
TUGBOAT

Volume 16, Number 4 / December 1995

351 Addresses

General Delivery 353 Writing the future is reading the past / Michel Goossens

355 Editorial comments / Barbara Beeton

A day at a small press book fair; Sources of information on printing and

book arts on the Web; A TEX Users Group for Spanish speakers; A brief

comment on the merger of TUGboat and TEX and TUG NEWS

357 Upcoming TTN merger into TUGboat / Peter Flynn

Software & Tools 358 Introduction to FasTEX: a system of keyboard shortcuts for the fast keying

of TEX / Filip Machi, Jerrold E. Marsden and Wendy G. McKay

Philology 364 The style russianb for Babel: problems and solutions /

Olga Lapko and Irina Makhovaya

373 A package for Church-Slavonic typesetting / Andrey Slepukhin

Fonts 381 Release 1.2 of the dc-fonts: Improvements to the European letters and

first release of text companion symbols / Jörg Knappen

Graphics 388 A METAFONT–EPS interface / Bogus law Jackowski

Technical

Working Group

Reports

395 A proposed standard for specials / Tomas G. Rokicki

401 A directory structure for TEX files (Version 0.999) / TUG Working Group

on a TEX Directory Structure

Hints & Tricks 413 Whatever is wrong with my LATEX file? / Sebastian Rahtz

Macros 416 New perspectives on TEX macros / Jonathan Fine

LATEX 418 Never again active characters! Ω-Babel / Yannis Haralambous,

John Plaice and Johannes Braams

News &

Announcements

428 Calendar

429 Call for papers: TUG ’96

427 TUG ’97—Soliciting bids for host site

432 EuroTEX ’95, Papendal, The Netherlands, 4 – 8 September 1995 /

Michel Goossens

Late-Breaking

News

379 Production notes on the Russian papers / Michel Goossens

440 Production notes / Mimi Burbank and Michel Goossens

440 Future issues

TUG Business 441 1996 TEX Users Group election

441 1996 TUG election—nomination form

442 Institutional members

Advertisements 443 TEX consulting and production services

443 Index of advertisers

TEX Users Group

Memberships and Subscriptions

TUGboat (ISSN 0896-3207) is published quarterly
by the TEX Users Group, Flood Building, 870
Market Street, #801; San Francisco, CA 94102,
U.S.A.

1996 dues for individual members are as follows:
Ordinary members: $55
Students: $35

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat
for the year in which membership begins or is
renewed. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in the annual election.
TUGboat subscriptions are available to organi-

zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: $70 a year, including air mail delivery.
Second-class postage paid at San Francisco,

CA, and additional mailing offices. Postmaster:
Send address changes to TUGboat, TEX Users
Group, 1850 Union Street, #1637, San Francisco,
CA 94123, U.S.A.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office.

TUGboat c© Copyright 1995, TEX Users Group

Permission is granted to make and distribute verbatim

copies of this publication or of individual items from this

publication provided the copyright notice and this permission

notice are preserved on all copies.

Permission is granted to copy and distribute modified

versions of this publication or of individual items from

this publication under the conditions for verbatim copying,

provided that the entire resulting derived work is distributed

under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute transla-

tions of this publication or of individual items from this

publication into another language, under the above condi-

tions for modified versions, except that this permission notice

may be included in translations approved by the TEX Users

Group instead of in the original English.

Some individual authors may wish to retain traditional

copyright rights to their own articles. Such articles can be

identified by the presence of a copyright notice thereon.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Michel Goossens, President∗

Judy Johnson∗, Vice President
Mimi Jett∗, Treasurer
Sebastian Rahtz∗, Secretary
Barbara Beeton
Karl Berry
Mimi Burbank
Michael Ferguson
Peter Flynn
George Greenwade
Yannis Haralambous
Jon Radel
Tom Rokicki
Norm Walsh
J́ı̌ri Zlatuška
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

Addresses

All correspondence,
payments, parcels,
etc.

TEX Users Group
1850 Union Street, #1637
San Francisco,
CA 94123 USA

If you are visiting:
TEX Users Group
Flood Building
870 Market Street, #801
San Francisco,
CA 94102, USA

Telephone

+1 415 982-8449

Fax

+1 415 982-8559

Electronic Mail

(Internet)
General correspondence:
TUG@tug.org

Submissions to TUGboat:
TUGboat@AMS.org

TEX is a trademark of the American Mathematical
Society.

The mass market in the U.S. has always held a “good
enough” mentality; consumers have always preferred a
marginally adequate product that is priced lowest over a
superior product at a higher price.

Caren Eliezer
The Seybold Report on Desktop

Publishing (October 2, 1995)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 16, NUMBER 4 • DECEMBER 1995
SAN FRANCISCO • CALIFORNIA • U.S.A.

TUGboat

During 1996, the communications of the TEX Users
Group will be published in four issues. One issue
will contain the Proceedings of the 1996 TUG
Annual Meeting. One issue (Vol. 17, No. 4) will
be a theme issue, edited by a guest editor, with
participation by invitation.
TUGboat is distributed as a benefit of mem-

bership to all members.
Submissions to TUGboat are reviewed by vol-

unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to be
the experts. Questions regarding content or accu-
racy should therefore be directed to the authors,
with an information copy to the Editor.

Submitting Items for Publication

The next regular issue will be Vol. 17, No. 1;
deadlines for that issue will have passed by the time
this issue is mailed. Mailing is scheduled for March.
Deadlines for other future issues are listed in the
Calendar, page 428.
Manuscripts should be submitted to a member

of the TUGboat Editorial Board. Articles of general
interest, those not covered by any of the editorial
departments listed, and all items submitted on
magnetic media or as camera-ready copy should
be addressed to the Editor, Barbara Beeton (see
address on p. 351).
Contributions in electronic form are encour-

aged, via electronic mail, on diskette, or made
available for the Editor to retrieve by anonymous
FTP; contributions in the form of camera copy
are also accepted. The TUGboat “style files”, for
use with either plain TEX or LATEX, are available
“on all good archives”. For authors who have no
network FTP access, they will be sent on request;
please specify which is preferred. Write or call the
TUG office, or send e-mail to TUGboat@ams.org.
This is also the preferred address for submitting

contributions via electronic mail.

Reviewers

Additional reviewers are needed, to assist in check-
ing new articles for completeness, accuracy, and
presentation. Volunteers are invited to submit their
names and interests for consideration; write to TUG-
boat@ams.org or to the Editor, Barbara Beeton
(see address on p. 351).

TUGboat Advertising and Mailing Lists

For information about advertising rates, publication
schedules or the purchase of TUG mailing lists,
write or call the TUG office.

TUGboat Editorial Board

Barbara Beeton, Editor
Mimi Burbank, Production Manager
Victor Eijkhout, Associate Editor, Macros
Alan Hoenig, Associate Editor, Fonts
Christina Thiele, Associate Editor, Philology and
Linguistics

Production Team:

Barbara Beeton, Mimi Burbank (Manager), Wietse
Dol, Robin Fairbairns, Michel Goossens, Sebastian
Rahtz, Christina Thiele
See page 351 for addresses.

Other TUG Publications

TUG publishes the series TEXniques, in which have
appeared reference materials and user manuals for
macro packages and TEX-related software, as well
as the Proceedings of the 1987 and 1988 Annual
Meetings. Other publications on TEXnical subjects
also appear from time to time.
TUG is interested in considering additional

manuscripts for publication. These might include
manuals, instructional materials, documentation, or
works on any other topic that might be useful to
the TEX community in general. Provision can be
made for including macro packages or software in
computer-readable form. If you have any such items
or know of any that you would like considered for
publication, send the information to the attention
of the Publications Committee in care of the TUG
office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue may
not be complete.
Adobe Illustrator is a trademark of Adobe Systems
Incorporated.

CorelDraw is a registered trademark of Corel Cor-
poration.

Fontographer is a registered trademark of Altsys
Corporation.

MS/DOS is a trademark of MicroSoft Corporation
METAFONT is a trademark of Addison-Wesley Inc.
PCTEX is a registered trademark of Personal TEX,
Inc.

PostScript is a trademark of Adobe Systems, Inc.
TEX and AMS-TEX are trademarks of the American
Mathematical Society.

Textures is a trademark of Blue Sky Research.
Unix is a registered trademark of X/Open Co. Ltd.

Jon Radel

P.O. Box 2276

Reston, VA 22090-0276 U.S.A.

jon@radel.com

Sebastian Rahtz

Production Methods Group

Elsevier Science Ltd

The Boulevard

Langford Lane, Kidlington

Oxford OX5 1GB, U.K.

Sebastian.Rahtz@cl.cam.ac.uk

Tomas Rokicki

725B Loma Verde

Palo Alto, CA 94303 U.S.A.

rokicki@cs.stanford.edu

Andrey Slepukhin

Lavra

Sergiev Posad

Russia

pooh@shade.msu.ru

Christina Thiele

15 Wiltshire Circle

Nepean K2J 4K9, Ontario Canada

cthiele@ccs.carleton.ca

Norm Walsh

Online Publishing

O’Reilly & Associates, Inc.

90 Sherman Street

Cambridge, MA 02140-3244 U.S.A.

norm@ora.com

352 TUGboat, Volume 16 (1995), No. 4

Hermann Zapf

Seitersweg 35

D-64287 Darmstadt, Germany

Jǐŕı Zlatuška

Faculty of Informatics

Masaryk University

Burešova 20

602 00 Brno, Czech Republic

zlatuska@muni.cz

Figure 1: Flying into Moscow Figure 2: Meeting site in Dubna

Figure 3: Anyone for sailing on the Volga?

For more information on TUG’96—see page 428.

TUGboat, Volume 16 (1995), No. 4 353

OpeningWords

Writing the Future is Reading the Past

Michel Goossens
TUG President

The year 1995 now lies behind us, and in less than
four years we will have reached the end of the 20th
century, and the end of the second millennium, at
least for those using a “Western” cultural reference
frame. Let me note that this is by far no longer the
majority of the inhabitants of this planet, so that the
notion of “end of an era”, is completely artificial.
Indeed, in building for the future we should al-

ways take the long view to make sure that decisions
we consider urgent today have no unforeseen nega-
tive side-effects a few years from now. Knuth, when
he decided to develop a system that would allow
him to typeset— in a completely digital way—the
second edition of “The Art of Computer Program-
ming”—thought it was going to take him a “short”
sabbatical year. In the end he needed seven (the
magic number?) years to create TEX and META-
FONT plus the Computer Modern fonts. Today many
enthusiasts think they can improve in no time upon
this or that aspect of digital typography, be it better-
looking fonts, optimized multi-column algorithms,
perfect float placement, etc. By now detailed studies
by the NTS (New Typesetting System) and LATEX3
initiatives, respectively evolutionary successors to
TEX and LATEX, have shown that it is far from triv-
ial to come up with efficient general algorithms for
vastly improving today’s TEX/LATEX paradigms, and
that several man-years of work will still be needed
in these areas before Mr. Joe User will be able to
profit from them directly.
Therefore, it came as a relief to me that just

over two years ago the LATEX3 team decided to de-
velop LATEX2ε, whose prime aim was to bring to-
gether all variant flavours of LATEX into one format,
and to provide often-requested simple extensions to
LATEX’s original functionality (as defined by Lam-
port in the middle eighties). And, it can be said, we
owe the LATEX2ε team a lot of gratitude for their
foresight and thorough work.
Also in the field of the typesetting engine it-

self, the official release of Ω took place in March of
this year, and a consolidated version 1.2 appeared
in December 1995. The Ω system extends TEX’s
functionality mainly in the area of multi-language
typesetting by extending all data-types to 16 bits,

and using Unicode as internal encoding. Some appli-
cations based upon Ω are already available (see the
articles of Plaice and Haralambous in recent TUG-
boats).
In the summer, version 1 of ε-TEX was announc-

ed. This successor to TEX is, like Ω, based upon
the original TEX code, and provides extensions in
the areas of additional control over expansions, re-
scanning tokens, environmental enquiries, additional
marks and debugging facilities, bi-directional type-
setting, and a few supplementary primitives.
I want to stress once more that both the Ω and

ε-TEX developments are clearly evolutionary, paying
a lot of attention to backward compatibility, and
tackle one or two precise problem areas at a time.
This ensures that users are presented with a well-
known and trusted upgrade path, so that the tran-
sition between present and augmented versions of
TEX will be a natural process. I am therefore sure
that ε-TEX and Ω will both have a brilliant future.
I am equally confident that LATEX2ε will, with

each half-yearly release, become more robust and
provide a clear reference frame to act as the defini-
tive markup system, which can be used by all those
who want to benefit from the advantages of generic
markup and interchange of documents.
After the efforts of the CTAN pioneers a few

years ago to build a reliable TEX Internet archive
structure, you will find in this issue of TUGboat the
conclusions of the “TDS” (TEX Directory Structure)
Technical Working Group. This initiative’s aim is to
define a “plug-and-play” run-time directory struc-
ture for TEX files that can be used by all present-day
operating systems and is ISO 9660-compliant.
In the field of fonts, an optimized version of the

DC fonts has just appeared, and it is foreseen that
the long-awaited European (or Extended) Computer
Modern (EC) family will be available by the end of
1996. At the same time work is going on to define a
“Text Companion” (TC) font to allow a clearer sep-
aration between real math and more general sym-
bols (for currencies, trademarks, some arrows, mu-
sical notes, etc.). At present they are mixed in the
CM math fonts, and it would be more logical and
practical to make all general characters uniformly
available to TEX users by grouping them in their
own font. At the same time the LATEX3 team has
published some ideas on possible layouts for 256-
character math fonts,1 so that it is hoped that also
in this area a consolidation effort can take place in
the not-too-distant future.
Readers of TUGboat will, without doubt, have

1 See TTN 4 #2, pp. 17 – 18.

354 TUGboat, Volume 16 (1995), No. 4

remarked the prominence given to hypertext devel-
opments this year, with articles on HTML/SGML,
PDF and Acrobat, T.V. Raman’s Aster, translators
to and from LATEX, etc. It is probably true to say
that these new tools will become ever more impor-
tant in the future and provide an ideal bridge to link
excellent typography based on LATEX with instan-
taneous availability of information worldwide. The
same well-structured generically marked-up SGML
or LATEX document can form the basis of preparing
the various views of the information, and this as-
pect of re-use is a sure winner for these systems in
the rapidly changing world of electronic publishing.
By skimming through your four issues of TUG-

boat of 1995 you certainly will find other areas which
you consider important or interesting. I would only
like to mention the many articles on the non-English
use of TEX (encodings, hyphenation patterns, fonts)
and the revival of METAFONT as an intelligent high-
level font-generation and drawing tool.
As you go through this final issue of 1995, you

will also notice the use of Russian alongside En-
glish in two articles, and the TUG 1996 conference
ammouncement. These articles, and the fact that
Dubna in Russia was chosen to host TUG’96 show
that TEX is now truly global, and it is therefore time
that the TUG adapts to that situation by taking into
account the wishes and needs of every TEX user in
the world by acting as a central knowledge reposi-
tory of TEX-related developments. TUG, as an orga-
nization, realizes that it is impossible to serve a par-
ticular user base better than local TEX User Groups,
where they exist. Yet, it is important to provide a
forum for discussing all TEX-related activities in a
coherent framework, where all important informa-
tion is kept in a unique place. TUG and TUGboat
must even more than in the past be the voice and
up-to-date road-map of the TEX community. And
that is why we want to open up TUGboat to all
TEX users and user organizations in the world.
Already in St. Petersburg Beach in Florida at

TUG’95 last August, I explained that TUG was not
in a rosy financial situation. With respect to last
year the number of our members has decreased by
about 20%, while printing and postal charges have
increased. We therefore expect a shortfall of about
$30,000 for 1995, and unless drastic actions are taken
TUG will have great difficulties surviving.
One of our problems last in 1994/95 was the

irregularity of TUGboat, TUG’s flagship publica-
tion. For various reasons it had become impossible
to keep to the three-monthly schedule of TUGboat
and we think that quite a few of our readers did not
renew their 1995 membership just for that reason.

Therefore, since August, a Production Team2 has
worked very hard to publish these last five issues
of TUGboat, and I think we have succeeded in the
area of catching up with the backlog. Some com-
promises and trade-offs had to be taken, but we are
now quite confident that this team-based production
scheme will make it possible to have TUGboat ap-
pear regularly in the future. But at the same time
we must tackle the financial problem, and, therefore,
the TUG’s Board of Directors has unanimously de-
cided to discontinue the publication ofTEX and TUG
News as a separate item, and to merge it with TUG-
boat, with immediate effect. That is, there will be
no further issues of TTN after 4,3. This has the ad-
vantage of publishing all TEX-related information in
one place, and at the same time saves up to $10,000
in printing and postal costs. We hope to be able in
the future to redirect part of those savings to im-
prove the free services that we offer the TEX com-
munity.

TUG regularly renews part of its Board of Di-
rectors. Therefore, on page 441 you can find a nomi-
nation form for the 1996 elections, which are to take
place this spring. All 1996 TUG members can stand
for election and I sincerely hope that many of you
will take this opportunity to show your support for
TUG by running for the Board. This is without
doubt one of the best ways to actively participate
in the life of the TEX community and contribute in
shaping its future.
Knuth promised at TUG’s 10th Annual meet-

ing in Stanford in 1989 that he would attend hence-
forth all TUG Conferences that would be a power
of 2. And as this year’s Conference in St. Peters-
burg Beach was TUG’s 16 = 22

2

th Annual Meeting,
Don Knuth honored us with his presence. I am sure
that all those who attended TUG’95 and profited
from his stimulating questions, interesting sugges-
tions, and gentle remarks will already look forward
to meet Don again at TUG’s 32nd meeting in . . .
2011. The venue? Well, that’s the only unknown,
isn’t it, because I am confident that TEX will still
be alive and well!
Let me finish by wishing you and your fami-

lies all the best for the new year, with a lot of fun,
motivating work, and, above all, health and happi-
ness. And, I sincerely hope to see you all in 1996,
in Dubna at TUG’96, or anywhere else in the world
where our (TEX or non-TEX) roads might cross.

2 This team, under the leadership of TUGboat-editor Bar-
bara Beeton, consists of Mimi Burbank, Wietse Dol, Robin
Fairbairns, Sebastian Rahtz, Christina Thiele, and myself.
Malcolm Clark helped us as editor of TUGboat 16(2).

TUGboat, Volume 16 (1995), No. 4 355

Editorial Comments

Barbara Beeton

A day at a small press book fair

Early this fall, over the weekend of the Columbus
Day holiday (in the U.S., this is celebrated on the
Monday closest to October 12, especially in loca-
tions with a sizeable population of Italian descent) I
had the opportunity to attend a book fair organized
by my favorite bookshop, Oak Knoll Books of New
Castle, Delaware. Oak Knoll deals in “books about
books”—typography, printing, design, . . . bibliogra-
phy—and has a strong commitment to the contin-
ued health of the book arts. In support of this,
the proprieter, Bob Fleck, and his staff have under-
taken to arrange “events” where small presses and
craftsmen in the traditions associated with printing
can get some exposure and meet prospective new
customers. The book fair was the second in what
promises to be an annual tradition.
The highlight of the fair was a talk by Ian Mor-

timer, the head of the printing house I.M. Impri-
mum, London, on the printing of a definitive edi-
tion of specimens of decorative wood types created
in the early 1800s by Louis John Pouchee. The wood
blocks, carved in solid boxwood, and intended as
masters for stereotypes, were found among the ef-
fects of the Caslon type foundry at the time of its
closing, without identification. The blocks are now
held by the St Bride printing library in London, and
the printing was undertaken under library auspices.
At the beginning of the project, nothing was

known about the provenance of the types, not even
the name of the creator. Nonetheless, the quality
of design and workmanship of the types was ex-
ceptional, and no printed specimens were known.
Aside from the effects of age—150 years of disuse
and lack of attention was evidenced in some minor
warping and splitting and in the absence of some
letters in a couple of the alphabets—the condition
of the blocks was such that it is believed they had
never before been used directly for printing, so the
work described is in a very real sense a first edition.
Mr. Mortimer illustrated his description of the

printing process with slides that illuminated the
steps to even the least knowledgeable of the au-
dience. I learned a great deal about printing from
“real” type in order to ensure uniform distribution of
ink on the printed surface—how to ensure that the
type heights are even, how to use “make-ready” to
permit greater pressure on areas of solid black, how
to apply differential inking so that areas of great de-
tail will not be blurred, how to use a frisket to cover

those portions of the paper that should remain ink-
free, . . . even how to create a “rainbow” border on
a traditional press (although this last was not part
of the main project). Many of these techniques are
simply impossible on “modern” printing equipment;
however, the fine quality of the results is a fitting
goal for craftsmen in the newer technologies.
Continuing his discussion of the decorative types,

Mr. Mortimer showed several slides of contempo-
rary (i.e., 1820s) posters on which they had been
used; these were mainly for the theater, agricultural
shows, and masonic events. The present printing
project took about two years. Near the end of that
time, one of the assistants in the printing house re-
membered seeing a specimen book with some of the
designs, and undertook a search—which met with
success. The cover of the specimen book identified
it as being from the firm of Louis John Pouchee,
and several of the types were prominently displayed
there. Apparently, Pouchee was an upstart in the
type business and antagonized some of the other,
larger firms (typefounding was a very competitive
business in the 19th century). It isn’t known what
actually happened, but it seems likely that a com-
petitor bought up Pouchee’s holdings and promptly
made them disappear from public view, but was
not so thorough that the types themselves were de-
stroyed. The timing of this solution to the mystery
was especially satisfying, as it permitted the creator
of the types to be identified in the printed catalog.
One small additional fillip to the project was

the use of another font of type that had apparently
also not been used extensively. This was a very el-
egant sans serif that had been created about 1820,
but failed to gain popularity at that time and was
abandoned. (Sans serif types were “invented” anew
at mid-century and became staples of the industry
from that time.) The ability to print with such a
contemporaneous type was clearly a source of great
pleasure to Mr. Mortimer, and I can vouch for the
highly satisfactory appearance of the results.
Following Mr. Mortimer’s talk, a panel of the

small press owners gave their views on questions
such as these.

• Where will the book be in five years? The
best answer: “where it damn well wants to.”
No one thought the book as produced by the
small press is about to disappear, although sev-
eral felt that reference and trade books would
be heavily influenced by the techniques of elec-
tronic distribution.
• Does anyone running a small press (as repre-
sented on the panel) have an e-mail address?
No, not one; one panelist pointed out that it

356 TUGboat, Volume 16 (1995), No. 4

takes too long to clean the ink off one’s hands
for a computer to be particularly useful on an
ongoing basis. But perhaps there is an interme-
diate approach wherein an engaged and knowl-
edgeable bookseller can represent small presses
and provide the means of introducing them to
a wider audience, to the benefit of all.

• Is knowledge of the traditional printing crafts of
any use to modern students of typography and
design? An adamant and vocal response by Mr.
Mortimer that this is the only way students are
going to learn to handle space was seconded by
a young woman in the audience who said that
she had been in one of Mr. Mortimer’s classes
several years earlier and thanked him for what
he had taught her.

The afternoon was occupied by a show of wares
by nearly 20 small presses, and by demonstrations
of printing (on a very small press, one made origi-
nally as a toy in a size suitable for printing business
cards), bookbinding, and typefounding by current
practitioners of those crafts. All the exhibitors were
unfailingly helpful and the enthusiasm of the audi-
ence was obvious. I’ve come home with some fine
new treasures and am already looking forward to
next year.
For anyone interested in “books about books”,

Oak Knoll now has a presence on the Web, at
http://www.oakknoll.com, or you can write to
oakknoll@ssnet.com.

Sources of information on printing and

book arts on the Web

In addition to the Oak Knoll Web page, which is
also accessible through the Antiquarian Booksellers’
Association of America (ABAA) World Wide Web
Server, at http://www.clark.net/pub/rmharris/
booknet1.html, several other Web sites devoted to
printing and the book arts have come to my atten-
tion.
William S. Peterson, at the University of Mary-

land, College Park, has created a Web page “de-
voted to British and American fine printing of the
nineteenth and twentieth centuries, with particu-
lar emphasis on William Morris and the Kelmscott
Press.” The address is http://www.wam.umd.edu/
~wsp/home.htm. Even a quick glance at the page
shows the hand of one who respects traditional book
design. Pointers to numerous sources are given, as
well as essays on the stated area of coverage. This
site is under construction, and will surely expand
into an even more interesting collection than it is
already.

An announcement by the Catholic University
of America Libraries and the School of Library and
Information Science at CUA introduces “A Guide
to the Book Arts and Book History on the World
Wide Web”, accessible at the address http://www.
cua.edu/www/mullen/bookarts.html. This guide
is “an organized list of links to Web pages that deal
with book arts and book history.”
From L’École des Arts visuels, Université Laval,

Québec, comes the page IKONQuebec, at http://
www.ulaval.ca/ikon/HOME.HTML. This site deals
with graphic design including and beyond the book,
and contains a bibliography of “les 700 meilleurs
livres sur le graphisme”, most of which are in either
French or English.
Check them out!

A TEX Users Group for Spanish speakers

At the very end of December, a message from José
R. Portillo Fernandez announced the formation of a
new TEX Users Group—Grupo de Usuarios de TEX
Hispanoparlantes, GUTH.
Some of the activities ofGUTH will be the main-

tenance of a FAQ, publication of a Boletin, creation
and maintenance of hyphenation dictionaries, styles,
and a Babel package, and an FTP site. A Web page
has already been installed: http://gordo.us.es/
Actividades/GUTH.
If you are interested in the activities of this new

group, but don’t have Web access, you can get in
touch with

José Ra Portillo Fernández
E.T.S. Arquitectura
Matemática Aplicada 1
Reina Mercedes, 2
E-41012 Sevilla (España)
E-mail: josera@obelix.cica.es

There is also a newsgroup about Spanish-lan-
guage TEX, es.eunet.spanish-tex, and an associ-
ated discussion list, spanish-tex@goya.eunet.es.

A brief comment on the merger of

TUGboat and TEX and TUG News

As you have already read in Michel Goossens’ intro-
duction to this issue, TTN has ceased publication
after issue 4(3). TTN was created as an attempt to
attract members to TUG who didn’t feel ready for
the heavy technical matter of TUGboat. Although
there have been differences of opinion over whether
such a separate forum was necessary or successful,
it is a fact that TTN has gathered much interesting
and useful material, in a form that could easily be
slipped into a purse or briefcase and carried onto an

TUGboat, Volume 16 (1995), No. 4 357

airplane for easy reading, and I am sorry to see it
end.
What I don’t want to happen is for the ongoing

in-print forum for this material to disappear too.
Technical material submitted to TUGboat is

subjected to considerable scrutiny, refereed, and of-
ten edited heavily in an effort to present the facts in
a style suitable for a technical journal. This will not
change. However, “lighter” material, what appears
in Typographer’s Inn or ‘Hey— it works! ’, for ex-
ample, will be accommodated without any attempt
to make it hew to an inappropriate “higher stan-
dard”. Peter Flynn and I will be working together
to incorporate this material as a distinct and rec-
ognizable sub-publication that will retain its own
personality. We have not yet had an opportunity to
discuss the real details, but the current columnists
will be invited—and I hope that they will agree—
to continue in new surroundings.
The new, combined TUGboat/TTN will become

reality with the next issue, 17(1).
Let me take this opportunity to thank Peter

Flynn, the present editor, and Christina Thiele, the
founding editor (there have been no others), for their
hard work. Well done!

⋄ Barbara Beeton

American Mathematical Society

P.O. Box 6248

Providence, RI 02940 USA

Email: bnb@math.ams.org

Some thoughts on TEX and TUG News

Peter Flynn

In one way I was very fortunate to become the next
editor of TTN after Christina Thiele. Her lead broke
the new ground well, so my own spadework was
much reduced. In another way she is always a hard
act to follow, but I appreciate having such a high
standard to work to.
As Barbara says, TTN was aimed at those mem-

bers or potential members who did not feel the need
for the technical depth of TUGboat, or who wanted
something comprehensible which they could show to
non-TEXies. I think we have been very fortunate in
having writers of the technical caliber displayed in
TTN to date who are nevertheless capable of ex-
pressing and explaining their topics in a form that
doesn’t require pre-reading of chapters 20–26 of The
TEXbook.

I am looking forward to this continuing in the
new format of publication, because I feel strongly
that one of the best ways to persuade the less tech-
nical TEX users to start reading TUGboat is to get
them reading TTN . I certainly remember my own
early days with TEX, struggling to learn the oper-
ating system, editor, print spooler, job control lan-
guage, and TEX all at the same time . . . I would cer-
tainly have appreciated something to cut my teeth
on before I developed an appetite for raw Knuth or
Lamport. User support people in companies and
universities have mailed me to say ‘thank you’ for
providing this entrée to TEX, and I know some of
them are now reading this.
The technical minutiæ of production are still

being worked out. We have considered (and dis-
carded, I am happy to say) suggestions like printing
the TTN components on coloured stock, or having
them bound on a perforated stub like a booklet on
bowel control inside the Reader’s Digest. I hope that
our contributors, both occasional and regular, will
continue to write, and I hope that the new proxim-
ity of TTN to TUGboat will mean that we can be
even more encouraging to users in the future.

⋄ Peter Flynn

Computer Center

University College

Cork, Ireland

Email: pflynn@curia.ucc.ie

Editor’s note: Peter expresses very well what I find
to be the major failing of TUGboat—it doesn’t of-
ten contain much that can be comprehended im-
mediately by someone who is not already relatively
skilled in using TEX. Despite frequent invitations
welcoming tutorial material and articles on modest
but useful techniques, and an annual harangue on
the subject at the summer TUG meeting, almost
nothing of this sort appears in my in basket.
Even more than articles sent to me, I would

very much like to find one or more volunteers who
feel the same way, who are willing to listen in on
the various electronic TEX discussions, talk to other
TEXies, follow up on items that they think will be
of general interest, and solicit even very small con-
tributions for publication. Now that TTN , with its
“smaller is better” flavor, is joining TUGboat, there
will be an even greater scope for this material.
If you are such a person, and would like to help

find good material to fill our pages, please send a
message to TUGboat@ams.org or to Peter or me, and
we will put you to work.

– bb

TUGboat, Volume 16 (1995), No. 4 355

Editorial Comments

Barbara Beeton

A day at a small press book fair

Early this fall, over the weekend of the Columbus
Day holiday (in the U.S., this is celebrated on the
Monday closest to October 12, especially in loca-
tions with a sizeable population of Italian descent) I
had the opportunity to attend a book fair organized
by my favorite bookshop, Oak Knoll Books of New
Castle, Delaware. Oak Knoll deals in “books about
books”—typography, printing, design, . . . bibliogra-
phy—and has a strong commitment to the contin-
ued health of the book arts. In support of this,
the proprieter, Bob Fleck, and his staff have under-
taken to arrange “events” where small presses and
craftsmen in the traditions associated with printing
can get some exposure and meet prospective new
customers. The book fair was the second in what
promises to be an annual tradition.
The highlight of the fair was a talk by Ian Mor-

timer, the head of the printing house I.M. Impri-
mum, London, on the printing of a definitive edi-
tion of specimens of decorative wood types created
in the early 1800s by Louis John Pouchee. The wood
blocks, carved in solid boxwood, and intended as
masters for stereotypes, were found among the ef-
fects of the Caslon type foundry at the time of its
closing, without identification. The blocks are now
held by the St Bride printing library in London, and
the printing was undertaken under library auspices.
At the beginning of the project, nothing was

known about the provenance of the types, not even
the name of the creator. Nonetheless, the quality
of design and workmanship of the types was ex-
ceptional, and no printed specimens were known.
Aside from the effects of age—150 years of disuse
and lack of attention was evidenced in some minor
warping and splitting and in the absence of some
letters in a couple of the alphabets—the condition
of the blocks was such that it is believed they had
never before been used directly for printing, so the
work described is in a very real sense a first edition.
Mr. Mortimer illustrated his description of the

printing process with slides that illuminated the
steps to even the least knowledgeable of the au-
dience. I learned a great deal about printing from
“real” type in order to ensure uniform distribution of
ink on the printed surface—how to ensure that the
type heights are even, how to use “make-ready” to
permit greater pressure on areas of solid black, how
to apply differential inking so that areas of great de-
tail will not be blurred, how to use a frisket to cover

those portions of the paper that should remain ink-
free, . . . even how to create a “rainbow” border on
a traditional press (although this last was not part
of the main project). Many of these techniques are
simply impossible on “modern” printing equipment;
however, the fine quality of the results is a fitting
goal for craftsmen in the newer technologies.
Continuing his discussion of the decorative types,

Mr. Mortimer showed several slides of contempo-
rary (i.e., 1820s) posters on which they had been
used; these were mainly for the theater, agricultural
shows, and masonic events. The present printing
project took about two years. Near the end of that
time, one of the assistants in the printing house re-
membered seeing a specimen book with some of the
designs, and undertook a search—which met with
success. The cover of the specimen book identified
it as being from the firm of Louis John Pouchee,
and several of the types were prominently displayed
there. Apparently, Pouchee was an upstart in the
type business and antagonized some of the other,
larger firms (typefounding was a very competitive
business in the 19th century). It isn’t known what
actually happened, but it seems likely that a com-
petitor bought up Pouchee’s holdings and promptly
made them disappear from public view, but was
not so thorough that the types themselves were de-
stroyed. The timing of this solution to the mystery
was especially satisfying, as it permitted the creator
of the types to be identified in the printed catalog.
One small additional fillip to the project was

the use of another font of type that had apparently
also not been used extensively. This was a very el-
egant sans serif that had been created about 1820,
but failed to gain popularity at that time and was
abandoned. (Sans serif types were “invented” anew
at mid-century and became staples of the industry
from that time.) The ability to print with such a
contemporaneous type was clearly a source of great
pleasure to Mr. Mortimer, and I can vouch for the
highly satisfactory appearance of the results.
Following Mr. Mortimer’s talk, a panel of the

small press owners gave their views on questions
such as these.

• Where will the book be in five years? The
best answer: “where it damn well wants to.”
No one thought the book as produced by the
small press is about to disappear, although sev-
eral felt that reference and trade books would
be heavily influenced by the techniques of elec-
tronic distribution.
• Does anyone running a small press (as repre-
sented on the panel) have an e-mail address?
No, not one; one panelist pointed out that it

356 TUGboat, Volume 16 (1995), No. 4

takes too long to clean the ink off one’s hands
for a computer to be particularly useful on an
ongoing basis. But perhaps there is an interme-
diate approach wherein an engaged and knowl-
edgeable bookseller can represent small presses
and provide the means of introducing them to
a wider audience, to the benefit of all.

• Is knowledge of the traditional printing crafts of
any use to modern students of typography and
design? An adamant and vocal response by Mr.
Mortimer that this is the only way students are
going to learn to handle space was seconded by
a young woman in the audience who said that
she had been in one of Mr. Mortimer’s classes
several years earlier and thanked him for what
he had taught her.

The afternoon was occupied by a show of wares
by nearly 20 small presses, and by demonstrations
of printing (on a very small press, one made origi-
nally as a toy in a size suitable for printing business
cards), bookbinding, and typefounding by current
practitioners of those crafts. All the exhibitors were
unfailingly helpful and the enthusiasm of the audi-
ence was obvious. I’ve come home with some fine
new treasures and am already looking forward to
next year.
For anyone interested in “books about books”,

Oak Knoll now has a presence on the Web, at
http://www.oakknoll.com, or you can write to
oakknoll@ssnet.com.

Sources of information on printing and

book arts on the Web

In addition to the Oak Knoll Web page, which is
also accessible through the Antiquarian Booksellers’
Association of America (ABAA) World Wide Web
Server, at http://www.clark.net/pub/rmharris/
booknet1.html, several other Web sites devoted to
printing and the book arts have come to my atten-
tion.
William S. Peterson, at the University of Mary-

land, College Park, has created a Web page “de-
voted to British and American fine printing of the
nineteenth and twentieth centuries, with particu-
lar emphasis on William Morris and the Kelmscott
Press.” The address is http://www.wam.umd.edu/
~wsp/home.htm. Even a quick glance at the page
shows the hand of one who respects traditional book
design. Pointers to numerous sources are given, as
well as essays on the stated area of coverage. This
site is under construction, and will surely expand
into an even more interesting collection than it is
already.

An announcement by the Catholic University
of America Libraries and the School of Library and
Information Science at CUA introduces “A Guide
to the Book Arts and Book History on the World
Wide Web”, accessible at the address http://www.
cua.edu/www/mullen/bookarts.html. This guide
is “an organized list of links to Web pages that deal
with book arts and book history.”
From L’École des Arts visuels, Université Laval,

Québec, comes the page IKONQuebec, at http://
www.ulaval.ca/ikon/HOME.HTML. This site deals
with graphic design including and beyond the book,
and contains a bibliography of “les 700 meilleurs
livres sur le graphisme”, most of which are in either
French or English.
Check them out!

A TEX Users Group for Spanish speakers

At the very end of December, a message from José
R. Portillo Fernandez announced the formation of a
new TEX Users Group—Grupo de Usuarios de TEX
Hispanoparlantes, GUTH.
Some of the activities ofGUTH will be the main-

tenance of a FAQ, publication of a Boletin, creation
and maintenance of hyphenation dictionaries, styles,
and a Babel package, and an FTP site. A Web page
has already been installed: http://gordo.us.es/
Actividades/GUTH.
If you are interested in the activities of this new

group, but don’t have Web access, you can get in
touch with

José Ra Portillo Fernández
E.T.S. Arquitectura
Matemática Aplicada 1
Reina Mercedes, 2
E-41012 Sevilla (España)
E-mail: josera@obelix.cica.es

There is also a newsgroup about Spanish-lan-
guage TEX, es.eunet.spanish-tex, and an associ-
ated discussion list, spanish-tex@goya.eunet.es.

A brief comment on the merger of

TUGboat and TEX and TUG News

As you have already read in Michel Goossens’ intro-
duction to this issue, TTN has ceased publication
after issue 4(3). TTN was created as an attempt to
attract members to TUG who didn’t feel ready for
the heavy technical matter of TUGboat. Although
there have been differences of opinion over whether
such a separate forum was necessary or successful,
it is a fact that TTN has gathered much interesting
and useful material, in a form that could easily be
slipped into a purse or briefcase and carried onto an

TUGboat, Volume 16 (1995), No. 4 357

airplane for easy reading, and I am sorry to see it
end.
What I don’t want to happen is for the ongoing

in-print forum for this material to disappear too.
Technical material submitted to TUGboat is

subjected to considerable scrutiny, refereed, and of-
ten edited heavily in an effort to present the facts in
a style suitable for a technical journal. This will not
change. However, “lighter” material, what appears
in Typographer’s Inn or ‘Hey— it works! ’, for ex-
ample, will be accommodated without any attempt
to make it hew to an inappropriate “higher stan-
dard”. Peter Flynn and I will be working together
to incorporate this material as a distinct and rec-
ognizable sub-publication that will retain its own
personality. We have not yet had an opportunity to
discuss the real details, but the current columnists
will be invited—and I hope that they will agree—
to continue in new surroundings.
The new, combined TUGboat/TTN will become

reality with the next issue, 17(1).
Let me take this opportunity to thank Peter

Flynn, the present editor, and Christina Thiele, the
founding editor (there have been no others), for their
hard work. Well done!

⋄ Barbara Beeton

American Mathematical Society

P.O. Box 6248

Providence, RI 02940 USA

Email: bnb@math.ams.org

Some thoughts on TEX and TUG News

Peter Flynn

In one way I was very fortunate to become the next
editor of TTN after Christina Thiele. Her lead broke
the new ground well, so my own spadework was
much reduced. In another way she is always a hard
act to follow, but I appreciate having such a high
standard to work to.
As Barbara says, TTN was aimed at those mem-

bers or potential members who did not feel the need
for the technical depth of TUGboat, or who wanted
something comprehensible which they could show to
non-TEXies. I think we have been very fortunate in
having writers of the technical caliber displayed in
TTN to date who are nevertheless capable of ex-
pressing and explaining their topics in a form that
doesn’t require pre-reading of chapters 20–26 of The
TEXbook.

I am looking forward to this continuing in the
new format of publication, because I feel strongly
that one of the best ways to persuade the less tech-
nical TEX users to start reading TUGboat is to get
them reading TTN . I certainly remember my own
early days with TEX, struggling to learn the oper-
ating system, editor, print spooler, job control lan-
guage, and TEX all at the same time . . . I would cer-
tainly have appreciated something to cut my teeth
on before I developed an appetite for raw Knuth or
Lamport. User support people in companies and
universities have mailed me to say ‘thank you’ for
providing this entrée to TEX, and I know some of
them are now reading this.
The technical minutiæ of production are still

being worked out. We have considered (and dis-
carded, I am happy to say) suggestions like printing
the TTN components on coloured stock, or having
them bound on a perforated stub like a booklet on
bowel control inside the Reader’s Digest. I hope that
our contributors, both occasional and regular, will
continue to write, and I hope that the new proxim-
ity of TTN to TUGboat will mean that we can be
even more encouraging to users in the future.

⋄ Peter Flynn

Computer Center

University College

Cork, Ireland

Email: pflynn@curia.ucc.ie

Editor’s note: Peter expresses very well what I find
to be the major failing of TUGboat—it doesn’t of-
ten contain much that can be comprehended im-
mediately by someone who is not already relatively
skilled in using TEX. Despite frequent invitations
welcoming tutorial material and articles on modest
but useful techniques, and an annual harangue on
the subject at the summer TUG meeting, almost
nothing of this sort appears in my in basket.
Even more than articles sent to me, I would

very much like to find one or more volunteers who
feel the same way, who are willing to listen in on
the various electronic TEX discussions, talk to other
TEXies, follow up on items that they think will be
of general interest, and solicit even very small con-
tributions for publication. Now that TTN , with its
“smaller is better” flavor, is joining TUGboat, there
will be an even greater scope for this material.
If you are such a person, and would like to help

find good material to fill our pages, please send a
message to TUGboat@ams.org or to Peter or me, and
we will put you to work.

– bb

358 TUGboat, Volume 16 (1995), No. 4

Software&Tools

Introduction to FasTEX:
A System of Keyboard Shortcuts for the
Fast Keying of TEX

Filip Machi, Jerrold E. Marsden and Wendy
G. McKay

1 General Features of FasTEX

FasTEX is a system of keyboard shortcuts for speed-
ing up the typing of TEX from the keyboard. FasTEX
is currently available for the Macintosh and UNIX.
It replaces any keyboard shortcut by the equivalent
TEX command or group of commands in Plain TEX,
AMS-TEX, AMS-LATEX, or LATEX. At the start of
the session, the typist specifies which flavor of TEX is
to be used from the set of files, one for each flavor,
containing the mapping information that expands
the keyboard shortcut into the corresponding TEX
command(s). These files we shall refer to as the
“FasTEX shortcut files”.
While keying in the text of the document, the

typist enters keyboard shortcuts. Expansion of a
shortcut is activated by typing one of several prede-
fined activation keys. After pressing the activation
key the shortcut name is overwritten with the ex-
pansion text. It is common to use the spacebar as
one of the activation keys.
For example, FasTEX replaces the keystroke se-

quence “xa” by \alpha, and the sequence “dxa” by
α etc. (The motivation for “xa” is that ‘x’
introduces any Greek letter and “a” is the Latin
form of the Greek letter alpha. Similarly, the let-
ter “d” preceding the “xa” in this example indicates
that dollar signs be put around the expansion of
“xa”.) FasTEX can deal with long or short abbrevi-
ations with equal ease.
Using FasTEX, the typist, whether the author

or another keyboard entry person, is able to keep
his/her hands on the standard portion of the key-
board; and need only very rarely hit keys far from
the home row of the keyboard, such as the backslash
or dollar sign key.

1.1 What Types of Shortcuts Come with
FasTEX?

The distributed FasTEX shortcuts are all designed
to keep the typist’s fingers near the home row keys.
Some FasTEX shortcuts just rename standard TEX
commands, while others expand into mulitple lines
of TEX incantations, referred to here as templates,

which can be used to simplify entering large or com-
plex structures. Although FasTEX comes with a
comprehensive, well thought out, and thoroughly
tested list of shortcuts, personal shortcuts are easily
customized.
Here are the kinds of shortcuts contained in the

distributed FasTEX files.

1.2 Examples of Simple Expansions

These are complete expansions of some commonly
used TEX commands.

• Greek letters

To get this Type

\alpha xa
\beta xb
. . .

The general shortcut naming rule for producing
Greek letters is “x” followed by the Latin equivalent
of the Greek letter, to produce the TEX command
for that Greek symbol.

• Math environment

To get this Type

$ d
α dxa
β dxb
. . .

The letter “d” at the start of a shortcut name
generally means surround the expansion text with
dollar signs.

• Capital letters

To get this Type

A dca
\Gamma xcg
. . .

In compound shortcut names like ‘dca’ and xcg’,
capital letters are entered by typing a “c”, to in-
dicate “Capital”, before the lowercase version of the
letter.

• Calligraphic letters

To get this Type

\cal A cca
\cal B ccb
. . .

A “c” preceding the shortcut name for a capi-
tal letter will produce the calligraphic form of that
letter.

• Superscripts

To get this Type

^\alpha hxa

TUGboat, Volume 16 (1995), No. 4 359

^\beta hxb
^4 h4
. . .

• Subscripts

To get this Type

_\alpha lxa
_\beta lxb
_4 l4
. . .

Remember this as “h” for higher, “l” for lower.

• Fractions

To get this Type

\frac{1}{2} f12
. . .

• Other Symbols (German or Fraktur, Open or Black-
board Bold letters)

To get this Type

\frak G gmcg
{\Bbb R}^2 opcr2
. . .

• Word or Word-phrase abbreviations

To get this Type

Department of Mathematics wcdm
Department of Physics wcdp
Euler-Poincar\’e wep
. . .

A “w” at the start of a shortcut name means it
is a word or word-phrase abbreviation.

• Formatting features

To get this Type

\\ nl
\newline nlin
\hspace{0.2in} hsp
. . .

1.3 Examples of Generic (Universal)
Simple Expansions

These expansion create partial TEX commands that
can be extended or completed using other shortcuts
or additional user input. In general, these shortcut
names have a trailing “u”, meaning Universal (or
Unfinished).

To get this Type

\frac{ fu
\int intu
^{ hu
_{ lu
{\it hitu
\sqrt{ squ
. . .

1.4 Complex Expansions—Templates

This category contains expansions for such things
as matrices, commutative diagrams, equation envi-
ronments, figures, tables, command definitions for
the preamble section of a TEX file, etc. Even larger
templates are available to produce skeleton versions
of complete documents, such as letters and articles.
Some examples are given in the display above.

1.5 The Importance of Producing Default
Files

When dealing with coauthors, or anytime one is
communicating documents, it is important to be
able to deliver files that are as “plain vanilla” as pos-
sible so that the recipient avoids typesetting prob-
lems or troubles understanding the TEX source file
for editing purposes. For example, custom defini-
tions (or macros) can seriously interfere with this
need and even make otherwise beautifully composed
documents difficult for exchange between coauthors.
FasTEX can help with these problems because all the
shortcuts are local modifications to the keyboard in-
put and do not remain in the actual text of the file
created.

1.6 FasTEX is Universal, Fast, and
Accurate

The FasTEX system is editor, application, and com-
puter platform independent, and as we already in-
dicated, can be used with plain TEX, AMS-TEX,
AMS-LATEX, or LATEX. The use of FasTEX will speed
up the typical users typing input by a factor of about

3.
This speed up is achieved by not only faster

inputting, but through the fact that it avoids sim-
ple typing errors (if FasTEX is activated, the docu-
ment will typeset). How many times has a document
failed to typeset for you because your finger slipped
when typing a backslash alpha or similar TEX com-
mand? This won’t happen with FasTEX!
In addition, FasTEX is a convenient way of re-

membering, storing and learning TEX commands.
FasTEX does not conflict with normal English use-
age; however, versions of FasTEX suitable for for-
eign languages require the replacement of certain
shortcut names, depending on the language (some
shortcut names may be words in certain foreign lan-
guages, such as “la” which is the code for “lower
(subscript) a”; however, this is also a word in French
but not in English).

360 TUGboat, Volume 16 (1995), No. 4

To get this Type

\begin{equation} beq
\end{equation} eeq

\begin{eqnarray}

\lefteqn{ } \nonumber \\

& &

\end{eqnarray}

lequ

\title{Title of paper}

\author{

Author1

\thanks{Research partially supported by ...}

\\Department of Mathematics

\\University of ...

\\ \and

Author2

\thanks{Research partially supported by ...}

\\Department of Physics

\\State University of ... }

\date{put in custom date; omit for today’s date}

\maketitle

teaut

1.7 You can get FasTEX off the WEB

As we shall explain in more detail below, FasTEX
is currently available free on the World Wide Web
for the Macintosh and UNIX environments. The
UNIX version differs slightly from the Mac version
but the basic operation and the names of the short-
cuts are the same for both systems. System inde-
pendence is another attractive feature when dealing
with coauthors who may be using different systems
but want to be able to efficiently share information
about FasTEX.

1.8 Documentation

FasTEX comes with complete documentation that
can be purchased from the authors.

2 A Sample Input

Here is an example of the input sequence one would
use for the following equation using LATEX.

φα(x) =

∫
x

0

f(t)

α2 + x2
dt (1)

The sequence “beq xph lxa ox eq intu l0 hx fu f
ot fof xa sq eb spdt eeq” produces the text in LATEX.
A brief description of these shortcuts will help the
reader to understand how the shortcuts names are
a key to the functionality of the FasTEX system. As
a typist becomes familiar with the pseudo-generic
system of naming shortcuts, typing TEX documents
becomes easier and faster to do.

To get this Type Description

\begin{equation}beq begin equation
\phi xph greek letter phi
_\alpha lxa subscript (or lower) α
(x) ox ‘of x’ (x in parentheses)
= eq equal
\int intu set up the integral
_0 l0 subscript 0
^x hx superscript x
\frac{ fu prepare for a fraction
f f f in numerator
(t) ot ‘of t’ (t in parentheses)
}{ fof forward fraction

(go to the denominator)
\alpha xa greek letter alpha
^2 sq square it (or use “h2”)
} eb end brace (of fraction)
\,dt spdt thin space dt
\end{equation} eeq end equation

3 The Macintosh Version of FasTEX

The Macintosh version of FasTEX uses the shareware
control panel TypeIt4Me, and the FasTEX shortcut
files. You will need some version of system 7 to use
FasTEX on the Mac.
The programs and files may be found on the

following WEB sites.

Program Available from

TypeIt4Me http://delta.com/star.org/starhome.html
FasTEX files http://avalon.caltech.edu/cds

TUGboat, Volume 16 (1995), No. 4 361

3.1 Installation

After collecting the software off the WEB or using
the FasTEX disk (Macintosh users can purchase a
disk containing everything needed from TUG or the
authors):

1. Copy the TypeIt4Me control panel to the con-
trol panels folder.

2. Copy the shortcut files to a convenient folder
or on the desktop available for TypeIt4Me to
open.

3. Restart the machine.

4. Open your favorite editor (Textures, Alpha, etc.)
and type a shortcut such as “xa-spacebar” to
test the system.

3.2 A little about TypeIt4Me

TypeIt4Me is a shareware product of Ricardo Ettore
and if you really use it, you are expected to support
the shareware idea and send him $30US. It is worth
every penny! It is great for many purposes besides
TEX: email addresses, commonly typed phrases, etc.
After restarting your machine, you will see the

TypeIt4Me icon in the top left corner of your screen.
Here are a few of the menu items you will find under
the icon:

1. A help manual under About TypeIt4Me explains
the workings of TypeIt4Me in detail.

2. To add an entry of your own, type it some-
where (such as your TEX editor), copy it to the
clipboard, and call up the Add an entry item
(for us, this is equivalent to the hot key “Shift-
Option-C”) and insert your shortcut name in
the window. Now that shortcut is available!

3. To edit entries, call up this menu item (for us,
it is the hot key “Shift-Option-E”). The dia-
log box that results is self-explanitory; you can,
as the name suggests, edit any existing entry,
change shortcut names, etc.

4. The preferences choice allows you to set hot
keys, select what keys trigger the shortcut be-
sides the spacebar, let you decide if you want
the trigger included in the expansion, etc.

5. Below this you find date and time items.

6. The final menu items tell you what file of short-
cuts you want open. On the Macintosh there is
a limitation of having one file open at a time
and each file is limited to 2500 shortcuts (this
is due to resource editor limitations and is nor-
mally not a problem). You probably want to
have your addresses, email addresses, etc., in a
different file from the TEX shortcuts. FasTEX
provides different files for LATEX, AMS-TEX,

and AMS-LATEX; again, you choose the one you
are working with for the particular document.

If for some reason you do not want TypeIt4Me to
activate, you simply turn it off with the appropriate
hot key (which we have set at Shift-Option-O)—that
is an “oh”. When off, the TypeIt4Me icon appears
dimmed. For example, if you are typing a passage
in French, you probably should turn off TypeIt4Me.

3.3 A Note about $

The dollar sign is of course the most common key
needed for typesetting mathematical expressions. Be-
cause of its freqent use, we have made the single
shortcut “d” for it. Surprisingly, this causes very
few problems. Of course, as with all shortcuts, this
does not cause a problem with a “d” occuring in a
word. If you want to type a literal “d” in the middle
of a formula and do not want it to come out with
a dollar sign, you can use the shortcut “sd” which
produces a literal “d”, or you can type a “d” and
(at least on the Macintosh) hold the shift key down
when typing the spacebar, which keeps TypeIt4Me
temporarily from activating.

3.4 A Sample Creation of a Shortcut

Let us suppose that you want to create a shortcut for
a combination that occurs frequently in your work.
For example, assume it is a dx dy occurring in a
double integral. First of all, decide on what spacing
you want in the mathematics. For instance, let’s say
that the literal keystrokes you want are \;dx\,dy
and, consistent with the FasTEX scheme of naming,
you chose the shortcut name “spdxdy”. Then you
would create this shortcut as follows:

1. Type \;dx\,dy in any text editor.

2. Select and copy it to the clipboard.

3. Select “add an entry” from the TypeIt4Me menu
(or hit “Shift-Option-C”).

4. Type in the shortcut name spdxdy.

That’s it! Now that shortcut is available.

4 The UNIX version of FasTEX

There is a version of the Macintosh FasTEX engine
(TypeIt4Me) that runs on most flavors of UNIX.
Called scedit, the UNIX version is based on the Ex-
pect program of Don Libes. Though not identical to
the Mac version of TypeIt4Me, scedit attempts to
include all of the essential functionality of the Mac
version, with a few consessions to differences in the
operating systems.
The shortcut files that make up FasTEX are nec-

essarily different between the Mac and UNIX, but

362 TUGboat, Volume 16 (1995), No. 4

both are derived from a common base file, so porta-
bility between Mac and UNIX introduces no incom-
patibilities.
The scedit program works by isolating an editor

program of the user’s choice from the keyboard and
screen (window). All interaction between the user
and the editor is intercepted by the scedit program,
which performs the shortcut expansions.
An advantage of this approach is that shortcut

expansion is independent of the windowing environ-
ment under which scedit runs, so for example, scedit
will work over a telnet or modem connection. A dis-
advantage is that the editor program run by scedit
can not respond to mouse events.
One benefit to using scedit over expansion fa-

cilities that may be native to a particular editor pro-
gram is that the same shortcut files will work across
different editor programs, regardless of what kind
of expansion facility the editor may have, if any.
For example, both vi and emacs have native expan-
sion (abbreviation) capabilities that are incompati-
ble with each other; but scedit and FasTEX works
with either editor by changing a few configuration
parameters.
The scedit program has some additional capa-

bilities over the Mac TypeIt4Me program. One sig-
nificant feature is that scedit can have many short-
cut files active at once, unlike TypeIt4Me, which
allows only one active shortcut file.

4.1 System Requirements

The scedit program will run on most versions of
UNIX. The main requirement is that the UNIX plat-
form have a recent version (5.7.0 or later) of the
Expect program installed.
To run FasTEX on UNIX you need:

Program Available from

Expect/Tcl ftp://ftp.cme.nist.gov/pub/expect
scedit http://avalon.caltech.edu/cds
FasTEX files http://avalon.caltech.edu/cds

4.2 Installation

The UNIX version of FasTEX can be installed in your
personal file space or in a system area. Either ap-
proach will work, and the choice depends mainly on
whether you want to maintain the FasTEX system
yourself or leave that up your computer’s system
administrator.
There are four components to the UNIX FasTEX

system which need to be installed in four distinct
areas. These are the scedit program, the FasTEX
shortcut files, the documentation and the public, de-
fault configuration file. Each user may also have a

personal configuration file which overrides the public
one—see Customization below.
Installation consists of editing the Makefile that

came with the FasTEX distribution to reflect the
installation directories you chose, then running the
command ‘make install’.
Within the Makefile, the variable INSTALLDIR

should be edited to contain the name of a directory
containing the sub-directories bin, lib/scedit and
man. If any of these directories or sub-directories
does not exit, you should create them first and set
their permissions to allow the kind of access you
think appropriate. Also, edit the variable EXPECT
to contain the name of the directory containing the
Expect executable. When you complete these two
edits you may run ‘make install’.
The following example shows a typical installa-

tion of UNIX FasTEX into a personal area. To in-
stall into a system area just change the names of the
destination directories (and be sure you have write
permission in the affected system directories).

mkdir /accts/fil/fastex

chmod 755 /accts/fil/fastex

mkdir /accts/fil/fastex/bin

chmod 755 /accts/fil/fastex/bin

mkdir /accts/fil/fastex/lib

chmod 755 /accts/fil/fastex/lib

mkdir /accts/fil/fastex/lib/scedit

chmod 755 /accts/fil/fastex/lib/scedit

mkdir /accts/fil/fastex/man

chmod 755 /accts/fil/fastex/man

mkdir /accts/fil/fastex/man/man1

chmod 755 /accts/fil/fastex/man/man1

chmod 644 Makefile

vi Makefile

...

INSTALLDIR = /accts/fil/fastex

EXPECT = /usr/local/bin/expect

...

make install

At this point FasTEX has been installed and
is ready to use. You may wish to create an alias
for the scedit executable so that you do not have to
type its full path name when you invoke it. Alterna-
tively, you can place a symbolic link to the scedit ex-
ecutable into one of the bin directories listed in your
shell’s PATH variable. With this latter approach,
you could make scedit available to the general user
community by placing the symbolic link into a sys-
tem bin directory, such as /usr/local/bin if that
is where locally added programs are kept on your
system:

TUGboat, Volume 16 (1995), No. 4 363

ln -s /accts/fil/fastex/bin/scedit

usr/local/bin

Another approach is to place the symbolic link
into your own personal bin directory if you wanted
access to scedit to be semi-private.

4.3 Customization

The file sceditrc, which was installed into the lib di-
rectory during the installation procedure, contains
customization parameters for scedit. These param-
eters control several aspects of the way scedit oper-
ates, and take effect for every user of scedit.
An optional file, .sceditrc in each user’s home

directory, can also contain scedit parameter values.
These will override the values in sceditrc located in
the lib directory. In this way each user can specify
personal customization of scedit.
The parameters include: FASTEX_FILES which

contains a list of shortcut file names to use by de-
fault; FASTEX_PATH which lists the directories to be
searched for shortcut files listed on the command
line; NAME_SUFFIX which contains the list of charac-
ters that will serve to activate shortcut expansion;
REDRAW which holds the sequence of characters that
will make your editor redraw the screen; etc. The
scedit documentation discusses these and the other
parameters in more detail.
Standard (Bourne) shell syntax can be used in

the customization files. This allows a single cus-
tomization file to include parameters for a variety of
different editors. The default sceditrc file that comes
with the scedit distribution shows how to represent
separate customizations for vi and emacs, selected
by examining the UNIX standard environment vari-
able EDITOR.

4.4 Some specific differences between
the scedit and TypeIt4Me versions of
FasTEX

Because the UNIX version of FasTEX does not as-
sume a windowing environment, some of the user
interaction with scedit is necessarily different than
the user interaction with TypeIt4Me. For example,
scedit uses special escape keystrokes to perform file
management operations that would be done with
pull-down menus on the Mac. Most of these meta-
level operations are introduced with the tilde char-
acter (~).
For example, the escape command ~e1. would

start a new editing session on the main shortcuts
file. The display and keyboard will now be attached
to this new editor session. The old editor session is
waiting undisturbed in the background. When you
exit this new editor session, the old one is resumed.

Viewing the shortcuts in this way is helpful when
you forget the name of a shortcut and want to look
it up; you can then use the full search capabilities
of your editor to help you locate shortcut definitions
within a potentially large shortcut file.
Any changes you make to a shortcut file when

viewed in this way will be incorporated back into
the active scedit session when you exit the view-
ing editor. So, for example, to add a new shortcut
while editing a document, use (~ef) to view/edit
your ”first” shortcut file (the ”first” file is the one
that scedit reads before the main shortcut file), add
the new shortcut to the file using the editor, then
write and quit the editor. The new shortcut will
now be available to you as you resume editing your
document.
A list of all the escape commands is available

through the escape command (~h). To enter a ac-
tual tilde character into the text of your document,
double the tilde (~~).
The usual UNIX job control mechanism can also

be used to suspend and resume the entire scedit ses-
sion.

⋄ Filip Machi

Center for Extreme Ultraviolet

Astrophysics

University of California at Berkeley

5030

Berkeley

CA 94720

USA

Email: fil@cea.berkeley.edu

⋄ Jerrold E. Marsden

Control and Dynamical Systems

California Institute of Technology

104-44

Pasadena

CA 91125

USA

Email: marsden@cds.caltech.edu

⋄ Wendy G. McKay

Control and Dynamical Systems

California Institute of Technology

104-44

Pasadena

CA 91125

USA

Email: wgm@cds.caltech.edu

364 TUGboat, Volume 16 (1995), No. 4

Philology

The Style russianb for Babel:

Problems and solutions

Olga Lapko
Irina Makhovaya

Abstract

As is the case with other languages based on non-
Latin alphabets, when preparing a style one must
take into account the typographic rules traditionally
used in the given language. This paper describes
the package russianb, which includes such macros
as \captionsrussian to address the four types of
standard Russian LATEX documents, \daterussian,
\Asbuk and \asbuk for Russian alphabet coun-
ters, and \mathrussian for Russian math operators.
Some problems concerning the usage of this style
(e.g. usage of di�erent encodings) are described.

Introduction

As is generally known, TEX is based on the Latin
alphabet and, while in theory it is possible to use
TEX for other alphabets|Greek, Arabic, Cyrillic
and so on| in practice, there are a lot of problems
when we try to use TEX with other alphabets. The
Babel package [1] is the �rst successful attempt to
solve the problems of multilingual TEX.

In this paper we discuss the concrete di�culties
we encountered while creating the russianb1 �le for
Babel. The whole set of peculiarities of typesetting
documents in Russian can be subdivided into three
classes:

1. features borrowed from western European ty-
pography, especially German and French;

2. features peculiar to Russian typography only
and which can be easily described in the �le
russianb;

3. features peculiar to Russian typography and
which pose some di�culties in describing and
using them.

We also see two very important general prob-
lems: the variety of encoding schemes which cur-
rently exist and the need for portability of the
present package �le to di�erent platforms, a problem
which we could solve only partially.

1 russianb is an analog of the �lename germanb; the name

is chosen to avoid confusion with Russian-language Babel

styles currently used with LATEX 2.09. Currently russianb,

in beta-version, comes as an extension to the CyrTUG-emTeX

distribution.

Now we shall describe the macros of the �le
russianb according to the classi�cation just out-
lined.

Macros borrowed from other styles

The �le russianb was based upon the already exist-
ing versions of some already-existing styles: german
(for LATEX 2.09), germanb (for LATEX2ε), and fran-

cais (for LATEX2ε). These �les have the language-
speci�c macros which Russian typographic rules
need:

1. from germanb

• macros for French and German double
quotes. Note: French double quotes are
created by METAFONT in a Cyrillic font
and have their own ligature (i.e. <<);

• \shortcuts" for hyphenation in compound
words and words with non-letter charac-
ters (Russian words are not as long as Ger-
man ones but a few long ones do exist).
And of course, as in germanb, the sign "

was made active.

• \lefthyphenmin{\righthyphenmin: for
Russian (as for German) the values 2{2
are used in the hyphenation algorithms;

2. from francais

• macros for the punctionation marks :, ;,
?, !, where the amount of white space is
slightly increased in front of these signs:
TEX looks for a space between a word and
this sign, then, if there is a space, TEX
\unskips" it and puts in an extra little
space of 0.1em;

• \frenchspacing is switched on;

• some additional characters (as in fran-

cais) are described in our style, e.g. the
number sign.

Macros created in the Russian style and

which pose no problems in usage

The macros described below were borrowed from
various releases of the russian.sty �le (for use with
LATEX 2.09).

1. macros for math operators whose names di�er
from English ones (e.g. in Russian manuscripts
we write tg and ctg instead of tan and cotan);

2. additional macros for printing counter values,
using uppercase and lowercase Cyrillic letters
(\Asbuk and \asbuk as analogs to \Alph and
\alph).

In addition, we created a shorthand macro for the
Russian emdash ("---): in printed documents, this

TUGboat, Volume 16 (1995), No. 4 365

sign is somewhat shorter and is surrounded by
spaces (about 0.2 of the current font size; i.e. a 2pt
space in a 10pt font); this emdash can never be sep-
arated from the word preceding it. Note: the macro
for an explicit hyphen sign ("-) was of course rewrit-
ten because of this new macro for the Russian em-
dash. See examples in �gs. 1 and 2.

Macros that need explanations or are

di�cult to use

In this section we discuss macros for breaking in-line
formulas. Russian typographic tradition requires us
to repeat the last sign of a broken formula on the
next line.

A package, specially written by M.I. Grinchuk
to solve this problem, contains macros to repeat
signs when a formula is broken. The package o�ers
two options:

1. hand breaking : in this case, we have the values
\binoppenalty = \relpenalty = 10000; to
break the formula, one must use the commands
\brokenbin{ } and \brokenrel{ };

2. automatic breaking : values for the same macros
as above are made non-equal: \relpenalty >
> \binoppenalty > 10000. Some signs are
equal to \mathcode=8000 and divided into two
groups: (a) binary and relational signs + - < >

= allow breaks after them, and (b) the signs *
([/ . ,, which prohibit breaks. On top of
that, almost all mathematical signs have been
rewritten using the new commands \brkbin

and \brkrel to allow or prevent breaking, e.g.:

\def\wedge {\brkbin{\mathchar"225E}}

\def\gg {\brkrel{\mathchar"321D}}

\def\exists {\mathchar"0239\unbrk}

\def\bigl#1 {\mathopen{\big#1}\unbrk}

\def\bigm#1 {\mathrel {\big#1}\unbrk}

\def\langle {\delimiter"426830A \unbrk}

In particular, the command \not must be rede-
�ned as follows:

\def\not#1 {\brkrel{\mathchar"3236 #1}}

and so on. In this case TEX breaks formu-
las by itself but sometimes we have to handle
breaking using the special commands \unbrk or
\allowbrk.

This package has some drawbacks, although
of a rather exotic nature:

• one must write $x \brkbin{{+}^1} y$

instead of $x +^1 y$;

• math operators like \sin must be written
with arguments in curly braces;

• in formulas such as x+ . . . + y one must
write $x \unbrk + \ldots + y$ to pre-
vent the �rst break (or the breaking sign
must be rede�ned to allow look-ahead);

• in case the signs ^ and _ are rede�ned,
we cannot use AMS-TEX macros such as
\Sb..\endSb (i.e. ^\bgroup..\egroup);
in other words, it is impossible to use
something like ^\leq and ^*.

It should be clear from the above that we must
rewrite all the de�nitions of binary and relational
operators, as well as of certain signs which cannot
be followed by a line break.

At present, this style exists as an add-on2 and
can be turned on (or o�) by the user. An example
of how to use this package is shown in �g. 3.

Encoding and font problems

The russianb �le was created for the \non-Latin
user" who uses the Cyrillic alphabet. One of the
basic problems is: there are a lot of di�erent encod-
ings in each of which Cyrillic letters have di�erent
codes. Because of this, our �le has some particular
features when compared with other �les developed
for the Babel system

To make this style independent of encoding, we
have to use macro names instead of Cyrillic letters
themselves. Russian letters and signs in this style
are used in macros for the date (\daterussian)
and the text strings for the four standard styles of
LATEX (\captionsrussian), and also in commands
for printing counter values by using Cyrillic upper-
and lowercase letters (\Asbuk and \asbuk).

The macro names for Cyrillic letters and some
signs are introduced with the help of a subsidiary
�le (e.g. lhrcod.sty) which corresponds to a given
encoding scheme. This �le also switches the Cyrillic
font family.3

The coding schemes used in Russia usually con-
sist of a table, where in the upper part one �nds
the Cyrillic letters using one of a set of layouts,
while the lower part contains the Latin letters, in the
usual (ASCII) layout. For successful usage of Rus-
sian hyphenation patterns Cyrillic letters are set to
\catcode\letter (in russianb Cyrillic letters are
restored to their normal category again in case their
category had been changed). There is already a long
tradition of using Russian letters in macro names

2 It is a beta release.
3 Currently this switching is only implemented for

LATEX2ε.

366 TUGboat, Volume 16 (1995), No. 4

(Russian letters are letters too, aren't they?). More-
over, there are packages which use Russian words as
commands, in some special cases.4

At this point we should also mention that, to re-
spect Russian typographic tradition, the \mathcode
for Cyrillic letters is set to 70??, i.e. class 7 (for
\variable") and family 0 (\fam0, \rm).

What needs to be done

The present style is meant to be used when working
with \8-bit" Russian documents, where one some-
times has fragments in the Latin alphabet, or to
enter documents using transliteration.

For entering 8-bit documents the subsidiary �le
russianb (in the current version we input cyr-

cod) simply declares a new font family and encod-
ing at the beginning of the document,5 which then
loads the Russian/English hyphenation only plus
the macros for each language|this approach re-
quires less memory (see �g. 1).

For Russian-Latin papers input with translit-
eration (where for each Russian letter one uses a
Latin equivalent) we must declare that sometimes
Latin letters represent Cyrillic ones, so we have to
toggle not only hyphenation patterns and macros
but (above all) fonts and encodings too (see �g. 2).

Conclusion

The main di�culty with the russianb style �le
is that we have to use macro names for Cyril-
lic letters. For now, these letters are described
as \def\CYRa{a}. In this case the commands
\uppercase and \lowercase don't work correctly
so one has to use additional de�nitions for these
commands.

Above we have described a few solutions to the
problem of using the russianb �le with di�erent
platforms and environments. However, because we
have had almost no occasion to actually work on
di�erent environments, we cannot really say very
much about possible remaining di�culties.

The present work is only a �rst attempt to cre-
ate a Russian-language style �le extension for the
Babel package. We hope to provoke discussions and
further work in this direction by our colleagues. We
also look forward to the
 [4] package, which should
be able to solve many of the problems described
in this article, especially those connected with en-

4 In a Russian document where transliteration is used it

often happens that many letters are made \active", therefore

the assignment \catcode\letter is only made inside a group

when loading the hyphenation tables.
5 Currently such a �le only exists for LATEX2ε.

coding schemes and portability across di�erent com-
puter environments.

Acknowledgements

In conclusion we would like to mention that a lot
of our colleagues have made valuable contributions
to the development of the �le russianb: Mikhail
Grinchuk, Eugenii Ivanov, Sergey Lvovskii, Andrey
Slepukhin, Yurii Tyumentsev, and others. We are
very much obliged to all of them.

References

[1] Braams, J. \Babel, a multilingual style-option
system for use with LATEX's standard document
styles." TUGboat 12 (2), pages 291{301, 1991.

[2] Gilenson, P. Spravochnik tekhnicheskogo redak-

tora. Moscow: Kniga, 1979.

[3] Goossens, M., F. Mittelbach, and A. Samarin.
The LATEX Companion. Reading, Mass.:
Addison-Wesley, 1994.

[4] Haralambous, Y., and J. Plaice. \First applica-
tion of
: Greek, Arabic, Khmer, Poetica, ISO
10646/UNICODE, etc." TUGboat 15 (3), pages
344{352, 1994.

[5] Khodulev A., and I. Makhovaya. \On TEX ex-
perience in Mir Publishers." Proceedings of the

Seventh European TEX Conference (Sept. 14{18,
1992, Prague, Czechoslovakia), pages 37{42.

[6] Lapko, O. \MAKEFONT as part of CyrTUG-
emTEX package." Proceedings of the Eighth

European TEX Conference (Sept. 26{30, 1994,
Gdańsk, Poland), pages 110{114.

⋄ Olga Lapko

Irina Makhovaya

Mir Publishers

2, Pervyi Rizhskii Pereulok

Moscow, 129820, Russia

Email: olga@mir.msk.su

irina@mir.msk.su

óÔÉÌØ russianb ÄÌÑ ÐÁËÅÔÁ Babel :

ÐÒÏÂÌÅÍÙ É ÒÅÛÅÎÉÑ

ìÁÐËÏ ï. ç.,
íÁÈÏ×ÁÑ é. á.

áÎÎÏÔÁÃÉÑ

ëÁË É × ÓÌÕÞÁÅ ÄÒÕÇÉÈ ÑÚÙËÏ×, ÂÁÚÉÒÕÀÝÉÈÓÑ
ÎÁ ÉÎÙÈ, ÎÅ ÌÁÔÉÎÓËÉÈ ÁÌÆÁ×ÉÔÁÈ, ÐÒÉ ÒÁÚÒÁ-
ÂÏÔËÅ ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÅÇÏ ÓÔÉÌÑ ÓÌÅÄÕÅÔ ÏÔÒÁÚÉÔØ
ÐÒÁ×ÉÌÁ ÐÏÌÉÇÒÁÆÉÞÅÓËÏÇÏ ÏÆÏÒÍÌÅÎÉÑ, ÔÒÁÄÉ-
ÃÉÏÎÎÙÅ ÄÌÑ ÄÁÎÎÏÇÏ ÑÚÙËÁ. ÷ ÓÔÁÔØÅ ÏÐÉÓÙ×Á-
ÅÔÓÑ ÓÔÉÌØ russianb Ó ÉÓÐÏÌØÚÏ×ÁÎÉÅÍ ÍÁËÒÏÓÏ×

TUGboat, Volume 16 (1995), No. 4 367

\captionrussian ÄÌÑ 4-È ÓÔÁÎÄÁÒÔÎÙÈ ÄÏËÕÍÅÎ-
ÔÏ× ÎÁ ÒÕÓÓËÏÍ ÑÚÙËÅ, \daterussian, \Asbuk É
\asbuk ÄÌÑ ÐÅÒÅÞÉÓÌÅÎÉÊ ÐÒÉ ÐÏÍÏÝÉ ÂÕË× ÒÕÓ-
ÓËÏÇÏ ÁÌÆÁ×ÉÔÁ É \mathrussian ÄÌÑ ÎÁÚ×ÁÎÉÊ ÍÁ-
ÔÅÍÁÔÉÞÅÓËÉÈ ÆÕÎËÃÉÊ É ÏÐÅÒÁÃÉÊ. ïÓ×ÅÝÁÀÔÓÑ
ÎÅËÏÔÏÒÙÅ ÐÒÏÂÌÅÍÙ, Ó×ÑÚÁÎÎÙÅ Ó ÐÒÉÍÅÎÅÎÉÅÍ
ÄÁÎÎÏÇÏ ÓÔÉÌÑ (ÎÁÐÒÉÍÅÒ, ÉÓÐÏÌØÚÏ×ÁÎÉÅ ÒÁÚÌÉÞ-
ÎÙÈ ÓÈÅÍ ËÏÄÉÒÏ×ÏË).

÷×ÅÄÅÎÉÅ

ïÂÝÅÉÚ×ÅÓÔÎÏ, ÞÔÏ TEX ÏÓÎÏ×ÁÎ ÎÁ ÌÁÔÉÎÓËÏÍ ÁÌ-
ÆÁ×ÉÔÅ, ÎÏ ÔÅÏÒÅÔÉÞÅÓËÉ ×ÏÚÍÏÖÎÏ ÅÇÏ ÉÓÐÏÌØÚÏ-
×ÁÎÉÅ É × ÉÎÙÈ ÁÌÆÁ×ÉÔÁÈ: ÇÒÅÞÅÓËÏÍ, ÁÒÁÂÓËÏÍ,
ËÉÒÉÌÌÉÞÅÓËÏÍ É Ô. Ä. ëÏÇÄÁ ÖÅ ÍÙ ÈÏÔÉÍ ÜÔÏ
ÒÅÁÌÉÚÏ×ÁÔØ ÎÁ ÐÒÁËÔÉËÅ, ÔÏ ÓÔÁÌËÉ×ÁÅÍÓÑ Ó ÃÅ-
ÌÙÍ ÒÑÄÏÍ ÔÒÕÄÎÏÓÔÅÊ. ðÅÒ×ÏÊ ÕÓÐÅÛÎÏÊ ÐÏÐÙÔ-
ËÏÊ ÒÅÛÅÎÉÑ ÐÒÏÂÌÅÍ ÍÎÏÇÏÑÚÙÞÎÏÇÏ TEX'Á ÂÙÌ
ÐÁËÅÔ Babel [1].

÷ ÎÁÓÔÏÑÛÅÊ ÒÁÂÏÔÅ ÏÂÓÕÖÄÁÀÔÓÑ ËÏÎËÒÅÔ-
ÎÙÅ ÔÒÕÄÎÏÓÔÉ, Ó ËÏÔÏÒÙÍÉ ÍÙ ÓÔÏÌËÎÕÌÉÓØ ÐÒÉ
ÓÏÚÄÁÎÉÉ ÓÔÉÌÅ×ÏÇÏ ÆÁÊÌÁ russianb1 ÄÌÑ ÐÁËÅ-
ÔÁ Babel. ÷ÓÀ ÍÁÓÓÕ ÏÓÏÂÅÎÎÏÓÔÅÊ ÐÏÌÉÇÒÁÆÉÞÅ-
ÓËÏÊ ÐÏÄÇÏÔÏ×ËÉ ÄÏËÕÍÅÎÔÏ× ÎÁ ÒÕÓÓËÏÍ ÑÚÙËÅ [6]
ÍÏÖÎÏ ÒÁÚÂÉÔØ ÎÁ ÔÒÉ ËÌÁÓÓÁ:

1. ÏÓÏÂÅÎÎÏÓÔÉ, ÐÏÚÁÉÍÓÔ×Ï×ÁÎÎÙÅ ÉÚ ÐÏÌÉÇÒÁ-
ÆÉÉ úÁÐÁÄÎÏÊ å×ÒÏÐÙ, ÂÏÌØÛÅÊ ÞÁÓÔØÀ ÉÚ
ÎÅÍÅÃËÏÊ É ÆÒÁÎÃÕÚÓËÏÊ;

2. ÏÓÏÂÅÎÎÏÓÔÉ, ÐÒÉÓÕÝÉÅ ÉÓËÌÀÞÉÔÅÌØÎÏ ÒÕÓ-
ÓËÏÊ ÐÏÌÉÇÒÁÆÉÉ É ÎÅ ×ÙÚÙ×ÁÀÝÉÅ ÚÁÔÒÕÄ-
ÎÅÎÉÊ ÐÒÉ ÏÐÉÓÁÎÉÉ ÉÈ × ÆÁÊÌÅ russianb ;

3. ÏÓÏÂÅÎÎÏÓÔÉ, ÐÒÉÓÕÝÉÅ ÒÕÓÓËÏÊ ÐÏÌÉÇÒÁÆÉÉ
É ×ÙÚÙ×ÁÀÝÉÅ ÏÐÒÅÄÅÌÅÎÎÙÅ ÓÌÏÖÎÏÓÔÉ ÐÒÉ
ÉÈ ÏÐÉÓÁÎÉÉ É ÉÓÐÏÌØÚÏ×ÁÎÉÉ.

íÙ ÔÁËÖÅ ×ÉÄÉÍ Ä×Å ÏÞÅÎØ ×ÁÖÎÙÅ ÏÂÝÉÅ
ÐÒÏÂÌÅÍÙ: ÒÁÚÎÏÏÂÒÁÚÉÅ ÓÈÅÍ ËÏÄÉÒÏ×ËÉ É ÎÅÏÂ-
ÈÏÄÉÍÏÓÔØ ÐÅÒÅÎÏÓÉÍÏÓÔÉ ÜÔÏÇÏ ÓÔÉÌÅ×ÏÇÏ ÆÁÊÌÁ
Ó ÐÌÁÔÆÏÒÍÙ ÎÁ ÐÌÁÔÆÏÒÍÕ, ËÏÔÏÒÙÅ ÒÅÛÅÎÙ ÎÁ-
ÍÉ ÌÉÛØ ÞÁÓÔÉÞÎÏ.

ïÐÉÓÁÎÉÅ ÍÁËÒÏÓÏ× ÆÁÊÌÁ russianb ÂÕÄÅÔ
×ÅÓÔÉÓØ ÄÁÌÅÅ ÓÏÇÌÁÓÎÏ ÜÔÏÊ ËÌÁÓÓÉÆÉËÁÃÉÉ.

íÁËÒÏÓÙ, ÐÏÚÁÉÍÓÔ×Ï×ÁÎÎÙÅ ÉÚ ÄÒÕÇÉÈ

ÓÔÉÌÅÊ

æÁÊÌ russianb ÂÙÌ ÎÁÐÉÓÁÎ ÎÁ ÏÓÎÏ×Å ÕÖÅ
ÓÕÝÅÓÔ×ÕÀÝÉÈ ÓÔÉÌÅÊ german (ÄÌÑ LATEX2.09),
germanb (ÄÌÑ LATEX2ε) É francais (ÄÌÑ LATEX2ε).
÷ ÜÔÉÈ ÆÁÊÌÁÈ ÉÍÅÌÉÓØ ÓÐÅÃÉÆÉÞÅÓËÉÅ ÄÌÑ ÜÔÉÈ

1 îÁÚ×ÁÎÉÅÍ ÓÔÉÌÑ ÄÌÑ ÐÁËÅÔÁ Babel ÄÌÑ ÒÕÓÓËÏÇÏ

ÑÚÙËÁ ÍÙ ×ÙÂÒÁÌÉ russianb ÐÏ ÁÎÁÌÏÇÉÉ Ó germanb, ÞÔÏ-

ÂÙ ÉÚÂÅÖÁÔØ ×ÏÚÍÏÖÎÙÈ ËÏÌÌÉÚÉÊ Ó ÒÕÓÓËÉÍÉ ÓÔÉÌÑÍÉ

Ë LATEX2.09. ÷ ÎÁÓÔÏÑÝÅÅ ×ÒÅÍÑ russianb ÐÒÅÄÓÔÁ×ÌÑÅÔ

ÓÏÂÏÊ beta-×ÅÒÓÉÀ {{ ÞÁÓÔØ ÄÏÐÏÌÎÅÎÉÑ Ë ËÉÒÉÌÌÉÞÅÓËÏÍÕ

ÄÉÓÔÒÉÂÕÔÉ×Õ CyrTUG-emTEX.

ÑÚÙËÏ× ÍÁËÒÏÓÙ, ËÏÔÏÒÙÅ ÏÐÉÓÙ×ÁÌÉ ÐÒÁ×ÉÌÁ,
ÐÒÉÓÕÝÉÅ É ÒÕÓÓËÏÊ ÐÏÌÉÇÒÁÆÉÉ.

1. ÉÚ germanb

• ÍÁËÒÏÓÙ ÄÌÑ Æ×ÁÎÃÕÚÓËÉÈ É ÎÅÍÅÃËÉÈ
Ä×ÏÊÎÙÈ ËÁ×ÙÞÅË. úÁÍÅÞÁÎÉÅ : ÆÒÁÎ-
ÃÕÚÓËÉÅ Ä×ÏÊÎÙÅ ËÁ×ÙÞËÉ × ËÉÒÉÌÌÉ-
ÞÅÓËÏÍ ÛÒÉÆÔÅ ÐÏÌÕÞÅÎÙ ÐÒÉ ÐÏÍÏÝÉ
METAFONT'Á É ÉÍÅÀÔ Ó×ÏÀ ÌÉÇÁÔÕÒÕ, Á
ÉÍÅÎÎÏ << ;

• �shorthands� ÄÌÑ ÐÅÒÅÎÏÓÏ× ÓÏÓÔÁ×ÎÙÈ
ÓÌÏ× É ÓÌÏ× Ó ÎÅÂÕË×ÅÎÎÙÍÉ ×ËÌÀÞÅ-
ÎÉÑÍÉ (ÒÕÓÓËÉÅ ÓÌÏ×Á ÎÅ ÔÁËÉÅ ÄÌÉÎ-
ÎÙÅ ËÁË ÎÅÍÅÃËÉÅ, ÎÏ ÂÙ×ÁÀÔ ÄÏÓÔÁÔÏÞ-
ÎÏ ÄÌÉÎÎÙÍÉ ÔÏÖÅ). òÁÚÕÍÅÅÔÓÑ, ËÁË É
× germanb ÚÎÁË " ÂÙÌ ÓÄÅÌÁÎ ÁËÔÉ×ÎÙÍ.

• \lefthyphenmin{\righthyphenmin : ×
ÒÕÓÓËÏÍ ÑÚÙËÅ (ËÁË É × ÎÅÍÅÃËÏÍ) × ÁÌ-
ÇÏÒÉÔÍÅ ÐÅÒÅÎÏÓÏ× ÐÒÉÎÑÔÙ ÚÎÁÞÅÎÉÑ 2{
2;

2. ÉÚ francais

• ÍÁËÒÏÓÙ ÄÌÑ ÚÎÁËÏ× ÐÕÎËÔÕÁÃÉÉ :, ;,
?, !, × ËÏÔÏÒÙÈ ÒÁÚÍÅÒ ÐÒÏÂÅÌÁ ÐÅÒÅÄ
ÜÔÉÍÉ ÚÎÁËÁÍÉ ÎÅÍÎÏÇÏ Õ×ÅÌÉÞÉ×ÁÅÔÓÑ:
TEX ÏÐÒÅÄÅÌÑÅÔ, ÅÓÔØ ÌÉ ÐÒÏÂÅÌ ÍÅÖÄÕ
ÓÌÏ×ÏÍ É ÜÔÉÍ ÚÎÁËÏÍ, É ÅÓÌÉ ÅÓÔØ, ÔÏ
TEX �unskips� (ÎÅ ÐÒÏÐÕÓËÁÅÔ) ÅÇÏ É
ÐÏÍÅÝÁÅÔ ÄÏÐÏÌÎÉÔÅÌØÎÙÊ ÍÁÌÅÎØËÉÊ
ÐÒÏÂÅÌ × 0.1em ;

• ×ËÌÀÞÁÅÔÓÑ \frenchspacing ;

• × ÎÁÛÅÍ ÓÔÉÌÅ ÏÐÉÓÙ×ÁÀÔÓÑ ÎÅËÏÔÏÒÙÅ
ÄÏÐÏÌÎÉÔÅÌØÎÙÅ ÚÎÁËÉ (ÒÁ×ÎÏ ËÁË É ×
francais), ÎÁÐÒÉÍÅÒ, ÚÎÁË ÎÏÍÅÒÁ;

íÁËÒÏÓÙ, ÓÏÚÄÁÎÎÙÅ ÓÐÅÃÉÁÌØÎÏ ÄÌÑ

ÒÕÓÓËÏÇÏ ÓÔÉÌÑ É ÎÅ ×ÙÚÙ×ÁÀÝÉÅ ÐÒÏÂÌÅÍ

ÐÒÉ ÉÓÐÏÌØÚÏ×ÁÎÉÉ

ðÒÉ×ÏÄÉÍÙÅ ÎÉÖÅ ÍÁËÒÏÓÙ ÐÏÚÁÉÍÓÔ×Ï×ÁÎÙ
ÉÚ ÒÁÚÌÉÞÎÙÈ ×ÁÒÉÁÎÔÏ× russian.sty (ÄÌÑ
LATEX2.09):

1. íÁËÒÏÓÙ ÄÌÑ ÎÁÚ×ÁÎÉÊ ÍÁÔÅÍÁÔÉÞÅÓËÉÈ
ÆÕÎËÃÉÊ É ÏÐÅÒÁÃÉÊ, ÎÁÚ×ÁÎÉÑ ËÏÔÏÒÙÈ ÏÔ-
ÌÉÞÁÀÔÓÑ ÏÔ ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÉÈ ÁÎÇÌÉÊÓËÉÈ
(ÎÁÐÒÉÍÅÒ, × ÒÕÓÓËÉÈ ÉÚÄÁÎÉÑÈ ×ÍÅÓÔÏ tan

É cotan ÍÙ ÐÉÛÅÍ tg É ctg);

2. ÄÏÐÏÌÎÉÔÅÌØÎÙÅ ÍÁËÒÏÓÙ ÄÌÑ ÐÏÌÕÞÅÎÉÑ ÐÅ-
ÒÅÞÉÓÌÅÎÉÊ ÒÕÓÓËÉÍÉ ÐÒÏÐÉÓÎÙÍÉ É ÓÔÒÏÞ-
ÎÙÍÉ ÂÕË×ÁÍÉ: (\Asbuk É \asbuk ÐÏ ÁÎÁÌÏ-
ÇÉÉ Ó \Alph É \alph).

óÏÚÄÁÎ ÄÏÐÏÌÎÉÔÅÌØÎÙÊ �shorthand� ÄÌÑ
ÒÕÓÓËÏÇÏ ÔÉÒÅ ("---): × ÎÁÛÉÈ ÄÏËÕÍÅÎÔÁÈ ÜÔÏÔ
ÚÎÁË ÎÅÍÎÏÇÏ ËÏÒÏÞÅ É ÉÍÅÅÔ ×ÏËÒÕÇ ÐÒÏÂÅÌÙ

368 TUGboat, Volume 16 (1995), No. 4

ÐÒÉÍÅÒÎÏ ÐÏ 0.2 ÒÁÚÍÅÒÁ ÛÒÉÆÔÁ (Ô. Å. ÄÌÑ ÒÁÚÍÅ-
ÒÁ ÛÒÉÆÔÁ 10pt ÜÔÏ ÐÒÉÂÌÉÚÉÔÅÌØÎÏ 2pt); ÐÒÉ-
ÞÅÍ ÜÔÏ ÔÉÒÅ ÎÉËÏÇÄÁ ÎÅ ÏÔÒÙ×ÁÅÔÓÑ ÏÔ ÓÌÏ×Á,
ÓÔÏÑÝÅÇÏ ÐÅÒÅÄ ÎÉÍ. úÁÍÅÞÁÎÉÅ : ÍÁËÒÏÓ ÄÌÑ ÚÎÁ-
ËÁ ÐÅÒÅÎÏÓÁ ("-) ÂÙÌ, ÅÓÔÅÓÔ×ÅÎÎÏ, ÐÅÒÅÐÉÓÁÎ, ÐÏ-
ÓËÏÌØËÕ ÐÏÑ×ÉÌÓÑ ÎÏ×ÙÊ ÍÁËÒÏÓ ÄÌÑ ÒÕÓÓËÏÇÏ ÔÉ-
ÒÅ. ðÒÉÍÅÒ ÉÓÐÏÌØÚÏ×ÁÎÉÑ ÜÔÉÈ ÍÁËÒÏÓÏ× ÐÒÉ×Å-
ÄÅÎ ÎÁ ÒÉÓ. 1 É 2.

íÁËÒÏÓÙ, ÉÓÐÏÌØÚÏ×ÁÎÉÅ ËÏÔÏÒÙÈ

×ÙÚÙ×ÁÅÔ ×ÏÐÒÏÓÙ ÉÌÉ ÚÁÔÒÕÄÎÅÎÉÑ

÷ ÜÔÏÍ ÒÁÚÄÅÌÅ ÒÅÞØ ÐÏÊÄÅÔ Ï ÍÁËÒÏÓÁÈ, ÐÏÚ×Ï-
ÌÑÀÝÉÈ ÒÁÚÒÙ×ÁÔØ ÆÏÒÍÕÌÙ × ÔÅËÓÔÅ. óÏÇÌÁÓÎÏ
ÒÕÓÓËÉÍ ÐÏÌÉÇÒÁÆÉÞÅÓËÉÍ ÔÒÁÄÉÃÉÑÍ ÚÎÁË, ÎÁ
ËÏÔÏÒÏÍ ÒÁÚÒÙ×ÁÅÔÓÑ ÆÏÒÍÕÌÁ, ÄÏÌÖÅÎ ÂÙÔØ ÐÏ-
×ÔÏÒÅÎ ÎÁ ÓÌÅÄÕÀÝÅÊ ÓÔÒÏËÅ.

÷ ÐÁËÅÔÅ, ÎÁÐÉÓÁÎÎÏÍ ÄÌÑ ÜÔÏÊ ÃÅÌÉ
í. é. çÒÉÎÞÕËÏÍ, ÓÏÄÅÒÖÁÔÓÑ ÍÁËÒÏÓÙ, ÐÏÚ×Ï-
ÌÑÀÝÉÅ ÐÏ×ÔÏÒÑÔØ ÚÎÁËÉ ÐÒÉ ÒÁÚÒÙ×Å ÆÏÒÍÕÌ.

ðÒÅÄÌÁÇÁÅÔÓÑ Ä×Á ×ÏÚÍÏÖÎÙÈ ÓÐÏÓÏÂÁ:

1. ÒÁÚÒÙ× ×ÒÕÞÎÕÀ {{ × ÜÔÏÍ ÓÌÕÞÁÅ ÚÎÁÞÅÎÉÑ
\binoppenalty= \relpenalty= 10000; ÄÌÑ
ÒÁÚÒÙ×Á ÆÏÒÍÕÌÙ ÎÕÖÎÏ ÉÓÐÏÌØÚÏ×ÁÔØ ËÏ-
ÍÁÎÄÙ \brokenbin{ } É \brokenrel{ } ;

2. Á×ÔÏÍÁÔÉÞÅÓËÉÊ ÒÁÚÒÙ× {{ × ÜÔÏÍ ÓÌÕÞÁÅ
\relpenalty > \binoppenalty > 10000; ÎÅ-
ËÏÔÏÒÙÅ ÚÎÁËÉ ÒÁ×ÎÙ \mathcode=8000 É ÐÏÄ-
ÒÁÚÄÅÌÑÀÔÓÑ ÎÁ Ä×Å ÇÒÕÐÐÙ: ÂÉÎÁÒÎÙÅ ÏÐÅ-
ÒÁÃÉÉ É ÏÔÎÏÛÅÎÉÑ + - < > = ÄÏÐÕÓËÁÀÔ ÐÏ-
ÓÌÅ ÓÅÂÑ ÒÁÚÒÙ×, Á ÚÎÁËÉ * ([/ . , ÒÁÚ-
ÒÙ× ÎÅ ÄÏÐÕÓËÁÀÔ; ËÒÏÍÅ ÔÏÇÏ ÐÏÞÔÉ ×ÓÅ
ÍÁÔÅÍÁÔÉÞÅÓËÉÅ ÚÎÁËÉ ÐÅÒÅÐÉÓÁÎÙ Ó ÉÓÐÏÌØ-
ÚÏ×ÁÎÉÅÍ ÎÏ×ÙÈ ËÏÍÁÎÄ \brkbin É \brkrel,
ÞÔÏÂÙ ÄÏÐÕÓÔÉÔØ ÉÌÉ ÐÒÅÄÏÔ×ÒÁÔÉÔØ ÒÁÚÒÙ×,
ÎÁÐÒÉÍÅÒ:

\def\wedge {\brkbin{\mathchar"225E}}

\def\gg {\brkrel{\mathchar"321D}}

\def\exists {\mathchar"0239\unbrk}

\def\bigl#1 {\mathopen{\big#1}\unbrk}

\def\bigm#1 {\mathrel {\big#1}\unbrk}

\def\langle {\delimiter"426830A \unbrk}

× ÞÁÓÔÎÏÓÔÉ, ÄÏÌÖÎÁ ÂÙÔØ ÐÅÒÅÏÐÒÅÄÅÌÅÎÁ
ËÏÍÁÎÄÁ \not :

\def\not#1 {\brkrel{\mathchar"3236 #1}}

É Ô. Ä. ÷ ÜÔÏÍ ÓÌÕÞÁÅ TEX ÒÁÚÒÙ×ÁÅÔ ÆÏÒ-
ÍÕÌÙ ÓÁÍÏÓÔÏÑÔÅÌØÎÏ, ÎÏ ÉÎÏÇÄÁ ÐÒÉÈÏÄÉÔÓÑ
ÄÅÌÁÔØ ÒÁÚÒÙ× ×ÒÕÞÎÕÀ ÐÒÉ ÐÏÍÏÝÉ ÓÐÅÃÉ-
ÁÌØÎÙÈ ËÏÍÁÎÄ \unbrk ÉÌÉ \allowbrk.

÷ ÄÁÎÎÏÍ ÐÁËÅÔÅ ÉÍÅÀÔÓÑ ÎÅÂÏÌØÛÉÅ ÏÇÒÅ-
ÈÉ, ÎÏ ÄÏ×ÏÌØÎÏ ÜËÚÏÔÉÞÅÓËÉÅ:

• ÓÌÅÄÕÅÔ ÐÉÓÁÔØ $x \brkbin{{+}^1} y$

×ÍÅÓÔÏ $x +^1 y$;

• ÏÐÅÒÁÔÏÒÙ \sin ÎÕÖÎÏ ÐÅÒÅÐÉÓÁÔØ Ó ÁÒ-
ÇÕÍÅÎÔÁÍÉ × ÆÉÇÕÒÎÙÈ ÓËÏÂËÁÈ;

• × ÆÏÒÍÕÌÁÈ ÔÉÐÁ x + . . . + y ÎÕÖÎÏ
ÐÉÓÁÔØ $x \unbrk + \ldots + y$, ÞÔÏ-
ÂÙ ÉÚÂÅÖÁÔØ ÐÅÒ×ÏÇÏ ÒÁÚÒÙ×Á (ÉÌÉ ÚÎÁ-
ËÉ ÒÁÚÒÙ×Á ÎÕÖÎÏ ÐÅÒÅÏÐÒÅÄÅÌÑÔØ

”
ÚÁ-

ÇÌÑÄÙ×ÁÀÝÉÍÉ ×ÐÅÒÅÄ“);

• × ÓÌÕÞÁÅ, ËÏÇÄÁ ÐÅÒÅÏÐÒÅÄÅÌÅÎÙ ÚÎÁËÉ ^

É _, ÍÙ ÎÅ ÍÏÖÅÍ ÉÓÐÏÌØÚÏ×ÁÔØ ÍÁËÒÏ-
ÓÙ AMS-TEX'Á ÔÉÐÁ \Sb..\endSb (Ô. Å.
^\bgroup..\egroup), ÉÎÁÞÅ ÇÏ×ÏÒÑ, ÎÅ-
×ÏÚÍÏÖÎÏ ÉÓÐÏÌØÚÏ×ÁÔØ ÞÔÏ-ÌÉÂÏ ×ÒÏÄÅ
^\leq É ^*.

éÚ ÓËÁÚÁÎÎÏÇÏ ÑÓÎÏ, ÞÔÏ ÍÙ ÄÏÌÖÎÙ ÐÅÒÅ-
ÐÉÓÁÔØ ×ÓÅ ÏÐÒÅÄÅÌÅÎÉÑ ÄÌÑ ÂÉÎÁÒÎÙÈ ÏÐÅÒÁÃÉÊ,
ÏÔÎÏÛÅÎÉÊ É ÄÌÑ ÎÅËÏÔÏÒÙÈ ÚÎÁËÏ×, ËÏÔÏÒÙÅ ÎÅ
ÄÏÐÕÓËÁÀÔ ÒÁÚÒÙ×Á ÐÏÓÌÅ ÓÅÂÑ. éÎÁÞÅ ÇÏ×ÏÒÑ, ÍÙ
ÄÏÌÖÎÙ ÐÅÒÅÐÉÓÁÔØ TEX-ÆÏÒÍÁÔÙ.

÷ ÎÁÓÔÏÑÝÅÅ ×ÒÅÍÑ ÜÔÏÔ ÐÁËÅÔ ÓÕÝÅÓÔ×Õ-
ÅÔ ËÁË ÄÏÐÏÌÎÉÔÅÌØÎÙÊ2 É ÍÏÖÅÔ ÐÏÄËÌÀÞÁÔØÓÑ
(ÉÌÉ ÎÅ ÐÏÄËÌÀÞÁÔØÓÑ) ÐÏÌØÚÏ×ÁÔÅÌÅÍ. ðÒÉÍÅÒ
ÉÓÐÏÌØÚÏ×ÁÎÉÑ ÜÔÏÇÏ ÐÁËÅÔÁ ÐÒÉ×ÅÄÅÎ ÎÁ ÒÉÓ. 3.

ðÒÏÂÌÅÍÙ ÓÈÅÍ ËÏÄÉÒÏ×ËÉ É ÛÒÉÆÔÏ×

æÁÊÌ russianb ÂÙÌ ÓÏÚÄÁÎ ÄÌÑ �ÎÅÌÁÔÉÎÓËÏ-
ÇÏ ÐÏÌØÚÏ×ÁÔÅÌÑ�, ÐÒÉÍÅÎÑÀÝÅÇÏ ËÉÒÉÌÌÉÞÅÓËÉÊ
ÁÌÆÁ×ÉÔ. ïÄÎÁ ÉÚ ÏÓÎÏ×ÎÙÈ ÐÒÏÂÌÅÍ ÚÄÅÓØ {{ ÓÕ-
ÝÅÓÔ×Ï×ÁÎÉÅ ÍÎÏÖÅÓÔ×Á ÒÁÚÌÉÞÎÙÈ ËÏÄÉÒÏ×ÏË, ×
ËÏÔÏÒÙÈ ÂÕË×Ù ËÉÒÉÌÌÉÃÙ ÉÍÅÀÔ ÒÁÚÎÙÅ ËÏÄÙ.

÷ Ó×ÑÚÉ Ó ÜÔÉÍ ÎÁÛ ÆÁÊÌ ÉÍÅÅÔ, ÐÏ ÓÒÁ×-
ÎÅÎÉÀ Ó ÁÎÁÌÏÇÉÞÎÙÍÉ ÓÔÉÌÅ×ÙÍÉ ÆÁÊÌÁÍÉ ÄÌÑ
ÐÁËÅÔÁ Babel, ÎÅËÏÔÏÒÙÅ ÓÐÅÃÉÆÉÞÅÓËÉÅ ÏÓÏÂÅÎ-
ÎÏÓÔÉ.

þÔÏÂÙ ÓÄÅÌÁÔØ ÜÔÏÔ ÓÔÉÌØ ÎÅÚÁ×ÉÓÉÍÙÍ ÏÔ
ËÏÄÉÒÏ×ËÉ, ÍÙ ÄÏÌÖÎÙ ÂÙÌÉ ÉÓÐÏÌØÚÏ×ÁÔØ ×ÍÅ-
ÓÔÏ ÂÕË× ËÉÒÉÌÌÉÞÅÓËÏÇÏ ÁÌÆÁ×ÉÔÁ ÉÈ ÍÁËÒÏ-
ÉÍÅÎÁ. òÕÓÓËÉÅ ÂÕË×Ù É ÚÎÁËÉ ÉÓÐÏÌØÚÕÀÔÓÑ ×
ÜÔÏÍ ÓÔÉÌÅ × ÍÁËÒÏÓÁÈ ÄÌÑ ÄÁÔÙ (\daterussian)
É × ÔÅËÓÔÏ×ÙÈ ×ÈÏÖÄÅÎÉÑÈ ÞÅÔÙÒÅÈ ÓÔÁÎÄÁÒÔÎÙÈ
ÓÔÉÌÅÊ LATEX'Á (\captionsrussian), Á ÔÁËÖÅ × ËÏ-
ÍÁÎÄÁÈ ÄÌÑ ÐÅÒÅÞÉÓÌÅÎÉÊ ÐÒÉ ÐÏÍÏÝÉ ÒÕÓÓËÉÈ
ÐÒÏÐÉÓÎÙÈ É ÓÔÒÏÞÎÙÈ ÂÕË× (\Asbuk É \asbuk).

íÁËÒÏÉÍÅÎÁ ÄÌÑ ÂÕË× ÒÕÓÓËÏÇÏ ÁÌÆÁ×ÉÔÁ É
ÎÅËÏÔÏÒÙÈ ÚÎÁËÏ× ××ÏÄÑÔÓÑ ÐÒÉ ÐÏÍÏÝÉ ÆÁÊÌÁ-
ÓÐÕÔÎÉËÁ (Ô. Å. cyrcod.sty), ËÏÔÏÒÙÊ ÓÏÚÄÁÅÔÓÑ ×
ÓÏÏÔ×ÅÔÓÔ×ÉÉ Ó ÔÏÊ ÉÌÉ ÉÎÏÊ ÓÈÅÍÏÊ ËÏÄÉÒÏ×ËÉ.
üÔÏÔ ÆÁÊÌ ÐÅÒÅËÌÀÞÁÅÔ ÔÁËÖÅ ÓÅÍÅÊÓÔ×Ï ËÉÒÉÌ-
ÌÉÞÅÓËÉÈ ÛÒÉÆÔÏ× 3.

éÓÐÏÌØÚÕÅÍÙÅ × òÏÓÓÉÉ ÓÈÅÍÙ ËÏÄÉÒÏ×ËÉ
ÏÂÙÞÎÏ ÐÒÅÄÓÔÁ×ÌÑÀÔ ÓÏÂÏÊ ÔÁÂÌÉÃÙ, × ×ÅÒÈÎÅÊ

2 üÔÏ beta-×ÅÒÓÉÑ ÐÁËÅÔÁ.
3 ÷ ÎÁÓÔÏÑÝÅÅ ×ÒÅÍÑ ÔÁËÏÅ ÐÅÒÅËÌÀÞÅÎÉÅ ÓÄÅÌÁÎÏ

ÔÏÌØËÏ ÄÌÑ LATEX2ε.

TUGboat, Volume 16 (1995), No. 4 369

ÞÁÓÔÉ ËÏÔÏÒÙÈ ÎÁÈÏÄÑÔÓÑ ÂÕË×Ù ËÉÒÉÌÌÉÞÅÓËÏÇÏ
ÁÌÆÁ×ÉÔÁ × ÔÏÊ ÉÌÉ ÉÎÏÊ ËÏÄÉÒÏ×ËÅ, Á × ÎÉÖÎÅÊ
ÅÅ ÞÁÓÔÉ {{ ÌÁÔÉÎÓËÉÅ ÂÕË×Ù × ÏÂÝÅÐÒÉÎÑÔÏÊ ËÏ-
ÄÉÒÏ×ËÅ. äÌÑ ÔÏÇÏ ÞÔÏÂÙ ÍÏÖÎÏ ÂÙÌÏ ÕÓÐÅÛÎÏ
ÐÏÌØÚÏ×ÁÔØÓÑ ÐÅÒÅÎÏÓÁÍÉ, ËÉÒÉÌÌÉÞÅÓËÉÅ ÂÕË×Ù
ÂÙÌÉ ÚÁÄÁÎÙ ËÁË \catcode\letter (× russianb

ÏÎÉ ÏÐÑÔØ ×ÏÓÓÔÁÎÁ×ÌÉ×ÁÀÔ Ó×ÏÅ ÚÎÁÞÅÎÉÅ, × ÓÌÕ-
ÞÁÅ ÅÓÌÉ ÉÈ ËÁÔÅÇÏÒÉÑ ÂÙÌÁ ÐÅÒÅÏÐÒÅÄÅÌÅÎÁ). éÓ-
ÐÏÌØÚÏ×ÁÎÉÅ × ÍÁËÒÏËÏÍÁÎÄÁÈ ÒÕÓÓËÉÈ ÂÕË× ÔÁË-
ÖÅ ÄÁ×ÎÏ ÓÔÁÌÏ ÔÒÁÄÉÃÉÅÊ (ÒÕÓÓËÉÅ ÂÕË×Ù ×ÅÄØ
ÔÏÖÅ ÂÕË×Ù, ÎÅ ÔÁË ÌÉ?). âÏÌÅÅ ÔÏÇÏ, ÓÕÝÅÓÔ×Õ-
ÀÔ ÐÁËÅÔÙ, ÉÓÐÏÌØÚÕÀÝÉÅ × ÎÅËÏÔÏÒÙÈ ÓÐÅÃÉ-
ÁÌØÎÙÈ ÓÌÕÞÁÑÈ �ÒÕÓÓËÉÅ� ËÏÍÁÎÄÙ4.

ôÅÐÅÒØ ÓÌÅÄÕÅÔ ÓËÁÚÁÔØ, ÞÔÏ \mathcode ÄÌÑ
ËÉÒÉÌÌÉÞÅÓËÉÈ ÂÕË× ÒÁ×ÅÎ 70??, Ô. Å. ÍÙ ÕÓÔÁ-
ÎÁ×ÌÉ×ÁÅÍ ËÌÁÓÓ 7 {{ ÐÅÒÅÍÅÎÎÕÀ ÓÅÍÅÊÓÔ×Á É ÉÓ-
ÐÏÌØÚÕÅÍ ÛÒÉÆÔ ÉÚ \fam0 (\rm), ÞÔÏÂÙ ÓÏÂÌÀÓÔÉ
ÒÕÓÓËÉÅ ÐÏÌÉÇÒÁÆÉÞÅÓËÉÅ ÔÒÁÄÉÃÉÉ.

þÔÏ ÓÌÅÄÕÅÔ ÓÄÅÌÁÔØ

ðÒÅÄÌÁÇÁÅÍÙÊ ÓÔÉÌØ ÐÒÅÄÎÁÚÎÁÞÅÎ ÄÌÑ ÒÁÂÏÔÙ
Ó ÒÕÓÓËÉÍÉ 8-ÂÉÔÏ×ÙÍÉ ÄÏËÕÍÅÎÔÁÍÉ, × ËÏÔÏÒÙÈ
ÂÙ×ÁÀÔ ÏÔÄÅÌØÎÙÅ ÆÒÁÇÍÅÎÔÙ ÎÁ ÌÁÔÉÎÉÃÅ, É
ÄÌÑ ÎÁÂÏÒÁ ÄÏËÕÍÅÎÔÏ× Ó ÉÓÐÏÌØÚÏ×ÁÎÉÅÍ ÔÒÁÎÓ-
ÌÉÔÅÒÁÃÉÉ.

ðÒÉ ÎÁÂÏÒÅ 8-ÂÉÔÏ×ÙÈ ÄÏËÕÍÅÎÔÏ× ÆÁÊÌ-
ÓÐÕÔÎÉË russianb (× ÔÅËÕÝÅÊ ×ÅÒÓÉÉ ÍÙ ××Ï-
ÄÉÍ cyrcod) ÐÒÏÓÔÏ ÄÅËÌÁÒÉÒÕÅÔ ÎÏ×ÏÅ ÓÅÍÅÊÓÔ×Ï
ÛÒÉÆÔÏ× É ÓÈÅÍÕ ËÏÄÉÒÏ×ËÉ × ÎÁÞÁÌÅ ÄÏËÕÍÅÎÔÁ5

É ÚÁÔÅÍ ×ÔÑÇÉ×ÁÅÔ ÔÏÌØËÏ ÒÕÓÓËÕÀ/ÌÁÔÉÎÓËÕÀ
ÓÉÓÔÅÍÙ ÐÅÒÅÎÏÓÏ× ÐÌÀÓ ÍÁËÒÏÓÙ ÄÌÑ ËÁÖÄÏÇÏ
ÉÚ ÑÚÙËÏ× {{ ÔÁËÏÊ ÓÐÏÓÏÂ ÔÒÅÂÕÅÔ ÍÅÎØÛÅ ÐÁÍÑ-
ÔÉ (ÓÍ. ÒÉÓ. 1).

äÌÑ ÒÕÓÓËÏ-ÌÁÔÉÎÓËÉÈ ÒÁÂÏÔ, ÎÁÂÒÁÎÎÙÈ ÐÒÉ
ÐÏÍÏÝÉ ÔÒÁÎÓÌÉÔÅÒÁÃÉÉ (ËÏÇÄÁ ÄÌÑ ÏÂÏÚÎÁÞÅ-
ÎÉÑ ÒÕÓÓËÉÈ ÂÕË× ÉÓÐÏÌØÚÕÀÔÓÑ ÌÁÔÉÎÓËÉÅ), ÍÙ
ÄÏÌÖÎÙ ÄÅËÌÁÒÉÒÏ×ÁÔØ, ÞÔÏ ÉÎÏÇÄÁ ÌÁÔÉÎÓËÉÅ
ÂÕË×Ù ÐÒÅÄÓÔÁ×ÌÑÀÔ ÒÕÓÓËÉÅ, ÔÁË ÞÔÏ ÚÄÅÓØ ÐÏ-
ÍÉÍÏ ÐÅÒÅËÌÀÞÅÎÉÑ ÔÁÂÌÉÃ ÐÅÒÅÎÏÓÏ× É ÍÁËÒÏ-
ÓÏ×, ÎÅÏÂÈÏÄÉÍÏ ÐÏÓÔÏÑÎÎÏ ÐÅÒÅËÌÀÞÁÔØ (× ÐÅÒ-
×ÕÀ ÏÞÅÒÅÄØ) É ÓÈÅÍÙ ËÏÄÉÒÏ×ÏË (ÓÍ. ÒÉÓ. 2).

ïÓÎÏ×ÎÁÑ ÐÒÏÂÌÅÍÁ ÉÓÐÏÌØÚÏ×ÁÎÉÑ ÆÁÊÌÁ
russianb ÓÏÓÔÏÉÔ × ÔÏÍ, ÞÔÏ ÐÒÉÈÏÄÉÔÓÑ ÉÓÐÏÌØ-
ÚÏ×ÁÔØ ÍÁËÒÏÉÍÅÎÁ ÄÌÑ ÒÕÓÓËÉÈ ÂÕË×. ÷ ÎÁÓÔÏÑ-
ÝÅÅ ×ÒÅÍÑ ÜÔÉ ÂÕË×Ù ÏÐÉÓÁÎÙ ËÁË \def\CYRa{a}.
÷ ÜÔÏÍ ÓÌÕÞÁÅ ËÏÍÁÎÄÙ \uppercase É \lowercase
ÒÁÂÏÔÁÀÔ ÎÅËÏÒÒÅËÔÎÏ É ÎÅÏÂÈÏÄÉÍÙ ÄÏÐÏÌÎÉ-
ÔÅÌØÎÙÅ ÏÐÒÅÄÅÌÅÎÉÑ ÄÌÑ ÜÔÉÈ ËÏÍÁÎÄ.

4 ÷ ÒÕÓÓËÉÈ ÄÏËÕÍÅÎÔÁÈ Ó ÉÓÐÏÌØÚÏ×ÁÎÉÅÍ ÔÒÁÎÓÌÉ-

ÔÅÒÁÃÉÉ, ÍÎÏÇÉÅ ÂÕË×Ù ÎÁÈÏÄÑÔÓÑ ÎÁ
”
ÁËÔÉ×ÎÙÈ“ ËÏ-

ÄÁÈ TEX'Á, ÐÏÜÔÏÍÕ ÚÎÁÞÅÎÉÅ \catcode\letter ÚÁÄÁÅÔÓÑ ×

ÇÒÕÐÐÅ ÔÏÌØËÏ ÐÒÉ ÚÁÇÒÕÚËÅ ÔÁÂÌÉÃÙ ÐÅÒÅÎÏÓÏ×.
5 ôÁËÏÊ ÆÁÊÌ ÓÅÊÞÁÓ ÉÍÅÅÔÓÑ ÔÏÌØËÏ ÄÌÑ LATEX2ε.

÷ÙÛÅ ÏÐÉÓÁÎÙ ÎÅËÏÔÏÒÙÅ ÒÅÛÅÎÉÑ ÐÒÏÂÌÅ-
ÍÙ ÐÅÒÅÎÏÓÉÍÏÓÔÉ ÆÁÊÌÁ russianb ÎÁ ÒÁÚÎÙÅ
ÐÌÁÔÆÏÒÍÙ. îÏ ÐÏÓËÏÌØËÕ Õ ÎÁÓ ÎÅ ÂÙÌÏ ÐÒÁË-
ÔÉËÉ ÒÁÂÏÔÙ Ó ÄÒÕÇÉÍÉ ÐÌÁÔÆÏÒÍÁÍÉ, ÎÁÍ ÍÁÌÏ
ÞÔÏ ÉÚ×ÅÓÔÎÏ Ï ×ÏÚÍÏÖÎÙÈ ÐÏÄ×ÏÄÎÙÈ ËÁÍÎÑÈ ÎÁ
ÜÔÏÍ ÐÕÔÉ.

äÁÎÎÁÑ ÒÁÂÏÔÁ ÐÒÅÄÓÔÁ×ÌÑÅÔ ÓÏÂÏÊ ÌÉÛØ
ÐÅÒ×ÕÀ ÐÏÐÙÔËÕ ÓÏÚÄÁÎÉÑ ÓÔÉÌÅ×ÏÇÏ ÆÁÊÌÁ ÄÌÑ
ÒÕÓÓËÏÇÏ ÑÚÙËÁ ÄÌÑ ÐÁËÅÔÁ Babel É ÍÙ ÎÁÄÅÅÍÓÑ
×ÙÚ×ÁÔØ ÄÉÓËÕÓÓÉÀ É ÄÁÌØÎÅÊÛÉÅ ÒÁÂÏÔÙ × ÜÔÏÍ
ÎÁÐÒÁ×ÌÅÎÉÉ ÎÁÛÉÈ ËÏÌÌÅÇ. íÙ ÔÁËÖÅ ÎÁÄÅÅÍÓÑ,
ÞÔÏ ÐÁËÅÔ
 [3] ÐÏÍÏÖÅÔ ÒÅÛÉÔØ ÏÐÉÓÁÎÎÙÅ ÚÄÅÓØ
ÐÒÏÂÌÅÍÙ, ÏÓÏÂÅÎÎÏ Ó×ÑÚÁÎÎÙÅ ÓÏ ÓÈÅÍÁÍÉ ËÏÄÉ-
ÒÏ×ËÉ É Ó ÐÅÒÅÎÏÓÉÍÏÓÔØÀ ÎÁ ÒÁÚÎÙÅ ÐÌÁÔÆÏÒÍÙ.

âÌÁÇÏÄÁÒÎÏÓÔÉ

÷ ÚÁËÌÀÞÅÎÉÅ ÍÙ ÈÏÔÉÍ ÚÁÍÅÔÉÔØ, ÞÔÏ ÓÕÝÅ-
ÓÔ×ÅÎÎÙÊ ×ËÌÁÄ × ÓÏÚÄÁÎÉÅ ÆÁÊÌÁ russianb ×ÎÅ-
ÓÌÉ ÍÎÏÇÉÅ ÎÁÛÉ ËÏÌÌÅÇÉ: íÉÈÁÉÌ çÒÉÎÞÕË, å×-
ÇÅÎÉÊ é×ÁÎÏ×, óÅÒÇÅÊ ìØ×Ï×ÓËÉÊ, áÎÄÒÅÊ óÌÅÐÕ-
ÈÉÎ, àÒÉÊ ôÀÍÅÎÃÅ× É ÄÒÕÇÉÅ. ÷ÓÅÍ ÉÍ ÍÙ ÞÒÅÚ-
×ÙÞÁÊÎÏ ÂÌÁÇÏÄÁÒÎÙ.

óÐÉÓÏË ÌÉÔÅÒÁÔÕÒÙ

[1] J. Braams: Babel, a multilingual style-option
system for use with LATEX's standard document
styles. TUGBoat, Vol. 12(1991), No. 2, 291{302.

[2] M. Goossens, F. Mittelbach, and A. Samarin:
The LATEX Companion, Addison-Wesley,
Reading, MA, 1994.

[3] Y. Haralambous, J. Plaice: First application
of
: Greek, Arabic, Khmer, Poetica, ISO
10646/Unicode, etc. TUGBoat, Vol. 15(1994),
No. 3, 344{352.

[4] A. Khodulev and I. Makhovaya: On TEX
experience in Mir Publishers, Proceedings of the
7th EuroTEX Conference, Prague, pp. 37{43,
1992.

[5] O. Lapko: MAKEFONT as part of CyrTUG-
emTEX package, Proceedings of the eight
European TEX Conference, Gdańsk, pp. 110{
114, 1994.

[6] ð. çÉÌÅÎÓÏÎ: óÐÒÁ×ÏÞÎÉË ÔÅÈÎÉÞÅÓËÏÇÏ ÒÅ-
ÄÁËÔÏÒÁ, íÏÓË×Á, ëÎÉÇÁ, 1979.

⋄ ìÁÐËÏ ï. ç.,

íÁÈÏ×ÁÑ é. á.

òÏÓÓÉÑ, 129820, íÏÓË×Á

1-Ê òÉÖÓËÉÊ ÐÅÒ., Ä. 2

éÚÄÁÔÅÌØÓÔ×Ï �íÉÒ�

Email: olga@mir.msk.su

irina@mir.msk.su

370 TUGboat, Volume 16 (1995), No. 4

äÁÎÎÁÑ ÒÁÓÐÅÞÁÔËÁ ÄÅÍÏÎÓÔÒÉÒÕÅÔ ÎÅËÏÔÏÒÙÅ ÐÒÉÍÅÒÙ ÎÁÂÏÒÁ ÎÁ ÒÕÓÓËÏÍ ÑÚÙËÅ Ó ÉÓÐÏÌØÚÏ×ÁÎÉÅÍ
8-ÂÉÔÎÏÊ ËÏÄÉÒÏ×ËÉ, × ÞÁÓÔÎÏÓÔÉ, ÎÁÂÏÒÁ ËÁ×ÙÞÅË, ÚÎÁËÁ ÔÉÒÅ É ÍÁÔÅÍÁÔÉÞÅÓËÉÈ ÆÏÒÍÕÌ. ÷ ÒÕÓÓËÉÈ
ÉÚÄÁÎÉÑÈ ÉÓÐÏÌØÚÕÀÔÓÑ:

1. ËÁ×ÙÞËÉ
”
ÌÁÐËÉ“, ÁÎÁÌÏÇÉÞÎÏ ÎÅÍÅÃËÉÍ ËÁ×ÙÞËÁÍ;

2. ËÁ×ÙÞËÉ �£ÌÏÞËÉ�, ËÏÔÏÒÙÅ ÍÏÖÎÏ ÎÁÂÒÁÔØ Ä×ÕÍÑ ÓÐÏÓÏÂÁÍÉ;

(Á) Ó ÐÏÍÏÝØÀ ÌÉÇÁÔÕÒ, ËÏÔÏÒÙÅ ÚÁÌÏÖÅÎÙ ÐÒÉ ÓÏÚÄÁÎÉÉ ÛÒÉÆÔÁ, Ô. Å. Ä×ÕÈ ÚÎÁËÏ×
”
ÂÏÌØÛÅ“

ÉÌÉ
”
ÍÅÎØÛÅ“ : <<, >> {{ ×ÏÔ ËÁË ÜÔÏ ×ÙÇÌÑÄÉÔ: �£ÌÏÞËÉ�;

(Â) Ó ÉÓÐÏÌØÚÏ×ÁÎÉÅÍ ÁËÔÉ×ÎÏÊ ËÁ×ÙÞËÉ: "< É "> ;

3. ÚÎÁË ÔÉÒÅ × ÒÕÓÓËÏÊ ÐÏÌÉÇÒÁÆÉÉ ÎÅÓËÏÌØËÏ ËÏÒÏÞÅ É ×ÓÅÇÄÁ ÏÔÂÉ×ÁÅÔÓÑ ÎÅÂÏÌØÛÉÍÉ ÐÒÏÂÅÌÁÍÉ
ÏËÏÌÏ 0,2 ËÅÇÌÑ, ÓÍ. Ð. 4;

4. ÏÐÒÅÄÅÌÅÎ ÚÎÁË ÎÏÍÅÒÁ {{�, ËÏÔÏÒÙÊ ÎÁÂÉÒÁÅÔÓÑ ËÁË \No.

á ÅÝÅ ÍÏÖÎÏ ÐÏËÁÚÁÔØ ÓÌÅÄÕÀÝÉÅ ÆÏÒÍÕÌÙ Ó ÉÚÍÅÎÅÎÎÙÍÉ ÍÁÔÅÍÁÔÉÞÅÓËÉÍÉ ÏÐÅÒÁÔÏÒÁÍÉ:

tgα =
sinα

cosα
, ÉÌÉ ctgα =

cosα

sinα
(1)

ÓÌÅÄÕÀÝÉÅ ÆÏÒÍÕÌÙ ×ÙÄÅÌÅÎÙ ÐÏÌÕÖÉÒÎÙÍ ÛÒÉÆÔÏÍ:

tgα =
sinα

cosα
, ÉÌÉ ctgα =

cosα

sinα
(2)

üÔÏ ÍÁÌÅÎØËÉÊ ÐÒÉÍÅÒ ÒÕÂÌÅÎÏÇÏ ÔÅËÓÔÁ.

\def\theenumii{\asbuk{enumii}}

äÁÎÎÁÑ ÒÁÓÐÅÞÁÔËÁ ÄÅÍÏÎÓÔÒÉÒÕÅÔ ÎÅËÏÔÏÒÙÅ ÐÒÉÍÅÒÙ ÎÁÂÏÒÁ ÎÁ ÒÕÓÓËÏÍ ÑÚÙËÅ Ó

ÉÓÐÏÌØÚÏ×ÁÎÉÅÍ 8-ÂÉÔÎÏÊ ËÏÄÉÒÏ×ËÉ, × ÞÁÓÔÎÏÓÔÉ, ÎÁÂÏÒÁ ËÁ×ÙÞÅË, ÚÎÁËÁ ÔÉÒÅ É

ÍÁÔÅÍÁÔÉÞÅÓËÉÈ ÆÏÒÍÕÌ. ÷ ÒÕÓÓËÉÈ ÉÚÄÁÎÉÑÈ ÉÓÐÏÌØÚÕÀÔÓÑ :

\begin{enumerate}

\item ËÁ×ÙÞËÉ "`ÌÁÐËÉ"', ÁÎÁÌÏÇÉÞÎÏ ÎÅÍÅÃËÉÍ ËÁ×ÙÞËÁÍ ;

\item ËÁ×ÙÞËÉ "<£ÌÏÞËÉ">, ËÏÔÏÒÙÅ ÍÏÖÎÏ ÎÁÂÒÁÔØ Ä×ÕÍÑ ÓÐÏÓÏÂÁÍÉ ;

\begin{enumerate}

\item Ó ÐÏÍÏÝØÀ ÌÉÇÁÔÕÒ, ËÏÔÏÒÙÅ ÚÁÌÏÖÅÎÙ ÐÒÉ ÓÏÚÄÁÎÉÉ ÛÒÉÆÔÁ, Ô.~Å. Ä×ÕÈ ÚÎÁËÏ×

"`ÂÏÌØÛÅ"' ÉÌÉ "`ÍÅÎØÛÅ"' : \verb|<<|, \verb|>>| "--- ×ÏÔ ËÁË ÜÔÏ ×ÙÇÌÑÄÉÔ : <<£ÌÏÞËÉ>> ;

\item Ó ÉÓÐÏÌØÚÏ×ÁÎÉÅÍ ÁËÔÉ×ÎÏÊ ËÁ×ÙÞËÉ : \verb|"<| É \verb|">| ;

\end{enumerate}

\item ÚÎÁË ÔÉÒÅ × ÒÕÓÓËÏÊ ÐÏÌÉÇÒÁÆÉÉ ÎÅÓËÏÌØËÏ ËÏÒÏÞÅ É ×ÓÅÇÄÁ ÏÔÂÉ×ÁÅÔÓÑ ÎÅÂÏÌØÛÉÍÉ

ÐÒÏÂÅÌÁÍÉ ÏËÏÌÏ 0,2 ËÅÇÌÑ, ÓÍ. Ð. 4 ;

\item ÏÐÒÅÄÅÌÅÎ ÚÎÁË ÎÏÍÅÒÁ"---\No, ËÏÔÏÒÙÊ ÎÁÂÉÒÁÅÔÓÑ ËÁË \verb|\No|.

\end{enumerate}

á ÅÝÅ ÍÏÖÎÏ ÐÏËÁÚÁÔØ ÓÌÅÄÕÀÝÉÅ ÆÏÒÍÕÌÙ Ó ÉÚÍÅÎÅÎÎÙÍÉ ÍÁÔÅÍÁÔÉÞÅÓËÉÍÉ ÏÐÅÒÁÔÏÒÁÍÉ :

\begin{equation}

\tg\alpha=\frac{\sin\alpha}{\cos\alpha},\quad ÉÌÉ

\quad\ctg\alpha=\frac{\cos\alpha}{\sin\alpha}

\end{equation}

ÓÌÅÄÕÀÝÉÅ ÆÏÒÍÕÌÙ ×ÙÄÅÌÅÎÙ ÐÏÌÕÖÉÒÎÙÍ ÛÒÉÆÔÏÍ :{}

{\boldmath\begin{equation}

\tg\alpha=\frac{\sin\alpha}{\cos\alpha},\quad ÉÌÉ

\quad\ctg\alpha=\frac{\cos\alpha}{\sin\alpha}

\end{equation}}

\textsf{üÔÏ ÍÁÌÅÎØËÉÊ ÐÒÉÍÅÒ ÒÕÂÌÅÎÏÇÏ ÔÅËÓÔÁ.}

Figure 1: The LCY encoding demo.
òÉÓ. 1: äÅÍÏÎÓÔÒÁÃÉÑ LCY.

TUGboat, Volume 16 (1995), No. 4 371

Danna� raspeqatka demonstriruet nekotorye primery nabora na russkom �zyke s ispol~zovaniem
transliteracii, v qastnosti, nabora kavyqek, znaka tire i matematiqeskih formul. V russkih iz-
dani�h ispol~zu�ts�:

1. kavyqki
”
lapki“, analogiqno nemeckim kavyqkam;

2. kavyqki <eloqki>, kotorye mo�no nabrat~ dvum� sposobami;

(a) s pomow~� znakov
”
bol~xe“ ili

”
men~xe“ : <, > {{ vot kak �to vygl�dit: <�loqki>;

(b) s ispol~zovaniem aktivno� kavyqki: "< i "> ;

3. znak tire v russko� poligrafii neskol~ko koroqe i vsegda otbivaets� nebol~ximi probelami
okolo 0,2 kegl�, sm. p. 4;

4. opredelen znak nomera {{}, kotory� nabiraets� kak \No.

A ewe mo�no pokazat~ sledu�wie formuly s izmenennymi matematiqeskimi operatorami

tgα =
sinα

cosα
, ili ctgα =

cosα

sinα
(3)

sledu�wie formuly vydeleny polu�irnym xriftom:

tgα =
sinα

cosα
, ili ctgα =

cosα

sinα
(4)

�to malen~ki� primer rublenogo teksta.

\def\theenumii{\asbuk{enumii}}

Dannaya raspechatka demonstriruet nekotorye primery nabora na russkom yazyke s

ispolp1zovaniem transliteratsii, v chastnosti, nabora kavychek, znaka tire i

matematicheskikh formul. V russkikh izdaniyakh ispolp1zuyut{}sya :

\begin{enumerate}

\item kavychki "‘lapki"’, analogichno nemeckim kavychkam ;

\item kavychki "<elochki">, kotorye mozhno nabratp1 dvumya sposobami ;

\begin{enumerate}

\item s pomoshchp1yu znakov "‘bolp1she"’ ili "‘menp1she"’ :{}

{\selectlanguage{english}\verb|<|, \verb|>|} "--- vot kak e1to vyglyadit: <e0lochki> ;

\item s ispolp1zovaniem aktivnoi0 kavychki :{} {\selectlanguage{english}\verb|"<|} i

{\selectlanguage{english}\verb|">|} ;

\end{enumerate}

\item znak tire v russkoi0 poligrafii neskolp1ko koroche i vsegda otbivaet\/sya

nebolp1shimi probelami okolo 0,2 keglya, sm. p. 4 ;

\item opredelen znak nomera"---\No, kotoryi0 nabiraet{}sya kak {\selectlanguage{english}%

\verb|\No|}.

\end{enumerate}

A eshche mozhno pokazatp1 sleduyushchie formuly s izmenennymi matematicheskimi

operatorami

\begin{equation} \tg\alpha=\frac{\sin\alpha}{\cos\alpha},\quad

\rusmath{ili}\quad\ctg\alpha=\frac{\cos\alpha}{\sin\alpha} \end{equation}

sleduyushchie formuly vydeleny poluzhirnym shriftom :{}

{\boldmath\begin{equation} \tg\alpha=\frac{\sin\alpha}{\cos\alpha},\quad

\rusmath{ili}\quad \ctg\alpha=\frac{\cos\alpha}{\sin\alpha} \end{equation}}

\textsf{E1to malenp1kii0 primer rublenogo teksta.}

Figure 2: The LWN encoding demo.

Ris. 2: Demonstraci� LWN.

372 TUGboat, Volume 16 (1995), No. 4

ðÕÓÔØ X É Y {{ Ä×Á ÍÎÏÇÏÏÂÒÁÚÉÑ, Á
X É
Y {{ ÏÔ-
ËÒÙÔÙÅ ÐÏÄÍÎÏÖÅÓÔ×Á ÓÏÏÔ×ÅÔÓÔ×ÅÎÎÏ × T ∗X É T ∗Y .
íÙ ÐÏËÁÚÙ×ÁÅÍ, ÞÔÏ ÐÒÉ ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÉÈ ÐÒÅÄÐÏ-
ÌÏÖÅÎÉÑÈ ËÏÒÒÅËÔÎÏ ÏÐÒÅÄÅÌÅÎÙ ÆÕÎËÔÏÒÙ �K , 	K
ÉÚ Db(Y ;
Y) É ÉÚ Db(X ;
X) × D

b(Y,
Y), ÚÁÄÁÀÝÉÅ
ÜË×É×ÁÌÅÎÔÎÏÓÔÉ ËÁÔÅÇÏÒÉÊ. äÁÌÅÅ, ÅÓÌÉ χ :
X ∼→
∼→
Y {{ ËÏÎÔÁËÔÎÏÅ ÐÒÅÏÂÒÁÚÏ×ÁÎÉÅ, ÔÏ ÍÙ ÐÏËÁÚÙ-
×ÁÅÍ, ÞÔÏ ÐÏÓÌÅ ÓÕÖÅÎÉÑ ÍÎÏÖÅÓÔ×Á
X É
Y ×ÓÅÇÄÁ
ÍÏÖÎÏ, ÉÓÐÏÌØÚÕÑ ÜÔÉ ÑÄÒÁ, ÐÏÓÔÒÏÉÔØ ÜË×É×ÁÌÅÎÔ-
ÎÏÓÔØ Db(X ;
X) ∼→ D

b(Y ;
Y). ðÕÓÔØ ÔÅÐÅÒØ M {{
ÇÉÐÅÒÐÏ×ÅÒÈÎÏÓÔØ × X , Á N {{ ÇÉÐÅÒÐÏ×ÅÒÈÎÏÓÔØ × Y .
ðÒÅÄÐÏÌÏÖÉÍ, ÞÔÏ ËÏÎÔÁËÔÎÏÅ ÐÒÅÏÂÒÁÚÏ×ÁÎÉÅ χ ÐÒÅ-
ÏÂÒÁÚÕÅÔ T ∗

M
X ∩
X × T ∗

N
Y ∩
Y . åÓÌÉ ÇÒÁÆÉË ÐÒÅ-

ÏÂÒÁÚÏ×ÁÎÉÑ χ ÁÓÓÏÃÉÉÒÏ×ÁÎ Ó ËÏÎÏÒÍÁÌØÎÙÍ ÒÁÓÓÌÏ-
ÅÎÉÅÍ Ë ÎÅËÏÔÏÒÏÊ ÐÏ×ÅÒÈÎÏÓÔÉ S × X × Y É ÅÓÌÉ
× ËÁÞÅÓÔ×Å ÑÄÒÁ K ×ÙÂÒÁÎ ÐÕÞÏË AS , ÔÏ �K(AN) ≃
≃ AM(d) × Db(X ; p), (p ∈
X), ÇÄÅ d {{ ÓÄ×ÉÇ, ËÏÔÏÒÙÊ
ÍÙ ×ÙÞÉÓÌÑÅÍ, ÉÓÐÏÌØÚÕÑ ÉÎÄÅËÓ ÉÎÅÒÃÉÉ.

\def\tildeto{\leavevmode\vcenter{\baselineskip0pt\lineskip-.25ex

\ialign{$##$\crcr\hidewidth\sim\hidewidth\crcr\to\crcr}}}

% emulation of AmSTeX symbols

\def\varOmega{\mathit{\Omega}}

\def\varPhi{\mathit{\Phi}}

\def\varPsi{\mathit{\Psi}}

\noindent ðÕÓÔØ X É Y"---Ä×Á ÍÎÏÇÏÏÂÒÁÚÉÑ, Á \varOmega_X É \varOmega_Y"---

ÏÔËÒÙÔÙÅ ÐÏÄÍÎÏÖÅÓÔ×Á ÓÏÏÔ×ÅÔÓÔ×ÅÎÎÏ × T^*X É T^*Y. íÙ ÐÏËÁÚÙ×ÁÅÍ, ÞÔÏ ÐÒÉ

ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÉÈ ÐÒÅÄÐÏÌÏÖÅÎÉÑÈ ËÏÒÒÅËÔÎÏ ÏÐÒÅÄÅÌÅÎÙ ÆÕÎËÔÏÒÙ \varPhi_K,

\varPsi_K ÉÚ $\mathbsf D^b(Y;\varOmega_Y)$ É ÉÚ $\mathbsf D^b(X;\varOmega_X)$

× $\mathbsf D^b(Y,\varOmega_Y)$, ÚÁÄÁÀÝÉÅ ÜË×É×ÁÌÅÎÔÎÏÓÔÉ ËÁÔÅÇÏÒÉÊ. äÁÌÅÅ,

ÅÓÌÉ $\chi:\varOmega_X\brkrel{\tildeto} \varOmega_Y$"---ËÏÎÔÁËÔÎÏÅ ÐÒÅÏÂÒÁÚÏ×ÁÎÉÅ,

ÔÏ ÍÙ ÐÏËÁÚÙ×ÁÅÍ, ÞÔÏ ÐÏÓÌÅ ÓÕÖÅÎÉÑ ÍÎÏÖÅÓÔ×Á \varOmega_X É \varOmega_Y

×ÓÅÇÄÁ ÍÏÖÎÏ, ÉÓÐÏÌØÚÕÑ ÜÔÉ ÑÄÒÁ, ÐÏÓÔÒÏÉÔØ ÜË×É×ÁÌÅÎÔÎÏÓÔØ

$\mathbsf D^b(X;\varOmega_X)\brkrel{\tildeto}\mathbsf D^b(Y;\varOmega_Y)$.

ðÕÓÔØ ÔÅÐÅÒØ M"--- ÇÉÐÅÒÐÏ×ÅÒÈÎÏÓÔØ × X, Á N "--- ÇÉÐÅÒÐÏ×ÅÒÈÎÏÓÔØ × Y.

ðÒÅÄÐÏÌÏÖÉÍ, ÞÔÏ ËÏÎÔÁËÔÎÏÅ ÐÒÅÏÂÒÁÚÏ×ÁÎÉÅ χ ÐÒÅÏÂÒÁÚÕÅÔ $T^*_MX\cap\varOmega_X$

× $T^*_NY\cap \varOmega_Y$. åÓÌÉ ÇÒÁÆÉË ÐÒÅÏÂÒÁÚÏ×ÁÎÉÑ χ ÁÓÓÏÃÉÉÒÏ×ÁÎ Ó

ËÏÎÏÒÍÁÌØÎÙÍ ÒÁÓÓÌÏÅÎÉÅÍ Ë ÎÅËÏÔÏÒÏÊ ÐÏ×ÅÒÈÎÏÓÔÉ S × $X\times Y$ É ÅÓÌÉ ×

ËÁÞÅÓÔ×Å ÑÄÒÁ K ×ÙÂÒÁÎ ÐÕÞÏË A_S, ÔÏ $\varPhi_K(A_N)\simeq A_M(d)$ ×

$\mathbsf D^b(X;p),(p\in\varOmega_X)$, ÇÄÅ d"--- ÓÄ×ÉÇ, ËÏÔÏÒÙÊ ÍÙ ×ÙÞÉÓÌÑÅÍ,

ÉÓÐÏÌØÚÕÑ ÉÎÄÅËÓ ÉÎÅÒÃÉÉ.

Figure 3: The math breaks demo.
òÉÓ. 3: äÅÍÏÎÓÔÒÁÃÉÑ ÒÁÚÒÙ×Ï× × ÆÏÒÍÕÌÁÈ.

TUGboat, Volume 16 (1995), No. 4 373

A Package for Church Slavonic Typesetting

Andrey Slepukhin

Introduction

The multilingual ability of TEX is one of its most im-
portant properties. Due to TEX it has become possi-
ble to produce high-quality books in many different
languages (sometimes with very exotic grammatical
rules). During the past 16 years, TEX has became
a real polyglot and it seems that it doesn’t want to
stop evolving. In this paper one more, maybe rather
exotic, example of practical usage of TEX is con-
sidered, along with many ideas and solutions which
result from five years of experience with TEX.

General solutions

What does a language-specific package have to look
like from the point of view of a computer typeset-
ting system? It must include at least the following
components:

• quality fonts;

• tools for simplifying the text formatting;

• hyphenation table;

• punctuation or some other poligraphic rule de-
scription.

These requirements form the basis of SlavTEX devel-
opment. The first two items have been realized sat-
isfactorily. As to the realization of the third one —
it depends on the volume of the dictionary, which
is not sufficiently complete yet. The fourth item is
absent because Church Slavonic has no precise rules
for punctuation and other similar objects.

Fonts

Designing quality fonts is, in general, a very hard
task; moreover, the author’s knowledge on the sub-
ject at the beginning of this work was minimal. So,
the designing of the base version of fonts took more
than half a year, and various improvements are still
under development. The work has been complicat-
ed by the fact that a large number of symbols (there
are already 44 purely alphabetic characters) in the
Church Slavonic alphabet must be included. Also
the glyphs for symbols have very few shared ele-
ments. The typeface, which was in wide use at the
beginning of the twentieth century, was taken as a
model for the fonts created here. The following tech-
nology was applied to develop the fonts: the sym-
bols were magnified and separate elements extract-
ed, then base and control points of outline curves
were placed manually and the METAFONT macros
were designed; the symbols obtained were finally im-
proved using the METAFONT graphic output. The

current font version consists of 148 symbols includ-
ing some old Slavonic letters which are no longer in
use.

The diacritic problem

In developing SlavTEX, the main problem was that
every word in a Church Slavonic text has at least
one diacritic. None of the computer typesetting sys-
tems known to the author (except TEX, of course),
contains any convenient tools for typesetting a text
with accents. TEX uses the \accent macro for this
purpose, but this macro seems to be designed for
rather infrequent usage, because it gives the follow-
ing undesirable effects:

• the kern between accented and previous sym-
bols disappears;

• TEX doesn’t allow any hyphens in the remain-
der of the word after an accented symbol and
can make invalid hyphens in the initial part of
the word.

These effects arise because TEX uses explicit kerning
while expanding the \accent macro. So, it seems
that the best solution for the diacritic problem (re-
alized for many European languages, for example)
is a method whereby a letter together with an ac-
cent is represented by a single character in the font.
However, in the case of Church Slavonic, this solu-
tion cannot be applied in this form because there
are too many possible ‘letter–accent’ pairs, and the
limit of 256 symbols would soon be exhausted.

It would be wonderful if the following idea
worked: the various ‘letter-accent’ combinations
would be placed in a font at identical positions mod-
ulo 256 (i.e., 256 positions apart), so that their met-
rics would coincide. Unfortunately, it is not possible
to force TEX to put a symbol with character code
greater than 255 into the dvi file. Such a restriction
is quite unexpected since the dvi file format sup-
ports the use of symbols with character codes up to
232 − 1. One other well-known method to deal with
the accents is their realization as strongly shifted left
characters of zero width. Such an option is unsat-
isfactory too because it does not solve the kerning
problem while significantly complicating construc-
tion of the hyphenation table.

To solve the accent problem we need to under-
stand where diacritics are placed in Church Slavon-
ic. Some can be placed only over the first letter
in the word, and some can be placed only over the
last letter. These two cases are realized by the spe-
cial macros \fcaccent and \lcaccent. The sec-
ond macro can be written in a very simple way
because it only needs to locate the accent with

374 TUGboat, Volume 16 (1995), No. 4

the help of kerns. The macro \fcaccent has a
\nobreak\hskip0pt construction in addition, which
enables the hyphenation of the word after the dia-
critic.

As for the accents in the middle of a word, some
of them are realized together with the correspond-
ing letters, and other represent symbols, in general
used to abbreviate certain words (in Church Slavon-
ic they are called titlo). The words containing these
symbols cannot, as a rule, be hyphenated, but it was
possible to write a special macro, placing an accent
and preserving the kerns both before and after the
symbol. It is a quite sophisticated macro which uses
such TEX commands as \futurelet.

To make inputting text easier, the symbols ’, ",
‘, ~, _, | and < are made active and are expanded to
the corresponding macros. The selection of Church
Slavonic mode is realized by the \beginslavmacro,
and the return to normal mode is realized by the
\endslav macro.

Separating colors

Another problem that had to be solved during pack-
age development was that of color separation. Al-
most all Church Slavonic texts are two-colored. Un-
fortunately, using colors via PostScript was imprac-
tical, because a PostScript-printer is a rarity in Rus-
sia. So, to make color separations and to obtain
separate slides for each color, the SliTEX idea of us-
ing invisible fonts was applied. However, kerning
problems make the use of SliTEX impossible. In-
deed, having a word with a first letter emphasized
by the use of another color (in Church Slavonic texts
this occurs very often), SliTEX loses the required
kern between the first letter and the remainder of
the word when switching to the other font. So, for
such cases we need special macros. To implement
the color separation a special font selection scheme
was designed, somewhat similar to NFSS. After
including the font description file and appropriate
macros, the user can declare the use of any color
via the macro \newcolor(<color>). This macro
gives rise to the macros \<color>g{<any text>}
and \<color>. The first of these switches the col-
or, preserving kerning, and the second switches it
without preserving any implicit kern (TEX inter-
prets this macro in the simplest way, so its usage
makes sense). Now, typing \showcolor(<color>)
or \hidecolor(<color>) in the input file, we can
make any selection by a specified color visible or in-
visible in the output. The text before the first usage
of \<color>g{<any text>} or \<color>will always
be visible.

Numbering

In Church Slavonic, literal numeration is accepted,
which can be described by the following algorithm:

Given an integer n ≥ 0, let S(n) be its rep-
resentation in Church Slavonic. Consider the
following table:

n S(n) n S(n) n S(n)
1 ~ 10 ~� 100 ~à
2 ~¢ 20 ~ª 200 ~á
3 ~£ 30 ~« 300 ~â
4 ~¤ 40 ~¬ 400 ~�
5 ~¥ 50 ~­ 500 ~ä
6 ~s 60 ~x 600 ~�
7 ~§ 70 ~o 700 ~z
8 ~̈ 80 ~̄ 800 ~w
9 ~f 90 ~ç 900 ~æ

The representation of zero is absent in Church
Slavonic, but let it be empty for convenience.

If 10 ≤ n < 20, then S(n) = S(n mod 10)S(10).
If 20 ≤ n < 100, then S(n) = S(n − (n mod
10))S(n mod 10). If 100 ≤ n < 1000, then S(n) =
S(n − (n mod 100))S(n mod 100). If 1000 ≤ n <
10000, then S(n) =�S(n − (n mod 1000))S(n mod
1000).

There are disagreements about the represen-
tation of numbers greater than 9999. In the
SlavTEX package, we use a modern option, where
the rule S(n) =�S(n − (n mod 1000))S(n mod
1000) is true for all numbers ≥ 1000. The
macro \slnum(<number>) automatically generates
the number representation in Church Slavonic. For
example, \slnum(1995) gives � æ~ç¥. One has to be
careful since this macro is valid only inside Church
Slavonic mode.

TEX without encoding

During the development of SlavTEX, an idea ap-
peared which solves the compatibility problem when
transferring any package to another platform. This
problem is especially acute in Russia because Rus-
sian letter encodings on different platforms do not
coincide. A version of TEX Cyrillization made by
CyrTUG is specific for PC-compatible computers
under MS-DOS. This results in a justified unhap-
piness amongst the many unix users in big research
institutes which need TEX most of all.

The procedure to easily transfer any TEX pack-
age to different platforms is given below:

• The encoding table containing a map between
character codes and their symbolic names (for
example, like PostScript names) must be de-
fined for each specific platform and font family.

TUGboat, Volume 16 (1995), No. 4 375

• A utility (which can even be written in TEX!)
must be created to generate two files from the
original encoding table — a TEX encoding table
and a METAFONT encoding table.
• A set of METAFONT macros must be added to

redefine the beginchar macro; it must allow
the use of symbolic names instead of charac-
ter codes by declaring usenames:=1 or whatev-
er like this.
• A hyphenation table must be written, using

symbolic names; when generating the base file,
TEX should first read the encoding, then it
should convert the original hyphenation table
into a temporary file using the current encod-
ing and then it should read the file obtained.
• \catcode, \lccode and \uccode should be de-

fined using symbolic names.

A variant of this idea is implemented in the latest
version of the package presented and is now being
tested. It is hoped that new Cyrillization versions
from CyrTUG will be written in the form described
above. It would facilitate the work of the many TEX
users in Russia and of people who need to typeset
Russian (or other Cyrillic) texts.

Type 1 from METAFONT?

One more idea, implemented as part of the SlavTEX
project, was inspired by an article by Jackowski
and Ryćko [2]. Moreover, the arrival of a Post-
Script-printer on the author’s desk helped stimu-
late its realization. There exists a set of METAFONT
macros with which one can obtain a text represen-
tation of Type 1 fonts from METAFONT sources and
from that, a downloadable font by L. Hetherington’s
Type 1 utilities. This macro package was initially
designed to solve the specific problem of represen-
tating Church Slavonic in Type 1 format, but the
conversion of Computer Modern fonts (and others)
is also possible. This work deserves separate treat-
ment and is not described in this paper.

Problems and plans

The most important problem today is adapting
SlavTEX to LATEX 2ε, or rather, its realization as
a LATEX 2ε package. The author also plans to de-
velop a package for typesetting music in non-linear
notation (so-called krjuki), in use before the eigh-
teenth century. The following problems associated
with Church Slavonic typesetting also should be not-
ed: designing a font of initial caps and a special font
for headings. In this font different combinations of
letters must have specific glyphs (this task seems to
be rather gigantic, because such a font would have
a monstrous number of symbols and ligatures).

It would be nice if others shared the author’s
interest in the problem of Church Slavonic and an-
cient texts. Maybe at some future date, a multilin-
gual edition of the Bible (in Church Slavonic, Greek,
Latin, Hebrew . . . what else?) produced with TEX
could come into existence.

Examples

A simple example of a Church Slavonic text:

£|á¤¨ <i_¨á¥ å|áàâ‘¥, á_­¥ ¡_¦i©,

¯®¬’¨«ã© ¬‘ï £à’íè­ £®

and the result of its compilation:

£¤�¨ ��~̈á¥ åà�â¥�, á­~¥ ¡¦~ i©, ¯®¬´«ã© ¬ï� £àºè­ £®
An example of color separation: a sequence of
macros

\beginslav\family(slav)\size(12)%

\black%

\def\pray{%

\redg �|á{¤¨} <i_¨á¥ å|áàâ‘¥, á_­¥

¡_¦i©, ¯®¬’¨«ã© ¬‘ï £à’íè­ £®

}%

\black%

\hidecolor(black)%

\showcolor(red)%

\par\noindent\pray

\hidecolor(red)%

\showcolor(black)%

\par\noindent\pray

\showcolor(red)%

\par\noindent\pray

\endslav

gives the result

�¤�̈ �� ~̈á¥ åà�â¥�, á­~¥ ¡¦~ i©, ¯®¬´«ã© ¬ï� £àºè­ £®

�¤�̈ �� ~̈á¥ åà�â¥�, á­~¥ ¡¦~ i©, ¯®¬´«ã© ¬ï� £àºè­ £®
�¤�̈ �� ~̈á¥ åà�â¥�, á­~¥ ¡¦~ i©, ¯®¬´«ã© ¬ï� £àºè­ £®

This example shows that accents can be placed over
a group of characters, and not only over a single
character.

References

[1] Alipiy, Ieromonakh (Gamanovich). Grammatika
tserkovno-slavjanskogo jazyka. Moscow: Palom-
nik, 1991.

[2] Jackowski, Bogus law, and Marek Ryćko.
“Labyrinth of METAFONT paths in outline”,
Proceedings of the Eighth European TEX Con-

ference (Sept. 26–30, 1994, Gdańsk, Poland),
18–32.

[3] Donald E. Knuth. The TEXbook. Addison Wes-
ley, Reading, MA, 1990.

[4] Donald E. Knuth. The METAFONTbook. Addison
Wesley, Reading, MA, 1990.

376 TUGboat, Volume 16 (1995), No. 4

[5] Slovar’ russkogo jazyka XI–XVII vv. Moscow:
Nauka, 1975.

⋄ Andrey Slepukhin

Lavra, Sergiev Posad, Russia

Email: pooh@shade.msu.ru

� ª¥â ¤«ï ­ ¡®à æ¥àª®¢­®-á« ¢ï­áª¨å

â¥ªáâ®¢

�­¤à¥© �«¥¯ãå¨­

�¢¥¤¥­¨¥

�¤­¨¬ ¨§ á ¬ëå ¢ ¦­ëå á¢®©áâ¢TEX’ ¡¥§ãá«®¢-
­® ï¢«ï¥âáï ¥£® ¬­®£®ï§ëç­®áâì. �« £®¤ àï

TeX’ã áâ «® ¢®§¬®¦­ë¬ ¨§¤ ­¨¥ ª­¨£ ­ á ¬ëå

à §­ëå ï§ëª å (¯®à®© á ¢¥áì¬ ¯à¨å®â«¨¢ë¬¨

£à ¬¬ â¨ç¥áª¨¬¨ ¯à ¢¨« ¬¨) á ¢ëá®ç ©è¨¬ ¯®-
«¨£à ä¨ç¥áª¨¬ ª ç¥áâ¢®¬. � 10 á «¨è­¨¬ «¥â

á¢®¥£® áãé¥áâ¢®¢ ­¨ïTEX áâ « ­ áâ®ïé¨¬ ¯®«¨-
£«®â®¬ ¨, ¯®å®¦¥, ­¥ á®¡¨à ¥âáï ®áâ ­ ¢«¨¢ âì-
áï ­ ¤®áâ¨£­ãâ®¬. � íâ®© áâ âì¥ à áá¬ âà¨¢ -
¥âáï ¥é¥ ®¤¨­, ¡ëâì ¬®¦¥â, ¤®¢®«ì­® íª§®â¨ç¥-
áª¨© ¯à¨¬¥à ¯à¨¬¥­¥­¨ï ¬­®£®ï§ëç­®áâ¨ TEX’
­ ¯à ªâ¨ª¥, â ª¦¥ ¬­®£¨¥ ¨¤¥¨ ¨ à¥è¥­¨ï,
¢®§­¨ªè¨¥ ¢ à¥§ã«ìâ â¥ 5-«¥â­¥£® ®¯ëâ à ¡®âë
á TEX’®¬.

�¡é¨© ®¡§®à

�â® á â®çª¨ §à¥­¨ï ª®¬¯ìîâ¥à­®© ¨§¤ â¥«ìáª®©

á¨áâ¥¬ë ¤®«¦¥­ ¯à¥¤áâ ¢«ïâì á®¡®© ¯ ª¥â ¤«ï

à ¡®âë á ª ª¨¬-«¨¡® ï§ëª®¬? �­ ¤®«¦¥­ á®¤¥à-
¦ âì ¯® ªà ©­¥© ¬¥à¥ á«¥¤ãîé¨¥ ª®¬¯®­¥­âë:

• ª ç¥áâ¢¥­­ë¥ èà¨äâë;

• áà¥¤áâ¢ ®¡«¥£ç¥­¨ï ­ ¡®à â¥ªáâ ;

• â ¡«¨æã ¯¥à¥­®á®¢;

• ®¯¨á ­¨¥ ¯®«¨£à ä¨ç¥áª¨å ¯à ¢¨«, ¨á¯®«ì-
§ã¥¬ëå ¢ ¤ ­­®¬ ï§ëª¥;

�â¨ âà¥¡®¢ ­¨ï ¨ áâ «¨ ®á­®¢®© ¯à¨ à §à -
¡®âª¥ ¯ ª¥â �«¢~TEX. �¥à¢ë¥ ¤¢ ¯ã­ªâ ã¤ «®áì
à¥ «¨§®¢ âì ¢¯®«­¥ ã¤®¢«¥â¢®à¨â¥«ì­®, ¤«ï ª -
ç¥áâ¢¥­­®© à¥ «¨§ æ¨¨ âà¥âì¥£® ¯®ª ­¥ å¢ â -
¥â ­¥®¡å®¤¨¬®£® ®¡ê¥¬ á«®¢ àï, ç¥â¢¥àâë©

¯à ªâ¨ç¥áª¨ ®âáãâáâ¢ã¥â, â ª ª ª ¢ æ¥àª®¢­®-
á« ¢ï­áª®¬ ï§ëª¥ ª ª¨å-«¨¡® ¯®«¨£à ä¨ç¥áª¨å
¯à ¢¨« ¯à®áâ® ­¥â.

�à¨äâë

� §à ¡®âª èà¨äâ®¢ ¢®®¡é¥ ï¢«ï¥âáï ®ç¥­ì âàã-
¤®¥¬ª¨¬ § ­ïâ¨¥¬, ª â®¬ã ¦¥ ¯®§­ ­¨ï ¢â®à ¢
íâ®¬ ¢®¯à®á¥ ª ­ ç «ã à ¡®âë ¡ë«¨ ¬¨­¨¬ «ì-
­ë¬¨. �®íâ®¬ã ­ à §à ¡®âªã ¡ §®¢®£® ¢ à¨ ­-
â èà¨äâ®¢ ãè«® ¡®«ìè¥ ¯®«ã£®¤ , ¢­¥á¥­¨¥

à §«¨ç­ëå ã«ãçè¥­¨© ¯à®¤®«¦ ¥âáï ¤® á¨å ¯®à.

�à¥¤¨ ä ªâ®à®¢, ãá«®¦­¨¢è¨å à ¡®âã, á«¥¤ã¥â
®â¬¥â¨âì â®, çâ® æ¥àª®¢­®-á« ¢ï­áª¨© «ä ¢¨â

á®¤¥à¦¨â ¡®«ìè®¥ ª®«¨ç¥áâ¢® á¨¬¢®«®¢ (â®«ì-
ª® ¡ãª¢—44), ¨ ­ ç¥àâ ­¨ï íâ¨å á¨¬¢®«®¢ ¨¬¥-
îâ ¬ «® ¯®å®¦¨å í«¥¬¥­â®¢. � ª ç¥áâ¢¥ ®¡à §æ

¡ë« ¢§ïâ èà¨äâ, ¯®«ãç¨¢è¨© è¨à®ª®¥ à á¯à®-
áâà ­¥­¨¥ ¢ ­ ç «¥ XX ¢¥ª . �¥å­®«®£¨ï à §-
à ¡®âª¨ èà¨äâ ¡ë« á«¥¤ãîé ï: á¨¬¢®«ë ã¢¥-
«¨ç¨¢ «¨áì, à §¡¨¢ «¨áì ­ ®â¤¥«ì­ë¥ í«¥¬¥­-
âë, § â¥¬ ¢àãç­ãî ¯à¨¡«¨§¨â¥«ì­® ¯à®áâ ¢«ï-
«¨áì ®¯®à­ë¥ â®çª¨ ¨ íâ¨ í«¥¬¥­âë ®¯¨áë¢ «¨áì

á ¯®¬®éìî ¬ ªà®ª®¬ ­¤ METAFONT’ ; ¯®«ãç¥­-
­ë¥ á¨¬¢®«ë ¤ «¥¥ ¤®¢®¤¨«¨áì á ¨á¯®«ì§®¢ ­¨¥¬

£à ä¨ç¥áª®£® ¢ë¢®¤ METAFONT’ . � ­ áâ®ïé¨©
¬®¬¥­â èà¨äâ á®¤¥à¦¨â 148 á¨¬¢®« , ¢ª«îç ï
­¥ª®â®àë¥ ¡ãª¢ë áâ à®-á« ¢ï­áª®£® ï§ëª , ¢ë-
è¥¤è¨¥ ¨§ ã¯®âà¥¡«¥­¨ï.

�à®¡«¥¬ ¤¨ ªà¨â¨ç¥áª¨å §­ ª®¢

�á­®¢­ ï ¯à®¡«¥¬ , ¢®§­¨ªè ï ¯à¨ à §à ¡®â-
ª¥ ¯ ª¥â �«¢~TEX, ¡ë« á¢ï§ ­ á â¥¬, çâ® ¢

æ¥àª®¢­®-á« ¢ï­áª¨å â¥ªáâ å ª ¦¤®¥ á«®¢® ¨¬¥-
¥â ¯® ªà ©­¥© ¬¥à¥ ®¤¨­ ¤¨ ªà¨â¨ç¥áª¨© §­ ª.
�¨ ®¤­ ¨§ ¨§¢¥áâ­ëå ¢â®àã á¨áâ¥¬ ª®¬¯ìî-
â¥à­®£® ­ ¡®à ­¥ ¨¬¥¥â ã¤®¢«¥â¢®à¨â¥«ì­ëå

áà¥¤áâ¢ ¤«ï ­ ¡®à â¥ªáâ®¢ á ¤¨ ªà¨â¨ç¥áª¨¬¨

§­ ª ¬¨. �ãçè¨© ¨§ ¨§¢¥áâ­ëå á¯®á®¡ ¯à¥¤« -
£ ¥â TEX. �«ï íâ®© æ¥«¨ ®­ ¨á¯®«ì§ã¥â ¬ ªà®ª®-
¬ ­¤ã \accent, ­® ®­ , ¢¨¤¨¬®, ¡ë« à ááç¨â ­
«¨èì ­ ¤®áâ â®ç­® à¥¤ª®¥ ¯à¨¬¥­¥­¨¥, ¯®â®¬ã
çâ® ¨á¯®«ì§®¢ ­¨¥ íâ®© ¬ ªà®ª®¬ ­¤ë ¢ë§ë¢ ¥â

¤¢ ­¥¦¥« â¥«ì­ëå íää¥ªâ :

• ¨áç¥§ ¥â ª¥à­ ¬¥¦¤ã ªæ¥­â¨àã¥¬ë¬ á¨¬¢®-
«®¬ ¨ ¯à¥¤ë¤ãé¨¬;

• ª®­¥æ á«®¢ , ­ ç¨­ ï á ªæ¥­â¨àã¥¬®£® á¨¬-
¢®« , ­¥ ¯¥à¥­®á¨âáï ¢®®¡é¥, ­ ç «® ¬®-
¦¥â ¯¥à¥­®á¨âìáï ­¥¯à ¢¨«ì­®;

�â¨ íää¥ªâë ¢®§­¨ª îâ ¨§-§ â®£®, çâ® TEX,
¯à¨ à¥ «¨§ æ¨¨ ¬ ªà®ª®¬ ­¤ë \accent ¨á¯®«ì-
§ã¥â ï¢­ë© ª¥à­. �®íâ®¬ã, ¢¥à®ïâ­® «ãçè¨¬ à¥-
è¥­¨¥¬ (çâ® ¨ à¥ «¨§®¢ ­®, ­ ¯à¨¬¥à, ¤«ï ­¥-
ª®â®àëå ¥¢à®¯¥©áª¨å ï§ëª®¢) ï¢«ï¥âáï à¥ «¨§ -
æ¨ï ¡ãª¢ë ¢¬¥áâ¥ á ªæ¥­â®¬ ¢ ¢¨¤¥ ®â¤¥«ì­®£®

á¨¬¢®« ¢ èà¨äâ¥. �¤­ ª®, ¢ á«ãç ¥ á æ¥àª®¢­®-
á« ¢ï­áª¨¬ ï§ëª®¬ â ª®¥ à¥è¥­¨¥ ¢ ç¨áâ®¬ ¢¨-
¤¥ ­¥ ¯à®å®¤¨â, ¯®áª®«ìªã ¢®§¬®¦­ëå ª®¬¡¨-
­ æ¨© ¡ãª¢ —¤¨ ªà¨â¨ç¥áª¨© §­ ª â ª ¬­®£®,
çâ® 256 á¨¬¢®«®¢ ¢ èà¨äâ¥ ¯à®áâ® ­¥ å¢ â¨â!
� ¢¥à­®¥, ®ç¥­ì å®à®è¨¬ à¥è¥­¨¥¬ ¯à®¡«¥¬ë

¡ë«® ¡ë á«¥¤ãîé¥¥: à §«¨ç­ë¥ ¯ àë ¡ãª¢ —
¤¨ ªà¨â¨ç¥áª¨© §­ ª ¨¬¥îâ ¢ èà¨äâ¥ ¯®§¨æ¨¨

á®¢¯ ¤ îé¨¥ ¯® ¬®¤ã«î 256, ¨ ¨å ¬¥âà¨ª¨ ¢

TFM-ä ©«¥ á®¢¯ ¤ îâ. � á®¦ «¥­¨î, ­¨ª ª¨¬

TUGboat, Volume 16 (1995), No. 4 377

®¡à §®¬ ®â TEX’ ­¥«ì§ï ¤®¡¨âìáï, çâ®¡ë ®­ ¢

DVI-ä ©« ¢ë¢¥« á¨¬¢®« á ª®¤®¬ ¡®«ìè¨¬, ç¥¬
256. � ª®¥ ®£à ­¨ç¥­¨¥ â¥¬ ¡®«¥¥ ­¥¯®­ïâ­®,
¯®áª®«ìªã ä®à¬ â DVI-ä ©« ¯®¤¤¥à¦¨¢ ¥â ¨á-
¯®«ì§®¢ ­¨¥ á¨¬¢®«®¢ á ª®¤ ¬¨ ¤® 232 − 1. �é¥
®¤¨­ ¨§¢¥áâ­ë© á¯®á®¡ ¡®àì¡ë á ¤¨ ªà¨â¨ç¥áª¨-
¬¨ §­ ª ¬¨—¤¥« âì ¨å ¢ ¢¨¤¥ á¨¬¢®«®¢ á ­ã«¥-
¢®© è¨à¨­®© ¨ á¨«ì­® á¬¥é¥­­ëå ¢«¥¢®. � ª®©
¢ à¨ ­â â®¦¥ ï¢«ï¥âáï ­¥ã¤®¢«¥â¢®à¨â¥«ì­ë¬,
¯®áª®«ìªã ¯à®¡«¥¬ã á ª¥à­¨­£®¬ ®­ ­¥ à¥è ¥â ¨,
ªà®¬¥ â®£®, ¯®áâà®¥­¨¥ â ¡«¨æë ¯¥à¥­®á®¢ ¢ íâ®¬

á«ãç ¥ ¡ë«® ¡ë ¤¥«®¬ ¢¥áì¬ § âàã¤­¨â¥«ì­ë¬.
�â®¡ë à¥è¨âì ¯à®¡«¥¬ã, ¯à¨è«®áì ¯®­ïâì,

¯® ª ª®¬ã ¯à¨­æ¨¯ã à ááâ ¢«ïîâáï ¤¨ ªà¨â¨ç¥-
áª¨¥ §­ ª¨ ¢ æ¥àª®¢­®-á« ¢ï­áª®¬ ï§ëª¥. �ª § -
«®áì, çâ® ­¥ª®â®àë¥ ¨§ ­¨å ¢áâà¥ç îâáï â®«ìª®
­ ¤ ¯¥à¢®© ¡ãª¢®© á«®¢ , ­¥ª®â®àë¥—â®«ìª®

­ ¤ ¯®á«¥¤­¥©. �â¨ ¤¢ á«ãç ï à¥ «¨§ãîâ á¯¥-
æ¨ «ì­ë¥ ¬ ªà®ª®¬ ­¤ë \fcaccent ¨ \lcaccent.
� ¯¨á ­¨¥ ¯®á«¥¤­¥© ­¥ ¯à¥¤áâ ¢«ï¥â ®á®¡®£®

âàã¤ , â ª ª ª ®­ «¨èì à §¬¥é ¥â á ¯®¬®éìî

ª¥à­®¢ ¤¨ ªà¨â¨ç¥áª¨© §­ ª. � ¬ ªà®ª®¬ ­¤¥

\fcaccent ªà®¬¥ íâ®£®, ¨á¯®«ì§ã¥âáï ª®­áâàãª-
æ¨ï \nobreak\hskip0pt, ª®â®à ï ¯®á«¥ ¢ëà ¢­¨-
¢ ­¨ï ¤¨ ªà¨â¨ç¥áª®£® §­ ª á ¯®¬®éìî ª¥à­®¢

à §à¥è ¥â ¯¥à¥­®á á«®¢ .
�â® ª á ¥âáï â¥å ¤¨ ªà¨â¨ç¥áª¨å §­ ª®¢,

ª®â®àë¥ ¢áâà¥ç îâáï ¢ á¥à¥¤¨­¥ á«®¢ , â® ç áâì
¨§ ­¨å à¥ «¨§®¢ ­ ¢¬¥áâ¥ á á®®â¢¥âáâ¢ãîé¨-
¬¨ ¡ãª¢ ¬¨ ¢ ¢¨¤¥ ®â¤¥«ì­ëå á¨¬¢®«®¢,

ç áâì ¯à¥¤áâ ¢«ï¥â á®¡®© §­ ª¨, ¯à¨¬¥­ï¥¬ë¥,
¢ ®á­®¢­®¬, ¤«ï á®ªà é¥­¨ï ­ ¯¨á ­¨ï ­¥ª®â®-
àëå á«®¢ (¢ æ¥àª®¢­®-á« ¢ï­áª®¬ ï§ëª¥ ®­¨ ­®-
áïâ ­ §¢ ­¨¥ ”â¨â«®”). �«®¢ , á®¤¥à¦ é¨¥ íâ¨
§­ ª¨, ª ª ¯à ¢¨«®, ­¥ ¯¥à¥­®áïâáï, ¯®íâ®¬ã áâ -
«® ¢®§¬®¦­ë¬ ­ ¯¨á âì ¬ ªà®ª®¬ ­¤ã, ª®â®à ï
áâ ¢¨â ­ ¤ á¨¬¢®«®¬ ªæ¥­â, á®åà ­ïï ª¥à­ ª ª
¤®, â ª ¨ ¯®á«¥ íâ®£® á¨¬¢®« . �â® ¤®¢®«ì­® å¨-
âà ï ¬ ªà®ª®¬ ­¤ , ¢ ç áâ­®áâ¨, ¤«ï ¥¥ ­ ¯¨-
á ­¨ï ¯à¨è«®áì ¯à¨¬¥­¨âì â ª®¥ áà¥¤áâ¢®, ª ª
\futurelet.

�«ï ã¤®¡áâ¢ ­ ¡®à â¥ªáâ á¨¬¢®«ë ’,
", ‘, ~, _, | ¨ < á¤¥« ­ë ªâ¨¢­ë¬¨ ¨ à á-
ªàë¢ îâáï ¢ á®®â¢¥âáâ¢ãîé¨¥ ¬ ªà®ª®¬ ­¤ë.
�¥à¥å®¤ ¢ æ¥àª®¢­®-á« ¢ï­áª¨© à¥¦¨¬ ®áãé¥-
áâ¢«ï¥âáï ¬ ªà®ª®¬ ­¤®© \beginslav, ¢ëå®¤—
¬ ªà®ª®¬ ­¤®© \endslav.

� §¤¥«¥­¨¥ æ¢¥â®¢

�àã£ ï ¯à®¡«¥¬ , á ª®â®à®© ¯à¨è«®áì áâ®«ª-
­ãâìáï ¯à¨ ­ ¯¨á ­¨¨ ¯ ª¥â —íâ® à §¤¥«¥­¨¥

æ¢¥â®¢. �à ªâ¨ç¥áª¨ ¢á¥ æ¥àª®¢­®-á« ¢ï­áª¨¥
â¥ªáâë ï¢«ïîâáï ¤¢ãæ¢¥â­ë¬¨. � á®¦ «¥­¨î,
®â à¥ «¨§ æ¨¨ à §¤¥«¥­¨ï æ¢¥â®¢ ç¥à¥§ Post-

Script ¯à¨è«®áì ®âª § âìáï, â ª ª ª ¢ �®áá¨¨

PostScript-¯à¨­â¥à ¢á¥ ¥é¥ ï¢«ï¥âáï ¡®«ìè®©

à¥¤ª®áâìî. ¯®íâ®¬ã çâ®¡ë à¥ «¨§®¢ âì à §-
¤¥«¥­¨¥ æ¢¥â®¢ ¨ ¯®«ãç¨âì ®â¤¥«ì­ë¥ á« ©¤ë

¤«ï ª ¦¤®£® â¥ªáâ , ¡ë« ¨á¯®«ì§®¢ ­ ¨¤¥ï

SliTEX’ ®¡ ¨á¯®«ì§®¢ ­¨¨ ”­¥¢¨¤¨¬ëå” èà¨ä-
â®¢. �¤­ ª®, ¨§-§ ¯à®¡«¥¬ á ª¥à­¨­£®¬, ¨á-
¯®«ì§®¢ âì SliTEX ¢ ç¨áâ®¬ ¢¨¤¥ ­¥ ã¤ ¥âáï.
� á ¬®¬ ¤¥«¥, ¥á«¨ ã ­ á ¥áâì á«®¢®, ¯¥à¢ ï

¡ãª¢ ª®â®à®£® ¢ë¤¥«¥­ ¤àã£¨¬ æ¢¥â®¬ (â -
ª®¥ ¢ æ¥àª®¢­®-á« ¢ï­áª¨å â¥ªáâ å á«ãç ¥âáï

®ç¥­ì ç áâ®), â® ª¥à­ ¬¥¦¤ã ¢ë¤¥«¥­­®© ¡ãª¢®©
¨ ®áâ «ì­ë¬ á«®¢®¬ ¯à®¯ ¤ ¥â ¢ á¢ï§¨ á ¯¥à¥-
ª«îç¥­¨¥¬ ­ ¤àã£®© èà¨äâ. �®íâ®¬ã, ¤«ï â -
ª®£® à®¤ ¢ë¤¥«¥­¨© ¯à¨å®¤¨âáï ¨á¯®«ì§®¢ âì

á¯¥æ¨ «ì­ë¥ ¬ ªà®ª®¬ ­¤ë. �â®¡ë à¥ «¨§®-
¢ âì à §¤¥«¥­¨¥ æ¢¥â®¢, ¡ë« à¥ «¨§®¢ ­ á¯¥æ¨-
 «ì­ ï á¨áâ¥¬ ¯®¤ª«îç¥­¨ï èà¨äâ®¢, ­¥¬­®-
£® ¯®å®¦ ï ­ NFSS. �®á«¥ íâ®£® ¯®«ì§®¢ â¥«ì
¬®¦¥â ®¯¨á âì ¨á¯®«ì§ã¥¬ë¥ æ¢¥â ¬ ªà®ª®-
¬ ­¤ ¬¨ \newcolor(<æ¢¥â>). �â ¬ ªà®ª®¬ ­-
¤ ¯®à®¦¤ ¥â ¬ ªà®ª®¬ ­¤ë \<æ¢¥â>g{<â¥ªáâ>}

¨ \<æ¢¥â>. �¥à¢ ï ¨§ ­¨å ¯¥à¥ª«îç ¥â æ¢¥â

á á®åà ­¥­¨¥¬ ª¥à­¨­£ , ¢â®à ï—¡¥§ á®åà ­¥-
­¨ï ª¥à­¨­£ (®­ ¡®«¥¥ ¯à®áâ® ¨­â¥à¯à¥â¨àã-
¥âáï TeX’®¬, ¯®íâ®¬ã ¥¥ ¨á¯®«ì§®¢ ­¨¥ ¨¬¥¥â

á¬ëá«). �¥¯¥àì, ¥á«¨ ¢® ¢å®¤­®¬ ä ©«¥ ãª § âì

\showcolor(<æ¢¥â>), â® ¢ë¤¥«¥­¨ï ¤ ­­ë¬ æ¢¥-
â®¬ ¡ã¤ãâ ¢¨¤­ë ¯à¨ ¯¥ç â¨. �¥ªáâ, à á¯®«®-
¦¥­­ë© ¤® ¯¥à¢®© ¬ ªà®ª®¬ ­¤ë \<æ¢¥â> ¨«¨

\<æ¢¥â>g ¡ã¤¥â ¢¨¤¨¬ë¬ ­¥§ ¢¨á¨¬® ®â ¬ ªà®-
ª®¬ ­¤ \showcolor.

�ã¬¥à æ¨ï

� æ¥àª®¢­®-á« ¢ï­áª®¬ ï§ëª¥ ¯à¨­ïâ ¡ãª¢¥­-
­ ï ­ã¬¥à æ¨ï, ®¯¨áë¢ ¥¬ ï á«¥¤ãîé¨¬ «£®-
à¨â¬®¬:

�ãáâì n—æ¥«®¥ ç¨á«®, n ≥ 0, S(n)—
¥£® ¯à¥¤áâ ¢«¥­¨¥ ¢ æ¥àª®¢­®-á« ¢ï­áª®¬ ï§ëª¥.
�«ï ­ ç « ¢¢¥¤¥¬ â ¡«¨æã:

n S(n) n S(n) n S(n)
1 ~ 10 ~� 100 ~à
2 ~¢ 20 ~ª 200 ~á
3 ~£ 30 ~« 300 ~â
4 ~¤ 40 ~¬ 400 ~�
5 ~¥ 50 ~­ 500 ~ä
6 ~s 60 ~x 600 ~�
7 ~§ 70 ~o 700 ~z
8 ~̈ 80 ~̄ 800 ~w
9 ~f 90 ~ç 900 ~æ

�à¥¤áâ ¢«¥­¨¥ ç¨á« 0 ¢ æ¥àª®¢­®-
á« ¢ï­áª®¬ ï§ëª¥ ®âáãâáâ¢ã¥â, ­® ¤«ï ã¤®¡áâ¢

¡ã¤¥¬ áç¨â âì ¥£® ¯ãáâë¬.

378 TUGboat, Volume 16 (1995), No. 4

�á«¨ 10 ≤ n < 20, â® S(n) = S(n mod
10)S(10). �á«¨ 20 ≤ n < 100, â® S(n) = S(n −
(n mod 10))S(n mod 10). �á«¨ 100 ≤ n < 1000,
â® S(n) = S(n− (n mod 100))S(n mod 100). �á«¨
1000 ≤ n < 10000, â® S(n) =�S(n − (n mod
1000))S(n mod 1000).

�â­®á¨â¥«ì­® ¯à¥¤áâ ¢«¥­¨ï ç¨á¥«, ¡®«ì-
è¨å, ç¥¬ 9999, áãé¥áâ¢ãîâ à §­®£« á¨ï, ¢ ¯ ª¥â¥
�«¢~TEX à¥ «¨§®¢ ­ á®¢à¥¬¥­­ë© ¢ à¨ ­â, £¤¥ ¯à -
¢¨«® S(n) =�S(n − (n mod 1000))S(n mod 1000)
à á¯à®áâà ­ï¥âáï ­ ¢á¥ ç¨á« ≥ 1000. �¢â®-
¬ â¨ç¥áªãî £¥­¥à æ¨î § ¯¨á¨ ç¨á¥« ¢ æ¥àª®¢­®-
á« ¢ï­áª®¬ ï§ëª¥ à¥ «¨§ã¥â ¬ ªà®ª®¬ ­¤

\slnum(<ç¨á«®>). � ¯à¨¬¥à, \slnum(1995) ¤ áâ
� æ~ç¥. �ã¤ìâ¥ ¢­¨¬ â¥«ì­ë: ¬ ªà®ª®¬ ­¤

\slnum ¤¥©áâ¢ã¥â â®«ìª® ¢ æ¥àª®¢­®-á« ¢ï­áª®¬
à¥¦¨¬¥.

TEX ¡¥§ ª®¤¨à®¢®ª

� ¯à®æ¥áá¥ à ¡®âë ­ ¤ �«¢~TEX’®¬ ¯®ï¢¨« áì ¨¤¥ï,
ª®â®à ï ¯®§¢®«ï¥â à¥è¨âì ¯à®¡«¥¬ë á®¢¬¥áâ¨-
¬®áâ¨ ¯à¨ ¯¥à¥­®á¥ ª ª®£®-«¨¡® ¯ ª¥â ­ ¤àã-
£ãî ¯« âä®à¬ã. �â ¯à®¡«¥¬ ®á®¡¥­­® ªâã-
 «ì­ ¢ ãá«®¢¨ïå �®áá¨¨, ¯®áª®«ìªã ­ à §­ëå

¯« âä®à¬ å ª®¤¨à®¢ª àãááª¨å ¡ãª¢ à §«¨ç­ .
�¥àá¨ï ª¨à¨««¨§ æ¨¨ TEX’ , à á¯à®áâà ­ï¥¬ ï
CyrTUG, à ááç¨â ­ ¢ ®á­®¢­®¬ ­ ¯®«ì§®¢ â¥-
«¥© IBM PC-á®¢¬¥áâ¨¬ëå ª®¬¯ìîâ¥à®¢, à ¡®â -
îé¨å ¯®¤ MS DOS. �â®, ¢ ç áâ­®áâ¨, ¢ë§ë¢ -
¥â á¯à ¢¥¤«¨¢®¥ ­¥¤®¢®«ìáâ¢® ¬­®£®ç¨á«¥­­ëå

¯®«ì§®¢ â¥«¥© unix’ , áà¥¤¨ ª®â®àëå—ªàã¯­ë¥

­ ãç­ë¥ ¨­áâ¨âãâë, ª®â®àë¥ ¢ TEX’¥ ­ã¦¤ îâ-
áï ¡®«ìè¥ ¢á¥£®.

�¤¥ï «¥£ª®£® ¯¥à¥­®á ­ ¤àã£ãî ¯« âä®à-
¬ã § ª«îç ¥âáï ¢ á«¥¤ãîé¥¬:

• �¢®¤¨âáï â ¡«¨æ ª®¤¨à®¢ª¨ ¤«ï ª®­ªà¥â-
­®© ¯« âä®à¬ë ¨ ª®­ªà¥â­®£® á¥¬¥©áâ¢

èà¨äâ®¢, á®¤¥à¦ é ï á®®â­®è¥­¨¥ ¬¥¦¤ã

á¨¬¢®«ì­ë¬¨ ª®¤ ¬¨ ¨ ¨å ¨¬¥­ ¬¨ (­ ¯à¨-
¬¥à, ¨á¯®«ì§ã¥¬ë¬¨ ¢ PostScript’¥);

• �¯à¥¤¥«ï¥âáï ãâ¨«¨â (®­ ¬®¦¥â ¡ëâì

­ ¯¨á ­ ¤ ¦¥ ­ TEX’¥!), ª®â®à ï ¨§

â ¡«¨æë ª®¤¨à®¢ª¨ £¥­¥à¨àã¥â ¤¢ ä ©-
« : ¯¥à¢ë©—â ¡«¨æ ª®¤¨à®¢ª¨ ¤«ï META-
FONT’ , ¢â®à®©—¤«ï TEX’

• �®¡ ¢«ï¥âáï ­ ¡®à ¬ ªà®ª®¬ ­¤ ¤«ï META-
FONT’ , ª®â®àë© ¯¥à¥®¯à¥¤¥«ï¥â ¬ ªà®ª®-
¬ ­¤ã beginchar â ª, çâ® ¯à¨ ãáâ ­®¢ª¥

usenames:=1 ¢ ­¥© ¬®£ãâ ¡ëâì ¨á¯®«ì§®¢ ­ë

á¨¬¢®«ì­ë¥ ¨¬¥­ ;

• � ¡«¨æ ¯¥à¥­®á®¢ ®¯¨áë¢ ¥âáï á ¨á¯®«ì-
§®¢ ­¨¥¬ á¨¬¢®«ì­ëå ¨¬¥­; ¯à¨ £¥­¥à æ¨¨

ä®à¬ â TEX ç¨â ¥â â ¡«¨æã ª®¤¨à®¢ª¨, § -

â¥¬ ª®­¢¥àâ¨àã¥â â ¡«¨æã ¯¥à¥­®á®¢ ¢ ¯à®-
¬¥¦ãâ®ç­ë© ä ©« á ¨á¯®«ì§®¢ ­¨¥¬ â¥ªã-
é¥© ª®¤¨à®¢ª¨ ¨ ç¨â ¥â ¯®«ãç¥­­ë© ä ©«;
• \catcode, \lccode ¨ \uccode ®¯¨áë¢ îâáï
â ª¦¥ á ¨á¯®«ì§®¢ ­¨¥¬ á¨¬¢®«ì­ëå ¨¬¥­;

� à¨ ­â íâ®© ¨¤¥¨ à¥ «¨§®¢ ­ ¢ ¯®á«¥¤­¥©

¢¥àá¨¨ ¯à¥¤áâ ¢«¥­­®£® ¯ ª¥â ¨ ­ å®¤¨âáï ¢

¯à®æ¥áá¥ â¥áâ¨à®¢ ­¨ï. �®ç¥âáï ­ ¤¥ïâìáï, çâ®
 ­ «®£¨ç­ë¬ ®¡à §®¬ ¡ã¤ãâ ®ä®à¬«¥­ë ¨ ¯®-
á«¥¤ãîé¨¥ ¢¥àá¨¨ ª¨à¨««¨§ æ¨¨ TEX’ , à á¯à®-
áâà ­ï¥¬ë¥ CyrTUG, ¢® ¢áïª®¬ á«ãç ¥ íâ® ®¡-
«¥£ç¨«® ¡ë à ¡®âã ¤«ï ¬­®£¨å ¯®«ì§®¢ â¥«¥©

TEX’ ¢ �®áá¨¨, â ª¦¥ ¤«ï ¢á¥å â¥å, ª®¬ã ­¥®¡-
å®¤¨¬® à ¡®â âì á àãááª¨¬¨ â¥ªáâ ¬¨.

Type 1 ¨§ Metafont’ ?

�é¥ ®¤­ ¨¤¥ï, à¥ «¨§®¢ ­­ ï ¯à¨ à §à ¡®âª¥

�«¢~TEX’ ¡ë« ­ ¢¥ï­ áâ âì¥© [3], â ª¦¥ ¯®-
ï¢«¥­¨¥¬ ­ áâ®«¥ ¢â®à PostScript-¯à¨­â¥à . �
­ áâ®ïé¥¥ ¢à¥¬ï ¨¬¥¥âáï ­ ¡®à ¬ ªà®®¯à¥¤¥«¥-
­¨© ¤«ï METAFONT’ , á ¯®¬®éìî ª®â®à®£® ¬®¦-
­® ¯®«ãç¨âì èà¨äâ ¢ ä®à¬ â¥ Type 1 ¢ â¥ªáâ®-
¢®¬ ¢¨¤¥, § â¥¬, ¨á¯®«ì§ãï Type 1 ãâ¨«¨âë,
­ ¯¨á ­­ë¥ L. Hetherington’®¬,—¢ ¢¨¤¥ § £àã¦ -
¥¬ëå èà¨äâ®¢. � ¯®¬®éìî íâ®£® ­ ¡®à ¬ ªà®-
ª®¬ ­¤ ¬®¦­® ¯®«ãç¨âì ¯à¥¤áâ ¢«¥­¨¥ ¢ ¢¨¤¥

Type 1 ¨ èà¨äâ®¢ Computer Modern. �â à ¡®â
§ á«ã¦¨¢ ¥â ®â¤¥«ì­®£® à áá¬®âà¥­¨ï ¨, ¯®íâ®-
¬ã ¢ ¤ ­­®© áâ âì¥ ­¥ ®¯¨áë¢ ¥âáï.

�à®¡«¥¬ë ¨ ¯« ­ë

� ¬®© ¢ ¦­®© ¨§ áãé¥áâ¢ãîé¨å ­ á¥£®¤­ïè-
­¨© ¤¥­ì ¯à®¡«¥¬ ®áâ ¥âáï ¯®¤ª«îç¥­¨¥ ¯ ª¥-
â �«¢~TEX ª LATEX 2ε, â®ç­¥¥ ¥£® ®ä®à¬«¥­¨¥ ª ª
LATEX 2ε-¯ ª¥â . � ¡ã¤ãé¥¬ ¢â®à â ª¦¥ á®¡¨-
à ¥âáï § ­ïâìáï à §à ¡®âª®© ¯ ª¥â ¤«ï § ¯¨-
á¨ ¬ã§ëª¨ ¢ ¡¥§«¨­¥©­®© ­®â æ¨¨ (â ª ­ §ë-
¢ ¥¬ë¥ ”ªàîª¨”), ¨á¯®«ì§®¢ ¢è¥©áï ¢ �®áá¨¨

¢¯«®âì ¤® XVII ¢¥ª . � ç¨á«¥ ¯à®¡«¥¬, á¢ï-
§ ­­ëå á æ¥àª®¢­®-á« ¢ï­áª¨¬ ï§ëª®¬, ¬®¦­®
ã¯®¬ï­ãâì à §à ¡®âªã èà¨äâ®¢ ¤«ï ¡ãª¢¨æ,
â ª¦¥—á¯¥æ¨ «ì­®£® èà¨äâ ¤«ï § £®«®¢ª®¢, ¢
ª®â®à®¬ à §«¨ç­ë¥ ¡ãª¢®á®ç¥â ­¨ï ¨¬¥îâ à §-
«¨ç­ë¥ ­ ç¥àâ ­¨ï (íâ § ¤ ç ª ¦¥âáï ¢¥áì¬

ä ­â áâ¨ç­®©, â ª ª ª ¯®¤®¡­ë© èà¨äâ ¤®«¦¥­
¨¬¥âì ®ç¥­ì ¬­®£® á¨¬¢®«®¢ ¨ ®£à®¬­®¥ ç¨á«®

«¨£ âãà).
�®ç¥âáï ­ ¤¥ïâìáï, çâ® ªâ®-­¨¡ã¤ì à §-

¤¥«¨â ¨­â¥à¥á ¢â®à ª ¯à®¡«¥¬¥ æ¥àª®¢­®-
á« ¢ï­áª¨å ¨ ¤à¥¢­¨å â¥ªáâ®¢. �®¦¥â ¡ëâì,
ª®£¤ -­¨¡ã¤ì ¯®ï¢¨âáï ¬­®£®ï§ëç­®¥ ¨§¤ ­¨¥

�¨¡«¨¨ (­ æ¥àª®¢­®-á« ¢ï­áª®¬, £à¥ç¥áª®¬, « -
â¨­áª®¬, ¥¢à¥©áª®¬ . . . ­ ª ª®¬ ¥é¥?), ¢ë¯®«-
­¥­®¥ á ¯®¬®éìî TEX’ .

TUGboat, Volume 16 (1995), No. 4 379

�à¨¬¥àë

�à®áâ®© ¯à¨¬¥à ­ ¡®à â¥ªáâ ­ æ¥àª®¢­®-
á« ¢ï­áª®¬ ï§ëª¥:

£|á¤¨ <i_¨á¥ å|áàâ‘¥, á_­¥ ¡_¦i©,

¯®¬’¨«ã© ¬‘ï £à’íè­ £®

¨ à¥§ã«ìâ â ¥£® ª®¬¯¨«ïæ¨¨:

£¤�¨ ��~̈á¥ åà�â¥�, á­~¥ ¡¦~ i©, ¯®¬´«ã© ¬ï� £àºè­ £®
�à¨¬¥à æ¢¥â®¤¥«¥­¨ï: ¯®á«¥¤®¢ â¥«ì­®áâì

ª®¬ ­¤

\beginslav\family(slav)\size(12)%

\def\pray{%

\redg �|á{¤¨} <i_¨á¥ å|áàâ‘¥, á_­¥

¡_¦i©, ¯®¬’¨«ã© ¬‘ï £à’íè­ £®

}%

\black%

\hidecolor(black)%

\showcolor(red)%

\par\noindent\pray

\hidecolor(red)%

\showcolor(black)%

\par\noindent\pray

\showcolor(red)%

\par\noindent\pray

\endslav

¯à¨¢®¤¨â ª á«¥¤ãîé¥¬ã à¥§ã«ìâ âã:

�¤�̈ �� ~̈á¥ åà�â¥�, á­~¥ ¡¦~ i©, ¯®¬´«ã© ¬ï� £àºè­ £®

�¤�̈ �� ~̈á¥ åà�â¥�, á­~¥ ¡¦~ i©, ¯®¬´«ã© ¬ï� £àºè­ £®
�¤�̈ �� ~̈á¥ åà�â¥�, á­~¥ ¡¦~ i©, ¯®¬´«ã© ¬ï� £àºè­ £®

� íâ®¬ ¯à¨¬¥à¥ å®à®è® ¢¨¤­®, çâ® ªæ¥­â ¬®¦­®
áâ ¢¨âì ­¥ â®«ìª® ­ ¤ ®¤­¨¬ á¨¬¢®«®¬, ­® ¨ ­ ¤
á®ç¥â ­¨¥¬ á¨¬¢®«®¢.

�¯¨á®ª «¨â¥à âãàë

[1] Donald E. Knuth. The TEXbook. Addison
Wesley, Reading, MA, 1990.

[2] Donald E. Knuth. The METAFONTbook. Addison
Wesley, Reading, MA, 1990.

[3] Bogus law Jackowski, Marek Ryćko. Labyrinth
of METAFONT paths in outline. EuroTEX
Proceedings, 1994: 18–32.

[4] �¥à®¬®­ å �«¨¯¨© (� ¬ ­®¢¨ç). �à ¬¬ â¨-
ª æ¥àª®¢­®-á« ¢ï­áª®£® ï§ëª . � «®¬­¨ª,
�®áª¢ , 1991.

[5] �«®¢ àì àãááª®£® ï§ëª XI–XVII ¢¢. � ãª ,
�®áª¢ , 1975.

⋄ �­¤à¥© �«¥¯ãå¨­

� ¢à , �¥à£¨¥¢ �®á ¤, �®áá¨ï

Email: pooh@shade.msu.ru

Production Notes on the Russian Papers

Michel Goossens

The two previous articles both have their first
part in English, then an equivalent text in Russian,
and finally a part with examples in both languages.
Apart from these similarities the Russian text was
coded in completely different ways for both articles.

The Lapko-Makhovaya article uses the KOI8
encoding popular in the Unix community in Russia.
The KOI8 input was matched by hyphenation
patterns and a font layouts using the same encoding.

On the other hand the Slepukhin article was
coded in the Alternativniy encoding popular on PC
machines, and the normal Russian and SlavTEX
fonts matched that encoding, as did the Russian
hyphenation patterns needed to run that paper.

Both Russian encodings are 8-bits wide and
coincide with ASCII in positions 0 to 127, but they
place the Cyrillic characters in completely different
locations between 128 and 2551.

To run both articles two different formats had
to be generated. The first contained the English
and Russian hyphenation patterns using the KOI8
encoding, the second one English and Russian in the
Alternativniy encoding. Also different style files and
font encodings were necessary. Both font instances
are based on the LH Cyrillic font family developed
by Olga Lapko and her colleagues of CyrTUG [1],
only the encoding is different.

Presently CyrTUG, the Cyrillic TEX Users
Group has a working group coordinated by Olga
Lapko trying to come up with a unique encoding,
but, as stated in the babel article, we will probably
have to wait until the Ω system is ready to try and
solve the problems discussed in Section “Encoding
and font problems”.

Finally, as a technical aside, the picture on the
next page, showing an example of SlavTEX output,
had its text typeset with the SlavTEX system, while
the first letter of the text and the surrounding frame
are bitmaps.

References

[1] Olga G. Lapko. MAKEFONT as part of the
CyrTUG-EMTEX package. Proceedings of the
8th European TEX Conference, pages 110–118,
Gdańsk, Poland, 1994.

⋄ Michel Goossens

CERN, Geneva, Switzerland

Email: goossens@cern.ch

1 More information on KOI8 can be found at the URL

http://www.nar.com/tag/koi8_explained.html.

380 TUGboat, Volume 16 (1995), No. 4

�������� ���������������
Q �I�����

���� ��������������� �������

¤�ì ­°èê ��~̈áê åà�â·áê, ¡¦~ ³áâ¢¥­­®î á¢®³î ¡«~£®¤°âiî, ¤°à®¬ê
¦¥ �̈ ¢«°áâiî, ¤°­­®î áâ~Õ¬ê �e£w� �yç~­ªÈ¬ê �̈ � �̄«w¬ê, ¢®
�e¦¥ ¢ï§°â¨ �̈ àíè´â¨ £àíå�̈ ç¥«®¢ºªw¢ê, [à³ªê �̈¬ê: ¯ài-
¨¬´â¥ ¤å~ áâ~ °£®, �̈å¦¥ q¯ãáâ¨â¥� £àíå�̈, q¯¸áâïâáï �̈¬ê:

�̈ å¦¥ �y¤¥à¦¨â¥�, �y¤¥à¦°âáï: �̈ �e«Òª � é¥ á¢¾¦¥â¥ �̈ à §àíè¨â¥�
­ §¥¬«�̈, ¡¸¤ãâê á¢Ø§ ­ �̈ à §àíèe�­ �̈ ­ ­¡~á �̈] q �o­íåê ¦¥
�̈ ­ ­ë� ¤à¸£ê ¤àã£®¯ài¨¬°â¥«ì­w ¯à¨è³¤è¥î, ¤ á®â¢®à´âê çà¥§�
¬¥­¥� á¬¨à³­­ £® ¯à®é³­­® �̈ ái¥� ¯® ¤¸åã ç°¤® [�̈¬�ªê] q ¢áºåê,
�e«Òª �jªw ç¥«®¢ºªê á®£àíè�̈ ¡£~ ã á«·¢®¬ê, �̈ « �̈ ¤º«®¬ê, �̈ « �̈ ¬¹á-
«iî �̈ ¢áº¬¨ á¢®´¬¨ ç¸¢áâ¢ë, ¢·«¥î �̈ « �̈ ­¥¢·«¥î, ¢º¤í­i¥¬ê �̈ « �̈
­¥¢º¤í­i¥¬ê. ��é¥ ¦¥ ¯®¤� ª«¾â¢®î �̈ « �̈ q«ãç³­i¥¬ê � àåi¥à³©áª¨¬ê
�̈ « �̈ ��¥à³©áª¨¬ê ¡¹áâì, �̈ « �̈ � é¥ ª«¾â¢ã �oâæ � á¢®¥£w� �̈ « �̈ ¬°â¥à¥
á¢®¥ï� ­ ¢¥¤¥� ­ áï� , �̈ « �̈ á¢®¥¬Î ¯à®ª«¾âiî ¯®¤¯ ¤¥�, �̈ « �̈ ª«¾â¢ã
¯à¥áâã¯ �̈ , �̈ « �̈ �̈ ­¹¬¨ ­ºªi¨¬¨ £àíåÒ �jªw ç¥«®¢ºªê á¢ï§°áï: ­®
�w ¢áºåê á´åê á³à¤æ¥¬ê á®ªàãè³­­ë¬ê ¯®ª°ïáï, �̈ q âºåê ¢áºåê
¢¨­ë� �̈ �î§ë ¤ à §àíè´âê �e£®� [î�]: �e«Òª ¦¥ § ­³¬®éì �eáâ¥áâ-
¢ � § ¡¢³­iî ¯à¥¤ ¤¥� �̈ âÐ ¢áØ ¤ ¯à®áâ´âê �e¬Î [�e©], ç«~¢íª®«»¡iï
à°¤¨ á¢®¥£w� , ¬«~â¢ ¬¨ ¯à¥áâ~¹ï �̈ ¯à¥¡«~£®á«®¢³­­ëï ¢«�çæë ­°è¥ï
¡æ�ë �̈ ¯à¨á­®¤¢~ë ¬à~Á¨, áâ~¹åê á«°¢­ëåê �̈ ¢á¥å¢°«ì­ëåê � �̄«ê �̈
¢áºåê áâ~¹åê, � ¬´­ì.

An example of SlavTEX—�à¨¬¥à �«¢~TEX

TUGboat, Volume 16 (1995), No. 4 381

Fonts

Release 1.2 of the dc-fonts:

Improvements to the European letters and

first release of text companion symbols

Jörg Knappen

Abstract

I describe the improvements made to the dc fonts in
release 1.2, and the text companion font added. The
ec fonts will finally replace the present 128-character
cm fonts as the default fonts of LATEX.

1 Introduction

In 1990 at the TUG meeting in Cork, Ireland, the
European TEX user groups agreed on a 256-character
encoding supporting many European languages with
latin writing. This encoding is both an internal en-
coding for TEX and a font encoding. This double
nature is a consequence of the fact that both kind of
encodings cannot be entirely separated within TEX.
The design goals of the Cork encoding are to al-

low as many languages as possible to be hyphenated
correctly and to guarantee correct kerning for those
languages. Therefore it includes many ready-made
accented letters.
It also includes some innovative features which

have not become very popular yet, though they de-
serve to become so. The first to mention is a special,
zero-width invisible character, the compound word
mark (cwm). The second is the separation of the
two characters 〈hyphen〉 and 〈hyphenchar〉. By ap-
propriate design of the hyphenchar glyph, hanging
hyphenation can be achieved.
The final version of the Cork encoded fonts will

be called ec (European Computer Modern or Ex-
tended Computer Modern) fonts. The current ver-
sion, called dc fonts, is an intermediate step towards
the final version. Note that in the case of bug fixes
and improvements, the metrics may change.
The need for a text companion font was first

articulated in the discussion of new 256 character
mathematical fonts in 1993. In order to achieve a
better orthogonality between text and math, some
text symbols stored in the math fonts should be
moved to the text companion fonts1. The text com-
panion fonts are also the ideal place to store some
new characters, like currency symbols.

1 The archives of the math-font-discuss mailing list

are available for ftp on ftp.cogs.susx.ac.uk in directory

pub/tex/mathfont.

2 Supported Languages

The following languages are supported by the Cork
encoding: Afrikaans, Albanian, Breton, Croatian,
Czech, Danish, Dutch, English, Estonian, Faroese,
Finnish, French, Frisian, Gaelic, Galician, German,
Greenlandic, Hungarian, Icelandic, Irish (modern
orthography), Italian, Letzeburgish, Lusatian (Sor-
bian), Norwegian, Polish, Portuguese, Rhaetian (Ru-
mantsch), Rumanian, Slovak, Slovene, Spanish, Swe-
dish, Turkish. Many non-European languages using
the standard latin alphabet (e.g., Bahasa Indonesia,
Suaheli) are also supported.
In Europe, the following languages aren’t sup-

ported: Azeri, Basque, Catalan, Esperanto, Irish
(old orthography), Latvian, Lithuanian, Maltese, Sa-
mi, Welsh. Of course, Greek and all languages with
cyrillic writing are outside the scope of the Cork en-
coding.

3 Improvements to the dc Fonts

3.1 Accents

In good typography, the accent marks should look
different for capitals and lowercase letters respec-
tively. The accent over a capital should be of a ‘flat’
design, while the accent on a lowercase letter should
be ‘steep’. The Computer Modern fonts by D. E.
Knuth only have steep accents, suitable for lower-
case letters.

óx́ ÓX́
Fig. 1: Letters with acute accent in the cmr font

There are no pre-accented letters provided, which
leads to problems with proper hyphenation and kern-
ing. However, the floating accent approach guaran-
tees the consistency of all accented letters.
With the (now out-of-date) version 1.1 of the dc

fonts, the situation is different. We have predesigned
accented letters for all languages included in the ISO
standards 8859-1 and 8859-2. If an ‘exotic’ accented
letter is needed, it does not fit with the provided
ones.

óx́ ÓX́
Fig. 2: Letters with acute accent in the dcr font (v1.1)

Note that the floating acute accent is the same for
capitals and lowers, but different from both, being
even steeper than the lowercase one.
With version 1.2 of the dc fonts, all inconsisten-

cies have gone. The accents are different between
capitals and lowers as they should be, and floating
accents can be applied in a consistent manner.

382 TUGboat, Volume 16 (1995), No. 4

ó�x Ó�X
Fig. 3: Letters with acute accent in the dcr font (v1.2)

Since the Cork encoding provides only one slot for
each accent, the capital acute accent is taken from
the text companion font tcr. This is possible because
TEX allows cross-font accenting.
The acute accent and the readily accented let-

ters were taken with kind permission of the authors
from the polish pl fonts, which provide the highest
available quality for these shapes. The hungarian
double acute accent and the grave accent follow the
design of the acute accent.

3.2 Quotation marks

The design of quotation marks provides another chal-
lenge for the ec fonts. In the Computer Modern
fonts, they are optimised to english usage.

“ ”
Fig. 4: Quotation marks in the cmr font

They lie asymmetrically in their boxen, which makes
a wider space before and after a quotation. However,
this kind of design produces a disaster, if the same
english opening quotation mark is used as a german
or polish closing quotation mark. Currently, macros
have to compensate for this.
In the dc fonts 1.2, the quotation marks lie sym-

metrically in a tighter box, and the additional space
is created by kerning against the boundarychar.

� �
Fig. 5: Quotation marks in the dcr font (v1.2)

The boundarychar feature was introduced with TEX3
and METAFONT2; it is reasonable to assume that
nowadays every TEX user has access to these or later
versions2.

3.3 Miscellaneous

The shapes for polish letters are now taken from the
polish pl font, leading to improved shapes on the
ogoneked letters and the crossed l.

¡ ¦ ª � � �
Fig. 6: Polish special letters in the dcr font (v1.2)

With the help of the czechoslovak TEX users’
goup, the shapes of czech and slovak special letter
have been improved, too.

2 Maybe it was not a reasonable assumption in 1990, when

the Cork encoding was born and the above mentioned ver-

sions were brand new.

¤ ¥ © ´ � � � �
Fig. 7: Some czech and slovak special letters in the dcr

font (1.2)

The height of umlaut dots has been adjusted to the
value contributed by the czechoslovak group (ä oc-
curs in slovak); the value used in version 1.1 of the dc
fonts was considered too low even by german users.

äää
Fig. 8: The letter ä in cmr, dcr v1.1, and dcr v1.2

The hyphenchar is now designed to hang out
of its bounding box, thus allowing for hanging hy-
phenation.

- �
Fig. 9: Hyphen and hyphenchar with their bounding

box

The release of version 1.2 also contains a new

shape, a classical serif italic font. It was already pre�

pared for version 1.1, but no parameter and driver

�les were present for it. It is an italic with upper

serifs instead of ingoing hooks. This paragraph is

typeset using the dcci font to show its appearance.

4 The tc Fonts

4.1 A text symbol encoding

Over the years, many reasons have accumulated for
a new text symbol encoding. There are some text
symbols currently stashed in the math fonts, the
footnote marks, and the bullet (•) are among them.

∗ § ¶ † ‡ ‖
Fig. 10: Footnote symbols from the cm math fonts

In 256-character math fonts they should not be
preserved, but moved to a text symbol encoding.

* § � ¶ � � �
Fig. 11: Footnote symbols from the tcr font

I have added serifs to the paragraph sign (¶) in the
serif typefaces, and I have added another one having
only one vertical stroke. The design of the section
sign (§) was improved significantly, as can be seen
from the boldface glyphs.

§ �
Fig. 12: Old and new design of the section mark

ISO standards 8859-1 (Latin 1), 8859-2 (Latin 2),
and 6937 contain several custom signs. It will be eas-
ier to typeset text encoded according to those stan-
dards if the necessary symbols were easily accessible
through a text symbol font.

TUGboat, Volume 16 (1995), No. 4 383

£ $ ¢ ¥ ¤ � � � � �
� � � � � �

Fig. 13: Currency signs from the tcr font

Finally, I wanted to have different style accents
for capitals and lowercase letters. Since the Cork
encoding does not have space for another fourteen
accent glyphs, I decided to have the lowercase ac-
cents, which are needed far more often, in the dc
fonts, and to put the capital accents into the text
companion fonts.
The users of commercial fonts also want to ac-

cess all glyphs stored in those fonts. Since most of
those glyphs are textual, they all should be included
into a text symbol font encoding.

4.2 The font encodings TS1 and TSA

For mainly technical reasons, I think the candidates
for a text symbol encoding should be distributed
over two fonts, their encoding named TS1 and TSA
respectively. There are important differences be-
tween the technologies supported byMETAFONT and
TEX compared to the path most commercial font
suppliers choose.
The Computer Modern family of fonts supports

the notion of a designsize, i.e., there are subtle dif-
ferences between the shapes at different point sizes
as illustrated in the next section. TEX is able to
raise and lower letters, thus it does not need an al-
ready raised digit to produce a superscript. It can
also produce nice fractions using a macro from the
TEXbook, exercise 11.6, as 1/2, 1/4, and 1/6.
Most commercial vendors took the easier path;

their fonts come in only one size and are scaled up
and down to other sizes. Thus, a small superscript
does not look right, and to compensate for this a pre-
designed superscript is added to the fonts. A sub-
script, too, because earlier text processors weren’t
able to raise or lower letters. For similar reasons,
fraction glyphs were provided, or fraction were con-
tructed out of a sequence 〈superscript digit〉 〈fraction〉
〈subscript digit〉, where fraction is a special slash to
construct fractions.
On the other hand, it is almost impossible to

follow this path with TEX and METAFONT: The size
of the superscripts can be influenced by TEX macros,
and therefore there is no unique ‘virtual designsize’
for ready-made superscripts.
The selection of superscripts offered by com-

mercial vendors is at the moment rather sparse; many
often needed ones are lacking.

2
ième

5
th Mc

Fig. 14: Some superscript letters lacking in expert fonts

Therefore the rule of thumb for the distribution
of glyphs is the following: Put all glyphs wich can be
conveniently made with METAFONT and are needed
with TEX into the encoding TS1, and put the re-
maining glyphs, mainly superscripts and subscripts,
into the encoding TSA. There are some duplications
and deviations from this rule of thumb, e.g., super-
script 1, 2, and 3 are part of ISO 8859-1, thus they
occur in TS1 as well as in TSA.

5 Standard Control Sequences

The following standard control sequences are as-
signed with LATEX’s T1 encoding for the dc fonts:
\r Ring accent (\r u gives ů)
\k Ogonek (\k e gives ę)
\dh, \DH Icelandic letter edh (ð, Ð)
\dj, \DJ Letter d with stroke (ñ, Ð)
\ng, \NG Letter eng (ŋ, Ŋ)
\th, \TH Icelandic letter thorn (þ, Þ).

The package textcomp by Sebastian Rahtz as-
signs standard names to all text companion symbols.
The documentation prints a nice table.

6 Ligatures

In the proportional fonts, the following ligatures are
implemented:

-- – (en dash)
--- — (em dash)
‘‘ “ (english opening quotes,

german closing quotes)
’’ ” (english and polish closing quotes)
,, „ (german and polish opening quotes)
<< « (french opening quotes)
>> » (french closing quotes)
!‘ !‘ (spanish opening exclamation mark)
?‘ ?‘ (spanish opening question mark)
fi fi
ff ff
fl fl
ffi ffi
ffl ffl

There is another important ligature, not shown
above:
〈hyphen〉〈hyphenchar〉 gives 〈hyphenchar〉.
This allows the implementation of new hyphenation
patterns with hyphenchar ´127 allowing hyphen-
ation of words containing explicit hyphens. This
ligature was missing by accident in the September

384 TUGboat, Volume 16 (1995), No. 4

1995 release of dc 1.2, but has been added in patch-
level 1 released in December 1995.

7 New Names of the Font Files

Currently, the extended Computer Modern fonts have
the prefix dc. This prefix will change to ec with the
final release after another round of bug fixing. I
hope to make the transition from dc to ec in about
one year. The text companion fonts have the prefix
tc, which is not subject to change. However, later
releases may include more characters and therefore
have different checksums. No characters shall be re-
moved from the tc fonts.
Most of the dc fonts can be generated at any

size one wants in the range from 5pt to 100pt. For
each size, a unique name is needed.
With release 1.2 of the dc fonts, a new, more

precise naming scheme is in effect. Since there are
widely used operating sytems limiting the file name
to 8 characters (plus an extension of 3 characters),
the following scheme is used:

• The first two letters (either dc or tc) denote the
encoding and the general design of the font.

• The following one or two letters denote the fam-
ily, shape, and series attributes of the font, e.g.,
r for roman, bx for bold extended, it for italic,
or bi for bold extended italic. A complete over-
view is given at the end of this section.

• The following four digits give the design size
in TEX’s points multiplied by 100, e.g., 1000
denotes ten point, 1440 denotes magstep 2, i.e.,
14.4 point, and 0500 denotes five point.

Here are the implemented styles:
Roman family: r roman, b bold, bx bold ex-

tended, sl slanted, bl bold extended slanted, cc
caps and small caps, ti (text) italic, bi bold ex-
tended italic, u unslanted italic, ci classical serif
italic (new design).
Sans serif family: ss sans serif, si sans serif

inclined (slanted), sx sans serif bold extended, so
sans serif bold extended oblique (slanted).
Typewriter family: tt typewriter, tc type-

writer caps and small caps, st slanted typewriter,
it italic typewriter, vt variable width typewriter.
Various other fonts: bm variant bold roman,

dh dunhill, fb Fibonacci parameters, ff funny, fi
funny italic.
Here are some examples:

dcr1000 European Computer Modern
roman at 10pt

tcr1000 Text companion symbols roman
at 10pt

dcss1728 European Computer Modern sans
serif at 17.28pt

dcbx0900 European Computer Modern
roman bold extended at 9pt

Some remaining fonts come at one size only;
those are:

dcssdc10 sans serif demi-bold condensed
dcsq8 sans serif quotation
dcqi8 sans serif quotation inclined
dclq8 latex sans serif quotation
dcli8 latex sans serif quotation inclined
idclq8 invisible latex sans serif quotation
idcli8 invisible latex sans serif quotation

inclined.
The last four fonts are for the slides document class,
which replaces old SliTEX. They contain a special
version of the capital letter ‘I’.

8 Upgrading to ec

Here is the following non-official schedule for the up-
grade from the dc to ec fonts: One intermediate re-
lease (1.3) shall come out in spring 1996; the final
release of the ec fonts shall be made in autumn 1996.
Afterwards, the fonts will be frozen and only neces-
sary bug fixes will be applied.

A The Cork Encoding

position description
(octal)

Accents for lowercase letters

000 grave
001 acute
002 circumflex
003 tilde
004 umlaut
005 hungarian
006 ring
007 hachek
010 breve
011 macron
012 dot above
013 cedilla
014 ogonek

Miscellaneous

015 single base quote
016 single opening guillemet
017 single closing guillemet
020 english opening quotes

TUGboat, Volume 16 (1995), No. 4 385

021 english closing quotes
022 base quotes
023 opening guillemets
024 closing guillemets
025 en dash
026 em dash
027 compound word mark (invisible)
030 perthousandzero
031 dotless i
032 dotless j
033 ligature ff
034 ligature fi
035 ligature fl
036 ligature ffi
037 ligature ffl
040 visible space

ASCII

041 exclamation mark
042 straight quotes
043 hash mark
044 dollar sign
045 percent sign
046 ampersand
047 apostrophe
050 opening parenthesis
051 closing parenthesis
052 asterisk
053 plus sign
054 comma
055 hyphen (note: not minus sign)
056 full stop
057 solidus
060 digit 0
. . .
071 digit 9
072 colon
073 semicolon
074 less than sign
075 equals sign
076 greater than sign
077 question mark
080 commercial at
081 capital letter A
. . .
132 capital letter Z
133 opening square bracket
134 backslash
135 closing square bracket
136 ASCII circumflex
137 underscore
140 opening quote (not ASCII grave!)
141 lowercase letter a
. . .
172 lowercase letter z
173 opening curly brace
174 vertical bar
175 closing curly brace

176 ASCII tilde
177 hyphenchar (hanging)

Letters for eastern European languages (from Latin-2)

200 capital letter A with breve
201 capital letter A with ogonek
202 capital letter C with acute
203 capital letter C with hachek
204 capital letter D with hachek
205 capital letter E with hachek
206 capital letter E with ogonek
207 capital letter G with breve
210 capital letter L with acute
211 capital letter L with hachek
212 capital letter crossed L
213 capital letter N with acute
214 capital letter N with hachek
215 capital letter Eng
216 capital letter O with hungarian double acute
217 capital letter R with acute
220 capital letter R with hachek
221 capital letter S with acute
222 capital letter S with hachek
223 capital letter S with cedilla
224 capital letter T with hachek
225 capital letter T with cedilla
226 capital letter U with hungarian double acute
227 capital letter U with ring
230 capital letter Y with diaeresis
231 capital letter Z with acute
232 capital letter Z with hachek
233 capital letter Z with dot
234 capital letter IJ
235 capital letter I with dot
236 lowercase letter d with bar
237 section sign
240 lowercase letter a with breve
241 lowercase letter a with ogonek
242 lowercase letter c with acute
243 lowercase letter c with hachek
244 lowercase letter d with hachek
245 lowercase letter e with hachek
246 lowercase letter e with ogonek
247 lowercase letter g with breve
250 lowercase letter l with acute
251 lowercase letter l with hachek
252 lowercase letter crossed l
253 lowercase letter n with acute
254 lowercase letter n with hachek
255 lowercase letter eng
256 lowercase letter o with hungarian double acute
257 lowercase letter r with acute
260 lowercase letter r with hachek
261 lowercase letter s with acute
262 lowercase letter s with hachek
263 lowercase letter s with cedilla
264 lowercase letter t with hachek
265 lowercase letter t with cedilla

386 TUGboat, Volume 16 (1995), No. 4

266 lowercase letter u with hungarian double acute
267 lowercase letter u with ring
270 lowercase letter y with diaeresis
271 lowercase letter z with acute
272 lowercase letter z with hachek
273 lowercase letter z with dot
274 lowercase letter ij
275 spanish inverted exclamation mark
276 spanish inverted question mark
277 pound sign

Letters for western European languages (from Latin-1)

300 capital letter A with grave
301 capital letter A with acute
302 capital letter A with circumflex
303 capital letter A with tilde
304 capital letter A with diaeresis
305 capital letter A with ring
306 capital letter AE
307 capital letter C with cedilla
310 capital letter E with grave
311 capital letter E with acute
312 capital letter E with circumflex
313 capital letter E with diaeresis
314 capital letter I with grave
315 capital letter I with acute
316 capital letter I with circumflex
317 capital letter I with diaeresis
320 capital letter Edh (D with bar)
321 capital letter N with tilde
322 capital letter O with grave
323 capital letter O with acute
324 capital letter O with circumflex
325 capital letter O with tilde
326 capital letter O with diaeresis
327 capital letter OE
330 capital letter O with slash
331 capital letter U with grave
332 capital letter U with acute
333 capital letter U with circumflex
334 capital letter U with diaeresis
335 capital letter Y with acute
336 capital letter Thorn
337 capital letter Sharp S (deviating from

Latin-1)
340 lowercase letter a with grave
341 lowercase letter a with acute
342 lowercase letter a with circumflex
343 lowercase letter a with tilde
344 lowercase letter a with diaeresis
345 lowercase letter a with ring
346 lowercase letter ae
347 lowercase letter c with cedilla
350 lowercase letter e with grave
351 lowercase letter e with acute
352 lowercase letter e with circumflex
353 lowercase letter e with diaeresis
354 lowercase letter i with grave

355 lowercase letter i with acute
356 lowercase letter i with circumflex
357 lowercase letter i with diaeresis
360 lowercase letter edh
361 lowercase letter n with tilde
362 lowercase letter o with grave
363 lowercase letter o with acute
364 lowercase letter o with circumflex
365 lowercase letter o with tilde
366 lowercase letter o with diaeresis
367 lowercase letter oe
370 lowercase letter o with slash
371 lowercase letter u with grave
372 lowercase letter u with acute
373 lowercase letter u with circumflex
374 lowercase letter u with diaeresis
375 lowercase letter y with acute
376 lowercase letter thorn
377 lowercase letter sharp s (deviating from

Latin-1)

B The Text Companion Encoding

position description
(octal)

Accents for capital letters

000 grave
001 acute
002 circumflex
003 tilde
004 umlaut
005 hungarian
006 ring
007 hachek
010 breve
011 macron
012 dot above
013 cedilla
014 ogonek

Miscellaneous

015 base single straight quote
022 base double straight quotes
025 twelve u dash
026 three quarters emdash
030 left pointing arrow
031 right pointing arrow
032 tie accent (lowercase)
033 tie accent (capital)
040 blank symbol
044 dollar sign
047 straight quote
052 centered star
057 fraction

TUGboat, Volume 16 (1995), No. 4 387

Oldstyle digits

060 oldstyle digit 0
061 oldstyle digit 1
062 oldstyle digit 2
063 oldstyle digit 3
064 oldstyle digit 4
065 oldstyle digit 5
066 oldstyle digit 6
067 oldstyle digit 7
070 oldstyle digit 8
071 oldstyle digit 9

Miscellaneous

115 mho sign
117 big circle
127 ohm sign
136 arrow up
137 arrow down
140 backtick (ASCII grave)
142 born
144 died
154 leaf
155 married
156 musical note
176 low tilde
177 short equals

TS1-symbols

200 ASCII-style breve
201 ASCII-style hachek
202 double tick (ASCII double acute)
203 double backtick
204 dagger
205 ddagger
206 double vert
207 perthousand
210 bullet
211 centigrade
212 dollaroldstyle
213 centoldstyle
214 florin
215 colon
216 won
217 naira
220 guarani
221 peso
222 lira
223 recipe
224 interrobang
225 gnaborretni
226 dong sign
227 trademark

Symbols from ISO 8859-1 (Latin-1)

242 cent
243 sterling
244 currency sign
245 yen
246 broken vertical bar
247 section sign
250 high dieresis
251 copyright
252 feminine ordinal indicator
254 logical not
256 circled R
257 macron
260 degree sign
261 plus-minus sign
262 superscript 2
263 superscript 3
264 tick (ASCII-style acute)
265 micro sign
266 pilcrow sign
267 centered dot
271 superscript 1
272 masculine ordinal indicator
274 fraction one quarter
275 fraction one half
276 fraction three quarters
326 multiplication sign (times)
366 division sign

⋄ Jörg Knappen
Barbarossaring 43
D-55118 Mainz
Germany
Email: knappen@vkpmzd.kph.
uni-mainz.de

Graphics

A METAFONT–EPS interface

Bogus law Jackowski

Do not explain too much.

W. Strunk Jr. and E. B. White,

The Elements of Style

Introduction

TEX is not a lion, TEX is an octopus. . .This sounds
like heresy, but it is my deepest conviction that one
of the most wonderful features of the TEX/META-
FONT system is its openness, i.e., the capability
of collaboration with other systems. Hence the
association with an octopus:

The paper illustrates this statement by pre-
senting a brief description of an interface for META-
FONT-to-PostScript, MFTOEPS. The kernel of the
package is a METAFONT program (MFTOEPS.MF)
which provides necessary definitions for translating
the description of graphic objects from METAFONT

to PostScript. The PostScript code is written to
a log file. It can be extracted from the log file
either manually or with the help of additional util-
ities. There are two programs in the package for
performing this task: an AWK program and a TEX
program, the latter a bit slower but more universal.

The PostScript files (specifically, Encapsulated
PostScript files) produced by MFTOEPS are read-
able by some popular graphics programs, namely, by
Adobe Illustrator (Macintosh and PC compatibles),
CorelDraw! (PC compatibles), and Fontographer
(Macintosh and PC compatibles). In other words,

388 TUGboat, Volume 16 (1995), No. 4

graphic objects programmed using METAFONT can
be further processed by these programs.

It should be stressed that it not the idea of
employing METAFONT to produce PostScript code
that is important here. A much better tool for
this purpose is J.D. Hobby’s METAPOST. It is
possibile to further process the objects generated
by MFTOEPS that makes this package worthy of
mention.

Overview of the MFTOEPS package

The MFTOEPS.MF program contains the definitions
of the following macros which are meant to be used
for generating EPS files:

eps_mode_setup fix_line_width

write_preamble fix_line_join

write_postamble fix_line_cap

find_BB fix_miter_limit

set_BB fix_dash

fill_C fix_fill_cmyk

draw_C fix_draw_cmyk

clip_C

Obviously, not all possibilities of PostScript are
exploited, but the main idea was to provide a simple
tool for producing output “eatable” by programs
which are not PostScript interpreters. Therefore
only a small subset of the PostScript language
can be taken into account. Nevertheless, these 15
commands are enough to produce an innumerable
variety of graphic objects.

METAFONT programs using MFTOEPS have
the following structure:

1. input mftoeps;
2. eps_mode_setup; % instead of mode_setup
3. 〈METAFONT code 〉
4. find_BB 〈 list of paths 〉;
5. write_preamble jobname;
6. 〈METAFONT code containing fill_C, draw_C,
clip_C, etc. 〉

7. write_postamble;
8. end.

The structure seems straightforward, except for
some notational details which will be explained in a
moment. Perhaps only the fourth line needs a few
remarks. A properly formed EPS file should contain
the coordinates of the corners of the bounding box
in a comment line at the beginning of the file.
Macro write_preamble needs to know the respec-
tive coordinates, as it is responsible for generating
the header of an EPS file. Macro find_BB simply
prepares the data for write_preamble.

As you can see, using the plain beginchar
and endchar commands is not essential, although
usually it is convenient to make use of them.

Synopsis of the interface of the MFTOEPS

package

Conventions: In the following I shall use the words
number, pair, string, and path as abbreviations for
numeric expression, pair expression, string expres-
sion, and path expression, respectively. The angle
brackets, 〈 and 〉, used for marking parameters
of macros, are “meta-characters,” i.e., they do not
belong to the METAFONT code.

Command:

eps_mode_setup

Usage:

eps_mode_setup 〈 an optional number (0 or 1) 〉;

Remarks:

This command should be used instead of the usual
mode_setup command. The forms eps_mode_setup
and eps_mode_setup 1 are equivalent. One of them
(preferably the former) should be used for normal
processing, i.e., for generating EPS files. Invoking
eps_mode_setup 0 is meant primarily for testing
purposes and is supposed to be used by experienced
programmers who know what they are doing. There
is a string variable, extra_eps_setup, similar to
extra_mode_setup; at the end of eps_mode_setup
the command scantokens extra_eps_setup is in-
voked, enabling user-oriented adjustments, e.g.,
changing the default resolution.

Command:

write_preamble

Usage:

write_preamble 〈 string 〉;

Remarks:

This command initializes the process of writing
the PostScript code. The string expression is
the name (without extension) of the resulting EPS

file; the extension is always EPS. METAFONT is
switched to batchmode in order to avoid slowing
down the process by writing mess(ages) to the
terminal. Inspection of the log file is thus highly
recommended.

Command:

write_postamble

Usage:

write_postamble;

TUGboat, Volume 16 (1995), No. 4 389

Remarks:

This command ends the writing of the PS code,
switches METAFONT back to errorstopmode, and
performs necessary “last minute” actions (see be-
low).

Commands:

set_BB find_BB reset_BB

Usage:

set_BB 〈 four numbers or two pairs
separated by commas 〉;

find_BB 〈 a list of paths separated by commas 〉;
reset_BB;

Remarks:

The commands set_BB or find_BB should be in-
voked prior to invoking write_preamble. set_BB
sets the coordinates of the corners of the bounding
box of a graphic object; it is useful when the bound-
ing box of a graphic object is known in advance or
if it is required to force an artificial bounding box.
find_BB computes the respective bounding box for a
list of paths; if several find_BB statements are used,
the common bounding box is calculated for all paths
that appear in the arguments. The result is stored in
the variables xl_crd, yl_crd, xh_crd, and yh_crd.
There are two functions, llxy and urxy, return-
ing pairs (xl_crd,yl_crd) and (xh_crd,yh_crd),
respectively. The last command, reset_BB, makes
xl_crd, yl_crd, xh_crd, and yh_crd undefined
(the initial situation); reset_BB is performed by
the write_postamble macro, which is convenient
in the case of generating several EPS files in a single
METAFONT run.

Commands:

fill_C draw_C

Usage:

fill_C 〈 a list of paths separated by commas 〉;
draw_C 〈 a list of paths separated by commas 〉;

Remarks:

These commands are to be used instead of the
usual METAFONT fill and draw ones. They
cause a list of paths followed by the PostScript
operation eofill (fill_C) or stroke (draw_C) to
be translated to a PostScript code. The list of paths
constitutes a single curve in the sense of PostScript.

Command:

clip_C

Usage:

clip_C 〈 a list of paths separated by commas,
possibly empty 〉;

Remarks:

The macro clip_C with a non-empty parameter
works similarly to the fill_C command, except that
the eoclip operator is issued instead of eofill.
This causes an appropriate change to the current
clipping area. According to PostScript’s principles,
the resulting area is a set product of the current
clipping area and the area specified in the argument
of the eoclip command. The empty parameter
marks the end of the scope of the most recent clip_C
command with a non-empty parameter. In other
words, nested clip_C commands form a “stack”
structure. If needed, the appropriate number of
parameterless clip_C commands is issued by the
write_postamble macro, thus the user does not
need to worry about it. Warning: files produced
using clip_C are interpreted properly by Adobe
Illustrator (provided path directions are defined
properly) but not by CorelDraw! (ver. 3.0).

Commands:

fix_line_width fix_line_join

fix_line_cap fix_miter_limit

fix_dash

Usage:

fix_line_width 〈 a non-negative number
(dimension) 〉;

fix_line_join 〈 a number (0, 1 or 2) 〉;
fix_line_cap 〈 a number (0, 1 or 2) 〉;
fix_miter_limit 〈 a number ≥ 1 〉;
fix_dash (〈 a list of numbers (dimensions)

separated by commas,
possibly empty 〉)
〈 a number (dimension) 〉

Remarks:

These command are to be used in connection with
the draw_C command. fix_line_width fixes the
thickness of the outline. The other four commands
correspond to PostScript operations setlinejoin,
setlinecap, setmiterlimit, and setdash (see
the PostScript Language Reference Manual for
details). All commands should be used after
write_preamble, as write_preamble sets the de-
fault thickness (0.4pt), default line join (0), default
line cap (0), default miter limit (10), and a solid
line as a default for stroking (fix_dash () 0).

Commands:

fix_fill_cmyk fix_draw_cmyk

Usage:

fix_fill_cmyk 〈 four numbers separated
by commas 〉;

fix_draw_cmyk 〈 four numbers separated
by commas 〉;

390 TUGboat, Volume 16 (1995), No. 4

Remarks:

These commands define the colours of the in-
teriors of graphic objects (fix_fill_cmyk) and
colours of outlines (fix_draw_cmyk) using the cyan-
magenta-yellow-black model (the basic model of the
MFTOEPS package). They should be used after
write_preamble (because write_preamble defines
the black colour as a default for both macros) and
prior to invoking the corresponding fill_C and
draw_C commands. There are also (just in case)
macros fix_fill_rgb and fix_draw_rgb using red-
green-blue model; the argument to both of these
macros is a triple of numbers. (The user can control
the process of conversion from RGB to CMYK by
the redefinition of macros under_color_removal
and black_generation.) The numbers forming the
arguments of the macros are supposed to belong to
the interval [0 . . .:1].

Besides the fifteen basic macros there are two
functions and two control variables that may be of
some interest for a virtual user of the MFTOEPS

package:

Additional functions:

pos_turn neg_turn

Usage:

pos_turn (〈 path 〉)
neg_turn (〈 path 〉)

Remarks:

Each function returns the path passed as the
argument, except that the orientation of the
path is changed, if necessary: pos_turn returns
paths oriented counter-clockwise, neg_turn— ori-
ented clockwise. This may be useful for creating
pictures which are to be processed further by Adobe
Illustrator, because this program is sensitive to the
orientation of paths.

Control variable:

yeseps

Remarks:

No EPS file will be generated unless the variable
yeseps is assigned a definite value. It is advis-
able to set this variable in a command line (see
section “Examples”).

Control variable:

testing

Remarks:

If the variable testing is assigned a definite value,
the whole PostScript code is flushed to the termi-
nal, thus slowing down significantly the process of
generating an EPS file (cf. the description of the
write_preamble command).

Examples

All sample programs in this section are presented
in extenso. The reader is not supposed to study the
code thoroughly. Nevertheless, I prefer to leave the
reader to decide which parts of the code are to be
skipped.

Let us start with a trivial example of a “pure”
METAFONT program:

1. beginchar(48, % ASCII code
2. 2cm#, % width
3. 1cm#, % height
4. 0cm# % depth

5.);
6. fill unitsquare xscaled w yscaled h;
7. endchar;
8. end.

The program, obviously, generates a font
containing one character: a darkened rectangle
2cm×1cm. In order to generate an EPS file con-
taining the same figure, a few modifications are
necessary:

1. input mftoeps;
2. eps_mode_setup;
3. beginchar(48, % just something
4. 2cm#, % width
5. 1cm#, % height
6. 0cm# % depth

7.);
8. set_BB 0,-d,w,h; % coordinates
9. % of the corners

10. % of the bounding box

11. write_preamble "rectan";
12. fill_C unitsquare xscaled w yscaled h;
13. write_postamble;
14. endchar;
15. end.

Four new commands have appeared: eps_mode_
setup, set_BB, write_preamble and write_post-
amble; moreover, fill has been replaced by fill_C.
This is a usual routine for converting an “ordinary”
METAFONT program to a form suitable for generat-
ing EPS files. Obviously, draw should be replaced by
draw_C, and filldraw— with the two operations
fill_C and draw_C. In the latter case the order of
the operations fill_C and draw_C is significant if
the drawing and filling colours are different.

Having made this change you can easily gener-
ate the respective EPS file, provided you are a DOS

user. Assume that the modified program is stored
in the file RECTAN.MF. In the package MFTOEPS

you will find a DOS batch, M2E.BAT (subdirectory

TUGboat, Volume 16 (1995), No. 4 391

PROGS), which — perhaps after slight adjustments —
can be used for this task. It is enough to write

m2e rectan

(no extension, please) from the command line in
order to obtain the required RECTAN.EPS file. The
batch makes use of AWK for extracting the Post-
Script code from the log file. There is also an
alternative batch, M2E-ALT.BAT, that employs TEX
for this purpose. In both batches METAFONT is
called in the following way:

mf386 &plain \yeseps:=1; input %1

Observe the assignment yeseps:=1. In fact, as-
signing a definite (arbitrary) value to the yeseps
variable triggers the action of generating an EPS

file.
I hope that making scripts for other operating

systems is not found to be extremely difficult.
I would be very much obliged if others could
contribute such scripts to the package.

Let us consider now a more complex example.
Suppose that the file POLYGON.MF contains the
following definitions:
1. vardef regular_polygon(expr n) =
2. % n is the number of vertices;
3. % the diameter of the circumscribed
4. % circle is equal to 1, its centre
4. % is in the origin
5. (up % first vertex
6. for i:=1 upto n-1:

7. -- % next vertices:

9. (up rotated (i*(360/n)))

9. endfor

10. -- cycle) scaled .5

11. enddef;
12. vardef flex_polygon(expr n,a,b) =
13. % n is the number of vertices,
14. % a, b are the angles (at vertices)
15. % between a tangent to a ‘‘flex side’’
16. % and the corresponding secant
17. save zz;
18. pair zz[]; % array of vertices
19. for i:=0 upto n-1:
20. zz[i]:=up rotated (i*(360/n));

21. endfor
22. (zz[0] {(zz[1]-zz[0]) rotated a}
23. for i:=1 upto n-1:

24. .. {(zz[i]-zz[i-1]) rotated b}

25. zz[i]

26. {(zz[(i+1) mod n]-zz[i]) rotated a}

27. endfor

28. .. {(zz[0]-zz[n-1]) rotated b} cycle)

29. scaled .5
30. enddef;

The first function, regular_polygon, returns
a closed path that is — as the name suggests — a
regular polygon with a given number of vertices.
The second function, flex_polygon, returns a
curve that is in a sense a “generalized polygon” —
the following examples show why this epithet is
appropriate:

1 2 3

4 5

The first picture was generated by the following
program:

1. input polygons;
2. input mftoeps;
3. eps_mode_setup;
4. beginchar(0,16mm#,16mm#,0);
5. path P[]; % ‘‘room’’ for two polygons
6. % preparing:
7. P[1]:=regular_polygon(7)
8. scaled w shifted (.5w,.5h);

9. P[2]:=flex_polygon(7,0,0)
10. scaled w shifted (.5w,.5h);

11. % exporting:
12. find_BB P[1], P[2];
13. write_preamble jobname;
14. % 25 percent of black for filling:
15. fix_fill_cmyk 0,0,0,.25;
16. fix_line_width 1pt;
17. fill_C P1; draw_C P2;
18. write_postamble;
19. endchar;
20. end.

The remaining four figures can be obtained by
simple modifications of line 9 of the program:

P[2]:=flex_polygon(7,-180/7,180/7) % 2

P[2]:=flex_polygon(7,45,45) % 3

P[2]:=flex_polygon(7,-45,45) % 4

P[2]:=flex_polygon(7,45,-45) % 5

These fairly trivial objects can be used to
achieve some rather non-trivial effects (METAFONT
sources are included in the MFTOEPS package):

392 TUGboat, Volume 16 (1995), No. 4

So far the examples have contained fill_C
and draw_C commands with arguments being single
paths. PostScript, in contrast to METAFONT,
accepts groups of paths as a single curve. Therefore
the fill_C and draw_C commands were defined to
accept the lists of METAFONT paths as arguments.
In the resulting PostScript code they constitute
a single object. The main reason is that such
objects may contain transparent holes. This enables
achieving such effects as:

It is a transparent hole.
It is a transparent hole.
It is a transparent hole.
It is a transparent hole.
It is a transparent hole.

The graphic object was generated by the fol-
lowing simple program:

1. input mftoeps; eps_mode_setup;
2. w#=4cm#; h#=2cm#; define_pixels(w,h);
3. set_BB origin, (w,h);
4. write_preamble jobname;
5. % 25 percent of black for filling:
6. fix_fill_cmyk 0,0,0,.25;
7. fix_line_width 1pt;
8. for oper:="draw_C", "fill_C":
9. scantokens oper
10. % outer edge:
11. fullcircle

12. xscaled w yscaled h

13. shifted (.5w,.5h),

14. % inner edge:
15. reverse fullcircle

16. xscaled .7w yscaled .7h

17. shifted (.5w,.5h);

18. endfor
19. write_postamble;
20. end.

One innocent trick was used in order to shorten
the code: the loop in the combination with the
scantokens command (lines 8 and 9). It is
advisable to have paths that form transparent
holes appropriately oriented — therefore the opera-
tor reverse is used in line 15. A TEX code for
obtaining the above figure is obvious: it is enough

to put the picture on top of a text box, using, for
example, the \llap command.

Removing the command fix_fill_cmyk (line 6)
and replacing the command fill_C (line 8) by
clip_C gives the opportunity to obtain yet another
effect:

It is a clipped text.
It is a clipped text.
It is a clipped text.
It is a clipped text.

In this case, however, the TEX code is somewhat
complicated, since macros for inclusion of an EPS file
(I use Tomas Rokicki’s EPSF.TEX) embed the code
of the EPS file into a PostScript save–restore
group. A clipping path is subjected to such a
grouping, contrary to the state of the currently
painted picture. Therefore some \special hackery
is needed (the respective TEX source is included
with samples in the MFTOEPS package).

The distinction between single and multiple
paths in the context of drawing outlines (draw_C)
is meaningless.

The final example shows how to use clipping to
generate a geometric figure known as “Sierpiński’s
carpet”. In order to construct the “carpet” you
start with a square with a central hole; this hole
is a square with each edge one-third the length of
the edge of the original square. Now you divide
the original figure into nine squares and replace all
filled small squares with a copy of the square with
the central hole, scaled down to fit the area of the
small square. Then you apply the same procedure
to the smaller squares, an so on, ad infinitum.

Here you have the program accomplishing this
task (infinity “equals” three):

1. input mftoeps; eps_mode_setup;
2. % ---
3. def ^ = ** enddef; % syntactic sugar
4. primarydef i // n = % ditto
5. (if n=0: 0 else: i/n fi)
6. % why not to divide by 0?
7. enddef;
8. def shifted_accordingly(expr i,j,n,D)=
9. shifted ((i//n)[0,w-D],(j//n)[0,w-D])
10. enddef;
11. % ---
12. w#=16mm#; h#=16mm#; define_pixels(w,h);
13. for N:=1,2,3: % 4, 5, 6, ..., infinity
14. set_BB 0,0,w,h;
15. write_preamble jobname & decimal(N);
16. D:=3w;
17. for n:=

TUGboat, Volume 16 (1995), No. 4 393

18. 0 for q:=1 upto N-1: , 3^q-1 endfor:

19. % i.e.:
20. % ‘‘for n:=0, 3^1-1, ..., 3^(N-1)-1:’’
21. path p[], q[]; D:=1/3D; k:=-1;

22. for i:=0 upto n: for j:=0 upto n:

23. k:=k+1;

24. p[k]=unitsquare scaled D

25. shifted_accordingly(i,j,n,D);

26. q[k]=reverse unitsquare scaled 1/3D

27. shifted (1/3D,1/3D)

28. shifted_accordingly(i,j,n,D);

29. endfor; endfor;

30. clip_C p0, q0

31. for i:=1 upto k:

32. , p[i], q[i]

33. endfor;

34. endfor;
35. fill_C unitsquare scaled w;
36. write_postamble;
37. endfor;
38. % ---
37. end.

The program is lengthy mainly because of
technical details that are not especially interesting;
however, there are three points worthy of comment.
First, observe that a couple of EPS files are produced
in one METAFONT run (the loop in line 13 is relevant
here); second, loops are used to form arguments to
the loop in line 18 and to the clip_C command in
line 30 — it is a very useful feature of METAFONT
that loops behave exactly like macros; and third,
observe that the operation fill_C is used only once.
The resulting EPS files are shown in the following
picture:

You may argue that such a figure can be
generated easily in a simpler way, without clipping.
True, yet I like this approach — can you imagine a
straightforward method for generating a “circular
carpet” without clipping? Moreover, one can use

clipping in more complicated situations, not only
for filling. But, on the other hand, finding the
precise bounding box for a clipped figure becomes
a non-trivial task. You must remember, moreover,

that clipping consumes a lot of the resources of a
PostScript interpreter, thus it should be used with
great care.

Final remarks

The MFTOEPS package was not devised as a com-
petitor to such giants as Adobe Illustrator or
CorelDraw!. On the contrary, it can be regarded
as their little ally. Interactive programs don’t cope
particularly well with tasks that bear logical struc-
ture. In such cases METAFONT— with its wealth
of programmable path operations, absent “by defi-
nition” from the menus of interactive programs— is
certainly a preferable tool.

One of the advantages of the applied approach
is its portability — the only software needed is
METAFONT and either AWK or TEX. Another
advantage is its flexibility. It is not particularly
difficult to modify the MFTOEPS package to pro-
duce another PostScript dialect, if for some reason
the dialect of Adobe Illustrator is inconvenient.
MFTOEPS can also be modified to produce out-
put in other lingos, e.g., HP-GL (Hewlett-Packard
Graphic Language).

There is still a lot of work to be done. Of course,
every program can be improved, but perhaps more
important would be preparing a library of META-
FONT routines useful for creating objects with a
vector representation.

For example, it would be convenient to have a
procedure which, for a given set of graphic objects
finds a single curve (outline) filling of which would
give the same optical result. In other words, such
a procedure would perform the task of finding
an outline for a set union of graphic objects.
Such a procedure is known as removing overlaps.
The example of the “circular carpet” (see above)
illustrates a similar problem: to find an outline for
a set intersection of a group of graphic objects.

If the carpet is generated using clipping, the
PostScript file contains, in fact, the following ele-
ments:

They are partially invisible because of clipping,
still they are there. In some contexts, e.g., if the
figure is to be cut on a cutting plotter, it is crucial
to replace such a multiplicity of objects by a single
object:

394 TUGboat, Volume 16 (1995), No. 4

Note that routines for finding the outline of a
set union or a set intersection of a group of graphic
objects are not MFTOEPS-oriented. A package
providing tools for programming such operations,
ROEX, is already available. Perhaps it is most
useful in the context of exporting to EPS, however,
it can be used with plain METAFONT, and — I
guess — with METAPOST as well.

Universal routines of this kind are important
from the point of view of the openness of the
TEX/METAFONT system, and its openness — as was
already mentioned — is one of the most powerful
features of the system.

Note also that the openness of a system con-
cerns both output and input. MFTOEPS accom-
plishes the first part of the conjunction, but one
can think also about an export from PostScript
to METAFONT. A package accomplishing this task,
PS_CxONV, has been recently released as a public
domain contribution. Its kernel is a converter,
written in PostScript and using the Ghostscript
interpreter of PostScript, which translates a gen-
eral PostScript code into a canonical EPS form
(there exists a similar program in the standard
Ghostscript distribution, namely, PS2AI, written
by Jason Olszewski, but it does not fit this par-
ticular problem); the result of such a conversion
can be translated to a METAFONT program using
the AWK-based utility, EPSTOMF, also recently re-
leased into the public domain. This would complete
a link between METAFONT and PostScript. I do
believe that providing such links is one of the most
efficient routes towards a limitless development of
the TEX/METAFONT system.

Glossary

AWK: a simple yet powerful batch text processor.
Bounding box: the smallest rectangle surrounding

the glyph of a picture; coordinates of its lower
left and upper right corners (in big points)
should appear in a structural comment in a
header of an EPS file.

EPS file: Encapsulated PostScript file; a single-page
PostScript document; the purpose of the EPS

file is to be included (“encapsulated”) as a part
of other PostScript programs and to exchange
graphic data among applications.

Even-odd rule: a rule that specifies the interior
of a (multiple) path in the following way: if

for a given point and for any ray drawn from
this point to infinity, the number of intersection
points of the ray and the path is odd, the point is
inside; if the number is even, the point is outside;
command eofill and eoclip operators follow
this rule.

Path orientation: nodes of a closed single path
are ordered; if traversing a path following the
order of its nodes results in a counter-clockwise
turn(s), the path is positively oriented, if it
results in a clockwise turn(s), its orientation is
negative; the number of turns (signed) is called a
turning number (METAFONT) or a winding num-
ber (PostScript); the operators fill and clip
make use of a winding number, the operators
eofill and eoclip ignore it.

Availability

The packages MFTOEPS, EPSTOMF and PS_CONV
can be found at

ftp.pg.gda.pl

in the directories
/pub/TeX/GUST/contrib/MF-PS/MFTOEPS

/pub/TeX/GUST/contrib/MF-PS/EPSTOMF

/pub/TeX/GUST/contrib/PS/PS_CONV

References

[1] Adobe Systems Inc. PostScript Language Refer-
ence Manual. Reading, Mass.: Addison-Wesley,
1991.

[2] Aho, A.V., B.W. Kernighan, P.J. Weinberger.
The AWK Programming Language, Reading,
Mass.: Addison-Wesley, 1988.

[3] Jackowski, B., M. Ryćko. “Labyrinth of META-
FONT paths in outline.” Proceedings of the

Eighth European TEX Conference (Sept. 26–30,
1994, Gdańsk, Poland), pages 18–32.

[4] Knuth, D.E. The METAFONTbook. Reading,
Mass.: Addison-Wesley, 1992. D. E. Knuth:
The METAFONTbook, Addison-Wesley, 1992.

⋄ Bogus law Jackowski

BOP s.c., Gdańsk, Poland

TUGboat, Volume 16 (1995), No. 4 395

TUGboat, Volume 16 (1995), No. 4 395

Technical
WorkingGroup
Reports

A proposed standard for specials

Tomas G. Rokicki

Introduction

This note presents the current state of the draft
standard, as presented by the author and Michael
Sofka at the standards session at TUG’95.

1 Identifying syntax

Standard specials shall be syntactically identified by
beginning with a colon (‘:’). All specials beginning
with a colon shall follow the guidelines established
here.
Any special beginning with a colon, followed

by an agreed keyword with agreed semantics, shall
be interpreted according to the rules set out in this
document and according to the agreed semantics of
that keyword.
Any special beginning with two consecutive col-

ons shall be considered an experimental special. It
will be interpreted following the syntax and scoping
semantics specified in this document, but individual
drivers are free to interpret these specials however
they wish. This convention allows experimentation
with specials in conjunction with the scoping mech-
anism described here.

2 Syntax

Standard specials shall consist of a sequence of the
95 printable ASCII characters plus the tab charac-
ter. Tabs will always be interpreted as spaces. Each
standard special shall begin with a colon, optionally
followed immediately by another colon. Following
this shall be a sequence of elements separated by
whitespace. Whitespace is also allowed between the
colon (or optional colon) and the first element.
Whitespace shall consist of any number of tab

or space characters.
The elements shall fall in the following cate-

gories: symbol, keyword, key/value pair.
We also define the syntax of numbers, dimen-

sions, and lists, for convenience.
A symbol is any sequence of characters. If the

symbol consists of only the 95 printable ASCII char-
acters, and does not contain a double quote, equals
sign, space, tab, backslash, or comma, it can be

396 TUGboat, Volume 16 (1995), No. 4

specified by the sequence of characters that com-
prise it; when a symbol is so specified, it is called
a simple symbol. Otherwise, it can be specified by
enclosing the exact characters in a pair of double
quotes. Any double quote or backslash within the
symbol must be preceded by a backslash. When a
symbol is specified through the use of double quotes,
it is a quoted symbol.
A keyword is a simple symbol.
A number is a simple symbol that consists of

an optional negative sign followed by a sequence of
at least one digit, with one optional period (‘.’) in-
cluded in the sequence of digits.
A dimension is a symbol that obeys the rules

of a number except that it is followed immediately
(with no intervening whitespace) by one of the fol-
lowing pairs of characters: ‘bp’, ‘cm’, ‘dd’, ‘in’, ‘mm’,
‘pc’, ‘pt’, ‘sp’.
An equals sign shall appear only as part of a

quoted symbol, or to separate a keyword and some
other symbol forming a key/value pair.
A list is a sequence of symbols separated by

commas with no intervening whitespace.
Figure 1 gives a BNF formulation for standard

specials. Square brackets enclose optional compo-
nents. Quotes enclose literal characters. Parenthe-
ses group. Angle brackets enclose nonterminals. An
asterisk represents zero or more occurrences; a plus
sign indicates at least one and possibly more occur-
rences. Vertical bars indicate choice.
In general, case is significant in specials.

3 Specials scoping and infrastructure

Specials exist in the DVI file as just another sequen-
tial command. Yet, often we desire a special to have
a scope. One use of specials is to modify the way
certain commands in the DVI file are interpreted.
For instance, a special might indicate that all subse-
quent characters until an overriding special shall be
rendered in a specific color. Another special might
indicate that a certain set of pages is to be printed on
different media. Yet a third special might indicate
that the background color of the entire document
should be mauve.
For this reason, we are introducing standard

scoping semantics for standard specials.

3.1 Flat DVI files

Ideally, scoping could always be handled simply by
placing an appropriate special at the beginning and
end of each scoped region, and no further action
would need to be taken. For various reasons, as we
shall describe, this is not always possible or conve-
nient. Nonetheless, such a ‘flat’ scoping would serve

as an ideal model for the driver writer, and its se-
mantics should form a base on which more complex
scoping rules can be built.
In this section, we describe how flatDVI files are

interpreted. At the minimum, each driver should be
capable of handling flat DVI files.
A flat DVI file is one that can be processed

(with respect to specials) with no prescanning or
preprocessing. Each special is located syntactically
where it belongs semantically. In addition, assum-
ing the beginning of the first page has been scanned
for document global specials, each page can be pro-
cessed and reprocessed independently of any other
and in random order, skipping arbitrary sequences
of pages. Thus, a flat DVI file is ideal for quick
browsing and previewing.

3.1.1 Object specials

The first category of specials, called object specials,
is those specials that themselves render objects to
the page, but do not affect the rendering of other
objects. One such example is a special that indicates
that a particular graphical figure should be rendered
at a particular location on the page.
All object specials shall begin with the keyword

‘object’.
Object specials take several implicit parameters

that affect how they are rendered. These implicit
parameters include the current DVI location on the
page, and the DVI magnification.
Unless otherwise specified for a particular ob-

ject special, all object specials shall be interpreted
such that their lower left-hand corner is rendered
at the current DVI location. In addition, all object
specials shall be scaled by the DVI magnification in
effect.
Object specials cannot take the optional scop-

ing keywords described in section 3.2.
The initial syntax for object specials is as fol-

lows:

<object-specifier> := ’:’ [’:’] <w> ’object’ <w>

3.1.2 Attribute specials

The second category of specials is attribute specials.
These specials affect the way the page is rendered.
Normally, an attribute special affects the rendering
state for subsequent DVI commands until overridden
by another attribute special that affects the same
rendering attribute. We shall discuss how our scop-
ing mechanism can change these rules in section 3.2.
All attribute specials begin with the keyword

‘attribute’.

TUGboat, Volume 16 (1995), No. 4 397

<standard-special> := ’:’ [’:’] [<whitespace>] (<element> <whitespace>)+

<element> := <key-value>

| <simple-symbol>

<whitespace> := (tab | ’ ’)+

<w> := <whitespace>

<key-value> := <simple-symbol> [’=’ <symbol-or-list>]

<symbol-or-list> := <symbol> | <list>

<list> := <symbol> (’,’ <symbol>)*

<symbol> := <simple-symbol>

| <quoted-symbol>

<simple-symbol> := (<printable-char-except-space,tab,comma,backslash,equals,doublequote>)+

<quoted-symbol> := ’"’ (<quoted-char>)* ’"’

<quoted-char> := <space-or-printable-char-except-backslash,doublequote>

| ’\’ ’\’ | ’\’ ’"’

<number> := [’-’] (<digit>)+ [. (<digit>)*]

| [’-’] . (<digit>)+

<dimension> := <number> <unit>

<unit> := ’bp’ | ’cm’ | ’dd’ | ’in’ | ’mm’ | ’pc’ | ’pt’ | ’sp’

Figure 1: A BNF grammar for specials

One interesting case should be mentioned here.
In a flat DVI file, it is possible for an attribute spe-
cial to contain the scoping keyword ‘pop’. If the
‘attribute’ keyword in a flat DVI file is followed
immediately by the keyword ‘pop’, then that cor-
responding attribute in the rendering state is set
(back) to its initial state. (This is necessary be-
cause, when flattening scoped specials, the initial
state might not be known for all attributes; this pro-
vides a convenient way to access that default initial
value.)
The initial syntax for attribute specials is as

follows:

<attribute-specifier> := ’:’ [’:’] <w>

’attribute’

(<w> <scope>)* <w>

<scope> := ’push’ | ’pop’

| ’page’ | ’global’

3.2 Scoped specials

Sometimes a special must occur at a syntactic loca-
tion different from where it semantically affects the
rendering state. One example of this is where an at-
tribute affecting the background color of the paper is
specified as part of the running text of a document,
in a document with headers. Normally, this spe-
cial will follow the headline in the DVI file, because
TEX’s output routine typically ships the header be-
fore the whatsits attached to the body text. So by

the time the DVI driver sees the special, it has prob-
ably already rendered the header, so it may be diffi-
cult or inconvenient to change the background color
of the sheet at this point.
Another example is when a colored paragraph is

broken across a page boundary, and the DVI driver
wishes to render only the second page, without scan-
ning the first page. In the absence of specials, this
is easily done. However, if there is only a single spe-
cial specifying the red color at the beginning of the
paragraph (on page one), there is no indication in
page two that the color should still be red.
As a final example, consider the use of nested

attribute specials. One word in a blue paragraph
is to be colored green. The special at the end of
the green word indicates that the ‘previous’ color
state should be restored. In this case, the special
at the beginning of the paragraph, indicating that
the paragraph should be blue, is also semantically
visible at the end of the green word.
The scoping rules we introduce in this section

introduce a scoping mechanism, and define how spe-
cials that use this mechanism, and thus cause a DVI
file to be scoped (rather than flat), can be trans-
formed into flat specials for easier rendering.

398 TUGboat, Volume 16 (1995), No. 4

3.2.1 Stacks

The first mechanism is a convenient ‘stack’ mech-
anism that allows the previous state of a particu-
lar attribute to be easily restored. The two key-
words that indicate this mechanism should be used
are ‘push’ and ‘pop’.
If the keyword ‘attribute’ in a special is fol-

lowed by the keyword ‘push’, then the current state
of that attribute is pushed onto a stack internal to
the DVI processor. Then, the remainder of the spe-
cial is used to determine the new value of the at-
tribute.
If the keyword ‘attribute’ in a special is fol-

lowed by the keyword ‘pop’, then the previously
saved value of the attribute is restored. Any actual
attribute value specified in the special is ignored.
If the stack is empty when a ‘pop’ special is

encountered, then the value of the attribute is set to
the default initial value for that attribute.
Attribute specials that use neither push nor pop

are still fully legal; they affect the current setting of
the attribute, but do not affect the stored stack.
Note that each attribute has its own indepen-

dent stack. Thus, the following sequence of specials
is perfectly legal:

:attribute push color red

:attribute push trap true

:attribute pop color

:attribute pop trap

DVI drivers should support a stack depth for
each attribute of at least twenty levels.

3.2.2 Page

Some specials affect the page, or paper, or media,
rather than the rendering of characters or rules. Spe-
cials that specify the paper size or background color
are examples of these. Such specials should ordi-
narily occur before any characters or rules or object
specials on the page itself; such is the case for flat
DVI files.
As discussed before, it is sometimes inconve-

nient or difficult to ensure that these specials actu-
ally occur at the beginning of the page itself. Thus,
we define the scoping keyword ‘page’ that indicates
this special should semantically appear at the begin-
ning of the page. Thus, if a page contains a single
(hypothetical) background color attribute, specified
as

:attribute page backgroundcolor mauve

anywhere on the page, then the page should be ren-
dered with a mauve background.

Note that there is no predefined correlation be-
tween attributes that are specified page and those
that are local. Thus, a special such as

:attribute backgroundcolor mauve

that occurs between two characters on a page makes
little sense. Indeed, where the special obviously af-
fects the entire page, but it is not specified with a
page keyword, the operation of the DVI driver shall
be undefined.
If multiple page attribute specials for the same

attribute appear on a page, they shall all be seman-
tically moved to the top of the page— in the same
order as they occur on the page.

3.2.3 Global

Some specials affect the document as a whole, or it
is desired that they affect the document as a whole.
Specials that define a paper size are one example of
these. Generally, such specials should occur before
any characters or rules or object specials on the first
page.
As discussed before, it is sometimes inconve-

nient or difficult to ensure that these specials actu-
ally occur at the beginning of the page. Thus, we
define the scoping keyword ‘global’ that indicates
this special should semantically appear at the begin-
ning of the entire document. Thus, if a document
contains a single (hypothetical) paper size attribute,
specified as

:attribute global papersize 8.5in 11in

anywhere in the document, then the entire docu-
ment should be rendered on 8.5′′ × 11′′ paper.
For pragmatic reasons (we may not want to, or

be able to, prescan the entire document), we require
that such global specials occur somewhere on the
first page in order to take effect.
Note that there is no predefined correlation be-

tween the attributes that are specified global and
those that are local or page-specific.
If multiple global attributes for the same at-

tribute appear in a document, all shall be semanti-
cally moved to the front of the document— in the
same order as they occur in the document.

3.3 Flattening process

The scoping rules are concentrated on the distinc-
tion between a special’s syntactic and semantic lo-
cation. The process of flattening a DVI file resolves
these differences, by eliminating all stack operations
(except for defaulting pops) and by moving all spe-
cials to their logical semantic location. This opera-
tion converts a scoped DVI file to a flat DVI file.

TUGboat, Volume 16 (1995), No. 4 399

When flattening occurs, object specials remain
in their original location.
For instance, consider a scoped DVI file that

appears as follows:

Page 1:

<text>

:attribute push color red

<text>

:attribute global backgroundcolor mauve

Page 2:

<text>

:attribute push color green

<text>

:attribute color blue

<text>

:attribute page papersize 8.5in 11in

:attribute pop color

<text>

Page 3:

<text>

:attribute pop color

<text>

This would be flattened into the following flat DVI
file:

Page 1:

:attribute global backgroundcolor mauve

<text>

:attribute color red

<text>

:attribute pop color

Page 2:

:attribute page papersize 8.5in 11in

:attribute color red

<text>

:attribute color green

<text>

:attribute color blue

<text>

:attribute color red

<text>

:attribute pop papersize

:attribute pop color

Page 3:

:attribute color red

<text>

:attribute pop color

<text>

If a page reversal program that obeys the spe-
cials is run, the following DVI file would result. Note
that the only difference is that the global specials are
moved from the original first page to the new first
page.

Page 3:

:attribute global backgroundcolor mauve

:attribute color red

<text>

:attribute pop color

<text>

Page 2:

:attribute page papersize 8.5in 11in

:attribute color red

<text>

:attribute color green

<text>

:attribute color blue

<text>

:attribute color red

<text>

:attribute pop papersize

:attribute pop color

Page 1:

<text>

:attribute color red

<text>

:attribute pop color

This flattening can be performed with a spe-
cial DVI to DVI processor (which we hope to pro-
vide). The use of such a preprocessor will allow
fancy scoped specials to be used in an environment
that supports only flat specials. For DVI files that
are intended to be widely distributed and portable,
such a flattening should probably be done.
This flattening can also be performed dynami-

cally, as a DVI file is being created or read from disk,
so long as single-page scanning is available. (We
hope to provide code for this as well, that will allow
easy integration of scoped specials into previewers
and printer drivers with a minimum of effort.)

4 Proposed object specials

The primary and most important proposed object
special is that for encapsulated PostScript file inclu-
sion.

4.1 EPSF inclusion

The syntax for the encapsulated PostScript inclu-
sion special is as follows:

<epsf-special> := <object-specifier>

(’epsf’ | ’psfile’) ’=’

<symbol>

(<w> <epsf-keyword>)* [<w>]

<epsf-keyword> := ’width=’ <dimen>

| ’height=’ <dimen>

| ’scale=’ <number>

[’,’ <number>]

| ’clip=’ (’on’ | ’off’)

| ’boundingbox=’

<number> ’,’ <number> ’,’

<number> ’,’ <number>

In this special, the symbol following the key-
word ‘epsf’ or ‘psfile’ is interpreted as a filename

400 TUGboat, Volume 16 (1995), No. 4

containing a encapsulated PostScript file for inclu-
sion. This file should follow the Adobe standards
for EPSF files; otherwise the effects of this special
are undefined.
Positioning occurs as follows. First, a bounding

box is determined. If one is specified in the special
it is used. Otherwise, if none is specified in the spe-
cial and the keyword is given as ‘epsf’, the EPSF
document itself is scanned for a bounding box.
The bounding box values at this point, inter-

preted in PostScript units, map the region of the
illustration that will be included.
The TEX width is set to the horizontal size of

the bounding box, and the TEX height is set to
the vertical size of the bounding box, both inter-
preted as 72 units to the inch. Consideration of any
width, height, and scale parameters may further af-
fect these values, as described below.
Next, the optional width and height specifiers

are considered. If neither is given, this step is omit-
ted. If both are given, their values replace the TEX
height and width set before. If only one is given, it
replaces the corresponding TEX value, and the other
TEX value is set to preserve the aspect ratio.
Next, if the ‘scale’ keyword is given, the TEX

height and width are further modified. If only one
numeric parameter is given, both the width and
height are multiplied by this parameter. Otherwise,
the width is multiplied by the first parameter and
the height is multiplied by the second parameter.
Finally, the width and height values are multi-

plied by the current DVI magnification in effect.
The resulting values describe the size of a rect-

angle on the DVI page. The lower left hand corner
of this rectangle is positioned at the current DVI lo-
cation. The geometric mapping from the original
bounding box to this rectangle defines the scaling
that is performed on the EPSF file when it is ren-
dered.
If the clipping keyword is specified to be ‘on’,

or if no clipping keyword is specified, the rendering
of the EPSF file will be constrained to fall within
the DVI rectangle calculated above. Otherwise, no
clipping will be performed, and if the EPSF file ren-
ders outside its bounding box borders, portions of
the image will also be rendered outside the DVI rect-
angle.

4.1.1 PS vs. EPSF

The effects of the keyword ‘epsf’ and the keyword
‘psfile’ are almost identical—with one minor dif-
ference. If ‘epsf’ is specified, then the bounding
box keyword and values are optional; if they are not
specified, the bounding box is read from the EPSF

file. If ‘psfile’ is specified, the bounding box must
be specified; the operation of the special is undefined
if no bounding box is specified. (The reasoning be-
hind this seeming inconsistency is partially political
and partially religious.)
In order to include a normal EPSF image in its

entirety, either the ‘psfile’ or the ‘epsf’ keyword
can be used; if a bounding box value is specified in
the special command, the semantics are equivalent.
If only a rectangular subportion of an EPSF im-

age or PS page is to be rendered, then the ‘psfile’
keyword should be specified, along with a bounding
box describing precisely what portion of the image
should be included. Clipping should be turned on
to ensure that the rest of the image does not show
up outside the DVI rectangle.

4.1.2 Bounding box

The bounding box is specified as a comma-separated
list of numbers. These numbers are interpreted as
PostScript units. There are 72PostScript units to
the inch. The four numbers are, in sequence, the x-
coordinate of the lower left corner, the y-coordinate
of the lower left corner, the x-coordinate of the up-
per right corner, and the y-coordinate of the upper
right corner. All four must be specified.
Note that we do not restrict these numbers to

be integers. While Adobe requires these to be in-
tegers in their Document Structuring Conventions,
some applications generate floating point numbers.
In addition, the higher precision afforded by floating
point might be useful in some circumstances.

4.1.3 Scaling

The scaling parameter consists of one or two num-
bers separated by a comma. These are used to spec-
ify a scaling ratio for an EPSF image. If only one
number is specified, the scaling preserves the aspect
ratio of the image.

4.1.4 Clipping

Clipping can be set to either ‘on’ or ‘off’. The de-
fault is ‘on’.

4.1.5 Rotation

Rotation is not currently supported, although it is
currently under discussion.

5 Proposed attribute specials

5.1 Color

Under development.

TUGboat, Volume 16 (1995), No. 4 401

5.2 Background color

Under development.

5.3 Paper size

Paper size and orientation are important character-
istics of the document, and should be specified in the
document itself rather than on the driver command
line. The syntax for the paper size special is:

<papersize-special> := <attribute-specifier>

’papersize’

[<w> <dimension>

<w> <dimension>] [<w>]

The value (composed of two dimensions) may
be omitted only if one of the specified scoping oper-
ators is ‘pop’.
The dimensions specify horizontal and then ver-

tical size.
As is conventional, the DVI origin is located one

inch down and one inch from the left of the top left
corner of the paper.
A typical papersize special is

:attribute global papersize 8.5in 11in

To specify that landscape letter size is in effect
for the current page forward, use

:attribute page push papersize 11in 8.5in

followed by

:attribute page pop papersize

on the page you wish to return to portrait.

6 Document history

This section shall record a history of the changes to
this document.
22 September 1995: Originated by Tomas Ro-

kicki on the basis of extensive discussions at TUG’94
and TUG’95, discussion on the TWG-DVI mailing
list, and discussion at a meeting at MSRI in Decem-
ber of 1994.
10 January 1996: Edited for publication inTUG-

boat by Robin Fairbairns, Barbara Beeton, and Tomas
Rokicki.

⋄ Tomas G. Rokicki

725B Loma Verde

Palo Alto, CA 94303

USA

Email: rokicki@cs.stanford.edu

TUGboat, Volume 16 (1995), No. 4 401

A Directory Structure for TEX Files
(Version 0.999)

TUG Working Group on a TEX Directory
Structure (TWG-TDS)

1 Introduction

TEX is a powerful, flexible typesetting system used
by thousands of people around the world. It is ex-
tremely portable and runs on virtually all operat-
ing systems. One unfortunate side effect of TEX’s
flexibility, however, is that there has been no single
“right” way to install it. This has resulted in many
sites having different installed arrangements.
The primary purpose of this document is to

describe a standard TEX Directory Structure (TDS):
a directory hierarchy for macros, fonts, and the other
implementation-independent TEX system files. As a
matter of practicality, this document also suggests
ways to incorporate the rest of the TEX files into a
single structure. The TDS has been designed to work
on all modern systems. In particular, the Technical
Working Group (TWG) believes it is usable under
MacOS, MS-DOS, OS/2, Unix, VMS, and Windows
NT. We hope that administrators and developers of
both free and commercial TEX implementations will
adopt this standard.
This document is intended both for the TEX

system administrator at a site and for people prepar-
ing TEX distributions—everything from a complete
runnable system to a single macro or style file. It
may also help TEX users find their way around sys-
tems organized this way. It is not a tutorial: we
necessarily assume knowledge of the many parts of
a working TEX system. If you are unfamiliar with
any of the programs or file formats we refer to, con-
sult the references in Appendix D.

1.1 The role of the TDS

The role of the TDS is to stabilize the organization
of TEX-related software packages that are installed
and in use, possibly on multiple platforms simulta-
neously.
At first glance, it may seem that the Compre-

hensive TEX Archive Network (CTAN) archives ful-
fill at least part of this role, but this is not the case.
The role of CTAN is to simplify archiving and dis-
tribution, not installation and use.
In fact, the roles of the TDS and CTAN are fre-

quently in conflict, as you will see elsewhere in this
document. For distribution, many different types of
files must be combined into a single unit; for use, it is
traditional to segregate files (even similar files) from
a single package into separate, occasionally distant,
directories.

402 TUGboat, Volume 16 (1995), No. 4

1.2 Conventions

In this document, “/” is used to separate filename
components; for example, texmf/fonts. This is the
Unix convention but the ideas are in no way Unix-
specific.
In this document, “TEX” generally means the

TEX system, including METAFONT, DVI drivers,
utilities, etc., not just the TEX program itself.
The word “package” in this document has its

usual meaning: a set of related files distributed,
installed, and maintained as a unit. This is not a
LATEX2ε package, which is a style file supplementing
a document class.
We use the following typographic conventions:

literal Literal text such as filename is typeset in
typewriter type.

〈replaceable〉 Replaceable text such as 〈package〉,
identifying a class of things, is typeset in italics
inside angle brackets.

2 General

This section describes common properties through-
out the TDS tree.

2.1 Subdirectory searching

Many TEX installations store large numbers of re-
lated files in single directories, for example, all TFM
files and/or all TEX input files.
This monolithic arrangement hinders mainte-

nance of a TEX system: it is difficult to determine
what files are used by what packages, what files need
to be updated when a new version is installed, or
what files should be deleted if a package is removed.
It is also a source of error if two or more packages
happen to have input files with the same name.
Therefore, the TWG felt each package should

be in a separate directory. But we recognized that
explicitly listing all directories to be searched would
be unbearable. A site may wish to install dozens
of packages. Aside from anything else, listing that
many directories would produce search paths many
thousands of characters long, overflowing the avail-
able space on some systems.
Also, if all directories are explicitly listed, in-

stalling or removing a new package would mean
changing a path as well as installing or removing
the actual files. This would be a time-consuming
and error-prone operation, even with implementa-
tions that provide some way to specify the direc-
tories to search at runtime. On systems without
runtime configuration, it would require recompiling
software, an intolerable burden.

As a result, the TWG concluded that a com-
prehensive TDS requires implementations to support
some form of implicit subdirectory searching. More
precisely, implementations must make it possible to
specify that TEX, METAFONT, and their companion
utilities search in both a specified directory and re-
cursively through all subdirectories of that directory
when looking for an input file. Other forms of subdi-
rectory searching, for example recursive-to-one-level
searches, may also be provided. We encourage im-
plementors to provide subdirectory searching at the
option of the installer and user for all paths.
The TDS does not specify a syntax for specify-

ing recursive searching, but we encourage implemen-
tors to provide interoperability (see Section B.2).

2.2 Rooting the tree

In this document, we shall designate the root TDS
directory by ‘texmf’ (for “TEX and METAFONT”).
We recommend using that name where possible, but
the actual name of the directory is up to the in-
staller. On PC networks, for example, this could
map to a logical drive specification such as T:.
Similarly, the location of this directory on the

system is site-dependent. It may be at the root
of the file system; on Unix systems, /usr/local/
share, /usr/local, /usr/local/lib, and /opt are
common choices.
The name texmf was chosen for several rea-

sons: it reflects the fact that the directory contains
files pertaining to an entire TEX system (including
METAFONT, METAPOST, BibTEX, etc.), not just
TEX itself; and it is descriptive of a generic installa-
tion rather than a particular implementation.
A site may choose to have more than one TDS

hierarchy installed (for example, when installing an
upgrade). This is perfectly legitimate.

2.3 Local additions

The TDS cannot specify precisely when a package
is or is not a “local addition”. Each site must de-
termine this according to their own conventions. At
the two extremes, one site might wish to consider
“nonlocal” only those files that came with the par-
ticular TEX distribution they installed; another site
might consider “local” only those files that were ac-
tually developed at the local site and not distributed
elsewhere.
We recognize two common methods for local

additions to a distributed texmf tree. Both have
their place; in fact, some sites may employ both
simultaneously:

1. A completely separate tree which is a TDS
structure itself; for example, /usr/local/umbtex

TUGboat, Volume 16 (1995), No. 4 403

at the University of Massachusetts at Boston.
This is another example of the multiple texmf
hierarchies mentioned in the previous section.

2. A directory named ‘local’ at any appropriate
level, for example, in the 〈format〉, 〈package〉,
and 〈supplier〉 directories discussed in the fol-
lowing sections. The TDS reserves the directory
name local for this purpose.
We recommend using local for site-adapted
configuration files, such as language.dat for
the Babel package or graphics.cfg for the
graphics package. Unmodified configuration
files from a package should remain in the pack-
age directory. The intent is to separate locally
modified or created files from distribution files,
to ease installing new releases.

One common case of local additions is dynami-
cally generated files, e.g., PK fonts by the MakeTeXPK
script originated by Dvips. A site may store the gen-
erated files directly in any of:

• their standard location in the main TDS tree (if
it can be made globally writable);

• an alternative location in the main TDS tree
(for example, under texmf/fonts/tmp);

• a second complete TDS tree (as outlined above);

• any other convenient directory (perhaps under
/var, for example /var/spool/fonts).

No one solution will be appropriate for all sites.

2.4 Duplicate filenames

Different files by the same name may exist in a TDS
tree. The TDS generally leaves unspecified which of
two files by the same name in a search path will be
found, so generally the only way to reliably find a
given file is for it to have a unique name. However,
the TDS requires implementations to support the
following exceptions:

• Names of TEX input files must be unique
within each first-level subdirectory of texmf/
tex and texmf/tex/generic, but not within
all of texmf/tex; i.e., different TEX formats
may have files by the same name. (Section 3.1
discusses this further.) Thus, no single format-
independent path specification, such as a re-
cursive search beginning at texmf/tex specify-
ing no other directories, suffices. So implemen-
tations must provide format-dependent path
specifications, for example via wrapper scripts
or configuration files.

• Many font files will have the same name (e.g.,
cmr10.pk), as discussed in Section 3.2.2. Imple-
mentations must distinguish these files by mode
and resolution.

All implementations we know of already have
these capabilities.
One place where duplicate names are likely to

occur is not an exception:

• Names of METAFONT input files (as opposed
to bitmap fonts) must be unique within all of
texmf/fonts. In practice, this is a problem
with those variants of Computer Modern which
contain slightly modified files named punct.mf,
romanl.mf, and so on. We believe the only
feasible solution here is simply to rename the
derivative files to be unique.

3 Top-level directories

The directories under the texmf root identify the
major components of a TEX system (see Table 1
for a summary). A site may omit any unneeded
directories.
Although the TDS by its nature can specify pre-

cise locations only for implementation-independent
files, we recognize that installers may well wish to
place other files under texmf to simplify adminis-
tration of the TEX tree, especially if it is maintained
by someone other than the system administrator.
Therefore, additional top-level directories may be
present.
The top-level directories specified by the TDS

are:

tex for TEX files (Section 3.1).

fonts for font-related files (Section 3.2).

metafont for METAFONT files which are not fonts
(Section 3.3).

metapost for METAPOST files (Section 3.4).

bibtex for BibTEX files (Section 3.5).

doc for user documentation (Section 3.6).

source for sources. This includes both traditional
program sources (for example, Web2c sources
go in texmf/source/web2c) and LATEX dtx
sources (which go in texmf/source/latex).

source is intended for files which are not
needed at runtime by any TEX program; it
should not be included in any search path.
For example, plain.tex does not belong under
texmf/source, even though it is a “source file”
in the sense of not being derived from another
file, but rather in texmf/tex/plain/base, as
explained in Section 3.1.

〈implementation〉 for implementations (examples:
emtex, web2c), to be used for whatever purpose
deemed suitable by the implementor or TEX ad-
ministrator. Files that cannot be shared be-
tween implementations, such as pool files (tex.

404 TUGboat, Volume 16 (1995), No. 4

pool) and memory dump files (plain.fmt) go
here, in addition to implementation-wide con-
figuration files. See Section B.3 for examples of
real 〈implementation〉 trees.

〈program〉 for individual configuration files and pro-
gram-specific input files for TEX-related pro-
grams (examples: mft, dvips). In fact, the
tex, metafont, metapost, and bibtex direc-
tories above may be seen as instances of this
case.

3.1 Macros

TEX macro files shall be stored in separate direc-
tories, segregated by TEX format and package name
(we use ‘format’ in its traditional TEX sense to mean
a usefully \dump-able package):

texmf/tex/〈format〉/〈package〉/

〈format〉 is a format name (examples: amstex,
latex, plain, texinfo).
The TDS allows distributions that can be
used as either formats or packages (e.g., Tex-
info, Eplain) to be stored at either level, at
the option of the format author or TEX admin-
istrator. We recommend that packages used
as formats at a particular site be stored at
the 〈format〉 level: by adjusting the TEX in-
puts search path, it will be straightforward to
use them as macro packages under another for-
mat, whereas placing them in another tree com-
pletely obscures their use as a format.
The TDS reserves the following 〈format〉
names:

• generic, for input files that are useful
across a wide range of formats (exam-
ples: null.tex, path.sty). Generally,
this means any format that uses the cat-
egory codes of Plain TEX and does not
rely on any particular format. This is
in contrast to those files which are use-
ful only with Plain TEX (which go un-
der texmf/tex/plain), e.g., testfont.
tex and plain.tex itself.

• local, for local additions. See Section 2.3.

Thus, for almost every format, it is neces-
sary to search at least the 〈format〉 directory
and then the generic directory (in that order).
Other directories may need to be searched as
well, depending on the format. When using
AMS-TEX, for example, the amstex, plain,
and generic directories should be searched, be-
cause AMS-TEX is compatible with Plain.

〈package〉 is a TEX package name (examples: babel,
texdraw).

In the case where a format consists of only a
single file and has no auxiliary packages, that
file can simply be placed in the 〈format〉 direc-
tory, instead of 〈format〉/base. For example,
Texinfo goes in texmf/tex/texinfo/texinfo.
tex, not texmf/tex/texinfo/base/texinfo.
tex.

The TDS reserves the following 〈package〉
names:

• base, for the base distribution of each for-
mat, including files used by INITEX when
dumping format files. For example, in the
standard LATEX distribution, the ltx files
created during the build process shall be
stored in the base directory.

• hyphen, for hyphenation patterns, includ-
ing the original American English hyphen.
tex. These are typically used only by
INITEX. In most situations, this directory
need exist only under the generic format.

• images, for image input files, such as En-
capsulated PostScript figures. Although
it is somewhat non-intuitive for these to
be under a directory named “tex”, TEX
needs to read these files to glean bounding
box or other information. A mechanism
for sharing image inputs between TEX and
other typesetting programs (e.g., Interleaf,
FrameMaker) is beyond the scope of the
TDS. In most situations, this directory
need exist only under the generic format.

• local, for local additions and configura-
tion files. See Section 2.3.

• misc, for packages that consist of a single
file. An administrator or package main-
tainer may create directories for single-file
packages at their discretion, instead of us-
ing misc.

3.2 Fonts

Font files shall be stored in separate directories, seg-
regated by file type, font supplier, and typeface (PK
and GF files need additional structure, as detailed in
the next section):

texmf/fonts/〈type〉/〈supplier〉/〈typeface〉/

〈type〉 is the type of font file. The TDS reserves the
following 〈type〉 names:

• afm, for Adobe font metrics.

• gf, for generic font bitmap files.

• pk, for packed bitmap files.

• source, for font sources (METAFONT files,
property lists, etc.).

TUGboat, Volume 16 (1995), No. 4 405

• tfm, for TEX font metric files.

• type1, for Type 1 fonts (in any format).

• vf, for virtual fonts.

As usual, a site may omit any of these direc-
tories that are unnecessary (gf is a particularly
likely candidate for omission).

〈supplier〉 is a name identifying font source (exam-
ples: adobe, ams, public). The TDS reserves
the following 〈supplier〉 names:

• ams, for the American Mathematical Soci-
ety’s AMS-fonts collection.

• local, for local additions. See Section 2.3.

• public, for freely redistributable fonts
where the supplier neither (1) requested
their own directory (e.g., ams), nor (2) also
made proprietary fonts (e.g., adobe). It
does not contain all extant freely dis-
tributable fonts, nor are all files therein
necessarily strictly public domain.

• tmp, for dynamically-generated fonts, as is
traditional on some systems. It may be
omitted if unnecessary, as usual.

〈typeface〉 is the name of a typeface family (exam-
ples: cm, euler, times). The TDS reserves the
following 〈typeface〉 names:

• cm (within public), for the 75 fonts de-
fined in Computers and Typesetting, Vol-
ume E.

• latex (within public), for those fonts dis-
tributed with LATEX in the base distribu-
tion.

• local, for local additions. See Section 2.3.

Some concrete examples:

texmf/fonts/source/public/pandora/pnr10.mf

texmf/fonts/tfm/public/cm/cmr10.tfm

texmf/fonts/type1/adobe/utopia/putr.pfa

For complete supplier and typeface name lists,
consult Filenames for TEX fonts (see Appendix D).

3.2.1 Font bitmaps

Font bitmap files require two characteristics in addi-
tion to the above to be uniquely identifiable: (1) the
type of device (i.e., mode) for which the font was
created; (2) the resolution of the bitmap.
Following common practice, the TDS segregates

fonts with different device types into separate di-
rectories. See modes.mf in Appendix D for recom-
mended mode names.
Some printers operate at more than one resolu-

tion (e.g., at 300 dpi and 600dpi), but each such res-
olution will necessarily have a different mode name.
Nothing further is needed, since implicit in the TEX

system is the assumption of a single target resolu-
tion.
Two naming strategies are commonly used to

identify the resolution of bitmap font files. On sys-
tems that allow long filenames (and in the origi-
nal METAFONT program itself), the resolution is
included in the filename (e.g., cmr10.300pk). On
systems which do not support long filenames, fonts
are generally segregated into directories by resolu-
tion (e.g., dpi300/cmr10.pk).
Because the TDS cannot require long filenames,

we must use the latter scheme for naming fonts. So
we have two more subdirectory levels under pk and
gf:

texmf/fonts/pk/

〈mode〉/〈supplier〉/〈typeface〉/dpi〈nnn〉/
texmf/fonts/gf/

〈mode〉/〈supplier〉/〈typeface〉/dpi〈nnn〉/

〈mode〉 is a name which identifies the device type
(examples: cx, gsftopk, ljfour). Usually, this
is the name of the METAFONT mode used to
build the PK file. For fonts rendered as bitmaps
by a program that does not distinguish between
different output devices, the 〈mode〉 name shall
be that of the program (e.g., ps2pk, gsftopk).

dpi〈nnn〉 specifies the resolution of the font (exam-
ples: dpi300, dpi329). ‘dpi’ stands for dots
per inch, i.e., pixels per inch. We recognize that
pixels per millimeter is used in many parts of
the world, but dpi is too traditional in the TEX
world to consider changing now.

The integer 〈nnn〉 is to be calculated as if us-
ing METAFONT arithmetic and then rounded;
i.e., it is the integer METAFONT uses in its out-
put gf filename. We recognize small differences
in the resolution are a common cause of frus-
tration among users, however, and recommend
implementors follow the level 0 DVI driver stan-
dard (see Appendix D) in bitmap font searches
by allowing a fuzz of ±0.2% (with a minimum
of 1) in the 〈dpi〉.

Implementations may provide extensions to the
basic naming scheme, such as long filenames and
font library files, provided that the basic scheme is
also supported.

3.2.2 Valid font bitmaps

The TWG recognizes that the use of short filenames
has many disadvantages. The most vexing is that
it results in the creation of dozens of different files
with the same name. At a typical site, cmr10.pkwill
be the filename for Computer Modern Roman 10pt
at 5–10 magnifications for 2–3 modes. (Section 2.4
discusses duplicate filenames in general.)

406 TUGboat, Volume 16 (1995), No. 4

To minimize this problem, we strongly recom-
mend that PK files contain enough information to
identify precisely how they were created: at least
the mode, base resolution, and magnification used
to create the font.
This information is easy to supply: a simple ad-

dition to the local modes used for building the fonts
with METAFONT will automatically provide the re-
quired information. If you have been using a local
modes file derived from (or that is simply) modes.mf
(see Appendix D), the required information is al-
ready in your PK files. If not, a simple addition based
on the code found in modes.mf can be made to your
local modes file and the PK files rebuilt.

3.3 Non-font METAFONT files

Most METAFONT input files are font programs or
parts of font programs and are thus covered by the
previous section. However, a few non-font input files
do exist. Such files shall be stored in:

texmf/metafont/〈package〉/

〈package〉 is the name of a METAFONT package
(for example, mfpic).
The TDS reserves the following 〈package〉 names:

• base, for the standard METAFONT macro files
as described in The METAFONTbook, such as
plain.mf and expr.mf.

• local, for local additions. See Section 2.3.

• misc, for METAFONT packages consisting of
only a single file (for example, modes.mf).

3.4 METAPOST

METAPOST is a picture-drawing language developed
by John Hobby, derived from Knuth’s METAFONT.
Its primary purpose is to output Encapsulated Post-
Script instead of bitmaps.

METAPOST input files and the support files for
METAPOST-related utilities shall be stored in:

texmf/metapost/〈package〉/

〈package〉 is the name of a METAPOST package. At
the present writing none exist, but the TWG thought
it prudent to leave room for contributed packages
that might be written in the future.
The TDS reserves the following 〈package〉 names:

• base, for the standard METAPOST macro files,
such as plain.mp, mfplain.mp, boxes.mp, and
graph.mp. This includes files used by INIMP
when dumping mem files containing preloaded
macro definitions.

• local, for local additions. See Section 2.3.

• misc, for METAPOST packages consisting of
only a single file.

• support, for additional input files required by
METAPOST utility programs, including a font
map, a character adjustment table, and a sub-
directory containing low-level METAPOST pro-
grams for rendering some special characters.

3.5 BibTEX

BibTEX-related files shall be stored in:

texmf/bibtex/bib/〈package〉/
texmf/bibtex/bst/〈package〉/

The bib directory is for BibTEX database (.bib)
files, the bst directory for style (.bst) files.
〈package〉 is the name of a BibTEX package.

The TDS reserves the following 〈package〉 names
(the same names are reserved under both bib and
bst):

• base, for the standard BibTEX databases and
styles, such as xampl.bib, plain.bst.

• local, for local additions. See Section 2.3.

• misc, for BibTEX packages consisting of only a
single file.

3.6 Documentation

Most packages come with some form of documen-
tation: user manuals, example files, programming
guides, etc. In addition, many independent files not
part of any macro or other package describe various
aspects of the TEX system.
The TDS specifies that these additional docu-

mentation files shall be stored in a structure that
parallels to some extent the fonts and tex directo-
ries, as follows:

texmf/doc/〈category〉/...

〈category〉 identifies the general topic of docu-
mentation that resides below it; for example, a TEX
format name (latex), program name (bibtex, tex),
or other system components (web, fonts).
The TDS reserves the following categories:

• Within each 〈category〉 tree for a TEX format,
the directory base is reserved for base docu-
mentation distributed by the format’s main-
tainers.

• general, for standalone documents not spe-
cific to any particular program (for example,
Joachim Schrod’s Components of TEX).

• help, for meta-information, such as FAQ’s,
David Jones’ macro index, etc.

• html, for HTML documents.

• info, for processed Texinfo documents. (Info
files, like anything else, may also be stored out-
side the TDS, at the installer’s option.)

• local, for local additions. See Section 2.3.

TUGboat, Volume 16 (1995), No. 4 407

bibtex/ BibTEX input files
bib/ BibTEX databases
base/ base distribution (e.g., xampl.bib)
misc/ single-file databases

〈package〉/ name of a package
bst/ BibTEX style files
base/ base distribution (e.g., plain.bst, acm.bst)
misc/ single-file styles

〈package〉/ name of a package
doc/ see Section 3.6 and the summary below
fonts/ font-related files
〈type〉/ file type (e.g., pk)
〈mode〉/ type of output device (for pk and gf only)
〈supplier〉/ name of a font supplier (e.g., public)
〈typeface〉/ name of a typeface (e.g., cm)
dpi〈nnn〉/ font resolution (for pk and gf only)

〈implementation〉/ TEX implementations, by name (e.g., emtex)
metafont/ METAFONT (non-font) input files
base/ base distribution (e.g., plain.mf)
misc/ single-file packages (e.g., modes.mf)
〈package〉/ name of a package (e.g., mfpic)

metapost/ METAPOST input and support files
base/ base distribution (e.g., plain.mp)
misc/ single-file packages
〈package〉/ name of a package
support/ support files for METAPOST-related utilities

mft/ MFT inputs (e.g., plain.mft)
〈program〉/ TEX-related programs, by name (e.g., dvips)
source/ program source code by name (e.g., latex, web2c)
tex/ TEX input files
〈format〉/ name of a format (e.g., plain)
base/ base distribution for format (e.g., plain.tex)
misc/ single-file packages (e.g., webmac.tex)
local/ local additions to or local configuration files for 〈format〉
〈package〉/ name of a package (e.g., graphics, mfnfss)

generic/ format-independent packages
hyphen/ hyphenation patterns (e.g., hyphen.tex)
images/ image input files (e.g., Encapsulated PostScript)
misc/ single-file format-independent packages (e.g., null.tex).
〈package〉/ name of a package (e.g., babel)

Table 1: A skeleton of a TDS texmf directory tree

The doc directory is intended for implementation-
independent and operating system-independent doc-
umentation files. Implementation-dependent files
shall be stored elsewhere, as provided for by the im-
plementation and/or TEX administrator (for exam-
ple, VMS help files under texmf/vms/help).
The documentation directories may contain

TEX sources, DVI files, PostScript files, text files, ex-
ample input files, or any other useful documentation
format(s). See Table 2 for a summary.

A Unspecified pieces

The TDS cannot address the following aspects of a
functioning TEX system:

1. The location of executable programs: this is too
site-dependent even to recommend a location,
let alone require one. A site may place exe-
cutables outside the texmf tree altogether (e.g.,
/usr/local/bin), in a platform-dependent di-
rectory within texmf, or elsewhere.

408 TUGboat, Volume 16 (1995), No. 4

ams/

amsfonts/ amsfonts.faq, amfndoc
amslatex/ amslatex.faq, amsldoc
amstex/ amsguide, joyerr

bibtex/ BibTEX
base/ btxdoc.tex

fonts/

fontname/ Filenames for TEX fonts
oldgerm/ corkpapr

〈format〉/ name of a TEX format (e.g., generic, latex)
base/ for the base distribution
misc/ for contributed single-file package documentation
〈package〉/ for package

general/ across programs, generalities
errata/ errata, errata[1-8]
texcomp/ Components of TEX

generic/ for non-format-specific TEX packages
babel/

german/ germdoc

help/ meta-information
ctan/ info about CTAN mirror sites
faq/ FAQs of comp.text.tex, etc.

html/ HTML files
info/ GNU Info files, made from Texinfo sources
latex/ example of 〈format〉
base/ ltnews*, *guide, etc.
graphics/ grfguide

〈program〉/ TEX-related programs, by name (examples follow)
metafont/ mfbook.tex, metafont-for-beginners, etc.
metapost/ mpman, manfig, etc.
tex/ texbook.tex, A Gentle Introduction to TEX, etc.
web/ webman, cwebman

Table 2: A skeleton of a TDS directory tree under texmf/doc

2. Upgrading packages when new releases are made:
we could find no way of introducing version
specifiers into texmf that would do more good
than harm, or that would be practical for even
a plurality of installations.

3. The location of implementation-specific files
(e.g., TEX .fmt files): by their nature, these
must be left to the implementor or TEX main-
tainer. See Section B.3.

4. Precisely when a package or file should be con-
sidered “local”, and where such local files are
installed. See Section 2.3 for more discussion.

A.1 Portable filenames

The TDS cannot require any particular restriction on
filenames in the tree, since the names of many exist-
ing TEX files conform to no particular scheme. For
the benefit of people who wish to make a portable

TEX distribution or installation, however, we outline
here the necessary restrictions. The TDS specifica-
tions themselves are compatible with these.

ISO-9660 is the only universally acceptable file
system format for CD-ROMs. A subset thereof meets
the stringent limitations of all operating systems in
use today. It specifies the following:

• File and directory names, not including any di-
rectory path or extension part, may not exceed
eight characters.

• Filenames may have a single extension. Exten-
sions may not exceed three characters. Direc-
tory names may not have an extension.

• Names and extensions may consist of only the
characters A–Z, 0–9, and underscore. Lowercase
letters are excluded. (The only common place
where mixed-case names occur in the TEX sys-
tem is in LATEX font descriptor files, and LATEX

TUGboat, Volume 16 (1995), No. 4 409

does not rely on case alone to distinguish among
these files.)
• A period separates the filename from the exten-
sion and is always present, even if the name or
extension is missing (e.g., FILENAME. or .EXT).
• A version number, ranging from 1–32767, is
appended to the file extension, separated by a
semicolon (e.g., FILENAME.EXT;1).
• Only eight directory levels are allowed, includ-
ing the top-level (mounted) directory (see Sec-
tion 2.2). Thus, the deepest valid ISO-9660
path is:

texmf/L2/L3/L4/L5/L6/L7/L8/FOO.BAR;1

1 2 3 4 5 6 7 8

The deepest TDS path needs only seven levels:

texmf/fonts/pk/cx/public/cm/dpi300/cmr10.pk

1 2 3 4 5 6 7

Some systems display a modified format of ISO-
9660 names, mapping alphabetic characters to low-
ercase, removing version numbers and trailing peri-
ods, etc.

B Implementation issues

We believe that the TDS can bring a great deal of
order to the current anarchic state of many TEX
installations. In addition, by providing a common
frame of reference, it will ease the burden of docu-
menting administrative tasks. Finally, it is a neces-
sary part of any reasonable system of true “drop-in”
distribution packages for TEX.

B.1 Adoption of the TDS

We recognize that adoption of TDS will not be im-
mediate or universal. Most TEX administrators will
not be inclined to make the switch until:

• Clear and demonstrable benefits can be shown
for the TDS.
• TDS-compliant versions of all key programs are
available in ported, well-tested forms.
• A “settling” period has taken place, to flush out
problems. The public release of this document
is the first step in this process.

Consequently, most of the first trials of the TDS
will be made by members of the TDS committee
and/or developers of TEX-related software. Indeed,
some of this has taken place during the course of
our deliberations (see Appendix D for a sample tree
available electronically). They will certainly result
in the production of a substantial number of TDS-
compliant packages.
Once installable forms of key TDS-compliant

packages are more widespread, some TEX adminis-
trators will set up TDS-compliant trees, possibly in

parallel to existing production directories. This test-
ing will likely flush out problems that were not obvi-
ous in the confined settings of the developers’ sites;
for example, it should help to resolve OS and pack-
age dependencies, package interdependencies, and
other details not addressed by this TDS version.
After most of the dust has settled, hopefully

even conservative TEX administrators will begin to
adopt the TDS. Eventually, most TEX sites will have
adopted the common structure, and most packages
will be readily available in TDS-compliant form.
We believe that this process will occur relatively

quickly. The TDS committee spans a wide range of
interests in the TEX community. Consequently, we
believe that most of the key issues involved in defin-
ing a workable TDS definition have been covered,
often in detail. TEX developers have been consulted
about implementation issues, and have been trying
out the TDS arrangement. Thus, we hope for few
surprises as implementations mature.
Finally, there are several (current or prospec-

tive) publishers of TEX CD-ROMs. These publish-
ers are highly motivated to work out details of TDS
implementation, and their products will provide in-
expensive and convenient ways for experimentally-
minded TEX administrators to experiment with the
TDS.
Efforts are under way to set up a “TDS Reg-

istry” that will coordinate assignment of TDS-com-
pliant directory names and provide a definitive
database of TDS-compliant software distributions.
(Perhaps this could also serve many sites as the def-
inition of when a package is local.) For now, dis-
tribution through CTAN serves as an imprecise reg-
istry.

B.2 More on subdirectory searching

Recursive subdirectory searching is the ability to
specify a search not only of a specified directory 〈d〉,
but recursively of all directories below 〈d〉.
Since the TDS specifies precise locations for

most files, with no extra levels of subdirectories al-
lowed, true recursive searching is not actually re-
quired for a TDS-compliant implementation. We do,
however, strongly recommend recursive searching as
the most user-friendly and natural approach to the
problem, rather than convoluted methods to specify
paths without recursion.
This feature is already supported by many im-

plementations of TEX and companion utilities, for
example DECUS TEX for VMS, Dvips(k), emTEX
(and its drivers), PubliC TEX, Web2c, Xdvi(k), and
Y&YTEX.

410 TUGboat, Volume 16 (1995), No. 4

Even if your TEX implementation does not di-
rectly support subdirectory searching, you may find
it useful to adopt the structure if you do not use
many fonts or packages. For instance, if you only
use Computer Modern and AMS fonts, it would be
feasible to store them in the TDS layout and list
the directories individually in configuration files or
environment variables.
The TWG recognizes that subdirectory search-

ing places an extra burden on the system and may
be the source of performance bottlenecks, partic-
ularly on slower machines. Nevertheless, we feel
that subdirectory searching is imperative for a well-
organized TDS, for the reasons stated in Section 2.1.
Implementors are encouraged to provide enhance-
ments to the basic principle of subdirectory search-
ing to avoid performance problems, e.g., the use of
a filename cache (this can be as simple as a re-
cursive directory listing) that is consulted before
disk searching begins. If a match is found in the
database, subdirectory searching is not required,
and performance is thus independent of the num-
ber of subdirectories present on the system.
Different implementations specify subdirectory

searching differently. In the interest of typographic
clarity, the examples here do not use the 〈replaceable〉
font.

Dvips: via a separate TEXFONTS_SUBDIR environ-
ment variable.

emTEX : t:\subdir!!; t:\subdir! for a single level
of searching.

Kpathsea: texmf/subdir//
VMS: texmf:[subdir...]
Xdvi : texmf/subdir/**; texmf/subdir/* for a sin-
gle level of searching (patchlevel 20 of the pro-
gram onwards).

Y&Y TEX : t:/subdir// or t:\subdir\\.

B.3 Example implementation-specific trees

The TDS cannot specify a precise location for
implementation-specific files, but for informative
purposes, we provide here the default locations for
some implementations. Please contact us with ad-
ditions or corrections. These paths are not defini-
tive, may not match anything at your site, and may
change without warning.
We recommend all implementations have de-

fault search paths that start with the current direc-
tory (e.g., ‘.’). Allowing users to include the parent
directory (e.g., ‘..’) is also helpful.

B.3.1 Public DECUS TEX

If another VMS implementation besides Public DE-
CUS TEX appears, the top level implementation di-

rectory name will be modified to something more
specific (e.g., vms_decus). Table 3 shows the VMS
directory structure.

B.3.2 Web2c 7.0

All implementation-dependent TEX system files (in-
cluding .pool, .fmt, .base, and .mem files) are
stored by default directly in texmf/web2c. The
configuration file texmf.cnf and various subsidiary
MakeTeX... scripts used as subroutines are also
stored there.
Non-TEX specific files are stored following the

GNU coding standards. Given a root directory
〈prefix 〉 (/usr/local by default), we have default
locations as follows as shown in Table 4.
See prep.ai.mit.edu:/pub/gnu/standards.

* for the rationale behind and descriptions of this
arrangement. A site may of course override these
defaults; for example, it may put everything under
a single directory such as /usr/local/texmf.

C Is there a better way?

Defining the TDS required many compromises. Both
the overall structure and the details of the individ-
ual directories were arrived at by finding common
ground among many opinions. The driving forces
were feasibility (in terms of what could technically
be done and what could reasonably be expected
from developers) and regularity (files grouped to-
gether in an arrangement that “made sense”).
Some interesting ideas could not be applied due

to implementations lacking the necessary support:

• Path searching control at the TEX level. If doc-
uments could restrict subdirectory searching to
a subdirectory via some portable syntax in file
names, restrictions on uniqueness of filenames
could be relaxed considerably (with the cooper-
ation of the formats), and the TEX search path
would not need to depend on the format.

• Multiple logical texmf trees. For example, a
site might have one (read-only) location for
stable files, and a different (writable) location
for dynamically-created fonts or other files. It
would be reasonable for two such trees to be
logically merged when searching.

C.1 Macro structure

The TWG settled on the 〈format〉/〈package〉 ar-
rangement after long discussion about how best to
arrange the files.

TUGboat, Volume 16 (1995), No. 4 411

texmf/

vms/ VMS implementation specific files
exe/ end-user commands
common/ command procedures, command definition files, etc.
axp/ binary executables for Alpha AXP
vax/ binary executables for VAX

formats/ pool files, formats, bases
help/ VMS help library, and miscellaneous help sources
mgr/ command procedures, programs, docs, etc., for system management

Table 3: The VMS directory structure

〈prefix 〉/ installation root (/usr/local by default)
bin/ executables
man/ man pages
info/ info files
lib/ libraries (libkpathsea.*)
share/

texmf/ TDS root
web2c/ implementation-dependent files (.pool, .fmt, texmf.cnf, etc.)

Table 4: The VMS directory structure

The primary alternative to this arrangement
was a scheme which reversed the order of these direc-
tories: 〈package〉/〈format〉. This reversed arrange-
ment has a strong appeal: it keeps all of the files re-
lated to a particular package in a single place. The
arrangement actually adopted tends to spread files
out into two or three places (macros, documenta-
tion, and fonts, for example, are spread into different
sections of the tree right at the top level).
Nevertheless, the 〈format〉/〈package〉 structure

won for a couple of reasons:

• It is closer to current practice; in fact, several
members of the TWG have already implemented
the TDS hierarchy. The alternative is not in use
at any known site, and the TWG felt it wrong
to mandate something with which there is no
practical experience.

• The alternative arrangement increases the num-
ber of top-level directories, so the files that
must be found using subdirectory searching are
spread out in a wide, shallow tree. This could
have a profound impact on the efficiency of sub-
directory searching.

C.2 Font structure

The TWG struggled more with the font directory
structure than anything else. This is not surprising;
the need to use the proliferation of PostScript fonts
with TEX is what made the previous arrangement
with all files in a single directory untenable, and
therefore what initiated the TDS effort.

C.2.1 Font file type location

We considered the supplier-first arrangement cur-
rently in use at many sites:

fonts/〈supplier〉/〈typeface〉/〈type〉/

This improves the maintainability of the font
tree, since all files comprising a given typeface are
in one place, but unless all the programs that search
this tree employ some form of caching, there are
serious performance concerns. For example, in order
to find a TFM file, the simplest implementation would
require TEX to search through all the directories that
contain PK files in all modes and at all resolutions.
In the end, a poll of developers revealed consid-

erable resistance to implementing sufficient caching
mechanisms, so this arrangement was abandoned.
The TDS arrangement allows the search tree to be
restricted to the correct type of file, at least. Con-
cerns about efficiency remain, but there seems to be
no more we can do without abandoning subdirectory
searching entirely.
We also considered segregating all font-related

files strictly by file type, so that METAFONT sources
would be in a directory texmf/fonts/mf, prop-
erty list files in texmf/fonts/pl, the various forms
of Type 1 fonts separated, and so on. Although
more blindly consistent, we felt that the drawback
of more complicated path constructions outweighed
this. The TDS merges file types (mf and pl under
source, pfa and pfb and gsf under type1) where
beneficial.

412 TUGboat, Volume 16 (1995), No. 4

C.2.2 Mode and resolution location

We considered having the mode at the bottom of the
font tree:

fonts/pk/〈supplier〉/〈typeface〉/〈mode〉/〈dpi〉/

In this case, however, it is difficult to limit sub-
directory searching to the mode required for a par-
ticular device.
We then considered moving the dpi〈nnn〉 up to

below the mode:

fonts/pk/〈mode〉/〈dpi〉/〈supplier〉/〈typeface〉/

But then it is not feasible to omit the dpi〈nnn〉
level altogether on systems which can and do choose
to use long filenames.

C.2.3 Modeless bitmaps

The TDS specifies using utility names as mode
names for those utilities which generate bitmaps,
e.g., texmf/fonts/pk/gsftopk/. An alternative
was to introduce a single directory modeless/ below
which all such directories could be gathered. This
has the considerable advantage of not requiring each
such directory name to be listed in a search path.
But it has disadvantages, too: it would use the

last available directory level, preventing any future
expansions; and it would put PK files at different
depths in the tree, possibly hindering search strate-
gies and certainly a likely source of confusion. We
decided to stay with existing practice and keep the
utility name at the same level as the mode names.
We are making an implicit assumption that

METAFONT is the only program producing mode-
dependent bitmaps. If this becomes false we could
add an abbreviation for the program to mode names,
as in mfcx vs. xyzcx for a hypothetical programXyz,
or we could at that time add an additional program
name level uniformly to the tree. For our present
purposes, it seems more important to concisely rep-
resent the current situation than to take account of
hypothetical possibilities that may never be realized.

C.3 Documentation structure

We considered placing additional documentation
files in the same directory as the source files for the
packages, but we felt that users should be able to
find documentation separately from sources, since
most users have no interest in sources.
We hope that a separate, but parallel, structure

for documentation would (1) keep the documenta-
tion together and (2) make it as straightforward as
possible for users to find the particular documenta-
tion they were after.

D Related references

This appendix gives pointers to related files and
other documents.
In this document, 〈CTAN:〉 means the root of

an anonymous ftp CTAN tree. This is both a host
name and a directory name. For example:

ftp.dante.de:/tex-archive

ftp.shsu.edu:/tex-archive

ftp.tex.ac.uk:/tex-archive

Finger ctan@ftp.shsu.edu for a complete list
of CTAN sites; there are mirrors worldwide.
Here are the references:

• The TDS mailing list archives can be retrieved
via ftp from shsu.edu:[twg-tds] and
vms.rhbnc.ac.uk:/archives/twg.tds.*.

• A sample TDS tree: 〈CTAN:〉tds.

• A collection of BibTEX databases and styles:
ftp.math.utah.edu:/pub/tex/bib.

• Components of TEX by Joachim Schrod:
〈CTAN:〉documentation/components-of-TeX.

• The level 0 DVI driver standard:
〈CTAN:〉dviware/driv-standard/level-0.

• Filenames for TEX fonts:
〈CTAN:〉documentation/fontname.
This distribution includes recommended sup-
plier and typeface names.

• ISO-9660 CD-ROM file system standard:
http://www.iso.ch/cate/cat.html.

• A complete set of METAFONT modes:
〈CTAN:〉fonts/modes/modes.mf.
This file includes recommended mode names.

E Contributors

The TWG had no formal meetings; electronic mail
was the primary communication medium.
Sebastian Rahtz is the TEX Users Group Tech-

nical Council liaison. Norman Walsh is the commit-
tee chair. For version 0.999 of the draft, Karl Berry
took over as editor and coordinated this release.

Original contributors:

Barbara Beeton Karl Berry
Vicki Brown David Carlisle
Thomas Esser Alan Jeffrey
Jörg Knappen Pierre MacKay
Rich Morin Sebastian Rahtz
Joachim Schrod Christian Spieler
Elizabeth Tachikawa Philip Taylor
Ulrik Vieth Paul Vojta
Norman Walsh

TUGboat, Volume 16 (1995), No. 4 413

Additional contributors:

David Aspinall Nelson Beebe
Harriet Borton Bart Childs
Damian Cugley Alan Dunwell
Michael Ferguson Erik Frambach
Bernard Gaulle Jeffrey Gealow
George Greenwade Thomas Herter
Berthold Horn Charles Karney
David Kastrup David Kellerman
Wonkoo Kim Richard Kinch
Robin Kirkham Alex Kok
Eberhard Mattes Bob Morris
Lenny Muellner Oren Patashnik
David Rhead Mark Sinke
Andrew Trevorrow Doug Waud
Chee-Wai Yeung

TUGboat, Volume 16 (1995), No. 4 413

Hints&Tricks

Whatever is Wrong with my LATEX File?

Sebastian Rahtz

1 Introduction

Contrary (perhaps) to what many TEX people ex-
perience, much of the LATEX that I have to untangle
is not written by me. At Elsevier Science we accept
LATEX files for more or less any of our 1200+ jour-
nals, and our production editors have to coerce the
submissions into a standard form so that we can ap-
ply our journal-specific styles. Along the way, many
problems can arise, and we hold in-house training
sessions to discuss techniques for finding bugs in
other people’s LATEX. These notes arise from those
sessions, and are offered as a light-hearted reminder
to LATEX writers and editors alike about some of the
ways the agony of using our idiosyncratic system can
be lessened. Following a felicitous parallel drawn by
the TUGboat reviewer of this article, think of this
like those posters on the doctor’s wall which you
read while waiting to see the specialist. It is not a
serious guide to TEX debugging, for which I am not
qualified, and which would require a very large book
indeed. . .

Perhaps these musings1 will stimulate others to
write about their working methods in TUGboat.

2 Golden rules

If you do not take the following precautions, you
might as well give up writing or editing LATEX now:

1. Look at TEX errors; those messages flashing
across the screen are not some kind of screen
saver.

2. Be prepared to read the log file too; did you
realize it has extra information? Specifically, it
will list characters missing from a font.

3. OK, so you ignored those two rules; but at least
realize you have a log file, and take it with you
when you visit the doctor.

4. Lay out the source sensibly; how can you find
errors if your input is one long line of mixed
macros and text?

5. Use syntax checkers; there are many of these:
I use lacheck, from the authors of Emacs
AUCTEX, and the one built into Eddi4TEX, but
there are others. For LATEX especially, it is a
god send to have the missing \end{enumerate}
spotted for you.

6. LATEX has several packages to help show you
what it is working with: showkeys shows you
the labels you define; syntonly will run a
LATEX file fast, ignoring fancy typesetting; the
listfiles command lists the macro files that
were used at the end (handy for checking ver-
sions), and the draft option will show overfull
boxes and all manner of other things for some
packages.

7. If you are a confident macro programmer, be
aware of the many TEX primitives that can help
you: set \errorcontextlines to give more
context for help messages, use \message to put
in diagnostic messages, try \meaning to find out
what a macro really is defined as, rather that
what you assumed it was. Don’t despair at the
amount of verbiage \tracingall gives you —
there is gold there if you dig deep enough.

8. Remember primitive programmer’s debugging
techniques; if all else fails in your quest to see
why LATEX dies with that weird error in your
10000 line file, move \end{document} gradually
back up the file from the end until it does work,
and then stare at the 10 lines which you know
provoke the error, with a wet towel around your

1 An earlier version was published as part of the editorial
in Baskerville 5(5), and is used with permission of the UK
TEX Users Group.

414 TUGboat, Volume 16 (1995), No. 4

head. It is faster than reading all 10000 lines
over and over again hopelessly. . .

9. Do not mail the LATEX development team,
or other package authors, every time TEX
gives you an error prompt; you’ll irritate
hard-pressed volunteers working in their spare
time. If you wait until you have a good, well-
documented, repeatable, error condition that
your friends get too, then you can report it,
and likely get a friendly reply and a fix.

10. Read before you Write. There are many excel-
lent books about TEX and LATEX that you can
buy and read, as well as the freely available ‘Fre-
quently Asked Questions’ document (make sure
you get the UKTUG version, as it is consider-
ably changed and enhanced from the original).
You cannot use LATEX without a manual.

3 Examples

3.1 Layout

Did you think I was joking about laying out your
text in a readable fashion? Can you easily find the
error in this example?

1 \begin

2 {document}\baselineskip=12pt\newcommand

3 {\F}{Fig.~}\newcommand {\w}{\omega

4 }\newcommand {\k}{\xi }\newcommand

5 {\p}{\phi

6 }\maketitle\thispagestyle{empty}\centerline

7 {\bf \underline{Abstract}}\vskip

8 6ptA probabilisticoptimal design

9 methodology for complex structures

10 using the existing probabilistic

11 optimization techniques. \vskip

12 12pt\centerline{\bf

13 \underline{Nomenclature}\vskip 6pt

14 \begin{tabbing}\(A

15 \)\hspace{0.45in} \=:

16 Transformation matrix\\\(a_i \)

17 \>: Gradient of performance

18 function with respect \\$\hskip

19 1.25in$ to i^{th} random variable

20 \\\(b \) \>: Design variable

21 vector\\\({\it CDF} \) \>:

22 Cumulative distribution

23 function\\\({\it COV} \) \>:

24 Coefficient of variation \\\(C_x

25 \) \>: Covariance

That is, of course, an artifical example, but one does
come across files which look a bit like this. Common
sense (and the LATEX manual) will suggest that re-
placing code like:

\vskip 3pt\noindent{\bf \underline{Safety

Index Interpolation}}\vskip 1pt

with

\section{Safety Index Interpolation}

will considerably aid readability and maintenance.
It is a curious fact that some files sent in to Else-
vier journals purporting to be LATEX are little more
than plain TEX with \documentstyle inserted at
the front, and the above is not unusual. It also
arises when a frustrated LATEX user cannot work out
how to make the \section command do what is re-
quired, so brute force is used at the last moment.
Do not stop at simply choosing rational places

for line endings; is this

1 \title{Some dull results}

2 \author{My AlterEgo}

3 ...

4 and that was the last paragraph.

5 \section{Another section}

6 \begin{enumerate}

7 \item \emph{Look} at \TeX\ errors;

8 those messages flashing across

9 the screen are not some kind of

10 screen saver.

11 \item Read the log file too; did

12 you realize it has extra

13 information? Specifically, it will

14 list characters missing

15 from a font.

16 \end{enumerate}

as easy to read as this?

1 %------------------------------------

2 \title

3 {Some dull results}

4

5 \author

6 {My AlterEgo}

7 %------------------------------------

8

9

10 and that was the last paragraph.

11

12 %---------------------------------------

13 \section{Another section}

14

15 \begin{enumerate}

16 \item \emph{Look} at \TeX\ errors; those

17 messages flashing across the screen

18 are not some kind of screen saver.

19 \item Read the log file too; did you

20 realize it has extra information?

21 Specifically, it will list characters

22 missing from a font.

23 \end{enumerate}

Again, this seems trivial, but consistent and read-
able layout of the code is well worth the trou-
ble; some intelligent editors (like Gnu Emacs in
AUCTEX mode) can do almost all of it automati-
cally.

TUGboat, Volume 16 (1995), No. 4 415

3.2 Syntax errors

TEX error messages are not as obscure as we some-
times think; here is an example where the puzzling
output is all explained in the log file:

1 {This is not so bad,

2 \bfseries\ttfamily hello?}

3 {This is not so bad, \scshape

4 Hello \bfseries Goodbye?}

5 {\it\bf\Large byebye}

6 \end{document}

Why do we not see bold typewriter or bold small
caps? Because the fonts do not exist, and LATEX
tells us it has had to make substitutions as best it
can:

LaTeX Font Warning: Font shape

‘OT1/cmtt/bx/n’ in size <10>

not available

(Font) Font shape ‘OT1/cmtt/m/n’

tried instead on input line 4.

LaTeX Font Warning: Font shape

‘OT1/cmr/bx/sc ’ undefined

(Font) using ‘OT1/cmr/bx/n’

instead on input line 6.

What more could you ask? Regular LATEX users
must learn to understand these New Font Selec-
tion Scheme messages, as they are a crucial part
of LATEX2ε.
Now let us look at a bad file which is quite easy

to understand:

1 \documentclass{article}

2 something

3 \begin{document}

4 hello \(a=

5 \end{documen

LATEX says of this, in an unusually clear way:

! Missing $ inserted.

<inserted text>

$

l.4

?

)

Runaway argument?

{documen

! File ended while scanning use of \end.

<inserted text>

\par

<*> bad

?

though the ‘missing $’ is a bit confusing when what
it meant was ‘missing \)’. lacheck does a much bet-
ter job:

"bad.tex", line 5:

<- unmatched "\end{documen}"

"bad.tex", line 3:

-> unmatched "math begin \("

"bad.tex", line 5:

<- unmatched "end of file bad.tex"

"bad.tex", line 2:

-> unmatched "\begin{document}"

However, it sees nothing wrong with this:

1 \documentclass{article}

2 \begin{document}

3 Funnies: \dag, \AA and \"

4 \section{Introduction}

5 \end{document}

about which LATEX says:

! Argument of \@xdblarg has an extra }.

<inserted text>

\par

<to be read again>

}

l.5 \section

{Introduction}

?

How long did it take you to spot the problem?
Can someone suggest a technique other than towel-
round-the-head staring to catch it?

3.3 Hyphenation

If hyphenation is your bugbear, do you understand
the difference between the following large heavy an-
imals?

1 rhinoceroses

2 \showhyphens{rhinoceroses}

3 \hyphenation{rh-ino-cer-os-es}

4 rhinoceroses

5 \begin{sloppypar}

6 rhinoceroses

7 \end{sloppypar}

8 rh\"inoceroses

9 \fontencoding{T1}\selectfont

10 rh\"inoceroses

11 \par\hskip\z@skip

12 rhinoceroses

Remember that:

1. TEX may need help hyphenating the word; give
it clues;

2. If you want justification at all costs, set the
right parameters — sloppypar goes too far, us-
ing very lax settings, but it works;

3. If you put accents in words, hyphenation dies
. . .

4. . . . unless you use T1 encoding, which cleverly
transforms \"i to an 8-bit character internally

416 TUGboat, Volume 16 (1995), No. 4

so that TEX proceeds happily (but remember
that you need 8-bit hyphenation patterns to do
a proper job);

5. The first word of a paragraph will not hyphen-
ate. Insert something harmless to bypass this
law.

3.4 Frequently encountered pitfalls

I expect all my readers have written something like
this at some time:

1 \begin{figure}

2 \label{fig1}

3 \caption{This is a caption}

4 \end{figure}

and wondered why the labels are wrong. It is not
the figure environment which sets labels, but the
\caption command; what the example above will
do is set the label ‘fig1’ to the value of the most
recent section, equation, list item or whatever.
Do the new LATEX2e packages puzzle you? Why

doesn’t this work:

1 \usepackage{graphicx}

2 \begin{document}

3 This is \rotatebox{75}{hello sunshine}

4 at an angle

5 \end{document}

Simply because rotation, colour, scaling, and graph-
ics insertion are all device dependent, and LATEX
needs to know what dvi driver you have. You prob-
ably meant something like:

\usepackage[dvips]{graphicx}

Lastly, did your TEX just say ‘bufsize ex-
ceeded’? Maybe the file it was reading came from a
Mac? or a word-processor which stored each para-
graph as a single long line? If it is a graphic file,
it may have come from a Mac package, and TEX is
throwing up while searching for a %%BoundingBox
line. You should realize that DOS, Unix and Mac
treat line-endings differently! If you don’t have a
dedicated utility to fix this, try using zip to package
up the files, and then unzip them, using the flag to
convert text files to the local native format.

4 Conclusions

One could go on listing common problems, and mys-
terious LATEX errors, for many pages. But the funda-
mental message is that you cannot treat TEX prod-
ucts like the finite and menu-driven offerings from
Microsoft. If you write your documents using a com-
puter programmer’s assembly language, you are al-
ways going to be exploring strange new worlds. If
you think you have better ways of spending your
time — don’t use TEX directly at all. The excel-
lent Scientific Word interface to LATEX will spare

you most of the pain described in this article, and
others are sure to follow.
Choose LATEX with a light heart: If you can

keep your head when all about you Are losing theirs
and blaming it on you. . . If you can wait and not
be tired by waiting. . . if you can meet with Triumph
and Disaster, And treat those two imposters just the
same; . . . If you can bear to hear the truth you’ve
spoken Twisted by knaves to make a trap for fools,
Or watch the things you gave your life to, broken,
And stoop and build ’em up with worn-out tools
. . . If you can fill the unforgiving minute With sixty
seconds’ worth of distance run, Yours is TEX and
everything thats in it, And—which is more— you’ll
be a Man, my son!

⋄ Sebastian Rahtz

Production Department,

Elsevier Science Ltd,

The Boulevard, Langford Lane,

Kidlington, Oxford OX5 1GB

UK

Email: s.rahtz@elsevier.co.uk

416 TUGboat, Volume 16 (1995), No. 4

Macros

New Perspectives on TEX Macros

Jonathan Fine

Abstract

Using the TEX macro language as an example, this
article indicates how SGML can be used the specify
the source file syntax for literate programming.
(This is part of the philosophy behind the author’s
SIMSIM project, which will allow TEX to typeset
SGML documents.) Some of the advantages are
shown. The problems of implementation are not
discussed.

Introduction

This article is about TEX macros, SGML and
literate programming. It also explains some of the
philosophy behind the author’s SIMSIM package,
which will provide a basis for the formatting by
TEX of SGML documents. The author hopes for a
first release to selected test sites by the end of 1995.

Knuth implemented literate programming by
defining the WEB file format, and producing two aux-
iliary programs, WEAVE and TANGLE, which transform
a WEB file into TEX and Pascal files respectively.
This was done in the early 1980s. Today it might
be better to use an SGML document type definition
in the place of the WEB file format. This would
allow existing and future SGML tools to process the
program source code.
TANGLE can also reorder the code, so that the

programmer can present the code the program in
an order which suits the programmer (and reader)
rather than the compiler. This is considered by its
practitioners to be an essential feature of literate
programming. (The author thanks the referee for
pointing this out.)
Consider now TEX macros. Here is a macro

definition, written in an unspecified SGML DTD.

<mac n=echo> <par n=Token> writes the

|Token| to the console.

message { string Token }

</mac>

Its meaning should be clear. The intention is to
define a macro, whose name is echo. It takes
a single parameter, which the author is calling a
Token. The replacement text is given by the lines in
the <mac> element that begin with a leading space.
Notice that there are no backslashes. Instead, the
character string message is standing for the control
sequence whose name is message (and which is
usually referred to by \message). As usual, { and
} stand for characters with category code 1 and 2
respectively. Finally, Token stands for #1, as Token
was the first parameter to be declared.
Compare this definition to the text

\def\echo#1{\message{\string#1}}

that would be used in an ordinary macro file to
express the same meaning.
Here is another example.

<mac n=gobble> <discard> takes a

token (or balanced list) and

throws it away.

</mac>

which has empty replacement text. Here

\def\gobble#1{}

is the ordinary form for this definition.
The SGML form requires more effort to write,

but that is because it is more expressive. For
complicated macros, it is a great help, to have
named rather than numbered macro parameters.

TUGboat, Volume 16 (1995), No. 4 417

More examples

The benefits of the SGML approach grow, the larger
and more complicated the macros are. Here is an
example. (The closing </mac> is to be understood.
The SGML omitted end tags feature will supply it
if the next tag is also a <mac>, or any other element
that cannot occur within a <mac> element. In the
same way, the short reference feature can recognise
a leading blank and within the <mac> element,
translate it into <code-line>. Similarly, within
<code-line> the carriage return can be translated
into the end tag </code-line>.)

<mac n=show> <par n=Token> is like

the \show primitive of &TeX except

that it is not like an error message.

immediate write 16

{

> ~~~ string Token =

meaning Token

}

The ~ stands for an ordinary space character.
Dirty tricks are required to get a sequence of such
characters into the replacement text of a macro.
TEX runs more efficiently if numeric constants
such as 16 are replaced by tokens that have been
\chardef’d to the appropriate value. It is much
easier to write (and read) 16 than it is the control
sequence \sixt@@n that is used in the source file
for plain and LATEX. The characters > and = stand
for themselves, as ‘other’ characters.
The replacement text of a TEX macro is a

sequence of tokens. The syntax and semantics of the
source code file format should allow the programmer
to specify, perhaps implicitly, the sequence of tokens
desired. The analog of TANGLE should produce a
file from which TEX can produce (at high speed)
the specified macro definition. The technical means
to accomplish this are not discussed in this article.
Suffice to say that everything described here is
known to be possible.

From SGML tags to TEX actions

As an SGML document is parsed, information
becomes available to the text processing application.
Typesetting (or any other processing) of an SGML
document consists of linking actions to the start
and end tags, and to other events. Suppose the
document to be processed has an element called
<tag-name>, with an attribute called text. The
code below

1. <gi n=tag-name> This tag has a text

2. attribute, whose value will be typeset

3. in a box.

4. begingroup

5. // some code is omitted

6. let end-element endgroup

7. hbox { (tag-name*text) }

specifies processing for such an element.
Line 4 tells us that once the tag has been

parsed, a group is begun. Line 5 is a comment.
Line 6 says that \endgoup is the action to be
performed when the element comes to an end. Note
that because SGML allows hyphens, periods and
digits to occur in a name, it is convenient to allow
the same for control sequences. Incidentally, it is
much easier to type and to read a hyphen, than it
is an underscore.
It is line 7 that sets the value of the text

attribute in a horizontal box. The sequence of
characters

(tag-name*text)

stands for a single token, whose expansion will
be the current value of the text attribute of the
<tag-name> element. Thus, the text

<tag-name text="This and that">

will cause the SGML parser to define the token
referred to by

(tag-name*text)

to be a macro whose expansion is the sequence

This and that

of letters. Just quite what that token is, should be
of no concern to the programmer. Indeed, it should
not be possible for the programmer to access this
token, except throught the (tag*att) construct.
In the same way

<ent n=TeX> typesets the &TeX logo.

’T kern <dim v=-.1667em>

lower <dim v=.5ex> hbox { ’E }

kern <dim v=-.125em> ’X

specifies the action to be linked to the SGML entity
&TeX. By way of explanation, the right quote ’ is
an escape character. Thus, ’T stands for a letter
T with (for technical reasons) category code ‘other’.
The <dim> element in the macro definition should
be translated, by the TANGLE equivalent, to an
appropriate quantity. So long as the semantics are
well defined, the translation can be made.

Conclusion

In the humanities, it is becoming more widely ac-
cepted that structured documents should be stored

418 TUGboat, Volume 16 (1995), No. 4

with a rigorous syntax, and that SGML provides
a means of specifying that syntax. In addition,
a growing collection of SGML software tools are
becoming available.
Literate programming (which if not in the

humanities is at least an art) also requires a rigorous
document syntax. There is a strong case for using
SGML in this context also. For this to succeed,
there must be available suitable typesetting tools,
that will accept SGML documents. The author’s
SIMSIM project is intended to provide such.

⋄ Jonathan Fine

203 Coldhams Lane

Cambridge CB1 3HY

UK

Email: J.Fine@pmms.cam.ac.uk

418 TUGboat, Volume 16 (1995), No. 4

LATEX

Never again active characters! Ω-Babel

Yannis Haralambous, John Plaice and
Johannes Braams

»Weißt Du, wo ich das Wasser

des Lebens finden kann?«

»An der Grenze Phantásiens«,

sagte Dame Aiuóla.

»Aber Phantásien hat keine Grenzen«,

antwortete er.

»Doch, aber sie liegen nicht außen,

sondern innen.«

M. Ende, Die unendliche Geschichte

Abstract

This progress report of the Ω development team (the
first two authors) presents the first major applica-
tion of Ω: an adaptation of Babel, the well-known
multilingual LATEX package, developed by the third
author. We discuss problems related to multilingual
typesetting, and show their solutions in the Ω-Babel
system.
The paper is roughly divided into two parts: the

first one (sections 1–4) is intended for average LATEX
users, especially those typesetting in languages other
than American English; the second part (section 5)
is more technical and will be of more interest to
developers of multilingual LATEX software.

TUGboat, Volume 16 (1995), No. 4 419

1 Introduction

Ω-Babel is the first real-world application of Ω: we
are in the process of adapting the multilingual LATEX
package Babel by Johannes Braams (1991a, 1991b)
to take advantage of the functionality of Ω. This
allows safer and more complete LATEX typesetting
of languages other than American English. Prob-
lems due to technical limitations of TEX are solved;
for example, the LATEX macros \MakeUppercase and
\MakeLowercase have been replaced by Ω filtering
processes. The whole process is simpler and more
natural.
In this progress report we present the first step

in adapting Babel to Ω. There will be (at least)
two more steps which we describe below; for more
information, see section 5 (the technicalities).

1. Babel adapted to Ω; we use DC font output.
\MakeUppercase and \MakeLowercase macros
are being replaced by macros launching transla-
tion processes. Various input encoding transla-
tion processes are being written. The inputenc
and fontenc packages are being adapted (their
Ω counterparts are called inpenc and fntenc).
This step has been completed.

2. UC (Unicode Computer Modern) fonts will be
released by spring 1996. These fonts contain
Latin, Greek and Cyrillic characters, and a cer-
tain number of dingbats and graphical charac-
ters. Ω-Babel uses UC fonts for output: new
languages will be dealt with (Bulgarian, Es-
peranto, Greek, Latvian, Lithuanian, Maltese,
Russian, Vietnamese, Welsh, etc.). Alan Jef-
frey’s fontinst will be adapted to make ex-
tended virtual fonts in UC encoding.
Latin letters with dieresis will be provided in
two versions: with high or low accent: French-
men like dieresis (→ tréma) to be high, Ger-
mans prefer to have it (→Umlaut) a little lower.

3. Arabic alphabet languages, Hebrew and Yid-
dish will be added at some point during 1996.

4. Soft hyphenation will be done through Ω trans-
lation processes. This allows dynamic loading
of hyphenation algorithms, independently of the
process of format creation. There will be no
need to recompile formats when adding or chang-
ing hyphenation patterns. It will also be possi-
ble to add new features to hyphenation (auto-
matic processing of German „ck→k-k“, prefer-
ential hyphenations, etc.).

2 Practically, what does this mean for me?

It means that if you are typesetting in some non-
American English language covered by current Ba-

Figure 1: Allegory: input (on the left) and
output (on the right) encodings, too close together.

bel (Bahasa, Breton, Catalan, Croatian, Czech, Dan-
ish, Dutch, English, Estonian, Finnish, French, Gali-
cian, German, Hungarian, Irish, Italian, Lower or
upper Sorbian, Norwegian, Polish, Romanian, Scot-
tish, Slovakian, Slovenian, Spanish, Swedish, Por-
tuguese or Turkish), then Ω can make it easier for
you and give you better results. All you have to do
is download the Ω implementation for your machine
from ftp://ftp.ens.fr/pub/tex/yannis/omega/
systems or the top-level omega directory1; if you
use a TEX implementation not already covered, then
(kindly) suggest to the implementor that they
consider including Ω support). Then download the
Ω-Babel package from ftp://ftp.ens.fr/pub/tex/
yannis/omega/macros/obabelor , install it on your
machine and use it! The basic syntax is the same
as in Babel, but we will discuss new options and
functionality in section 4.1.

3 General philosophy of combined Ω and
Babel

In Fig. 1, the reader can see an allegory of how TEX
works: input (the worker on the left) and output

1 At press time Ω has been ported to several UNIX ma-
chines (Sun, Silicon Graphics and others), DOS (by Kraus
Kalle) and Macintosh (by Tom Kiffe).

420 TUGboat, Volume 16 (1995), No. 4

(the one on the right) are close together. For exam-
ple, consider the fact that hyphenation patterns—
which are a language-intrinsic feature—are described
in the output font encoding. In Fig. 2 you can see
how Ω remedies this situation: input and output
are clearly separated and, in between, there is a big
container (imagine a huge barrel), the Unicode en-
coding.
Whatever you type is first of all converted into

Unicode. This conversion is language dependent;
for example, the ASCII character ‘i’ does not mean
the same thing in Turkish and in the other Latin-
alphabet languages. Unicode is very big; so you will
hardly ever ask for something not available; even if
that happens there is a “private zone” where we can
temporarily store characters of our own choice.
Once inside Unicode we deal with pure device-

independent information: we can process it in many
different ways. In Fig. 2 we list five possible trans-
forms, all pertaining to Ω-Babel, and we will discuss
these in turn. The Ω translation processes needed
for every language are activated when you enter the
corresponding Ω-Babel environment. Our goal is to
keep the technical aspects hidden: the average user
typesetting in a given language does not need to be
aware of the different transformations we have just
described.

Aliasing

We call “aliasing” the making of aliases. An alias
is the expression of a character in some convenient
way: for example in 7-bit ASCII. In German Ba-
bel, when you write "s instead of \ss{}, this is an
alias: (a) it is 7-bit, (b) you can very well avoid it if
your keyboard and screen support 8-bit characters,
and (c) in TEX, it used to be handled using active
characters.

Inherent transforms

These go deeper than aliases; they are:
1. either transforms that traditionally belong to
TEX syntax, like --- for “—”, or ‘‘ for the En-
glish opening double quote, or ?‘ for the Span-
ish inverted question mark “¿”;

2. or transforms that historically derive from dacty-
lographical keyboard traditions (for example,
the French << that gets converted into “«” with
the appropriate spacing, or the Catalan l.l
which produces “l.l”);

3. or things that are supposed to be hidden from
the user: for example, the Dutch ij which al-
ways produces the “ij” ligature, unless the user
places something invisible in between: bewijs
vs. bi{}jektie; or, in Turkish and Portuguese,

the fact that there should be no ‘ff’, ‘fi’, . . .
ligatures, etc.

See 4.4 for a good example of the difference and
combined use of aliases and inherent transforms.

Hyphenation

Hyphenation must be done on the level where the
information is most device-independent: that is, the
Unicode level. Not only can you define hyphenation
algorithms using all possible 16-bit characters (for
example to hyphenate Welsh, which uses letters such
as “ŵ”), but your algorithm is automatically valid
for any input or output encoding. We’ll come back
to this issue later in 1996, when we reach step 3 of
Ω-Babel development.

Upper/lowercasing

This is certainly not a trivial process: different let-
ters may share the same glyph for their upper or
lower forms (example: both the Icelandic eth “ð”
and the Croatian dz “ñ” share the glyph “Ð” for
their upper form); letters may have different upper
forms depending on the semantics of the word (ex-
ample: one possible upper form of the German “ß”
is “SS”, another one is “SZ”), or on local traditions
(in bad French typography, upper forms of accented
letters are not always accented), or on the language
itself (example: the upper form of the Turkish letter
“i” is “İ” and not “I”—the lower form of “I” is “ı”
and not “i”) these are major incompatibilities, and
hence we should be able to dynamically change the
upper/lowercasing process.
Finally, as Martin Dürst pointed out on the

omega list2, there are six kinds of letter cases:

1. regular lowercase (glyph becomes uppercase when
we apply the uppercasing process);

2. regular uppercase (glyph becomes lowercase when
we apply the lowercasing process);

3. fixed lowercase (glyph is invariant under the up-
percasing process), for example the “m” and
“b” in the German „GmbH“;

4. fixed uppercase (glyph is invariant under the
lowercasing process), for example the first letter
of a name;

5. fake lowercase (the glyph is uppercase, it be-
comes lowercase when we apply the uppercas-
ing process), for example the “i” in the mod-
ern German word “STUDENTiNNEN” (=po-
litically correct male and female students);

2 Join us on the Ω e-mail discussion forum
omega@ens.fr, by sending the usual subscription mes-
sage to listserv@ens.fr.

TUGboat, Volume 16 (1995), No. 4 421

coming from

keyboard

going to

DVI file

inherent

aliases changing case

contextual analysis

hyphenationInput encoding(s) Output encoding(s)

Figure 2: The Ω way: inserting Unicode between input and output encodings.

6. fake uppercase (the glyph is lowercase, it be-
comes uppercase when we apply the lowercas-
ing process), for example the “I” in the the same
modern German word “StudentInnen”, written
in lowercase type.

Ω introduces two new commands to handle “fixed”
case (\fixedcase) and “fake” case (\fakecase). Us-
ing these commands, you can write

\fixedcase{T}ruth

to be sure that your word will always be “Truth,
with a big T” or

\fixedcase{S}tudent\fakecase{I}nnen

to obtain correctly spelled politically correct (fe)male
students in German. The argument of \fixedcase
or \fakecase must be a single letter.
In Table 1 we present some examples of the use

of the different case-related commands. Note in the
first example, that—contrary to the usual TEX up-
percasing commands—math mode is not affected.

Contextual analysis

This transform is perhaps less important for Latin-
alphabet languages (although it becomes important
when you want to use a “long s” at the beginning of
a word). It is extremely important for Greek (final
or medial sigma), Hebrew (there are five letters with
medial and final form), and especially for the Arabic
alphabet.

4 Details on each language

Before we start considering languages one by one, a
brief description of Ω-Babel syntax.

4.1 Ω-Babel syntax

To be able to use Ω-Babel you have to load the
omega package: this is done automatically if you
use either inpenc (the input encoding package) or
fntenc (the output font encoding package). The
former can take as an option an input encoding (the
reader can find a list of such options on Table 3),
the default value is lat1 (ISO Latin-1). The latter
can take only one option for the moment: T1. As of
step 2 of Ω-Babel development a new encoding will
be added: UT1. Here is an example of the loading of
these packages:

\usepackage[stmac]{inpenc}

\usepackage[T1]{fntenc}

As in the original Babel package, you load Ω-Babel
by using the command \usepackage, and by giv-
ing the names of languages you are going to use as
an optional argument. These names are separated
by commas, and the last one becomes the “default”
language, as in

\usepackage[turkish,german,francais]{obabel}

The names for languages are the same as in original
Babel.
Once Ω-Babel is loaded, you are in the “default

language”: captions, date, hyphenation, 7-bit input
and typographical specifications are adapted.
Contrary to the original Babel where the com-

mand \selectlanguagewas used to switch between
languages, in Ω-Babel you have to use an environ-
ment, called lang. Here is an example:
\documentclass{article}

\usepackage[stmac]{inpenc}

\usepackage[T1]{fntenc}

\usepackage[germanb,turkish,%

422 TUGboat, Volume 16 (1995), No. 4

\MakeUppercase{is it an a or a b?} → IS IT AN a OR A b
\MakeUppercase{mon \oe il} → MON ŒIL
(in German) \MakeUppercase{ma"se oder ma"ze?} → MASSE ODER MASZE?
\MakeLowercase{\MakeUppercase{ma"ze}} → maße
(in Turkish) \MakeUppercase{kap\i y\i{} i\c ceri} → KAPIYI İÇERİ
\MakeLowercase{BROWN} → brown
\MakeLowercase{\fixedcase{B}ROWN} → Brown
\MakeLowercase{\fixedcase{S}TUDENT\fakecase{i}NNEN} → StudentInnen

Table 1: Some examples of upper/lowercasing.

francais]obabel}

\begin{document}

Histoires d’oiseaux en deux langues :

\begin{lang}{german}

"Uber allen Gipfeln ist Ruh,

die V"oglein schweigen im Walde...

\end{lang}

\begin{lang}{turkish}

Kedinin yakalad\i\u g\i{} ku\c sun

t\"uyleri havada u\c cu\c suyordu...

\end{lang}

\end{document}

This is because Ω uses a stack for translation
processes: every time you enter a lang environment,
Ω pushes a set of translation processes on the stack
(see also section 5); every time you leave it, Ω pops
a set of translation processes from the stack.
The environment approach is also essential for

typesetting reasons: in right-to-left languages (Ara-
bic, Hebrew, etc.), line breaking is done differently
depending on whether we are in “global” or in “en-
capsulated” right-to-left mode.
As in the original Babel, the \languagename

macro contains the name of the language.
Finally you have the following additionalΩ com-

mands: \fixedcase and \fakecase as described
above, and a command \omegaversion which re-
turns the version of your Ω implementation.
Let us now take one by one the languages cov-

ered by Ω-Babel to see what has changed.

4.2 French

French features are loaded by the francais option.
Besides the usual hyphenation, caption and date
changes, Ω-Babel transforms the punctuation you
type, whether you include blank spaces or not.
For example, whether we write << Ciel, mon

mari ! >> or <<Ciel, mon mari!>> (or even ‘‘Ciel,

mon mari!’’ if the clever option is on), the result
will be the same: « Ciel, mon mari ! ». Not a sin-
gle character is active, so there can be no possible
interference with other TEX or LATEX macros.
When we pass to step 2 of Ω-Babel develop-

ment, francais will also act on the “Unicode →
output font” level and switch to low dieresis letters3.

4.3 German

The German features are loaded by the germanb op-
tion. All original Babel aliases have been kept:

"a \"a, also implemented for the other lowercase
and uppercase vowels.

"s to produce the German ß (like \ss{}).

"z to produce the German ß (like \ss{}).

"ck for ck to be hyphenated as k-k.

"ff for ff to be hyphenated as ff-f, this is also
implemented for l, m, n, p, r and t

"S for SS to be \MakeUppercase{"s}.

"Z for SZ to be \MakeUppercase{"z}.

"| disable ligature at this position.

"- an explicit hyphen sign, allowing hyphenation in
the rest of the word.

"" like "-, but producing no hyphen sign (for com-
pound words with hyphen, e.g. x-""y).

"~ for a compound word mark without a break-
point.

"= for a compound word mark with a breakpoint,
allowing hyphenation in the composing words.

"‘ for German left double quotes (looks like „).

"’ for German right double quotes.

"< for French left double quotes (similar to <<).

"> for French right double quotes (similar to >>).

3 Default letters with dieresis will carry a “low” accent,
French “higher” accented letters will be the exception, in-
troduced by an additional translation process: this decision
of the Ω team has no political connotation %, it comes just
from the fact that French letters with tréma are far rarer than
German letters with Umlaut.

TUGboat, Volume 16 (1995), No. 4 423

(description taken from the source file, germanb.dtx).
Maybe it is not very clear from the description above,
when you should use "z instead of "s: in fact, they
both produce exactly the same result, but when
they are uppercased, the first becomes “SS” and the
second “SZ” (for example, „MASSE“ comes from
„Masse“ and „MASZE“ from „Maße“).
It should be noted also that although “French

double quotes” are called “French”, they are not
typeset with the proper French spacing, as in the
French Ω-Babel style.
The UC fonts will also contain an “ft” ligature

and closely kerned versions of “ck” and “ch” (as re-
quested by Frank Mittelbach in 1991), and the pos-
sibility of typesetting with a “long s” as in old Ger-
man (the “long s” is in fact a Unicode character,
and the UC fonts will contain all kind of ligatures
“long s + i”, “long s + l”, . . .).

4.4 Dutch

Dutch features are loaded by the dutch option. Once
again, all original Babel aliases have been kept. We
have included one automatic transformation: ij and
IJ produce the “ij” ligature, in lower and upper
form. To avoid this ligature, it suffices to introduce
an empty group between the letters, or any other
“invisible” command.
Dutch is a fine example of separation of aliases

and inherent transforms. Consider for example the
case of the letter “ï” in the word „ongeïnteresseerd”.
When this word is hyphenated as „onge-interesseerd”,
the letter “i” loses the dieresis (the dieresis is there
to indicate that “ei” is not a diphthong; by hyphen-
ating at that location there is no doubt any more
that this is the case, so the dieresis is useless).
On the TEX level, Babel solves this problem

by using a \discretionary command. This is an
essential transformation, inherent to the Dutch lan-
guage. Hence, we have both an alias and an inherent
transform:

"a
alias
−−−→ 0x00e4

inherent
−−−−−→ \allowhyphens%

\discretionary{-}{U}{^^^^00dc}%

\allowhyphens

4.5 Portuguese

Portuguese features are loaded by the portugues
option. Portuguese has just a few aliases, similar to
those of the German style. The important fact is
that Portuguese has a special inherent transform to
avoid ‘ff’, ‘fi’, ‘fl’, ‘ffi’ and ‘ffl’ ligatures. We obtain
this by inserting between these letters the character
zero width space, which—when going to the DC
output fonts—becomes a \kern0pt command.

This is not the best way of solving this problem:
we are forced to use DC fonts (until we reach step
2 of Ω-Babel development), and these fonts have an
automatic ligaturing mechanism to produce the lig-
atures: by inserting a zero-length skip we avoid the
ligature, but lose a possible kern between the letters.
The forthcoming UC fonts will have no internal

ligatures: all ligatures will be provided by transla-
tion processes, so that we can activate and deacti-
vate them ad libitum.

4.6 Catalan

The Catalan features are loaded by the catalan op-
tion. We provide the following inherent transforms:
l.l and L.L which produce “l.l” and “L.L” respec-
tively. Of course, these can also be typeset by using
the aliases "ll and "LL, as in the original Babel
style.
We must point out that for the moment this

character is produced in a very unorthodox way (28
lines of code!!). We will obtain real typesetting of
Catalan only after step 2 of Ω-Babel development,
since “l.l” and “L.L” are characters of the UC fonts
(this is not the case for DC fonts: the dots have to
be dragged to the right place. . .).

4.7 Spanish

The Spanish features are loaded by the spanish
option. All aliases requested by the author of the
original Babel style have been included in the Ω-
Babel adaptation, except one: ~n ~N for ñ, Ñ. In
TEX, the character ~ is traditionally used to obtain
a non-breakable space, and this should be valid for
all languages.
In some languages (like in Greek) one can argue

that letters carrying the tilde accent do not appear
at the beginning of a word. This is unfortunately
not the case of Spanish (we found four such words
in a pocket dictionary: ñandú, ñoño, ñudo, ñudoso,
there might be more. . .). That’s why we decided
not to retain this alias for Spanish (fortunately, the
author of the Spanish style also has a second alias
for the same letter: ’n ’N).

4.8 Turkish

The Turkish features are loaded by the turkish op-
tion. This language has two versions of letter “i”:
with and without dot. The glyph “I” is the upper-
case form of letter “ı” and the glyph “İ” is the upper-
case form of letter “i”. The distinction is essential,
both for hyphenation and for upper/lowercasing. To
solve this problem, we have defined new codes in
(the private zone of) Unicode, for the Turkish up-
percase form of ‘i’ and the Turkish lowercase form

424 TUGboat, Volume 16 (1995), No. 4

of ‘I’. Whenever you switch to Turkish, the inher-
ent translation process sends all of your (otherwise
innocent) ‘i’s and ‘I’s to these far away locations in
the code (0xe083 and 0xe084, that is decimal 57475
and 57476!!), so that Ω has no doubt on the infor-
mation it is processing. Of course, after processing,
we return to the usual ‘i’ and ‘I’ glyphs of the DC
fonts.
Like French, Turkish needs special punctuation

spacing for the colon, exclamation mark and equal
sign. This is also done through the inherent trans-
lation process.
Finally, like Portuguese, Turkish avoids ‘ff’-like

ligatures: the same methods are applied.

4.9 Breton, Danish, Estonian, Finnish,
Galician, Polish, Slovene, Upper
Sorbian

These language styles use aliases, mostly similar to
those of the German style (Breton aliases and in-
herent transforms are similar to the French ones, a
coincidence?). We have adapted these aliases; there
have been no further changes.

4.10 Bahasa, Croatian, English, Czech,
Irish, Italian, Lower Sorbian,
Hungarian, Norwegian, Romanian,
Scottish, Slovakian, Swedish

Last, but not least, these language styles use no
aliases at all (either due to their simplicity, or to
the wishes (or keyboard facilities?) of the respective
authors). They all have the same trivial alias and
inherent translation processes.

4.11 Forthcoming language styles

To prepare a Babel or Ω-Babel language style the
most difficult task is to create the hyphenation pat-
terns. We already haveWelsh, Esperanto and Lithua-
nian hyphenation patterns. As for non-Latin alpha-
bet languages, we have hyphenation patterns and
fonts for Greek, Russian, Bulgarian and Serbian: all
these languages will be covered by Ω-Babel, in step
2 of Ω-Babel development.

5 Let’s get technical!

There are two main differences between TEX and Ω:
(a) the latter works with bigger numbers (more code
positions, more fonts, more boxes, more registers,
etc.), (b) it uses translation processes. Translation
processes are organized in lists, which are pushed
on a stack. Inside a list, a translation process has
an ID, a (not necessarily integer) number between 1
and 4095. When you push a stack on a list, transla-
tion processes with the same IDs replace each other;

Input encoding (for example, Macintosh
Standard Roman → Unicode, or codepage
437 → Unicode, etc.)

500

Aliases (for example, "a → ä, "z → “spe-
cial” ß, etc.) and inherent transforms (for
example, French guillemets, Dutch ‘ij’ lig-
ature, avoiding ‘ff’ ligatures in Turkish and
Portuguese, etc.)

1000

Hyphenation (not available yet) 2000

Contextual analysis (Greek final sigma,
Hebrew final letters, Arabic alphabet con-
textual forms, etc.)

2500

Case change (lower to uppercase, case in-
version, etc.)

3000

Output encoding (for example, Unicode to
DC, or Unicode to UC, etc.)

3500

Table 2: IDs for usual translation tasks.

when there is a process of a given ID in a given list,
and you push upon it a list which has no process
with the same ID, then that process remains active.
So, for example, if you attribute ID 2500 to a

contextual analysis process, and ID 1000 to an alias-
ing and inherent transform, then you can push the
latter upon the former: both will still remain active.
But if you wish to change the language, you will
push a process of ID 1000 (for the new language),
and it will replace the previous one.
This means that we have to be consistent in

our choices of translation process IDs: we can al-
ways insert additional processes between the exist-
ing ones, but to be able to push them away automat-
ically when conditions change (for example when we
switch languages), we must keep the same IDs. In
Table 2 we present some IDs we have chosen for the
tasks described in this paper.
So, in each Ω-Babel language style a CTP list is

defined (CTP stands for “compiled translation pro-
cesses”), consisting of a CTP of ID 1000 which con-
tains both aliases and inherent transforms.4 Each
time we open a new lang environment, we push
new CTPs over it; when we leave the environment it
is automatically popped off the stack (CTP loading
obeys TEX’s grouping rules).

5.1 Description of available CTPs

5.1.1 Input encoding CTPs

In Table 3 we list the input encoding CTPs we have
prepared.

4 The original idea was to split this CTP into one for
aliases and one for inherent transforms, of IDs 1000 and 1500;
but for speed reasons we have decided to bundle these two into
a single CTP.

TUGboat, Volume 16 (1995), No. 4 425

ISO Latin-1 lat1uni.ctp

ISO Latin-2 lat2uni.ctp

ISO Latin-3 lat3uni.ctp

ISO Latin-4 lat4uni.ctp

ISO Latin-5 lat5uni.ctp

ISO Latin-6 lat6uni.ctp

Macintosh Standard Roman stmacuni.ctp

Macintosh Central Europe cemacuni.ctp

Macintosh Croatian hrmacuni.ctp

Macintosh Icelandic ismacuni.ctp

Macintosh Turkish trmacuni.ctp

Windows ANSI ansiuni.ctp

IBM codepage 437 cp437uni.ctp

IBM codepage 850 cp850uni.ctp

IBM codepage 852 cp852uni.ctp

IBM codepage 857 cp857uni.ctp

IBM codepage 860 cp860uni.ctp

IBM codepage 861 cp861uni.ctp

Table 3: Available input encoding CTPs.

Any suggestions for further enhancement of this
list will be welcome (for the moment we are deal-
ing only with Latin alphabet encodings, Greek and
Cyrillic will follow, the rest is for. . . later %).
There is not much to say about these transla-

tions. In the Macintosh encodings we have chosen
to send π and Ω to the corresponding Greek letters
in Unicode (although they are supposed to be math
symbols), ∆ to the math symbol increment and
not to the Greek letter Delta, ♦ to the geometric
shape lozenge, and the Macintosh Apple to the
(private) Unicode character 0xe090 (yes, we have
reserved a slot for the Apple logo: after all Yannis
owes that to those little machines “for the rest of
us”5).
In the codepage 437 to Unicode translation, we

send 0xd5 (a small vertical stroke) to Unicode 0x02c8
modifier letter vertical line. Once again, any
suggestions will be welcome.

5.1.2 CTPs for aliases and inherent
transforms

There is one CTP for every Ω-Babel language style,
except for Bahasa, Croatian, English, Czech, Irish,
Italian, Lower Sorbian, Hungarian, Norwegian, Ro-
manian, Scottish, Slovakian and Swedish which share
a minimal CTP called minalias.ctp. The name of
each CTP is formed by the two-letter ISO code for
the corresponding language, as described in Hara-
lambous (1992a), and the extension .ctp: for ex-
ample: fr.ctp, de.ctp, etc.

5 No, we have not reserved any slot for the Windows
logo %.

0xe000

↓ “Direct-to-Unicode” 8-bit table (see
below)

0xe0ff

0xe100

↓ Fake ASCII (see below)
0xe17f

0xe180 Uppercase German ß (glyph: SS)
0xe181 Lowercase special German ß ("z)
0xe182 Uppercase special German ß (glyph:

SZ)
0xe183 Uppercase Turkish ı (glyph: I)
0xe184 Lowercase Turkish İ (glyph: i)
0xe185 Uppercase letter kra (glyph: K)
0xe186 Uppercase Afrikaans ’n (glyph: ’N)
0xe187 Uppercase long s (glyph: S)
0xe188 Uppercase h

¯
(glyph: H

¯
)

0xe189 Uppercase ẗ (glyph: T̈)
0xe18a Uppercase ẘ (glyph: W̊)
0xe18b Uppercase ẙ (glyph: Y̊)
0xe18c Uppercase a֓ (glyph: A֓)
0xe18d Uppercase  (glyph: J)
0xe18e TEX character 
0xe18f Uppercase ̌ (glyph: J̌)
0xe190 Apple Macintosh logo
0xe191 Fixed case modifier
0xe192 Fake case modifier
0xe1a0

↓ Needed for Greek and Armenian
0xe1cf

Table 4: How Ω uses the Unicode private zone.

Language styles with no inherent transforms
(other than ‘ff’ ligatures, --- punctuation etc.) use
the common CTP minilang.ctp.

5.1.3 CTPs for hyphenation

These are under development.

5.1.4 CTPs for contextual analysis

These are also under development; the Arabic one is
up and running, but we have to bundle the complete
package.

5.1.5 Case change CTPs

We have prepared CTPs for uppercasing and low-
ercasing, called uppercas.ctp and lowercas.ctp.
These are symmetric: both uppercase followed by
lowercase, as lowercase followed by uppercase are
equal to the identity. This has been achieved by at-
tributing a few special code positions in the private
zone of Unicode. In Table 4 the reader can find an
overview of the private zone of Unicode as we are
using it at the present time.

426 TUGboat, Volume 16 (1995), No. 4

This table will certainly change in the future,
but we promise to keep the changes upwards com-
patible.
What are the “Direct-to-Unicode” slots for? Sup-

pose you are writing a macro which will produce
a character in the 8-bit range of Unicode (which
is similar to the ISO Latin-1 encoding), for exam-
ple Ç, which has code ^^c7. If you write ^^c7 or
\char"C7 (or Ç, using an ISO Latin-1 screen font),
then Ω will pass this character through the input
encoding filter: if your macro is used on a machine
with a different input encoding, the output will not
be the same. One needs a way to produce a Unicode
character ^^^^00c7 independently of the input en-
coding. This can always be done by temporarily
deactivating the input encoding: a more simple so-
lution is to apply an offset of 0xe000 to the codes
that must remain invariant by the input re-encoding
process: use ^^^^e0c7 instead of ^^^^00c7 in your
macro, and the result will always be Ç (of course,
the end user will be able to utilize macros like \c{C}:
this is how these macros are defined in our system).
And what is this “fake ASCII” all about? It is a

trick similar to the previous one, but it sends the in-
formation further down the chain of translation pro-
cesses. It is used to send information to one of the
last translation processes (for example the output
encoding translation process) which should not be
modified at all by the intermediate processes, while
staying in the same buffer. A buffer is a sequence of
bytes read by Ω and processed by translation pro-
cesses: Ω will stop reading a buffer as soon as it
encounters a character that is not of catcode 11 or
12. Why do we need that?
Suppose you are writing Arabic. Contextual

analysis is entirely done inside a buffer.6 We may
also want the central letter of a word to be typeset in
red7 (this can be of great help in an Arabic grammar
book). Inserting a \red command inside the word
will completely break the contextual analysis. We
solve the problem by transposing the characters \,
r, e, d to the private Unicode zone (by a fixed off-
set of 0xe000). The contextual analysis translation
process is aware of the fact that characters in that
range shall not interfere in the process of performing
contextual analysis. Once the contextual analysis is
done, and our candidate for being red has the right

6 Otherwise we would have to record somewhere the form
of the last-read letter: this is possible of course, but we won’t
know why the buffer was terminated: was it something harm-
less, like an empty group (in which case the contextuality is
kept), or was it something as horrible as a \newpage com-
mand? In which case we had better finish our word before
going to the next page.

7 This is rendered as a grey scale in TUGboat.

contextual form, we perform the opposite offset and
our string becomes once again a regular TEX com-
mand. We will return to this in more detail when
Arabic Ω is released.
The fixed and fake case modifiers affect the char-

acter following them: they are introduced by the
\fixedcase and \fakecase commands, and are only
considered by the uppercas and lowercas trans-
lation processes, in the following way: a character
following the fixed case modifier is not affected by
either uppercas or lowercas; a character following
the fake case modifier (like the ‘I’ in StudentInnen)
is converted “the other way around”: uppercas will
call lowercas, and lowercas will call uppercas, for
the specific character only.
The various strange characters you see on the

lists are not included in Unicode for various reasons,
we need them in particular to keep uppercas and
lowercas symetric.

5.1.6 Output font CTPs

We have already written the CTP for the Unicode
→ DC font encoding: all characters included in the
DC font table are used as is, others are constructed
by using the \accent primitive. For step 2 of Ω-
Babel development, we will prepare a Unicode →
UC translation process. We expect users to write
their own translation processes for other output font
encodings.

6 Conclusion

We want TEX implementors to join us in the Ω ad-
venture and consider including Ω in their TEX dis-
tributions; those based in Web2C should find it very
easy. There will be virtual UC fonts, based upon real
fonts in the 0x20-0xff range.
We want DVIware developers to consider mak-

ing their DVI software compatible with our XVF and
XFM files (extended VF and extended TFM), which
are 16-bit. For the moment we have extended Peter
Breitenlohner’s dvicopy into a 16-bit version (which
we call xdvicopy); using this utility we are able to
de-virtualize extended virtual fonts into their under-
lying real fonts, which for the moment are all only
8-bit. De-virtualized DVI files are then compatible
with every DVI software in the market. But it would
be quicker and more practical for the user if software
recognized XVF and XFM files directly (after all, the
DVI standard allows up to 32-bit characters: our
DVI files conform to the standard).
Finally, we want users to give Ω and Ω-Babel

a hard try, and us a hard time in debugging the
software, the macros and (later on) the fonts. Ω will
soon grow a lot: several Oriental TEX packages are

TUGboat, Volume 16 (1995), No. 4 427

already ready and waiting to be adapted to Ω (see
references below), but before this happens, we want
to be sure that the Latin-Greek-Cyrillic part of it is
clean and robust.

References

Andulem (Amnulehe), A. “The road to Ethiopic
TEX”. TUGboat 10(3), 352–354, 1989.

Braams, J. “Babel, a multilingual style-option sys-
tem for use with LATEX’s standard document
styles”. TUGboat 12(2), 1991a.

Braams, J. “An update on the Babel system”. TUG-
boat 14(1), 1991b.

Haralambous, Y. “TEX and those other languages
. . . ”. TUGboat 12(4), 539–548, 1991.

Haralambous, Y. “TEX Conventions Concerning
Languages”. TTN 1(4), 3–10, 1992a.

Haralambous, Y. TEX et les Langues Orientales.
Paris, 1992b.

Haralambous, Y. “Typesetting the Holy Qur’ān
with TEX”. In Proceedings of the 2nd Interna-
tional Conference on Multilingual Computing—
Arabic and Latin script (Durham). 1992c.

Haralambous, Y. “The Khmer Script tamed by the
Lion (of TEX)”. In Proceedings of the 14th TEX
Users Groups Annual Meeting (Aston, Birming-
ham). 1993a.

Haralambous, Y. “Un système TEX berbère”.
In Actes de la table ronde internationale
«Phonologie et notation usuelle dans le domaine
berbère», INALCO. 1993b.

Haralambous, Y. “Indica, a Preprocessor for In-
dic Languages—Sinhalese TEX”. In Proceedings
of the 15th TEX Users Groups Annual Meeting
(Santa Barbara). 1994a.

Haralambous, Y. “Tiqwah: a Typesetting System
for Biblical Hebrew, based on TEX”. In Pro-
ceedings of the Fourth International Colloquium
“Bible and Computer: Desk and Discipline, The
impact of computers on Bible Studies” (Amster-
dam). 1994b.

Haralambous, Y. “Sabra: a Syriac TEX system”. In
Proceedings of the First International Forum on
Syriac Computing (Washington, D.C.). 1995.

Haralambous, Y. and J. Plaice. “First Applica-
tions of Ω: Greek, Arabic, Khmer, Poetica,
ISO 10646/unicode, etc.”. In Proceedings of the
15th TEX Users Groups Annual Meeting (Santa
Barbara). 1994.

Mittelbach, F. “E-TEX: Guidelines for Future TEX
Extensions”. TUGboat 11(3), 1991.

Plaice, J. “Progress in the Ω Project”. In Proceed-
ings of the 15th TEX Users Groups Annual Meet-
ing (Santa Barbara). 1994.

Velthuis, F. J. Devanagari for TEX, 1991.
Haralambous, Y. and J. Plaice. “Ω, a TEX Exten-
sion Including Unicode and Featuring Lex-like
Filtering Processes”. In Proceedings of the 1994
EuroTEX Conference (Gdansk). 1994.

⋄ Yannis Haralambous
187, rue Nationale
59800 Lille, France
Email: haralambous@
univ-lille1.fr

URL: http://www.ens.fr/
~yannis

⋄ John Plaice
Université Laval
Québec, Canada
Email: plaice@ift.ulaval.ca

⋄ Johannes Braams
TEXniek
Kooienswater 62
The Netherlands
Email: JLBraams@cistron.nl

1996

Jan 11 UK TEX Users Group, School
of Oriental and African
Studies, London. Structured
Documentation (with BCS
electronic publishing specialist
group). For information, e-mail
uktug-enquiries@ftp.tex.ac.uk

Feb 6 DANTE TEX–Stammtisch at the
Universität Bremen, Germany. For
information, contact Martin Schröder
(MS@Dream.HB.North.de; telephone
0421/628813). First Tuesday (if not
a holiday), 18:00, Universität Bremen
MZH, 28359 Bremen, 4th floor,
across from the elevator.

Mar 5 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For contact information, see Feb 6.)

Feb 20 TUGboat Volume 17,

2nd regular issue:

Deadline for receipt of technical
manuscripts (tentative).

Mar 20 UK TEX Users Group, University of
Warwick. TEX and the Internet.
Local organizer, Malcolm
Clark. For information, e-mail
uktug-enquiries@ftp.tex.ac.uk

Mar 27– 29 DANTE ’96 and 14th general
meeting of DANTE e.V.,
Universität Augsburg,
Germany. For information,
contact Gerhard Wilhelms
(dante96@Uni-Augsburg.de).

Apr 2 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For contact information, see Feb 6.)

Apr 23 TUGboat Volume 17,

2nd regular issue:

Deadline for receipt of news items,
reports (tentative).

May 2 – 4 BachoTEX ’96: GUST 4
th

Annual Meeting in Bachotek,
Poland, “The World around
TEX”. For information,
contact Jola Szelatyńska
(mjsz@cc.uni.torun.pl).

428 TUGboat, Volume 16 (1995), No. 4

Calendar

May 7 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For contact information, see Feb 6.)

May 29 GUTenberg ’96, on TEX distributions,
and GUTenberg Annual Meeting,
Paris, France.

Jul 18 – 21 SHARP 1996: Society for
the History of Authorship,
Reading and Publishing,
Fourth Annual Conference,
Worcester, Massachusetts.
For information, contact the
American Antiquarian Society,
cfs@mark.mwa.org.

Jul 28 –
Aug 2

TUG 17th Annual Meeting:
“Poly-TEX”, Dubna, Russia.
For information, send e-mail to
TUG96@pds.jinr.ru. See the
Call for Papers, next page.

Aug 20 TUGboat Volume 17, No. 4:

Deadline for receipt of technical
manuscripts (tentative). Theme
issue, contributions by invitation.

Sep 23 PODP, Workshop on Principles
of Document Processing,
Xerox Palo Alto Research Center,
Palo Alto, California. For information,
visit the PODP Web page at
http://www.cs.umbc.edu/

conferences/podp/.

Sep 24 – 26 EP96, the International Conference
on Electronic Documents,
Document Manipulation and
Document Dissemination,
Xerox Palo Alto Research Center,
Palo Alto, California.
Deadline for submission of papers:

1 April 1996. For information, contact
ep96@xsoft.xerox.com or visit
http://www.xsoft.com/XSoft/ep96.html.

Oct 21 TUGboat Volume 17, No. 4:

Deadline for receipt of news items,
reports (tentative).

For additional information on the events listed
above, contact the TUG office (415-982-8449, fax:
415-982-8559, e-mail: tug@tug.org) unless other-
wise noted.

Status as of 31 December 1995

TUGboat, Volume 16 (1995), No. 4 429

The 17th Annual TEX Users Group Meeting

�O��TEX

July 28 {August 2, 1996
Organization: TUG, CyrTUG, JINR

CALL FOR PAPERS

äÏÒÏÇÉÅ ÄÒÕÚØÑ!

÷ÏÔ É ÎÁÓÔÁÌÏ ×ÒÅÍÑ, ËÏÇÄÁ TEX-ÐÏÌÉÇÌÏÔ,
ÕÖÅ ÂÏÊËÏ ÇÏ×ÏÒÑÝÉÊ ÎÁ ÍÎÏÇÉÈ ÑÚÙËÁÈ Ó ÌÁ-
ÔÉÎÉÃÅÊ, ÎÁÞÉÎÁÅÔ ÕÇÌÕÂÌÑÔØ Ó×ÏÉ ÐÏÚÎÁÎÉÑ
É × ÄÒÕÇÉÈ ÁÌÆÁ×ÉÔÁÈ. ìÅÔÏÍ 1996 ÇÏÄÁ ÏÎ
ÓÏÂÉÒÁÅÔÓÑ ÐÏÓÅÔÉÔØ òÏÓÓÉÀ É ÐÒÏ×ÅÓÔÉ TEX-
ÐÒÁËÔÉËÕÍ ÎÁ ËÉÒÉÌÌÉÃÅ.

Dear Friends!

So the time has arrived when TEX, the Polyglot, who
has for many years happily \spoken" many di�erent lan-
guages written in the Latin alphabet, extends its knowl-
edge in the �eld of other alphabets. During the Summer
of 1996, a visit is planned to Russia where TEX will have
its �rst practical session in Cyrillic.

òïóóéñ . . . óÔÒÁÎÁ ÎÅÏÂßÑÔÎÙÈ ÐÒÏÓÔÏÒÏ×,
ËÏÔÏÒÕÀ ÎÁÓÅÌÑÀÔ ÔÁËÉÅ ÚÁÇÁÄÏÞÎÙÅ ÒÕÓ-
ÓËÉÅ, × ÎÁÞÁÌÅ ×ÅËÁ ÓÏ×ÅÒÛÉ×ÛÉÅ òÅ×ÏÌÀ-
ÃÉÀ, Á × ËÏÎÃÅ ×ÅËÁ | ðÅÒÅÓÔÒÏÊËÕ. óÔÒÁÎÁ,
ÓÏÚÄÁ×ÛÁÑ ÂÌÅÓÔÑÝÕÀ ÍÁÔÅÍÁÔÉÞÅÓËÕÀ ÛËÏ-
ÌÕ, ÏÓ×ÏÉ×ÛÁÑ ëÏÓÍÏÓ, ÐÏËÏÒÉ×ÛÁÑ ÍÉÒ Ó×Ï-
ÅÊ ÌÉÔÅÒÁÔÕÒÏÊ, ÍÕÚÙËÏÊ, ÂÁÌÅÔÏÍ.

Russia is that large country, with its enormous spaces,
inhabited by those enigmatic Russians, who started the
century with a Revolution, and ended it with \Pere-
stroyka". A country who founded a brilliant mathemat-
ical school, colonized the Cosmos, and conquered the
world with its literature, music, and ballet.

þÔÏ ÖÅ ÖÄÅÔ TEXuser'Á, ÒÅÛÉ×ÛÅÇÏ ÐÒÉÎÑÔØ
ÕÞÁÓÔÉÅ × TUG'96?

So what awaits the TEX user who plans to attend
TUG'96?

÷ áÜÒÏÐÏÒÔÕ ûÅÒÅÍÅÔØÅ×Ï-2 ÕÞÁÓÔÎÉËÏ×
ËÏÎÆÅÒÅÎÃÉÉ ×ÓÔÒÅÔÑÔ ÎÁ Á×ÔÏÂÕÓÅ É ÄÏÓÔÁ-
×ÑÔ × ÇÏÒÏÄ äÕÂÎÕ, ÇÄÅ Ó 28 ÉÀÌÑ ÐÏ 2 Á×-
ÇÕÓÔÁ É ÂÕÄÅÔ ÐÒÏÈÏÄÉÔØ ËÏÎÆÅÒÅÎÃÉÑ (ÐÏ-
ÄÒÏÂÎÅÅ Ï Ç. äÕÂÎÅ ÓÍ. ÎÉÖÅ). õ ËÏÇÏ-ÔÏ, ×ÏÚ-
ÍÏÖÎÏ, ×ÏÚÎÉËÁÀÔ ÔÁËÉÅ ÁÓÓÏÃÉÁÃÉÉ: ÍÏ-
ÒÏÚ, ÔÁÊÇÁ, ÍÅÄ×ÅÄÉ, . . . óÐÅÛÉÍ ÏÂÒÁÄÏ×ÁÔØ:
ÜÔÏ ÃÅÎÔÒ åÒÏÐÅÊÓËÏÊ ÞÁÓÔÉ òÏÓÓÉÉ É ÄÏ ÓÅ-
×ÅÒÎÙÈ ÌØÄÏ× ÏÔÓÀÄÁ ÚÎÁÞÉÔÅÌØÎÏ ÄÁÌØÛÅ,
ÞÅÍ ÄÏ ÓÕÂÔÒÏÐÉËÏ×. óÏÓÎÏ×ÙÊ ÂÏÒ, × ËÏÔÏ-
ÒÏÍ ÒÁÓÐÏÌÏÖÉÌÓÑ ÜÔÏÔ ÕÀÔÎÙÊ ÇÏÒÏÄÏË, ÐÏ-
ÈÏÖ ÓËÏÒÅÅ ÎÁ ÐÁÒË, ÞÅÍ ÎÁ ÎÅÐÒÏÈÏÄÉÍÙÅ
ÌÅÓÎÙÅ ÄÅÂÒÉ. ðÏÇÏÄÁ ÖÅ × ËÏÎÃÅ ÉÀÌÑ ÏÂÙÞ-
ÎÏ ÖÁÒËÁÑ É ÓÏÌÎÅÞÎÁÑ: ÓÒÅÄÎÑÑ ÔÅÍÐÅÒÁ-
ÔÕÒÁ +28C◦. çÏÓÔÅÊ ÖÄÅÔ ËÏÍÆÏÒÔÁÂÅÌØÎÁÑ
ÇÏÓÔÉÎÉÃÁ Ó ÏÄÎÏÍÅÓÔÎÙÍÉ É Ä×ÕÈÍÅÓÔÎÙÍÉ
ÎÏÍÅÒÁÍÉ (ÇÏÒÑÞÁÑ ×ÏÄÁ, ÄÕÛ, ÔÅÌÅÆÏÎ, ÔÅ-
ÌÅ×ÉÚÏÒ). òÕÓÓËÁÑ ËÕÈÎÑ ÏÔÌÉÞÁÅÔÓÑ ÉÚÏÂÉ-
ÌÉÅÍ, ÔÁË ÞÔÏ ÐÏÈÕÄÅÔØ ×ÒÑÄ ÌÉ ÕÄÁÓÔÓÑ.

At Moscow's international Sheremetevo-2 Airport, con-
ference participants will be met by a member of the orga-
nizing committee and escorted by bus to Dubna, where
from July 28th to August 2nd the 17th TUG conference
will take place (see below for more about Dubna). If,
for some reason or another, you envision cold, the taiga,
and white bears, then we can reassure you, Dubna is in
the European part of Russia, and if you want to see the
ice on the nordic oceans, you will have to travel further
than you would to reach the subtropics of the Black Sea
shore. Indeed, you will soon �nd that the pine forest
in which the comfortable town of Dubna is situated will
remind you of a park. In July and August, the weather
is mostly warm and sunny, with an average temperature
of 28C◦. Guests will be housed in a comfortable hotel
on the banks of the Volga river in single or double rooms
(hot water, shower, telephone, and television). The Rus-
sian \cuisine" is characterized by its abundance, so one
can forget about slimming.

óÒÅÄÉ ËÕÌØÔÕÒÎÙÈ ÍÅÒÏÐÒÉÑÔÉÊ ÚÁÐÌÁÎÉÒÏ-
×ÁÎ ÐÉËÎÉË ÎÁ ÖÉ×ÏÐÉÓÎÏÍ ÂÅÒÅÇÕ ÷ÏÌÇÉ, ËÕ-
ÄÁ ÕÞÁÔÎÉËÏ× ÄÏÓÔÁ×ÑÔ ÎÁ ËÁÔÅÒÅ, Á×ÔÏÂÕÓÎÁÑ
ÜËÓËÕÒÓÉÑ × Ç. óÅÒÇÉÅ×-ðÏÓÁÄ (ÃÅÎÔÒ òÕÓÓËÏÊ
ÐÒÁ×ÏÓÌÁ×ÎÏÊ ÃÅÒË×É) É × ÐÏÓÌÅÄÎÉÊ ÄÅÎØ |
Á×ÔÏÂÕÓÎÁÑ ÜËÓËÕÒÓÉÑ × íÏÓË×Õ, ÐÏ ÏËÏÎÞÁ-
ÎÉÉ ËÏÔÏÒÏÊ ÖÅÌÁÀÝÉÈ ÄÏÓÔÁ×ÑÔ × ÁÜÒÏÐÏÒÔ
ûÅÒÅÍÅÔØÅ×Ï 2.

The social program includes a picnic on the picturesque
banks of the Volga, where we will be taken by boat, a bus
excursion to Sergiev Posad (the center of the Russian
Orthodox Church, where Andrey Slephkhin works|
see his article on page 373), and, on the last day a
visit to Moscow, following which the participants can
be dropped of at the airport to
y home, or at one of
the railway stations, if they want to prolong their visit.

430 TUGboat, Volume 16 (1995), No. 4

þÔÏ ËÁÓÁÅÔÓÑ ÎÁÕÞÎÏÊ ÐÒÏÇÒÁÍÍÙ ËÏÎÆÅÒÅÎÃÉÉ,
ÔÏ ÜÔÕ ÉÎÆÏÒÍÁÃÉÀ ÍÙ ÷ÁÍ ÐÒÅÄÏÓÔÁ×ÉÍ, ËÁË
ÔÏÌØËÏ ÐÏÌÕÞÉÍ ÏÔ ×ÁÓ ÐÒÅÄÌÏÖÅÎÉÑ Ó ÁÎÎÏ-
ÔÁÃÉÑÍÉ ÄÏËÌÁÄÏ×, ÚÁÑ×ËÉ ÎÁ ÐÒÏ×ÅÄÅÎÉÅ ËÕÒ-
ÓÏ× É ÕÞÁÓÔÉÅ × ÎÉÈ, ÐÏÖÅÌÁÎÉÑ ÏÓ×ÅÔÉÔØ ÇÌÕÂ-
ÖÅ ÔÕ ÉÌÉ ÉÎÕÀ ÐÒÏÂÌÅÍÕ. áÄÒÅÓ ËÏÎÆÅÒÅÎÃÉÉ:
TUG96@pds.jinr.ru.

ðÉÛÉÔÅ ÎÁÍ | ×ÓÅ ×ÁÛÉ ÐÒÅÄÌÏÖÅÎÉÑ ×ÐÉÛÕÔÓÑ
× ÎÁÛ ÄÅ×ÉÚ:

The conference's preliminary program will be an-
nounced as soon as we receive from you, dear read-
ers, proposals for presentations, courses that you
would like to teach or attend, poster sessions, or any
problem(s) or subject(s) that interest you. Please
send your suggestions to the conference electronic
address TUG96@pds.jinr.ru.

Write to us|all your proposals will enrich the
theme of our conference:

�O��TEX=











Polytechnic

Polymath

Polyglot

Practical Information

Conference costs

The Conference Committee foresees a cost in the
range 550{600 USD. This sum includes the com-
plete cost of the conference, namely the registration
fee, lodging (6 nights with six breakfasts, lunches,
and dinners), co�ee/tea breaks, social events, and
transport from Sheremetevo Airport to Dubna. The
payment should be made in the following way: a
non-refundable sum of $100 per person should be
transferred to a bank account (to be announced)
before June 1st. After receipt of that sum an o�cial
invitation, necessary for obtaining a visa (see be-
low), will be faxed to the participant. The rest will
be payable in cash upon arrival at the Conference
(no credit cards or cheques can be used in Dubna).
We hope to arrange bursary funds for support of stu-
dents and those participants who demonstrate need.

Visas

Most of the visitors from outside Russia will
need a visa to attend the Conference. There-
fore, for arranging a visa into Russia, participants
should inform the Conference Secretariat (Mrs.
N. Dokalenko, E-mail nataly@ypr.jinr.dubna.su;
Fax 7 095 975 2381 or 7 09621 65 891) of their and
(possibly) the accompanying person(s)'s full name,
date of birth, citizenship, passport number, arrival
and departure dates. The Secretariat will forward
by fax the visa support message to the participants
with which they should apply for visas to the near-
est Russian Embassy or Consulate. Please note that
you should apply for a visa valid for Dubna, Moscow,
and Sergiev Posad.1

Transportation

The Organizing Committee will arrange direct
transportation by bus from the Sheremetevo-2 Air-
port to Dubna (130 km north of Moscow). The Sec-
retariat should be informed of the
ight number,
precise date and time of arrival (Moscow time) no

later than four working days before a participant
wishes to be met at the airport. It is our intention
to have each participant met by a member of Orga-
nizing Committee. Details will be available later.

Organizing Committee

ëÏÒÅÎØËÏ× ÷ÌÁÄÉÍÉÒ ÷ÁÓÉÌØÅ×ÉÞ
Vladimir Vasilievitch Korenkov
äÕÂÎÁ, Dubna
korenkov@cv.jinr.ru

íÁÈÏ×ÁÑ éÒÉÎÁ áÎÁÔÏÌØÅ×ÎÁ
Irina Anatolievna Makhovaya
íÏÓË×Á, Moscow
irina@mir.msk.su

Sebastian Rahtz, Oxford, UK
s.rahtz@elsevier.co.uk

Program Committee

ðÁÎËÒÁÔØÅ× å×ÇÅÎÉÊ ÷ÁÓÉÌØÅ×ÉÞ
Evgeniy Vasilievitch Pankratiev
íÏÓË×Á, Moscow
pankrat@shade.msu.ru

Michel Goossens, Geneva, Switzerland
goossens@cern.ch

Mimi Burbank, Florida, USA
mimi@scri.fsu.edu

1 If you plan to visit other cities in Russia you should obtain the relevant documents and join them to the visa application,

so that the names of all places to be visited can be entered on the visa form as required.

TUGboat, Volume 16 (1995), No. 4 431

Deadlines

Submission of abstracts February 20
Acceptance signi�ed to authors February 29
Preliminary articles March 31
Proposals for workshops, demos,
poster sessions

April 20

Registration and transfer of a
non-refundable sum of $100 per

person to a Dubna bank

May 31

Visa supporting information June 5
Revised articles June 10
Start of Conference July 28

Welcome to Dubna!

Dubna was founded in 1956 when the Convention es-
tablishing the Joint Institute for Nuclear Research
was signed. The town is situated on the picturesque
banks of the Volga river and the Moscow sea 120
km to the north of Moscow. One can reach Dubna
from Moscow within 2 hours going by car, by bus
or by express train. It will take you 1.5 hours to
go to Dubna from the Sheremetevo-2 International
Airport. Waterways connect Dubna not only to the
Russian Volga cities, but also to the waters of the
Black, the Caspian, the Baltic and the White seas.

There is no harmful environmental impact from
the industrial plants; this together with the large
tracts of forest in the environs of Dubna, and the
vast water area dotted with small islands, makes
the area quite attractive for tourism and rest. The
Volga embankment is one of the prettiest parts of
the town. In springtime, the streets of Dubna are
full of the odour of lilacs, the apple trees are pink-
white; in summer, lime trees, maples, birch trees
and poplars make the town seem totally green; in
autumn the town is all golden excepting the ever-
green of old pine trees. The town's modern look
harmonizes with the quietness of the surrounding
forest. The town was built in the midst of a forest.
There are separate patches of trees in the town it-
self, and the town park is just a part of the forest.
It takes just a few minutes to get to the forest from
the shopping centre on foot. A few minutes' walk
and you are outside the city limits!

Small as it is, Dubna is a real metropolis. It
is a scienti�c metropolis. It is a big little city, as
a visiting American scientist called it many years
ago. Since the foundation of the Joint Institute for

Nuclear Research (JINR), the name of Dubna has
constantly been in the pages of the world's newspa-
pers and journals. Dubna is one of the world centres
for fundamental research in nuclear physics. The
Joint Institute plays an important role as a coordi-
nator of investigations of the scientists from 18 JINR
member-state institutes. Wide international scien-
ti�c and technical cooperation is one of the funda-
mental concepts of the JINR.

Dubna is indeed a town of international friend-
ship. Foreign speech can be heard everywhere. But
the words, no matter in which language they are
pronounced, are clear to everybody: friendly coop-
eration and fraternity unite all the physicists and
mathematicians living and working in Dubna into
an international scienti�c community.

On October 3, 1994, Dubna opened its doors
to its �rst university, \International University of
Dubna: Nature, Society and Man". The univer-
sity is composed of �ve "cathedra" or faculties, in-
cluding socioeconomic sciences, ecology and earth
science, computer education, linguistics, and health
and physical education. Two more faculties| law
and government and technology|are also being
contemplated.

The town has great experience in holding inter-
national conferences, and exchanges of delegations
between countries in the sphere of science, educa-
tion and culture. Dubna and La Crosse, Wisconsin,
USA, are sister cities. Dubna is famous for its hospi-
tality. Famous scientists, public �gures and states-
men from di�erent countries visit Dubna. They are
always impressed by the gracious welcome they re-
ceive in Dubna and warm generosity which Dubna
residents demonstrate.

A few words on Moscow

Moscow, the capital of Russia, has a population of
some nine million people. It is a city rich in cultural,
architectural and historical monuments, and, at the
same time, boasts a rapidly developing modern ur-
ban community with brand new blocks of
ats, long,
straight and broad avenues, parks, gardens, stadi-
ums, schools, cinemas, department stores, recreation
centres, bridges and highways. Though forward-
looking, it cherishes the memory of its past, and
its old sections lend it a special charm.

See page 352 for views of some local scenery!

Look for current information on the WWW at

http://www.scri.fsu.edu/~mimi/tug96/tug96.html

432 TUGboat, Volume 16 (1995), No. 4

Attending EuroTEX’95 in Papendal

Michel Goossens

I arrived with the night train from Basel at
8:29 precisely in Arnhem Railway station on Mon-
day morning September 4th. I decided to take a
cab to Papendal, the Sports Center a few km out-
side of the town, where I arrived just before nine. In
no time I was registered and given two keys to my
room, where, as expected, I would spend only a min-
imal amount of time during the four next nights. . .

Indeed, while walking the fifty meters or so to
the breakfast area, I met many known faces, and I
had to promise each one of them that we would have
a chat later during the conference.

A Truly International Gathering

EuroTEX conferences are quite different from the
TUG conferences, in that many more participants
from Russia and Central Europe participate, and
this year was no exception. In all 103 TEX users
from 18 different countries (4 from Belgium, 1 from
Canada, 7 from the Czech Republic, 2 from France,
17 from Germany, 1 from Hungary, 2 from Lithua-
nia, 18 from the Netherlands, 1 from Norway, 20
from Poland, 15 from Russia, 1 from South Africa,
2 from Spain, 1 from Sweden, 3 from Switzerland,
1 from Turkey, 6 from the United Kingdom, and
1 from the United States of America) came to Eu-
roTEX’95, where our hosts, the Dutch-speaking TEX
Users Group NTG, had prepared a nice, interest-
ing, and extremely dense program of TEX and text-
processing related presentations given by contribu-
tors who are active in the various areas mentioned.

After breakfast the members of the Program
Committee, Johannes Braams, Chris Rowley and
myself, met to make final adjustments to the sched-
ule of the various talks and tutorials, taking into
account the availability of the speakers, so that the
program could be communicated to the participants
of the conference, who now started to arrive.

The EuroTEX Bus

But before going any further let me explain how such
a large group from Russia and Central Europe was
able to come to Papendal. It was mainly thanks to
the generous contributions of the NTG, who donated
a sizable sum of money they had collected by sell-
ing the 4AllTEX CD-ROM(s), plus over $1800 from
the book auction that took place at TUG’95 in St.
Petersburg Beach (Florida, USA) that a Polish bus
was hired. In Warsaw the Russian, Lithuanian and
part of the Polish group boarded, while other (Polish

and Czech) participants were picked up later on the
way to Papendal. In this way the travel expenses of
about forty people were kept to a minimum. This
great initiative, which, I hope, will be repeated in
the future, shows the enormous solidarity in the TEX
community. It can serve as a proof that TEX is not
only a (or “the”) utility to compose beautiful docu-
ments in most of the languages written by mankind,
but it also brings people of various nations, cultures,
and backgrounds together, and thus fosters commu-
nication, which is the basis of all human success.

The Conference Starts

A few minutes before 2 p.m., the conference was
formally opened by Erik Frambach, the President
of NTG. He welcomed all participants, and then
passed things over to me. In my role as President
of TUG, I congratulated NTG for the magnificent
work they had done for allowing so many partici-
pants from different parts of Europe to take part in
the EuroTEX meeting, and I underlined that TUG
fully supports all such initiatives and is doing its
best to help all TEX users in the world. I there-
fore invited everybody who wanted to express con-
structive ideas about how to develop or improve the
actions of TUG in the area of supporting the inter-
national community better, to find me during the
week for a discussion. Finally Johannes Braams, on
behalf of the Program Committee, explained the few
changes that had to be introduced in the program in
order to accommodate a maximum of the wishes of
speakers and participants, and he gave a few details
on logistics for the rest of the week.

Monday p.m.—Font Developments

Thus, well informed, the conference could start with
the talk on VFComb, a program for designing vir-
tual fonts by Alexander Berdnikov and Sergey Tirtia
from St. Peterburg (Russia). The main aim of their
MS-DOS program is to facilitate setting up virtual
fonts for use with CM and the Cyrillic LL-fonts. This
program is especially interesting in that it constructs
font and user-defined ligature tables extracted from
various fonts and combines it with metric informa-
tion from various tfm-files. The VFComp program
not only supports the full syntax of .pl and .vpl
files, but also adds some symbolic variables and con-
ditional operators to ease the production and debug-
ging of virtual fonts.

The next speaker, Jörg Knappen of Mainz (Ger-
many), described his work on version 1.2 of the DC
fonts and the text companion symbol fonts. He first
gave an overview of the improvements introduced
into version 1.2 with respect to the previous release

TUGboat, Volume 16 (1995), No. 4 433

in order to cope with criticism in the areas of the
placement of accents, the design of the quotation
marks, plus the outlines for various Polish, Czech,
Slovak diacritics, and the height of the umlauts. The
text companion TC fonts try to address the problem
of more clearly separating the symbols present in
the CM math fonts from the really mathematical
characters, and to make uniformly available to TEX
users several custom signs (currencies, trademarks,
some arrows, a musical note, etc.) that are present
in the ISO standards 8859-1, 8859-2 and 6937. For
practical reasons Jörg proposes to put all those char-
acters into two different fonts, TS1 and TSA. Last
but not least, the speaker underlined the importance
of design size in fonts, since the linear scaling of a
font over a large range gives the wrong results. He
therefore proposed encoding the design size of the
font in the font name in each case by using the trail-
ing four digits of the name to represent the design in
points (multiplied by a factor of 100). He therefore
has to rename a few of the present DC font names,
since one has only two characters left for weight and
shape. For instance the present dcssi10 would be-
come dcsi1000, and dcbxti10 is dcbi1000 in the
new scheme. Thanks to Jörg’s work, and the work
done earlier by the LATEX3 team on math font en-
codings, it is now hoped that a proposal for the two
math fonts will be reached soon, so that by next
summer the DC fonts will be promoted to the EC
fonts, and be accompanied by a useful and stan-
dardized set of 256-character math fonts.

Just before the tea break, Jǐŕı Zlatuška from
Brno (Czech Republic) gave a talk on how to use
METAFONT and TEX together for typesetting text
and graphics.1 By using TEX’s extended ligature
mechanism, label placement on diagrams generated
by METAFONT, as well as the generation of curvi-
linear texts, can be accomplished in one METAFONT
pass and only requires a simple TEX interface. In-
stitutional seals and other logos can thus be conve-
niently generated.

Multiple Languages

After the break Andrey Slepukhin (Sergiev Posad,
Russia) introduced the audience to the magnificent
world of old Church Slavonic typesetting.2 Andrey
works for the Holy Trinity St. Sergius Lavra pub-
lishing house, printers of Bibles and other texts in
Church Slavonic. For his project of printing such
texts he has to develop high quality fonts, tools for

1 He presented this talk also at TUG’95, see TUGboat 16
(3), p. 223–228, 1995.

2 His article is published in both Russian and English in
this issue of TUGboat, p. 373.

simplifying text input, and put together hyphen-
ation tables. Church Slavonic has a lot of charac-
ters and they have very few common parts, so that
designing them takes a lot of time. The main prob-
lem, however, is that almost every word in Church
Slavonic texts has a diacritical mark. Since the
placement of the diacritical mark is not fixed, and
the use of the \accent primitive has a lot of un-
wanted side-effects, Andrey developed the various
letter-accent combinations as separate glyphs. By
carefully studying Church Slavonic texts it was found
that some letter-accent combination could only oc-
cur in certain locations in a word. In this way, with
the help of a set of special macros and using active
characters, the number of needed symbols could be
kept below 256, the limit of symbols in a single font.
Other problems he had to solve were coloring sym-
bols (a practice occurring extremely frequently in
such texts), numbering (numbers are represented by
letter combinations), and encoding (several different
encodings are actively used in the Cyrillic world).
To help solve the last problem he proposes using
symbolic names to map to character codes and has
implemented these ideas in the latest version of his
package. He is also working on Type1 variants of his
fonts, and on extending his character set to include
older Slavonic letters, initial caps, and a special font
for headings. Finally, he has expressed a wish that
at some time in the not too distant future it might be
possible to typeset a multilingual Bible with paral-
lel texts in Church Slavonic, Greek, Latin, Hebrew,
and any other language.

Olga Lapko of Mir Publishers (Moscow, Rus-
sia) then presented work she has been doing to-
gether with Irina Makhovaya and other collabora-
tors of CyrTUG, on developing a Russian style for
the babel system that implements in a user-friendly
way the typographics and national peculiarities of
the Russian language, such as correct names for
some math operators, repeating signs in broken math
formulae, and Russian-character enumeration lists.
Several font encodings are supported and are inter-
faced to 256-glyph Russian fonts.3

In the next talk Johannes Braams reviewed his
work on the babel system. The present release 3.5
has a completely rewritten interface to deal with
shortcuts, introduces new ways to switch languages,
has been made compatible with LATEX2ε’s input and
font encoding packages, has added support for a con-
figuration file and many more different languages,

3 Their article is published in both Russian and English
in this issue of TUGboat, p. 364.

434 TUGboat, Volume 16 (1995), No. 4

and offers an extended syntax for specifying hyphen-
ation patterns.

The final talk of the afternoon was by Petr So-
jka from Brno (Czech Republic), who presented his
work on hyphenation for compound words. His pa-
per was chosen at TUG’954 as the best technical
paper by Knuth for pointing out problems with hy-
phenation that he himself had not considered. The
problem is with long compound words that occur
frequently in German, Dutch and Slavic languages.
In these languages constituent word parts are not
signaled by a hyphen or other fill character, thus
making it difficult to find the correct hyphenation in
some cases. Petr proposed extensions to the hyphen-
ation algorithm and primitives which would make it
possible to deal with these cases. Perhaps an in-
teresting suggestion to be implemented in e-TEX or
Ω?

After dinner Sebastian Rahtz headed a work-
shop on Acrobat and electronic publishing. He pre-
sented tools that take advantage of LATEX to gen-
erate hypertext views of a document. In his pre-
sentation he made it clear that LATEX, HTML, and
PDF should be viewed as complementary represen-
tations, that each has its advantages and is suited for
addressing the specific needs of some applications.

Tuesday a.m.—Graphics and Packages

The Tuesday morning started with a presentation
by Andrey Astrelin of Moscow (Russia), who talked
about a new implementation of graphics in TEX.
Of the three basic ways of introducing graphics in-
side TEX (special fonts, using rules, or exploiting
the \special command) his implementation uses
the approach of extending TEX’s graphics capabil-
ities by writing graphics commands via \special
commands into the .dvi file, which is then post-
processed to realize the required functionality. Each
command is represented by a character and zero or
more numeric arguments. There are general graph-
ics commands, complemented by path and area com-
mands. The .dvi file is processed by a special MS-
DOS program, where the graphics \special com-
mands are replaced by emTEX \specials pointing
to .pcx pictures. These facilities are complemented
by macros to place text and graphics on the page
and a library of graphics macros that is still under
development. It is planned that future releases will
offer support for generating .pk fonts and PostScript
output.

4 His article is published in TUGboat 16 (3), p. 302–305,
1995.

TEX Plotter, a program to create two- and three-
dimensional pictures developed by Alexander Berd-
nikov and Sergey Turtia of St. Petersburg (Rus-
sia), was presented next. The program is written
in Pascal for MS-DOS, and plots functions depend-
ing on two variables. It allows one to obtain equi-
line and surface representations of complex func-
tions without running into overflow problems with
TEX’s memory. The program has a menu-driven
user interface which allows the creation and viewing
of pictures in a variety of forms, including LATEX’s
picture environment, the epic/eepic package com-
mands or emTEX \specials. Future releases will
also support mfpic, PICTEX and EPS files.

Gabriel Valiente Feruglio of Palma de Mallorca
(Spain) then gave a detailed overview of the various
commutative diagram packages that are available.
He compared eleven of them in terms of their ability
to generate complex diagrams, quality of documen-
tation and generated output, ease of installation,
user interface, resource requirements, and portabil-
ity. The way a diagram is structured to increase
readability is a somewhat subjective matter, often
related to points of aesthetics, so that it is difficult
to say which package is the best in applications. In
his estimation, the familiarity of an author with the
syntax of one package is often more important than
the intrinsic power of other packages.

After coffee Hans Hagen of Pragma (Zwolle,
the Netherlands) presented a paper on typesetting
chemical formulae with the PPCHTEX system he
wrote together with A.F. Otten.5 The system is
based on PICTEX. Basic structures for often used
chemical structure diagrams are available as macros,
and can be combined and “dressed” with radicals in
various way to obtain complex formulae. The syntax
is straightforward and logical. It also allows typeset-
ting reaction equations easily and provides for sev-
eral special features, like fine-tuning the position of
radicals, placing small formulae inside running text,
and optimizing the depth of subscripts.

The last talk of the morning was by Daniel
Taupin (Orsay, France) who introduced MusiXTEX,
an improved version of his earlier MusicTEX system
for typesetting polyphonic music with TEX. MusiX-
TEX was developed together with Werner Icking and
Andreas Egler. It uses three passes (MusicTEX was
a one-pass system), where during the second pass a
program muflex is used to compute optimal spac-
ing to position the notes and determine the length

5 Their article will be published in an upcoming issue of
TUGboat. Their approach can be compared to the one of
XyMTEX described in TUGboat 16 (1), p. 81 – 88.

TUGboat, Volume 16 (1995), No. 4 435

for slurs and ties. This makes for more aestheti-
cally pleasing scores. A planned future improve-
ment is cleaner lyrics insertions. Some issues remain
between Andreas Egler and the other two develop-
ers about future developments and the compatibility
between MusicTEX and MusiXTEX.

Tuesday p.m.—Electronic Documents

The theme of the Tuesday afternoon was electronic
documents, and Wiegert Tierie of Adobe Systems
Benelux (Amsterdam, the Netherlands) started off
with a detailed overview of Abode’s Acrobat series
of utilities to create, use, store, annotate, send, view
and print electronic documents. To do this Adobe
developed the “Portable Document Format” (PDF),
a language that is based on PostScript and includes
commands to implement a hypertext functionality.
He introduced the (freely available) Reader — for
reading PDF documents — , Exchange — for intro-
ducing annotations — , Writer — for directly creat-
ing PDF files from applications — , Distiller — for
translating PostScript documents into PDF — , Cat-
alog — for creating full-text indexes — , and finally
Search — for full-text searches. Via Application Pro-
gramming Interfaces (API’s) developers can easily
plug in their own extensions to take full advantage
of the capabilities of the Acrobat system, thus allow-
ing an optimal integration of Acrobat into custom
products.

Hans Hagen of Pragma (Zwolle, the Nether-
lands) then told us about his experience using TEX
to generate hypertext documents in PDF. Hans ex-
pects that in a few years PDF will be as stable and
standard as TEX is today, so that at that time PDF
might well become an important format for distribu-
tion of documents. Because PDF is based on Post-
Script it can combine high typographic quality with
hypertext capabilities offered via PDF’s pdfmark
operator. Building a utility able to exploit both
TEX’s and PDF’s strong points relies on communi-
cating information from TEX to PDF via \special
commands that will contain pdfmark instructions.
Hans emphasized, however, that writing hypertext
documents for viewing on a screen requires a some-
what different approach from optimizing them for
paper. He presented a set of points that have to
be dealt with, in particular different aspect ratios,
a more complex pagebody to optimally place nav-
igation aids, synchronization of screen and printed
versions of documents, the design of the typographic
interface, the generation of tables of contents, mul-
tiple indexes, cross-references. Other points to be
considered are how to handle multiple documents,
shared data, status bars, active figures, color, and

version control. The speaker thought that TEX was
an ideal tool to explore the advantages and limits
of electronic documents and that TEX and Acrobat
thus formed a nearly perfect match, combining the
advantages of both a flexible programming language
and a powerful document delivery system.

After the tea break Sebastian Rahtz (Elsevier
Science, Oxford, United Kingdom) talked about the
experience he had gained working on the hyperref
package, developed together with Yannis Haralam-
bous of Lille (France). This LATEX package uses
LATEX’s cross-reference commands to transmit the
necessary information to PDF and thus provides a
rather straightforward and effortless way for LATEX
users to transform their documents into hypertext.
Sebastian pointed out some difficulties of this ap-
proach, namely the successful handling of fonts, and
the generation of back-references from the bibliogra-
phy and index. Although it thus is easy to generate
PDF from LATEX documents in a way that they are
faithful representations of each other, all problems
of optimizing the presentation for screen viewing, as
explained by Hagen in the previous talk, still remain
to be addressed.

During the next half hour or so I gave an in-
troduction to SGML, using HTML as an example of
a DTD. I emphasized that using and understanding
SGML is straightforward by using examples drawn
from HTML. I outlined the structure of a DTD and
how it describes a document, its elements, their at-
tributes and the entities that are available. The
mathematics and table extensions of HTML3 were
presented briefly, but it was emphasized that HTML’s
main aim is describing the document’s structure, not
its perfect typesetting, where it is better to consider
the PDF solution, so that HTML and PDF are com-
plementary rather than competing technologies.

My second talk presented the LATEX2HTML tool
of Nikos Drakos, which translates LATEX documents
into HTML using a perl program. All standard LATEX
commands are dealt with. Tabular and mathematics
constructs are turned into images since they cannot
yet be treated by HTML, and the same strategy is
applied to user-defined commands or environments.
I emphasized that with a little work by the user
such user-defined extensions can be dealt with by
providing a perl routine for the extension in ques-
tion, thus increasing substantially the usabilitity of
the generated HTML document, decreasing at the
same time its size and fragmentation. The hyper-
text extension package html was described and it
was shown how it allows the introduction of hyper-
text elements into a LATEX document, so that it can

436 TUGboat, Volume 16 (1995), No. 4

be optimized both for printing and hypertext view-
ing on screen. Finally, work on providing support
for the automatic generation of HTML3 and the im-
plementation of HTML3 capabilities in the experi-
mental arena browser were briefly mentioned.

The afternoon was concluded by a panel discus-
sion on electronic documents, chaired by Joachim
Schrod of Darmstadt (Germany), with all speakers
of the afternoon as panel members. Each of the
speakers again emphasized the complementarity of
the various approaches to enrich the LATEX source
code with markup that can be used to exploit the
hypertext capabilities of the various output media
targeted. However, hypertext viewing on a com-
puter screen is quite different from writing books,
and therefore care must be taken to design and mark
up documents with enough generality to optimize
their re-use in the various circumstances. Another
interesting question which was raised was the level
of control that should be given to the viewer to
customize the appearance of the viewed document.
Should one allow complete freedom to the receiver
to represent the document (font type and size, set-
ting of colors, preferences for lists, page size, etc.)
or should the author be able to freeze some or all
of the document’s appearance (for instance for legal
documents). It became soon evident that a general
answer to this question was impossible, and that as
much flexibility as needed should be given to the
receiver. As the hypertext medium, and the free-
dom to “view as one likes” are still quite new, the
plethora of browsers, and possibilities to (over)dress
one’s documents will soon die out as the technology
matures, and some studies in readability and effi-
ciency in communication information via the screen
on the Internet come up with some guidelines that
will eliminate the more extreme excesses in the area,
just as fontitis, or the disease to use as many fonts
a possible in one’s documents, died out after a few
years after people realized that the documents be-
came unreadable.

After dinner a long presentation/discussion ses-
sion on the achievements of the e-TEX project was
organized by the e-TEX team, with Phil Taylor, Jǐŕı
Zlatuška, Bernd Raichle, and Friedholm Sowa, who
came specially for that day, present. It was an ex-
tremely useful discussion, that lasted until midnight,
and I am sure that both the members of the e-TeX
team and the participants benefited greatly from the
exchange of ideas.

Wednesday a.m.—Tools I

The tools section started on Wednesday morning
with the presentation by Andries Lenstra (Uitgeest,

the Netherlands) of the δαTEX package that he de-
veloped with his colleagues Seven Kliffen and Ruud
Koning. The δαTEX system is a series of TEX macros
for storing and retrieving data that work both with
LATEX and plain TEX. The system makes it possi-
ble to keep source texts short and guarantees data
integrity and uniformity in typesetting. Data are
stored in δαTEX format in a δαT file. The format is
simple, versatile, easy to learn, and as portable as a
TEX document. Conversion utilities to generate δα
from ASCII files are available. δαTEX has sorting-
out facilities, supports default fields, conditionals,
and wrapping.

Kees van der Laan (Garnwerd, the Netherlands)
explained how to use his BLUe’s format to manage
a database. In particular, TEXnical details concern-
ing storage and access of the material are hidden
from the user, and since the database code is writ-
ten in plain TEX, it can in fact be used with any
TEX format. High-level user commands allows non-
TEXnical users to take full advantage of this tool,
which moreover allows one to include pictures and
cross-references. Facilities for preparing letters to
be sent to multiple addressees are also included.

Philip Taylor (London, United Kingdom) then
gave one of his famous pedagogical presentations,
explaining how one can use \csname. . . \endcsname
constructs advantageously in various often-occurring
programming paradigms in TEX. He showed how
this construct helps to clarify the programming logic
in many TEX macros, and thus makes documenting
and maintaining such macros more straightforward
and more robust. As an interesting side-remark
he mentioned the fact that an undefined \csname-
construct has the value \relax can be a disadvan-
tage in some cases. All in all a well-prepared, stim-
ulating, and thought-out talk, for which Phil rightly
got the prize for the most pedagogical presentation
of the conference. Congratulations Phil!

Just after the coffee break Laurent Siebenmann
(Paris, France) introduced his TEX utility Occam
that is useful for managing macros. The Occam util-
ity eliminates from a set of TEX macros all those
that are not referenced (and thus not necessary),
thereby reducing (sometimes significantly) the size
of a TEX source document, at the same time making
the maintenance and comprehension of the support-
ing macro collection easier.

The final talk of the morning was a presen-
tation of pascal, a TEX macro package for type-
setting Pascal programs, based on work by Pedro
Palao Gostanza and Manual Núñez Garćia (Madrid,
Spain), and presented by the former. This utility al-
lows the user to clearly indicate the structure of a

TUGboat, Volume 16 (1995), No. 4 437

program by using special typesetting conventions.
Technically speaking, all reserved words and iden-
tifiers become TEX control sequences, so that no
external parser is necessary and layout conventions
can be easily enforced. Extensions of these ideas
to other structural programming languages such as
Modula-2, Ada, or ML should be straightforward.

Wednesday p.m.—General Developments

in TEX and LATEX

The afternoon was reserved for presentations related
to recent general developments in TEX and LATEX.
Chris Rowley (Open University, United Kingdom),
as a representative of the LATEX3 Team, gave an
overview of the activities of the team. Having de-
voted the Group’s resources over the past two years
on the development and consolidation of LATEX2ε,
the Group will now concentrate on further studies
on the way to LATEX3. During his talk Chris also
explained the Group’s policy on modifying files in
the LATEX2ε distribution.

Next Philip Taylor, speaking for the NTS and
ε-TEX teams, announced that version 1 of ε-TEX was
now available, and gave a list of the extensions which
have been introduced. He emphasized that ε-TEX
can be used in a 100% compatibility mode with TEX
and he expressed the hope that with time and af-
ter a lot of tests, most TEX users will have enough
confidence to use ε-TEX as a valid replacement for
TEX. In fact, when generating the format file with
initex, one can configure ε-TEX so that it is com-
pletely compatible with TEX, and the extensions and
enhancements are disallowed. The new features im-
plemented in this first version are in the areas of
additional control over expansions, re-scanning to-
kens, environmental enquiries, additional marks and
debugging facilities, bi-directional typesetting, and
a few supplementary primitives.

John Plaice (Laval University, Ste-Foy, Québec,
Canada) of the Ω team then gave an update of work
done since the summer of 1994 on this 16-bit exten-
sion to TEX. In particular, he described the addi-
tional collaboration with a graduate student in Es-
tonia in the area of generalized multi-dimensional
typesetting, and recent progress in the area of Ara-
bic. A beta-version now runs on a PC. Dynamic
memory allocation is next on the list of features
to be implemented in order to reduce the memory
requirements of the system when static arrays are
used.

It was then Joachim Schrod’s turn to introduce
the audience to the proposals of the “tds” (TEX Di-
rectory Structure) team, whose members have been
working for many months on the definition of an ISO

9660-compliant directory structure that can be used
as a plug-and-play run-time system by all operating
systems.6

A panel discussion on the theme TEX quo vadis?
concluded the afternoon. Several members in audi-
ence thanked the various teams who are working so
hard to improve the functionality of TEX, LATEX,
and their user production environments and gave
valuable input to the respective development teams,
who promised to look at ways of implementing the
suggestions put forward.

Wednesday Evening—The Social Event

At 16:30 two buses took all participants to the cen-
ter of Arnhem, where we had two hours for a walk
through the streets of this historic town, perhaps
best known from the film “A bridge too far”, which
described the battle for the bridges over the Rhine
in the vicinity of Arnhem. The inner city, which
was almost completely devastated in 1944, has since
been rebuilt, and has become a modern local center
where the importance of the river Rhine is omni-
present. It was thus also appropriate that our whole
company boarded the ship “MPS Graaf van Bylant”,
named after a wealthy count who in the 18th century
owned large parts in the neighbourhood of Arnhem.
It was already getting dark when we left the em-
bankment, and set off for a three-hour tour of the
Rhine and the IJssel, taking us along the quays with
its wharfs, warehouses, and the apartment build-
ing in the background, with their thousands of little
lighted windows, each corresponding to a little cell
of present-day society, people eating, drinking, talk-
ing, watching television or just enjoying each other’s
company: yellow-orange rectangular reflections of
human joy and grief, micro-windows on the life of a
modern city. But I am sure that these metaphysical
considerations were absent from the heads of most
EuroTEXers that evening, since our NTG hosts did
their utmost best to make the outing as enjoyable as
possible. Apart from the excellent food and drinks
(including quite a few bottles of Polish and Russian
Vodka, contributed by GUST and CyrTUG), there
were also theMAPS awards for the best papers in the
proceedings. They went to Gabriel Feruglio for his
overview article of commutative diagrams and Bo-
gus law Jackowski for his beautiful article on the use
of EPS and METAFONT (this was, in fact, already
his second MAPS award!). On top of that the MAPS
editing team decided to award two “special” prizes
and it was quite a nice surprise that MAPS chose to

6 More about tds can be found in this issue of TUGboat,
p. 401.

438 TUGboat, Volume 16 (1995), No. 4

honor the “TUGboat Production Team”, for their
efforts to publish TUGboat on time again. With
great pleasure Barbara Beeton, Sebastian Rahtz and
I myself received the now-traditional MAPS-sweets-
cone (a collections of 256 sweets of many different
colors, with the necessary “glue” and all other neces-
sary attributes. . .). And I found it very appropriate
that MAPS gave also a special prize to Erik Fram-
bach, who had been doing an enormous amount of
visible (and even more invisible) work to make the
conference the success it has become. Apart from
these formal parts of the evening, there was of course
ample occasion for direct person-to-person discus-
sions and other forms of socializing, making con-
tacts, making new acquaintances and friends, and
around midnight, when we arrived back at the Pa-
pendal Sport Center, we could all go to bed trying
to assimilate all those new and enriching impressions
and contacts of this memorable Wednesday Evening
EuroTEX’95 cruise.

Thursday a.m.—Tools II

The last formal session of the conference on the
Thursday morning started with a talk by Philip Tay-
lor who tried to convince the audience that TEX is
quite an unsuitable language for marking up docu-
ments. He came to this conclusion after he had to
deal with the production of a book in the field of
linguistics, and had to communicate with an author
who did not know TEX. Phil therefore developed
a syntax, <ATML>, for “A TEX Markup Language”,
where all markup is enclosed between the triangu-
lar brackets < and >, thus disallowing all direct TEX
markup. Phil explained the precautions that he had
to take to implement this scheme, and discussed the
advantages and drawbacks. It seemed clear that
for non-TEX-aware authors this approach can cer-
tainly maximize the efficiency for preparing docu-
ments where TEX should be used as the typesetting
engine, but where otherwise consistency and struc-
tural markup can be checked at a level of <ATML>.

Similar ideas were supported by Antonin Strejc
(Prague, Czech Republic) who described the W95
environment, where contributors to a conference can
use an MS-DOS based authoring system, which is a
menu-driven interface to LATEX. The authors can
specify the information needed for preparing their
article (title, author, affiliation, abstract, etc.) via
these menus, and also have the possibility of en-
tering other text elements, like lists, equations, ta-
bles, and figures. Thanks to this approach, which
guarantees consistent and correct markup, the edi-
tors of the proceedings were able to typeset almost
1000 pages by over 430 contributors in about two

weeks. The speaker emphasized that such a sys-
tem needs close cooperation between the organizing
committee and the typesetter, and it presupposes
that the instructions have been announced to the
contributors about six month before the conference.
To minimize the need for direct hotline-type support
(it was found that with the W95 system only 1–2%
of the authors needed personal help) a sufficiently
self-documenting help facility should be provided.

Various ways of improving the archiving of sci-
entific documents by optimizing the ways external
material can be included by standardized keywords
for TEX’s \special commands were discussed by
Laurent Siebenmann, the next speaker. Although
his ideas were quite interesting, it was not com-
pletely evident that his demands were not already
dealt with by the work of the dvi-standard com-
mittee, that had a few meetings at TUG’95 in St.
Petersburg, and Laurent was invited to contact the
members of that working group. The speaker also
said a few words about the effort concerning atomic
fonts. . .

After the coffee break Kees van der Laan showed
how one can implement indexing in a one-pass TEX
run. Although only moderate indexes can be dealt
with in this way, the approach is nevertheless quite
useful for smaller documents, or for proofing indexes
on a chapter-by-chapter basis. For the markup Kees
followed closely the circumflex (^) notation proposed
by Knuth in the TEXbook. Sorting is possible and
several methods of ordering (lowercase/uppercase,
accented/non-accented/word ordering) are available.
This indexing system is part of the BLUeTEX sys-
tem.

Stanislav Brabec (Prague, Czech Republic) dis-
cussed his typesetting system, based on plain TEX.
He uses TEX’s powerful programming facilities to
generate macros for managing references, contents
tables, defining page layout, with a flexible facility
for adding cropmarks, specifying margins, prepara-
tion of booklets, and typesetting in landscape mode.
His systems upages.tex allows one to interpret the
input stream on a token-by-token basis, is able to
prepare output for PostScript devices, with support
for rotation and scaling; it generates device-indepen-
dent color, with provision for color signatures and
separations, and has primitives for line-drawings.

The last formal presentation of the conference
was by Bogus law Jackowski (BOP, Gdańsk, Poland),
who presented his METAFONT-EPS interface.7 The
heart of this interface is the MFTOEPS METAFONT
package which provides the necessary definitions for

7 His article is published in this issue of TUGboat, p. 388.

TUGboat, Volume 16 (1995), No. 4 439

translating the descriptions of graphics objects from
METAFONT to PostScript. The PostScript code is
written to a log file, that can be post-processed to
generate EPS files that can be read by popular Post-
Script drawing tools like Adobe Illustrator, Coral-
Draw, or Fontographer. The package comes with
two such utilities, one written in awk, the other,
more general, but slower, in TEX. This system is
thus merely useful for generating PostScript code
that should be edited further by the tools mentioned
above. For generating end-user PostScript, John
Hobby’s METAPOST program is probably more suited.
The author is also working on a program PSTOMF,
that would translate EPS files (via the ghostview
program) into METAFONT, thus completing the link
between METAFONT and PostScript and allowing
everybody to make use of the advantages of both
languages.

It was at about half past twelve when Johannes
Braams, in the name of the EuroTEX’95 Program
Committee, thanked all speakers for their contribu-
tions, and Wietse Dol for his work on preparing the
Proceedings.8 He then invited Andrey Slepukhin
to step forward to receive the prize for “Best Pre-
sentation of EuroTEX’95”, not only for his seminal
work in the area of font creation of beautiful Church
Slavonic letters, but also for developing solutions for
the many technical problems relating to typesetting
complex documents. A prize for the most pedagog-
ical presentations (not only at this conference, but
also on other occasions) was given to Philip Taylor.
Sincere congratulations to both recipients of these
prizes.

I then, in the name of the international TEX
Organization, TUG, thanked the NTG organizers
for their dedication and hard work in making Eu-
roTEX’95 possible. I also thanked the many con-
tributors, and last but not least the participants
to the conference, and I invited everybody to the
joint TUG-EuroTEX meeting that will take place
next year 1996 in Dubna (Russia) from Sunday July
28th to Thursday August 2nd, 1996. This will be the
first time a conference will take place in a country
whose major language does not use the Latin al-
phabet. A unique occasion to remain up-to-date on
what is happening in the world of TEX and friends,
and to become acquainted with the rich Russian cul-
ture thanks to direct contact with Russian people
and visits to famous monuments.

8 Copies of the EuroTEX’95 Proceedings—counting more
than 440 pages—are available at the price of 50 Dutch
Guilders (postage included) from NTG, P.O. Box 394, NL-
1740 AJ Schagen, The Netherlands.

It was NTG’s President, Erik Frambach, who
had the honor of having the last word. He gave
a complete list of the people who had spent many
months since the beginning of 1995 to make the con-
ference a success: yes it takes many people to do all
the little (and not-so-little) tasks to have everything
ready on time. Then he announced that the first
4AllTEX prize had been awarded to Eberhard Mat-
tes, the father of emtex, the TEX engine that lies
without doubt at the heart of most TEX installations
in the world. A cheque of 3, 141.59 German Marks
will be sent to Eberhard, and the applause that ac-
companied the announcement underlined how much
all TEX users worldwide, especially those using PC’s,
appreciate his extremely valuable and continuous
contributions. With this Erik formally closed the
conference in a grandiose way, and hoped to see ev-
erybody again next year on the Volga in Dubna.

Thursday p.m. and Friday a.m.—Tutorials

The Thursday afternoon two tutorials ran in paral-
lel, namely one by Bogus law Jackowski on META-
FONT and another by Piet van Oostrum on page
layout with LATEX. Both teachers gracefully agreed
to repeat their respective tutorials the next morn-
ing to give a maximum number of participants the
chance to attend both and to give those who had
to leave already the Thursday evening the chance
to attend the one of their choice. As I had meetings
scheduled with various people during the time of the
tutorials I was unable to go to either of them, but
listening to those fortunate enough to have attended
I learned that they were both an enormous success.
Congratulations to both Bogus law and Piet for their
careful preparations and pedagogical presentations.

Finally, on the Friday afternoon, those inter-
ested were able to join our friends from Central and
Eastern Europe in a visit of Amsterdam with the
EuroTEX bus, a second (and especially appreciated)
“social event”.

The Saturday morning with the departure of
the EuroTEX bus for Warsaw via Berlin, the last
EuroTEXies left the Papendal Sports Center. Thus
EuroTEX’95 became history and will henceforth be
remembered as the latest (in fact the ninth) in the
series of European TEX Conferences. Thank you
NTG, thank you Erik, and Wietse, and Gerard, and
all your colleagues for that week of intense TEX hap-
piness, and see you all next July in Russia!

⋄ Michel Goossens

CERN, Geneva, Switzerland

Email: goossens@cern.ch

440 TUGboat, Volume 16 (1995), No. 4

Late-Breaking
News

Production Notes

Mimi Burbank and Michel Goossens

Production Notes

Well, for those of you who are relative novices at
some of the more arcane uses of TEX, I’d love to
spend some time explaining some of the “on-the-
job training” I get with each issue produced by the
production team.
First of all, I must say that I have no idea how

one person ever did the job alone! Now that the
technology has become so advanced, and the world
of TEX and METAFONT has grown so much, it has
become a delight to look at output. This production
team, though there are still administrative obstacles
to be worked out, is a dynamic group, and TEXnical
problems are solved rather easily and quickly. The
greatest source of frustration now seems to be net-
works, and devices.
This issue heralds in a new era in typesetting

TUGboat and the first truly bilingual issue. For
a more detailed description of how the two Russian
articles were prepared, see Michel’s production notes
at the end of Andrey Slepukhin’s article on page 379.
All files were received electronically. This issue

is chock full of T1 encoding, use of the new (and
old) dc fonts, multiple uses of METAFONT, consid-
erable use of Babel, and an additional two Russian
formats. Over 70 files were used to produce cam-
era copy for Slepukhin’s article, while only 13 files
were needed to produce camera copy for Lapko and
Makhovaya’s article and the TUG’96 announcement
on page 429. Some 50 files were necessary to run
Jackowski’s article, 29 of which were .eps figures.

Macros

80% of the articles received were in LATEX2ε. While
some articles were received tagged for another or for
no publication, most articles were received as fully
tagged for TUGboat, using either plain-based or
LATEX conventions described in the Authors’ Guide
(see TUGboat 10, no. 3, pages 378– 385). Several
macros defined by authors or from LATEX packages
clashed with those of ltugboat.cls (for instance
multicol.sty and ltugboat’s use of the twocolumn
option), and some time was spent trying to get them
to “cohabit” in the same file.

Fonts

Most of this issue has been set in Computer Modern
(or DC, version 1.1) fonts— in Malyshev’s BaKoMa
PostScript Type 1 versions. Exceptions are, obvi-
ously, the Russian articles by Slepukhin, and Lapko
and Makhovaya. Knappen’s article was typeset us-
ing the T1 encoding of Computer Modern fonts, in
addition to the DC, version 1.2 fonts.

Output

The final camera copy was prepared at SCRI on an
IBM RS6000 running AIX, using the Web2C imple-
mentation of TEX. Output was printed on aQMS 680
print system at 600 dpi.

Future Issues

The next issue will contain TTN material, as well as
abstracts from other LUG publications, a summary
of the CyrTUG’95 meeting, and articles on math in
LATEX, the first of a two-part tutorial on typography
by Phil Taylor, and articles on graphics and META-
FONT.
Plans are underway for TUGboat 17(2) to be

the Proceedings Issue for 1996, so that copies will
be available for the meeting in Dubna, Russia. This
will be a change in the usual order of issues; 17(3)
will be a regular issue, and 17(4) will be a multi-
lingual “theme” issue, with a guest editor. Sugges-
tions are welcome for prospective topics and guest
editors. Send them to the Editor, Barbara Beeton
(see address on page 351), or via electronic mail to
TUGboat@ams.org.

⋄ Mimi Burbank

SCRI, Florida State University,

Tallahassee, FL 32306 – 4052

Email: mimi@scri.fsu.edu

⋄ Michel Goossens

CERN, Geneva, Switzerland

Email: goossens@cern.ch

TUGboat, Volume 16 (1995), No. 4 441

TUGBusiness

1996 TEX Users Group Election

Barbara Beeton
for the Elections Committee

The terms of 6 members of the Board of Directors
will expire as of the 1996 Annual Business Meet-
ing, which will take place in conjunction with the
17th Annual TUG Meeting in July 1996 in Dubna,
Russia. The directors whose terms expire in 1996
are Mimi Burbank, Michael Ferguson, Peter Flynn,
Mimi Jett, Tom Rokicki and Norm Walsh. There
is also one additional vacancy due to a resignation.
The election will be held this Spring, and nomina-
tions for these seven openings are now being invited.
The Bylaws provide that “Any member may be

nominated for election to the Board by submitting
a nomination petition in accordance with the TUG
Election Procedures. Election of the directors shall
be by written mail ballot of the entire membership,
carried out in accordance with those same Proce-
dures.” The term of office of a director is three (3)
years. Incumbent officers may be nominated for suc-
cessive terms.
The name of any member may be placed in

nomination for election to the board by submission
of a petition, signed by two other current (1996)
members, to the TUG office at least two weeks (14
days) prior to the mailing of ballots. (A candidate’s
membership dues for 1996 will be expected to be
paid by the nomination deadline.) A petition form
follows this announcement; forms may also be ob-
tained from the TUG office, and electronically from
the usergrps/tug area of CTAN.
Along with a petition form, each candidate is

asked to supply a passport-size photograph, a short
biography, and a statement of intent to be included
with the ballot; the biography and statement of in-
tent together may not exceed 400 words.
The deadline for receipt at the TUG office of pe-

titions and ballot information is March 15, 1996.
Ballots will be mailed to all members in early

April. Marked ballots must be postmarked no later
thanMay 17, and received no later thanMay 31.
These deadlines will be noted on the ballots.
Ballots will be counted by a disinterested party

not part of the TUG organization. The results of the
election should be available by early June, and will
be announced in a future issue of TUGboat as well
as through various TEX-related electronic lists.

1996 TUG Election—Nomination Form

Only current (1996) TUG members are eligible to partic-
ipate. The signatures of two (2) members are required
in addition to that of the nominee. Type or print
names clearly, exactly as they appear in the most re-
cent TUG membership list or on a TUG mailing label;
new members should enter the name which they used on
their membership application form. Names that do not
exactly match the TUG records will not be accepted as
valid.

The undersigned TUG members propose to nomi-
nate the following TUG member for the position of
member of the TUG Board of Directors, for a
term beginning with the July 1996 Annual Meeting:

Name of Nominee:

Signature:

Date:

Members supporting this nomination:

1.
(please print)

(signature) (date)

2.
(please print)

(signature) (date)

Return this petition form to the TUG office (FAXed
petition forms will be accepted). Petitions and all re-
quired supplementary material (photograph, biography
and personal statement for inclusion on the ballot) must
be received in the TUG office no later than March 15,
1996.1 It is the responsibility of the candidate to ensure
that this deadline is met. Under no circumstances will
incomplete applications be accepted.

2 nomination form

2 photograph

2 biography/personal statement

TEX Users Group FAX: 415-982-8559
Nominations for 1996 Election

1850 Union Street, #1637
San Francisco, CA 94123
U.S.A.

1 Supplementary material may be sent separately from

the form, and supporting signatures need not all appear on

one form.

Institutional

Members

The Aerospace Corporation,
El Segundo, California

Air Force Institute of Technology,
Wright-Patterson AFB, Ohio

American Mathematical Society,
Providence, Rhode Island

ArborText, Inc.,
Ann Arbor, Michigan

Brookhaven National Laboratory,
Upton, New York

CNRS - IDRIS,
Orsay, France

CERN, Geneva, Switzerland

College Militaire Royal de Saint
Jean, St. Jean, Quebec, Canada

College of William & Mary,
Department of Computer Science,
Williamsburg, Virginia

Communications
Security Establishment,
Department of National Defence,
Ottawa, Ontario, Canada

CSTUG, Praha, Czech Republic

Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands

Fermi National Accelerator
Laboratory, Batavia, Illinois

Florida State University,
Supercomputer Computations
Research, Tallahassee, Florida

Grinnell College,
Noyce Computer Center,
Grinnell, Iowa

Hong Kong University of
Science and Technology,
Department of Computer Science,
Hong Kong

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Communications Research
Division, Princeton, New Jersey

Iowa State University,
Ames, Iowa

Los Alamos National Laboratory,
University of California,
Los Alamos, New Mexico

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Mathematical Reviews,
American Mathematical Society,
Ann Arbor, Michigan

Max Planck Institut
für Mathematik,
Bonn, Germany

New York University,
Academic Computing Facility,
New York, New York

Nippon Telegraph &
Telephone Corporation,
Basic Research Laboratories,
Tokyo, Japan

Personal TEX, Incorporated,
Mill Valley, California

Princeton University,
Princeton, New Jersey

Smithsonian Astrophysical
Observatory, Cambridge,
Massachusetts

Space Telescope Science Institute,
Baltimore, Maryland

Springer-Verlag,
Heidelberg, Germany

Stanford Linear Accelerator
Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Texas A&M University,
Department of Computer Science,
College Station, Texas

United States Naval
Postgraduate School,
Monterey, California

United States Naval Observatory,
Washington DC

University of California, Berkeley,
Center for EUV Astrophysics,
Berkeley, California

442 TUGboat, Volume 16 (1995), No. 4

University of California, Irvine,
Information & Computer Science,
Irvine, California

University of Canterbury,
Christchurch, New Zealand

University College,
Cork, Ireland

University of Delaware,
Newark, Delaware

University of Groningen,
Groningen, The Netherlands

Universität Koblenz–Landau,
Koblenz, Germany

University of Manitoba,
Winnipeg, Manitoba

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

University of Southern California,
Information Sciences Institute,
Marina del Rey, California

University of Stockholm,
Department of Mathematics,
Stockholm, Sweden

University of Texas at Austin,
Austin, Texas

Università degli Studi di Trieste,
Trieste, Italy

Uppsala University,
Uppsala, Sweden

Vrije Universiteit,
Amsterdam, The Netherlands

Wolters Kluwer,
Dordrecht, The Netherlands

Yale University,
Department of Computer Science,
New Haven, Connecticut

Information about these services can be obtained

from:

TEX Users Group

1850 Union Street, #1637

San Francisco, CA 94123, U.S.A.

Phone: +1 415 982-8449

Fax: +1 415 982-8559

Email: tug@tug.org

North America

Anagnostopoulos, Paul C.

Windfall Software,
433 Rutland Street, Carlisle, MA 01741;
(508) 371-2316; greek@windfall.com

We have been typesetting and composing high-quality
books and technical Publications since 1989. Most of the
books are produced with our own public-domain macro
package, ZzTEX, but we consult on all aspects of TEX and
book production. We can convert almost any electronic
manuscript to TEX. We also develop book and electronic
publishing software for DOS and Windows. I am a
computer analyst with a Computer Science degree.

Cowan, Dr. Ray F.

141 Del Medio Ave. #134, Mountain View, CA 94040;
(415) 949-4911; rfc@netcom.com

Twelve Years of TEX and Related Software Consulting:

Books, Documentation, Journals, and Newsletters

TEX & LATEX macropackages, graphics; PostScript language
applications; device drivers; fonts; systems.

Hoenig, Alan

17 Bay Avenue, Huntington, NY 11743; (516) 385-0736
TEX typesetting services including complete book
production; macro writing; individual and group
TEX instruction.

NAR Associates

817 Holly Drive E. Rt. 10, Annapolis, MD 21401;
(410) 757-5724

Extensive long term experience in TEX book publishing
with major publishers, working with authors or publishers
to turn electronic copy into attractive books. We offer
complete free lance production services, including design,
copy editing, art sizing and layout, typesetting and
repro production. We specialize in engineering, science,
computers, computer graphics, aviation and medicine.

Ogawa, Arthur

40453 Cherokee Oaks Drive,
Three Rivers, CA 93271-9743;
(209) 561-4585

Experienced in book production, macro packages,
programming, and consultation. Complete book production
from computer-readable copy to camera-ready copy.

TUGboat, Volume 16 (1995), No. 4 443

TEXConsulting &Production Services

Quixote Digital Typography, Don Hosek

555 Guilford, Claremont, CA 91711;
(909) 621-1291; Fax: (909) 625-1342;
dhosek@quixote.com

Complete line of TEX, LATEX, and METAFONT services
including custom LATEX style files, complete book
production from manuscript to camera-ready copy;
custom font and logo design; installation of customized
TEX environments; phone consulting service; database
applications and more. Call for a free estimate.

Richert, Norman

1614 Loch Lake Drive, El Lago, TX 77586;
(713) 326-2583

TEX macro consulting.

Type 2000

16 Madrona Avenue, Mill Valley, CA 94941;
(415) 388-8873; Fax: (415) 388-8865
pti@crl.com

$2.50 per page for 2000 DPI TEX and PostScript camera
ready output! We provide high quality and fast turnaround
to dozens of publishers, journals, authors and consultants
who use TEX. Computer Modern, PostScript and
METAFONT fonts available. We accept DVI and
PostScript files only and output on RC paper. $2.25 per
page for 100+ pages, $2.00 per page for 500+ pages; add
$.50 per page for PostScript.

Outside North America

TypoTEX Ltd.

Electronical Publishing, Battyány u. 14. Budapest,
Hungary H-1015; (036) 11152 337

Editing and typesetting technical journals and books with
TEX from manuscript to camera ready copy. Macro writing,
font designing, TEX consulting and teaching.

