
TUGboat, Volume 17 (1996), No. 1 43

Tutorials

Using EPS Graphics in LATEX2ε Documents
Part 1: The graphics and graphicx packages

Keith Reckdahl

Abstract

This is the first of two papers that explain how to
use Encapsulated PostScript (EPS) files in LATEX2ε
documents.
The graphics and graphicx packages provide com-

mands which insert, scale, and rotate EPS graphics.
In addition to graphic-insertion commands, com-
mands which are commonly used in conjunction with
EPS graphics are covered.
Compressed EPS files and non-EPS graphic for-

mats (TIFF, GIF, JPEG, PICT, etc.) can also be
inserted when dvips is used.
Since neither LATEX nor dvips has any built-in

decompression or graphics-conversion capabilities,
that software must be provided by the user.
The second paper in the series, to appear later

this year, will cover

• floating figures in various configurations (includ-
ing more than one figure in a single float), and
the use of the subfigure package,

• creation of boxed figures, by use of the \fbox
command, or of the facilities of the fancybox
package,

• manipulation of the caption of a figure, includ-
ing use of the caption2 package, and

• modifying the text within an EPS file by us-
ing the PSfrag system, for example to include
mathematical symbols or equations.

1 Introduction

Inserting Encapsulated PostScript (EPS) graphics
in LATEX originally required the low-level \special
command. To make graphic-insertion easier and
more portable, two higher-level packages epsf and
psfig were written for LATEX2.09. In epsf, the graph-
ics insertion was done by the \epsfbox command,
while three other commands controlled graphic scal-
ing. In psfig, the \psfig command not only inserted
graphics, it also scaled and rotated them. While
the \psfig syntax was popular, its code was not as
robust as \epsfbox. The epsfig package was cre-
ated as a hybrid of the two graphics packages, with
its \epsfig command using the \psfig syntax and
much of the more-robust \epsfbox code. Unfortu-

nately, \epsfig still used some of the less-robust
\psfig code.
The epsfig package was updated to LATEX2ε

as a stop-gap measure while the LATEX3 team ad-
dressed the general problem of inserting graphics in
LATEX2ε. The resulting “graphics bundle” was to-
tally re-written, and its commands are more efficient
and more robust.
The graphics bundle contains the “standard”

graphics package and the “extended” graphicx pack-
age. Both packages contain an \includegraphics
command which includes graphics, but they con-
tain different versions of \includegraphics. The
syntax of the graphicx \includegraphics is mod-
eled after \psfig, while the syntax of the graphics
\includegraphics is modeled after the \epsfbox
command. As a result, the \includegraphics com-
mand in graphicx supports scaling and rotating, but
that in the graphicsmust be nested inside \scalebox
and/or \rotatebox commands for scaling and/or
rotating.
This paper has been typeset using the graph-

icx package because its syntax is more convenient
than the graphics syntax. Since both packages have
the same capabilities, the examples in this document
can also be performed with the graphics package,
although the resulting syntax may be more cum-
bersome. The syntax of the graphicx commands is
described in section 5. The syntax of the graphics
commands is described in section 6. For a full spec-
ification of the packages, see David Carlisle’s graph-
ics bundle documentation [1].
For backward compatibility, the graphics bun-

dle also includes the epsfig package which replaces
the original LATEX2ε epsfig package. The new epsfig
package defines the \epsfbox, \psfig, and \epsfig
commands as wrappers which translate to a simple
call to the \includegraphics command.

2 LATEX Terminology

A box is any LATEX object (characters, graphics,
etc.) that is treated as a unit (see [4, page 103]).
Each box has a reference point on its left side, and
a baseline, which is a horizontal line passing through
the reference point (see Figure 1). When LATEX
forms lines of text, characters are placed left-to-right
with their reference points aligned on a horizontal
line called the current baseline, aligning the char-
acters’ baselines with the current baseline. LATEX
follows the same process for typesetting graphics or
other objects; the reference point of each object is
placed on the current baseline.

44 TUGboat, Volume 17 (1996), No. 1

Baseline

height

depth

width

totalheight
Reference

Point

Figure 1: Sample LATEX Box

The size of each box is described by the three
lengths height, depth, width. The height is the dis-
tance from the reference point to the top of the box.
The depth is the distance from the reference point
to the bottom of the box. The width is the width of
the box. The totalheight is defined as the distance
from the bottom of the box to the top of the box,
or totalheight=height+depth.
The reference point of a non-rotated EPS graphic

is its lower-left corner (see left box in Figure 2), giv-
ing it zero depth and making its totalheight equal its
height. The middle box in Figure 2 shows a rotated
graphic where the height is not equal to the total-
height. The right box in Figure 2 shows a rotated
graphic where the height is zero.

3 The EPS BoundingBox

In addition to PostScript graphics language com-
mands which draw the graphics, EPS files contain
a BoundingBox line which specifies the natural size
of the graphics. By convention, the first line of a
PostScript file specifies the type of PostScript and
is then followed by a series of comments called the
header or preamble. (Like LATEX, PostScript’s com-
ment character is %). One of these comments spec-
ifies the BoundingBox. The BoundingBox line con-
tains four numbers:

1. The x-coordinate of the lower-left corner of the
BoundingBox.

2. The y-coordinate of the lower-left corner of the
BoundingBox.

3. The x-coordinate of the upper-right corner of
the BoundingBox.

4. The y-coordinate of the upper-right corner of
the BoundingBox.

For example, here are the first 5 lines of an EPS file
created by gnuplot:

%!PS-Adobe-2.0 EPSF-2.0

%%Creator: gnuplot

%%DocumentFonts: Times-Roman

%%BoundingBox: 50 50 410 302

%%EndComments

Thus the gnuplot EPS graphic has a lower-left corner
with coordinates (50, 50) and an upper-right corner
with coordinates (410, 302). The BoundingBox pa-
rameters have units of PostScript points which are
1/72 of an inch, making the above graphic’s natural
width 5 inches and its natural height 3.5 inches.
Note that a PostScript point is is slightly larger

than a TEX point which is 1/72.27 of an inch. In
TEX and LATEX, PostScript points are called “big
points” and abbreviated bp while TEX points are
called “points” and abbreviated pt.

3.1 Converting PS files to EPS

While most PostScript files (without BoundingBox
information) can be converted to EPS, there are re-
strictions on the PostScript commands which can be
used in EPS files. For example, EPS files cannot in-
clude the setpagedevice, letter, or a4 PostScript
operators. Single-page PostScript files without any
such offending commands can be converted to EPS
by one of the following methods:

1. The best option is to use a utility such as ghost-
script’s ps2epsi which will read the PostScript
file, calculate the BoundingBox parameters, and
create an EPS file (complete with a Bounding-
Box) which contains the PostScript graphics.
Unfortunately, ghostscript is a large package
which is not trivial to install.

2. Alternatively, the BoundingBox parameters can
be calculated and then either entered in the
bb option of \includegraphics or a text ed-
itor can be used to insert them directly in the
PostScript file’s BoundingBox line. There are
several ways to calculate the BoundingBox:

(a) The bbfig script uses a PostScript printer
to calculate the BoundingBox. bbfig adds
some PostScript commands to the begin-
ning of the PostScript file and sends it
to the printer. At the printer, the added
PostScript commands calculate the Bound-
ingBox of the original PostScript file, print-
ing the BoundingBox coordinates super-
imposed on the PostScript graphic.

(b) Use ghostview to display the PostScript
graphic. As you move the pointer around

TUGboat, Volume 17 (1996), No. 1 45

Reference
Point

height

width

EPS Graphics

EPS Graphics
depth

height

width

E
P

S
 G

ra
p

h
ics

width

depth

Figure 2: Rotated LATEX Boxes

the graphic, ghostview displays its coordi-
nates (with respect the the lower-left cor-
ner of the page). To determine the Bound-
ingBox parameters, record the pointer co-
ordinates at the lower-left corner of the
graphic and the upper-right corner of the
graphic.

(c) Print out a copy of the PostScript graph-
ics and measure the horizontal and verti-
cal distances (in inches) from the lower-left
corner of the paper to the lower-left cor-
ner of the graphics. Multiply these mea-
surements by 72 to get the coordinates of
the BoundingBox’s lower-left corner. Like-
wise, measure the distances from the lower-
left corner of the paper to the upper-right
corner of the graphics to get the coordi-
nates of the BoundingBox’s upper-right cor-
ner.

4 Graphics in DVI Files

When LATEX documents are compiled, the graphics-
inclusion commands do not insert the EPS graphics
file into the DVI file. Rather, they do two things:

1. They reserve the proper amount of space for the
graphic in the LATEX document.

2. They place a file-specification command in the
DVI file which specifies the name of the EPS file.

When a DVI-to-PS converter (such as dvips) con-
verts the DVI file to PostScript, the file-specification
command causes the converter to insert the EPS
graphics into the PostScript file. Therefore,

• the EPS graphics do not appear in most DVI-
viewers. To help the user with placement of the
graphics, most DVI viewers display the Bound-
ingBox in which the graphics will be inserted.

• the EPS files must be present when the DVI file
is converted to PS. Thus the EPS files must
accompany DVI files whenever they are moved.

5 The Commands in the graphicx Package

The coverage of the graphicx package is sporadic: [3]
covers both the graphics and graphicx packages, [4]
only covers the graphics package and [2] describes
neither. The best reference for the graphics and
graphicx packages is [1].

The graphicx package has five main commands:

\includegraphics[options]{filename}

\rotatebox{angle}{argument}

\scalebox{h-scale}[v-scale]{argument}

\resizebox{width}{height}{argument}

\resizebox*{width}{totalheight}{argument}

5.1 The includegraphics Command

Syntax:

\includegraphics[options]{filename}

Table 1 lists the geometric options available when
using the \includegraphics command. The Bound-
ingBox can alternatively be specified with the op-
tions natheight and natwidth. natheight=h with
natwidth=w are equivalent to bb=0 0 h w. For back-
ward compatibility, the BoundingBox coordinates
can also be individually specified with bbllx, bblly,
bburx, bbury options.

46 TUGboat, Volume 17 (1996), No. 1

Table 1: \includegraphics Options

height The height of the graphics (in any of the accepted TEX units).
totalheight The totalheight of the graphics (in any of the accepted TEX units). (Added

6/95)
width The width of the graphics (in any of the accepted TEX units).
scale Scale factor for the graphic. Specifying scale=2 makes the graphic twice

as large as its natural size.
angle Specifies the angle of rotation (in degrees) with a counter-clockwise (anti-

clockwise) rotation being positive.
origin The origin command specifies what point to use for the rotation origin.

(By default, the object is rotated about its reference point.) (Added 12/95)
The possible origin points are the same as those for the \rotatebox com-
mand in section 5.4. For example, origin=c rotates the graphic about its
center.

bb Specifies BoundingBox parameters. For example bb=10 20 100 200 speci-
fies that the BoundingBox has its lower-left corner at (10,20) and its upper-
right corner at (100,200).

Table 2: \includegraphics Cropping Options

viewport Specify what portion of the graphic to view. Like a BoundingBox, the
area is specified by four numbers which are the coordinates of the lower-left
corner and upper-right corner. The coordinates are relative to lower-left
corner of the BoundingBox. (Added 6/95)
For example, viewport=0 0 72 72 displays the 1-inch square from the
lower left of the graphic.
Note that some early graphicx versions may have a broken viewport option
in which viewport=a b c d produces an upper-right corner of (a+c,b+d)
instead of (c,d).

trim An alternate method for specifying what portion of the graphic to view. The
four numbers specify the amount to remove from the left, bottom, right,
and top side, respectively. Positive numbers trim from a side, negative
numbers add to a side. (Added 6/95)
For example, trim=1 2 3 4 trims the graphic by 1 bp on the left, 2 bp on
the bottom, 3 bp on the right, 4 bp on the top.

Table 3: \includegraphics Boolean Options

clip When clip=true or clip is specified, any graphics outside of the
viewing area are clipped and do not appear.

keepaspectratio When keepaspectratio=true or keepaspectratio is specified, spec-
ifying both the width and height or totalheight options does not
distort the graphic. Instead, the graphic is made as large as possible
such that its aspect ratio remains the same and the graphic does not
exceed either the specified height or width. (Added 9/95)

draft When draft=true or draft is specified, the graphic’s BoundingBox
and filename is displayed in place of the graphic, saving time. See
section 7.

TUGboat, Volume 17 (1996), No. 1 47

Since \includegraphics automatically reads
the BoundingBox parameters from the EPS file, these
options are usually not specified. They are use-
ful if the BoundingBox parameters in the EPS file
are missing or are incorrect. While the bb option
can also be used for cropping the EPS graphics, the
viewport or trim options (see Table 2) are recom-
mended. Table 3 lists other control options.

Example:

The EPS file box.eps contains:

Box

The commands:

\documentclass{article}

\usepackage{graphicx}

\begin{document}

Some text.

\includegraphics{box.eps}

More text.

\end{document}

produce:

Some text.
Box

More text.

Since \includegraphics does not end the current
paragraph, it can place EPS graphics within text, for
example or . The placement of the graphic is
controlled by the current text justification. To cen-
ter the graphic, put it inside a center environment:

\begin{center}

\includegraphics[width=2in]{box.eps}

\end{center}

Alternately, if the \includegraphics command is
inside an environment (such as minipage or figure),
the \centering declaration centers the remaining
output of the environment. For example:

\begin{figure}

\centering

\includegraphics[width=2in]{box.eps}

\end{figure}

is similar to:

\begin{figure}

\begin{center}

\includegraphics[width=2in]{box.eps}

\end{center}

\end{figure}

The difference between these examples is that the
center environment produces extra vertical space

above and below the environment, while \centering
produces no extra space.

5.2 The scalebox Command

Syntax:

\scalebox{h-scale}[v-scale]{argument}

The \scalebox command scales an object, mak-
ing its width be its original width multiplied by
h-scale. The object can be any LATEX object: let-
ter, paragraph, EPS graphic, etc. The object’s height
is its original height multiplied by v-scale. Nega-
tive values reflect the object. If v-scale is omitted,
it defaults to h-scale, which keeps the aspect ratio
constant.

5.3 The resizebox Commands

Syntax:

\resizebox{width}{height}{argument}

\resizebox*{width}{totalheight}{argument}

The \resizebox command resizes an object to a
specified size. The object can be any LATEX object:
letter, paragraph, EPS graphic, etc. Specifying ! as
either height or width makes that length be such
that the aspect ratio remains constant. The stan-
dard LATEX2ε arguments \height, \depth, \width,
\totalheight can be used to refer to the original
size of argument. So \resizebox{2in}{\height}%
{argument} makes argument keep its same height
but have a width of 2 inches.
The \resizebox* command only differs from

\resizebox in its second argument, which specifies
the totalheight of the object.

5.4 The rotatebox Command

Syntax:

\rotatebox[options]{angle}{argument}

The \rotatebox command rotates an object by an
angle given in degrees, with a counter-clockwise ro-
tation being positive. The object can be any LATEX
object: letter, paragraph, EPS graphic, etc. By de-
fault, the object is rotated about its reference point.
The options allow the user to specify the point of
rotation:

1. Specifying the [x=xdim,y=ydim], the object is
rotated about the point whose coordinates rel-
ative to the reference point are (xdim,ydim).

2. The origin option specifies one of 12 special
points shown in in Figure 3.

The horizontal position of the origin points
is specified by one of three letters: lcr (which
stand for left, center, right), while the verti-
cal position is specified by one of four letters:

48 TUGboat, Volume 17 (1996), No. 1

Baseline

[rB]

[rb]

[rt][ct]

[lc]

[lt]

[cb]

[c]

[cB]

[rc]

Reference
Point

[lB]

[lb]

Centerlines

Figure 3: Available Origin Points

t,c,B,b (which stand for top, center, Baseline,
bottom). For example:

[rb] specifies the bottom-right corner

[lt] specifies the top-left corner

[cB] specifies the center of the graphic’s Base-
line

[lc] specifies the midpoint of the left side

[ct] specifies the midpoint of the top side

Note that:

• The order of the letters is not important,
making [br] equivalent to [rb].

• c represents either the horizontal center
or vertical center depending what letter is
used with it.

• If only one letter is specified, the other is
assumed to be c, making [c] equivalent to
[cc], [l] equivalent to [lc], [t] equiva-
lent to [tc], etc.

6 The graphics Version of includegraphics

The graphics package contains two commands
\includegraphics and \includegraphics* which
are identical except that \includegraphics* clips
(does not show) graphics outside the BoundingBox.
The syntax for \includegraphics is:

\includegraphics[llx,lly][urx,ury]{filename}

[llx,lly] are the x and y coordinates of the lower-
left corner of the image. [urx,ury] are the x and y
coordinates of the upper-right corner of the image.
If no coordinates are given, the BoundingBox in the
file is used. If only one set of coordinates is given, it
is assumed to be [urx,ury], with [llx,lly] set to
zero. The default units for the coordinates are bp,
although any valid TEX units can be used.

The graphics package’s \rotatebox, \scalebox,
\resizebox commands are the same as the corre-
sponding graphicx commands except that the graph-
ics version of \rotatebox does not allow any of the
options which the graphicx version offers (see sec-
tion 5.4).

The following commands use the graphicx version of
\includegraphics:

\documentclass{article}

\usepackage{graphicx}

\begin{document}

%% include file1.eps with a width of 3 inches

\includegraphics[width=3in]{file1.eps}

%% include file2.eps with a width of 3 inches,

%% then rotate 45 degrees

\includegraphics[width=3in,angle=45]{file2.eps}

%% include file3.eps, rotate 45 degrees,

%% and resize to a width of 3 inches

\includegraphics[angle=45,width=3in]{file3.eps}

\end{document}

The following commands use the graphics version of
\includegraphics to produce the same output:

\documentclass{article}

\usepackage{graphics}

\begin{document}

%% include file1.eps with a width of 3 inches

\resizebox{3in}{!}{\includegraphics{file1.eps}}

%% include file2.eps with a width of 3 inches,

%% then rotate 45 degrees

\rotatebox{45}{\resizebox{3in}{!}%

{\includegraphics{file2.eps}}}

%% include file3.eps, rotate 45 degrees,

%% and resize to a width of 3 inches

\resizebox{3in}{!}{\rotatebox{45}%

{\includegraphics{file3.eps}}}

\end{document}

7 Draft Mode in graphicx

Since LATEX documents containing PostScript fig-
ures take longer to display and print, it often is de-
sirable to omit the actual graphic when preliminary
versions of the document are viewed or printed. If
the graphics or graphicx packages are used with the
draft option:

\usepackage[draft]{graphicx}

then only the BoundingBox and name of any subse-
quent EPS graphics are displayed:

box.eps

TUGboat, Volume 17 (1996), No. 1 49

The graphicx version of \includegraphics has a
draft option which allows the user to also control
this feature for individual graphics. For example:

\includegraphics[draft,width=1.2in]{box.eps}

8 Specifying Height and/or Width in
graphicx

The graphic’s height and/or width can be specified,
resulting in the following combinations:

• If neither the height nor the width is specified,
the EPS graphic is included with its natural size
(the size specified by the BoundingBox).

• If the height is specified and the width is not
specified, the EPS graphic is included with the
specified height and a width such that its height/
width aspect ratio remains the same.

• If the width is specified and the height is not
specified, the EPS graphic is included with the
specified width and a height such that its height/
width aspect ratio remains the same.

• If both height and width are specified:

– If the keepaspectratiooption is not spec-
ified, the EPS graphic is scaled anamorphi-
cally to fit both the specified height and
width.

– If the keepaspectratio option is speci-
fied, the graphic is made as large as possi-
ble such that its aspect ratio remains the
same and the graphic does not exceed ei-
ther the specified height or width.

The following LATEX command makes the included
graphic as wide as the text:

\includegraphics[width=\textwidth]{box.eps}

The following LATEX command makes the included
graphic 80% as wide as the text:

\includegraphics[width=0.80\textwidth]{box.eps}

The following commands make the width of the in-
cluded graphic 2 inches less than the width of text:

\newlength{\epswidth}

\setlength{\epswidth}{\textwidth}

\addtolength{\epswidth}{-2.0in}

\includegraphics[width=\epswidth]{box.eps}

If the calc package is available, this is shortened to:

\newlength{\epswidth}

\setlength{\epswidth}{\textwidth -2.0in}

\includegraphics[width=\epswidth]{box.eps}

The \newlength command only needs to be issued
once. Subsequent graphics can be scaled without re-
issuing the \newlength command. The length name
\epswidth is not special. Any other name (which
isn’t already used by LATEX) could have been used.
The calc package with the 12/95 graphicx package
shortens this further to:

\includegraphics[width=\textwidth-2.0in]%

{box.eps}

8.1 Problems with Specifying Height

Users must be careful when using the height option.
When users want to specify an object’s “height”,
they often mean the overall height which is set by
the totalheight option and not the height option.
If the height option is mistakenly used instead of
totalheight, the results may or may not be bad:

• If the object happens to have a zero depth (see
the left box in Figure 2) the totalheight is the
same as the height and everything works fine.

• If the object has non-zero depth (see the middle
box in Figure 2) the object is scaled such that
the object’s height is as large as the desired
totalheight, making the object too large.

• If the object has zero height (see the right box
in Figure 2) an “Arithmetic overflow” (divide-
by-zero) error occurs. This happens because
LATEX calculates the scaling factor as

scaling =
requested height

height

Note that the LATEX2.09 \psfig command and early
versions of \includegraphics only have a height
option.

9 Rotation with Scaling in graphicx

Since the \includegraphicsoptions are interpreted
from left to right, the order in which the angle and
size are specified makes a difference. For example:

\begin{center}

\includegraphics[angle=90,%

totalheight=0.5in]{box.eps}

\includegraphics[totalheight=0.5in,%

angle=90]{box.eps}

\end{center}

produces:

B
o
x

B
o

x

The first box is rotated 90 degrees and then scaled
such that its height is a half inch. The second box
is scaled such that its height is a half inch and then
it is rotated 90 degrees.

50 TUGboat, Volume 17 (1996), No. 1

9.1 Scaling of Rotated Graphics

When the height or width of a graphic is specified,
the specified size is not the size of the graphic but
rather of its BoundingBox. This distinction is espe-
cially important in order to understand the scaling
of rotated graphics. For example:

\begin{center}

\includegraphics[totalheight=1in]%

{rosette.eps}

\includegraphics[angle=45,totalheight=1in]%

{rosette.eps}

\includegraphics[angle=90,totalheight=1in]%

{rosette.eps}

\end{center}

produces:

Although it may seem strange that the graphics
have different sizes, it makes sense after viewing the
BoundingBoxes:

Each graphic is scaled such that its rotated Bound-
ingBox is 1 inch tall.

9.2 Alignment of Rotated Graphics

When graphics are rotated, the objects may not
align properly. For example:

\begin{center}

\includegraphics[totalheight=0.5in]%

{rosette.eps}

\includegraphics[totalheight=0.5in,%

angle=-45]{rosette.eps}

\includegraphics[totalheight=0.5in,%

angle=-90]{rosette.eps}

\end{center}

produces:

Again, this is better illustrated by the Bounding-
Boxes:

In this case, the objects’ reference points (original
lower-left corners) are aligned on a horizontal line.
If it is desired to instead have the centers aligned,
the minipage environment can be used:

\begin{center}

\begin{minipage}[c]{0.625in}

\centering

\includegraphics[totalheight=0.5in,%

angle=0]{rosette.eps}

\end{minipage}

\begin{minipage}[c]{0.625in}

\centering

\includegraphics[totalheight=0.5in,%

angle=-45]{rosette.eps}

\end{minipage}

\begin{minipage}[c]{0.625in}

\centering

\includegraphics[totalheight=0.5in,%

angle=-90]{rosette.eps}

\end{minipage}

\end{center}

However, an easier solution uses the \rotatebox
command to rotate the graphic about its center:

\begin{center}

\includegraphics[totalheight=0.5in]%

{rosette.eps}

\rotatebox[origin=c]{-45}{%

\includegraphics[totalheight=0.5in]%

{rosette.eps}}

\rotatebox[origin=c]{-90}{%

\includegraphics[totalheight=0.5in]%

{rosette.eps}}

\end{center}

This aligns the centers of the graphics:

If the 12/95 version of graphicx is used, the origin
option can be used in \includegraphics:

\begin{center}

\includegraphics[totalheight=0.5in]%

{rosette.eps}

\includegraphics[totalheight=0.5in,%

origin=c,angle=-45]{rosette.eps}

\includegraphics[totalheight=0.5in,%

origin=c,angle=-90]{rosette.eps}

\end{center}

Similarly, the commands:

TUGboat, Volume 17 (1996), No. 1 51

\begin{center}

\includegraphics[width=1in]{box.eps}

\hspace{0.5in}

\includegraphics[width=1in,angle=-90]%

{box.eps}

\end{center}

produce:

Box

B
o
x

while the following commands:

\begin{center}

\includegraphics[width=1in]{box.eps}

\hspace{0.5in}

\rotatebox[origin=br]{-90}{%

\includegraphics[width=1in]{box.eps}}

\end{center}

align the bottoms of the graphics:

Box

B
o
x

If the 12/95 version of graphicx is used, the origin
option can be used in \includegraphics:

\begin{center}

\includegraphics[width=1in]{box.eps}

\hspace{0.5in}

\includegraphics[width=1in,origin=br,%

angle=-90]{box.eps}}

\end{center}

10 Compressed and Non-EPS Graphics
Files

The commands \DeclareGraphicsRule and
\DeclareGraphicsExtensions control how LATEX
deals with the files specified in \includegraphics
commands.
When using dvips, users can specify an op-

eration to be performed on the file before it is in-
serted. By making this operation a decompression
command, compressed graphics files can be used.
By making this a graphics-conversion command, non-
EPS graphics files can be used. Since dvips is cur-
rently the only DVI-to-PS converter with this
capability, everything in this section requires
dvips.

\DeclareGraphicsRule has a ‘command’ argu-
ment; this is only usable on an operating system that
supports pipes. Without piping, the decompression
or conversion cannot be done on-the-fly and the user
must store all graphics as uncompressed EPS files.
Depending on the system defaults, users may

need to pass the dvips option to the graphicx pack-
age. This can be done by either specifying the dvips
global option in the \documentclass command:

\documentclass[dvips,11pt]{article}

or by specifying the dvips option when loading the
package using the \usepackage command:

\usepackage[dvips]{graphicx}

Since specifying the dvips as a global option passes
it to all packages, it is generally preferred.

10.1 The DeclareGraphicsRule Command

The \DeclareGraphicsRule command specifies how
\includegraphics should treat files depending on
their extensions. Multiple \DeclareGraphicsRule
commands may be issued. The syntax is:

\DeclareGraphicsRule{ext}{type}%

{sizefile}{command}

See Table 4 for details of the arguments to the com-
mand. For example, the following command:

\DeclareGraphicsRule{.eps.gz}{eps}{.eps.bb}%

{‘gunzip -c #1}

specifies that any file with a .eps.gz extension is
treated as compressed eps file. It also specifies that
the BoundingBox information is stored in the file
with a .eps.bb extension, and that gunzip -c com-
mand uncompresses the file. (Since LATEX cannot
read BoundingBox information from a compressed
file, the BoundingBox line must be stored in an un-
compressed file.)
Since the following graphics rules are defined by

default in dvips.def, users generally do not need to
use the \DeclareGraphicsRule command:

\DeclareGraphicsRule{.eps}{eps}{.eps}{}

\DeclareGraphicsRule{.ps}{eps}{.ps}{}

\DeclareGraphicsRule{.pz}{eps}{.bb}%

{‘gunzip -c #1}

\DeclareGraphicsRule{.eps.Z}{eps}{.eps.bb}%

{‘gunzip -c #1}

\DeclareGraphicsRule{.ps.Z}{eps}{.ps.bb}%

{‘gunzip -c #1}

\DeclareGraphicsRule{.eps.gz}{eps}{.eps.bb}%

{‘gunzip -c #1}

\DeclareGraphicsRule{.ps.gz}{eps}{.ps.bb}%

{‘gunzip -c #1}

\DeclareGraphicsRule{.pcx}{bmp}{}{}

\DeclareGraphicsRule{.bmp}{bmp}{}{}

\DeclareGraphicsRule{.msp}{bmp}{}{}

\DeclareGraphicsRule{*}{eps}{*}{}

52 TUGboat, Volume 17 (1996), No. 1

Table 4: \DeclareGraphicsRule Arguments

ext The file extension.
type The graphics type for that extension.
sizefile The extension of the file which contains the BoundingBox information for

the graphics. If this option is blank {}, the size information must be spec-
ified by an \includegraphics option.

command The command to be applied to the file (often left blank {}). The command
must be preceded by a single backward quote (not to be confused with the
more common forward single quote).

The first two commands define the .eps and .ps
extensions as eps files. The next five commands
define extensions for compressed eps files. The next
three commands define extensions for bitmaps (see
section 10.3.1). The last command defines any other
suffix as an eps file.
For example, to compress the EPS file file.eps,

the BoundingBox line must first be extracted and
stored in file.eps.bb. The EPS file can then be
compressed by the gzip file.eps command (max-
imise compression by using gzip -9 file.eps).
The old epsfig package came with epsbb, a perl
script which creates the BoundingBox file and then
compresses the EPS file. epsbb is still available from
CTAN.

10.2 The DeclareGraphicsExtensions
Command

The \DeclareGraphicsExtensions command tells
LATEX which extensions to try if a user specifies a file
with no extension in the \includegraphics com-
mand. The following graphic extensions are defined
by default in dvips.def:

\DeclareGraphicsExtensions{.eps,.ps,%

.eps.gz,.ps.gz,.eps.Z}

With the above graphics extensions specified, the
command \includegraphics{file} makes LATEX
first look for file.eps, then for file.ps, then for
file.eps.gz, etc., until a file is found.

The \DeclareGraphicsExtensions command allows
the graphics to be specified with

\includegraphics{file}

instead of

\includegraphics{file.eps}

The first syntax has the advantage that if you later
decide to compress file.eps, you do not need to
edit the LATEX file.

10.3 Including Non-EPS Graphic Files

While it is easy to insert EPS graphics into LATEX
documents, it is not as straightforward to insert

non-EPS graphics (GIF, TIFF, JPEG, PICT, etc.).
A simple solution is to find out if the application
which generated the non-EPS graphic also generates
EPS output. If not, a graphics conversion program
(such as ImageMagick, xv, netpbm, pbmplus) must
be used to convert the graphics to PostScript.
Since a non-EPS graphics file may be smaller

than the corresponding EPS file, it may be desir-
able to keep the graphics in a non-EPS format and
convert them to PostScript when the DVI file is con-
verted to PostScript. If dvips is used, this on-the-
fly conversion can be specified by the command op-
tion in \DeclareGraphicsRule. For example, to
use on-the-fly conversion to insert file.gif into a
LATEX document, one needs to:

1. Find a GIF-to-PS conversion program (assume
it’s called gif2ps)

2. One needs to create a .bb file which specifies
the natural size of the file.gif graphics. To
do this, convert file.gif to PostScript and:

(a) If the Postscript file is EPS, save the Bound-
ingBox line in file.bb

(b) If the Postscript file is not EPS, deter-
mine the appropriate BoundingBox (see
section 3) and store it in file.bb

3. Keep file.gif and delete the PostScript file.

4. Enter \DeclareGraphicsRule{.gif}{eps}%
{.bb}{‘gif2eps #1} in the LATEX document.

When the command \includegraphics{file.gif}
is issued, LATEX will read the BoundingBox from
file.bb and will also tell dvips to use gif2eps to
convert file.gif into PostScript.

10.3.1 Direct Support for Non-EPS
Graphics

It is often requested that LATEX and dvips sup-
port the direct inclusion of non-EPS graphic formats,
making it as easy as inserting EPS files. While this
would be convenient, there unfortunately are some
problems which complicate things.

TUGboat, Volume 17 (1996), No. 1 53

For example, most non-EPS graphic formats use
binary files which cannot be read by TEX, which pre-
vents LATEX from determining the size of the non-
EPS graphics. Furthermore, supporting non-EPS
graphics would also require dvips to incorporate
graphics conversion capabilities (GIF-to-PS, TIFF-
to-PS, etc.). This would not only require a lot of
programming, it would also require more mainte-
nance in the future.
Rather than directly incorporating graphics con-

version routines, dvips provides a mechanism of
calling external conversion programs. This mecha-
nism can be accessed from LATEX by use the the com-
mand argument of \DeclareGraphicsRule. This
has the benefit of being more flexible than direct
support, and since it keeps the graphics conversion
uncoupled from the DVI-to-PS conversion, users are
free to choose their own graphics conversion pro-
gram.
While LATEX and dvips generally do not sup-

port the direct inclusion of non-EPS graphics, there
are some exceptions:

1. If dvips is compiled with -Demtex, it supports
some EmTEX \special commands, allowing it
to include PCX, BMP, or MSP bitmaps.

2. Some commercial versions of LATEX support non-
EPS graphics:

(a) Textures for the Macintosh supports PICT
graphics.

(b) Y&Y’s TEX package for Windows includes
the DVI-to-PS converter DVIPSONE which
supports TIFF files. However, TEX can-
not read the binary TIFF files, prevent-
ing LATEX from reading the TIFF tags the
same way it reads EPS BoundingBox in-
formation. Since LATEX cannot determine
the natural size of TIFF graphics, the user
must still use a .bb file or specify the bb
parameters explicitly in the optional argu-
ment of the \includegraphics command.

Check your documentation or contact the com-
pany’s customer service for the correct syntax.

References

[1] David P. Carlisle. Packages in the ‘graphics’ bun-
dle. Available from CTAN as grfguide.tex or
grfguide.ps.

[2] Michel Goossens, Frank Mittelbach, and Alexan-
der Samarin. The LATEX Companion. Addison-
Wesley, Reading, Massachusetts, 1994.

[3] Helmut Kopka and Patrick Daly. A Guide to
LATEX2ε. Addison-Wesley, Reading, Massachu-
setts, 1995.

[4] Leslie Lamport. LATEX: A Document Prepara-
tion System. Addison-Wesley, Reading, Massa-
chusetts, second edition, 1994.

⋄ Keith Reckdahl

Stanford University

Box 9030

Palo Alto, CA 94309

USA

reckdahl@leland.stanford.edu

