
60 TUGboat, Volume 16 (1995), No. 1

Problems of the conversion of METAFONT

fonts to PostScript Type 1

Basil K. Malyshev

Abstract

The paper describes problems pertaining to the auto-
matic conversion ofMETAFONT fonts into the PostScript
Type 1 font format. Several methods of conversion are
discussed. A short description of the Paradissa Fonts
Collection is presented. It contains Computer Modern
fonts (used in (LA)TEX) in ATM compatible PostScript
Type 1 format. The use of the collection and the prob-
lems related to it are discussed.

−− ∗ −−

1 Introduction

Intensive quantification of human activities often
implies rapid modifications of many methods of data
production, processing, and use. Thus it seems nec-
essary to adapt the collected data to efficient modern
processing techniques.
One of these problems is the conversion of fonts

defined in METAFONT into the PostScript font for-
mat and reports on the automatic conversion of fonts
described in the METAFONT format to the Post-
Script Type 3 font format have been appearing since
1987 (see Carr, 1987; Henderson, 1989; Hobby, 1989;
Berry & Yanai, 1990). However, these results are lit-
tle used due to the poor rasterization of PostScript
Type 3 fonts at low and middle resolutions on widely
used output devices. Furthermore, the fonts are in-
compatible with Adobe Type Manager (ATM)
which essentially narrows their application area.
The PostScript Type 1 font format as published

by Adobe (Adobe, 1990) allows the possibility of
performing METAFONT → PostScript Type 1 con-
version that promises high quality fonts with a wide
application area (including ATM).
The methods for automating such conversion

are discussed in this paper.

2 METAFONT and PostScript Type 1

When comparingMETAFONT and PostScript Type 1,
we note the following features.

METAFONT is a high level language for font de-
scription. To draw a letter, METAFONT describes
the curve traveled by the center of the pen, and the
shape of this pen is allowed to vary as the pen moves.
Coordinates of all reference points can be defined by
parameters and linear equations governing these pa-
rameters. The main advantage of this approach is
that the same definition readily yields a family of in-
finitely many related fonts of type, each font being

internally consistent. Thus, infinitely many typeface
styles can be obtained from a single definition by
changing only a few parameters. METAFONT does
not dictate its own font parametrization technique,
but provides a designer with all the necessary tools.

METAFONT does not satisfy up-to-date stan-
dards of rasterization, because it yields acceptable
results only at resolutions higher than 300dpi. For
example, 240dpi × 216dpi is already poor, and at
about 100dpi, typical of many graphic displays, the
results are quite unsatisfactory.
PostScript Type 1 is a low level tool for font de-

scription. It reduces the description of a character
outline to lines and Bezier cubic curves specifying
some additional information (declarative hints) for
the rasterizer. It gives excellent results on printers
and other graphical devices with PostScript inter-
preters, and on systems with ATM. Furthermore,
the font structure of PostScript Type 1 allows an
application to perform rasterization only on charac-
ters that are actually used in the document, and to
do it much faster than by METAFONT.
Adobe Type 1 rasterizers can generate variant

fonts at any affine transformation of an original font,
but this is not sufficient to generate several typeface
styles with different optical sizes, weights, widths,
and so on from a single description. To solve this
problem, Adobe Corporation has developed a Mul-
tiple Master Extension of the Adobe Type 1 font for-

mat which can be used to generate a wide variety of
typeface styles from a single font program (Adobe,
1992). This font format contains several outline
typefaces called master designs which describe one
or more design axes. Design axes represent a dy-
namic range of one typographic parameter, such as
the weight or width.

METAFONT, however, provides font parametri-
zation tools which are more flexible and natural for a
designer. Also, a designer can readily add new sym-
bols to a completed font definition in such a way
that they are automatically consistent with the old
ones.
Thus, combining of flexibility of a font descrip-

tion in METAFONT with the high quality of raster-
ization and simple use of PostScript Type 1 fonts
seems to be desirable. Such a link can be represented
by an automatic METAFONT → PostScript Type 1
converter generating fonts of rather high quality.

3 Steps and methods of

MF → Type 1 conversion

The task of converting METAFONT fonts into the
PostScript Type 1 font format may be divided nat-
urally into two rather independent steps:



TUGboat, Volume 16 (1995), No. 1 61

P1

P2

P3

P4

Figure 1: Bezier cubic curve defined by four
points

• extraction of character outlines from the META-
FONT font definitions;

• generation of declarative hints, which help the
renderer to make best character rasterization.

The two steps can be performed by using different
methods discussed below.

3.1 Extraction of character outlines

Each character in the PostScript Type 1 font is de-
scribed by an outline specified by a set of lines and
Bezier cubic curves. For a Bezier cubic curve four
points are used: start point (P1), endpoint (P4),
and two control points (P2 and P3), as shown in
figure 1. The tangent vectors of endpoints are de-
termined from the line segments P1, P2 and P4, P3.
The algebraic equation for this curve is:

P (t) = (1− t)3P1 + 3(1− t)
2tP2

+ 3(1− t)t2P3 + t
3P4

for 0 ≤ t ≤ 1.

Note that the labelling used in figure 1 for end-
points and control points will then be conserved for
all elements forming character outlines.
Character outlines of high quality PostScript

Type 1 fonts should not only describe all glyphs with
sufficient accuracy, but also satisfy some important
rules formulated in Adobe PostScript Type 1 font
format (Adobe, 1990).

A Points at extremes. An endpoint should be
placed at most horizontal or vertical extremes.
This means that most curves should not include
more than 90 degrees of arc.

B Tangent continuity. Whenever one path ele-
ment makes a smooth transition to the next el-
ement, the endpoint joining the two elements
and the Bezier control point associated with
that endpoint (for a curve) or the other end-
point (for a line) should all be collinear.

C Consistency. All character features (stem width,
height, spacing, shapes) that are intended to be
the same should be exactly the same.

D Conciseness. Character outline definitions must
be as concise as possible, without breaking the
other rules.

There are two main approaches to the extrac-
tion of character outlines

• generation of character raster images by META-
FONT with a subsequent recovering of the out-
lines by tracing the pixels and approximating
the resulting outline by lines and Bezier cubic
curves (see section 3.1.1);

• direct extraction of outlines from the META-
FONT programwith subsequent removal of over-
lapping elements and geometric optimization of
resulted outline (see section 3.1.2).

3.1.1 Tracing the pixels of the bitmaps

At first, we need to generate bitmapped fonts by
METAFONT. In PostScript Type 1 font format the
endpoints and control points are defined on a 1000×
1000 grid. To avoid rounding errors after outline
scaling, magnification should be chosen so that font
design size is rasterized into 1000 pixels. Therefore,
the resolution should be chosen as

〈resolution〉
dots

inch
=
72.27pt/inch× 1000 dots

〈design size〉pt
.

Thus, the best resolution for the design size of 10pt
is 7227dpi. This resolution does not require addi-
tional scaling of the resulting outline, and theMETA-
FONT program performs correct coordinate round-
ing.
It is easy to make METAFONT itself to compute

the required magnification by adding

pixels_per_inch:=4000 + 3227;

pixels_per_inch:=pixels_per_inch*4pt#;

tmp:=designsize/2.5;

pixels_per_inch:=pixels_per_inch/tmp;

to mode_def macro definition in the local.mf file.
Many programs will reconstruct a raster image

outlines by tracing the pixels. However, font gen-
eration requires that the outlines satisfy the rules
discussed in section 3.1. Below we consider several
sets of results, and focus on whether these rules are
obeyed or violated.
The software developed by Neil Raine generates

the outlines from the bitmaps by tracing the pixels.
Graham Toal generated Computer Modern fonts at
3000dpi resolution and produced PostScript Type 3
fonts by using Raine’s program. These fonts are
available in CTAN in /tex-archive/fonts/cm/ps-
type3 directory. The examples of these outlines are



62 TUGboat, Volume 16 (1995), No. 1

Apex

Serif

Vertex Vertex

Arm Arm

Flex

Arc Beginning Ending

Figure 2: Neil Raine and Graham Toal cmr10
outlines

Figure 3: cmr10 outlines produced by LIMN from
the GNU font utilities

shown in figure 2. It is easy to see that these outlines
suffer from some defects:

• The violation of rule 3.1.A in the letter ‘C’.
This defect is not occasional, but is common to
most curved stems.

• Asymmetrical vertices in the letter ‘W’ violate
rule 3.1.C.

• Bad transitions from arms to serifs in the let-
ters ‘A’ and ‘W’.

• A middle serif in the letter ‘W’ is unsatisfac-
tory.

Karl Berry and Kathryn Hargreaves developed
the GNU font utilities, and announced them in
TEXhax (Volume 92, Issue 8 and 17). These utili-
ties contain a program LIMN which takes the bitmap

fonts and generates outlines by tracing the pixels.
The results of their operation are shown in figure 3.
The outlines presented in this figure also have

some visible defects:

• The violation of rule 3.1.A in the letter ‘C’.
Similar to the above example, this defect is reg-
ularly repeated.

• Each flex is split into many short line segments,
violating rule 3.1.D.

• Multiple consecutive collinear line segments vi-
olate rule 3.1.D.

These outlines, when compared with Toal’s, of-
fer some evident advantages, namely the apex of the
letter ‘A’ is symmetrical and the vertices of the letter
‘W’ are symmetrical and match each other.



TUGboat, Volume 16 (1995), No. 1 63

Figure 4: cmr10 outlines produced by
FontoGrapher

To make more comparisons, bitmap fonts (at
3613dpi resolution) were traced by FontoGrapher
(version 3.5.1). The resolution 3613dpi = 7227dpi/2
has been chosen because the tracing procedure built
in FontoGrapher can break at too high a resolution.
The result of this experiment is shown in figure 4.
In spite of the fact that rule 3.1.A is satisfied here
(having been violated in the above examples), the
outlines are not free from some defects:

• The apex in the letter ‘A’ is asymmetrical (vi-
olation of rule 3.1.C).

• The vertices in the letter ‘W’ are asymmetrical
and different (violation of rule 3.1.C).

• Arm – serif transitions in the letters ‘A’ and
‘W’ are not satisfactory.

Evidently, it is difficult to obey rule 3.1.Cwhen
directly tracing raster images. On the other hand,
rule 3.1.A seems to be easy to satisfy, and the viola-
tion of this important rule in the first two examples
could probably be attributed to lack of authors’ at-
tention to it.

3.1.2 Extraction of outlines from

METAFONT

Each program considered in section 3.1.1 exhibits its
own defects of outline generation. Besides, there are
defects common to all programs, such as poor dis-
covery of flex features or bad serif –arm transitions.
The information critical for good appearance of

characters is evidently lost when tracing an outline
on a bitmap. Therefore, the extraction of outlines
from METAFONT definitions without raster repre-
sentation of fonts seems to be more fruitful.
The first attempt at extracting the character

envelopes fromMETAFONT was undertaken by Leslie
Carr (1987). Carr’s programs take as input the
METAFONT log file which contains a description of
all the paths that METAFONT traces out in drawing
a character. But using this method one should take
into account the METAFONT pen shape.
Later Daniel M. Berry and Shimon Yanai (1990)

have developed a more successful program, mf2ps,
that finds the internally generated METAFONT en-
velopes, used as the boundaries of the inked region,
and uses these envelopes as the PostScript outlines.
In both these attempts, PostScript Type 3 fonts
have been generated. The outlines generated by the
mf2ps program are shown in figure 5.
To present such envelopes for PostScript Type 3

font the mf2ps program reorders cycled subpaths
and chooses black and white filling for each of them.
This method, although suitable for Type 3 fonts,
fails for Type 1.
To produce outlines suitable for Type 1 fonts,

all envelope overlapping should be removed. The
result of this operation is shown in figure 6. Note
that the resulting outlines contain too many con-
secutive lines and curves split into many pieces. To
obtain outlines free from such defects, I have made
some geometrical optimization. The result is shown
in figure 7.
Now the outlines look significantly better than

those in figures 2, 3 and 4. All the rules from sec-
tion 3.1 have been satisfied. The fragmentation of
the inner side of arc in the letter ‘C’ occurs because
of the high (probably too high) accuracy in the ap-
proximation of the original shape.
There are some slight peculiarities related to a

different encoding of similar shapes. In the letter



64 TUGboat, Volume 16 (1995), No. 1

Figure 5: METAFONT internally generated
envelopes

Figure 6: METAFONT envelopes after removing
overlapping

‘Φ’, for example (figure 8), the outline representa-
tion is somewhat asymmetrical. The outline itself
has a slight asymmetry, but in the process of raster-
ization its asymmetry of encoding may be exagger-
ated.
Nevertheless, this method is a step forward in

improving the character outlines obtained from the
METAFONT font definitions.

3.2 Generation of declarative hints

One of the main problems arising in font rasteri-
zation on a discrete grid is the conservation of the
important geometrical properties of outlines. Iden-
tical parts of the letters differently located on the
grid may take different shapes in a discrete repre-
sentation.
In the PostScript Type 1 font format this prob-

lem is solved by using declarative hints which in-
dicate where a horizontal or vertical stem occurs
in certain coordinates. Those parts of the outlines
which appear inside of the so-called stem hints will
be rendered by special techniques.

Figure 7: METAFONT envelopes after geometrical
optimization

Declarative hints for the outlines obtained at
the previous stage can be generated by font editors
like FontMonger or FontoGrapher as follows:

• styling the outlines in the form of ATM com-
patible font format;

• loading the outlines to a font editor;

• saving the completed font on a disk.

As a result, the saved font contains the declarative
hints.
The hints generated by FontMonger (version

1.0.4) are shown in figure 9. Comparing these out-
lines with the original ones from figure 3, it is easy
to see that FontMonger has changed the outlines so
that rule 3.1.A is satisfied. However, stem hints for
the serifs in the letters ‘A’ and ‘W’ are missing.



TUGboat, Volume 16 (1995), No. 1 65

Figure 8: Asymmetrical coding of the like
symmetrical form in the letter Φ

Figure 9: LIMN generated outlines hinted by
FontMonger

The declarative hints generated by FontoGra-
pher for the same outlines are shown in figure 10.
In this figure the outlines are unchanged, while the
hints for the curved stems in the letter ‘C’ are miss-
ing. That is, FontoGrapher does not even try to
correct the violation of rule 3.1.A, and this viola-
tion has a pernicious effect on its operation. How-
ever, unlike the latter case, all hints for the serifs in
the letters ‘A’ and ‘W’ are found correctly now.
If the outlines are not too accurate (such as

those generated by the LIMN program), then the op-
eration of both FontMonger and FontoGrapher is
not good enough. However, if a font processed by
FontMonger is subsequently processed by Fonto-
Grapher, the obtained results can be significantly
better (figure 11).
In the case of more accurate outlines directly

extracted from METAFONT (figure 7), this approach
is quite suitable, but FontMonger can hardly find
the serifs (figure 12), while the results obtained by
FontoGrapher are quite acceptable (figure 13).
Thus, one can see that FontoGrapher performs

hinting somewhat better than FontMonger. Still
FontMonger also has an advantage useful for mass
conversion of fonts because it has a batch conversion
utility.
The Paradissa Font Collection has been created

using a homegrown algorithm for generating charac-
ter hints. This algorithm has been developed espe-
cially for processing the outlines generated by the
LIMN program. The result of its operation is shown
in figure 14 where it can be seen that almost all
the hints have been found, but the outlines have not
been corrected as in the case of running FontMonger
(figure 9).
In the case of outlines directly extracted from

METAFONT (figure 7), our homegrown algorithm
gives results (figure 15) competitive with those ob-
tained by FontoGrapher (figure 13).

4 Paradissa Font Collection

The Paradissa Font Collection has been developed
using the outlines generated by LIMN and a specially
developed outline filter and hinting algorithm. This
font collection is available from CTAN in the

/tex-archive/fonts/cm/ps-type1/paradissa

directory. The examples of the hinted outlines con-
tained in this collection have already been presented
in figure 14.
The Paradissa Font Collection contains:

• Computer Modern, designed by D. Knuth;

• Euler by H. Zapf;

• CM Cyrillic by N. Glonty & A. Samarin;



66 TUGboat, Volume 16 (1995), No. 1

Figure 10: LIMN generated outlines hinted by
FontoGrapher

Figure 11: LIMN generated outlines hinted first by
FontMonger and then by FontoGrapher

• Special LATEX fonts.

Altogether it contains 165 fonts in ATM com-
patible PostScript Type 1 format with AFM and PFM
files. This set of fonts may be used for printing
most (LA)TEX documents. It is used by the Russian-
English LATEX version developed and supported by
the ProTEX group at IHEP.
This collection can be used for

• printing documents on a PostScript printer by
using, for example, Rokicki’s DVIPS driver. It
should be noted that the typesetting of even
a simple LATEX document may require a lot of
printer memory to download fonts. This prob-
lem is solved, for instance, by the commercial
program DVIPSONE which uses a special tech-

nique for partial font downloading to conserve
the printer’s memory.

• printing documents on a large collection of ma-
trix printers by using DVIPS and ghostscript.

• drawing slides on vector plotters by using the
PostScript plot.ps program which is supplied
with the collection. For drawing documents on
HPGL plotters, the ps2hpgl utility can be used.
It is available on ftp.mathworks.com host in
the /pub/contrib/tools directory.

• displaying documents under MS Windows with
ATM by using the commercial DVIWindo pro-
gram. We also expect that the capability of us-
ing Type 1 fonts will be added to Hippocrates
Sendoukas’ DVIWIN program.



TUGboat, Volume 16 (1995), No. 1 67

Figure 12: BKM outlines hinted by FontMonger
Figure 13: BKM outlines hinted by
FontoGrapher

References

Adobe Systems Inc. PostScript Language Reference
Manual. Addison-Wesley, 1985.

Adobe Systems Inc. Adobe Type 1 Font Format. Ad-
dison-Wesley, August 1990, Version 1.1.

Adobe Systems Inc. Adobe Type 1 Font Format:
Multiple Master Extensions. Adobe Developer
Support, 14 February 1992.

Berry, Daniel, and Shimon Yanai. “Environment for
Translating METAFONT to PostScript.” TUG-
boat 11 (4), p. 525–541, 1990.

Carr, Leslie. “Of Metafont and PostScript.”
TEXniques 5, p. 141–152, August, 1987.

Henderson, Doug. “Outline fonts with METAFONT.”
TUGboat 10 (1), p. 36–38, 1989.

Hobby, John D. “A METAFONT–like System with
PostScript Output.” TUGboat 10 (4), p. 505–
512, 1989.

Knuth, Donald E. The METAFONTbook. Reading,
Mass.: Addison-Wesley, 1986.

Knuth, Donald E. METAFONT: The Program. Read-
ing, Mass.: Addison-Wesley, 1987.

⋄ Basil K. Malyshev
Institute for High Energy Physics,
IHEP, OMVT, Moscow Region,
RU-142284 Protvino, Russia

Email: malyshev@mx.ihep.su



68 TUGboat, Volume 16 (1995), No. 1

Figure 14: LIMN generated outlines hinted by
homegrown hinter

Figure 15: BKM outlines hinted by homegrown
hinter


