: The remaining StarTEX commands

The appearance of the reference is defined by
the document style, but will normally contain the
page number if the reference is a different page; there
is thus no need for a \pageref command. (This is
similar to the varioref package [3].

Mathematical formulae One of the most impor-
tant reasons for choosing a typesetting system based
on TEX is its ability to typeset mathematical for-
mulae. All the math mode commands available in
(LA)TEX are implemented in StarTEX, and most of
them use a notation similar to HTML version 3.0.
For example, the formula∫

∞

1

f(x)

1 + x
∂x

is typed as

<displaymath>

<int>₁^{<infinity>}

<frac>f(x)<over>1+x</frac>

<partial>x

</displaymath>

User-defined macros It was decided to allow the
users to define their own commands, but with the
following restrictions:

• The macros may not have parameters.

• No macros may be redefined.

The StarTEX notation

<define><name>definition〈end-of-line〉

was chosen to make error recovery easier. There
is now no chance of a runaway definition, like you
would get in (LA)TEX if you forgot a final }.

Various other commands In table 3 are shown
the few remaining StarTEX commands.

An example In figure 1 is shown an example doc-
ument using some of the StarTEX commands.

Other design decisions

Error recovery As mentioned previously, StarTEX
can employ the <xxx> notation to detect errors and
provide some error recovery. For instance, it keeps
track of both the current and the outer environ-
ments, and which commands should be used to exit
those environments. This means that it can detect
and remedy the following situations:

• A missing terminator </xxx> will be detected
when the outer environment is finished. In this
case, both environments will be exited, and you
would get an error message like

** StarTeX error detected on line 7:

<i> on line 7 terminated by .

An extra </i> has been inserted.

• A superfluous terminator </xxx> will be recog-
nized as such, and ignored, and the user would
be notified with the following error message:

** StarTeX error detected on line 15:

<body> on line 1 terminated by .

The will be ignored.

Paragraph parameters LATEX is a program for
quality typesetting, and this is reflected in the stan-
dard parameters for paragraph breaking. Even para-
graphs that look quite good to an untrained eye may
produce messages about under- or over-full boxes.
When LATEX is unable to find a set of breaks it re-
gards as acceptable, the result may be truly horrible,
with words sticking into the margin, or all excess
space put into the first line. This occurs quite of-
ten in Norwegian which has many long compound
words. An experienced LATEX user will easily detect
the problem word and fix that or rephrase the text,
but novice users seldom understand these messages
and tend to ignore them.
All the messages about over-full and under-full

boxes create another problem for the LATEX novices.
Since many of them use tools (like AUC-TEX [7])
that run LATEX in non-stop mode, they get pages
and pages of serious error messages intertwined with
innocuous warnings, so they tend to just ignore all
the messages as long as the printed result looks ac-
ceptable to them.
StarTEX sets its standard parameters for very

loose typesetting with high values for \tolerance
and \emergencystretch. The reasons for this are:

• If a good set of paragraph breaks exists, TEX
will still choose that.

• Since the users tend to ignore messages about
bad breaks, it is better to have a loosely broken
paragraph than the very bad result you may get
when TEX has to give up.

188 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

StarTEX—A TEX for Beginners

<body>

<title> <startex><--->A <tex> for beginners </title>

<author> Dag Langmyhr<p> Department of Informatics<p>

University of Oslo<p> <tt>dag@ifi.uio.no</tt>

</author>

<info> <today> </info>

<abstract> This document describes <startex>, a special <tex>

format for students writing their first project report.

</abstract>

<h1> The basic philosophy of <Startex> </h1>

<Startex> was designed for novice <tex> users. It employs a

different notation and a different set of commands from <latex>,

and the idea is that this makes it more user-friendly for these

users than plain <tex> or <latex>.

<p>

The notation used in <startex> resembles HTML and some of the

commands are the same, but the philosophy of the two is

different. HTML was designed to display hypertext information

on a computer screen, while <startex> is used to produce a

student report on paper.

</body>

Figure 1: An example StarTEX document

• The results achieved this way are at least as
good as those produced by other typesetting
and text-processing software.

This solution does not solve the problem of obtain-
ing good paragraph breaks, but experience so far
has shown that it goes a long way.

Concluding remarks

StarTEX has been completed and is being introduced
to the students the coming term. It has— in my
opinion – achieved most of the specified goals, but
not all.

• It is quite small, consisting of fewer than one
thousand lines of TEX code plus documentation.
Whether the code is easy to understand is for
others to judge.

• It is moderately robust. Most simple errors are
handled by StarTEX, but grave ones still con-
fuse it.

• It is reasonably fast; the 21/2 page example doc-
ument mentioned at the beginning of this arti-
cle is processed in 0.9 and 1.6 seconds, respec-
tively.

Even though the users are taught a different format
with a different command syntax, I believe StarTEX

will serve as a suitable introduction to LATEX and
document processing, because it provides training
in the concepts of LATEX and structural mark-up.
(An analogy from computer science: The pro-

gramming language C is widely used, and most pro-
grammers should know it. It is, however, a lan-
guage for experts, so a common view is that students
should first learn the concepts of programming in a
different language before being exposed to C.)
The invention of StarTEX is not intended as any

kind of criticism against LATEX, which is still our
main tool for larger documents and for the more
experienced users. The aim of StarTEX is to help
one specific group of users, and provide them with
a gentler introduction into the world of (LA)TEX.
On the other hand, StarTEX can be regarded as

a tribute to TEX which so easily allows one to pro-
duce a different user interface to its powerful mech-
anisms.

Why not use HTML? Some users have asked why
we do not use HTML when the notation is so similar.
There are several reasons for that:

• There is no yet final definition of HTML. There
are several versions available, in addition to the

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 189

Dag Langmyhr

inventions of various software companies. No-
body knows what HTML will look like a few
years from now.

• HTML is growing very complex, with many con-
structs of little interest to the student writing
a report.

• It is difficult to write a robust parser of HTML
in TEX.

Availability If anyone is interested in obtaining a
copy of StarTEX, they can find it available for anony-
mous ftp on ftp.ifi.uio.no in the directory pub/tex/
startex.

References

[1] Knuth, Donald E, The TEXbook, Addison-Wes-
ley, 1991.

[2] Lamport, Leslie, LATEX user’s guide and refer-
ence manual, Addison-Wesley, 1994.

[3] Mittelbach, Frank, “The varioref package”,
Part of the LATEX2ε distribution.

[4] Raggett, Dave, “HyperText markup language
specification version 3.0 draft”, Available at
http://www.w3.org/pub/WWW/MarkUp/html3/.

[5] Spivak, Michael, The joy of TEX, American
Mathematical Society, 1986. The guide to AMS-
TEX.

[6] Taylor, Philip, “TEX: an unsuitable language
for document markup?”, Talk given at the Eu-
roTEX 1995 conference; does not appear in the
proceedings.

[7] Thorup, Kresten Krab, “AUC TEX”, An
Emacs mode for editing (LA)TEX code; available
from http://www.iesd.auc.dk/\symbol{126}
amanda/auctex/.

190 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Do Journals Honor LATEX Submissions?

Gabriel Valiente Feruglio
Technical University of Catalonia

Departament of Software

E-08028 Barcelona, Catalonia, Spain

valiente@lsi.upc.es

URL: http://www-lsi.upc.es/\~valiente/

Introduction

This note addresses the survival of LATEX in the
academic world, and it does it from the perspective
of electronic publishing of LATEX articles in scientific
journals. Such a perspective is necessarily limited,
since survival of LATEX in the academic world will
undoubtely depend on a multitude of factors, often
intertwined, but it is quite interesting in itself since
it will provide further motivation for PhD students,
young scientists, and teaching assistants to adopt
LATEX as an integral solution for their typesetting
needs along their academic lives, from writing a PhD
thesis to typesetting class notes, research articles,
and textbooks.
In fact, the original motivation for writing

down this note was to attract potential LATEX users
among PhD students by showing them still another
benefit of adopting LATEX for their typesetting tasks,
namely that scientific journals accept and encourage
electronic submission of LATEX sources. Such was
also the motivation behind the chapter on electronic
publishing in the author’s recent LATEX textbook
[12].
An extensive research over the Internet was

then conducted in order to find all journals that
accept electronic submission of LATEX articles in
source form. Despite many journals not even men-
tioning the possibility for TEX or LATEX submissions,
the research shows that LATEX use has spread well
beyond the traditional subject areas of computer
science, mathematics and physics.
The section entitled “Dynamics of LATEX sub-

missions” gives an overview of the whole process of
LATEX article submission, processing, and publish-
ing. The results of the research over the Internet
are summarized in in the section entitled “Journals”
and they are discussed in the section entitled “Dis-
cussion”. As a direct consequence of that discussion,
the creation of a Technical Working Group to sup-
port and coordinate publisher’s efforts is proposed in
the section entitled “Conclusions”. The data result-

ing from the research over the Internet is presented
in Appendix A.

Dynamics of LATEX submissions

Submission of articles marked up with LATEX may
have different pros and cons for the people involved,
from author and academic editor to reviewer and
publisher. The whole process of submitting, pro-
cessing and publishing a LATEX journal submission
is briefly reviewed in the following in order to put
some of the issues involved in the right perspective:

1. The author writes a LATEX article.

2. The author submits the article to one of the
journal’s academic editors.

3. The academic editor selects one or more review-
ers and sends them the article.

4. The reviewers judge the article and advise the
academic editor on acceptance.

5. The academic editor decides to accept the
article, with or without changes, or to reject
it.

6. On acceptance, the —probably revised— article
is sent over to the publisher.

7. The publisher processes the article.

8. Although the author can obtain galley proofs
(laser printer output), in some cases the pub-
lisher sends a page proof (phototypesetter out-
put) to the author.

9. The publisher —usually a technical editor or
a copy editor— applies final corrections to the
article.

10. The article is included in a journal issue, either
printed and/or electronic, and the issue is
distributed.

Compared to traditional manuscript submis-
sion and processing, submission of LATEX sources
offers many advantages:

Faster delivery LATEX sources can be sent by elec-
tronic mail or by ftp, a delivery method that
is much faster than regular mail or even courier
mail and much cheaper than the latter. This

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 191

Gabriel Valiente Feruglio

is an interesting issue, since an article is sent
several times, at least three: author to aca-
demic editor, academic editor to each of the
reviewers, and academic editor to publisher.
It must be noticed, however, that editor and
reviewers can still communicate by any means
they choose about the review, including —but
not limited to— further LATEX sources

1, irre-
spective of whether the submission was a LATEX
source.

Reduced proof-reading Since there is no need of
re-keying the submitted article from a paper
copy, there is no real need for the publisher to
send galley proofs to the author. No typing
errors are (supposed to be) introduced in the
article2.

Shorter publication time Bypassing the typeset-
ter and reducing or even eliminating proof-read-
ing, production of page proofs is much faster
and the overall cost of publication is reduced.

Reliability Whenever the publisher makes a LATEX
macro package available, the author can com-
pile the article and obtain a preprint which is al-
most identical to the published article, perhaps
differing only in page numbering and journal
identification. Layout problems can be fixed
by the author even before first submitting the
article, contributing then to a further reduction
in publication time and cost. The dark side
of this issue is a burden on the author, who
gets distracted from the article’s content and
becomes more of a copy editor.

Availability The author has an almost final ver-
sion of the submitted article, which can be
further distributed —usually in the form of a
DVI or PostScript file— by electronic mail, ftp,
the World-Wide Web (WWW), or a preprint
archive [10]. This is indeed a highly contro-
versial issue, since it affects the interests of the
publisher, but as long as authors do not transfer

1 In the case of the Rewriting Techniques and Applica-
tions conferences, for instance, review reports are standard
LATEX document templates which the conference organizers
send to the reviewers, who fill them in and send back to the
organizers, who then send over to the authors, and the whole
process takes place over electronic mail.

2 During the review of the book “On Being a Machine,
Vol. 1: Formal Aspects of Artificial Intelligence,” by A.
Narayanan (Ellis Horwood, 1988) I had found over 300
typographic mistakes which the author attributed to the
publisher’s re-keying of the submission. A. Narayanan moved
then to LATEX and provided Ellis Horwood with camera-ready
copies for the second volume, “On Being a Machine, Vol. 2:
Philosophy of Artificial Intelligence” (Ellis Horwood, 1990).
The review appeared in Artificial Intelligence 12(4):96–97,
1991.

copyright to publishers they are entitled to, say,
put their articles in their WWW home pages.
Some kind of balance will surely have to be
found between author’s interest in having their
work as broadly disseminated as possible and
publisher’s economic interest which makes such
a dissemination possible3.

There are, however, some disadvantages to the
submission and processing of LATEX sources:

Processing burden Processing the LATEX submis-
sion by academic editor and reviewers can be
much of a burden on them. They need to assure
that they get the complete submission, which
often consists of several LATEX source files and
a set of EPS illustrations. The submission may
fail to compile due to missing parts, required
LATEX macro packages not available at their
installation, errors in included EPS figures, etc.
It should not be overseen that most academic
editors and almost all reviewers are not paid for
their services.

Investment in learning Publishing staff and type-
setters need to invest in learning TEX —which
shows a steep learning curve— and in setting
up and maintaining a whole TEX system, in-
cluding high-resolution output devices and their
drivers, integration of text and images, etc.

Some of these issues may explain why many
journals accept and process LATEX submissions but
in most cases the academic editors prefer paper
submissions; see Discussion below.

Journals

Finding out those journals that accept electronic
submission of articles marked up with LATEX would
have not been possible if publishers did not offer
journal information on the Internet. As a matter of
fact, most publishers already maintain home pages
for their journals on the World-Wide Web, and in
many cases these pages offer extensive information
for authors.
The following list gives the number of journals

found within each scientific field that accept LATEX

3 A first step in this direction has been taken recently
by Elsevier Science for the Electronic Notes in Theoretical
Computer Science series of Conference Proceedings, whereby
authors are forbidden to make their contributions available
by anonymous ftp or ever the WWW but are allowed instead
to include links from their WWW pages to Elsevier Science’s
own WWW pages, where full access to articles is only
granted to people accessing from an institution which holds
a subscription to the Theoretical Computer Science journal.

192 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Do Journals Honor LATEX Submissions?

submissions, according to the Science and Engineer-
ing Field Classification made by the National Sci-
ence Foundation. The classification scheme is avail-
able at http://www.qrc.com/nsf/srs/rdexp/.

• Computer Sciences . 97

• Mathematical Sciences . 89

• Engineering . 77

• Physical Sciences .61

• Life Sciences . 51

• Environmental Sciences 18

• Social Sciences . 18

• Other Sciences (Multidisciplinary) 7

Total . 418

As can be seen from the previous list, adoption
of LATEX in scientific publishing has spread well
beyond the traditional subject areas of computer
science, mathematics and physics. Notice, however,
that for each journal accepting submissions of arti-
cles marked up with LATEX there may be up to ten
journals in the same field which do not accept LATEX
submissions.

Discussion

Some of the issues behind the situation described in
the section entitled “Journals” are depicted in the
following in the form of short provocative statements,
which are not meant to be definitive assertions but
to rather spark further debate within the TEX com-
munity about the future of LATEX in the academic
world.

Publishers regret to accept LATEX submis-

sions because it doesn’t pay off Let alone pub-
lishers who have never heard about LATEX, even for
those who care about LATEX keeping up with LATEX
developments may represent too big an overhead.
Take for instance Springer Verlag, who has even
replaced its well-known llncsmacro package by the
LATEX 2.09 formats (NFSS version 1) CLMono01 and
CLMult01.
As a matter of fact, the proof is that almost two

years after the first release of LATEX2ε, relatively few
scientific publishers have updated their LATEX macro
packages to LATEX2ε.
Moreover, many publishers argue that setting

up a TEX system, keeping it up-to-date, and polish-
ing LATEX submissions to match their house styles is
usually more expensive and time-consuming than re-
keying the submitted articles from author-supplied
hard copies.

Publishers do not get articles marked up with

LATEX for publication One of the reasons why

most publishers in the fields of environmental, life,
and social sciences do not honor LATEX submissions
is that they rarely get articles marked up with LATEX
for publication. As a matter of fact, authors seem
to be the driving force behind the adoption of LATEX
by scientific publishers.

Publishers force authors to submit standard

LATEX articles Publishers complain that it is
almost impossible to have authors submit articles
marked up with standard LATEX, that is, without
author-defined macros, while authors complain that
publishers limit their creativity by forcing them to
comply with some LATEX macro package [7]. Maybe
both sides are right in their complaints, but the
truth is that publishers have a good deal of work
at polishing LATEX submissions and resolving macro
name clashes, while it is both unreasonable and
contrary to LATEX’s philosophy to forbid authors
defining new macros in their articles.
A solution to both sides of the problem can

be foreseen in the form of either an extension to
the LATEX kernel, a macro package or some kind
of utility program, which would expand all author-
defined macros and output a standard LATEX article
source. The question is, what exactly is a standard
LATEX article source?

Journals honor LATEX submissions but aca-

demic editors do not Although many publish-
ers have all the hardware, software and know-how
needed to process LATEX submissions, however, aca-
demic editors for each of the journals they publish
always have the last word.
Take, for instance, some of the major scientific

publishers which are moving into electronic publi-
cation [11]. Elsevier Science accepts, in principle,
LATEX submissions for all of its 1100 journals but
academic editors for only 7 of them are willing to
accept LATEX submissions.
A similar pattern is repeated for other pub-

lishers. Academic editors at Springer Verlag only
accept LATEX submissions for 8 of its 350 journals,
at John Wiley & Sons only 9 out of 326 journals do,
at Blackwell Science only one out of 200 journals
does, and at Academic Press only two out of 175
journals accept LATEX submissions.
The question is, why do most academic editors

desencourage submission of articles marked up with
LATEX, even though publishers provide them with
running TEX systems and house styles already en-
coded in LATEX macro packages?

Journals may no longer honor LATEX submis-

sions as they move electronic Electronic jour-
nals, as well as preprint databases [10], accept any

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 193

Gabriel Valiente Feruglio

ASCII submission but in most cases prefer TEX or
LATEX, at least in the fields of engineering and com-
puter, mathematical, and physical sciences. When
it comes to environmental, life, and social sciences,
however, it is much more common to find journals
which only accept either RTF or HTML submissions.
LATEX to HTML conversion may be seen as a

practical solution. LaTeX2HTML [3] even allows the
inclusion of hypertext links in articles. In practice,
however, it may sacrifice typographical quality, since
all mathematical formulas, figures and tables are
converted to GIF (Graphics Interchange Format)
images or PostScript pictures, which in most cases
have a low resolution and cannot be zoomed in and
out without distorting the image.
In addition, LaTeX2HTML fragments a well-

structured LATEX document into too many little files.
Although the degree of splitting can be controlled by
a parameter, it is set to a high value by default and,
in practice, this turns reading the document with an
HTML browser into a kind of...
As HTML develops into HTML3, with some

degree of support for mathematics and tables, it
is possible that HTML takes over as the preferred
format for submission to electronic journals in the
fields of engineering and computer, mathematical,
and physical sciences as well.
Conversion of TEX and LATEX into SGML [8, 1]

may help to avoid HTML ever displacing LATEX as
one of the preferred formats for submitting articles
to scientific journals, since the scientific publishing
industry seems to be moving definitely towards
SGML.

Conclusion

An author may have to deal with many publishers,
and therefore may need to comply with different
TEX macro packages and instructions to authors.
Adoption of LATEX by an author may prove to
be, in that sense, a rewarding decision as long as
publishers encode their house styles in LATEX macro
packages. This would let authors concentrate on
scientific content while keeping LATEX training needs
down to a point somewhere between [6] and [4].
An ideal situation would be for the author to

write a standard article-class LATEX document and
to later add a

\usepackage{publisher}

mark, or even better a

\usepackage[journal]{publisher}

mark, right before submitting it to the publisher.
In practice, however, complying with the author

instructions for a particular journal may involve

various changes to the original LATEX source, ranging
from low-level font selection to high-level macros
for theorem-like environments, inclusion of encap-
sulated PostScript figures, and author affiliation.
Such a high degree of transparency of publisher

styles with respect to the standard LATEX article-
class can only be reached by a serious standardiza-
tion effort. Maybe the time has come for the TEX
Users Group to set up a new Technical Working
Group (TWG), with the goal of coordinating pub-
lishers’ efforts at encoding their journal styles in
LATEX macro packages. Such a TWG should also
liason with the LATEX3 Project Team in order to
enhance the standard LATEX article.cls document
class and perhaps also book.cls and report.cls,
by including more structural information in the front
matter which would offer a standard interface to
authors and could also be easily adapted to the
particular needs of different publishers. As a matter
of fact, some publisher packages that show the need
for such an enhancement have been available for
several years, among which Springer [9], Elsevier
Science [2], DANTE [5], and many others.
In any case, the author sincerely hopes not to be

charged with the whole task just because of having
had such a bright idea.

Acknowledgement

I am very grateful to Barbara Beeton, Sebastian
Rahtz and Christina Thiele for early comments on
the very idea of this paper, and to the anonymous
referees, whose suggestions have led to a substantial
improvement of the article.

References

[1] Anne Brüggemann-Klein. Wissenschaftliches
publizieren im umbruch. Informatik—

Forschung und Entwicklung, 10:171–179,
1995.

[2] Elsevier. Preparing Articles with LATEX:

Instructions to Authors for preparing

Compuscripts. Electronic document available
at http://www.tex.ac.uk/tex-archive/

macros/latex/contrib/supported/

elsevier/, 1995.

[3] Michel Goossens and Janne Saarela. TEX to
HTML and back. TUGboat, 16(2):174–214,
1995.

[4] Leslie Lamport. LATEX: A Document Prepara-
tion System. Addison-Wesley, Reading, Mas-
sachusetts, 2nd edition, 1994.

[5] Gerd Neugebauer. Eine klasse für die
TEXnische komödie. Die TEXnische Komödie,

194 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Do Journals Honor LATEX Submissions?

4/95:6–15, 1996.

[6] Tobias Oetiker, Hubert Partl, Irene Hyna, and
Elisabeth Schlegl. The not so short Introduc-
tion to LATEX2ε. Electronic document avail-
able at http://www.tex.ac.uk/tex-archive/
info/lshort/, 1995.

[7] Nico Poppelier. Two sides of the fence. TUG-
boat, 12(3):353–358, 1991.

[8] Sebastian Rahtz. Another look at LATEX to
SGML conversion. TUGboat, 16(3):315–324,
1995.

[9] Springer-Verlag. Instructions for Authors us-
ing LATEX and the Springer Macro Package

CLMono01 or CLMult01. Electronic document
available at ftp://trick.ntp.springer.de/
pub/tex/latex/clmomu01/, 1995.

[10] Gary Taubes. Electronic preprints point
the way to author empowerment. Science,
271(5250):767, February 1996.

[11] Gary Taubes. Science journals go wired. Sci-
ence, 271(5250):764, February 1996.

[12] Gabriel Valiente. Composició de textos

cient́ıfics amb LATEX. Edicions UPC, Barcelona,
1996.

A Journals accepting manuscripts marked

up with LATEX

This appendix lists journals for which at least
one of the editors accepts electronic submissions
written using LATEX, grouped by publisher. An
HTML version of this list is available on the In-
ternet at the address http://www-lsi.upc.es/\
~{}valiente/journals.html that links about 40
publishers and more than 400 journals to their home
pages on the World-Wide Web. Any help to make it
more complete and to keep it up-to-date is warmly
welcome.

Academia Scientiarum Fennica

• Annales Academiæ Scientiarum Fennicæ

Academic Press

• Analytical Biochemistry

• J. of Approximation Theory

American Astronomical Society

• Astrophysical J.

• Astrophysical J. Supplement

• Astrophysical J. Letters

• Astronomical J.

American Institute of Physics

• The J. of the Acoustical Society of America

American Mathematical Society

• Bulletin of the AMS
• Electronic Research Announcements of the AMS
• J. of the AMS
• Mathematics of Computation
• Notices of the AMS
• Proc. of the AMS
• Trans. of the AMS

American Physical Society

• Physical Review A
• Physical Review B
• Physical Review C
• Physical Review D
• Physical Review E
• Physical Review Letters
• Reviews of Modern Physics

Association for Computing Machinery

• ACM Trans. on Mathematical Software
• Comm. of the ACM
• J. of the ACM
• IEEE/ACM Trans. on Networking
• J. of Experimental Algorithmics
• Trans. on Computer Systems
• Trans. on Computer-Human Interaction
• Trans. on Design Automation of Electronic Systems
• Trans. on Graphics
• Trans. on Information Systems
• Trans. on Mathematical Software
• Trans. on Modeling and Computer Simulation
• Trans. on Prog. Languages and Systems

Birkhäuser Verlag

• Aequationes Mathematicae
• Algebra Universalis
• Aquatic Sciences
• Archiv der Mathematik
• Botanica Helvetica
• Chemoecology
• Circuits, Systems, and Signal Processing
• Commentarii Mathematici Helvetici
• Computational and Applied Mathematics
• Computational Complexity
• Eclogae Geologicae Helvetiae
• Elemente der Mathematik
• EXPERIENTIA
• Fresenius Environmental Bulletin
• Geometric and Functional Analysis
• Helvetica Physica Acta
• Inflammation Research
• Insectes Sociaux
• Integral Equations and Operator Theory
• J. of Evolutionary Biology
• J. of Geometry
• J. of Mathematical Systems, Estimation, and Control
• MapleTech
• Medical Microbiology Letters
• Medicine
• Nonlinear Differential Equations and Applications
• NTM
• Pure and Applied Geophysics
• Resultate der Mathematik
• Selecta Mathematica, New Series
• Sozial- und Präventivmedizin
• Zeitschrift für angewandte Mathematik und Physik

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 195

Gabriel Valiente Feruglio

Blackwell Publishers

• Computer Graphics Forum

Cameron University, Oklahoma

• Southwest J. of Pure and Applied Mathematics

Chapman & Hall

• Optical and Quantum Electronics

Computer Society of South Africa

• The South African Computer J.

Deutsche Mathematiker-Vereinigung

• Documenta Mathematica

DANTE

• Die TEXnische Komödie

Elsevier Science

• Artificial Intelligence

• Discrete Applied Mathematics

• Discrete Mathematics

• Electronic Notes in Theoretical Computer Science

• Linear Algebra and its Applications

• New Astronomy

• Theoretical Computer Science

Heldermann Verlag Berlin

• Beiträge zur Algebra und Geometrie

• J. of Lie Theory

Institute of Electrical and Electronics Engi-
neers

• Computer

• IEEE Annals of the History of Computing

• IEEE Computational Science & Engineering

• IEEE Computer Graphics and Applications

• IEEE Design & Test of Computers

• IEEE Electron Device Letters

• IEEE Expert

• IEEE J. on Selected Areas in Communications

• IEEE J. on Selected Topics in Quantum Electronics

• IEEE J. of Microelectromechanical Systems

• IEEE J. of Quantum Electronics

• IEEE J. of Solid-State Circuits

• IEEE Micro

• IEEE Microwave and Guided Wave Letters

• IEEE MultiMedia

• IEEE Parallel & Distributed Technology

• IEEE Photonics Technology Letters

• IEEE Signal Processing Letters

• IEEE Software

• IEEE Trans. on Antennas and Propagation

• IEEE Trans. on Applied Superconductivity

• IEEE Trans. on Automatic Control

• IEEE Trans. on Biomedical Engineering

• IEEE Trans. on Circuits and Systems for Video Tech-
nology

• IEEE Trans. on Circuits and Systems I: Fundamental
Theory and Applications

• IEEE Trans. on Circuits and Systems II: Analog and
Digital Signal Processing

• IEEE Trans. on Communications

• IEEE Trans. on Components, Packaging, and Manufac-
turing Technology Part A

• IEEE Trans. on Components, Packaging, and Manufac-
turing Technology Part B

• IEEE Trans. on Components, Packaging, and Manufac-
turing Technology Part C

• IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems

• IEEE Trans. on Computers

• IEEE Trans. on Control Systems Technology

• IEEE Trans. on Education

• IEEE Trans. on Electromagnetic Compatability

• IEEE Trans. on Electron Devices

• IEEE Trans. on Engineering Management

• IEEE Trans. on Fuzzy Systems

• IEEE Trans. on Geoscience and Remote Sensing

• IEEE Trans. on Image Processing

• IEEE Trans. on Industrial Electronics

• IEEE Trans. on Industry Applications

• IEEE Trans. on Information Theory

• IEEE Trans. on Instrumentation and Measurement

• IEEE Trans. on Knowledge & Data Engineering

• IEEE Trans. on Magnetics

• IEEE Trans. on Medical Imaging

• IEEE Trans. on Mechatronics

• IEEE Trans. on Microwave Theory and Techniques

• IEEE Trans. on Neural Networks

• IEEE Trans. on Nuclear Science

• IEEE Trans. on Oceanic Engineering

• IEEE Trans. on Parallel & Distributed Systems

• IEEE Trans. on Pattern Analysis & Machine Intelli-
gence

• IEEE Trans. on Plasma Science

• IEEE Trans. on Power Electronics

• IEEE Trans. on Professional Communication

• IEEE Trans. on Rehabilitation Engineering

• IEEE Trans. on Robotics and Automation

• IEEE Trans. on Semiconductor Manufacturing

• IEEE Trans. on Signal Processing

• IEEE Trans. on Software Engineering

• IEEE Trans. on Speech and Audio Processing

• IEEE Trans. on Systems, Man, and Cybernetics Part
A: Systems and Humans

• IEEE Trans. on Systems, Man, and Cybernetics Part B:
Cybernetics

• IEEE Trans. on Ultrasonics, Ferroelectrics, and Fre-
quency Control

• IEEE Trans. on Very Large Scale Integration (VLSI)
Systems

• IEEE Trans. on Visualization & Computer Graphics

• IEEE Trans. on VLSI Systems

• IEEE/ACM Trans. on Networking

• IEEE/OSA J. of Lightwave Technology

• Proc. of the IEEE

196 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Do Journals Honor LATEX Submissions?

Institute of Physics Publishing

• Bioimaging

• Classical and Quantum Gravity

• Distributed Systems Engineering

• European J. of Physics

• High Performance Polymers

• Inverse Problems

• J. of Micromechanics and Microengineering

• J. of Physics A: Mathematical and General

• J. of Physics B: Atomic, Molecular and Optical Physics

• J. of Physics: Condensed Matter

• J. of Physics D: Applied Physics

• J. of Physics G: Nuclear and Particle Physics

• J. of Radiological Protection

• Measurement Science and Technology

• Modelling and Simulation in Materials Science and
Engineering

• Nanotechnology

• Network: Computation in Neural Systems

• Nonlinearity

• Physics Education

• Physics in Medicine and Biology

• Physiological Measurement

• Plasma Physics and Controlled Fusion

• Plasma Sources Science and Technology

• Public Understanding of Science

• Pure and Applied Optics

• Quantum and Semiclassical Optics

• Reports on Progress in Physics

• Semiconductor Science and Technology

• Smart Materials and Structures

• Superconductor Science and Technology

• Waves in Random Media

IOS Press

• AI Communications

• Asymptotic Analysis

• BioFactors

• Bio-Medical Materials and Engineering

• Chinese Science Bulletin (Kexue Tongbao)

• Education for Information

• Environmental Policy and Law

• Fundamenta Informaticæ

• Human Systems Management

• Information and Systems Engineering

• Information Infrastructure and Policy

• Information Services and Use

• Information Technology for Development

• Int. J. of Applied Electromagnetics and Mechanics

• Int. J. of Risk and Safety in Medicine

• J. of Computer Security

• J. of Economic and Social Measurement

• J. of Environmental Sciences

• J. of High Speed Networks

• Pharmacotherapy

• Reviews in Toxicology

• Space Communications

• Spectroscopy: An Int. J.

• Statistical J. of the United Nations Economic Commis-
sion for Europe

• Technology and Health Care

Kent State University

• Electronic Trans. on Numerical Analysis

Kluwer Academic Publishers

• Acta Applicandae Mathematicae

• Adsorption

• Analog Integrated Circuits and Signal Processing

• Applied Cardiopulmonary Pathophysiology

• Applied Categorical Structures

• Applied Composite Materials

• Applied Intelligence

• Applied Scientific Research

• Aquatic Geochemistry

• Archives of Suicide Research

• Astrophysics and Space Science

• Automated Software Engineering

• Autonomous Robots

• Biodegradation

• Biogeochemistry

• Bioseparation

• Biotherapy

• Boundary-Layer Meteorology

• Celestial Mechanics and Dynamical Astronomy

• Climatic Change

• Compositio Mathematica

• Computational Economics

• Computational Optimization and Applications

• Computers and the Humanities

• Crime, Law and Social Change

• Cytotechnology

• Design Automation for Embedded Systems

• Designs, Codes and Cryptography

• Discrete Event Dynamic Systems

• Distributed and Parallel Databases

• Documenta Ophthalmologica

• Dynamics and Control

• Earth, Moon and Planets

• Economics of Planning

• Educational Studies in Mathematics

• Empirica

• Entomologia Experimentalis et Applicata

• Environmental Monitoring and Assessment

• Euphytica

• European J. of Health Law

• European J. of Population

• Experimental Astronomy

• Financial Engineering and the Japanese Markets

• Formal Methods in System Design

• Gazette

• Genetic Resources and Crop Evolution

• Genetica

• Geology and Mining (Geologie en Mijnbouw)

• Geometriae Dedicata

• Geriatric Nephrology and Urology

• Hydrobiologia

• Instructional Science

• Interface Science

• Int. J. of Clinical Monitoring and Computing

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 197

Gabriel Valiente Feruglio

• Int. J. of Computer Vision
• Int. J. of Fracture
• Int. J. of General and Molecular Microbiology
• Int. J. of Salt Lake Research
• Int. J. of Value-Based Management
• Int. J. on Group Rights
• Int. Ophthalmology
• J. for General Philosophy of Science
• J. of Algebraic Combinatorics
• J. of Applied Phycology
• J. of Aquatic Ecosystem Health
• J. of Atmospheric Chemistry
• J. of Automated Reasoning
• J. of Biological Physics
• J. of Elasticity
• J. of Electronic Testing
• J. of Engineering Mathematics
• J. of Global Optimization
• J. of Inclusion Phenomena and Molecular Recognition
in Chemistry

• J. of Intelligent Information Systems
• J. of Logic, Language and Information
• J. of Mathematical Imaging and Vision
• J. of Paleolimnology
• J. of Sol-Gel Science and Technology
• J. of Systems Integration
• K-Theory
• Letters in Mathematical Physics
• Lifetime Data Analysis
• LISP and Symbolic Computation
• Machine Learning
• Machine Translation
• Man and World
• Meccanica
• Medical Progress Through Technology
• Molecular Biology Reports
• Multidimensional Systems and Signal Processing
• Multimedia Tools and Applications
• Mycopathologia
• Natural Hazards
• New Forests
• Nonlinear Dynamics
• Nutrient Cycling in Agroecosystems
• Origins of Life and Evolution of the Biosphere
• Philosophical Studies
• Photosynthesis Research
• Plant and Soil
• Plant Cell, Tissue and Organ Culture
• Plant Growth Regulation
• Potential Analysis
• Real-Time Systems
• Review of Industrial Organization
• Set-Valued Analysis
• Social Indicators Research
• Solar Physics
• Studies in East European Thought
• Surveys in Geophysics
• Systematic Parasitology
• The EDI Law Review
• The J. of Supercomputing
• The J. of VLSI Signal Processing
• The Int. J. of Cardiac Imaging
• Transport in Porous Media
• User Modeling and User-Adapted Interaction
• Vegetatio
• Water Resources Management
• Water, Air and Soil Pollution

Masaryk University, Czech Republic

• Archivum Mathematikum

Morgan Kaufmann

• J. of Artificial Intelligence Research

Optical Society of America

• Applied Optics

• J. of the Optical Society of America A

• J. of the Optical Society of America B

• Optics Letters

• J. of Lightwave Technology

• Chinese J. of Lasers B

• J. of Optical Technology

• Optics & Spectroscopy

Oxford University Press

• The Computer J.

Royal Astronomical Society

• Monthly Notices of the Royal Astronomical Society

Sociedad Colombiana de Matemáticas

• Revista Colombiana de Matemáticas

Societat Catalana de Matemàtiques

• SCM/Not́ıcies

Société de Mathématiques Appliquées et In-
dustrielles

• ESAIM: Control, Optimisation and Calculus of Varia-
tions

• ESAIM: Probability and Statistics

• ESAIM: Proc.

Society for Industrial and Applied Mathe-
matics

• SIAM J. on Applied Mathematics

• SIAM J. on Computing

• SIAM J. on Control and Optimization

• SIAM J. on Discrete Mathematics

• SIAM J. on Mathematical Analysis

• SIAM J. on Matrix Analysis and Applications

• SIAM J. on Numerical Analysis

• SIAM J. on Optimization

• SIAM J. on Scientific Computing

• SIAM Review

Springer Verlag

• Constructive Approximation

• Few-Body Systems Electronic

• Informatik—Forschung und Entwicklung

• J. of Nonlinear Science

• J. of Universal Computer Science

• J. of Very Large Databases

• Numerische Mathematik Electronic Edition

• Semigroup Forum

TEX Users Group

• TEX and TUG News

• TUGboat

The International Linear Algebra Society

• Electronic J. of Linear Algebra

198 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Do Journals Honor LATEX Submissions?

Universidad Nacional Autónoma de México

• Revista Electrónica del Departamento de Matemáticas

University at Albany, State University of
New York

• New York J. of Mathematics

Univerzita Komenskeho, Bratislava

• Acta Mathematica Universitatis Comenianæ

The Johns Hopkins University Press

• American J. of Mathematics

The MIT Press

• Artificial Life

• Computational Linguistics

• Evolutionary Computation

• J. of Functional and Logic Prog.

• Neural Computation

• The Chicago J. of Theoretical Computer Science

• The Int. J. of Robotics Research

John Wiley & Sons

• Comm. in Numerical Methods in Engineering

• Electronic Publishing: Origination, Dissemination and
Design

• J. of Combinatorial Designs

• J. of Graph Theory

• Int. J. for Numerical Methods in Engineering

• Naval Research Logistics

• Numerical Methods for Partial Differential Equations

• Random Strucrures and Algorithms

• Theory and Practice of Object Systems

World Scientific

• Int. J. of Cooperative Information Systems

• Int. J. of Foundations of Computer Science

• Int. J. of High Speed Computing

• Int. J. of High Speed Electronics and Systems

• Int. J. of Information Technology

• Int. J. of Modern Physics A: High Energy Physics

• Int. J. of Modern Physics B: Condensed Matter Physics

• Int. J. of Modern Physics C: Computational Physics

• Int. J. of Modern Physics D: Astrophysics

• Int. J. of Modern Physics E: Nuclear Physics

• Int. J. of Reliability, Quality and Safety Engineering

• Int. J. of Shape Modeling

• Int. J. of Software Engineering and Knowledge Engi-
neering

• Int. J. of Uncertainty, Fuzziness and Knowledge-Based
Systems

• Int. J. on Artificial Intelligence Tools

• J. of Circuits, Systems and Computers

• J. of Computational Acoustics

• J. of Knot Theory and its Ramifications

• Mathematical Models and Methods in Applied Sciences

• Modern Physics Letters A: High Energy Physics

• Modern Physics Letters B: Condensed Matter Physics

• Parallel Processing Letters

Other

• BIT

• Electronic J. of Combinatorics

• Electronic J. of Differential Equations

• Electronic J. of Probability

• Electronic Comm. in Probability

• Theory and Applications of Categories

• Reliable Computing

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 199

A New Approach to the TEX-related Programs: A User-friendly Interface

Sergei V. Znamenskii and Denis E. Leinartas
Department of Mathematics Krasnoyarsk State University, Svobodnyi prospekt 79, 660041 Krasnoyarsk,

Russia

znamensk@math.kgu.krasnoyarsk.su, den@math.kgu.krasnoyarsk.su

Abstract

Various TEX-related programs such as TEX, METAFONT, BM2FONT, DVISCR,
DVIPS, BibTEX, and others have to use sophisticated command line options and
configuration files to work cooperatively. Modifying the configuration of such a
complicated system becomes a problem. A good solution is a hypertext-based
language based on an intellegent shell which provides an easy interface for TEX-
users.

The number of various configuration options to use
in a command line or in environment to start a
TEX-related program has become somewhat enor-
mous. The appropriate choice of an option set to
use depends in a rather sophisticated way on hard-
ware configuration, desirable interface and a lot of
installed software-specific features.
Therefore the proper modification of a TEX sys-

tem configuration becomes a problem to the ordi-
nary user even if he uses some shell to facilitate the
work. There exists a wide variety of TEX shells and
different users have different opinions on the sub-
ject of which shell is better. The TEXShell V2.7.1
by von Jörgen Schlegelmilch (available on CTAN) is
currently the most popular non-commercial shell in
Russia to run under DOS. It provides a convenient
user interface. For example, the user can change
printers by just selecting appropriate item in the
menu system; change any command line options;
save changed configurations completely or partially;
use various configurations for different directories;
to run TEX, preview or print a file; and other ac-
tions – by just hitting a ‘hot’ key from the inter-
nal editor. The user may find and correct errors
in a source file(s) easily and get complete hyper-
text help on LATEX and shell functions. The user
can switch the color selection of TEX commands and
control symbols, add any custom batch file or pro-
gram to the user menu from inside the editor, or use
his favorite external editor, etc. The shell supports
the new emTEX directory system under DOS and
OS/2 and uses less then 1k of memory when TEX
or the previewer is executing. The 4TEX shell (last
release 3.26) provides more-or-less similar features,
but TEXShell seems to be a bit more easy to use, es-
pecially with a set of different configurations. Does
anybody really need more?

The TEX user certainly can be happy working
with the TEXShell or any other convenient shell with
the same facilities. Problems arised in the case he
needs to:

• control, on the screen, the margins to be used
on printed paper;

• install another printer;

• use some new emTEX features (such as booklet
printing);

• use one of the very nice extra utilities such as
BM2FONT or MFPIC which depends on printer
font set; and/or

• repeat all the actions above simultaneously.

In such cases, the user will have to look into the
documentation and perhaps write new configuration
and batch files again and again without any hope of
getting a final version. If you only change printers,
for example, You usually have to change the path to
write BM2FONT and MFPIC .pk font files, recalcu-
late the extension set to start GFTOPK execution,
defining resolution, font directories, screen margins
and scaling options for the previewer. Moreover, in
order to determine the correct way configuration,
you need to collect information from a set of docu-
mentation files with the size of hundreds of kilobytes.
None of the existing shells can do it automati-

cally. It is a task for human intellect. And nobody
is able to “teach” any existing shell to perform this
kind of job. You should know all of the interre-
lations between a type of printer, a resolution set
and mode for METAFONT to make the whole system
work correctly. Moreover, the interrelations men-
tioned above may also depend on font directories,
existence of .pk files and other machine-dependent
conditions which you should check before you may

200 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

A New Approach to the TEX-related Programs: A User-friendly Interface

achieve success. The new version of the same pro-
gram usually handles the environment and the com-
mand line options in different way. It is really diffi-
cult.
The experimental TEX shell was designed as

emTEX-based, with the support of RFBR to make
the following extremely easy:

• the use of any TEX–METAFONT interface-based
packages such as MFPIC;

• the use of other packages such as BM2FONT;

• the change of printer driver or changing to an-
other svga mode;

• the ability to see the same margins on screen as
those on the printed page;

• different configurations for different kinds of jobs
(different journals for example);

• writing all temporary files (.log, .dvi, etc.)
to a special directory; and

• the support of all features of the current emTEX
distribution.

The test version of the shell was created based
on the TX sources by Ricard Torres (torres@upf.es)
and which are available on CTAN (a very simple and
effective shell for work with TEX under DOS) and
successfully tested in the Krasnoyarsk State Uni-
versity, several institutions at Krasnoyarsk and in
the Information and Publication Centre of Steklov
Mathematical Institute (Moscow). After we replace
the temporary Russian fonts with the standard set
and probably some other changes as proposed by
the project, the shell will be freely available from
the RFBR Russian TEX server ftp.tex.math.ru via
anonymous ftp as an add-on package to the current
emTEX distribution.
Though it is not the purpose of this paper to

describe our shell completely, we need to give some
information on it. It contains an extremely small
menu, which saves screen space allowing the user
to see a maximum of the program finished before
output. The menu size depends on the number of
files to work with and the number of currently avail-
able commands. One available command is Set (hit
the “S” key) to call a set configuration menu in
which you can select (change) a printer resolution,
svga mode, portrait or landscape mode, output di-
rections, or printer behavior (for two-side printing,
etc.). The format is normally selected automatically,
but you can change it if Hit the <E> key (Edit) to
call the default editor; hit <T> to TEX a file; hit
<V> to preview the file; and so on. Usually the shell
gives a prompt for the next command, and you can
just press <SPACE> to approve the command. If you
work with LATEX files, the default sequence for the

first time to run will be <T> <T> <V> <E>. With
MAKEINDEX the sequence will be <T> <M> <T> <V> <E>
and with MFPIC <T> <F> <T> <V> <E> where <F>
starts METAFONT in the appropriate mode, starts
GF2PK and generates the correct output files. Un-
fortunately there is no on-line help available in our
shell at this time.
As soon as we announced that we were about

to place this shell into the base of a non-commercial
“Russian TEX” distribution, the biggest disagree-
ment became what set of packages was to be sup-
ported. Almost everybody wanted to restrict the
number or packages to use as much as possible, but
insisted upon the inclusion of the packages he know
best. How to resolve this discussion? The only way
we can see is to make a TEX shell to use a widely
variable set of packages which are easy to install
and use – “unpack an play”. The TDS (TEX direc-
tory structure) standard gives us a chance to make
the packages extremely independent upon operating
systems. The more we try to configure the shell for a
new package, which is complex yet still easy-to-use,
the more time we spend checking and correcting all
of the places in the configuration files which affect
the package behavior.
Thus we need a new approach to the shell and

user interface. It should be a shell with some fea-
tures of the human mind, or an “intelligent” shell.
What does that mean? Are we to develop a sys-

tem of artificial intellect only to start TEX-related
programs? Of course not! But we want our shell to
be able to check logical conditions and change the
behavior according to the current situation. This
may be useful not only in the configuration but in
the interface too. It isn’t necessary to have a menu
item “Print” if there is no .dvi file, as well as there
is no need to run METAFONT if an .mf file does not
exist. It would also be better if the shell would lead
us through the menus, choosing the next reasonable
item; i.e., after running TEX, the next action is pre-
viewing and after that it is another edition in the
most cases. The user can agree with the shell by
pressing <ENTER> or choosing something else if he
wants. We believe such advantages makes work a
bit more convenient.
In addition to this, we consider a fully detailed,

context-dependent HELP as a very important part
of the shell. Being concerned with TEX for about
three years we have come to the conclusion that
users sometimes want to have a more detailed expla-
nation of every menu item than the existing shells
support.
How can we improve this service? Nowadays

hypertext structures are very much appreciated in

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 201

Sergei V. Znamenskii and Denis E. Leinartas

user guides on computer systems. Many shells pro-
vide reference information organized as hypertext.
TEXShell has only the HELP mentioned above. But
this is not context-dependent, so sometimes it is
quite difficult to find the information you want. Be-
sides, this is a separate part of the shell and the
user would need to interrupt work to study what he
needed to do next.
So we can say that the help is laid down into

the base of the future shell described here. This is
a hypertext-based shell. Each hypertext page con-
tains all reference information about marked words.
Every such word means an action. It may be run-
ning a program or changing its configuration as a
new hypertext page which allows one to take the
next step. To avoid this information, you are able
to enter an “expert” mode and see nothing except
for hypertext references. This seems to be quite easy
to use such shell.
The other task this shell will have to solve is

installation of any additional package which needs
to be integrated into the current conglomeration of
programs. There are many such packages for TEX
now and there’ll be many more in future. Each of
them presupposes its own way of installation and
configuration. Thus, any package which can use the
common directory structure may be installed just
by unpacking the appropriate archive containing a
configuration file for our shell. This file should in-
clude all information about behavior of this package
and have some machinery for configuring the pack-
age. The shell definitely cannot know all packages’
names. That is why the configuration files should
have a special extension, say TXC (for TEX Config).
Now we want to consider the system of config-

uration files for our shell in more detail. Besides the
packages’ configuration files mentioned above, the
system must comprise the main read-only file.
It should be emphasized here that this file is the

shell itself. We mean that the shell is only a program
written for an interpreter of a new language which
allows creation of hypertext with the functions of a
shell.
The next standard file is a file which contains in-

formation about the current state of a shell. This in-
cludes some variables and technical data. The other
file is user-defined, where one can put the name of
the work directory, necessary format, type of printer
and so on. One more file of the same type is the job
configurations file. Here are the common options for
a group of users which do similar work. Another im-
portant file describes various devices used by print-
ers and some programs. And last, but not least, the
station-independent file where common commands

for all supported platforms options are collected.
Having these files, one can be comfortable working
on any station where this shell is installed. You can
prepare your text on one station, compose it on the
server, view on another station and print somewhere
else.
We are not yet ready to describe the program-

ming language which allows creation of such shells;
we can just say that it was developed for purposes
like this and we are still working on it. We only
show one example of a very simple configuration file.
It isn’t a complete shell;however, it gives a glimpse
of the new language under creation: As you can
see from this example, this language is quite similar
to TEX but digits and other special TEX signs are
referred to as strings. One-line remarks preceded
by % are allowed. The command \newpage defines
the highlighted words in hypertext, followed by page
and the hot-key which one can press as well as the
‘Enter’ key to achieve the next page. Language’s
devices provides various detail levels of reference in-
formation which one may use in the shell. It may be
whole pages for a novice or simply highlightings for
an expert. \def looks like TEX’s and is very easy
to understand. It defines new hypertext pages as
are used in \newpage. There are some logical prim-
itives for \if in addition to \exists. They give one
an opportunity to compare dimensions like textttpt,
in, cm and so on as well as numerals and strings.
Standard environment variables defined above are
available as $name$. For example $mfmode$ means
canonbj if you use Cannon Bubble Jet printer in
your system. The command \addnewpack finds the
configuration file of new package and reads it con-
tents. This file should include everything about the
package itself and all interrelations with other pack-
ages too.
The package configuration file can contain spe-

cial commands describing what must be done before
execution of the main commands of some other pack-
age(s) and after it. This looks like a possibility to
avoid user problems of installation. Only unpack-
ing will be required, even for a rather complicated
package such as MFPIC.
We did not have the intention to describe a

completed thing. The aim of this paper was to dis-
cuss a new approach to this problem. In a year we
plan to put the first version of a new shell with a
sources on a Russian TEX server to be freely avail-
able at least for non-commercial usage by anony-
mous ftp.

202 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

A New Approach to the TEX-related Programs: A User-friendly Interface

%%% A simple configuration file for the shell

\def{\TheHomePage} Now you can compose your file using

\newpage{TeX}{\TeXpage}{T}

\if \exists{$name$.dvi}

or view composed file by \newpage{DviScr}{\dviscrpage}{V}

and print it on the printer \newpage{Print}{\printpage}{P}

\fi

\if \exists{$name$.aux}

\if \infile{$name$.aux}{\bibdata}

And now you can call \newpage{BibTeX}{\bibtexpage}{B} to

complete the bibliography.

\fi

\fi

%%% Below the approximate scheme of adding new packages is shown

%%% the command \addnewpack adds found in the directory ../texmf/txc/

%%% files <package_name>.txc to the page \packages

\addnewpack

From the moment of the latest upgrade of our shell the

\newpage{New Packages}{\packages}{}

is appeared.

}

%%% The Home Page definition is completed.

%%% Now we should define the pages mentioned in it

\def{\TeXpage}{By pressing the word \newpage{\TeX}{\runshellscript}{}

you run TeX and provided there are no mistakes new file $name$.dvi will

appear.

\if \exists{$name$.dvi}

And you can \newpage{View}{\dviscrpage}{V} it.

\fi

You can configure TeX on the page

\newpage{configuration}{\texconf}{}}

...

Figure 1: Sample configuration shell

Acknowledgements

This work was supported by Russian Foundation of
Basic Research grant 95-07-19400v.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 203

The Strait Gate to TEX

Ivan G. Vsesvetsky
Ioffe Physico-Technical Institute, 26, Polytechnicheskaya str., 194021, St Petersburg, Russia

vig@ioffe.rssi.ru

Abstract

TEX is the best . . . It is ‘ideal’ ! So why has it not gained the world? Because (1)
it’s not for everybody; and (2) this world is REAL, not ideal. There exist a real
competition between TEX and, say, Ventura.
This article shows how capabilities of TeX can be enhanced to a level

surpassing ‘professional’ typesetting.

What this Article is About

For more than three years Ioffe Institute has pre-
pared camera-ready copy for four physical journals
(about 1000 A4 pages of 11pt text plus illustrations
per month). plain TEX with CyrTUG russification
and local styles are used. This article is an attempt
to generalize the experience of a small TEX publish-
ing bureau.
All speculations are emphasized for easy skip-

ping.

Why TEX?

The journals were published for years with metal
type. In about 1991, the type became too old and
the publisher (“Nauka”) moved to DOS Ventura.
It appeared that doing formulae with Ventura is a
hard manual toil was quite toilsome and the editors
(they are all from the Ioffe Institute) turned to our
computing center, which had some experience with
scientific publishing. Thus, from April 1993, the
journals are produced using TEX.

Problems

It would be strange if we did not encounter problems
attempting to emulate metal type with TEX.

Personnel education NonTEXnical people con-
sider TEX too complex for a human being without
a university mathematical education. Most our TEX
typists were mainframe operators before 1993.

Limitations of emTEX Up to 1993, we used
PCTEX and TurboTEX. These commercial imple-
mentations gently died in the Ioffe Institute after
the appearence of wonderful emTEX.
Only one part of emTEX caused some prob-

lems— dvi drivers for DOS—they abort quite often
on our documents that are filled with graphics and
virtual fonts.

The main reason for using DVIPS is the inabil-
ity of emTEX to please our editors— it cannot do
landscape tables.

Free software is. . . good or bad?
Bad. Because it is not debugged.
DVIPS supports emTEX \specials, but some-

times PCX files are displayed as a black boxes (very
rarely), and at other times raster graphics are dis-
torted.
Good. Because we can debug it ourselves.
The availability of the source code for DVIPS

made it possible to overcome the above errors.

DVIPS is slow Most grahics typed in the jour-
nals are hand drawings scanned to PCX format.
DVIPS, preparing its PostScript output, unpacks
them (expanding thee to four times) and codes them
in hexadecimal (a 2-fold increase). The resulting
giantic file (30–50MB at 300 dpi resolution) can take
from three to five hours to print. It is rather easy
to estimate the resources needed for 600 or 1200 dpi
(last year we got such devices).
After some experimenting, the algorithm of

(rather) fast graphics decompression was coded in
PostScript [1] and the compression counterpart was
included in DVIPS. Now DVIPS works 1.5–2 times
slower than emTEX driver on the same file, and this
coefficient does not grow with printer resolution. Af-
ter CCITT ‘FAX’ compression [2] was implemented
in DVIPS for the new PostScript Level 2 printers, it
runs even faster than DVIHPLJ of emTEX. Patches
for DVIPS are available on request.

Lack of fonts Good Cyrillic TEX fonts are scarce.
Up until now, it was not a problem—the editors are
happy with the Washington Cyrillic fonts.

Placement of illustrations is not easy with TEX.
Here Ventura (or Word, etc.) certainly wins. It
seems to me that the problem cannot be solved within

204 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

The Strait Gate to TEX

TEX—content (visual in this case) should not be
generated automatically.

Prospects

We are planning to move to LATEX.
We are beginning to use PostScript fonts. Prob-

lems with screen preview in emTEX are solved using
ps2pk program. Matching different fonts and their
adaptation to DVIPS is done with quite simple AWK
scripts.

Conclusions

The ex-Soviet desktop publishing market is rather
strange. It seems that the only professional typeset-
ting software available here is free TEX. Its ‘free-
ness’ is imaginary of course—you must spend (at
least your time) on personnel education, software
debugging and tuning, etc.

References

[1] Adobe, Postscript Language Reference Manual,
Addison-Wesley, 1990.

[2] Brown, Wayne and Barry Shepherd, Graphic
File Formats, Prentice-Hall, 1994.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 205

DVI-based Electronic Publication

Laurent Siebenmann

Matématiques, Bâtiment 425, Université de Paris-Sud, F-91405, Orsay, France

lcs@topo.math.u-psud.fr

Abstract

This article offers an introduction to three proposals that would make TEX’s orig-
inal device-independent output format dvi more useful for electronic publication
of scientific documents.

The race is on to establish formats for publishing the
world’s scientific literature in purely electronic form.
Let us first recall the technological circumstances
that have set this race in motion.
It is widely believed that the Internet now has

the capacity necessary to deliver scientific articles
in just a few seconds to any computer on the In-
ternet—via WWW (World Wide Web), and also
older systems such as FTP (File Transfer Protocol).
Hopefully, the costs for Internet transmission will re-
main quite negligible in spite of commercialization.
Rapid access (hard disk) storage cost per page in
an electronic library is already negligible. Provided
efficient storage formats are used, the cost is now
less than one cent per page for the 4-year life-span
of a hard disk—and it is still rapidly falling.
However, there are serious traffic congestion

problems that currently nearly freeze the Internet
for key portions of the 24-hour day throughout
considerable parts of the world. Thus, a couple
of complications should be kept in mind. Firstly,
although delivery via Internet is the favored vehicle,
alternative delivery formats may have to take on
an important slice of the action, notably compact
read-only optical disks, known as CD-ROMs. This
delivery format is slow and chunky, but its cost is
low, and its capacity is probably orders of magni-
tude greater than those of the Internet. Secondly,
a congested Internet will be more tolerable if we
have a particularly efficient standard for science
such as dvi.
Optimists expect that public fascination with

bulky imagery available on the Internet will push
data transport speeds and cost efficiency on the In-
ternet ahead of and beyond the needs of the browsing
scientist. But this assumes that scientists use effi-
cient norms insulated from technological inflation.
The leading candidates among electronic for-

mats for the mathematical sciences seem to be:

tex : TEX’s ASCII typescript input format defined
by Knuth and elaborated by TEX markup for-

mats such as Plain, LATEX and others. This
format usually must be enriched by \special-
ly included graphics objects. Hence it should
perhaps be called the tex etc format.

dvi : TEX’s binary device-independent output for-
mat. Similarly, we will talk of a dvi etc format
that evolves with the \special additives and
their attendant software.

ps : the Adobe PostScript page description lan-
guage, accepted by a majority of ‘laser’ printers,
i.e., laser printers.

pdf : Adobe’s format for its (currently) freeware
viewer, Acrobat, nourished by its commercial
ps to pdf converter, Distiller.

html : the WWW Internet format used by most
browsers. Mathematical material has been
skimpily served, except through numerous bit-
maps, and these have proved cumbersome.
However, direct support for simple mathemat-
ics is being implemented under version 3 of
html.

How do these formats measure up to expecta-
tions of users of the scientific literature? For me,
the major fault today of all of these formats (judged
along with the software and hardware that support
them) is low bandwidth for browsing. Indeed, one
still assimilates far less of interest in an hour of
electronic browsing than in a well-run physical li-
brary. The hypertext features and net references
(via URLs) are worthy innovations, but they do not
fully compensate for slowness.
I believe that this is a sign that browsers (also

called viewers or previewers or screen drivers) are
in their infancy. Their speed should improve with
increased microprocessor power—provided system
complexity does not outstrip the power increase.
The 10-fold increase in processor clock speed from
8 to 80mhz in about 10 years augurs well. As does
the doubling of bus width from 16 to 32 bits. One
bad omen is that the resolution of images will lag

206 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

DVI-based Electronic Publication

behind—if the progress from 70 dpi to 100 dpi in
10 years is any indication.
Equally worrying is the widely heard predic-

tion that Internet services will be too expensive
for third-world countries and also for any scientists
without robust financial support. It is based on
the observation that the Internet is being inexorably
commercialized.
One can hope that a combination of growth

and competition will make the necessary services
affordable. However, there is a grave problem cast-
ing its shadow on this optimism—it can be stated
as follows. Prices tend to be as high as a market
can bear,1 while science teachers and researchers
have relatively little financial clout (and students
even less). Thus, we would be wise to ask whether
scientists will not be playing a losing game in the
same Internet league as business and professional
groups.
My answer is the same as for transmission

speed. To assure excellent service from the Internet
in spite of lacking financial clout, scientists should
adopt their own particularly efficient methods of
electronic publication. So efficient that even third-
world scientists will have adequate access to the
electronic literature.
In the struggle for effective communication, the

scientists’ secret weapon is TEX. Secret because
TEX’s inherent complexity will (I believe) restrict its
use to a small circle centered on the scientific com-
munity in which it was developed. Donald Knuth
paid extraordinary attention to efficient operation
of TEX: the input tex typescripts and the binary
output dvi page description files have information
density comparable to that of ordinary ASCII prose
(to within a factor rarely worse than two or three).
Like prose they are compressible to well under 50%.
To some of you, the idea that electronic pub-

lishing with TEX should be done ‘on the cheap’
is revolting. I claim that flexibility of design can
allow the same TEX systems to do electronic pub-
lishing involving sophisticated typography and high
tech— for example color MPEG animations. Better,
I want the same posting to serve both poor and
rich scientists: a poorly equipped reader might see
a still, black-and-white image instead of the color
animation, but he should be able browse the same
posting.
In prospective summary, our goal should be to

extend the domain of extraordinary efficiency of TEX
from the paper publishing world of the 1980s to

1 This occurs particularly with monopolies and oligopo-
lies, which are widespread in the world communications in-
dustry.

the electronic publishing world of tomorrow—and
without sacrificing high-tech ambitions.
To return to a more specific question: In what

format should science be electronically published?
Probably no one format will prove superior in all
respects. Scientists should reckon carefully where
their best interests lie, and be ready to provide some
development effort at crucial points.
The tex format (in LATEX dialect) is cur-

rently standard on the pioneering preprint server
ftp://xxx.lanl.gov, initiated by Paul Ginsparg. My
article [7] can be interpreted as an attempt to make
Plain TEX as efficient and as archival a markup
system as LATEX but by a radically new approach:
macro compilation. In my view, however, tex for-
mat is best for author and publisher; I believe it is
too complex and fragile for the reader.
The dvi format, although intended for the job

by Knuth, seems to be in a checkmate position
where browsable publication is paramount. As I will
now explain, it could lose out entirely if not further
developed.
The pdf article format is browsable since both

text and graphics are more-or-less instantly viewable
(as well as printable). Exotic languages can be
handled because pdf tends to include necessary fonts
or the relevant parts thereof.
In contrast, a dvi article format is, as of today,

probably only printable at best. Here is a quick
rundown on the difficulties which it faces and which
are addressed by my three proposals. The printabil-
ity of eps graphics inclusions seems to depend on
future implementation of a proposed standard for
\special syntax recently published by Rokicki [5].
The browsability of eps graphics is a largely un-
solved problem except for the lucky few who have
a ‘dvi-to-ps’ converter and an exceptionally good
PostScript viewer. Finally, where one of the more
exotic European languages such as Polish and Czech
is involved, both printing and browsing currently
usually depend on the weighty EC (alias DC) font
collection (outside of Europe, expect to be disap-
pointed when you call for it!).
On the other hand, this dvi format, which

was designed by Knuth’s collaborator David Fuchs,
has one signal advantage. It is by far the simplest
format for the representation of TEX output; indeed
it is presented in Knuth [3], along with helpful
commentary, in less than 10 pages. Alternative
formats such as ps, and pdf are easily ten times
as complex. Therefore dvi is comparatively easy to
interpret and transform. For example, dvi is readily
converted to ps, while the (possibly useful) inverse

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 207

Laurent Siebenmann

conversion of ps to dvi plus eps seems never to have
been attempted.
I will focus on the following three proposals,

which are intended to help the dvi format to avoid
checkmate and then, just possibly, to go on to sur-
pass all competitors! Originally, I explained these
innovations on Internet discussion lists, and my of-
ten eminent interlocutors made significant contribu-
tions. Where the text of this article is concerned,
particular thanks are due to Hans Hagen and Tomas
Rokicki for some close criticism. Each proposal re-
mains tentative in the sense that it is just a sketched
plan for action waiting for support. Developers can
immediately examine many details by consulting the
list archives indicated below, or by contacting me
personally.

• The first proposal is a set of small auxiliary
‘atomic’ fonts to complement Knuth’s (atomic!)
Computer Modern CM fonts so as to serve all Euro-
pean languages with a Latin (non-Cyrillic) alphabet.
Here is a (last?) opportunity to make Knuth’s orig-
inal CM fonts part of an efficient and durable inter-
national system. The new auxiliary fonts would un-
doubtedly be extracted from the rather comprehen-
sive EC font system currently being completed. Be-
yond the English-speaking world, typesetting would
normally use virtual fonts with composite accented
characters based on these atomic fonts. A utility
such as Peter Breitenlohner’s dvicopy would finally
convert the resulting dvi files to the more portable
form using only the atomic fonts. The strong points
of this scheme are unrivaled efficiency, and compati-
bility with the core of TEX users who have no reason
to abandon Knuth’s CM fonts.

• The second proposal is the notion of a ‘multi-
standard’ graphics object for inclusion in a TEX
document. This notion was initially designed to
solve the old problem of providing portable pre-
viewing of eps (encapsulated PostScript) graphics.
But it promises much wider compatibility: a single
dvi-based posting should be able to serve all the
multifarious graphics formats, and all the abilities
and debilities of TEX viewers and printers in all
computer environments. At least one programmer of
a dvi viewer has been developing very much the sort
of mechanism I recommend, namely Hippocrates
Sendoukas, with his viewer DVIWin for PCs. The
near-coincidence of our independently thought-out
ideas is a good omen, suggesting that, in the present
instance, there may be essentially one way to skin
the cat neatly.

• The third proposal can be viewed either as a
very general approach to implementing any standard

for ‘special’ syntax or, alternatively, as a way to
achieve dvi portability without such a standard. On
each of the major platforms, one creates a freely
available utility program converting a (candidate)
standard for specials to the native format of any
selected TEX dvi interpreter on that platform. The
onus of implementation of a standard can thereby
be entirely shifted from the implementors of TEX
screen and printer drivers to the publishers of dvi-
based postings. A low-profile utility project will be
discussed in some detail.

An ‘atomic’ complement to CM fonts

One problem with dvi postings is specifically a Eu-
ropean one. No single font encoding quite manages
to cover the needs of all European languages that
use a Latin-based alphabet. It is well known that
Knuth’s CM fonts are not sufficient for the Poles,
and Czechs. Even the basic EC font encoding (the
Cork norm) with numerous accented letters is not
sufficient for the Latvians, Welsh and others. There
are quite simply more than 256 characters in all.
The auxiliary text font series tc of the EC collection
[4] will probably have to be combined with virtual
fonts to bring them under the common EC roof.
This will tend to render non-portable the dvi files
involving such languages.
As for the Cyrillic alphabet of our hosts at

Dubna, so few accents are used in modern scientific
Russian, that conceivably just one 256-character
encoding including compound characters may suffice
for use by scientists—much as classical CM suffices
in the English-speaking world.
My suggestion for the Latin alphabets is to

supplement Knuth’s CM fonts by a single parallel
series for auxiliary ‘atomic’ characters. It would
contain chiefly separate accents, in distinct versions
for lower- and uppercase letters. But it would also
include some notoriously troublesome characters, for
example, the Slovak character © (typed as \v l),
which is difficult to render reliably and beautifully
from atomic characters. Such troublesome charac-
ters are to be treated as atomic.
Note that the intervention of virtual fonts

makes it possible to assemble composite characters
from ‘atoms’ in distinct fonts; thus, the CM fonts
need not be modified in any way in order to be the
core of such a system.
To achieve optimal typographic quality the au-

thor will use virtual fonts—but the virtual fonts
are to be subsequently ‘atomized’ and so eliminated
from the posted dvi file, for example by use of
Breitenlohner’s dvicopy. There is a significant ty-
pographical benefit to be gained from the use of

208 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

DVI-based Electronic Publication

virtual fonts: accent positioning can be adjusted
to suit any national typography. For example the
dieresis (Umlaut) accent is usually placed lower in
Germany than Knuth’s, whose accent positioning
seems most acceptable in France.
This scheme is compatible with the (core) EC

fonts in the sense that virtual EC fonts (hopefully
with the true EC metrics) can be based on CM
and the envisaged atomic complement to CM. This
imposes inclusion of some miscellaneous characters
that made their TEX début in the Cork encoding.
To be widely adopted for browsing electronic

scientific postings, such complementary atomic fonts
will have to be made available in Adobe Type 1
format, matching the BSR and BaKoMa Type 1 font
series.
A somewhat similar proposal (independent of

mine) for Adobe-distributed Type 1 fonts was made
by Pierre Mackay. It influenced the May 1995 en-
coding named 8r (for 8bit raw) used by the PSNFSS
font system of LATEX fame. But 8r is not atomic—
if it had been made atomic (as the sadly lacunary
Adobe Standard Encoding nearly was) that would
have denied access to numerous accented characters
present in the Type 1 afb files and reduce them to
extra baggage. In my view, the CM fonts of Knuth
are unique and deserve unique treatment.
The window of opportunity for acting on the

proposal above is opening up with the approaching
completion by Jörg Knappen of the EC fonts. The
main discussion of this proposal took place on the
Math Fonts list [2] from March through May 1994;
hopefully, its archive will remain available. Tech-
nical problems related to the notion of ‘drift’ are
discussed there.2

EPS graphics integration

The most glaring defect of dvi format has hitherto
been the lack of a standard ‘special’ syntax for in-
clusion of graphics objects via TEX’s \special com-
mand— for it tends to make dvi files non-portable.3

Where eps graphics (i.e., Encapsulated PostScript
graphics) are concerned, a specific proposal for stan-
dard ‘special’ syntax has recently been put forward
by Rokicki.

2 These problems (rather minor ones, I believe) could be
entirely bannished by a TUG standard for dvi interpretation.

3 The tex format does not have an acute problem here.
My boxedeps.tex (Feb. 1991; a TEX macro package available
on CTAN) first made tex typescripts using eps graphics
portable in spite of this lack of \special standardization.
LATEX has recently adopted a similar approach (basically one
of systematically accommodating all extant syntaxes) and
extended it to \special commands governing color, rotations,
etc.

Unfortunately TEX screen viewers are, more
often then not, unable to directly view eps graphics.
Prompt to recognize this problem, Adobe provided
standard enhanced formats for screen viewing on
Macintosh, and DOS (or MS Windows) systems.4

On Macintosh, the enhanced viewer file includes a
PICT resource numbered 256 in the resource fork
of the eps file; it contains either a “packbits” com-
pressed bitmap or (more recently) vectorized PICT
graphics.5 On PCs, the file has a binary format
sometimes called EPSP; this has a characteristic
header, a segment for the eps file, and a segment
for the bitmapped preview; the latter may be a
simple tif bitmap with “packbits” compression, or
a vectorized wmf. Here, tif means Tagged Image
Format File (TIFF is the official acronym), and wmf
means Windows MetaFile.
If the enhanced PC and Macintosh viewer for-

mats had been one and the same format, it would
surely have been adopted overnight as a standard.
But, as matters now stand, the enhanced eps files
pose an annoying portability problem—and neither
seems to have been widely adopted on UNIX sys-
tems—which tend to rely on PostScript interpreters
for graphics previewing.
Thus, in practice, the standard proposed by

Rokicki will assure portability between printers but
often not between TEX viewers on different plat-
forms. This puts dvi format in grave jeopardy as
a publication format.
The portable viewing problem for eps graphics

could (as noted above) be solved by setting up a
viewing standard common to the Mac and PC plat-
forms. Here is an obvious approach: have the eps
text file myfig.eps accompanied by a parallel tif
bitmap file myfig.tif. With modest effort, viewer
builders on all platforms could derive the desired
preview from the tif bitmap. Such bitmaps can
be displayed as fast as the surrounding text. If
the bitmap is scaled downwards (not upwards!) to
its screen size, the image quality is usually good—
at least for the line figures that dominate in the
mathematical sciences. For best quality, figure la-
bels should be put in a TEX overlay. The syntax
proposed by Rokicki is adequate; so one merely en-
hances the functionality to provide previewing using
the tif bitmaps.

4 Adobe also provided a device-independent preview for-
mat EPSI (I for Interchange). Alas, its bulk is high and its
quality low, and it is almost never used.

5 This view-enhanced Macintosh eps file format is univer-
sally supported in the Macintosh world. The benefit justifies
the considerable cost in space: typically the compressed
volume devoted to graphics is doubled.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 209

Laurent Siebenmann

This solution seems worth implementing since it
would solve an urgent problem. The basic function-
ality, i.e., use of a parallel tif file to give a viewer
image corresponding to an eps file is already present
in the two MS Windows viewers DVIWin [6] and
DVIWindo [9]. They are by Sendoukas and Y&Y
Inc., respectively. Unfortunately, such a develop-
ment seems unlikely to come about spontaneously. . .

Multi-standard graphics integration

The above potential solution for eps graphics inte-
gration with previewing is a very particular case of
the use of several graphics standards to represent a
single graphics object. Would it not be worthwhile
to have a general scheme that goes well beyond the
viewing problem as Adobe understood it ten years
ago? We need a multi-standard scheme that can
provide viewers with the very best screen represen-
tations available for any given platform!
This seems to me a bold enough idea to com-

mand the respect of a standards committee. I am
hopeful that any number of distinct graphics norms
can be handled by one and the same protocol so as
to allow the same dvi file to serve on all platforms
under all circumstances. Sendoukas was perhaps the
first to envisage this possibility; see the documenta-
tion of his DVIWin.
Fortunately, the sort of ‘special’ syntax pro-

posed by Rokicki seems adequate for the function-
ality we want. For example:

\special{:: object multifig=myfig

width=200 height=120}

might be be interpreted as follows: there is a graph-
ics object whose name root is myfig; its represen-
tation norm is to be selected by the driver among
those available; the image is to be linearly scaled
to fit exactly onto the rectangle 200bp wide and
120bp high, with its lower left corner located at
the TEX insertion point (all mentioned dimensions
are thereafter corrected by TEX’s magnification fac-
tor). Thus, in this most convenient case, the image
rectangle (on paper or screen) is specified in the
\special’s argument string viewed in isolation.
More specifically, consider the integration of a

graphics object myfig that is represented as a high-
resolution color bitmap myfig.jpg of JPEG norm
for viewers that have such wonderful6 capabilities,
and by a simple tif bitmap file7 myfig.tif de-

6 Notably unrivaled compactness and nearly perfect scal-
ability.

7 Simple tif means black-white, ‘packbits’-compressed,
and with strip structure but no tiles. This is the sort of
preview that Adobe Illustrator can include inside eps files for
PCs.

signed to serve as a lowest-common-denominator
format for viewers without JPEG display capabil-
ities. We explain the integration in terms of this
example, which is one that possibly no TEX viewer
yet handles today. Indeed, Possibly the one-file
eps-with-preview offered by Adobe blinded most
developers to the virtues of the more general multi-
standard scheme.
Only the article author’s intended experience,

and that of the browsing reader needs to be de-
scribed, for we have already indicated the sort of
‘special’ syntax that TEX and the viewer will ma-
nipulate behind the user’s back.
The user will exploit a macro package for in-

tegration of multi-standard graphics; this package
will have syntax similar to one of the several inte-
gration packages for eps graphics.8 (The TEX user
rarely wants to have to work with explicit figure
dimensions!) Thus, figure placement and size will be
adjusted using conventional macro commands such
as \ForceWidth{0.75\hsize}.
Much as with LATEX’s cross-referencing, the

result of a first production cycle is likely to be
disappointing; typically the figure is crammed into
a squared-out box. This is because TEX is quite
unable to find out the shape or size of the figure
since both graphics files mentioned are binary and
TEX reads only text files. But the viewer can
conveniently take on that task,9 and the author is
instructed to preview and expect good results on
second and later runs.
If the viewer is able to accept JPEG files, pre-

viewing is in color, and, if not, the image is the black
and white familiar for eps previewing.
To post the dvi file with its graphics inclusion,

the author packages it with the jpg and tif files
in a directory—whence the posting format name
dvi etc. He should omit an ephemeral ASCII file
myfig.gdf, say, a temporary ‘graphics description
file’, which is created by the viewer or alternatively
by the utility mentioned in the last note, and which
serves to pass on to TEX the bounding box informa-
tion on the graphics object that TEX initially could
not read.
What happens when a user browses this dvi

etc posting with a different viewer supporting the
proposed multi-standard? The user immediately

8 It can be derived from the existing version by relatively
minor generalizations.

9 Alternative: It would be more conventional to assign
this task to a utility that is to be run first off; on the
other hand, one utility per platform would suffice, and a
disappointing first run would be avoided. For example, on
on PCs, a utility called TIFFTAGS can be used to deal with
tif files.

210 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

DVI-based Electronic Publication

sees the best image his viewer can offer on the basis
of available files. But let us imagine that the user
sees only the modest tif and is unhappy because
he knows that his viewer can handle good-quality
gif images (but not jpg). Here the multi-standard
again comes to the rescue: it suffices to convert from
jpg to gif and the high-resolution images appear!10

Popular PICT and WMF scalable graph-
ics become portable. The above JPEG example
of multi-standard graphics integration is forward-
looking. Here is an application that gives an imme-
diate payoff. One creates a preprint posting using
the Macintosh’s native vectorized PICT graphics
(suffix pct) and the multi-standard ‘special’. A
notice with the electronic posting recommends that
users on other platforms convert the PICT graphics
to their favorite local norm, which for PCs means a
Microsoft Windows MetaFile with extension wmf.11

The multi-standard graphics integration using a sin-
gle ‘special’ syntax will assure that the graphics
appear on the end-user’s screen as soon as a version
in his native norm is available. Successful viewing
of vectorized graphics almost always implies optimal
printing, but not conversely.
In summary, with multi-standard graphics in-

tegration, one can confidently use and post with
TEX the native vectorized (scalable) linefigures of
Macintosh and Microsoft Windows. The viewing is
then of optimal quality at all scales; this includes
the labels if they are based on hinted outline fonts.
A high degree of portability will be assured.
Since there is, at long last, a technical working

group devoted to ‘special’ standards [5], let us wish
them the intelligence, openness, stamina and good-
will necessary to deliver a powerful standard. The
long-term health of TEX’s dvi format requires such
a standard.
The Internet discussion of the above graphics

multi-standard proposal can be consulted on WWW
as a hypermail archive:

http://math.albany.edu:8800/hm/emj/

10 There is a regrettable tendency among users to convert
jpg files at an early stage to eps; this often means the file is
encysted in the eps in a bulky form that moreover usually
cannot be exploited for screen viewing. A best possible
format, such as jpg for color bitmaps, deserves to be posted
as is.
11 Powerful conversion utilities are becoming available on

most platforms. For the many users who refuse to become
involved in conversions, one can hope thatWWW servers will
soon automatically supply to any WWW-connected viewer
the graphics norm(s) it requests. Sendoukas recommends an
alternative: viewers and printer drivers could ally themselves
with conversion utilities so that they become able to exploit
a broad spectrum of graphics norms.

Assisted portability of dvi files

The classic retort to pious predictions concerning
future standards is: “Don’t hold your breath while
waiting!” If the past is the measure of speed of
progress with ‘special’ standards it could be another
decade before an official standard deals frontally
with multi-standard graphics. This educated skep-
ticism drives me to propose an immediately ap-
plicable scheme, one which is similar in spirit to
the boxedeps utility that I developed in the period
1989–1991 to make tex typescripts with eps graph-
ics immediately portable.
This last proposal can be viewed either as a very

general approach to rapidly implementing standards
for ‘special’ syntax (graphical or not!) or, alterna-
tively, as a way to survive without such standards.

Zapping specials We first discuss a bite-sized
form of assisted portability. We consider a small
but embarrassing problem that has conjecturally
held back the dissemination of dvi files containing
HyperTEX specials. The shortage of viewers that
support the specials is not the culprit. In principle,
electronic science journal postings in dvi format
should all include HyperTEX specials, since these
potentially offer the revolutionary viewer features
that are making html and pdf postings so attrac-
tive. The presence of these specials would be a
strong incentive to TEX viewer modernization and
a payoff to those who have installed HyperTEX
viewers. So why are HyperTEX dvi files so rarely
posted? Mostly, I claim, because so many existing
viewers and printer drivers complain loudly about
unrecognized specials, and sometimes go so far as
to halt processing. This is quite incompatible with
my own interpretation of Knuth’s intentions for the
\special command (see The TEXbook, pages 228–
229). I would say that he recommends a driver
execute only specials it understands; and that, for
those specials it does not understand, the driver
should do exactly nothing, gracefully. Clearly many
programmers have a different interpretation and
espouse a less tolerant policy; and unfortunately,
Rokicki does not clarify this issue.
And so, my introductory challenge is: Find a

way to let existing HyperTEX specials circulate in
dvi files without wreaking havoc where HyperTEX
is not supported. There is a practical response. In
view of the relative simplicity of the dvi format, one
can make available on all platforms a small utility to
automatically delete all specials from any dvi file.
Thus, specials that cause a fuss can be suppressed
whenever necessary. In reality this ‘zapping’ would

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 211

Laurent Siebenmann

probably be just one among several functions of a
dvi utility.
There is a related development that should be

mentioned here since it inspired the proposal for
assisted dvi portability. Geoffrey Tobin has defined
a new ASCII version dvl of dvi format along with
converters in both directions [8]. As it stands,
Tobin’s system allows electronic publishers to adjust
or update ‘special’ syntax using a programmable
editor. On the other hand, any autonomous and
fully automatic utility for users would probably
better operate directly on the binary dvi files.
After the above ‘teaser’ featuring ‘special zap-

ping’, let us consider more important roles for utili-
ties that propose to adapt dvi-based postings to the
idiosyncrasies of viewers and printer drivers. There
are many possible profiles for such dvi ‘localizer’
utilities; I mention two.

A) High-profile utility Given any dvi file, this
utility would convert the specials in it to those
required by a driver to be specified (within bounds)
by the user. Reasonable bounds might mean: to
suit any of the screen and printer drivers present
on the platform where the utility operates. Such a
utility would certainly be worthwhile, but it would
be of considerable size, and tiresome to construct,
because specials and their syntaxes are numerous
and various. There would also be a big maintenance
problem since specials are proliferating; thus, one
might frequently encounter messages to the effect
that certain specials listed in the log file could not
be understood, and that, just possibly, a more recent
version of the utility would do a more thorough job.

B) Low-profile utility This would be designed to
serve only quite restricted dvi files— for example,
those adhering to an ad hoc specials standard. This
seems very suitable for a group of electronic pub-
lishers.
Let us consider a hypothetical but plausible

instance. A group of electronic scientific journals
decides that, for their current needs, a limited set
of specials will suffice—say, those governing color,
eps integration with bitmapped previewing, basic
hypertext, and net references (URLs). They post
dvi files plus graphics files adhering to their ad
hoc standard and they build the corresponding util-
ities for all platforms and post them conspicuously.
I provisionally call both the format and the utility
dvi etc.
I believe that such a low-profile scheme is ripe

for implementation. So let us examine how some
obvious difficulties can be overcome.

Problem (i) The posted dvi had better not con-
tain the ad hoc specials standard in an active form,
since many users will be assaulted by complaints
from touchy drivers.

Solution: The posted dvi can have its ad hoc spe-
cials removed to an external module, the ‘special’
locations being remembered by a system of point-
ers. Then the dvi file contains no true specials
whatsoever, and there will be no complaints if the
uninformed user directly views the dvi. In that case,
there should be a clear notice on a cover sheet (the
first dvi page displayed!) indicating that all specials
are currently inactive and should be activated by
use of the dvi etc utility. When that is done, the
cover sheet changes to indicate for which driver(s)
the dvi is now suitable and how versions for other
drivers can be obtained.

Problem (ii) It should be possible to arrange for
automated reception and viewing of downloaded
documents.

Solution: Scenarios for automation will vary. Sup-
posing (for example) that the reception platform
is Macintosh, Mime conventions can assign to the
auxiliary module brouwer.etc a type and creator
so as to launch the dvi etc utility. If this utility
has been parametered for a specific dvi viewer and
put on alert status, then conversion of the posting to
the format of the driver can proceed automatically
and the localized dvi file can appear automatically
in a window of the viewer.

Problem (iii) Graphics objects in viewer-ready
bitmapped form never have the same format for
MS Windows and Macintosh systems. But, for
simplicity, it is highly desirable to have one and
the same graphics material for all platforms. What
to do?

Solution (for b/w bitmaps): Since the conversion
of the simplest tif to a bitmapped Macintosh PICT
resource is not difficult to program, the external
module need only contain the tif bitmap. The
utility should therefore (as necessary) combine tif
plus eps files to create the Macintosh or PC preview-
enhanced eps file format of Adobe.
Thus, an article brouwer can be posted in two

parts: brouwer.dvi, a classical dvi file (without
specials), and brouwer.etc, an auxiliary module
containing ‘special’ material. There is also a one-
file alternative mentioned below.

Problem (iv) The ps and pdf formats present an
article as a single file including the graphics. To

212 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

DVI-based Electronic Publication

compete successfully, a dvi-based posting should be
equally unified.

Solution: This problem more or less disappears
if each article is presented as a zip archive file.
Zip is an interplatform standard for packaging and
compressing files and/or directories. It attends to
such niceties as directory structure, the text versus
binary distinction, Macintosh types and creators,
and UNIX permissions, etc.

Improved Solution: Anselm Lingnau lingnau@tm.
informatik.uni-frankfurt.de pointed out on the
EMJ list that, at the risk of violating the letter of
the law for dvi format, it is in practice possible to
insert an arbitrarily long segment of material into a
dvi file without influencing its behavior under any
known driver. (His aim was to include pk fonts in
dvi files.) More precisely, in the terminal segment:
post 〈postamble〉 〈font definitions〉 post post q[4] 2
223’s[≥4], one is free to insert extra stuff before the
four-byte pointer q[4] to the file offset of post.
Thus, all the ‘special’ and graphics material for

an article can alternatively be located in a single
file, which will itself behave as a dvi file. (This dvi
should have a cover sheet that tells how it could be
exploited more fully.)
This insistance on a one-file format is somewhat

misguided. When interplatform standards such as
tif or eps are involved, it can be helpful to informed
users to present such files ‘tel quel’. For example, in
the absence of a viewer with adequate graphics capa-
bilities, tif graphics could be viewed autonomously.
Notice that in this low-profile dvi etc scheme,

the material a user fetches from a server is always
independent of his computing platform, so it lends
itself to email delivery and to exchanges among
colleagues, i.e., to situations where the sender has
no knowledge of the addressee’s platform. (However,
to serve platforms not yet equipped with a dvi etc
utility, it makes sense to dispense ‘prelocalized’
dvi etc files suitably requested by email.)
The dvi etc format is still in flux; it will have

to be designed with care for maximum flexibility
since use of specials knows no bounds.

The politics of assisted dvi portability This
new strategy—particularly in the above low-profile
form—seems to have many advantages:

(a) the total amount of work involved is hopefully
less than if individual driver builders were all
asked to retrofit a new standard;

(b) by creating such a coherent system of utilities
one can provide a universally valid distribution
format without having to extract assent and
effort from every last driver builder;

(c) upgrading such a format is a pay-as-you-go
affair, which can be transparent to the end-user
and to the driver builders;

(d) competing formats can coexist peacefully;

(e) a small cross-platform group of like-minded de-
velopers is able to implement the system.

Scorecard

Here is a quick ranking of dvi format measured
against its two closest rivals, ps and pdf.

• reliability: dvi and ps are very reliable whereas
pdf is still having numerous very serious teething
problems. I will not discuss them except to point
out that they are providing a few years’ grace for
the TEX community to come up with a competitive
dvi-based format.

• viewer availability: dvi and pdf rank about
equal for scientists, while ps ranks last since ghost-
script-based PostScript viewers are not widely in-
stalled outside the UNIX world.12 This could change
rapidly in the PC world. But, in the Macintosh
world, there is still no PostScript viewer that is
suitable for browsing.

• format portability: The straggler is the dvi
format: Only printed English text with mathematics
is currently portable in dvi format; graphics or other
‘special’ enhancements are non-portable. That is
not good enough for dvi format to hold its own as
a publication format. But the proposed standard
[5] and the three proposals of this article are aimed
at extending this portability to cover essentially all
scientific publication in electronic form.

• print quality: dvi is the currently the win-
ner because for most printers (PostScript and non-
PostScript) there exist several good drivers. For
the PostScript printers dvi and and pdf rank equal
and offer optimal quality. The ps format is slightly
inferior in current practice; for, by tradition, non-
scalable pk fonts of 300 or 600 dpi resolution are
used.

• print convenience: ps files often pose problems
for lack of a parent application to manage the print-
ing operation. In particular, the printing of a part
of a PostScript file is too often out of reach of the
casual user.

• graphics screen viewing quality: ps and pdf
beat dvi whenever the dvi viewer uses bitmapped
previewing. However, provided figure labels are put
in a TEX overlay, the bitmaps are usually quite
satisfactory.

12 Some ghostscript-based viewers will soon accept pdf.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 213

Laurent Siebenmann

• text (and math) screen viewing quality: ps ap-
pears to be the loser. On PC and UNIX platforms,
ghostscript-based viewers are available. But there
is a quality gap since the Type 1 hinting that makes
ATM (Adobe Type Manager) font rendering so re-
markable is still poorly supported by the viewers.
The ghostscript-based viewers are learning to use
grayscale blending (known as anti-aliasing) to re-
place Type 1 hinting.13 If ATM and Type 1 fonts
are available, dvi matches pdf quality, and both
provide best quality. If not, pdf is far superior at
most magnifications.

• viewer speed: dvi viewers are faster with few
exceptions, often dramatically faster. Their bitmap-
ped graphics are also fast. I consider slowness the
worst failing of the ps and pdf viewers.

• file size: dvi is the winner: typically only
2K octets per page once compressed. Even when
compressed, pdf is bulky because it is currently
necessary to include (partially downloaded) Type 1
fonts; 20K octets per page is typical for articles of
moderate length.

• public acceptance: Only time will tell; the race
has only begun. A big piece of the pie is sure to go to
pdf since it is being actively promoted by a powerful
corporation aiming at a nascent multi-billion dollar
market: the totality of electronic publishing.

The prospects of dvi format

I have an undisguised bias in favor of dvi format for
scientific postings, and for some good reasons:

(a) The TEX community is undisputed master of
the dvi standard.

(b) dvi format is output by TEX; thus, so long as
TEX dominates the composition of scientific docu-
ments, dvi format will hopefully be conveniently
convertible to all page description formats, including
newcomers.14

(c) The comparative simplicity of the dvi format
makes possible significant developments in return for
a moderate effort.

(d) TEX viewer development has been the cutting
edge of TEXnology for many years. If pdf for-
mat gains a near-monopoly position for browsable
postings, I fear there will be a dramatic wilting
back of TEX system development, particularly in
the public domain and shareware realms. When
a viewer falters, the linked TEX user interface also

13 In the PC world, a “ps” viewer exploiting anti-aliasing
has recently appeared; it is psview and the contact address
is tdieting@iicm.tu-graz.ac.at.
14 On the other hand, no electronic publisher would dream

of discarding the tex source files!

falters. Moreover, a monetary hurdle to electronic
science publication may then become a fact of life—
one that is, alas, substantial for an individual but
negligible for an organization. (Acrobat Distiller
costs several hundred dollars, as do commercial TEX
systems.)

The future role of the dvi format in electronic
publication of science has yet to be decided by
programming and subsequent competition. I believe
the three developments informally proposed in this
article could help TEX’s own dvi format to win a
role that is viable, and indeed enviable.

References

[1] Electronic Math Journal List. Archive at
http://math.albany.edu:8800/hm/emj/; wais
index at http://nyjm.albany.edu:8000/SF/
emjsearch.html; this list was organized by
Mark Steinberger and the author.

[2] Math font discussion list. math-font-discuss@
cogs.sussex.ac.uk; see its archives on ftp
cogs.sussex.ac.uk; this list was organized by
Alan Jeffrey, alanje@cogs.susx.ac.uk.

[3] Knuth, D. TEX The Program. Reading, Mass.:
Addison Wesley, 1986.

[4] Knappen, Jörg. “Release 1.2 of the dc-fonts:
Improvements to the European letters and first
release of the text companion symbols.” TUG-
boat 16,4 (1995), pages 381– 387.

[5] Rokicki, Tomas G. “A proposed standard for
specials.” TUGboat 16,4 (1995), pages 395– 401.
[Compare earlier proposals by Don Hosek (1987),
and Nelson Beebe (1990), archived on CTAN in
dviware/driv-standard/papers/.]

[6] Sendoukas, Hippocrates. DVIWin, a dvi viewer
and printer driver forMSWindows, exploiting pk
fonts. [Available on CTAN in dviware/dviwin/.]

[7] Siebenmann, L. “Occam’s Razor and Macro
Management.” Proceedings of the Ninth Euro-
pean TEX Conference (Sept. 4–8, 1995, Papen-
daal, Netherlands), 317 – 329. [Included in elec-
tronic form in the distribution of Occam; see
CTAN in macros/generic/ or ftp://matups.
math.u-psud.fr/pub/TeX/.]

[8] Tobin, G. DVL: A DVI Text Language. 1995. [A
portable package found on CTAN in dviware/
dtl.]

[9] Y&Y Inc., DVIWindo, commercial dvi viewer
and printer driver for MS Windows, exploiting
Type 1 fonts. See http://www.YandY.com.

214 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Introduction

In this short paper I will account for the history
and global aspects of BLUe’s format1 without going
into too much detail. BLUe’s format was already on
its way as I studied LATEX, AMS-TEX, TUGboat
styles, Spivak’s, and of course Knuth’s works, only I
did not realize it at the time. I envisioned a series of
manuals: Publishing with LATEX, Publishing with
TEX (PWT for short), Publishing with SGML, and
Publishing with you-name-it. The idea was that
all these guides would essentially treat the same
typesetting goals with only the tool exchanged.

At BachoTEX94, where I presented “Manmac
BLUes” and concluded by saying “If only there
had been a user’s guide for manmac, the (LA)TEX
world would look different,” Bogus law Jackowski
challenged me to write such a guide. I replied that
I had 2.5D METAFONT on my mind. Once home,
however, I thought it over and at the EuroTEX94
in Gdansk that fall I reported about the birth of a
BLUe’s format which not only built on manmac but
also accounted for developments since the debut of
manmac.

At EuroTEX95 I spoke about indexing on-
the-fly within one pass, and about the database
approach to store and reuse formats, tools (add-
ons), references, addresses, and pictures. A tool
to assist conversion of a script towards other en-
vironments also emerged, called BLUe-2-LATEX —
nicknamed BLUe’s convertor assistant.

Now, at TUG96 I can look back, while contin-
uing with 2.5D METAFONT, and say that BLUe’s
format is a personalized alternative to LATEX, and

1 BLUe stands for Mr. BLUe — my innocent user
and relative of Ben Lee User of The TEXbook fame
(Knuth 1986).

TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting 215

BLUe’s Format — the off-off alternative

BLUe’s Format — the off-off alternative

Kees van der Laan
Hunzeweg 57

9893 PB Garnwerd

The Netherlands

Email: cgl@rc.service.rug.nl

Abstract

BLUe’s format is an independent set of TEX macros to assist self-publishing
authors with creating, formatting, exchanging and maintaining compuscripts.
It comes with a user’s guide and TEXnical documentation. The format builds
upon manmac, upon functionalities provided in the TUGboat styles, and upon
experience gained by the AMS in TEX formatting.

off-off for the time being. The macros are shareware.
The documentation is free for personal use.

Why?

I needed macros to provide computer-assisted han-
dling of information, be it consumption or produc-
tion and dessimination, and — something which I
understand — would serve a lifetime.

Looking back, BLUe’s format system is, on the
one hand, an answer to such questions as:

– What has Knuth done in electronic publishing?
– Why?
– How?
– How does he use it?
– What can I do with it?

On the other hand, it integrates developments
since.2

The user is me,3 but it might be worthwhile
for all those authors who:

– practise self-publishing
– choose for English and ASCII
– adhere to TEX formatting
– favor minimal markup
– like a lifetime tool, with goodies such as sta-

bility, consistency, simplicity, portability, gene-
rality, flexibility, extensibility

– favor an open, documented system
– prefer an extensible (formatting) language
– support the public domain software credo

2 Compare Douglas Adams’ “The answer is 42 if
only I knew the question.”
3 Well, . . . and a few others. A Dutch student

reported “The way you describe Knuth’s markup
makes you feel that this is the natural way to mark
up scripts.”

However, the style-designer, and hacker, might find
it interesting to see how to handle a bibliography
in one pass, how to index in one pass, how to
code a minimal markup macro on top of a two-part
macro with nearly the same functionalities, or how
to provide for options without parsing arguments.

What is BLUe’s format?

BLUe’s format is a self-contained set of macros on
top of plain TEX and manmac, designed to assist
authors with creating, formatting, exchanging and
maintaining compuscripts. It comes with a user’s
guide4 and TEXnical documentation. These last two
have appeared as articles in MAPs, the so-called
“Paradigm series” (see references).

The format builds upon manmac (Knuth’s
macros to typeset The TEXbook and The META-
FONTbook), the functionalities provided by the
TUGboat styles, and experience gained by the AMS
in TEX formatting.

It contains a default note format, as well as a
format for reports, letters, and transparencies. The
letter format allows mail-merge with addresses pro-
vided in a database. It also allows the typesetting
of address labels. Graphics can be done via TEX
alone by Knuth’s boxes of manmac or his picture
environment subset gkpmac,5 and by some turtle
graphics macros of my own. A ToC (Table of Con-
tents) utility assists an author when developing a
text. Indexing can be done in one pass, completely
within TEX.

Add-ons, formats, references, and pictures are
stored in databases, such that you don’t have to
“pay” for what you don’t use, nor do you have to
be aware of the physical location. The latter is
very convenient when working on different systems.
A convertor assistant — blue-2-LATEX — facilitates
submitting compuscripts for regular publication.

Usage aspects

Each format has its specific tags. The default note
format differs from the letter format, because the
task is different. The transparencies format shares
the tags with the default but the markup is biased
by line-by-line processing, because it centres.

A template for the default note format reads
as follows:

4 A Russian version is in progress.
5 The macros used to typeset Concrete Mathe-

matics (Knuth 1988).

216 TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting

Kees van der Laan

\input blue.tex \loadindexmacros

\loadtocmacros

\bluetitle ...

\bluesubtitle ...

\blueissue ...

\bluekeywords ...

\blueabstract ...

\beginscript

\bluehead ...

<copy proper>

\pasteupindex\pasteuptoc

\endscript

A \blue<tag> takes a blank line as (implicit)
terminator, and there are headings for three levels.

The token variables \author, \address, and
\netaddress are provided with defaults, so they are
not needed in the source file.6 Bibliographic entries
are inserted into the database lit.dat; the look-
and-feel of typeset references has been borrowed
from the AMS. The markup of index reminders is
consistent with the approach taken by Knuth for
The TEXbook and The METAFONTbook.

Special paragraphs. All special paragraphs are
coded independently; they can be used with any fla-
vor of TEX. Details are provided in the “Publishing
with TEX” user’s guide. Some highlights are noted
here.

The special paragraphs from manmac include
\begindisplay and \enddisplay, \beginsyntax
and \endsyntax, and so on. Items take care
of automatic sequencing, be it by numbers or by
letters. The end separator is \smallbreak.

Verbatims have default ! as escape character.
These verbatims are called semi-transparent. File
verbatim inclusion goes via \bluefileverbatim.
Pascal fragments can be marked up by bracketting
the fragment by \beginpascal end \endpascal,
without inserting any additional markup into the
code — the formatting macros are loaded behind the
scenes.

Binary trees can be marked up via \beginbin-
tree and \endbintree. The specification of data
for a table goes via \data. Presentation of a table
can be varied by using the attributes \framed and

6 Maybe I should provide these and others in
a small file which can be customized more easily.
Maybe I can even use \everyjob and prompt for
the personalized data, with an instruction at the
end that \everyjob inactivate itself.

\ruled. Math markup has been extended by com-
patible automatic forward cross-referencing. The
creation of pictures has been separated from the
reuse of pictures. For creation of pictures by TEX
alone, Knuth’s manmac boxes and his subset of the
picture environment has been adopted. Addition-
ally, I have developed some turtle graphics macros,
which allow, for example, the typesetting of fractals
or (rotated) trees, all within TEX alone.

Design considerations

Specifications are needed for:
– look-and-feel in print — typographic design
– markup language — syntax and semantics
– coding style — two-part macros, handling of

options, and so on

Typographic design. For the look-and-feel of the
result of a blue script in two-column I took over the
TUGboat layout.

Markup language. I like the orthogonal ap-
proach; for example, to treat the following elements:

/ Minimal tags
/
/

Place within context

Options

independently from one other.

Conventions for control sequences. The gen-
eral conventions include:

– \begin<tag>, \end<tag> pairs, which take
global options via \every<tag> and local op-
tions via \this<tag>7

– \<tag>, the equivalent one-part macro
– \blue<tag>, minimal variant
– token variables \this<tag> and \every<tag>

for user guidance (also called options)
– token variables \pre<tag> and \post<tag> for

controlling positioning within context
– token variables to convey information, i.e., the

title
– \pasteup<tag> to position the formatted text

element within its context
More specifically, the following examples show the
control sequences for the section heads:

\blue<tag>... \<tag>{...} \begin<tag>

...

\end<tag>

optionally preceded by

7 Consistent with Knuth’s \every〈tag〉{. . .}.

TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting 217

BLUe’s Format — the off-off alternative

\every<tag>{...} \this<tag>{...}

Where the place within context (see below) differs
from the default, supply:

\pre<tag>{...} \post<tag>{...}

Options For compuscripts, it is useful to
specify whether the latest version is at hand or
not. Another option is to specify \onecol.8 With
verbatims it is handy to supply catcode changes
and to specify a verbatim input file. Pictures can
take different values from the default for their size,
and some pictures allow visibility levels.
Place within context Formatting can be

seen as placing elements within context. To param-
eterize the place within context is a good approach
because it provides the user or style designer with
the hooks needed for the look-and-feel of the result.
A good example of this is \head and such, where
the user can set the whitespace via their versions of
the commands \prehead... and \posthead... .
The same can be done for verbatims.

For tables the \postbtable token variable is
already used for measurements of the table. Usually
I place the \vbox (which results from my btable
macro) in a math display, which is consistent with
the examples in The TEXbook.

I’m still considering how to format tables at
the beginning of a text and how to paste up these
boxes in the right place; this is similar to the list
of references or my supporting ToC. The difference
with references is that we have usually many tables,
and because box registers are limited available, we
might end up in trouble. The next best idea is to
also have the tables stored in a database and then
load them from there selectively, similar to what I
already do with figures.

For the moment there is nothing special about
figures to be included in the database, as long as
they obey the syntax of a database element. For
figures I have not yet provide a \prefigure or
\postfigure. The pictures are delivered in an
\hbox.
Changing the defaults Token variables can

be changed in two ways:
– assign new values to the token variables
– extend the token variable with your extras

An example of the latter follows, showing cases of
appending to \post<tag> and then proceeding to
\pre<tag>:

\post<tag>\ea{\the\post<tag>

<your extensions>}

%

8 Default is \twocol in the note format.

\def\preadd{<your extensions>}

\pre<tag>\ea{\ea\preadd\the\pre<tag>}

Coding

In this part some ideas behind the coding are
supplied. In the Paradigm series of articles, various
cases — such as two-part macros and one-part on
top, handling of options, coding of items, headings,
and so on — were treated.

Conventions. Again, to follow Knuth’s lead, espe-
cially as done in manmac, I have favored the so-called
two-part macros at the lowest level.

Starting with the rootname <tag>, composite
macro names have been created, using prefixes such
as blue, begin, this, every, pasteup, pre, post
and end, and postfixes such as box and name.
For example, the user will find \bluehead, \head,
\beginhead, \endhead, \prehead and \posthead.
However, not all possible combinations exist; for
example, \thishead is not provided.

For language-dependent names I have intro-
duced definitions of the form \<tag>name, for
example, which is for use within the environments
keywords, abstract and references.9

Where available macros have been used, I have
added an extra level, to comply with my markup
conventions. When the original macro name had
to be preserved for the outer level the name was
changed, usually by using a prefix pointing to the
source.

Beginning of the BLUe script. Design goals
include:

– several compuscripts can be processed in one
run

– preliminary matter can be provided in any
order

– start with a rule in print
– set title in bold
– set authorname indented
– store address information to be set at the end
– set keywords in smaller type
– set abstract ‘narrowed’ and in smaller type
– set (small) table of contents
– title and issue are used in running headline
– running foot contains draft, page number and

copyright
The typesetting of the preliminary matter is done
by \beginscript.

9 This is an aside because I consider English the
lingua franca for scientific communication.

218 TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting

Kees van der Laan

Headers. Design goals include:
– discourage setting the title alone at the end of

a page
– typeset (flexible) vertical space before (large)

and after (medium) the title
– gobble spaces at the beginning of the title
– set the title in bold face (and the current size)

unindented
– don’t indent the first line of the subsequent

text
Templates for the coding of heads come from The
TEXbook’s \beginsection and manmac’s \begin-
chapter.

The above is only part of the story. In \report
I also needed to reuse the titles for the Table
of Contents, Table of Examples, and the running
heads. I could not combine storing and processing
on the fly. The best I could achieve was to allow
for changes in category codes now and then. This
is handy for math material appearing in titles;
however, because the circumflex is used for other
purposes, its catcode has to be temporarily changed
to 7 in titles.

Selective loading. The specifications must:
– load specified parts
– prevent side-effects (work within a group)
– separate typesetting from paste-up
– cope in an elegant way with typos in macro

names
At the heart of the coding lies the principle that

specified control sequences are redefined. This is in
contrast with common usage, which seeks to prevent
a format or style file from being overwritten. My
use is the opposite: I specify the names I want to
have selected via a definition and explicitly require
this definition to be overridden.

The list element tag — also called an active list
separator — is fundamental. The idea is that this
list element tag can be defined such that we can
either use its arguments to form a definition — that
is, the macro is loaded — or we can just skip them.

One-pass handling of references. The goal is
to:

– load only specified references from a database
– store these
– associate the names with their sequence number

for cross-referencing
– separate typesetting from paste-up
– cope with typos in the macros names in an

elegant way
Various steps have to be integrated to:

– maintain a database of references

– provide a references macro to perform the tasks
of selecting and formatting

– specify the list of names as argument to the
macro10

– load selectively from the database
– format the selected entries
– prevent side-effects
– redefine the names of the selected entries by

their number and store these globally
– provide a paste-up tag

I have made use of the FIFO (first in first out)
paradigm, so an unspecified number of entries can
be supplied.

Practicalities

When a compuscript is in the proofing phase we
have to get rid of overfull and underfull \hboxes
and \vboxes. A pragmatic approach has been
summarized lucidly by Phil Taylor (1993): overfull
\hboxes usually result from words which extend
beyond the righthand margin.

Get rid of overfull \hboxes. In writing in
(LA)TEX about (LA)TEX — especially in narrow col-
umns — long control sequence names often yield
problems. Generally, the hyphenation algorithm is
not in action for such ‘words.’ Let us assume that
these words are set in \tentt, then we can activate
hyphenation and allow for some room via:

\hyphenchar\tentt=’055

%and room for example via

\tolerance500

\hbadness=499

\hfuzz=5pt

Get rid of underfull \hboxes and \vboxes.

These generally require adjustments to the text
itself. Underfull \vboxes are usually the result of
boxes which don’t fit on the page and are therefore
moved to the next page or column, leaving an
underfull column or page behind them. We can
decide to let these elements float via:

\topinsert%or \midinsert

<box material>

\endinsert

or otherwise adjust or rewrite the text. As yet, no
\raggedbottom is provided.

What is not included?

No special hyphenations or font selection in the
spirit of NFSS has been included, nor has the

10 It is used twice: for selecting and for formatting.

TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting 219

BLUe’s Format — the off-off alternative

use of encapsulated PostScript been treated in the
“Publishing with TEX” user’s guide. As well, there
are no macros to handle tables larger than the page
size.11 Of course, this list is by its very nature
incomplete, but it rounds out the description of
things one wants to know.

Related work

First a disclaimer. It is not possible to really
compare blue.tex with other formats because each
has its own goals. What follows has to be read as
a rough indication of how blue.tex relates to the
works mentioned.

In a sense LATEX provides the functionalities
I’m after; however, LATEX is too complex to master
for me, and I don’t like its coding, or its appearance
in print using the standard styles. LATEX aims at
a general audience, while BLUe’s format is cus-
tomized for my own purposes. Because of LATEX’s
complexity, customization is too time-consuming.
Moreover, it is subject to change — it is only quasi-
static — and from the results I have seen so far,
its complexity has increased, alas, and the end to
changes not in sight. LATEX does not worry about
adaptations to other formats because people in-
volved with it consider LATEX a (de facto) standard.
The concept of active documents is not in there,
apart from what Knuth has already provided, albeit
under different names.

A quick survey of other macro sets revealed
that each has its own deficiencies, and none included
all the functionalities I was looking for. Doob’s
macros for typesetting his “Gentle Introduction to
TEX” (1990) are too limited, especially when we
consider the life-cycle of documents. Berry’s eplain
builds upon plain alone. Spivak provides much of
LATEX’s functionalities in LAMS-TEX, but he avoids
plain’s math markup. The infotex macros of the
Free Software Foundation look as if they had been
designed bottom-up. What is the use of a meta-
parsing macro — very clever, there is no question
about that — if we can do without this functionality
in ordinary formats? No attempt for simplicity, nor
a set of common markup tags as a foundation to
build upon.

The functionality of TUGboat’s output routine
lies at the heart of the page makeup of blue.tex.
However blue.tex goes much further than the
TUGboat styles in, for example, the markup for
pictures, references, (bordered) tables, verbatims,

11 It is not hard to provide a row separator which
would allow splitting of the table, I guess.

math cross-referencing, indexing on-the-fly, all de-
signed for use with AnyTEX; that is, it is not tied
up with plain exclusively.12 Add to that the way
references and pictures are selected from a database
and one would have to agree that blue.tex is a leap
forward. The coding of options is less monolithic,
and the setup via modules with thin interfaces more
flexible. blue.tex is not a goal per se. It has an eye
open to change in general, and adaptation towards
other contexts in particular.

Furthermore, as far as I’m aware of, nobody
has paid sufficient attention to how to cope with
the balance of a personalized system in relation to
the outer world: using a stable format as basis,
adaptable to requirements from the world outside
when the need arises.

Availability

blue.tex comprises some 118KBytes, fmt.dat is
40K, tools.dat is 60K, lit.dat takes 78K, and
pic.dat another 38K; address.dat is still very
small. The transparencies macros have been in-
corporated into the database fmt.dat, and, as of
March 1995, they are together with the letter and
report formats. Although this paper bears the
title “BLUe’s Format,” the filenames are in lower-
case letters only: blue.tex, fmt.dat, tools.dat,
lit.dat, pic.dat, address.dat, and the article
fmt.art, in addition to the PWT user’s guide.
All files available13 on the NTG’s 4AllTEX (double)
CD-ROM from 1995, CTAN (in info/pwt, and from
the NTG and GUST fileservers.

Looking back

The hardest thing has been to not mix up all the
influences I have been exposed to. To stand back
and decide about simple coding conventions was
not easy, especially when the material has not yet
been mastered completely. When to use token
variables and when to use definitions is also difficult
when trying to prevent confusion at the user level.
It is tempting to introduce parameter separators,
but I have refrained from those in the outer-level
macros, and have instead used the straightforward
parameter mechanism. Having gained some practice

12 For example, I have made the index macros
separately available to cooperate with AnyTEX.
13 Macros are shareware. The price is the mini-

mum of US$25 and the local price of 20 loaves of
bread, in dollars. CyrTUG members can join for
free.

220 TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting

Kees van der Laan

with the \this<tag> idea, I am still very pleased
with it, especially because of its local character and
absence of parsing overhead.

Looking forward

BLUe’s format is stable. I use it whenever I have to
typeset notes, letters, submisions for TEX bulletins,
or transparencies. I guess it will grow along with
my needs. The “Publishing with TEX” user’s guide
is also stable, although now and then some parts get
improved. For some time to come, I’ll be working
on METAFONT/MetaPost. After that I’ll embark
on Literare Programming— who knows how that
will influence BLUe’s format.

Acknowledgements

I owe the TEX community much for borrowing free
material to build upon, starting with what Don
Knuth gave to the world. In particular I would
like to thank the NTG for allowing me to bring
out earlier versions of my papers in the MAPs
publications; I would also like to thank GUST for
having invited me to lecture at BachoTEX94 about
manmac, and thank the attendees for having asked
for a manmac user’s guide. Thank you!

Conclusions

With respect to format or style development, macro
writing is a special way of programming; to embed
this within the realm of software engineering is a
real challenge, and much needed.

It is still wishful thinking to hope for a
full-fledged simple format which is easy to use,
and whose marked up copy can be easily trans-
formed into a representation suitable for other
situations. blue.tex comes close, mainly because
I have thought more than twice about what Knuth
has provided, before writing anything of my own,
and because of my handful of outer-markup tags
(very few indeed). Therefore, I conclude that:

– a variety of tools is needed
– blue.tex≡ manmac + TUGboat abbreviations

and output routine + variant formats + add-
ons
variant formats ≡ report + letter + trans-
parencies
add-ons ≡ bordered table + crossrefs + gkppic
+ turtle graphics + verbatim suite + index set
+ . . .

– the principles include consistency, portability,
longevity, flexibility, intelligibility, extensibility,
and correctness

– user documentation is paramount
– when attempting to keep up with Knuth, be

realistic
When you consider book formatting you might
consider customizing manmac.

My added value. I have integrated manmac and
developments since, such as:

– separation of specification and paste-up
– specification of options via \this<tag>{...}

and \every<tag>{...}
– parameterizations of \pre<tag>{...} and
\post<tag>{...}

– formats, tools, addresses, literature and graph-
ics databases

– one-pass bibliography handling
– formatting references in the spirit of the AMS
– cross-referencing of math and bibliography

items
– outer and inner markup separation
– a verbatim suite
– a bordered table macro
– a conversion tool for outer markup tags
– report, letter and transparencies formats, in

addition to the default note
– one- and two-column options for notes
– one-pass indexing on-the-fly
– . . . various other add-ons

Last but not least, a user’s guide and TEXnical
documentation are part of BLUe’s format system.

With respect to coding I have added the
paradigm — a real pearl, to paraphrase Bentley14—
to systematically and automatically add a one-part
macro with the same functionalities on top of a
two-part macro. My thesis is that the users can
benefit from blue.tex to typeset like craftsmen, to
achieve the quality of Knuth.

The extra bonus is stability, and simplicity as
well. The disadavantage is investment in learn-
ing which, by trial-and-error, takes a substantial
amount of time. It all has to do with your at-
titude, whether you believe that TEX proper will
serve a lifetime, and whether you like to invest in
learning plain and manmac as a basis. The reward
is freedom. You are no longer dependent upon the
gurus for what-and-when. Furthermore, I adhere to

14 Jon Bentley writes a regular column, “Pro-
gramming Pearls”, for the Communications of the
ACM.

TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting 221

BLUe’s Format — the off-off alternative

De Vinne’s adage that “The last thing to learn is
simplicity.”

The user is encouraged to peruse The TEXbook,
and to also look at the markup in the file. I hope
you will arrive at the same conclusion as I have:
Knuth’s markup is unsurpassed. Then simply
practise Knuth’s minimal markup, have fun and all
the best.

References

Adams, D. The Hitchhiker’s Guide to the Galaxy .
New York, Harmony Books, 1989.

Berry, K. eplain. Available from CTAN(/macros
/eplain).

De Vinne, T.L. Invention of Printing . 1876. New
York: Hart, 1969.

Doob, M. A Gentle Introduction to TEX . TEXniques
13, Providence, Rhode Island: TEX Users Group,
1990.

Knuth, D.E. The TEXbook. Reading, MA: Addison-
Wesley, 1986.

Graham R.L, D.E. Knuth, O. Pastashnik. Concrete
Mathematics. Reading, Mass.: Addison-Wesley,
1988.

Spivak, M.D LAMS-TEX, The Synthesis. Texplora-
tor, 1989.

Taylor, P. “A Pragmatic Approach to Paragraphs.”
TUGboat, 14,2 (1993), pages 138–140.

van der Laan, K. “Paradigms— Headache?” MAPS
94.2 (1994), pages 212 – 214.

van der Laan, K. “Paradigms— Plain’s Items Ex-
tended.” MAPS 94.2 (1994), pages 210 – 211.

van der Laan, K. “Paradigms— Two-Part Macros.”
MAPS 95.1 (1995), pages 200 – 204.

van der Laan, K. Publishing with TEX: BLUe’s
Selection. Garnwerd, Holland, 1995. Available
from CTAN (info/pwt).

Introduction

Turtle Graphics has its roots in the pedagogical
approach of Piaget. It comes down to learning by
metaphors. Computer graphics are demonstrated to
children via a turtle1 moving on the screen. A petal
can be drawn by starting at the origin and moving
north towards ‘up + right’, arriving horizontally;
then leaving southbound and arriving horizontally
at the origin.

Example (Flower borrowed from Papert)
The flower picture is obtained via first creating

a basic petal by moving in quarter circles, and
then combining several of them. The turtle moves
along rotated petals. In METAFONT this is coded
essentially as follows:

petal=origin{up}..

{right}(up+right){down}..

{left}origin;

for k=1 upto 10:

draw petal rotated36k;

endfor

petal is a path; the path data structure in META-
FONT is powerful.
In this short paper I will discuss what has been

used in BLUe’s format system2 as an extension to
manmac in the turtle graphics macros, especially in
the coding of the points of a compass: \N, \E, \S,

1 Knuth already used the turtle idea in his dragon
figures (1996, p. 391). For those interested in turtle
graphics, consult Papert (1980), for example.
2 For more information, see my paper, “BLUe’s

Format—the off-off alternative,” elsewhere in these
proceedings.

222 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Kees van der Laan

Turtle Graphics and TEX—a child can do it

Kees van der Laan
Hunzeweg 57

9893 PB Garnwerd

The Netherlands

Email: cgl@rc.service.rug.nl

Abstract

Papert’s Turtle Graphics in TEX provide the user with a new method for
handling drawings via TEX alone. Being aware of explicit coordinates is replaced
by the body language of drawing using the points of a compass. The approach
is suited for highly systematic figures such as fractals. Example shapes include
spiral, Pythagorean tree, binary tree, and rotated binary tree. The macros are
part of BLUe’s format system and available from CTAN and the NTG’s 4AllTEX
CD-ROM.

Papert’s petals

\W, \NE, \SE, \SW, \NW, along with \ESE, and \WSW.
I will restrict myself to straight lines in TEX.
Examples are included which show what can

be attained by these basic functionalities. Now and
then a METAFONT alternative has been included.
In the Appendix some tree diversions have been
given.

Why?

The need for general and flexible line elements arose
when I faced the problem of how to draw classical
fractals in TEX.

3 The very least is the possibility to
draw lines at 45◦, the mid-points of a compass.

3 Inspired by Gurari’s work on TEX and graphics.

Example (Pythagorean tree)

How to do this in TEX? Via LATEX‘s picture
environment? Too clumsy, and cumbersome when
changing the order, for example. Via turtle graph-
ics? Definitely. Via PostScript? A possibility.4 Via
METAFONT? Definitely.
However, why not see how far we can get via

TEX alone?
And what about the relevancy? I’m very

pleased by the spin-off how to typeset binary trees
or charts, even rotated, without the use of Post-
Script. See the Appendix.5

What we need is not the Cartesian picture
environment approach, but the good old pen-plotter
TEXniques, better known in the pedagogical world
as Turtle Graphics.

What is the problem?

TEX’s \hrule and \vrule primitives are gems and
very powerful. It would be nice to have similar
primitives for any direction. In the absence of these
we can use line pieces provided in fonts. However,
the latter suffer from the following drawbacks:
– for a few discrete directions only
– line lengths are discrete too
– line thickness is inflexible

Turtle graphics

The basic idea is that a turtle moves on the screen
with the drawing as its trace. How to implement
this in TEX?
The position of the turtle is maintained in the

dimen variables \x and \y, with TEX’s reference
point left invariant. Moving is parameterized by a
direction and by how far to go in that direction. The
accompanying figure shows the effect of \N1, that
is draw the line (\x, \y) – (\x, \y+1)— in turtle
language the turtle moves up. After completion \y
has been increased by \unitlength.

4 Joseph Romanovsky transcribed my (recursive)
code into PostScript.
5 Or my ‘Publishing with TEX’ user’s guide,

PWT for short.

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 223

Turtle Graphics and TEX—a child can do it

Ref. point

(x,y)

The movements—our first steps in the turtle
graphics world—can be achieved by the following
control sequences:
– \N, \E, \S, \W mean draw north, east, south
and west; similarly, \NE, \SE, \SW, and \NW
– \whiteN, \whiteE, \whiteS, \whiteW mean
white-draw north, east, south and west, i.e.,
the turtle just moves6

Example (Spiral)
To get the flavor, a classical picture and its coding
has been provided, which illustrates that we don’t
have to worry about coordinates.

The markup reads essentially as follows:

\unitlength... \k=1;

\loop\E{\the\k}\advance\k+1

\S{\the\k}\advance\k+1

\W{\the\k}\advance\k+1

\N{\the\k}\advance\k+1

\ifnum\k<29 \repeat

More examples have been included in the
graphics chapter of the PWT user’s guide.

The winds and halfwinds

The idea is to compose lines out of elements. I used
squares and/or rectangles as elements, and tiled
them as follows:7 For my own reasons, I have also
chosen to speak of ‘winds’ and ‘halfwinds’ rather
than of the points on a compass.

6 The midpoints can be composed from the four
main compass points in this case.
7 In order to make it visible \linethickness

has been set to 1ex. Experiments with bullets and
LATEX’s line fonts did not yield pleasing results.

The turtle moves 10ex in each direction, to be tiled
by \hlfwndelm in the halfwind directions. What
is essential is how lines leave a mathematical point.
The accompanying model picture has been drawn
as follows:

\let\0\N \let\1\NE \let\2\E \let\3\SE

\let\4\S \let\5\SW \let\6\W \let\7\NW

\linethickness1ex

\setbox\hlfwndelm=\hbox{\vrule

width\the\linethickness

height\the\linethickness depth0pt}

\unitlength10ex

\def\draw{\csname\the\dir\endcsname1}

$$\loop

\ifnum\dir<8{\draw}\advance\dir1

\repeat$$

Pondering aloud

Can we attain compatibility with TEX’s rules prim-
itives? I don’t think so, alas.

Thickness. What is meant by thickness if we
overlap instead of tile? What is the perceived
blackness?
I assumed that tiling with square elements of

size \linethickness×\linethickness—as in the
example figure—would yield the same blackness as
a rule of thickness \linethickness.

Size. Usually the size along the x-axis must be
provided. I prefer to have the real size spec-
ified independently from the orientation of the
line. However, the resulting size is not necessarily
#1×\unitlength.8 In general the result differs at
most by half the atom size because it is composed
of a multiple of the basic element. We have to
correct by

√
2 to compensate for the direction as

we pace along one of the axes. In the example the
required length is 10ex, with as result the tiling of
7 elements of size 1ex.
For large lines one could think of combining

the line elements in LATEX’s line10 font with the

8 To put it another way: the required length
must be a multiple of the atom size.

224 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Kees van der Laan

smaller elements. I refrained for two reasons: first,
LATEX’s NW line element— \char’145—did not
fit exactly in the box; and second, because of the
inflexibility of the thickness of the font entries.

Design specs

With the above in mind, I specified the following for
the microscopic level— the wind and halfwind com-
mands proper—and for the macroscopic level—
the placement within context.

Microscopics. The functionality is to draw a
line of the specified length in the direction as
implied by the control sequence name. The general
specifications read as follows:
– as argument a ‘factor’ is expected, in order to
yield the required length #1×\unitlength9

– \linethickness is a parameter
– after drawing, the position of the turtle is at
the end of each line, the reference point has
been left invariant, and all the boxes have zero
width, height and depth

Extra for the four halfwinds the following:
– \hlfwndelm and \linethickness are parame-
ters
– draw a line of approximately the specified size
– the atoms are tiled diagonally, at the corners

Macroscopics. Placement within context is the
concern of the user. However, because of the zero
dimensions of the boxes it is a nuisance to skip or
kern when using a picture, in order to create the
open space, the niche for the picture. Moreover,
when the picture does not take dimensions we are
in trouble at page breaks. Therefore assistance
is badly needed. The picture environment idea
combined with databases comes to the rescue. The
use of prefab pictures has been simplified in this
way, while there is flexibility via \thispicture to
override the defaults.
Pictures can be stored in BLUe’s format

pic.dat database. Within each database entry
the default bounding box and placement within
context is provided for. Through the use of \ev-
erypicture and/or \thispicture the defaults can
be overridden. This approach complies with the
general principles adopted in BLUe’s format system.

Coding the winds and halfwinds

It must be emphasized that all boxes have zero
dimensions. I also decided to separate getting at

9 The idea is that not only can integer values be
specified but decimal fractions as well.

the (x, y) position from putting whatever there.
This is much in the spirit of the second \point
macro in Knuth (1986, p. 389) and adheres to the
separation of concerns adage.10

In TEX. Familiarity with TEX’s boxes of size zero is
essential: to know the effect of \kern-s and \h/vss-
s inside, and to know the effect of combinations of
these boxes.
Kern-s and stretch-or-shrink-s in boxes of

size zero.

Example (Effects of boxes of size zero)

\newdimen\x \x=4ex

\newdimen\y \y=2ex

.\hbox to 0pt{\kern\x a\hss}.

\kern30ex

.\kern\x a.

\noindent and

.\hbox to0pt{\kern\x\vbox to0pt

{\vss\hbox{a}\kern\y}\hss}.

\kern30ex

.\kern\x\raise\y\hbox{a}.

with result

. a. . a.

and

.

a
. .

a
.

By this mechanism we can move to any point on the
page and put there what we wish. Essential is that
when a box of zero width is set the reference point
is left invariant—it is the same before and after.
Putting it together In vertical mode the

\hbox-es are aligned on the reference point, and
when the heights and depths are zero the \hbox-es
overprint. Moreover, the order of specification is
immaterial. In (restricted) horizontal mode \hbox-
es of width zero overprint and can be given in any
order (Knuth 1986, p. 389). In math mode the
zero-sized boxes overprint. In display math the
invariant reference point is centered horizontally.
Coding After completion the dimension vari-

ables \x and \y have the values of the coordinates
of the end of the line. The coding of a few directions
has been included to convey the idea.

10 In my view, it makes the code more trustworthy
and avoids pitfalls, especially the potential confusion
between the kerns needed to get at (x, y) and the
kerns to position what has to be put at (x, y).

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 225

Turtle Graphics and TEX—a child can do it

\newbox\hlfwndelm

\newdimen\auxdim %linesize

\newdimen\linethickness

\linethickness1ex

%

\def\xy#1{%Function: place #1 at x, y

\vbox to0pt{\vss

\hbox to0pt{\kern\x#1\hss}\kern\y}}

%

\def\xytxt#1{%Function: place text #1

% at x, y

\xy{\vbox to0pt{\vss

\hbox to0pt{\strut#1\hss

}\kern0pt}}}

%

\def\N#1{\xy{\kern-.5\linethickness

\vbox to0pt{\vss

\hrule height#1\unitlength

width\linethickness}}%

\advance\y#1\unitlength}

%

\def\S#1{\advance\y-#1\unitlength

{\N{#1}}}

%

\def\SW#1{\auxdim#1\unitlength

\correction%sqrt2

\loop\advance\auxdim-\wd\hlfwndelm

\ifdim\auxdim>-.5\wd\hlfwndelm

\advance\x-\wd\hlfwndelm

\advance\y-\ht\hlfwndelm

\xy{\vbox to0pt{\vss

\copy\hlfwndelm}}%

\repeat}

In METAFONT. The coding to go one step north in
METAFONT reads as follows:

def north=draw z--

hide(y:=y+size)z enddef;

To draw in any direction in METAFONT is implicit,
just provide:

draw <beginpoint>--<endpoint>

There isn’t much need to provide turtle graphics
macros in METAFONT—it is essentially already
there.

Coding the Pythagorean tree

The following illustrates the use of basic turtle
movements for this class of problems. Moreover,
it shows that coding in TEX is completely different
from coding in METAFONT. This goes deeper than
a mere difference in notation.

In TEX. Via the use of the winds and halfwinds
the Pythagorean tree code in TEX reads as follows:

\def\pythtree{\ifnum\level=1

\eerthtyp\fi

\advance\level-1

\multiply\kk23\divide\kk32%

{\leftbranch\draw\pythtree}%

\rightbranch\draw\pythtree}

\def\eerthtyp#1\pythtree{\fi}

%with auxiliaries

\let\0\N \let\1\NE \let\2\E

\let\3\SE\let\4\S \let\5\SW

\let\6\W \let\7\NW

\def\leftbranch{\advance\dir7

\ifnum\dir>7 \advance\dir-8 \fi}

\def\rightbranch{\advance\dir1

\ifnum\dir>7 \advance\dir-8 \fi}

\def\draw{\csname\the\dir\endcsname

{\the\kk}}

%with use

$$\unitlength0.1pt\kk128 %Size

\level5%Order

\N{\the\kk} %Trunk

\pythtree$$

Note that there is no build-up of \fi-s, no use of
either \expandafter or \let (this last has been
used throughout The TEXbook).

In METAFONT. The turtle idea has been used in
going from node to node in METAFONT as follows:11

pair node[];

n=15; %order

l=75; %size of the trunk

node[0]=origin;%position, and

d= 90; %orientation trunk

%Create nodes of leftbound branch

for k=1 upto n:

node[k]=node[k-1]+l*dir d;

d:=d+45;l:=.7l;

endfor

%Draw the tree

for k=n-1 downto 1:

draw node[k+1]--node[k];

addto currentpicture also

currentpicture rotatedaround

(node[k],-90);

endfor

draw node1--node0;

drawdot origin; showit

end

11 But . . . only for the left branch; to draw
the other branches the symmetry operation— ro-
tatedaround—has been used.

226 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Kees van der Laan

Note that there is no recursion. The symmetry
operations of METAFONT allow a concise implemen-
tation, with much faster performance than when
all the leaves would have been walked through one
after another.12

Trinaries

For 45◦ lines I used square elements. Why not use
rectangular elements for 30◦ lines in conformance
with the direction?

Example (Lines at 30◦)

This model has been obtained as follows:

$$\x0pt\y0pt

{\N{10}}{\ESE{10}}{\WSW{10}}$$

%with initializations

\linethickness1ex

\setbox\trielm=\hbox{\vrule

width1.74\linethickness

height\linethickness\relax}

%To account for element in 30 degrees

%direction

\unitlengthy\ht\trielm %default.2pt

\unitlengthx\wd\trielm %default.3482pt

\unitlength\unitlengthy%default.2pt

%and the macros

\def\WSW#1{\auxdim#1\unitlength

\divide\auxdim2

\loop\advance\auxdim-\unitlengthy

\ifdim\auxdim>-.5\unitlengthy

\advance\x-\unitlengthx

\advance\y-\unitlengthy

\xy{\vbox to0pt{\vss

\copy\trielm}}%

\repeat}

%

\def\ESE#1{\auxdim#1\unitlength

\divide\auxdim2

\loop\advance\auxdim-\unitlengthy

\ifdim\auxdim>-.5\unitlengthy

\advance\y-\unitlengthy

\xy{\vbox to0pt{\vss

\copy\trielm}}%

12 In the seventies these kinds of problems had a
reputation of keeping pen-plotters busy. Because
of raster devices we can now do much better, and
METAFONT allows us to prescribe this.

\advance\x\unitlengthx

\repeat}

Example (Trinary tree)

$$\x0pt\y0pt\level6 \kk128

\N{128}\tritree$$

%with trinary tree macro

\def\tritree{\ifnum1=\level

\eertirt\fi

\advance\level-1 \divide\kk2

{\N{\the\kk}\tritree}%

{\ESE{\the\kk}\tritree}%

\WSW{\the\kk}\tritree}

\def\eertirt#1\tritree{\fi}

Remark: The \unitlength-s are, by default, equal
to the sides of the elementary rectangular block.
The size of the tree can be controlled by \kk.

Coding a database element

When inserting a picture in BLUe’s format picture
database, extra layers are added to the picture code
to allow for reuse and to parameterize scalability,
positioning, visibility, with defaults provided, and
to set a picture within a box of the right size, the
bounding box.
How to create a database element has been

treated elsewhere and is not repeated here. How-
ever, I have included an example to convey the
idea.

Example (The database element bintreepic)
The \bintreepic element of the pic.dat database
reads as follows:

\lst\bintreepic{\bgroup

\unitlength.5ex\kk32

\xoffset{-32} \yoffset{-2}%

\xdim{66}\ydim{5}%

\def\eertnib##1\bintree{\fi}

\beginpicture\bintree\endpicture

\egroup\thispicture{}}

%with in the kernel blue.tex

\def\bintree{\S1\ifnum\kk=2

\eertnib\fi

\divide\kk2

{\W{\the\kk}\bintree}%

\E{\the\kk}\bintree}

%and accounting for the leaves

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 227

Turtle Graphics and TEX—a child can do it

\def\eertnib#1\bintree{\fi

\global\advance\k1

\whiteS1\xytxt{

\csname\the\k\endcsname}}

Explanation: \bintreepic comes down to an
invocation of \bintree with scaling and positioning
parameters added, assigned with default values.
The defaults can be overridden via the use of
\thispicture{...}. The tokens provided by the
latter are inserted by \beginpicture.

Epilogue

The lines at 45◦ have little compatibility with TEX’s
rules, alas, especially with non-neglible thickness. I
was surprised to realize that TEX’s defaults for rules
are not symmetric around their axes in relation to
the reference point.
Have fun, and all the best.

References

Gurari, Eitan M. TEX and LATEX: Drawing and
Literate Programming . New York: McGraw-Hill,
1994.
Knuth, D.E. The TEXbook. Reading, MA: Addison-
Wesley, 1986.
Papert, S. Mindstorms; Children, Computers, and
Powerful Ideas. New York: Basic Books, 1980.
van der Laan, K. Publishing with TEX: BLUe’s
Selection. Garnwerd, Holland, 1995. Available via
CTAN (info/pwt).
van der Laan, K. “BLUe’s Format—the off-off
alternative.” Elsewhere in these Proceedings.

Appendix: Binary tree and chart

Example (Binary tree)

\pictures\bintreepic

$$\bintreepic$$

with result

Rotated tree. Once we understand turtle graph-
ics, rotating a tree can be done easily by shifting
the meaning of the directions, and adjusting the
positioning of the leaves.13 In the code below,
\bintree and \eertnib come with blue.tex, and
\rotatedbintreepic is included in pic.dat. The
\rotatedbintreepic entry reads as follows:

\lst\rotatedbintreepic{%

\bgroup\unitlength1ex%

\let\W\N \let\exchange\E

\let\E\S \let\S\exchange

\def\1{x}\def\2{y}\def\3{a}

\def\4{b}\def\5{piet}%

\def\6{hans}\def\7{etc.}%

\k0\kk16\xdim{10}\ydim{30}%

\beginpicture\bintree\endpicture

\egroup\thispicture{}}

Example (Rotated tree)

\thispicture{\def\1{cgl}

\def\2{PWT}\def\3{July}

\def\4{1995}\def\5{\dots}

\def\6{}\def\7{}

\yoffset{-16}\ydim{28}}

$$\rotatedbintreepic$$

yields
cgl

PWT

July

1995

. . .

Chart. Through the \bintree macro we can also
obtain charts elegantly.

13 A white lie. The tree is actually mirrored
because I like the leaves to be numbered from the
top. In general we can rotate via PostScript.

228 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Kees van der Laan

Example (Chart – The TEXbook, p. 248, ex. 22.14)

LMB, 1912

MJHB, 1882

JHB, 1838

MDB, 1840

PAME, 1884

EFE, 1845

CLW, 1850

obtained via

%labels in preorder

%(default in \chartpic)

\def\1{LMB, 1912}

\def\2{MJHB, 1882}\def\5{PAME, 1884}

\def\3{JHB, 1838} \def\4{MDB, 1840}

\def\6{EFE, 1845} \def\7{CLW, 1850}

\ekk8

\k0\unitlength2ex\x0pt\y0pt\kk8

\hbox{\modbintree}

%with auxiliaries

\let\Eold\E

\def\E{\global\advance\k1

\xytxt{

\csname\the\k\endcsname}\Eold}

Remarks: An aid in finding the numbers of the
branches is to delete \csname and \endcsname in
\E. The way of traversal at hand is called preorder.
When using \chartpic from pic.dat the texts

along the branches— \def\1{...} etc.—have to
be supplied as tokens within a \thispicture.
And one final note: \modbintree is the adjusted
\bintree macro for this case.

Some Useful Macros Which Extend the LATEX picture Environment

A.S. Berdnikov, O.A. Grineva and S.B. Turtia
Institute of Analytical Instrumentation

Rizsky pr. 26, 198103 St.Petersburg, Russia

berd@ianin.spb.su,olga@ianin.spb.su,turtia@ianin.spb.su

Abstract

The ability to create pictures using TEX/LATEX is relatively poor, and many
extensions – (epic/eepic, pictex, drawtex, xypic, mfpic, etc.) –were created
to extend this capability to a higher level. The package pmgraph.sty (poor-
man-graphics) which is described herein is not as general as the ones mentioned
above. Not being too complicated, these macros appear to be useful in our work,
and it seems that they can be also useful for other TEX-users.

The pmgraph.sty Package

This package is based on the use of the pseudo-
graphical fonts which are used by generic LATEX
without additional extensions—mainly because the
variations of PICTEX, METAFONT and new graph-
ical font themes are already explored by other au-
thors on a sufficiently higher level. To some extent
the purpose of our work was to see how far it was
possible to develop new useful graphical primitives
for LATEX without the investment of the external
graphical tools.
The package pmgraph.sty offers the following

features:

• vectors with a set of slopes which are as general
as the line slopes are implemented in LATEX;
• vectors with an arrow at the beginning, middle
or end of the vector with various orientations of
the arrow;
• circles and circular arcs with almost arbitrary
diameters using magnified circle and circlew
LATEX fonts;

• 1/4 circular arcs correctly positioned at the
center or at the corner;

• an extended set of frames, which includes var-
ious corner styles and optional multiple frame
shadows with a variety of styles;

• tools which enable the user to extend the
variety of the frame styles and the shadow styles
as far as his/her imagination allows it; and

• automatic calculation of the picture size relative
to the current width of the text—this includes
picture environments inside list environments.

Vectors

The number of angles for inclined lines which can be
used in LATEX is limited to a great extent, but the

(1, 1) (1, 1) (4, 1) (4, 1) (5, 3) (3, 2)
(2, 1) (2, 1) (4, 3) (4, 3) (5, 4) (4, 3)
(3, 1) (3, 1) (5, 1) (4, 1) (6, 1) (4, 1)
(3, 2) (3, 2) (5, 2) (3, 1) (6, 5) (4, 3)

Table 1: Relation between the line slopes and the
approximate vector slopes

-�

6

?

�
�
�
���

�
�
�
���

�
�
�
���

�
�
�
���

�
�
�
��

�
�
�
��

��
��
�*

�

�
�
�
��

��
���1

�
�
�
��3

�
�
�
��7

�
�
�
��

���
��:

�
�
�
��>

�
�
�
��

!!
!!
!

"
"
"
""

#
#
#
##

%
%
%
%%

((((
(

,
,
,
,,

@
@
@
@@R

A
A
A
AAU

B
B
B
BBN

C
C
C
CCW

D
D
D
DD

E
E
E
EE

HHHHHj
J
J
J
JĴ

L
L
L
LL

PPPPPq
Q
Q
Q
QQs

S
S
S
SSw

T
T
T
TT

XXXXXzZ
Z
Z
ZZ~

\
\
\
\\

````̀aaaaa
b
b
b
bb

c
c
c
cc

e
e
e
ee

hhhhhl
l
l
ll

@
@
@
@@I

A
A
A
AAK

B
B
B
BBM

C
C
C
CCO

D
D
D
DD

E
E
E
EE

HH
HH

HY

J
J
J
JJ]

L
L
L
LL

PP
PPPi
Q
Q
Q
QQk

S
S
S
SSo

T
T
T
TT

XXX
XXy

Z
Z
Z
ZZ}

\
\
\
\\

```
`̀

aa
aa

a
b
b
b
bb

c
c
c
cc

e
e
e
ee

hhhh
h

l
l
l
ll

�
�
�
��	

�
�
�
���

�
�
�
��

�
�
�
���

�
�
�
��

�
�
�
��

������

�

�
�
�
��

�����)
�
�
�
��+

�
�
�
��/

�
�
�
��

�����9 �
�
�
��=

�
�
�
��

 !!!!!
"
"
"
""

#
#
#
##

%
%
%
%%

(((((,
,
,
,,

-�

6

?

�
�
�
���

�
�
�
���

�
�
�
���

�
�
�
���

�
�
�
���

�
�
�
���

��
��
�*

�

�
�
�
���

��
���1

�
�
�
��3

�
�
�
��7

�
�
�
���

���
��:

�
�
�
��>

�
�
�
��7

 :

!!
!!
!1

"
"
"
""3

#
#
#
##>

%
%
%
%%7

((((
(:,

,
,
,,>

@
@
@
@@R

A
A
A
AAU

B
B
B
BBN

C
C
C
CCW

D
D
D
DDW

E
E
E
EEW

HHHHHj
J
J
J
JĴ

L
L
L
LLN

PPPPPq
Q
Q
Q
QQs

S
S
S
SSw

T
T
T
TT̂

XXXXXzZ
Z
Z
ZZ~

\
\
\
\\w

````̀zaaaaaq
b
b
b
bbs

c
c
c
cc~

e
e
e
eew

hhhhhzl
l
l
ll~

@
@
@
@@I

A
A
A
AAK

B
B
B
BBM

C
C
C
CCO

D
D
D
DDO

E
E
E
EEO

HH
HH

HY

J
J
J
JJ]

L
L
L
LLM

PP
PPPi
Q
Q
Q
QQk

S
S
S
SSo

T
T
T
TT]

XXX
XXy

Z
Z
Z
ZZ}

\
\
\
\\o

```
`̀y

aa
aa

ai

b
b
b
bbk

c
c
c
cc}

e
e
e
eeo

hhhh
hy l

l
l
ll}

�
�
�
��	

�
�
�
���

�
�
�
��

�
�
�
���

�
�
�
���

�
�
�
���

������

�

�
�
�
��

�����)
�
�
�
��+

�
�
�
��/

�
�
�
���

�����9 �
�
�
��=

�
�
�
��/

 9 !!!!!)
"
"
"
""+

#
#
#
##=

%
%
%
%%/

(((((9 ,
,
,
,,=

Figure 1: LATEX and pmgraph vectors

number of angles for vectors is even more restricted.
The variety of vectors can be increased if, instead of
the strictly inclined arrows at the end of the inclined
lines, arrows with an approximate inclination are
added. Corresponding changes are incorporated in
pmgraph where the relation between strict incli-
nations and approximate inclinations are shown in
Table 1. The implementation required the modifica-
tion of internal LATEX commands such as \@svector,
\@getlarrow, \@getrarrow and the user command
\vector itself. As a result, the command \vector
draws vectors for all inclinations valid for LATEX lines
as is shown in Fig. 1. The vectors are not as ideal as
normally required by TEX standards, but the results
are acceptable for all inclinations, except (6, 1).
LATEX allows one to put an arrow only at

the end of the vector. The \Vector command

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 229

A.S. Berdnikov, O.A. Grineva and S.B. Turtia

offers the capability of placing arbitrary arrows with
different orientations along the vector (see Fig. 2).
The predefined arrow styles assign a letter to each
position and orientation of the arrow along the
\Vector. The arrows shown in Fig. 2 are drawn

- - -

� � �

--��

�-�-

Figure 2: Multi-arrow vectors

by the commands

\begin{picture}(300,40)

\put(20,5){\Vector[bme](1,0){100}}

\put(20,30){\Vector[BME](1,0){100}}

\put(170,5){\Vector[xmMZ](1,0){100}}

\put(170,30){\Vector[XmMz](1,0){100}}

.

The letter e corresponds to an arrow with a
‘normal’ orientation at the end of the vector; E cor-
responds to an arrow with a reverse orientation. The
letters b and B correspond to arrows at the beginning
of the vector (with normal and reverse orientation);
the letter m and M—to the arrows at the middle, etc.
The optional parameter of the command \Vector
contains a list of letters which describes the set
of arrows along the \Vector. It is possible to
create user-defined styles of arrows using the com-
mands \VectorStyle and \VectorShiftStyle as
described in the pmgraph documentation.

Circles

The range of the diameters for circles and disks
(black circular blobs) available in LATEX is very
restricted. It can be enlarged by using magnified
versions of the pseudo-graphical LATEX fonts if the
user does not have something better at his/her dis-
posal such as curves.sty, PICTEX or MFPIC. The
disadvantage of the method presented here is that
the width of the lines is magnified too, which is
inconsistent with the rigorous TEX accuracy require-
ments, but for poor-man-graphics these circles can
be satisfactory.
The scaling of circular fonts is performed by the

commands

\scaledcircle{factor}

\magcircle{magstep}

which correspond to the TEX commands

\font ... scaled factor

\font ... scaled \magstep magstep

The valid magstep values are 0, h, 1, 2, 3, 4, 5.
The values factor=1000 and magstep=0 correspond
to the one-to-one magnification. The circle magni-

fication, like other TEX commands, returns to its
previous value outside the group inside which it was
changed.

&%
'$

&%
'$

Figure 3: Magnified circles

In order to properly calculate the character
code of the circle segment needed to build a circle,
taking the magnification into account, it was nec-
essary to redefine some more internal LATEX com-
mands such as \@getcirc and \@circ. To reflect in
magnified fonts the changes of the line thickness, the
commands \thinlines and \thicklines are also
modified.
The example in Fig. 3 is produced by

\setlength{\unitlength}{1pt}

\begin{picture}(200,100)(-100,-50)

\put(-50,0){\thicklines\circle{80}}

\put(-50,0){\squareframe{40}}

\magcircle{4}

\put(50,0){\thinlines\circle{80}}

\put(50,0){\squareframe{40}}

\end{picture}

where \squareframe is the user-defined command
which draws the square with the specified side and
the center at (0,0). It shows how the usage of the
magnified circles enables one to overcome the upper
limit of 40pt of the LATEX circle diameter. It is nec-
essary to note that following the magnification with
\magcircle{4}, the thickness of the \thinline
circles corresponds approximately to the thickness
of the ordinary \thickline circles (\magstep4 ≈
2000).
Additional macros can draw 90◦ quarters of

circles explicitly without tricky refinement of the
parameters of the command \oval:

\trcircle{diam} −→ \oval[tr]...

\brcircle{diam} −→ \oval[br]...

\tlcircle{diam} −→ \oval[tl]...

\blcircle{diam} −→ \oval[bl]...

The center of the circular arc is positioned strictly
at the point which represents the argument of the
corresponding \put. The commands \TRcircle,

230 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

Some Useful Macros Which Extend the LATEX picture Environment'p
&p
$p
%p %p$p &

p
'p

Figure 4: 90◦ circular segments

\BRcircle, \TLcircle, \BLcircle draw the 90◦

quarter circles with the reference point positioned
at the corner instead of the center. Similarly,
the commands \tlsector, \TLsector, \blsector,
\BLsector, etc., draw circular segments together
with horizontal and vertical radii. The proper
positioning of the circular segments requires special
precautions since it is necessary to take into account
the line thickness and the specific alignment of the
circular elements inside the character boxes.
The example in Fig 4 shows the usage of these

commands:

\begin{picture}(200,60)(-100,-30)

\put(-60,10){\thicklines\tlcircle{50}}

\put(-60,10){\circle*{1}}

\put(-60,10){\line(-1,0){25}}

\put(-60,10){\line(0,1){25}}

\put(40,10){\thicklines\BRcircle{50}}

\put(40,10){\circle*{1}}

\put(40,10){\line(-1,0){25}}

\put(40,10){\line(0,1){25}}

...

The actual diameter of the circular segment is ad-
justed just as is done with the circles. The com-
mands \scaledcircle and \magcircle also affect
the thickness and the diameter of these circular
segments.

Frames

The number of frames which is available in LATEX
is increased by pmgraph—besides the solid and
dashed rectangular frames it is possible to draw
double and triple frames in a variety of styles
(Fig. 5). The commands \frameBox, \ovalBox,
\octalBox, \astroBox, \parquetBox have the same
structure as the command \framebox, but they
draw the corresponding fancy frames:

\put(0,0){\ovalBox(100,50){oval}}

\put(70,0){\astroBox(100,50){astro}}

.

An ordinary solid frame is drawn by \frameBox, the
double and triple frames are drawn by \frameBoX
and \frameBOX, respectively. Similar commands
exist for double and triple fancy frames. The user
can prepare personal macro commands to draw

parquet

H �

� H
octal

 	
� �

 	
� �
oval

� �	
� �	

astro

dash

frame

Figure 5: Examples of frame styles

�
��

H
HH

�
��

H
HH

Box �
��

H
HH

�
��

H
HH

�
�
��

H
H
HH

�
�

��

H
H

HH

BoX �
��

H
HH

�
��

H
HH

�
�
��

H
H
HH

�
�

��

H
H

HH

�
�
�
�

H
H
H
H

�
�

�
�

H
H

H
H

BOX

Figure 6: Romb-style frames

frame corners and extend the variety of fancy frames
up to the limit of his/her imagination.
A more exotic variant of a frame can be cre-

ated with the commands \rombBox, \rombBoX or
\rombBOX as shown in Fig. 6. The style (i.e.,
inclination of the romb sides) and the distance
between multiple rombs are set by the command
\rombboxstyle with the default settings

\rombboxstyle(2,1,2pt)

The alignment of the romb around the box specified
for these commands can be changed using an addi-
tional optional parameter (see the pmgraphmanual
for more details).
Each command to create a rectangular box has

an optional parameter which specifies the “shadows”
around the box. Each shadow style has a special
letter, and a list of letters as the optional param-
eter results in a combination of the corresponding
shadows. The standard shadow types are shown
in Fig. 7. It is possible to draw several shadows
of different types around an arbitrary corner of the
frame as shown in Fig. 8:

\unitlength=10pt

\begin{picture}(20,15)

r

R

p

P

www o
�
	
O

�� A H

�H

L

Figure 7: Examples of shadows

TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting 231

A.S. Berdnikov, O.A. Grineva and S.B. Turtia

w
w
w

	
�

�

	
�

Shadows

Figure 8: Multiple shadows

\shadowcorner{B}

\put(0,0){\frameBoX[oPR...](10,5){...}}

\end{picture}

The parameters of the shadows – thickness, corner
size, additional shift, etc., – can be changed by user
commands described in the manual.

Automatically scaled pictures

The idea behind the macros which are responsible
for these functions is to calculate the \unitlength
value of in terms of the relative fraction of the page
width instead of explicitly specifying its value in
points, centimeters, inches, etc.
The \pictureunit[percent]{x-size} com-

mand selects the value of \unitlength so that
the picture, which is x-size units in width, oc-
cupies percent% of the width of the text. The
Picture environment combines the automatic cal-
culation of \unitlength with \begin{picture}–
\end{picture}. The default, percent=100, corre-
sponds to 90% of the text width. The default percent
value can be adjusted by the command

\renewcommand\defaultpercent{percent}.

Examples:

\pictureunit[75]{120}

\begin{picture}(120,80)

. . .
\end{picture}

\begin{Picture}[75](120,80)

. . .
\end{Picture}

These macros are inspired by the fullpict.sty
developed by Bruce Shawyer. Careful examination
of the file fullpict.sty demonstrates some further
bugs/warnings which require correction:

• each automatic scaling of \unitlength allo-
cates a new counter;

• automatic scaling uses \textwidth as the refer-
ence width which results in improper function-
ing inside the list and minipage environments;

• the environments fullpicture, halfpicture
and scalepicture are centered internally with
\begin{center}—\end{center} which pre-
vents the proper positioning of the picture in
most cases.

The pmgraph.sty macros calculate the dimension
\unitlength using the value \hsize, and as a result
it works corectly also for twocolumn mode, inside
the list environments itemize, enumerate, etc. (for
example, all the figures in this paper are drawn
using the environment Picture). The automatic
centering and repeated allocation of the registers are
corrected as well.

Acknowledgements

The authors are grateful to Dr. Kees van der
Laan for the opportunity to present the preliminary
results of our research at EUROTEX’95 (Aarnhem,
The Netherlands). This research was partially
supported by a grant from the Dutch Organization
for Scientific Research (NWO grant No 07 – 30 – 07).

232 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

1996

Jun 25 – 29 ALLC-ACH ’96: Joint International
Conference, Association for Literary and
Linguistic Computing /Association for
Computers and the Humanities, Bergen,
Norway. For information, contact
Espen Ore (Espen.Ore@hd.uib.no, Fax:
+47 55 32 26 56) or visit http://
www.hd.uib.no/allc-ach96.html.

Jun 26 DANTE TEX–Stammtisch,
Hamburg, Germany. For information,
contact Volker Hüttenrauch
(Volker_Huettenrauch@HH.Maus.DE.
Last Wednesday, 18:00, details to be posted to
the tex-d-l list. ¡

Jul 2 DANTE TEX–Stammtisch at the Universität
Bremen, Germany. For information, contact
Martin Schröder (MS@Dream.HB.North.de;
telephone 0421/2239425). First Tuesday (if
not a holiday), 18:00, Universität Bremen
MZH, 28359 Bremen, 4th floor, across from
the elevator.

Jul 3 – 5 CNED96: 4th Colloque National sur l’Ecrit
et le Document, IRESTE: Institute de
Recherche et d’Enseignement Superieure,
Nantes, France. For information, contact
the Secretariat of the Colloquium,
cned96@lati.ireste.fr, or visit
http://www.ireste.fr/cned96.

Jul 4 DANTE TEX–Stammtisch at the Universität
Karlsruhe, Germany. For information, contact
Klaus Braune
(braune@rz.uni-karlsruhe.de; telephone
0721/608-4031). First Thursday, 19:30,
Rechenzentrum der Universität Karlsruhe,
Zirkel 2, 3.0G Raum 316.

Jul 18 – 21 SHARP 1996: Society for the History of
Authorship, Reading and Publishing, Fourth
Annual Conference, Worcester, Massachusetts.
For information, contact the American
Antiquarian Society, cfs@mark.mwa.org.

Jul 28 –
Aug 2

TUG 17th Annual Meeting:
“Poly-TEX”, Dubna, Russia. For information,
send e-mail to TUG96@pds.jinr.ru. (See the
Call for Papers, TUGboat 16 (4), p. 429.)

Jul 31 DANTE TEX–Stammtisch, Hamburg,
Germany. (For details, see Jun 26.)

Aug 1 DANTE TEX–Stammtisch at the Universität
Karlsruhe, Germany. (For details, see Jul 4.)

Aug 1 DANTE TEX–Stammtisch at the Universität
Bremen, Germany. For information, contact
Martin Schröder (MS@Dream.HB.North.de;
telephone 0421/2239425). First Thursday (if
not a holiday), 18:00, Universität Bremen
MZH, 28359 Bremen, 4th floor, across from
the elevator.

TUGboat, 17, Number 2 233

Calendar

Aug 20 TUGboat 17 (4): Deadline for receipt of
technical manuscripts (tentative). Theme
issue, contributions by invitation.

Aug 28 DANTE TEX–Stammtisch, Hamburg,
Germany. (For details, see Jun 26.)

Sep 3 TUGboat 17 (3) (2nd regular issue):
Deadline for receipt of news items, reports
(tentative).

Sep 5 DANTE TEX–Stammtisch at the Universität
Bremen, Germany. (For details, see Aug 1.)

Sep 5 DANTE TEX–Stammtisch at the Universität

Karlsruhe, Germany. (For details, see Jul 4.)

Sep 23 PODP, Workshop on Principles of Document
Processing, Xerox Palo Alto Research Center,
Palo Alto, California. For information,
visit the PODP Web page at http://
www.cs.umbc.edu/conferences/podp/.

Sep 24 – 26 EP96, the International Conference on
Electronic Documents, Document
Manipulation and Document Dissemination,
Xerox Palo Alto Research Center, Palo Alto,
California. Deadline for submission of papers:
1 April 1996. For information, contact
ep96@xsoft.xerox.com or visit http://
www.xsoft.com/XSoft/ep96.html.

Sep 25 DANTE TEX–Stammtisch, Hamburg,
Germany. (For details, see Jun 26.)

Oct 10 DANTE TEX–Stammtisch at the Universität
Bremen, Germany. (For details, see Aug 1.)

Oct 25 NTG 18th Meeting, on “Graphics and TEX”,
Universiteit Utrecht, The Netherlands.
Preceded or followed by a 1-day course,
“(LA)TEX and Graphics”, presented by
Bogus law Jackowski. For information,
contact ntg@nic.surfnet.nl or visit
http://www.ntg.nl/.

Nov 2 DANTE TEX–Stammtisch at the Universität
Bremen, Germany. (For details, see Aug 1.)

Nov 12 TUGboat 17 (4): Deadline for receipt of
news items, reports (tentative).

Dec 5 DANTE TEX–Stammtisch at the Universität
Bremen, Germany. (For details, see Aug 1.)

Dec 8 – 12 SGML ’96, Toronto, Canada. For information
contact the Graphic Communications
Association, Fax: +1 703-548-2867.

1997

May NTG 19th Meeting, Technische Universiteit
Delft, The Netherlands. For information,
contact ntg@nic.surfnet.nl or visit
http://www.ntg.nl/.

For additional information on TUG-sponsored events listed

above, contact the TUG office (415-982-8449, fax: 415-982-

8559, e-mail: tug@tug.org). For events sponsored by other

organizations, please use the contact address provided.

Status as of 31 May 1996

Institutional

Members

The Aerospace Corporation,

El Segundo, California

American Mathematical Society,

Providence, Rhode Island

CNRS - IDRIS,

Orsay, France

CERN, Geneva, Switzerland

College of William & Mary,

Department of Computer Science,

Williamsburg, Virginia

Communications

Security Establishment,

Department of National Defence,

Ottawa, Ontario, Canada

CSTUG, Praha, Czech Republic

Elsevier Science Publishers B.V.,

Amsterdam, The Netherlands

Florida State University,

Supercomputer Computations

Research, Tallahassee, Florida

Grinnell College,

Noyce Computer Center,

Grinnell, Iowa

Hong Kong University of

Science and Technology,

Department of Computer Science,

Hong Kong

Institute for Advanced Study,

Princeton, New Jersey

Institute for Defense Analyses,

Communications Research

Division, Princeton, New Jersey

Iowa State University,

Ames, Iowa

Los Alamos National Laboratory,

University of California,

Los Alamos, New Mexico

Marquette University,

Department of Mathematics,

Statistics and Computer Science,

Milwaukee, Wisconsin

Mathematical Reviews,

American Mathematical Society,

Ann Arbor, Michigan

New York University,

Academic Computing Facility,

New York, New York

Nippon Telegraph &

Telephone Corporation,

Basic Research Laboratories,

Tokyo, Japan

Princeton University,

Princeton, New Jersey

Smithsonian Astrophysical

Observatory, Cambridge,

Massachusetts

Space Telescope Science Institute,

Baltimore, Maryland

Springer-Verlag,

Heidelberg, Germany

Stanford University,

Computer Science Department,

Stanford, California

Texas A&M University,

Department of Computer Science,

College Station, Texas

United States Naval Observatory,

Washington DC

University of California, Berkeley,

Center for EUV Astrophysics,

Berkeley, California

University of California, Irvine,

Information & Computer Science,

Irvine, California

University of Canterbury,

Christchurch, New Zealand

University College,

Cork, Ireland

University of Delaware,

Newark, Delaware

University of Groningen,

Groningen, The Netherlands

Universität Koblenz–Landau,

Koblenz, Germany

University of Manitoba,

Winnipeg, Manitoba

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

University of Stockholm,

Department of Mathematics,

Stockholm, Sweden

234 TUGboat, 17, Number 2

University of Texas at Austin,

Austin, Texas

Università degli Studi di Trieste,

Trieste, Italy

Uppsala University,

Uppsala, Sweden

Vrije Universiteit,

Amsterdam, The Netherlands

Wolters Kluwer,

Dordrecht, The Netherlands

Yale University,

Department of Computer Science,

New Haven, Connecticut

Information about these services can be obtained

from:

TEX Users Group

1850 Union Street, #1637

San Francisco, CA 94123, U.S.A.

Phone: +1 415 982-8449

Fax: +1 415 982-8559

Email: tug@tug.org

North America

Anagnostopoulos, Paul C.

Windfall Software,
433 Rutland Street, Carlisle, MA 01741;
(508) 371-2316; greek@windfall.com

We have been typesetting and composing high-quality
books and technical Publications since 1989. Most of the
books are produced with our own public-domain macro
package, ZzTEX, but we consult on all aspects of TEX and
book production. We can convert almost any electronic
manuscript to TEX. We also develop book and electronic
publishing software for DOS and Windows. I am a
computer analyst with a Computer Science degree.

Cowan, Dr. Ray F.

141 Del Medio Ave. #134, Mountain View, CA 94040;
(415) 949-4911; rfc@netcom.com

Twelve Years of TEX and Related Software Consulting:

Books, Documentation, Journals, and Newsletters

TEX & LATEX macropackages, graphics; PostScript language
applications; device drivers; fonts; systems.

Hoenig, Alan

17 Bay Avenue, Huntington, NY 11743; (516) 385-0736
TEX typesetting services including complete book
production; macro writing; individual and group
TEX instruction.

NAR Associates

817 Holly Drive E. Rt. 10, Annapolis, MD 21401;
(410) 757-5724

Extensive long term experience in TEX book publishing
with major publishers, working with authors or publishers
to turn electronic copy into attractive books. We offer
complete free lance production services, including design,
copy editing, art sizing and layout, typesetting and
repro production. We specialize in engineering, science,
computers, computer graphics, aviation and medicine.

Ogawa, Arthur

40453 Cherokee Oaks Drive,
Three Rivers, CA 93271-9743;
(209) 561-4585

Experienced in book production, macro packages,
programming, and consultation. Complete book production
from computer-readable copy to camera-ready copy.

TUGboat, 17, Number 2 235

TEXConsulting &Production Services

Quixote Digital Typography, Don Hosek

555 Guilford, Claremont, CA 91711;
(909) 621-1291; Fax: (909) 625-1342;
dhosek@quixote.com

Complete line of TEX, LATEX, and METAFONT services
including custom LATEX style files, complete book
production from manuscript to camera-ready copy;
custom font and logo design; installation of customized
TEX environments; phone consulting service; database
applications and more. Call for a free estimate.

Richert, Norman

1614 Loch Lake Drive, El Lago, TX 77586;
(713) 326-2583

TEX macro consulting.

Southern California PrintCorp

(800) 899-7267 x801
SAVE MONEY on 1-day Linotronic output for journals.
Special TUGboat offer. Call now for more information.

Southern California PrintCorp

1915 Midwick Drive, Suite B, Altadena, CA 91001
(800) 899-7267 x888, Fax (818) 399-3565,
BBS (818) 398-3567

We have a ten year history providing 24-hour turn-around
imagesetting of PostScript files. Call for FREE information
on how TUGboat-ers can obtain low-cost, fastest available
Linotronic publication production services in the U.S.

Type 2000

16 Madrona Avenue, Mill Valley, CA 94941;
(415) 388-8873; Fax: (415) 388-8865
pti@crl.com

$2.50 per page for 2000 DPI TEX and PostScript camera
ready output! We provide high quality and fast turnaround
to dozens of publishers, journals, authors and consultants
who use TEX. Computer Modern, PostScript and
METAFONT fonts available. We accept DVI and
PostScript files only and output on RC paper. $2.25 per
page for 100+ pages, $2.00 per page for 500+ pages; add
$.50 per page for PostScript.

Outside North America

TypoTEX Ltd.

Electronical Publishing, Battyány u. 14. Budapest,
Hungary H-1015; (036) 11152 337

Editing and typesetting technical journals and books with
TEX from manuscript to camera ready copy. Macro writing,
font designing, TEX consulting and teaching.

