
TUGboat, Volume 17 (1996), No. 1 7

TUG’95
Questions and Answers with
Prof. Donald E. Knuth

Don Knuth with past (and present) TUG

presidents [Malcolm Clark absent]. (l–r)
Pierre MacKay, Bart Childs, Don Knuth,
Nelson Beebe, Christina Thiele and Michel
Goossens (Photo courtesy Luzia Dietsche).

Session called to order by Barbara Beeton.1

Barbara: I’ve had the pleasure of knowing Don for
quite a long time. I’d like to start off with the first
question . . . 2 the obvious question, other than what
the T-shirt means: How’s volume 4 doing? [laughter]

DEK: Thank you very much, Barbara. You said
that I’m the reason that most of you are here. I
think that Barbara is just as much a part of the rea-
son, as me or anyone, about why we’re here. She’s
done wonderful work for us all these years.

You know, the reason I came to this meeting
is that, after the 10th TUG conference, I promised I
would come to the 16th because that was the most
important number for a computer scientist. Sixteen
is not only a power of two, it’s two to a power of
two to the two, and 16 is two to the two to the
two to the two to the minus-infinity. [laughter] So,
it’s about as binary a number as you can get until
65,536. Numbers are important to me. So this is a
momentous meeting for the whole TEX project.

1 This Q&A session took place at the TUG’95 Annual
Meeting in St. Petersburg, Florida, on 25 July 1995 (9–10:30
a.m.) –Ch.

2 Transcription notes: (a) . . . means a bit of a pause in
the speaking; (b) [ . . . ] means text missing because unclear
or unintelligible.



8 TUGboat, Volume 17 (1996), No. 1

I looked up what was I doing exactly 16 years
ago today. And I found out that, of all things, I
was working with Barbara Beeton, who had come to
Stanford for 2 or 3 weeks for the American Math So-
ciety. They were showing me the problems they were
having with making the index to Math Reviews. So,
on July 25th, 1979, Barbara and I were trying to fig-
ure out how to do the index to Math Reviews. This
led to more powerful facilities for leaders and things
like that, because the index to Math Reviews has
occasions where you have lots of problems because
you have to run the dots in a certain way, based on
how many references there are. It was very inter-
esting because I found two bugs in TEX that day—
they were numbers 414 and 415 in the history of the
development of TEX. Something to do with an error
message in case you get to an end-of-file in the mid-
dle of something else. Anyways, it was that kind of
error. That was sixteen years ago today.

Barbara said: “Why do I have this T-shirt on?”
The T-shirt says:

xn + yn = zn . . . NOT!

That’s a mathematical formula which I could show
you how to do in TEX, if you’re interested . . . [laugh-
ter]

I’m wearing this T-shirt because I had a thrill
a month ago. It’s continually exciting for me to
see the uses that people are making of TEX all over
the world. Very exciting. One of the most impor-
tant somehow to me was last month when I went
to the library and saw Andrew Wiles’s solution to
Fermat’s Last Theorem. I think a lot of you know
that it was front-page news.3 For a while, there was
some doubt whether there was maybe still a gap in
his proof, and then it was fixed up. So, this is the
most famous by far of all problems in mathemat-
ics. Just as people can remember where they were
when they heard about Kennedy being assassinated,
I know mathematicians can all remember where they
were when they first heard that Fermat’s Theorem
was solved. The paper came out in the Annals of
Mathematics last month;4 it arrived in our library
and I saw it sitting there, and I looked at it and
it was just wonderful for me because it was in TEX
and it looked gorgeous! [laughter] This to me was
the . . . you know, it was so . . . I mean, I almost
felt like I had helped to solve the Theorem myself!
[more laughter] So now, I’m also very glad to find
out that the people who were responsible are here
this week. In the back row, we have the editor of

3 Wiles proved that xn + yn = zn is impossible when
n > 2 and xyz > 0.

4 Andrew Wiles, “Modular elliptic curves and Fermat’s
Last Theorem,” Annals of Mathematics 142 (1995), 443–551.

Annals of Mathematics5 and also Geraldine Pecht,
who was the typesetter. So, it’s a thrill to me. Let’s
give them a hand. [applause]

But I didn’t want to talk about anything pre-
pared, I wanted to answer questions.

So, Barbara asked the first question: “What
about Volume 4 of The Art of Computer Program-
ming?” Now, I usually only answer that question
on special occasions. [laughter] These days I’m a
full-time writer and I’m working very hard on The
Art of Computer Programming. We have, uh . . .
let me just see if I can find a scratch page to work
on . . . [went to overhead with live Emacs screen on
computer]. This is just to remind me about what to
talk about . . .

Now, it used to be that we used ACP as the ab-
breviation for The Art of Computer Programming .
But someone else suggested that it should be called
TAOCP. So now this is the new abbreviation for
it: The Art of Computer Programming . This is my
life’s work, this is what I started working on in 1962,
and I think I have about 20 years of work to go on it
yet, after which I’ll be 77 years old. So you see why
I retired early— in order to be able to work very
hard on this.

Bart Childs: Should that be TAOCP? [there was
a typo on the screen, which showed TOACP]

DEK: It is. You want me to enlarge this font? I
only have three or four fonts . . . Oh! [sees typo]

Bart: Does that mean I get a check for five dollars
and twelve cents? [laughter]

DEK: Not for you!! [laughter] . . . You know I did
that on purpose just to see if anybody was looking.
[laughter] Alright . . . Then there’s this other book
I’m working on, called The Art of Computer Pro-
gramming [laughter] . . . OK, so . . . Boy, am I
nervous. [laughter]

So, in order to finish this project, I have to
work very hard, because computer science people
keep discovering new things. Originally, my idea
was that I was going to be able to summarize all of
the good stuff in computer science, but now I have
to say that I just have to work very hard in order to
summarize all the classical good stuff in computer
science. I’m working especially to get all the history
correct and to lay the right foundation for the spe-
cialized things. But I can’t go up to the frontiers in
everything as I could have in the 60s, when I began
the project. I worked on TEX for about 10 years
total, I guess, and I’m hoping that those 10 years

5 Maureen Schupsky, Managing Editor, Princeton Univer-
sity Press.



TUGboat, Volume 17 (1996), No. 1 9

actually will save me about 6 or 7 years of the time
I would have had to put into The Art of Computer
Programming because I can now do my other work
more efficiently.

The Art of Computer Programming is sort of
what I view as the thing that I’m most uniquely able
to do in my life. I’m feeling very healthy now and
happy, and I feel that what I’m accomplishing every
week is about as much as I’ve ever been able to do
in my life in a week. So, I hope I can keep it up for a
while. But I know that it takes a lot of time. That’s
why I’m retired and I’m working full-time on this.

I spent last year building infrastructure for the
project, which meant making large computer files
of what’s in my house. So I have thousands and
thousands of items that I’ve indexed and put into
place so that I know how to find things.

Right now, my current project is to finish an-
swering mail about The Art of Computer Program-
ming that came in since I was working on TEX.
[laughter] You know that if anybody found errors in
The TEXbook, I answered the mail eventually and
paid for the errors and so on. Well, people also get
a reward for finding errors in The Art of Computer
Programming . But the fact is, the last time I wrote
a check for that was July of 1981. [laughter] In Au-
gust of 1981, my secretary started issuing a form
letter, typeset with TEX, saying “I will get back to
you soon.” [laughter] I started putting these letters
into a little pile. Then the pile got to be a bigger
pile, and it got mixed with all the other preprints I
was receiving, until the pile grew to 260 inches high!
Now, convert that to centimeters . . . well, anyways,
it’s a lot! [laughter] It was about seven to eight me-
ters of material. I went through all that and I am
now answering those letters. Actually, the number
of letters that I hadn’t answered was less than 500—
something like 450 letters—and I’m now answering
those letters and hoping that the checks will reach
the people at the addresses from where they sent me
their comments.

I’ll show you the errata because I’m working on
it now. Here’s an example [Figure 1]. Just so you
can see what the Index is about. This is p. 77 of
the errata to Volume 1.6 This is 8pt type being en-
larged a lot. I wanted to show you one of the things
I’m working on right now . . . For all the authors
that I cite in The Art of Computer Programming ,
when they have a non-Western name, I’m building
a big database of the names in their native script,
for example, Chinese or Japanese. (I haven’t put in

6 See Knuth’s Web pages at http://www-cs-faculty.

stanford.edu/~knuth/taocp.html –Ch.

vonNeumann,John [=Margittai Neumann
J�anos], 18, 225, 456.

Wadler, Philip Lee, 594.
Wall, Hubert Stanley, 481.
Wallis, John, product, 50, 112, 480.
Wang, Hao ( ), 382{384.
Wang, Paul Shyh-Horng ( ), 436, 631.
Watson, Dan Caldwell, 248.
Wedderburn, Joseph Henry Maclagan, 583.
Wegbreit, Eliot Ben, 603.
Weierstrass, Karl Theodor Wilhelm, 381.
Wiles, Andrew John, 465.
Wilf, Herbert Saul, 92, 483.
Windley, Peter F., 518.
Wise, David Stephen, 420, 434, 595.
Wiseman, Neil Ernest, 420.
Yao, Andrew Chi-chih ( ), 538.
Young Tanner, Rosalind Cecilia

Hildegard, 75.
Zave, Derek Alan, 90, 603.
Zeilberger, Doron, 64.

Figure 1: Excerpt from the end of err1.dvi

the Indian names yet, but I’m working with people
in India to get that solved.) . . . Right now, I have
most up-to-date stuff on the Chinese part of it . . . I
have bitmap fonts for all the unicode characters—
especially the Chinese characters—and I now have a
pretty good database of these things, hopefully. So,
by the time unicode software is ready and available,
I’ll be ready to use it and I’ll be able to typeset the
various names properly.

I have some interesting Emacs macros that help
me with the unicode characters even though I don’t
have any software yet for unicode. I can type in
four hexadecimal digits in Emacs and then say M-X

unic and so magically it will convert that into the
Chinese character—the bitmap of it—which then
can be put into the document. There’s Andy Yao’s
name in Chinese. I just have 24-by-24 bitmaps of
all these characters, but it’s enough for proofreading
purposes. I have it set up so that it’s very easy for
me to get the characters into my file. The Emacs
macro sends it to a little program that looks it up
in a file, finds the bitmap, and inserts it into TEX
format. Between angle brackets, the stuff’s sent to
PostScript. I’m planning that at the end of the year,
I’ll announce this errata list, which will be finished
by that time. Right now, it’s about 180 pages and
I’m still building it while I’m answering these letters.

Then we’re going to issue Volume 4 in fasci-
cles, about 128 pages at a time. The idea is to do
that about twice a year for the next 10 years. My
steady state, I figure, is going to be about 256 pages
a year of output. We’re going to have three or four
fascicles in hand before we actually start this pub-
lication. The first four fascicles—one of them will



10 TUGboat, Volume 17 (1996), No. 1

be this larger one [the update errata to Volumes 1,
2 and 3]; the other three —the second one will be
the design of a computer called MMIX7 which is re-
placing the MIX computer. MMIX is a RISC machine,
very much like the computers that we’re all converg-
ing to these days. It’s a 64-bit RISC computer which
I might even own one day—I don’t know, if some-
body’s going to build it. I’ve got the experts in the
field helping me design it. Dick Sites, who was the
architect of the Alpha chip, is one of my students
and has promised to work on all the final steps of it.
Also John Hennessy, who designed the MIPS chip.
And some of the people from SPARC. So MMIX is
going to be a nice clean RISC computer in order to
make experiments on algorithms, to see how much
the different cache management schemes work with
different coding algorithms and so on.

The second fascicle will be to replace MIX by
MMIX and I’m hoping that, eventually, every time I
have a MIX program in The Art of Computer Pro-
gramming , it will be replaced by an MMIX program.
I’m not going to do that until I finish Volumes 4
and 5. But I’m hoping that a lot of other people
will have done that work already by the time I get
there. People have already promised me that they’re
going to have a C-compiler up for MMIX next year,
and we’re trying to get operating systems written
for it.

The other two fascicles—one of them will be
the first part of Volume 4, which talks about bit-
fiddling. These are a collection of techniques that
are mostly in folklore about efficient methods for
computers where you’re using the logical operations
of a machine —the exclusive ‘or’, the ‘and’ and ‘not’,
as well as ‘plus’, ‘minus’, ‘times’, and ‘divide’— to
gain great efficiency. I’ve got that material pretty
much written already. In fact, it was what I had
drafted just before I started working on TEX—that
was 1977 when I wrote the first draft about bit-
fiddling.

And then I get into the study of brute force
enumeration methods. The subject of Volume 4 is
combinatorial algorithms, and this means the meth-
ods that have been developed to deal with problems
where you have zillions of cases; all kinds of ideas
have come up as to how to speed up, by many or-
ders of magnitude, the obvious methods for deal-
ing with cases of combinatorial importance. I begin
the chapter by talking about bit-fiddling, and the
next part by talking about fast methods for list-
ing all permutations, and listing all subsets of a set,
and things like that. A vast literature about such

7 MMIX = 2009, in roman numerals.

things exists. Surprisingly, more people have written
papers about generating permutations than about
sorting. Sorting is the idea of putting into order;
generating permutations is about putting into dis-
order. More people have explained how to unorder
things than to order things. [laughter] Most of those
papers are fairly repetitious and trivial, though, and
not as interesting as the sorting papers, so the diffi-
culty for me is mostly to survey this literature and
put it all together. Most of the people writing on
it were unaware that other people were working on
the same thing.

OK. Well, that’s more than enough of an an-
swer to your question, I hope, on the state of Vol-
ume 4. Every day I should be able to finish about
a page or so, and I think I’ve been going at about
that rate for a while now.

While I’ve got this on the screen . . . Let’s try
going forward a couple of pages . . . I really want
to look at this equation here [Figure 2]. I used to
have Fermat’s Last Theorem as a research problem
at the beginning of the book. [laughter] In the er-
rata it says now: “Prove that when n is an integer
greater than 4, the equation wn + xn + yn = zn

has no solution in positive integers.” So, now I’ve
just added another variable to the equation [laugh-
ter] and we’ve got another good research problem.
And it turns out that for n = 4, there are infinitely
many solutions. The proof of Fermat’s Last The-
orem caused a personal crisis for me, but I’ve now
resolved it in this way. [laughter]

I want to look at p. 61 as an example of new
material [Figure 3]. This is about some very nice
constructions that come out of studying trees. I put
this up as an example of an illustration—I’m doing
all the illustrations for the book in MetaPost, and
this is one of the ones that happened to be around
here. I love MetaPost, and John [Hobby], in the
next talk this morning, will show you his system.
It handles technical illustrations much better than
anything else. The great beauty of MetaPost from
my point of view is that if I have to modify any
of my illustrations later on, maybe a year later, I
can look at it and see from the MetaPost code ex-
actly what I had in mind when I made the original.
MetaPost is a declarative language where you state
the characteristics that you want your illustration
to have, and then it draws the diagram. I’ve got
5 or 6 examples in the errata where I’ve either re-
drawn an old figure or, as in this case, made a new
one. Many, many other examples that I’ve done
with MetaPost when I did the Stanford GraphBase
book convinced me that it’s really the answer for
technical illustrations. There’s nothing else I think



TUGboat, Volume 17 (1996), No. 1 11

Page xi replacement for exercise 3 25 Mar 1995

3. [34 ] Leonhard Euler conjectured in 1772 that the equation w4+x
4+ y

4 = z
4 has

no solution in positive integers, but Noam Elkies proved in 1977 that in�nitely many
solutions exist [see Math. Comp. 51 (1988), 825{835]. Find all integer solutions such
that 0 � w � x � y < z < 106.

4. [M50 ] Prove that when n is an integer, n > 4, the equation w
n + x

n + y
n = z

n

has no solution in positive integers w, x, y, z.

Figure 2: Excerpt from the beginning of err2.dvi

0

1

2

3

4 5

6

7

8

9

(0
1

)
((
0
1
)2
)

(45)

(3(45
))

(
6
7 )

(8
9)

((
6
7
)(
8
9
))

((
3(
4
5))((

6
7)(
8
9)))

(((01)2)((3(45))((67)(89))))

Figure 3: Excerpt from err1.ps, showing MetaPost illustration

will ever be able to be much better. It’s not the an-
swer for the kind of illustrations that people do when
they’re doing advertisements or something like that,
but when you’re writing a techical book, you have—
the speaker yesterday made the same point with
PSTricks—to produce a diagram that has a certain
mathematical property to it. A Super MacDraw-
type of program doesn’t very easily give you this
ability, while MetaPost does it, and very easily—
all the technical things are correct, according to
the mathematics. It’s kind of scandalous that the
world’s calculus books, up until recent years, have
never had a good picture of a cardioid. Yesterday,
you saw a cardioid on the screen. Nobody ever knew
what a cardioid looked like because it was done by
some graphic artist who was trying to imitate an-
other thing, but they never had a real one shown.

OK—I’ve talked too much about this. Ask an-
other question!

Robert McGaffey: Do you think the RSA algo-
rithm will ever be broken?

DEK: Do I think the RSA algorithm will ever be
broken? Now, the RSA algorithm is the Rivest–
Shamir–Adleman scheme for encryption. People have
just factored the key of the original cipher that was
put up by R, S and A in 1977. That was a 140-digit
number, which was a very weak version of the thing.

But Rivest et al. said: “Here’s our secret message.
Can you decode it?” By the time someone decoded
it last year, Ron [Rivest] had lost the original answer
. . . forgotten what it was. But it turned out that,
after decoding, the encoded message was: “The se-
cret word is squeamish ossifrage.” That was the
solution. People, in order to break this cipher, had
to factor a 140-digit number, and it was done with
many thousands of hours of computer time last year.
Now the thing is, though, if you go from a 140-digit
number to a 141-digit number, already the problem
gets much larger. So if you go to a 300-digit number,
it would, as far as we know—all of the computers
running now in the universe would not be able to do
it. But there might still be advances in factoring,
so Rivest himself predicts that a 300-digit encoding
would last at least for about 30 years. A 500-digit
number for a hundred years—he would rather con-
fidently predict that’s true.

We doubt if anyone’s going to discover a magic
way to factor numbers. The only problem is that
it’s illegal to use the full power of RSA. I mean, the
government wants to be sure that it can read se-
crets if necessary, because it doesn’t want the Mafia
to have the secrets. So we now have a peculiar
situation where it’s against the law to compute a



12 TUGboat, Volume 17 (1996), No. 1

certain mathematical equation, a mathematical for-
mula. Well, I don’t like confrontational issues. [laugh-
ter] I don’t live in a secret way . . . I mean, I’m not a
secretive kind of guy. I spent a year of my life work-
ing in cryptanalysis and I’ve met a lot of wonderful
people in that community, but I knew that the life
wasn’t for me. I like to be a college professor and
tell what I know. So, I’m not a good consultant on
that kind of question. But it is possible to send se-
cure information assuming that nobody can factor
numbers. That’s either a blessing or a threat, de-
pending on your point of view. For me, I can see it
from both sides.

In the back?

Michael Sofka: Is P = NP , and if not, how far
do you think we are from the proof?

DEK: P = NP is the most famous unsolved prob-
lem in computer science, analogous to Fermat’s Last
Theorem, although the P = NP problem has only
been around for about 30 years, 25 maybe. In the
context of combinatorial algorithms, it says: Are we
going to be able to solve problems that would require
going through 2n cases? Can we actually do those
in n10, or something like that, if we knew the best
method? If P = NP , the answer would be ‘yes’,
with some polynomial: we could reduce all these ex-
ponential problems to polynomial problems. If not,
then it says ‘no’, we’ll never be able to reduce them.

No, I have a feeling that someone might resolve
the problem in the worst possible way, which is the
following. Somebody will prove that P is equal to
NP because there are only finitely many obstruc-
tions to it not being equal to NP. [laughter] The
result would be that there is some polynomial such
that we could solve all these problems in polynomial
time. However, we won’t know what the polynomial
is, we just know that it exists. So maybe this will
be n to the trillionth or something like that—but
it’ll be a polynomial. But we’ll never be able to fig-
ure it out because it would probably take too long
to find out what the polynomial is. But it does ex-
ist. Which means that the whole question P = NP
was the wrong question! [laughter] It might go that
way. You see, even if you have something that takes
2n steps and you compare it to something that takes
n100, then at least you can solve the 2n one for n up
to 20 or 30. But the n100 you can’t even do for n = 2.
So the degree of that polynomial is very important.
There are so many algorithms out there, the task of
showing that no polynomial ones exist is going to
be very hard. Still, I really thought with Fermat’s
Theorem, it was a similar kind of thing, where it was
more important to have the problem than to solve it.

Therefore, my real feeling about Wiles’s Theorem is
that he did a marvellous wonderful piece of work,
but I wish he’d solved something else! [laughter]

A lot of people think that as soon as a prob-
lem is shown to be in this class NP, they shouldn’t
work on it, because it means that there’s probably
no polynomial way to solve the problem. But before
we studied NP, we had unsolvable problems, prob-
lems for which there didn’t exist any algorithms at
all—no matter how long you worked, you would
never solve the problem. To tell whether a Turing
machine ever stops: this is an unsolvable problem by
any algorithm, no matter how long you give your-
self. So, people would stop working on a problem
as soon as it was proved to be unsolvable in gen-
eral. But that was a bad strategy, because almost
every problem we ever solve is a special case of some
unsolvable problem.

Take calculus, for example. The problem of tak-
ing a formula, a function of n, and saying: “Is the
limit as n goes to infinity equal to zero or not?”
That’s an unsolvable problem. But its unsolvability
doesn’t imply that we shouldn’t study calculus. I
mean, limits of lots of functions we’ve been able to
decide do go to zero, and therefore people were able
to develop calculus. But it’s an unsolvable problem.
I mean, you could define f of n—it only takes a
few lines to make a formula that is equal to zero if
a given Turing machine is stopped at time n, and
it’s equal to 1 if the Turing machine is still going at
time n. And so the limit is equal to zero if and only
if that Turing machine stops. It’s unsolvable.

A similar thing happens with NP. That is, we
have lots of special cases of problems that are NP-
hard that we can solve efficiently; just knowing that
something is NP doesn’t mean that it’s a good idea
to give up on it or to stop trying to get good heuristic
methods for it.

Questions about TEX?! [laughter] Yes?

Raman: One of the nice thing about TEX is that
it gives the authors the flexibility to define macros
that sort of encode semantics, so if you’re writing
a paper about permutations you can define a thing
called permute and then write your contents using
that. I rely heavily on this in my system ASTER.
What I wanted to know—

DEK: Excuse me, you’re going to be talking later
on . . . ?

Raman: Yes, I’ll be talking tomorrow afternoon.

DEK: So your system uses the TEX source as part
of the semantics of the presentation of the docu-
ment, while the author is thinking mostly of the
convenience of writing.



TUGboat, Volume 17 (1996), No. 1 13

Raman: Yes. So, what happens, in fact, is that
everything turns into an object. And so, the more
semantics there are in the mark-up, the better it is.
Now, in normal documents, there is this tension be-
tween wanting to write things using a base level of
mark-up where an author just writes x backslash

over y whenever he wants ‘x horizontal rule y’ ver-
sus an author defining, say, \inference as a macro
that takes two things and then puts x over y. In the
latter case, I win; in the earlier case I lose. My gut
feeling is that, if you look at a large book, it’s like
a large computer program, and, sort of, in order to
preserve your sanity, it seems to make more sense to
read it that way.

DEK: Can people hear what the question is? He’s
saying that if you’re blind or handicapped, you can
look at the TEX source of a document and if it’s
properly done, it can even be better than if you
had the hardcopy, because the document could have
been written with a very logical mark-up scheme. In
typography we try to reveal the structure by typo-
graphic means. But, in fact, we know even more
of the structure when we’re making our source files.
So, an author with that in mind would maybe pre-
pare the source files to have more information than
just what you’re going to see on the page afterwards.

When you’re writing, you have an audience in
mind. If you look at any book about how to write,
or any course that deals with writing, the number
one rule they have is: Keep your reader in mind. If
an author realizes that he’s writing something for
hypertext, then he’ll be planning his exposition so
that it takes best advantage of hypertext. When I
wrote my first paper in a foreign language it was
published in Canada, where they spell ‘color’ with
a ‘u’. [laughter] My second paper in a foreign lan-
guage was Norwegian, and so I when I was talking
about variables for ‘left’ and ‘right’, I would say ‘h’
and ‘v’ instead of ‘l’ and ‘r’. I mean, you plan as
you’re writing, you plan for the reader. These are
very simple examples. So, if you expect that some-
body is looking at your TEX source or that some-
body will be able to click on part of your document
and therefore it’ll highlight something that is logi-
cally related, you might approach the whole process
of exposition in a different way and you’ll be able to
reach more readers. So I try to make my . . . I can
show you the macro files developing for The Art of
Computer Programming in the new style, but . . .

Raman: I’d love to see that, because the other
thing I’d like to do is run the system off the . . .

DEK: [more screen manoeuvers; see Figure 4.] Let’s
just take a look at that file. It’s still under construc-

tion, ok? [laughter] I input various macro files: the
“epsf” is to get the MetaPost figures; “rotate” al-
lows PostScript to do rotation; “picmac” is my sub-
set of LATEX picture mode; “unicode” is that thing
that I told you about for getting Chinese names.
[goes through the macro on the screen—not tran-
scribed] . . . I type 6709 and then I say M-X-unic

and magically this appears on my screen—that’s
my temporary solution to the unicode problem.
OK, now. Let’s take a look at some formatting . . .
[more pointing out of various codes for formatting]

These are my composition macros [Figure 5]
. . . some of the hyphenation exceptions I’ve put in;
equation numbers are going into oldstyle numerals;
star is for a starred section, something that’s ad-
vanced; slug means at the end of a proof— I might
have to change it so it’s not so black, because peo-
ple see so many overfull boxes, they don’t like to
see the black slug anymore. [laughter] I’m redefin-
ing backslash dot— I make it a colon so I can use
\. for typewriter type in the middle of math mode.
There’s an important notation due to Iverson, where
you can put any formula in square brackets and that
evaluates the formula to zero or 1—you can use that
in the middle of equations, it’s very useful. Here are
macros for saying a.d. or b.c. Here’s something
for special emphasis I use, like a hint —I’m not us-
ing this to indicate italics, I say \it for that kind
of emphasis. My \em#1: is a special format that
I often use for a hint or a note or something like
that [walking through the macros, with comments
on some of the more interesting ones] . . . These are
Eulerian numbers . . . with angle brackets instead of
the parentheses of binomial coefficients.

Raman: Do you have a macro called \euler there?

DEK: Yeah, these are Eulerian numbers here, yeah.
. . . Capital \Euler is where it uses two delimiters
and has the right amount of negative space between
them so that you have two angle brackets next to
each other; similarly, for binomial coefficients, the
\Choose puts in two parentheses. Here’s \smallsum
for a small summation sign—I don’t remember where
I used it. \phihat—this is a special symbol— the
letter φ has to have the hat put just right, because
it’s a common thing that arises when you’re study-
ing Fibonacci numbers. . . . Then I have here the
format for an algorithm [ . . . ]; a whole bunch of
macros for typesetting assembly code; underlining
text in the comments . . . [remaining examples not
included]



14 TUGboat, Volume 17 (1996), No. 1

% Macros for The Art of Computer Programming

% (STILL UNDER CONSTRUCTION!

% I started with manmac.tex and am letting this evolve)

\input epsf

\input rotate

\input picmac

\input unicode

\catcode‘@=11 % borrow the private macros of PLAIN (with care)

\font\ninerm=cmr9

.

.

.

Figure 4: The beginning of acpmac.tex

Right now, my TEX file has some structure of
that form. Let’s take a look at the file itself:8 This
is where I’m working day-by-day to put in my new
corrections—unfortunately, we have a real narrow
screen here. I have four kinds of errata: One is called
an ‘amendment’, which is something new, that we
didn’t have before; one is called a ‘bug’, something
that has to be fixed; one is called a ‘plan’, which is
something where I’ll work out the details later but I
want to note down in the file that it’s in my mind to
make the change; and then there’s something called
an ‘improvement’, which is kind of trivial, but still
I thought of it and I want to use it when we go to
the final book.

For example [Figure 6], here’s a quotation by
Turing I kind of like from 1945, which is before com-
puters were even invented, but he’d been thinking
about it for a long time: “Up to a point, it’s better to
let the snags be there than to spend such time in de-
sign that there are none. How many decades would
this course take?” That quotation is an amendment
to Volume 1.

Look, here are the amendments for Volume 2,
p. 2 [Figure 7], and I made this change on July 13;
you can see these are the things I’m working on right
now. Here’s a new exercise I put in, here’s an exam-
ple where I changed a comma to a semi-colon. The
way I use this is that trivial improvements don’t
usually get listed in the hardcopy unless you work
extra hard. There’s a special way of getting all these
improvements to come out, but usually they only
appear in the file.

8 This macro file acpmac.tex is downloadable from the
web page mentioned earlier.

So that’s the kind of thing I’m doing. This im-
provement, by the way, is dated 1981. For 20 years,
I’ve had copies of The Art of Computer Program-
ming sitting in my office and I kept putting notes in
the margins, marking things that I want to improve.
That’s now all in these files.

Other questions?

Silvio Levy: How come you don’t use LATEX? [laugh-
ter]

DEK: How come I don’t use LATEX? [laughter] I’m
scared of large systems! [louder laughter] Bart?

Bart: Your paper, “The Errors of TEX,” was great.
Have you ever thought of one about “Mistakes of
TEX”?

DEK: “The Mistakes of TEX”?? [laughter]

Bart: I mean, I guess I’m kind of thinking of the
changes you made when you went to TEX3. The
7-bit/8-bit and things there that might be thought
of as mistakes. Are there any other things you can
think of in that line?

DEK: In that paper, I think I listed everything
that I would consider a mistake. I think I would
have noted that [reference to 7-bit/8-bit], but of
course, I wrote that paper before TEX3 came out.
I’ve promised to put out a sequel to that paper when
everything has cooled down and you know, when the
last error in TEX has been found. [laughter] So the
present state is this. [File manipulations on screen
bringing up the file errorlog.tex (which is in the
CTAN archives under system/knuth/errata); see
Figure 8.] The last change was on March 19. Well,
no, that was the date the bug was reported. So,
here’s Peter Breitenlohner — he’s here today —
“Avoid spurious reference counts in format files”.



TUGboat, Volume 17 (1996), No. 1 15

.

.

.

% Composition macros

\hyphenation{logical Mac-Mahon hyper-geo-metric hyper-geo-met-rics Ber-noulli

Greg-ory dis-trib-uted}

{\obeyspaces\gdef {\ }}

\def\hang{\hangindent\parindent}

\def\dash---{\thinspace---\hskip.16667em\relax}

\def\eq(#1){{\rm({\oldsty#1})}}

\let\EQNO=\eqno \def\eqno(#1){\EQNO\hbox{\eq(#1)}}

\def\star{\llap{*}}

\def\slug{\hbox{\kern1.5pt\vrule width2.5pt height6pt depth1.5pt\kern1.5pt}}

\let\:=\. % preserve a way to get the dot accent

\def\.#1{\leavevmode\hbox{\tt#1}}

\def\[#1]{[\hbox{$\mskip1mu\thickmuskip=\thinmuskip#1\mskip1mu$}]} % Iverson

\def\bigi[#1]{\bigl[\begingroup\mskip1mu\thickmuskip=\thinmuskip

#1\mskip1mu\endgroup\bigr]} % big Iverson brackets

\def\AD{{\adbcfont A.D.}}

\def\BC{{\adbcfont B.C.}}

\def\og#1{\leavevmode\vtop{\baselineskip\z@skip \lineskip-.2ex

\lineskiplimit\z@ \ialign{##\cr\relax#1\cr

\hidewidth\kern.3em\sh@ft{40}‘\hidewidth\cr}\kern-1ex}} % ogonek

\def\em#1:{{\it#1:\/}} % \em Hint: or \em Caution: or \em Reference: etc

.

.

.

\def\euler{\atopwithdelims<>}

\def\Euler#1#2{\mathchoice{\biggl<\mskip-7mu{#1\euler#2}\mskip-7mu\biggr>}%

{\left<\!{#1\euler#2}\!\right>}{}{}}

\def\Choose#1#2{\mathchoice{\biggl(\mskip-7mu{#1\chooser#2}\mskip-7mu\biggr)}%

{\left(\!{#1\choose#2}\!\right)}{}{}}

\def\smsum{\mathop{\vcenter{\hbox{\tenrm\char6}}}} % small summation sign

\def\phihat{{\mkern5mu\hat{\vrule width0pt height1.2ex\smash{\mkern-5mu\phi}}}}

\def\umod{\nonscript\mskip-\medmuskip\mkern5mu% least remainder (underline mod)

\mathbin{\underline{\rm mod}}\penalty900\mkern5mu\nonscript\mskip-\medmuskip}

.

.

.

Figure 5: Excerpt from acpmac.tex

\amendpage 1.189 insert quotation before the exercises (95.07.13)

{\quoteformat

\vskip-3pt

Up to a point it is better to let the snags [bugs] be there

than to spend such time in design that there are none

(how many decades would this course take?).

\author A. M. TURING, Proposals for ACE (1945)

% p18, quoted in Comp J 20(1977)273

}

\endchange

Figure 6: One of the errata in err1.tex



16 TUGboat, Volume 17 (1996), No. 1

\amendpage 2.2 line $-2$ (95.07.13)

digits, and in 1955 \becomes digits. The Ferranti Mark~I computer, first

installed in 1951, had a built-in instruction that put 20 random bits

into the accumulator using a resistance noise generator; this feature had

been recommended by A.~M. Turing. In 1955,

% "resistance noise generator" -- quoted from Brooker’s manual for Mark II

\endchange

Figure 7: One of the errata in err2.tex

.

.

.

* 26 June 1993

R928\>668. Avoid potential future bug (Peter Breitenlohner). @628,637

* 17 December 1993

S929\>881. Boundary character representation shouldn’t depend on font

memory size (Berthold Horn). @549,1323

* 10 March 1994

R930. Huge font parameter number may exceed array bound (CET). @549

* 4 September 1994

F931\>926. Math kerns are explicit (Walter Carlip). @717

R932. Avoid overflow on huge real-to-integer conversion. @625,634

* 19 March 1995

R933. Avoid spurious reference counts in format files (PB). @1335

\relax

\bye

Figure 8: End of the file errorlog.tex

This was causing some problems . . . he found you
could break TEX if you kept saving format files and
loading them again and saving them again and load-
ing them again several hundred times; you would ex-
ceed memory capacity because the reference count
could get larger than the total memory size. So that
was a bug that we fixed, and he got $327.68 for
that—215 pennies.

What were the other most recent changes?
Number 932, “Avoid overflow on huge real-to-
integer conversion.” Number 931, “Math kerns are
explicit” —this was a bug introduced by change 926.
Number 930, “Huge font parameter number may
exceed array bound,” a place where the implemen-
tation wasn’t totally robust. Number 929, “Bound-
ary character representation shouldn’t depend on
font memory size”—this was a fairly serious one
that was fixed by the major implementors shortly
after we put out the previous update in 1993.

These errors—the dates listed here are actually
dates when the people found them. I fixed them all
in March of this year [1995]. I plan to look again
at reported bugs in TEX in 1997, and again in 2000,
and then 2004 and 2009, hoping that each time I’ll
be able to do that in about a day. There are a
lot of people out there filtering these reported bugs,

and vetting that they really do seem to require my
attention. Yesterday, when we were running some
programs at Stanford, somebody noticed that Stan-
ford was still using a very old version of TEX and it
didn’t seem to matter. [laughter] I believe the bugs
are starting to taper off. The remaining ones are
getting to be scenarios that can cause it to break,
but only if you really try hard.

There’s one severe bug in the design that will
have to remain as a feature, and it has to do with
multilingual typesetting. I don’t think I put it in the
errorlog file, but it’s noted at the end of another
file called tex82.bug [Figure 9]. Let’s look there
. . . this file has complete details about every change
since 1982. See this one? It’s the “absolutely final
change to TEX, to be made after my death.” The
version number changes to $\pi$. It’s like my last
will and testament here. [laughter] So I’ll never see
that change made. That’s when TEX is declared to
have no more bugs. Anything that uses that name
should be fully compatible with everything else that
uses that name.

After that final change, this file lists “possibly
good ideas that I won’t implement”; . . . then come
two “design errors that are too late to fix.” The most
serious one is multilingual. If you’re using several



TUGboat, Volume 17 (1996), No. 1 17

-----------

415. The absolutely final change (to be made after my death)

@x module 2

@d banner==’This is TeX, Version 3.14159’ {printed when \TeX\ starts}

@y

@d banner==’This is TeX, Version $\pi$’ {printed when \TeX\ starts}

@z

When this change is made, the corresponding line should be changed in

Volume B, and also on page 23 of The TeXbook.

My last will and testament for TeX is that no further changes be made

under any circumstances. Improved systems should not be called simply ‘TeX’;

that name, unqualified, should refer only to the program for which I have

taken personal responsibility. -- Don Knuth

* Possibly nice ideas that will not be implemented

. classes of marks analogous to classes of insertions

.

.

.

* Design errors that are too late to fix

. additional parameters should be in symbol fonts to govern the space between

rules and text in \over, \sqrt, etc,

. multilingual typesetting doesn’t work properly when the \lccode changes

within a paragraph

* Bad ideas that will not be implemented

. several people want to be able to remove arbitrary elements of lists,

but that must never be done because some of those elements (e.g. kerns

for accents) depend on floating point arithmetic

. if anybody wants letter spacing desperately they should put it in their own

private version (e.g. generalize the hpack routine) and NOT call it TeX.

Figure 9: End of the file tex82.bug

languages in the same paragraph, there was some
part of the state information that I forgot to save. I
forget exactly what it is now,9 but it was a serious
oversight and I should have thought about it, but
now it’s too late. So that’s a glitch that’s going to
have to remain.

The only other real thing I wished I’d worked
harder on was the positioning of square root signs
and fraction bars. I don’t have enough parameters
in there to control the space between the barline and
the text. I made the mistake of solving a problem
where I needed two parameters by using only one
parameter: I got the amount of space by calculat-
ing it as a multiple of the thickness of the barline.
And I should have had two parameters. Now I find

9 They all have to use the same \lccode table.

that as I’m writing stuff and I have a square root
that doesn’t look right, I have to put a hidden strut
in the exponent, to give more space there. I wish
I’d done that better, but otherwise, considering the
amount of inevitable compromise that has to go into
any large system, I’m basically happy with the way
things converged.

As I read papers typeset with TEX, the main
thing that makes me unhappy, besides the way I
typeset the square root sign, is the way that people
have not updated to the Computer Modern fonts
that I put out three or four years ago. We’re still
seeing the old fonts and I don’t know how long it’s
going to take before people change. Eberhard [Mat-
tes] did make the switch two or three months ago.
It’s especially evident on lowercase Greek delta.



18 TUGboat, Volume 17 (1996), No. 1

I found myself four or five years ago writing a
paper and I found myself not using the letter delta
in the paper. I tried to analyse, “why am I not using
the letter delta?” and I realised that I subconsciously
hated my letter delta; I didn’t like the look of it.
But in this paper I really needed the delta, it was
the natural letter to use, and so I said, “OK . . . I’m
gonna take a day and redesign it and make a really
beautiful delta.” And I think I now have the best
delta the human race has ever seen. [laughter] That
was ages ago. Now, every time I see a paper using
the old one, I cringe.

I also changed a few of the other letters, like
some of the calligraphic capitals. I fixed the spac-
ing on the barline on the ‘H’, and I didn’t like the
base of the ‘T’. I see the NTG uses the old one in
their logo . . . but I’m hoping everyone will switch
over to the real CMR fonts. The .tfm files have not
changed. Oh, I’ve also made all the arrows heavier.
The arrows were disappearing on xerox all over the
place, and now the arrowheads are darker.10

Cameron Smith: Is there a date or version num-
ber we should look for to make sure . . . ?

DEK: Well, if it’s ’93 or after, it’ll be ok.

Silvio: No! Change CM to DM! It’s never going to
happen unless you do that.

DEK: It’s happened in most places by now, but
there still are pockets of people who haven’t up-
graded the old files. If you use dvips, all you have
to do is delete the .pk files and it’ll make them all
for you.

Silvio: If you’ve got the new version of the source.

DEK: Yeah, well, the sources are all there.

Silvio: Right, but it’s very hard for the public
to . . .

DEK: Please, figure out a way to solve this, because
it’s frustrating. Every time I get a letter from some-
one that has the old delta, I just tell them to tell
their computer operators to update, and then they
send me back an upgraded paper and say, yes it’s
ok now. [laughter] As long as people are aware of it.
It’s not that much of a change. If we get the word
around to the distributors and the math journals, it
shouldn’t take too long to converge to that.

Robin Fairbairns: Can I just make a comment
on that? Eberhard Mattes is possibly the author of
the version with the largest user base—he has just
reissued everything, and a month back he produced

10 Knuth has now put a discussion of this issue onto
one of his Internet web pages: see http://www-cs-faculty.

stanford.edu/~knuth/cm.html –Ch.

an entirely new set of fonts. On the mailing list
there is a continual whinging about “we don’t want
to go to the trouble of updating our font files.” I
keep saying “You really do need to do this.” But
despite that, people say, “It costs computer time on
our PCs.”

DEK: They’ll get a new PC in five years. [laughter]
It’ll eventually happen. I’m just hoping that it will
happen sooner rather than later.

Silvio: Look, I posted a copy for people in Aus-
tralia. I can tell you the top priority will not be to
update because of a delta. If you issue a new ver-
sion, with its own number and a new name, and if
you make it obligatory, otherwise, . . .

DEK: It didn’t change that much to make it oblig-
atory.

Jeremy Gibbons: If you change the name, old
.dvi files won’t work when you print them —there’ll
be lots of missing fonts.

DEK: But it’s not that important. I mean, I’m
too much of a nit-picker; I’m just telling you it does
offend me, but it apparently doesn’t offend those
other people. [laughter]

Silvio: It offends me, too!

DEK: Oh, OK. Well, I don’t want to change the
names of my fonts. [pause] Nelson?

Nelson Beebe: Don, the world has changed a lot
since 1978—

DEK: Yes, in fact I put a wonderful quote from
Bill Gates that said exactly the same thing at the
beginning of my errata list this year . . . [Figure 10].

Nelson: Assuming you were 25 years younger and
were sitting down to do TEX now, with the market
full of word processers and PostScript laser printers
and so on—What would you do differently?

DEK: Well, as far as I know, I would still do the
same thing, pretty much. So, anything that you
don’t like, I’d probably still put in! [laughter] It’s
just the way I do things <laughing>.

Cameron: There’s a particular point, related to
that, that I wanted to ask you about. You went
to a lot of trouble to design a line-breaking para-
graphing algorithm that looked over a wide range
of possibilities for an optimal set of breaks. But I
encountered in The TEXbook that computer mem-
ories being what they were, it wasn’t practical to
similarly accumulate several pages of material and
look for optimal page breaks. And sort of related
to that, there’s the difficulty of communications be-
tween a line-breaking algorithm and a page-breaking
algorithm, where, let’s say you’re doing a letter and



TUGboat, Volume 17 (1996), No. 1 19

\vfill

{\quoteformat

Things have changed in the past two decades.

\author BILL GATES (1995)

%% CTdbl quote marks

% ~You, too, can start a software firm"

% International Herald Tribune 5 Jan 1995, pages 9 and 11

\bigskip

In addition to the errors listed here,

about half of the occurrences of ‘which’ in volumes one and three

should be changed to ‘that’.

\author DONALD E. KNUTH ({\sl The Art of Computer Programming Errara %

et Addenda}, 1981)

\eject

}

Figure 10: Another excerpt from err1.tex

there’s a letterhead on the first page that forces you
to have a different page width and you might need to
have line breaks change in the middle of paragraphs.
Things like that that could have been simplified if
there were the ability to defer the cut-off of the page
and have better communications between the line-
breaking and page-breaking algorithms. Would you
redo something like that, now that we have multi-
megabyte memory?

DEK: OK, certainly the memory constraints are
quite different now. Amazing how much—mem-
ory has changed more than anything else. There
are also major changes in the way we —well, we’ve
got many more years of experience. We understand
these things now. At the time when I was work-
ing on TEX—I’m trying to put things in context—
many things were experimental, so that we could
learn about the territory. In any system design,
whenever you go through a new generation, it turns
out that you understand the previous generation and
you clean up the previous generation, and then you
also go into your new experiments, which have to
be cleaned up by the next generation. That kind of
traditional growth of understanding is the way the
world works.

Now a lot of these things about what kind of
communication would be useful and so on are be-
coming clearer. The idea of TEX was—and I think
will remain for as long as it survives—to find the
smallest number of primitives that would be able to
handle the most important things. So that 99% of
the work would be done by these primitives, and the
other part would be done by tinkering. My attitude
on these things is that when I have a job to get done,
I don’t ever expect to have a system that’s going to
do 100% of it for me, but I expect it’ll do so much of

it so that the tinkering is down to noise level. It’s no
more than a small percentage of the time I’ve put
into the other parts of the job. Noise level for one
person is different from another.

For example, I did this book about the Bible11

where I had a lot of illustrations. I spent 6 or 7 hours
on each illustration, preparing it, including color
separations, fat-bits editing to clean up joins and
various things, some scanning. For me, that was
noise level, because I had already spent 40 hours of
work writing the chapter that goes with the illus-
trations—so what’s another 6 hours, I mean, it’s a
small percentage of the job, in some ways.

But if I’m going through a commercial place
that’s trying to get graphics in and out the door,
somebody’s paying for their work, and if I have
60 illustrations taking 6 hours each, that’s a com-
pletely different game. So, my view is that different
users will have a different idea as to how much re-
ally has to be automated. Many things are relatively
easy for an author to spend a little extra time do-
ing, because he’s already put much more time into
writing the book. But people who work with the
author might want them to be automated and part
of a fancy system the author doesn’t want to take
time to learn.

So, if I have a typographic task where I need to
do something in 2 or 3 passes, well, I’ll just try it a
couple of times and run it through the machine and
look through the previewer and get it right. A week
or two ago, we put out a newsletter for our family.
My wife does this every year. We have four grand-
parents and each of them has an extended family of,

11 Donald E. Knuth, 3:16 Bible Texts Illuminated (Madi-
son, Wisconsin: A-R Editions, 1990); reviewed in TUGboat
12, #2 (1991), 233–35.



20 TUGboat, Volume 17 (1996), No. 1

I don’t know, about 60 or 80 names. We write to
them and say, “Would you like to send us your com-
ments on this year?”, and then we collect them all
together in a little booklet and send it out to four
groups. So I fiddle with that for, I don’t know, 6
to 8 hours just to do neat things; like a newsletter
editor. . . . You spend some time doing all kinds of
prettying up, if you have the time to put in. The
tools you have change the expectations of what you
try to accomplish.

So, I figure the next generation of systems will
have a lot more complicated mechanisms to handle
the general cases of everything, where I’ve consid-
ered only the cases that I thought were the 99%.
There are all kinds of complexities —maybe you
want to have the reference point in the middle of a
character instead of at the left edge, as you’re going
left and right, in color and rotated and in many
columns, and so on. We now have more under-
standing of how to design such general mechanisms.

With respect to the memory situation . . . I
think the page-breaking business is still . . . it’s not
so much memory-bound as maybe—you still want
to do 2 passes, but the machines are fast enough for
two passes— it isn’t that slow anymore. So, I would
say this kind of next generation thing is natural for
other people to work on, with the understanding
that they gained from the first system.

Pierre?

Pierre MacKay: Just going back to the question
of upgrading the fonts. I was thinking about some-
thing that wouldn’t break things. You stick aMETA-
FONT \special to identify the font version. Since
people upgrade their drivers far more often than
they upgrade their fonts, just have the driver recog-
nize that \special and say “Tut tut! You shouldn’t
be using this font!” [laughter]

Fred Bartlett: I think that everything the gentle-
man over here wants to do with line-breaking and
page-breaking could be done fairly simply by writing
moderately complex macros and new output rou-
tines, if there were a way to save the items that get
discarded at the end of every page. You want to
save the discardable items that get tossed out when
TEX calls the output routine. I was wondering why,
when you wrote TEX, you threw those away without
making it possible to save them at all?

DEK: The output routine can put it into a box—
copy it into a box —

Fred:—but it can’t save the skip that is thrown
out.

DEK: The skip that’s thrown out, isn’t that the
value of one of the parameters that gets passed to
the output routine?

Peter Breitenlohner: The penalty is passed,
but the skip is thrown out after the page has been
printed. And if nothing comes back, it is not thrown
out.

DEK: Somewhere in The TEXbook it gives a null
output routine that’s supposed to put everything
back together again? And what—that doesn’t
work?

Peter: It works! Because then the skip is not at
the top.

Fred: But you can’t ship out a page, you can’t save
a page to a box and then go back, accumulate a
new page and then push it through and save that
to a second box, as for left and right-column set-
ting, and then put the two boxes together and have
them join smoothly, because then the skip in be-
tween will be missing, and you’ll have . . . you won’t
have the line skip in between, and it means that if
you want to do complex 2-column setting, as for a
couple of text books [I’ve done], then you have a
problem with tables and figures and a whole bunch
of other junk. It would be nice . . . it’s something
I’ve wrestled with for, I don’t know, 6 or 7 years,
and the best I’ve been able to do is to have TEX
warn me when it starts balancing columns, starting
on the right-hand column, and because I probably
don’t have the right skip here. Almost everything
else in TEX is parameterized: you can get to it, you
can save it, you can inspect it, have TEX do tests—
except the discardable items, and discardable skips.
I’m just wondering why.

DEK: I guess I didn’t think of it. [laughter] The
output routine was the most experimental part of
TEX. We had no models to go by at all. We had
4 or 5 problems that we knew we had to solve, and
we tried to find the smallest number of primitives
that would handle those 4 or 5 problems. We got to
the point where we could clarify the solutions to the
problems. But we knew this was experimental. I’m
sorry that your problem didn’t occur before TEX 3.0
because then I might have been tempted . . . [laugh-
ter]

Fred: I heard you say you expected more people to
extend TEX than have done so.

DEK: Yeah, absolutely. I expected extensions
whenever someone had a special-purpose important
project, like the Encyclopedia Britannica, or mak-
ing an Arabic–Chinese dictionary, or whatever—a
large project. I never expected that one tool would



TUGboat, Volume 17 (1996), No. 1 21

be able to handle everybody’s exotic projects. So I
built a lot of hooks into the code so that it should
be fairly easy for a computer science graduate to set
up a new program for special occasions in a week or
so. That was my thought. But I don’t think people
have done that very much.

It’s certainly what I would have done! If I were
putting out a Bible or something, if I were a pub-
lisher with some project that I wanted to do spe-
cially well, then I would want a special typesetting
tool for it. Rewriting a typesetting system is fairly
easy. [laughter]

I guess people haven’t done it because they’re
afraid they’d break something. I don’t think they
would have. I think the caution is misplaced. So I
tried to show how to do it, by implementing several
of the features of TEX as if they were added on af-
ter, just to show how to use the hooks, as a demo.
But that didn’t get things going. So, many more
people are working with TEX at the macro level. Of
course, the big advantage is that then you can share
your output with others—you can assume it’s go-
ing to work on everybody else’s systems. But still, I
thought special projects would lead to a lot of cus-
tom versions of the program. That hasn’t happened.

Jeremy: A related question is . . . if you can take
a vertical box apart into its components, and play
with them and reassemble it, one thing you can’t
get is, if you have a box that has been moved left
or moved right, when you disassemble the box, you
lose that information. [DEK: Oh really?] You can
get \lastbox, and that gives you the box, but it
doesn’t tell you whether it was shifted. I thought
I saw in your list of bad ideas that weren’t going
to have anything done with them, something to do
with taking lists apart. Was that there?

DEK: I’m not sure what that really referred to any
more. There is some problem about making sure
that no user can access the results of rounding er-
rors, which are different on different machines. So I
had to be very careful in TEX to keep it portable—
any time you do a glue calculation. Still, I don’t
think that would happen in shift-left shift-right.
One of the changes to TEX not so many years ago
was to . . . I don’t remember. Maybe somebody can
. . . maybe Peter [Breitenlohner] can recall. I think
it was you who suggested it: There was something
in the hlistout and vlistout routines where it looked
at the shift amount of the box and . . . ?

Peter: It was in leaders. The leaderbox looked for
the shift amount, but the shift amount in the data
structure was always zero . . . TEX took the shift

amount, and added it and subtracted it back, or
something like that.

DEK: Yeah, so the thing is, I had some code in
there that— it wasn’t a bug because it could never
cause any harm—but I was always adding zero to
something. We took it out, so that people wouldn’t
be confused by it. The amount by which a box is
shifted is stored with the box. If it’s in a vertical list,
that means so much is shifted towards the right and
in a horizontal list, it means how much it’s shifted
up and down. That could never be nonzero in a
leaders box. OK, if the shift amount is not restored
properly, it might be a bug, something you could
report, and in 1997, maybe you can get big money
for it. [laughter]

Jeremy: I don’t think it’s a bug, it’s just a prob-
lem, something you can’t do —taking things apart
and reassembling them . . . It wasn’t a design deci-
sion . . . a deliberate one?

DEK: Alright, well, the number of possible things
like that was too huge to anticipate, so I just am
glad that there weren’t more, I guess. I’m sorry.

Cameron: A lot of the questions have been of the
form “Why did you do X?” but I think maybe part
of what the thrust really is, is: If you were doing it
again, as some people are trying to do, and as you’ve
suggested that more people should be doing, reading
from TEX for special needs, are there things that
you’d recommend to those people? Not so much why
did you do it this way 20 years ago, but if someone
else were doing it again what would you tell them is
most important to think about?

DEK: I just recommend putting extreme care into
the design and checking things out and getting a
wide number of users to help you with it, to show
you the problems that they have and look at as many
examples as possible. These are the things people
are of course doing already. Dotting the I’s and
crossing the T’s is the name of the game; you have
to work very hard over a long period of time. The
more you open or extend your vision as to how much
you’re going to solve, the longer it’s going to take to
get the whole package to be consistent.

The hardest struggle is the struggle towards
convergence, instead of divergence. You need input
from a tremendous variety of sources, but you also
have to avoid the committee . . . you have to have
some small number of people who makes the deci-
sions, in some way, so that it converges. Otherwise,
you get the big problem of all committee projects—
that everybody on the committee has to be proud
of one part of the final thing. Then you have lots of



22 TUGboat, Volume 17 (1996), No. 1

incompatible stuff in there, mostly for political rea-
sons. The hard thing is to do the detailed checking
on as many things as you can for consistency and
convergence. The steering problem is the hardest
thing with TEX.

If you study the paper, “The Errors of TEX,”
you’ll see how this worked.12 First there was one
user—and I took a lot of time to satisfy myself.
Then I had 10 users, and a whole new level of dif-
ficulties arose. Then I had a hundred users and
another level of things happened. I had a thou-
sand users, I had ten thousand—each of those were
special phases in the development, important. I
couldn’t have gone with ten thousand until I’d done
it with a thousand. But each time a new wave of
changes came along, the idea was to have TEX get
better, and not get more diverse as it needed to han-
dle new things. So, when I said I’d still do things
pretty much the same way, what I meant is I still
think I would have horizontal lists and vertical lists;
I still would have boxes and glue, and so on. That
basic structure seems to give a lot of mileage from a
the small number of concepts, to handle a tremen-
dous variety of typesetting challenges. But I wasn’t
talking about whether I would do exactly the same
with respect to a shift amount here and there. All
those fine points are extremely important, but I’d
still keep the same basic architecture.

Barbara: It’s getting on to refreshment time. So,
I would like to thank Don very much for taking time
to answer everybody’s questions. I will take the pre-
rogative of one last question: Would you be willing
to do this again in 2011?! In 16 more years?

DEK: Yeah, that sounds about right. [laughter]
Thirty-two isn’t quite as nice, but it should be OK.
[laughter] Thank you very much. [wide applause]13

12 “The Errors of TEX,” Software Practice & Experience
19 (1989), 607–785; reprinted with corrections and additional
material as Chapters 10 and 11 of Knuth’s book Literate Pro-
gramming, distributed by Cambridge University Press. See
also “Notes on the Errors of TEX,” TUGboat 10, #4 (1989),
529–31, the keynote address at the 10th Anniversary Meeting,
held at Stanford in July, 1989.

13 As the keyboarding transcriber for this talk—arranged
as the audience was just starting to sit down— I have to
drag in some names of people who’d had a lot more fore-
sight than I —they had brought mini-cassette recorders along
just for the occasion! It was Cal Jackson who generously of-
fered me his tape right after the talk had concluded. Several
months later, it was Jeremy Gibbons who casually mentioned
in e-mail that he too had taped the talk and would be quite
happy to check my transcript. Many of the gaps which I had
been unable to decipher were taken care of by Jeremy’s super
recording. And finally, I must of course thank Prof. Knuth,
who graciously took time to read over the edited version to
ensure accuracy. –Christina Thiele


