
TUGBOAT

Volume 16, Number 1 / March 1995

3 Addresses

4 EuroTEX94 Contest Answers / Barbara Beeton

General Delivery 5 Opening words / Christina Thiele and Michel Goossens

8 Editorial comments / Barbara Beeton

Software & Tools 9 Making MakeTeXPK safer for Unix installations / Michael Jaegermann

12 Hyphenation exception log / Barbara Beeton

Philology 18 Configuring TEX or LATEX for typesetting in several languages / Claudio Beccari

30 How to make a foreign language pattern file: Romanian / Claudio Beccari,

Radu Oprea and Elena Tulei

42 TEX and Linguistics / Christina Thiele

Font Forum 45 Introducing METAPOST / Alan Hoenig

46 Some METAFONT techniques / Yannis Haralambous

54 The program a2ac—Font handling on the PostScript level / Petr Olsak

60 Problems of the conversion of METAFONT fonts to PostScript Type 1 /

Basil Malyshev

69 Partial font embedding utilities for PostScript Type-1 fonts /

Basil Malyshev and Michel Goossens

78 Tight setting with TEX / Alan Jeffrey

LATEX 80 XΥMTEX for drawing chemical structural formulas / Shinsaku Fujita

News &

Announcements

89 Calendar

90 Production notes / Mimi Burbank

91 Coming next issue

TUG Business 92 Institutional members

Forms 93 TUG membership application

Advertisements 94 TEX consulting and production services

TEX Users Group

Memberships and Subscriptions

TUGboat (ISSN 0896-3207) is published quarterly
by the TEX Users Group, Flood Building, 870
Market Street, #801; San Francisco, CA 94102,
U.S.A.

1995 dues for individual members are as follows:
Ordinary members: $55 with TUGboat;
$40 without;
Students: $35 with TUGboat; $20 without.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TEX and
TUG NEWS for the year in which membership
begins or is renewed. TUGboat may be included
for a supplementary fee. Individual membership is
open only to named individuals, and carries with
it such rights and responsibilities as voting in the
annual election. A membership form is provided on
page 93.
TUGboat subscriptions are available to organi-

zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: North America $60 a year; all other countries,
ordinary delivery $60, air mail delivery $80.
Second-class postage paid at San Francisco,

CA, and additional mailing offices. Postmaster:
Send address changes to TUGboat, TEX Users
Group, 1850 Union Street, #1637, San Francisco,
CA 94123, U.S.A.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office.

TUGboat c© Copyright 1995, TEX Users Group

Permission is granted to make and distribute verbatim

copies of this publication or of individual items from this

publication provided the copyright notice and this permission

notice are preserved on all copies.

Permission is granted to copy and distribute modified

versions of this publication or of individual items from

this publication under the conditions for verbatim copying,

provided that the entire resulting derived work is distributed

under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute transla-

tions of this publication or of individual items from this

publication into another language, under the above condi-

tions for modified versions, except that this permission notice

may be included in translations approved by the TEX Users

Group instead of in the original English.

Some individual authors may wish to retain traditional

copyright rights to their own articles. Such articles can be

identified by the presence of a copyright notice thereon.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Christina Thiele, President∗

Michel Goossens∗, Vice President
George Greenwade∗, Treasurer
Peter Flynn∗, Secretary
Barbara Beeton
Johannes Braams, Special Director for NTG
Mimi Burbank
Jackie Damrau
Luzia Dietsche
Michael Doob
Michael Ferguson
Bernard Gaulle, Special Director for GUTenberg
Yannis Haralambous
Dag Langmyhr, Special Director for
the Nordic countries

Nico Poppelier
Jon Radel
Sebastian Rahtz
Tom Rokicki
Chris Rowley, Special Director for UKTEXUG
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

Addresses

All correspondence,
payments, etc.

TEX Users Group
1850 Union Street, #1637
San Francisco,
CA 94123 USA

Parcel post,
delivery services:

TEX Users Group
Flood Building
870 Market Street, #801
San Francisco,
CA 94102, USA

Telephone

+1 415 982-8849

Fax

+1 415 982-8559

Electronic Mail

(Internet)
General correspondence:
TUG@tug.org

Submissions to TUGboat:
TUGboat@Math.AMS.org

TEX is a trademark of the American Mathematical
Society.

Who were the first compositors? Unfortunately we are not
quite sure. Many of them were probably scribes faced with
unemployment as a result of the new technology.

Alexander Lawson
The Compositor as Artist,

Craftsman, and Tradesman (1990)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 16, NUMBER 1 • MARCH 1995
SAN FRANCISCO • CALIFORNIA U.S.A.

TUGboat

During 1995, the communications of the TEX Users
Group will be published in four issues. One issue
(Vol. 16, No. 3) will contain the Proceedings of the
1995 TUG Annual Meeting. One issue (Vol. 16,
No. 2) will be a theme issue, edited by a guest
editor; participation will be by invitation.
TUGboat is available at a special subscription

rate to all members.
Submissions to TUGboat are reviewed by vol-

unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to be
the experts. Questions regarding content or accu-
racy should therefore be directed to the authors,
with an information copy to the Editor.

Submitting Items for Publication

Two regular issues will be prepared in 1995. Dead-
lines for these and other future issues are listed in
the Calendar, page 89.
Manuscripts should be submitted to a member

of the TUGboat Editorial Board. Articles of general
interest, those not covered by any of the editorial
departments listed, and all items submitted on
magnetic media or as camera-ready copy should
be addressed to the Editor, Barbara Beeton (see
address on p. 3).
Contributions in electronic form are encour-

aged, via electronic mail, on magnetic tape or
diskette, or made available for the Editor to retrieve
by anonymous FTP; contributions in the form of
camera copy are also accepted. The TUGboat
“style files”, for use with either plain TEX or
LATEX, are available “on all good archives”. For
authors who have no access to a network, they will
be sent on request; please specify which is preferred.
For instructions, write or call the TUG office.
An address has been set up on the AMS com-

puter for receipt of contributions sent via electronic
mail: TUGboat@math.ams.org on the Internet.

Reviewers

Additional reviewers are needed, to assist in check-
ing new articles for completeness, accuracy, and
presentation. Volunteers are invited to submit
their names and interests for consideration; write to
TUGboat@math.ams.org or to the Editor, Barbara
Beeton (see address on p. 3).

2 TUGboat, Volume 16 (1995), No. 1

TUGboat Editorial Board

Barbara Beeton, Editor
Mimi Burbank, Production Manager
Victor Eijkhout, Associate Editor, Macros
Alan Hoenig, Associate Editor, Fonts
Christina Thiele, Associate Editor, Philology and
Linguistics

See page 3 for addresses.

Other TUG Publications

TUG publishes the series TEXniques, in which have
appeared reference materials and user manuals for
macro packages and TEX-related software, as well
as the Proceedings of the 1987 and 1988 Annual
Meetings. Other publications on TEXnical subjects
also appear from time to time.
TUG is interested in considering additional

manuscripts for publication. These might include
manuals, instructional materials, documentation, or
works on any other topic that might be useful to
the TEX community in general. Provision can be
made for including macro packages or software in
computer-readable form. If you have any such items
or know of any that you would like considered for
publication, send the information to the attention
of the Publications Committee in care of the TUG
office.

TUGboat Advertising and Mailing Lists

For information about advertising rates, publication
schedules or the purchase of TUG mailing lists,
write or call the TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue may
not be complete.
MS/DOS is a trademark of MicroSoft Corporation
METAFONT is a trademark of Addison-Wesley Inc.
PCTEX is a registered trademark of Personal TEX,
Inc.

PostScript is a trademark of Adobe Systems, Inc.
TEX and AMS-TEX are trademarks of the American
Mathematical Society.

Textures is a trademark of Blue Sky Research.
Unix is a registered trademark of Unix Systems
Laboratories, Inc.

TUGboat, Volume 16 (1995), No. 1 5

General Delivery

Opening words

Christina Thiele (Outgoing President) and
Michel Goossens (Incoming President)

This first column for 1995 marks the transition be-
tween myself and Michel Goossens, TUG’s new pres-
ident. I am delighted to share this column with
him—and even more so to pass it on to him!

Passing the baton

While this first issue of 1995 should normally have
been in your mailbox last March, thus before the
spring election, the delay in getting it out to you has
been such that it is more reasonable to acknowledge
“real-time” events.
Having a real election for the position of TUG

president was very important to me, since my own
term was not the result of an election by TUG mem-
bers but a make-do solution to an interim situation
(although I had been elected as a board member in
the first elections in 1991).
In 1991, the board decided that all board mem-

bers should be elected by the membership, includ-
ing the president. Malcolm Clark served as interim
president for one-and-a-half years, to allow the elec-
tion cycle to begin properly. However, no candidates
stepped forward in the fall of 1992, and so the board
was forced to find a president from amongst its own
members; the result was that I took on the job of
president. I have therefore viewed my role these past
two-and-a-half years as being more of an adminis-
trator (“paper-generating bureaucrat” might be an-
other term for it!), focusing on internal infrastruc-
ture more than on external leadership issues.
This latter role is what TUG now needs to fo-

cus on—indeed, one could argue that this role was
needed already a year ago. Perhaps. But the cli-
mate a year ago was less calm, more agitated. Now,
however, I believe Michel, as new president, has a
much better context in which to be a strong leader
for TUG, and by extension, to better represent TUG
in the general TEX community.

Looking back

Since this is my last column, I would like to take the
opportunity to look back over my past seven years
on TUG’s board, beginning in 1988 at the Montreal
annual meeting. I’ve seen the board move from be-
ing an appointed group to an elected body, from a

group of keen implementors and developers with lit-
tle administrative involvement to one where most
development work is now done outside the board,
even outside TUG, and administrative issues have
seemed to consume the board’s time and energy. In
fact, most of the faces from when I first joined the
board are no longer there. But this should not sur-
prise anyone unduly.
The TEX community of today is very differ-

ent from that of 7 years ago, much less 16 years
ago when TUG began. The program is mature, the
users are world-wide and experienced, network ac-
cess and network-based resources have increased to
the point where almost everything is available elec-
tronically: help, information, sources, documenta-
tion—and fellow-users. Finding a useful role in the
current electronic and economic climate is very dif-
ficult for all organizations in computer-related ac-
tivities. To my mind, TUG is now swinging away
from the administrative focus of recent years to-
wards more of a collaborative and coordinating role
in the community at large. This is not to say that
the efforts made to provide a solid administrative
infrastructure have been for naught—but they only
need to be done once, and after that it’s more a mat-
ter of introducing refinements and improvements.
The main focus can thus move elsewhere.
I’d like to think that this is where I’ve most

usefully expended my energies for TUG—in the oc-
casionally unimaginative and plodding business of
documentation, guidelines and general information.
Drafting guidelines for the proceedings, which TUG
first began publishing in 1987, was one of my first
ventures—mainly to provide some sort of reference
point for myself as editor of the 1988 and 1989 pro-
ceedings, and of course, to also give authors some
help in preparing their submissions. The guidelines
have since become a regular component in the pro-
ceedings editor’s arsenal of files; and each editor
has been steadily improving and revising the docu-
ment over the years. Which is what good guidelines
should have to undergo—growth and change—to
address new situations. Similarly, the four years
I spent working on TUG meetings led to drafting
conference guidelines along with Peter Flynn, who
had experience with the Cork 1990 meeting. Other
guideline writing duties I’ve shared include those for
presenters, vendors, joint memberships, and elec-
tions.
Last year saw the introduction of “info-sheets”,

short one- or two-page documents which can be use-
ful sources of information: tug-info.tex (general
info about TUG) and usergrps.tex (list of all user

6 TUGboat, Volume 16 (1995), No. 1

groups) are two of the first ones.1 They are pre-
sented later in this issue, for everyone’s informa-
tion. The source files can be found on CTAN in tex-
archive/usergrps/tug and are updated as neces-
sary. In the works are info-sheets on CTAN and on
TEX implementations for various platforms.

TTN was the biggest project, though, that I
undertook: and even then, only with the substan-
tial and informed contributions from regular colum-
nists such as Peter Flynn, Peter Schmitt, Jeremy
Gibbons and Robert Becker, was it possible to keep
up a rhythm of four issues per year for three years.
That publication is now also evolving, under the new
editorship of Peter Flynn.
Indeed, most all of what I’ve worked on in TUG

has been something that others have had just as big
a role in, or have taken further along the road. With
the right combination of people, who can make any
job seem do-able, any problem solvable, and any
pleasure share-able, there’s really nothing like col-
laborative work to make you feel useful, particularly
as volunteer work doesn’t bring much else!
Most of what I’ve learned about what they call

‘people skills’ and all that— it’s been learned by
working within TUG and the TEX community. Per-
haps not always well learned, but certainly it’s been
the best exposure to all kinds of issues, situations,
and people one could wish for. Not at all what I ex-
pected to learn when I sent in my first membership
form in 1986, that’s for sure, or when I attended my
first meeting in 1987!

TUGboat is back!

One major infrastructure concern is of course TUG-
boat production. This issue you are reading is there-
fore also significant in that it marks the second of
what will be a “five-step program”2 to getting TUG
back into normal contact with its own membership,
and by extension, serving notice to the entire TEX
community that we are alive and well and work-
ing like mad to regain our members’ respect and
renewed membership. It has come as no surprise
that our 1995 membership figures are down from
last year; a big factor has been the non-appearance
of our flagship publication. A major concern has
therefore necessitated a major change in production.
With this in mind, as well as the growing diffi-

culties being experienced by the TUGboat editor to
devote as much time and energy towards TUGboat
as in the past, a change in the production environ-

1 The idea came from a one-page overview that I picked
up at the 1994 annual meeting of the LSA (Linguistic Society
of America) in Boston.

2 Five issues—five steps: 15,4; 16,1 to 16,4.

ment had to be made. As president, I was able to
initiate discussions on the feasibility of a team ap-
proach, and in conjunction with Barbara (TUGboat
editor), Mimi Burbank (chair of the Publications
Committee), and Michel Goossens (incoming presi-
dent), we were able to quickly find a new production
route to follow.
The utter dependence upon one person, Bar-

bara Beeton, to not only edit but also deal with
TEXnical production had to change.

3. TUGboat
15,4 was the first result of the new production ap-
proach: a team of people working under Barbara’s
sharp eye, each one bringing a great deal of expe-
rience in different aspects of TEX as it now is used
and understood by the community. This issue (16,1)
is the first one which joins the team approach with
a new production site (SCRI), and will, we believe,
allow for much greater scope and flexibility in the
future.

SCRI support critical

The team approach has been greatly aided by the
generosity of the people at Florida State Univer-
sity’s Supercomputer Computations Research Insti-
tute (SCRI), who have allowed us to share half of a
new 4GB disc in order to undertake TUGboat pro-
duction. Mimi Burbank deserves the credit for hav-
ing made this possible; and we are deeply grateful
to SCRI for the additional technical and logistical
support which they have provided. The disc now
makes it possible for team members to access all
TUGboat production files, lend speedy assistance
and advice on problems which inevitably arise, and
generally provide a solid support group for TUG-
boat’s long-standing editor. For more details, see
Barbara’s column elsewhere in this issue.

TUG’s new president, Michel Goossens, vowed
at the recent annual meeting to see that, between
now and the end of the year, members will see TUG-
boat issues appearing in very short order, to get us
back to the normal schedule. You have received 15,4
(the last 1994 issue). This is 16,1. You will receive
16,2 (guest-edited by Malcolm Clark) and 16,3 (the
TUG’95 Proceedings, edited by Robin Fairbairns)
before the end of the calendar year; the December

3 And that TEXnical aspect has done nothing but become
more complex with each new article—proving that TUGboat
authors are amongst the most devilishly creative group any-
one should ever have to deal with! I would hasten to reiterate
a point that Barbara has repeatedly made in the past: that
this is not the aim of TUGboat—to be for the TEXnically
devilish! There is a desperate need for solid entry-level arti-
cles that will help all users better understand and apply TEX
for all purposes—not just the generation of fantastic new
code and fonts!

TUGboat, Volume 16 (1995), No. 1 7

issue, 16,4, will be out in early 1996. The work is
already well in hand; elsewhere in this issue you will
find information on what’s coming in 16,2 and 16,3.
We are convinced this is the best solution for the cur-
rent and long-term survival of both TUGboat and
TUG: without the one, the health and viability of
the other is also drawn into question—not only by
current and former TUG members, but by the TEX
community at large.

And with this longish message, I now pass the Pres-
ident’s Column over to Michel Goossens, TUG’s in-
coming president.

−− ∗ −− ∗ −− ∗ −−

Moving forward

Christina Thiele, TUG’s outgoing president, has ex-
plained clearly what has happened in the last year
or two, stating the facts and putting them in an ob-
jective perspective. As noted previously, the prob-
lems with TUGboat have, amongst other things,
contributed to a drop of about 20% in the mem-
bership of TUG with respect to the 1994 figures. As
I announced in my inaugural speech, I am making
it my first task as new president to get TUGboat
back on schedule. In the production team that we
have set up, a real spirit of cooperation has devel-
oped, with each of the team members contributing
in an area where she or he feels most comfortable
or has particular expertise. I am confident that this
approach can be made to last, and that TUGboat
will now arrive on time and at regular intervals on
our readers’ desks.

New horizons

But is it not enough to just “carry on”, saying that
it’ll soon be “business as usual”. The world of elec-
tronic publishing does not stand still; on the con-
trary, it is caught in a whirlwind. If TEX wants to
survive, it will have to adapt to this new and chang-
ing environment. Hypertext, HTML and SGML, PDF
(Portable Document Format), publishing on the Net,
document re-use, CD-ROM, dialing the global vil-
lage, surfing the Internet, using multiple master,GX
or Truetype fonts—all of these are only some of the
buzz-words that we encounter on walls, in maga-
zines, on our computer screens, and in the books
we open. And what about Windows 95, NT, or
other Unixes, can we just ignore them? No, we have
to deal with them, adapt to the real world, profit
from these developments, borrow the good ideas,
use cross-fertilization to take what we need in order
to make our tool of excellence—TEX—even bet-
ter, and adapt it more ideally to the text processing

needs of the year 2000. Recent developments such
as Ω, ǫ−TEX, NTS, LATEX3, TDS, hyperTEX, ASTeR
have shown that TEX is alive and well, and that
many enthusiastic developers in various parts of the
world are actively working on extensions in function-
ality to better integrate TEX into the window envi-
ronments that are becoming commodity items in our
daily life. TUG has to set up efficient communica-
tion channels, and the means to make coordinating
all these activities possible. In particular, TUGboat
will carry articles addressing these important issues
so that everybody can be kept truly informed.

All together now

Many—I should say most—TEX users in the world
are not members of TUG or of any other local or na-
tional TEX Users Group. Yet they all can profit from
TEX’s fantastic typesetting abilities. They are work-
ing in far-away places, on small personal computers.
We should not forget those writing their thesis in
Russian, research report in Chinese, perhaps a love
letter in Armenian, or a poem in Swahili. TUG per
se is not the prime aim of the game, it is not organi-
zations that make history, it is people. Knuth gave
TEX to the world, and asked TUG to look after it,
to make sure that TEX and METAFONT can be used
to the benefit of the whole of mankind as the only
truly generally and freely available text-processing
system in the world. Therefore we should all con-
tinue to work together, in trust and good faith. TUG
depends on you, TUG needs your active support, and
all those hundreds of thousands of TEX users depend
on all of us. Let us not disappoint them!

⋄ Christina Thiele

15 Wiltshire Circle

Nepean, Ontario

K2J 4K9, Canada

cthiele@ccs.carleton.ca

⋄ Michel Goossens

CERN, CN Division

CH-1211 Geneva 23

Switzerland

goossens@cern.ch

Editorial Comments

Barbara Beeton

Apology to our readers

It will not have escaped your notice that this issue
is late, very late. I won’t bore you with the details,
only point out that there have been some changes
in circumstances that have made it impossible to
spend the amount of time necessary to keep TUG-
boat on schedule by myself. However, help has been
found, and a new production location that, unlike
the AMS computer facilities, is accessible to other
authorized members of the new production team.
This facility, at the Supercomputer Computations
Research Institute (SCRI) of Florida State Univer-
sity in Tallahassee, is due to the efforts of Mimi
Burbank, and we are deeply appreciative of her help
and that of the SCRI support staff.
An all-out effort has been undertaken to return

TUGboat to schedule by the end of the year. This
has already been described by the “old” and “new”
presidents in their “Opening words”. I’ll introduce
the new production team below.

Old faces, new faces

As with any volunteer-based endeavour, people who
have given of their time and energy in one set
of circumstances may find that they are unable
to continue when circumstances change. This has
happened once again on the TUGboat Editorial
Board. Jackie Damrau, the first recipient of the
Donald E. Knuth Scholarship, has been Associate
Editor of the LATEX column since 1986. Jackie
has been a champion of the LATEX user; her goal
has been to find better ways of explaining “how
to”, as opposed to laying bare the gory details that
are of interest mainly to a developer. Both are
necessary, but we should not forget that this is a
users group. We wish Jackie all the best in her
future endeavours.
The new faces belong to the production team

that has been drawn together for the task of putting

8 TUGboat, Volume 16 (1995), No. 1

TUGboat back on schedule. Mimi Burbank, men-
tioned above as our “angel”, will assume the func-
tion of Production Manager. Christina Thiele, in
addition to production duties, has agreed to take
on the job of Associate Editor for Philology and
Linguistics. Robin Fairbairns, Michel Goossens and
Sebastian Rahtz complete the team. All these
individuals have considerable experience in editing
and producing TUG proceedings and/or other TEX
user group publications as well as other TEX and
computer-related talents too numerous to mention.
They have come in and “hit the ground running”
with an abundance of energy and good will. I
remain the Editor-in-Chief, responsible for major
decisions, overall guidance, and the person to com-
plain to if something goes wrong. I’m confident
that this team can deliver the goods.

MetaPost goes public

MetaPost, the extended METAFONT program by
John Hobby that creates PostScript output for dia-
grams and similar non-alphabetic shapes, has been
placed in the public domain by AT&T. Meta-
Post has facilities for including TEX output and
manipulating the resulting picture.
The distribution can be retrieved by anony-

mous ftp from netlib.att.com/netlib/.... The
user’s manual and auxiliary documentation are
in .../att/cs/cstr as 162.ps.Z and 164.ps.Z
respectively. The source distribution is .../re-
search/metapost.tar.Z. This is also mirrored at
CTAN in tex-archive/graphics/metapost.
The distribution requires the Unix Web2C

version of TEX and Tom Rokicki’s dvips, which
contains special support for using downloaded TEX
fonts in included figures. A DOS version of MetaPost
is promised.

⋄ Barbara Beeton

American Mathematical Society

P.O. Box 6248

Providence, RI 02940 USA

bnb@math.ams.org

TUGboat, Volume 16 (1995), No. 1 9

Software&Tools

Making MakeTeXPK safer for UNIX

installations

Micha l Jaegermann

Abstract

Leaving directories open for anybody in the world to

write to, in order to ensure that MakeTeXPK will work,

is often a security concern. This note describes how to

avoid that on UNIX systems without losing functionality.

−− ∗ −−

If you run TEX on UNIX, or any other UNIX-
like system, and you are using a very convenient and
popular setup with automatic bitmap generation,
then you’ll undoubtedly notice that this requires di-
rectories with ‘write’ permissions to everybody. In
theory, this is not much different than having your
/tmp directory open that way. In practice, though,
especially when your programs are compiled with
the kpathsea library and you have multiple unpro-
tected font directories, this may cause substantial
security and administrative headaches. An option
to create automatically all bitmaps in one directory
used only for that purpose, and to move them later
by hand after careful examination to final locations,
is not very practical if you serve multiple printers
with different characteristics and is always unattrac-
tive to busy system administrators.

A first, but rather feeble line of defense, if your
variant of UNIX supports it, is to set the ‘sticky’
bit on the directories in question like this: chmod at
pk+. That way files can be removed or overwritten
only by their owner(s). Unfortunately this does not
prevent a “denial of service” attack. For example,
a perpetrator may fill up directories with garbage
such as empty files with expected names thus pre-
venting later generation of required bitmaps. The
above is just a prank, without lasting long-term con-
sequences, but repeated often enough it may turn
into a major nuisance. There are other, more in-
sidious possible threats, which do occur in practice,
especially when an attacker comes over a network
using compromised legitimate accounts.

If you ever even thought of running MakeTeXPK
“suid” (that means, in a mode which gives a pro-
gram all privileges of its owner) you should drop the
idea immediately, especially if MakeTeXPK is owned
by root. MakeTeXPK is a shell script and for many
reasons running shell scripts in “suid” mode is one of

the biggest security holes you can think of. Modern
UNIX kernels usually simply disable “suid” scripts,
but even if they are permitted on your system, avoid
using them. Problems with “world writable” direc-
tories pale in comparison.

Fortunately, there are safer approaches. As long
as you have a compiler and an editor, MakeTeXPK
and relatives (MakeTeXTFM, MakeTEXMF, . . .) may be
executed indirectly by a small compiled “wrapper”
program and this latter program can be safely made
“suid”.

The notes below describe the steps leading to
such a modification. Due to assorted variations in
TEX distributions and installations it is highly un-
likely that they will work for you literally as given —
unless you happen to run a very similar system. To
make details easier to follow they will be shown for
one particular distribution (teTeX, version 0.2, for
Linux). This is only an example but it should give
an idea how to proceed in other cases. Modifica-
tions should be rather straightforward. There are
also possible variations in UNIX behaviour. See, for
example, the Solaris note below.

It goes without saying that you need root ac-
cess for all (okay, most) of these steps.

• Create new user account, say tex, on your sys-
tem and include it in some innocuous group,
e.g., tex.

The only purpose of this “user” will be to own com-
mon TEX files. You may already have some suitable
group, such as nogroup or nobody, so instead you
may include your new user there.

• Give the tex account /bin/false for a login
shell and disable password by putting * in the
corresponding field. Home directory is not ter-
ribly important. Nobody will ever be logging
into this account.

The completed entry in the password file will look
something like this:

tex:*:117:65535:Owner of TeX files:

/usr/local/tex:/bin/false

• Do touch /usr/spool/mail/tex to create an
empty file. This action closes a loophole in some
mail delivery programs. You may find the file
already in place, made by some system admin-
istration utility. Change owner and group of
this file to those of root (chown root:root /
usr/spool/mail/tex) and also remove all read
and write permissions on it (chmod 000 /usr/
spool/mail/tex).

• Make sure that MakeTeXPK, and similar scripts
you want to execute the same way, are not in

10 TUGboat, Volume 16 (1995), No. 1

your $PATH, or at least not earlier than the in-
tended location of your “wrapper” program(s).
Original scripts will not be called directly, how-
ever, the “wrapper” program will “inherit” their
names thus presenting the same interface to
users and other programs.

Any convenient location will do for scripts, but if
your system conforms to the TEX Directory Struc-
ture, then a subdirectory of $TEXMFROOT will be a
logical place. For the particular teTeX distribution,
version 0.2, it is enough to delete links in a di-
rectory /usr/local/bin. Real scripts MakeTeXPK,
MakeTeXMF, and MakeTeXTFM reside in /usr/local/
tex/scripts-0.2/bin/ and may be left there.

• Edit all scripts in question to supply absolute
paths to all executables. Don’t forget to per-
form this task in other scripts which may be
called by our MakeTEX... script (append db in
the teTeX distribution). Change the mode used
when creating new files to 444 and to 755 for
directories.

A proper way to do this is to start a script with a
series of shell variable definitions similar to

MF="/usr/local/bin/mf"

and replace all later occurrences of mf in the script
by $MF. That way, if you later move yourMETAFONT
executables to some other place, script editing will
be limited to one place; similarly for other programs.
Absolute locations are required since, for security
reasons, we will limit $PATH only to "/bin:/usr/
bin". This means that in theory you may leave
things like test, echo or rm alone. In the latter
case, for “dangerous” commands like rm -f, it is
still a good idea to replace them with definitions
similar to RM="/bin/rm -f" to get better control of
what you are really executing.

As a side effect this keeps user-aliased or re-
designed versions of these commands from putting
out unexpected and unwanted text or hanging be-
cause of a need for tty input as in the case of the
common and usually desirable alias of rm to rm -i.
The unplanned appearance of extraneous text on
stdout is one of the most common reasons for the
MakeTeXPK to fail on its first pass.

Depending on your level of mistrust, you may
use a similar approach to echo and test as well, but
in the sample files, I have chosen to be more relaxed.
Moreover, they may be “built-ins” in your shell.

• Edit sample source given in the appendix to
adjust it to your system and compile.
• Install results of the compilation somewhere in

your $PATH. The directory /usr/local/bin
is usually a good place. Go there and name

your program MakeTeXPK. Change its ownership
and group to that of user tex by typing chmod
tex:tex MakeTeXPK. (Depending on your vari-
ant of UNIX you may have to use a dot in-
stead of a colon to separate the user and the
group name, or you may have to do that in two
steps, using also another command, chgrp, to
accomplish the above. Use the group to which
you assigned your tex user. This is only an
example). The program needs “execute” and
“set uid” privileges (chmod 4755 MakeTeXPK).
Also for your other MakeTeX... scripts, provide
corresponding “call points” with their names
via file links (ln MakeTeXPK MakeTeXTFM; ln
MakeTeXPK MakeTeXMF).

Solaris note: Passing ownership privileges to a
subprocess, as illustrated above, works for Linux and
other assorted UNIX systems. Still, I am informed
by Ulrik Vieth (vieth@thphy.uni-duesseldorf
.de), that on Solaris systems this happens only when
the wrapper is “suid” and owned by root. There-
fore a

setuid(geteuid());

line from a sample source will not work as intended
(either the call will fail or the subprocess will not be
owned by the tex account). One should instead set
explicitly TEXGROUP and TEXUSER of a type uid_t
and include a replacement code like this

setgid(TEXGROUP);

setuid(TEXUSER);

in the given order — to achieve the same effect. This
may apply as well to other UNIX variants. Caveat
emptor!

• Change ownership of all your font files to tex.
Actually you may make tex an owner of whole
directory trees in TEX system files. Assuming
that all you want to assign that way is in a
tree rooted in texmf, you may accomplish that
by doing chown -R tex:tex texmf. If your
chown does not understand the -R (recursive)
flag, then something similar to the following
should do:

find texmf -print | xargs -n1 chown tex:tex

See also chown remarks in the previous item.

• Remove “write” permissions for anybody but
owner on all directories in question. A com-
mand like the following one should accomplish
that task (be careful, you do not want to change
non-directories):

find texmf -type d -print | xargs -n1 chmod 755

TUGboat, Volume 16 (1995), No. 1 11

You are done. Now, whenever MakeTeXPK is called
directly from a command line or by some other pro-
gram like dvips, your “wrapper” program will be
executed instead. It will call, in turn, a “real” script
but one already with the id of the owner of your font
directories.

Concluding remarks

The presented solution is not entirely without prob-
lems. Due to “out of sync” ownership and permis-
sions, kpathsea library functions may fail, depend-
ing on the exact moment this happened, when trying
to write the missfont.log file in cases when font-
making was not successful. This can likely be hard
to resolve without modifying the library itself. If you
do encounter this problem then a simple workaround
would be to create an empty missfont.log, owned
by you, and to give it write permissions for every-
body (touch missfont.log; chmod a+w missfont
.log). When you are done simply change permis-
sions back to the original state.

Another possible trouble spot will occur when
you have “private” fonts because you are conduct-
ing some font-making experiments, for example, and
you would like to have bitmaps created in places
owned by you and not by tex (otherwise you will
not be able to remove the results of failed tests). In
this case make yourself a private, executable copy of
the MakeTeXPK script, edit it accordingly and make
sure that it can be found earlier in your $PATH than
the system program with the same name. You will
not able to deposit anything in system directories,
but this is most likely what you want anyway. Your
script does not have to run “suid”, so repeating all
of the above is not necessary.

Last but not least, there is another possible
approach to the whole problem. There are only a
few commands (mv, mkdir, chmod) which have to
modify TEX “system” directories. Instead of run-
ning the whole MakeTeX in “suid” mode you may
write special versions (texmv, texmkdir, texchmod)
of these, which would operate “suid” tex, and use
them as replacements in the MakeTeXPK script when-
ever needed. Whether this is a better idea depends
entirely on your situation and security requirements.

⋄ Micha l Jaegermann

10923 36 Avenue

Edmonton, Alberta,

Canada T6J 0B7

Email: michal@ellpspace.math.

ualberta.ca,\\ michal@

gortel.phys.ualberta.ca

Appendix – Sample wrapper program code

Sample C code for a wrapper program for teTeX,
version 0.2, Linux distribution. Adapt with cau-
tion!

/***/
/* */
/* Executable wrapper for MakeTeX... */
/* programs. Calls its namesake from */
/* TOOLS directory. Provide links with */
/* different names to make it multipurpose */
/* */
/* Michal Jaegermann, Feb 11 1995 */
/* */
/***/

#include <unistd.h>
#include <string.h>
#include <stdlib.h>

#define VERSION_S "0.2"
/*
* If you do not have an ANSI compiler you may
* use an "explicit" single string in TOOLS
* define; this is just a way to make future
* modifications easier.
*/
#define TOOLS "/usr/local/tex/scripts-" \

VERSION_S "/bin/"
#define ASIZE 120

/*
* This is a list of names under which we are
* willing to execute. It must be NULL
* terminated.
*/
const char *accepted[] = {

"MakeTeXPK",
"MakeTeXTFM",
"MakeTeXMF",
NULL

};

int
main(int argc, char **argv)
{

char doer[ASIZE] = TOOLS;
int idx = 0;
/*
* If your compiler is broken and the
* construction below does not work then
* "tail = strchr(doer, ’\0’);", or
* equivalent, will serve as well.
*/
char *tail = doer + (sizeof(TOOLS) - 1);
char *start;

/* find our base name */
start = (start = strrchr(argv[0], ’/’)) ?

(start + 1) : argv[0];
/* check if we are on the list */
while (1) {

if (NULL == accepted[idx])
exit(1); /* not on the list */

12 TUGboat, Volume 16 (1995), No. 1

if (0 == strcmp(accepted[idx], start))
break; /* this is ours */

idx += 1;
}
/*
* Set pretty bland, but hopefuly secure
* environment; we intend to run this
* program ’suid’.
*/
setenv("PATH", "/bin:/usr/bin", 1);
setenv("IFS", " ", 1);
/*
* You may want/need some other calls to
* setenv(). For example, if your system
* has an environment variable pointing to
* shared libraries it should be set here.
*/

/*
* Attach our name at the end of a
* directory string. This assumes that
* real scripts in TOOLS directory will
* be called by their own names (but
* indirectly)
*/
strcpy(tail, start);

/*
* Get the privileges of the owner of this
* program, then execute the script and
* return its results
*/
setuid(geteuid());
return execv(doer, argv);

}

Hyphenation Exception Log

Barbara Beeton

This is the periodic update of the list of words
that TEX fails to hyphenate properly. The list
last appeared in TUGboat 13, no. 4, starting on
page 452. Everything listed there is repeated
here. Owing to the length of the list, it has been
subdivided into two parts: English words, and
names and non-English words that occur in English
texts.
This list is specific to the hyphenation patterns

that appear in the original hyphen.tex, that is,
the patterns for U.S. English. If such information
for other patterns becomes available, consideration
will be given to listing that too. (See below,
“Hyphenation for languages other than English”.)
In the list below, the first column gives re-

sults from TEX’s \showhyphens{...}; entries in

12 TUGboat, Volume 16 (1995), No. 1

the second column are suitable for inclusion in a
\hyphenation{...} list.
In most instances, inflected forms are not shown

for nouns and verbs; note that all forms must be
specified in a \hyphenation{...} list if they occur
in your document.
Thanks to all who have submitted entries to

the list. Since some suggestions demonstrated a
lack of familiarity with the rules of the hyphenation
algorithm, here is a short reminder of the relevant
idiosyncrasies. Hyphens will not be inserted before
the number of letters specified by \lefthyphen-
min, nor after the number of letters specified by
\righthyphenmin. For U.S. English, \lefthy-
phenmin=2 and \righthyphenmin=3; thus no word
shorter than five letters will be hyphenated. (For
the details, see The TEXbook, page 454. For a
digression on other views of hyphenation rules, see
below under “English hyphenation”.) This partic-
ular rule is violated in some of the words listed;
however, if a word is hyphenated correctly by TEX
except for “missing” hyphens at the beginning or
end, it has not been included here.
Some other permissible hyphens have been

omitted for reasons of style or clarity. While this is
at least partly a matter of personal taste, an author
should think of the reader when deciding whether
or not to permit just one more break-point in some
obscure or confusing word. There really are times
when a bit of rewriting is preferable.
One other warning: Some words can be more

than one part of speech, depending on context, and
have different hyphenations; for example, ‘analyses’
can be either a verb or a plural noun. If such a word
appears in this list, hyphens are shown only for the
portions of the word that would be hyphenated
the same regardless of usage. These words are
marked with a ‘*’; additional hyphenation points, if
needed in your document, should be inserted with
discretionary hyphens.
Words added since the last appearance of the

list are preceded by +.
The reference used to check these hyphenations

is Webster’s Third New International Dictionary,
Unabridged.

English hyphenation

It has been pointed out to me that the hyphenation
rules of British English are based on the etymology
of the words being hyphenated as opposed to the
“syllabic” principles used in the U.S. Furthermore,
in the U.K., it is considered bad style to hyphenate
a word after only two letters. In order to make TEX

defer hyphenation until after three initial letters,
set \lefthyphenmin=3.
Of course, British hyphenation patterns should

be used as well. A set of patterns for UK English
has been created by Dominik Wujastyk and Graham
Toal, using Frank Liang’s PATGEN and based on a
file of 114925 British-hyphenated words generously
made available to Dominik by Oxford University
Press. (This list of words and the hyphenation
break points in the words are copyright to the
OUP and may not be redistributed.) The file of
hyphenation patterns may be freely distributed; it
is posted on CTAN in the file

tex-archive/language/english/ukhyph.tex

and can be retrieved by anonymous FTP.

Hyphenation for languages

other than English

Patterns now exist for many languages other than
English, including languages using accented alpha-
bets. CTAN holds an extensive collection of patterns
in subdirectories of

tex-archive/language

The List—English words

academy(ies) acad-e-my(ies)
addable add-a-ble
ad-di-ble add-i-ble
adrenaline adren-a-line

+ aerospace aero-space
af-terthought af-ter-thought
agronomist agron-o-mist
am-phetamine am-phet-a-mine
anal-yse(d) an-a-lyse(d)
anal-y-ses analy-ses *
anomaly(ies) anom-aly(ies)
an-tideriva-tive an-ti-deriv-a-tive
anti-nomy(ies) an-tin-o-my(ies)
antin-u-clear an-ti-nu-clear
antin-u-cleon an-ti-nu-cle-on
an-tirev-o-lu-tion-ary an-ti-rev-o-lu-tion-ary
apotheoses apoth-e-o-ses
apotheo-sis apoth-e-o-sis
ap-pendix ap-pen-dix

archipelago arch-i-pel-ago
archety-pal ar-che-typ-al
archetyp-i-cal ar-che-typ-i-cal
arc-t-an-gent arc-tan-gent

(better: arc tangent)
assignable as-sign-a-ble
as-sig-nor as-sign-or
as-sis-tantship as-sist-ant-ship
asymp-tomatic asymp-to-matic
asymp-totic as-ymp-tot-ic
asyn-chronous asyn-chro-nous
atheroscle-ro-sis ath-er-o-scle-ro-sis
at-mo-sphere at-mos-phere

TUGboat, Volume 16 (1995), No. 1 13

at-tributed at-trib-uted
at-tributable at-trib-ut-able
avoirdupois av-oir-du-pois
awo-ken awok-en
ban-dleader band-leader
bankrupt(cy) bank-rupt(-cy)
ba-ronies bar-onies
base-li-neskip \base-line-skip

bathymetry ba-thym-e-try
bathyscaphe bathy-scaphe
bea-nies bean-ies
be-haviour be-hav-iour
be-vies bevies

+ bib-li-og-ra-phystyle \bib-li-og-ra-phy-style

bid-if-fer-en-tial bi-dif-fer-en-tial
+ biggest big-gest
bil-l-able bill-able
biomath-e-mat-ics bio-math-e-mat-ics
biomedicine bio-med-i-cine
biorhythms bio-rhythms
bitmap bit-map
blan-der bland-er
blan-d-est bland-est
blin-der blind-er
blon-des blondes
blueprint blue-print
bornolog-i-cal bor-no-log-i-cal
bo-tulism bot-u-lism
brus-quer brusquer
bus-ier busier
bus-i-est busiest
buss-ing bussing
but-ted butted

buz-zword buzz-word
ca-caphony(ies) ca-caph-o-ny(ies)
cam-er-a-men cam-era-men
cartwheel cart-wheel
catar-rhs ca-tarrhs
catas-trophic cat-a-stroph-ic
catas-troph-i-cally cat-a-stroph-i-cally
cauliflower cau-li-flow-er
cha-parral chap-ar-ral
chartreuse char-treuse
cholesteric cho-les-teric
cigarette cig-a-rette
cin-que-foil cinque-foil
cognac co-gnac
cog-nacs co-gnacs
com-parand com-par-and
com-para-nds com-par-ands
comptroller comp-trol-ler
con-formable con-form-able
con-formist con-form-ist
con-for-mity con-form-ity
congress con-gress

+ con-tribute(s,d) con-trib-ute(s,d)
cose-cant co-se-cant
cotan-gent co-tan-gent

+ courses cour-ses
crankshaft crank-shaft
crocodile croc-o-dile
crosshatch(ed) cross-hatch(ed)
dachshund dachs-hund
database data-base

dat-a-p-ath data-path
declarable de-clar-able
defini-tive de-fin-i-tive
delectable de-lec-ta-ble
democratism de-moc-ra-tism
de-mos demos
deriva-tive de-riv-a-tive
diffract dif-fract
di-rer direr
di-re-ness dire-ness
dis-parand dis-par-and
dis-traugh-tly dis-traught-ly
dis-tribute(d) dis-trib-ute(d)
dou-blespace(ing) dou-ble-space(-ing)
dol-lish doll-ish
drif-tage drift-age
driver(s) dri-ver(s)
dromedary(ies) drom-e-dary(ies)
duopolist du-op-o-list
duopoly du-op-oly
eas-t-en-ders east-end-ers
eco-nomics eco-nom-ics
economist econ-o-mist
elec-trome-chan-i-cal electro-mechan-i-cal
elec-tromechanoa-cous-tic electro-mechano-acoustic
eli-tist elit-ist
en-trepreneur(ial) en-tre-pre-neur(-ial)
epinephrine ep-i-neph-rine
equiv-ari-ant equi-vari-ant
ethy-lene eth-yl-ene
ev-ersible ever-si-ble
ev-ert(s,ed,ing) evert(s,-ed,-ing)
exquisite ex-quis-ite

ex-traor-di-nary ex-tra-or-di-nary
fermions fermi-ons
flag-el-lum(la) fla-gel-lum(-la)
flammables flam-ma-bles
fledgling fledg-ling
flowchart flow-chart
formidable(y) for-mi-da-ble(y)
forsythia for-syth-ia
forthright forth-right
freeloader free-loader
friendlier friend-lier
frivolity fri-vol-ity
frivolous friv-o-lous

+ galac-tic ga-lac-tic
+ galaxy(ies) gal-axy(-ies)
ga-some-ter gas-om-e-ter
geodesic ge-o-des-ic
geode-tic ge-o-det-ic
ge-o-met-ric geo-met-ric
geotropism ge-ot-ro-pism
gnomon gno-mon
grievance griev-ance
grievous(ly) griev-ous(-ly)
hairstyle hair-style
hairstylist hair-styl-ist
harbinger har-bin-ger
harlequin har-le-quin
hatcheries hatch-eries
hemoglobin he-mo-glo-bin
hemophilia he-mo-phil-ia

+ hemorhe-ol-ogy hemo-rhe-ol-ogy

14 TUGboat, Volume 16 (1995), No. 1

hep-atic he-pat-ic
hermaphrodite(ic) her-maph-ro-dite(-ic)
heroes he-roes
hex-adec-i-mal hexa-dec-i-mal
holon-omy ho-lo-no-my
ho-mo-th-etic ho-mo-thetic
horseradish horse-rad-ish
hy-potha-la-mus hy-po-thal-a-mus
ide-als ideals
ideographs ideo-graphs
id-iosyn-crasy idio-syn-crasy
ig-niter ig-nit-er
ig-n-i-tor ig-ni-tor
ig-nores-paces \ignore-spaces

impedances im-ped-ances
in-finitely in-fin-ite-ly
in-finites-i-mal in-fin-i-tes-i-mal
in-fras-truc-ture in-fra-struc-ture
in-ter-dis-ci-plinary in-ter-dis-ci-pli-nary

+ in-ter-galac-tic in-ter-ga-lac-tic
inu-tile in-utile
inu-til-ity in-util-i-ty
ir-re-vo-ca-ble ir-rev-o-ca-ble
itinerary(ies) itin-er-ary(-ies)
jeremi-ads je-re-mi-ads
keystroke key-stroke
kil-ning kiln-ing
la-ciest lac-i-est
lamentable lam-en-ta-ble
land-sca-per land-scap-er
larceny(ist) lar-ce-ny(-ist)

+ let-terspac-ing let-ter-spac-ing
lifes-pan life-span

lightweight light-weight
limousines lim-ou-sines
linebacker line-backer
lines-pac-ing \line-spacing

lithographed lith-o-graphed
lithographs lith-o-graphs
lobotomy(ize) lo-bot-omy(-ize)
lo-ges loges

+ longest long-est
macroe-co-nomics macro-eco-nomics
malapropism mal-a-prop-ism
manuscript man-u-script
marginal mar-gin-al

+ math-e-mati-cian math-e-ma-ti-cian
mat-tes mattes
med-i-caid med-ic-aid
mediocre medi-ocre
medi-o-crities medi-oc-ri-ties
me-galith mega-lith
metabolic meta-bol-ic
metabolism me-tab-o-lism
met-a-lan-guage meta-lan-guage
metropo-lis(es) me-trop-o-lis(es)
metropoli-tan met-ro-pol-i-tan
mi-croe-co-nomics micro-eco-nomics
mi-crofiche mi-cro-fiche
mil-lage mill-age
milliliter mil-li-liter
mimeographed mimeo-graphed
mimeographs mimeo-graphs
mimi-cries mim-ic-ries

mi-nis min-is
+ min-isym-po-sium(a) mini-sym-po-sium(a)
min-uter(est) mi-nut-er(-est)
mis-chievously mis-chie-vous-ly
mis-ers mi-sers
mis-ogamy mi-sog-a-my
mod-elling mod-el-ling
molecule mol-e-cule
monar-chs mon-archs
mon-eylen-der money-len-der
monochrome mono-chrome
mo-noen-er-getic mono-en-er-getic
monoid mon-oid
monopole mono-pole
monopoly mo-nop-oly
monos-pline mono-spline
monos-trofic mono-strofic
mono-tonies mo-not-o-nies
monotonous mo-not-o-nous
mo-ro-nism mo-ron-ism
mosquito mos-qui-to
mu-d-room mud-room
mul-ti-faceted mul-ti-fac-eted
mul-ti-pli-ca-ble mul-ti-plic-able
mul-tiuser multi-user (better

with explicit hyphen)
ne-ofields neo-fields

+ neon-azi neo-nazi
newslet-ter news-let-ter
non-ame no-name
none-mer-gency non-emer-gency
nonequiv-ari-ance non-equi-vari-ance
noneu-clidean non-euclid-ean

non-i-so-mor-phic non-iso-mor-phic
nonpseu-do-com-pact non-pseudo-com-pact
non-s-mooth non-smooth
nonuni-form(ly) non-uni-form(-ly)
nore-pinephrine nor-ep-i-neph-rine
nutcracker nut-crack-er
oer-st-eds oer-steds
oligopolist oli-gop-o-list
oligopoly(ies) oli-gop-oly(ies)
operand(s) op-er-and(s)
orangutan orang-utan
or-thodon-tist or-tho-don-tist
or-thok-er-a-tol-ogy or-tho-ker-a-tol-ogy
or-thoni-tro-toluene ortho-nitro-toluene

(or-tho-ni-tro-tol-u-ene)
overview over-view
ox-i-dic ox-id-ic

+ padding pad-ding
painlessly pain-less-ly
pal-mate palmate
parabola par-a-bola
parabolic par-a-bol-ic
paraboloid pa-rab-o-loid
paradigm par-a-digm
parachute para-chute
paradimethyl-ben-zene para-di-methyl-benzene

(para-di-meth-yl-ben-zene)
paraflu-o-ro-toluene para-fluoro-toluene

(para-flu-o-ro-tol-u-ene)
para-g-ra-pher para-graph-er
par-ale-gal para-le-gal

TUGboat, Volume 16 (1995), No. 1 15

par-al-lelism par-al-lel-ism
para-m-ag-netism para-mag-net-ism
paramedic para-medic
param-ethy-lanisole para-methyl-anisole

(para-meth-yl-an-is-ole)
parametrize pa-ram-e-trize
paramil-i-tary para-mil-i-tary
paramount para-mount
pathogenic path-o-gen-ic
pee-vish(ness) peev-ish(-ness)
pen-tagon pen-ta-gon
petroleum pe-tro-le-um
phe-nomenon phe-nom-e-non
philatelist phi-lat-e-list
phos-pho-ric phos-phor-ic
pi-cador pic-a-dor
pi-ran-has pi-ra-nhas
pla-ca-ble placa-ble
plea-sance pleas-ance
poltergeist pol-ter-geist
polyene poly-ene
polyethy-lene poly-eth-yl-ene
polygamist(s) po-lyg-a-mist(s)
poly-go-niza-tion polyg-on-i-za-tion
polyphonous po-lyph-o-nous
polystyrene poly-styrene
pomegranate pome-gran-ate
poroe-las-tic poro-elas-tic

+ porous por-ous
postam-ble post-am-ble
postscript post-script
pos-tu-ral pos-tur-al
pream-ble pre-am-ble

preloaded pre-loaded
prepar-ing pre-par-ing

+ preprint(s) pre-print(s)
pre-pro-ces-sor pre-proces-sor
pre-s-plit-ting \pre-split-ting

priestesses priest-esses
+ pret-typrinter pret-ty-prin-ter
pro-ce-du-ral pro-ce-dur-al
pro-cess process*
procu-rance pro-cur-ance
pro-ge-nies prog-e-nies
progeny prog-e-ny
pro-hibitive(ly) pro-hib-i-tive(-ly)
prosci-utto pro-sciut-to
protester(s) pro-test-er(s)
protestor(s) pro-tes-tor(s)
pro-to-ty-pal pro-to-typ-al
pseu-dod-if-fer-en-tial pseu-do-dif-fer-en-tial
pseud-ofi-nite pseu-do-fi-nite
pseud-ofinitely pseu-do-fi-nite-ly
pseud-o-forces pseu-do-forces
pseudonym pseu-do-nym
pseu-doword pseu-do-word
psychedelic psy-che-del-ic
psy-chs psychs
pubescence pu-bes-cence

+ quadding quad-ding
quadratic(s) qua-drat-ic(s)
quadra-ture quad-ra-ture
quadriplegic quad-ri-pleg-ic
quain-ter(est) quaint-er(-est)

quasiequiv-a-lence qua-si-equiv-a-lence
or quasi-

quasi-hy-ponor-mal qua-si-hy-po-nor-mal
quasir-ad-i-cal qua-si-rad-i-cal
quasiresid-ual qua-si-resid-ual
qua-sis-mooth qua-si-smooth
qua-sis-ta-tion-ary qua-si-sta-tion-ary
qu-a-sito-pos qua-si-topos
qu-a-si-tri-an-gu-lar qua-si-tri-an-gu-lar
quintessence quin-tes-sence
quintessen-tial quin-tes-sen-tial
rab-bi-try rab-bit-ry
ra-dio-g-ra-phy ra-di-og-ra-phy
raf-f-ish(ly) raff-ish(-ly)
ramshackle ram-shackle
ravenous rav-en-ous
re-ar-range-ment re-arrange-ment
re-ciproc-i-ties rec-i-proc-i-ties
reci-procity rec-i-proc-i-ty
rect-an-gle rec-tan-gle
ree-cho re-echo

+ reprint(s) re-print(s)
restorable re-stor-able
re-tri-bu-tions ret-ri-bu-tions
retrofit(ted) retro-fit(-ted)
rhinoceros rhi-noc-er-os
righ-teous(ness) right-eous(-ness)
ringleader ring-leader
robot ro-bot
robotics ro-bot-ics
roundtable round-table
salesclerk sales-clerk
salescle-rks sales-clerks

saleswoman(en) sales-woman(en)
salmonella sal-mo-nel-la
sarsaparilla sar-sa-par-il-la
sauerkraut sauer-kraut
sca-to-log-i-cal scat-o-log-i-cal
schedul-ing sched-ul-ing
schizophrenic schiz-o-phrenic
schnauzer schnau-zer
schoolchild(ren) school-child(-ren)
schoolteacher school-teacher
scy-thing scyth-ing

+ sec-re-tariat sec-re-tar-iat
semaphore sem-a-phore
semester se-mes-ter
semidef-i-nite semi-def-i-nite
semi-ho-mo-th-etic semi-ho-mo-thet-ic
semir-ing semi-ring
semiskilled semi-skilled
seroepi-demi-o-log-i-cal sero-epi-de-mi-o-log-i-cal
ser-vomech-a-nism ser-vo-mech-anism
setup set-up
severely se-vere-ly
sha-peable shape-able
shoestring shoe-string
sidestep side-step
sideswipe side-swipe
skyscraper sky-scraper
smokestack smoke-stack
snorke-l-ing snor-kel-ing
solenoid so-le-noid
so-lute(s) solute(s)

16 TUGboat, Volume 16 (1995), No. 1

sovereign sov-er-eign
spaces spa-ces
specious spe-cious
spelunker spe-lunk-er
spendthrift spend-thrift
spheroid(al) spher-oid(-al)
sph-inges sphin-ges
spi-cily spic-i-ly
spinors spin-ors
spokeswoman(en) spokes-woman(en)
sportscast sports-cast
sportively spor-tive-ly
sportswear sports-wear
sportswriter sports-writer
sprightlier spright-lier
squeamish squea-mish
stan-dalone stand-alone
startling(ly) star-tling(-ly)
statis-tics sta-tis-tics
stealthily stealth-ily
steeplechase steeple-chase
stochas-tic sto-chas-tic
strangeness strange-ness
stratagem strat-a-gem
stretchier stretch-i-er
stronghold strong-hold

+ strongest strong-est
stupi-der(est) stu-pid-er(est)
summable sum-ma-ble
su-perego super-ego
su-pere-gos super-egos
supremacist su-prema-cist
surveil-lance sur-veil-lance

swim-m-ingly swim-ming-ly
symp-tomatic symp-to-matic
syn-chromesh syn-chro-mesh
syn-chronous syn-chro-nous
syn-chrotron syn-chro-tron
talkative talk-a-tive
tapestry(ies) ta-pes-try(ies)
tarpaulin tar-pau-lin
tele-g-ra-pher te-leg-ra-pher
telekinetic tele-ki-net-ic
teler-obotics tele-ro-bot-ics

+ tenure ten-ure
testbed test-bed

+ tex-twidth text-width
tha-la-mus thal-a-mus
ther-moe-las-tic ther-mo-elas-tic
times-tamp time-stamp
toolkit tool-kit
to-po-graph-i-cal topo-graph-i-cal
to-ques toques
traitorous trai-tor-ous
transceiver trans-ceiver
transgress trans-gress
transver-sal(s) trans-ver-sal(s)
transvestite trans-ves-tite
traversable tra-vers-a-ble
traver-sal(s) tra-ver-sal(s)
treacheries treach-eries
troubadour trou-ba-dour

+ turkey tur-key
turnaround turn-around

ty-pal typ-al
unattached un-at-tached
unerringly un-err-ing-ly
un-friendly(ier) un-friend-ly(i-er)
va-guer vaguer
vaudeville vaude-ville
vi-cars vic-ars
vil-lai-ness vil-lain-ess
viviparous vi-vip-a-rous
voiceprint voice-print
vs-pace \vspace

+ wadding wad-ding
wallflower wall-flower
wastew-a-ter waste-water
waveg-uide wave-guide

+ wavelets wave-lets
we-b-like web-like
weeknight week-night
wheelchair wheel-chair
whichever which-ever
whitesided white-sided
whites-pace white-space
widespread wide-spread
wingspread wing-spread
witchcraft witch-craft

+ wordspac-ing word-spac-ing
workhorse work-horse
wraparound wrap-around
wretched(ly) wretch-ed(-ly)
yesteryear yes-ter-year

Names and non-English words

used in English text

al-ge-brais-che al-ge-brai-sche
Al-legheny Al-le-ghe-ny
Arkansas Ar-kan-sas

+ Aus-tralasian Aus-tral-asian
au-toma-tisierter auto-mati-sier-ter
Be-di-enung Be-die-nung
bib-li-ographis-che bib-li-o-gra-phi-sche

+ Boston Bos-ton
Brow-n-ian Brown-ian

+ Brunswick Bruns-wick
+ Bu-dapest Bu-da-pest
+ Caribbean Car-ib-bean
+ Charleston Charles-ton
+ Char-lottesville Char-lottes-ville
Columbia Co-lum-bia
Czechoslo-vakia Czecho-slo-va-kia
Di-jk-stra Dijk-stra

dy-namis-che dy-na-mi-sche
En-glish Eng-lish
Eu-le-rian Euler-ian

+ Evanston Evan-ston
Febru-ary Feb-ru-ary
Festschrift Fest-schrift
Florida Flor-i-da
Forschungsin-sti-tut For-schungs-in-sti-tut
funk-t-sional funk-tsional
Gaus-sian Gauss-ian
Greif-swald Greifs-wald
Grothendieck Grothen-dieck
Grundlehren Grund-leh-ren

TUGboat, Volume 16 (1995), No. 1 17

+ Haifa Hai-fa
Hamil-to-nian Hamil-ton-ian

+ Helsinki Hel-sinki
Her-mi-tian Her-mit-ian
Hi-bbs Hibbs

+ Hokkaido Hok-kai-do
Jan-uary Jan-u-ary
Japanese Japan-ese
Kadomt-sev Kad-om-tsev
Kansas Kan-sas
Karl-sruhe Karls-ruhe
Ko-rteweg Kor-te-weg

+ Lan-caster Lan-cas-ter
Leg-en-dre Le-gendre
Le-ices-ter Leices-ter
Lip-s-chitz(ian) Lip-schitz(-ian)
Louisiana Lou-i-si-ana
Manch-ester Man-ches-ter
Marko-vian Mar-kov-ian
Mas-sachusetts Mass-a-chu-setts

+ Min-neapo-lis Min-ne-ap-o-lis
Min-nesota Min-ne-sota

+ Moscow Mos-cow
+ Nachrichten Nach-richten
+ Nashville Nash-ville
Ni-jmegen Nij-me-gen
Noethe-rian Noe-ther-ian
No-ord-wi-jk-er-hout Noord-wijker-hout
Novem-ber No-vem-ber

+ Palermo Pa-ler-mo
+ Philadel-phia Phil-a-del-phia
Poincare Poin-care
Po-ten-tial-gle-ichung Po-ten-tial-glei-chung

rathskeller raths-kel-ler
Rie-man-nian Rie-mann-ian
Ry-d-berg Ryd-berg
schot-tis-che schot-tische
Schrodinger Schro-ding-er
Schwabacher Schwa-ba-cher
Schwarzschild Schwarz-schild
Septem-ber Sep-tem-ber
Stokess-che Stokes-sche

+ Stuttgart Stutt-gart
Susque-hanna Sus-que-han-na
tech-nis-che tech-ni-sche
Ten-nessee Ten-nes-see

+ Ukrainian Ukrain-ian
ve-r-all-ge-mein-erte ver-all-ge-mein-erte

+ Vere-ini-gung Ver-ein-i-gung
Verteilun-gen Ver-tei-lun-gen
Wahrschein-lichkeit-s-the-o-rie

Wahr-schein-lich-keits-theo-rie
Werthe-rian Wer-ther-ian
Winch-ester Win-ches-ter
Yingy-ong Shuxue Jisuan Ying-yong Shu-xue Ji-suan

+ Zealand Zea-land
Zeitschrift Zeit-schrift

18 TUGboat, Volume 16 (1995), No. 1

Philology

Configuring TEX or LATEX for typesetting in

several languages

Claudio Beccari

Abstract

Based on the frequent requests for help that I have
received in the past months from users who want
to configure TEX or LATEX for typesetting in sev-
eral languages, it seems that this sort of informa-
tion is not adequately covered in the documentation
available to most do-it-yourself users. This tutorial
is intended to give basic information on this topic.
The related subject of hyphenation patterns will be
addressed in a future tutorial.

1 Introduction

LATEX users are excused for not knowing how to set
up their favorite typesetting program for different
languages; Lamport [5] doesn’t say a word on this
subject; the new edition invites the reader to consult
Goossens et al. [3] for what concerns multilanguage
typesetting, and certainly the latter contains several
hints — more than simple hints, since all of chapter 9
is dedicated to this problem.

TEX users should be more familiar with this
problem via the main reference, Knuth [4], which
covers the topic of hyphenation patterns. Appendix
H stresses that TEX hyphenation capabilities are
generated by the \pattern and the \hyphenation
commands, the former being processable only by the
initialization TEX program initex.

J. Braams prepared a complete system of style
files and macros for use with LATEX, called babel; of-
ficially, it works only with standard document styles,
but in practice, it is also valid for other styles and
includes adequate means for setting text into type in
some twenty languages. The only part that is lack-
ing from the babel system is the set of hyphenation
patterns for each of those languages, but this was
done on purpose, I suppose, because pattern prepa-
ration, although essential for multilanguage type-
setting, has almost nothing to do with the style of
multilanguage typesetting.

This tutorial will attempt to explain to do-it-
yourself (LA)TEX users how to configure their sys-
tems in order to set text into type in different lan-
guages at the same time. It is natural that this issue
should be particularly interesting for non-English-
speaking (LA)TEX users, but I have received requests

for help from the United States as well, so I presume
that across the ocean there are also some people who
may benefit from these simple notes.

Typesetting text in several languages implies
the following problems: (a) correct hyphenation, (b)
correct “labels” in titles and captions (“Chapter”,
“Capitolo”, “Chapitre”, etc.), (c) special language-
dependent typesetting rules (French vs. non-French
spacing, quotation marks, etc.). Therefore the points
to be covered include:

1. choosing the proper fonts and font encodings;

2. retrieving or creating hyphenation patterns;

3. initializing TEX or LATEX, taking into account
the program’s memory limitations;

4. retrieving or creating macros for switching lan-
guages;

5. language-dependent typesetting macros.

Here I will skip over the problem of typesetting
with alphabets different from the extended Latin
one; for Greek (modern and ancient) there is plenty
of information (TEX and METAFONT files, the lat-
ter for generating the full set of characters and lig-
atures) in the CTAN directories

/tex-archive/languages/greek/levy

/tex-archive/languages/greek/yannis

The former contains the full set of 256-glyph fonts
and TEX macros for handling them, the latter con-
tains also the 128-glyph fonts, TEX macros and hy-
phenation patterns; both contain excellent documen-
tation for using Greek fonts and for setting ancient
and modern Greek.

The platforms (or boxes, as TEXies seem to call
their computers) on which people set their texts are
of widely different types, with different operating
systems and, in particular, with different file sys-
tems. I’ll address myself mainly to the DOS type
of personal computer users, because apparently this
category counts the highest number of do-it-yourself
users; with minor modifications what I’ll say is ap-
plicable also to other environments, with the cau-
tion that with VMS one must have system manager
privileges and with UNIX, superuser privileges. In
any case I assume that the do-it-yourself reader who
is going to use this information in practice is suffi-
ciently familiar with his/her computer to be able to
use the available utilities for exploring and manag-
ing the hard disk(s) and the file system, for creating
command (or batch or script) files, and so on.

As for myself, I use a VMS mainframe, a UNIX
workstation and a DOS personal computer; the lat-
ter is a 486 type and has 8 Mb of RAM, so that,
even though I don’t use Windows, with a suitable

TUGboat, Volume 16 (1995), No. 1 19

extended memory handler I can use a “big TEX” im-
plementation of TEX based on the compilation of a
C-source program; I recommend that any DOS user
equip him/herself with a configuration of this sort.
My LATEX is set up to deal with eight languages at
a time: US-English, Italian, French, Spanish, Por-
tuguese, Catalan, Romanian, and Latin (modern
spelling). Except for US-English, I prepared all the
hyphenation patterns for the remaining seven lan-
guages myself.

2 Fonts

Except for English (both US and UK), which does
not use diacritics (actually it does when assimilated
foreign words are used), and textual Latin (i.e. ex-
cluding prosodic Latin), almost all the languages
that were examined by Sojka and Ševeček [6] use
diacritics. (LA)TEX has no problem in setting suit-
able diacritics over or under any letter, but (LA)TEX
has real problems in hyphenating words that contain
the control symbols or control words that are used
for setting such diacritics. In fact, TEX “words” are
not the same as the words of a language. Loosely
speaking, for TEX a “word” is a sequence of charac-
ters of category code 11 (letter) or 12 (other), with
a non-zero \lccode, set in the same font, that is
preceded by a punctuation mark (parenthesis, quo-
tation marks, etc.) or by space or glue, and ends
with anything different from the above-mentioned
characters. Any command that interrupts this se-
quence interrupts the word, unless it expands to one
or more characters with the proper characteristics.
For a precise definition of what TEX thinks a word
is, see Appendix H of The TEXbook.

As examples, the French word \’ecole = école
is not a word at all for TEX because the accent com-
mand \’ expands to \accent 19, unless . . . Even
the English word {\it school} = school is not a
word for TEX, because there is no space or glue be-
tween the command \it and the word ‘school’; this
is why (LA)TEX often reports overfull hboxes when
you emphasize some text.

Unless . . . yes, there is a way around this: ex-
tended fonts and a simple little macro, \hz, for in-
serting glue where there should be no extra space:

\def\hz{\nobreak\hskip0pt \relax}

In fact, \hz inserts an unbreakable glob of glue of
zero width, stretch and shrink, but nevertheless it is
glue, so that after this glob a real TEX word may be-
gin, a word that TEX can hyphenate properly. Use
this little macro and you’ll get rid of many hyphen-
ation problems. For example, if you type

\emph{\hz electricity}

you get electricity properly hyphenated even though
it is emphasized. If you want to typeset some French
words within an English text, and you only have the
standard cm fonts, besides inserting a lot of discre-
tionary breaks \- at every syllable (if you don’t have
the French hyphenation patterns), you have the pos-
sibility of inserting \hz in order to convince TEX to
deal with word fragments; for example, you can type

\’e\hz lectricit\’e

and TEX will try to hyphenate the fragment ‘lec-
tricit’, probably finding some correct hyphen points
even by using English patterns.

But the real solution lies in using the extended
fonts. There are two flavors: the real dc fonts and
the virtual em fonts. The former are complete sets
of 256 glyphs that conform to the “double Cork”
encoding, while the latter are virtual fonts that are
made up with pieces taken from real 128-glyph cm
fonts. Although em fonts lack some glyphs, com-
pared with real dc fonts, they sometimes are more
flexible than dc fonts since by editing the virtual
property list file it is possible to modify them very
easily. Moreover the .pk files for the dc fonts in the
customary 300, 329, . . . , 746 dots-per-inch sizes oc-
cupy approximately 7 Mb of disk space, which might
not be available on the smaller platforms or which
might be used in a different way.

If you already have the dc .tfm and pixel files
on your computer disk, or if you are willing to copy
them from a CTAN archive, skip the next section;
otherwise, you might find it interesting to create the
full set of em fonts yourself, as explained below.

2.1 Creating standard virtual em fonts

Examine your file system and find out if you already
have .tfm files whose names start with em and if you
have files with the same name but extension .vf; if
you do, skip to the next section.

If you don’t, you might be in trouble, but before
giving up examine your file system and find out if
you have executable files (extension .exe) with the
following names: tftovp, vftovp, vptovf, pltotf,
tftopl. If you do, they probably came with your
screen and/or printer driver, unless you are the type
of hacker who copies everything in the hope that it
might become useful at some future date.

This point is crucial; in fact, if you got these
files with your drivers, you can be almost certain
that your drivers handle virtual fonts. Check the
driver documentation; if your drivers actually han-
dle virtual fonts, keep reading this section; other-
wise, go to the next subsection. There is no sense

20 TUGboat, Volume 16 (1995), No. 1

’0 ’1 ’2 ’3 ’4 ’5 ’6 ’7

’20 Ă A
‘

Ć Č Ď Ě E
‘

Ğ
"8

’21 Ĺ L’ L Ń Ň Ő Ŕ

’22 Ř Ś Š Ş Ť Ţ Ű Ů
"9

’23 Ÿ Ź Ž Ż IJ İ d §

’24 ă a
‘

ć č d’ ě e
‘

ğ
"A

’25 ĺ l’ l ń ň ő ŕ

’26 ř ś š ş t’ ţ ű ů
"B

’27 ÿ ź ž ż ij ¡ ¿

’30 À Á Â Ã Ä Å Æ Ç
"C

’31 È É Ê Ë Ì Í Î Ï

’32 Ñ Ò Ó Ô Õ Ö Œ
"D

’33 Ø Ù Ú Û Ü Ý SS

’34 à á â ã ä å æ ç
"E

’35 è é ê ë ı̀ ı́ ı̂ ı̈

’36 ñ ò ó ô õ ö œ
"F

’37 ø ù ú û ü ý ß

"8 "9 "A "B "C "D "E "F

Table 1: Font layout for em fonts with character
codes above 127. The empty positions should
contain the lower- and uppercase versions of ‘eth’
and ‘thorn’, the ‘nj’ ligature, and a non-slanting
version of the pound sterling sign; the dc fonts
have these positions filled up.

in creating virtual fonts if your drivers can’t handle
them.

If you check in The TEXbook, Appendix F, you
may realize that the roman, italic and typewriter
fonts have different layouts; therefore, when you
create virtual fonts you must give your programs
this kind of information. Just to give an example
let’s create the virtual font emr10 starting from the
standard real font cmr10:

1. Run tftovp by issuing the following command

tftovp -rm cmr10.tfm emr10.vpl

after having set things up so that the necessary
.tfm files are in the default directory; the best
thing to do is to issue the command in the di-
rectory where you have all the .tfm files.

This action creates a virtual property list file,
with extension .vpl, that contains all the in-
formation on the size of every character, the
ligatures, the glyphs that are made by super-
position of glyphs taken from several other real

fonts. Of course, for other cases you might be
obliged to use the command tftovp in its full
glory with all the other options fully spelled out,
but this simple example is sufficient for giving
the idea of the whole procedure.1

2. Now run vptotf in this way

vptotf emr10

obtaining the .tfm file (LA)TEX needs for its
font selection and the virtual font file (exten-
sion .vf) that the driver needs for using the
virtual font; move this latter file into the direc-
tory where the driver(s) expect to find virtual
files.

3. The .vpl file is no longer needed, so it can be
deleted.

Of course you might automate this simple procedure
by writing a command (or script) file that performs
all these operations with a minimum of human in-
tervention.

If you have .afm files for PostScript fonts, you
can do similar operations in order to use such outline
fonts, but maybe leave that for when you have more
experience.

2.2 Getting along with ordinary cm fonts

If you do not have the programs mentioned in the
previous subsection and/or your drivers do not han-
dle virtual fonts or do not handle fonts with more
than 128 characters, or if you have decided that you
do not want to use virtual fonts (for example for
portability reasons), do not give up! It is still possi-
ble to redefine the accent macros so as to make them
a little smarter, i.e. so that they introduce automati-
cally an \hz command before and/or after the letter
they operate upon, depending on the nature of the
following character.

You should be able to perform an anonymous
ftp to my site:

ftp ftp.polito.it

Username: anonymous

Password: your e-mail address

cd /pub/tex/polito/hyphens

where you can fetch the three files polyglot.tex,
polyglot.sty and polyglot.doc. You can use the

1 Apparently nobody noticed or took care that none of
the options available for the tftovp command handles the
caps-and-small-caps fonts; for such fonts, some editing of the
ASCII virtual property list file is necessary before going to
the next step, but you’ll produce virtual caps-and-small-caps
fonts when you have gained a little experience with virtual
fonts. It’s a good idea to use your editor to explore the prop-
erty list files: you get to understand a lot of things about TEX
that are not written in any book, or are presented in such a
way that the reader can’t really understand them.

TUGboat, Volume 16 (1995), No. 1 21

second one as a LATEX option, so that you can pro-
cess the third one as a LATEX document and get
all the information about the use and/or initializa-
tion of your (LA)TEX programs with the polyglot
macros.

In the same directory you will find the “poor
man” hyphenation patterns for several languages;
these are labeled “poor man” because they do not
consider accented letters and leave the task of hy-
phenating to the “intelligent” accent macros. Such
macros do their best, but of course they cannot
perform as well as a (LA)TEX system correctly set
up with dc or em fonts for handling multiple lan-
guages. Nevertheless, I did use such a “poor man”
implementation for a while, and I have typeset sev-
eral documents in different languages with almost
no human intervention while getting error-free jus-
tified text with hyphenated words, in particular in
French and in Catalan.2

3 Using em or dc fonts

3.1 Extended fonts and TEX

If you use TEX, and you want to use em or dc fonts,
you should do the following:

1. copy the file plain.tex to another file, and call
it emplain.tex;

2. edit emplain.tex so that it also preloads the
roman, italic, etc., em or dc fonts corresponding
to the roman, italic, etc., fonts already loaded;
for example, add the lines:

\font\etenrm = dcr10

\font\etensl = dcsl10

...

or

\font\etenrm = emr10

\font\etensl = emsl10

...

3. modify the definitions for \rm, \sl, \it

\def\rm{\fam\z@\etenrm}

\def\sl{\fam\slfam\etensl}

\def\it{\fam\itfam\etenit}

...

3.2 Extended fonts and LATEX2ε

LATEX2ε is already pre-set for use with dc fonts, al-
though the default encoding scheme is the “old” 128-
glyph one. Therefore, before setting any text with

2 I mention these two languages (of the eight that my box
can handle) because they were used to typeset formal and
official documents undersigned by the Rectors/Directors of
the Polytechnics with which we made agreements.

dc fonts it is necessary to declare the extended T1
encoding by means of the declaration

\renewcommand{\encodingdefault}{T1}

in the preamble of your document.
But the above operation is suitable only when

you run LATEX2ε as a regular program that has al-
ready been initialized. Its ability to handle hyphen-
ation patterns in one or more languages derives from
its initialization which must be executed according
to the procedure described for your particular im-
plementation of TEX; in the following sections, an
example is given, but your particular implementa-
tion might require some variations.

Regardless of the implementation, though, you
need to set up or modify a file named hyphen.cfg
which is intended for loading several hyphenation
pattern files for the corresponding languages. As
far as my experience is concerned, the LATEX2ε base
package obtainable from CTAN states that this task
is reserved for TEXperts and a special documenta-
tion file is offered to such experts for the task. Un-
fortunately this file does not say much and several
actions must be invented by the user. Two points
are to be followed with special care:

1. The command \newlanguage is defined to be
an \outer one so that it cannot be used within
the main argument of the command

\InputIfFileExists{<A>}{}{<C>}

where <A> is the file name containing the pat-
terns for a particular language, the actions
to be taken before inputting the pattern file,
and <C> the actions to be taken if the pattern
file does not exist or can’t be found along the
default or the specified paths. Therefore, in or-
der to load French patterns, for example, it is
necessary to spell out the loading commands:

\newlanguage\l@french

\InputIfFileExists{frhyph}{%

\language\l@french

\lccode‘\’=‘\’

% etcetera

}{%

\errhelp{The configuration for

hyphenation is incorrectly

installed.^^J%

If you don’t understand

this error message you need

to seek^^Jexpert advice.}%

\errmessage{OOPS! I can’t find

any hyphenation patterns for

French.^^J \space Think of

getting some, or the latex2e

22 TUGboat, Volume 16 (1995), No. 1

setup will never succeed.}%

\@@end

}

(The actions to be taken for a nonexistent or
unreachable French pattern file are copied [and
slightly edited] from the sample hyphen.cfg file
that is included in the base package.)

2. Before inputting any pattern file that contains
special characters, it is necessary to map the
accent macros and their arguments to the char-
codes of the corresponding special characters
and to define their lowercase codes.

In fact, the ability of LATEX2ε to deal with
extended codes through sophisticated accent
macros is applicable only during regular type-
setting runs, not during the manipulation and
digestion of hyphenation patterns. For the lat-
ter, simple and direct macros must be designed
such as the following:

(a) For the special characters for which stan-
dard commands are available, such as \o
for ø and \ss for ß, it is sufficient to pre-
pare declarations of the following form:

\def\ss{^^ff}\lccode"FF="FF

\def\SS{^^df}\lccode"DF="FF

\def\ae{^^e6}\lccode"E6="E6

\def\AE{^^c6}\lccode"C6="E6

\def\oe{^^f7}\lccode"F7="F7

\def\OE{^^d7}\lccode"D7="F7

\def\o{^^f8} \lccode"F8="F8

\def\O{^^d8} \lccode"D8="F8

\def\i{^^19} \lccode"19="19

\def\j{^^1a} \lccode"1A="1A

\def\aa{^^e5}\lccode"E5="E5

\def\AA{^^c5}\lccode"C5="E5

\def\l{^^aa} \lccode"AA="AA

\def\L{^^8a} \lccode"8A="AA

(b) For the other characters— those that carry
a diacritical mark — it is better to resort to
intermediate macros, some of which map
the accent macro and character to a sin-
gle control word, and some for defining the
meaning of such control words. The whole
trick is accomplished as follows: first you
define the control word mappings

\def\’#1{\csname @ac@#1\endcsname}

\def\‘#1{\csname @gr@#1\endcsname}

...

and so on, with the prefixes that are listed
in Table 2 for the other diacritical marks.
Then, for each of the approximately one
hundred diacriticized characters, you must
set up declarations such as these:

\catcode‘\^^a0=11 % letter \u{a}

\lccode"A0="A0 % lc code

\def\@u@a{^^a0} % ctrl word

%

\catcode‘\^^80=11 % letter \u{A}

\lccode"80="A0 % lc code \u{a}

\def\@u@A{^^80} % ctrl word

%

...

and so on for the remaining special char-
acters whose codes can be deduced from
Table 1.

(c) Most important, steps 1 and 2 must be
confined within a group together with the
pattern file input command, so as to keep
such declarations local to the sole group
where patterns are being manipulated and
digested.

3. After closing the group mentioned in the above
item, it is wise to declare the default language,
the default encoding (so that you do not need
to declare it in every preamble of every docu-
ment), and the relevant parameters for the left-
most and rightmost word fragments:

\language=0

\lefhyphenmin=2

\righthyphenmin=3

\def\encodingdefault{T1}

This done, you are ready to run the initializer.

3.3 Extended fonts and LATEX2.09

If you are still using LATEX2.09 or you want to have
a LATEX2.09-compatible version, do the following:

1. copy the file lplain.tex to a new file, say,
emlplain.tex;

2. edit emlplain.tex by replacing the line \input
lfonts with \input emlfonts

3. copy lfonts.tex into emlfonts.tex;

4. edit emlfonts.tex by adding a line that loads
a dc or an em font for every text font already
loaded; as shown here (original lines are marked
with <--):

\font\fivrm =cmr5 % roman <--

\font\efivrm=dcr5 % ex. roman

...

\font\elvrm =cmr10\@halfmag % roman <--

\font\eelvrm=dcr10\@halfmag % ex. roman

...

\font\frtnrm =cmr10\@magscale2 % rom <--

\font\efrtnrm=dcr10\@magscale2 % ex. rom

...

TUGboat, Volume 16 (1995), No. 1 23

5. modify the definitions of the font changing com-
mands for all point sizes; e.g. for the ten-point
size, search for the definition \def\xpt and
change:

\def\prm{\fam\z@\tenrm}%

to

\def\prm{\fam\z@\etenrm}%

doing the same for all the other font selections.

When you edit emlfonts.tex, near the end of the
file, you should comment out the definition of \$,
because with dc or em fonts the dollar sign always
has the correct shape.

The procedure seems very complicated but re-
ally it amounts to just some time spent in careful
repetitive editing: duplicating lines, replacing cm
with dc and adding an e in the proper places.

Another point must be kept in mind: the pro-
gram tex has a finite memory for holding font in-
formation. If you have made all the modifications
explained above, you end up with a LATEX format
where 106 fonts have been preloaded. This might
be too much for your “small TEX”, but presents no
problems to the “big TEX” implementations.

You also need to edit your newly created files
emplain.tex and/or emlplain.tex and replace

\input hyphen

with

\input lhyphen

unless your lplain.tex file is dated 31 March 1992
or later, in which case it may already have been
done.

4 Hyphenation patterns

The best way to have the proper hyphenation pat-
terns for the languages one chooses to use is to re-
trieve them from the CTAN archives. If you have
access to the Internet, just ftp to the nearest CTAN
archive and explore the directory /tex-archive/
languages. Select the directory corresponding to
the chosen language, and hopefully the proper set
of hyphenation patterns is already there.

If you do not have access to the Internet, you
probably know somebody who does. If you don’t,
ask the TUG office for a diskette containing what
you can’t otherwise obtain, and pay what the TUG
office will charge you. If the whole procedure seems
too complicated, just consult the advertising pages
of any issue of TUGboat and choose the vendor who
can provide you with what you desire; the vendor
prices are higher but generally you get a full set of
diskettes with an install program that saves you
all the burden of retrieving, initializing, etc.

But what happens if you decide to use a lan-
guage for which no hyphenation patterns have been
prepared? This is most unlikely. If you read the
paper by Sojka and Ševeček [6], you will find a ta-
ble where 38 hyphenation pattern files are exam-
ined; they deal with 32 different languages that in-
clude both flavors of English (US and UK), modern
and classical Latin and Greek, Esperanto, and most
modern European and North and South American
languages. Besides Greek, patterns exist also for
languages that do not use the Latin alphabet (with
or without diacritics), such as Russian, and possibly
for less known regional languages.

But what if you are unlucky — the patterns you
are looking for do not exist, or they exist but are
unreachable, or they are too large for the capabilities
of your tex program . . . In this case you yourself
must create a file containing your patterns; you must
carefully read Appendix H of The TEXbook and, of
course, you must know the “strange” language you
want to use, or at least have a perfect knowledge
of its grammar and hyphenation rules. It’s not too
difficult, with or without the use of the program
patgen, but this topic is sort of self-contained, so I
leave it for another tutorial [1].

So, from now on, we assume that you have all
the pattern files you need. You should at this point
edit (or create) the file lhyphen.tex to read:

% File lhyphen.tex created on ...

% by ...

% It loads the hyphenation patterns

% for the following languages:

% 0) US english

% 1) italian

% 2) french

% 3) ...

%

\input chardefs

%

\language=0 \chardef\l@english 0

\input hyphen

%

\newlanguage\l@italian

\language\l@italian

\input ithyph

%

\newlanguage\l@french

\language\l@french

\input frhyph

%

% and so on

%

% Default values

\language\l@english

24 TUGboat, Volume 16 (1995), No. 1

\lccode‘’= 0

\lefthyphenmin=2

\righthyphenmin=3

%

\endinput

If you are following the “poor man” procedure,
the chardefs.tex file to be input might read simply
like this:

\lccode‘’=‘’

\catcode’33=11 %\oe

\lccode’33=’33 %\oe

\let\oe=^^1b

...

and similar definitions and code assignments for all
the other special ligatures or diacriticized characters
present in the cm fonts that are necessary in the
languages you are going to use.

The apostrophe should receive an \lccode dif-
ferent from 0 because it should not interrupt TEX
words of the type quest’anello, l’approbation, s’orga-
nitzen in languages such as Italian, French, or Cata-
lan (where vocalic elision is marked with an apos-
trophe) — remember the definition of a TEX word:
“. . . characters. . . , with a non-zero \lccode,. . . ”.
This is one of the most frequent requests for help
I receive from Italian users, who forget to \lccode
the apostrophe and complain about (LA)TEX not hy-
phenating after such a sign.

If you are going to use extended fonts (dc or
em) you need a chardefs.tex file that defines a set
of macros for changing such sequences as \u{a} (ă)
into the numerical code of the diacriticized letter (in
this case ’240 or "A0 or 160), while assigning a non-
zero \lccode to the character in question. Such a
file, in other words, should contain things similar to
those that have been described for LATEX2ε.

Such macros are simple but numerous when you
want to have a complete map to all 102 diacriticized
letters of the Cork encoding and to the 13 special
characters ß, œ, æ, ø, å, l, ı, and , with their upper-
case possible counterparts (plus the apostrophe):

% Save current @ catcode and ...

\chardef\atcatcode=\the\catcode‘\@

% ... make it a letter.

\catcode‘\@=11

\def\ss{^^ff}\lccode"FF="FF\uccode"FF="DF

\def\SS{^^df}\lccode"DF="FF\uccode"DF="DF

\def\ae{^^e6}\lccode"E6="E6\uccode"E6="C6

\def\AE{^^c6}\lccode"C6="E6\uccode"C6="C6

\def\oe{^^f7}\lccode"F7="F7\uccode"F7="D7

\def\OE{^^d7}\lccode"D7="F7\uccode"D7="D7

\def\o{^^f8} \lccode"F8="F8\uccode"F8="D8

\def\O{^^d8} \lccode"D8="F8\uccode"D8="D8

\def\i{^^19} \lccode"19="19\uccode"19="49

\def\j{^^1a} \lccode"1A="1A\uccode"1A="4A

\def\aa{^^e5}\lccode"E5="E5\uccode"E5="C5

\def\AA{^^c5}\lccode"C5="E5\uccode"C5="C5

\def\l{^^aa} \lccode"AA="AA\uccode"AA="8A

\def\L{^^8a} \lccode"8A="AA\uccode"8A="8A

\lccode‘’=‘’

The hexadecimal codes appearing in the above def-
initions can be found in Table 1, where the octal
and hexadecimal codes for all the other diacriticized
characters can also be found. The uppercase codes
are specified so that the case of such special letters
can be properly changed.3

Besides the above macros chardefs.tex must
also contain the character mappings necessary for
the cases when accent macros are used; in the CTAN
archives you can find a file, compatible.tex, that
contains intermediate macros for these mappings.
They look like this:

\def\’#1{{\expandafter

\ifx\csname @ac@#1\endcsname\relax

{\accent19 #1}%

\else

\csname @ac@#1\endcsname

\fi}}

\def\‘#1{{\expandafter

\ifx\csname @gr@#1\endcsname\relax

{\accent18 #1}%

\else

\csname @gr@#1\endcsname

\fi}}

...

\def\~#1{{\expandafter

\ifx\csname @til@#1\endcsname\relax

{\accent’176 #1}%

\else

\csname @til@#1\endcsname

\fi}}

\def\"#1{{\expandafter

\ifx\csname @um@#1\endcsname\relax

{\accent’177 #1}%

\else

\csname @um@#1\endcsname

\fi}}

The trick is this: any accent macro (for exam-
ple, the one for the acute accent), operating, say,

3 This is not necessary with LATEX2ε because definitions
are local to the section where patterns are handled. On the
other hand, remember to avoid groups while specifying these
codes with LATEX2.09, otherwise you lose the possibility of
treating words with special characters in the proper way.

TUGboat, Volume 16 (1995), No. 1 25

on the letter ‘a’, maps to the protected4 internal
control word \@ac@a, if this word is defined; other-
wise, it operates as a regular accent macro with cm
fonts. If you are using the extended fonts and the
set-up I am describing, you might as well simplify
such macros to:

\def\’#1{\csname @ac@#1\endcsname}

\def\‘#1{\csname @gr@#1\endcsname}

...

\def\~#1{\csname @til@#1\endcsname}

\def\"#1{\csname @um@#1\endcsname}

The whole set of prefixes of such control words is
summarized in Table 2. Actually, there are no LATEX
macros for the ring accent and the ogonek diacritical
mark;5 if you need to use them, you can define \r
and \g to map to the proper control words by means
of the prefixes shown in Table 2.

Next you must assign every such control word
to an extended character and then assign that char-
acter the proper \lccode and \uccode, an operation
that is lengthy because of the number of characters,
but at least is repetitive; all such assignments are of
this type:

\catcode‘\^^a0=11 % letter \u{a}

\lccode"A0="A0 % lc code

\uccode"A0="80 % uc code \u{A}

\def\@u@a{^^a0}

%

\catcode‘\^^80=11 % letter \u{A}

\lccode"80="A0 % lc code \u{a}

\uccode"80="80 % uc code

\def\@u@A{^^80}

%

...

The CTAN archives contain a file called extdef.tex
that has definitions similar to the ones above, but
resorts to two macros:

\csubinverse and \charsubdef
that map em/dc-font extended characters to corre-
sponding cm-font accent macros + characters, and
vice versa. These macros should not be necessary if
you consistently use only extended fonts.

On the other hand, if you have a keyboard with
national characters (and you pay some attention by
editing your files before you send them to colleagues
who might not have the same keyboard) you could
reduce your keying if you map the input codes di-

4 ‘Protected’ in the sense that it contains the character
@, which is not a letter during normal (LA)TEX operation, so
that it is impossible to inadvertently redefine it.

5 Actually the ring accent is used only on the letters ‘a’
and ‘u’, so that the standard LATEX macros \aa and \AA are
sufficient for the former, but you still need something for using
the latter.

grave @gr@ caron @v@

acute @ac@ breve @u@

circumflex @hat@ macron @eq@

tilde @til@ dotaccent @dot@

dieresis @um@ cedilla @c@

hungarumlaut @H@ ogonek @og@

ring @r@

Table 2: Control-word prefixes for accent-macro
mapping

rectly to the corresponding extended TEX codes; for
this you might add to your chardefs.tex file some
definitions of the form:

\catcode‘\à=13 \def à{\@gr@a}

\catcode‘\á=13 \def á{\@ac@a}

...

\catcode‘\~n=13 \def ~n{\@til@n}

Remember to end the file by restoring the right @
catcode:

\catcode‘\@=\atcatcode

If you spend the time necessary to create this
chardefs.tex file from scratch, to explore the CTAN
archives, and to put together the various parts, you
understand why vendors charge you a reasonable
price for selling TEXware that everybody could oth-
erwise get at no cost!

5 Initialization

Now you have all the necessary pieces of informa-
tion to create the formats latex.fmt with LATEX2ε,
emplain.fmt with extended font plain TEX, and
emlplain.fmt for extended font LATEX2.09.

It’s time to run initex, the TEX initialization
program, the only one that can chew and digest the
hyphenation patterns and store them into memory
in a special way so that during a regular TEX run
the hyphenation process proceeds efficiently.

Depending on your software implementation,
this initialization program may be a different .exe
(i.e. there are both tex.exe and initex.exe), or
the initialization may be an option to the regular
procedure, or the executable module may behave
differently depending on the name used to invoke
it. Again, depending on the operating system, you
might also include the arguments to the command
within double quotes. So this simple initialization
task may prove to be more difficult than it should.

On my DOS personal computer, with the var-
ious implementations I have used, I had to follow
three different approaches; however, command files
come in handy for doing the whole job without both-
ering too much about the details. You have to:

26 TUGboat, Volume 16 (1995), No. 1

1. set up the environment variables according to
the documentation for your particular imple-
mentation of TEX;

2. set up the search paths, if necessary;

3. invoke the initialization program with the prop-
er syntax and with the proper arguments;

4. \dump the format;

5. move the format to the directory where TEX
expects to find format files;

6. possibly preload the format so as to create a
specific executable program.

Steps 1 and 2 are very much system- and software-
dependent, so please check your documentation very
carefully. Below I show how I would do the job
for LATEX2.09, by means of a C-source derived tex
program named ctex when it operates as a regular
tex program, and cinitex when it operates as an
initializer program.6

1. I set up the following environment variables (but
remember that the names of my directories do
not necessarily match yours):

SET TEXFORMATS=C:\TEX\ctexfmts

SET TEXPOOL=C:\TEX\ctexfmts

SET TEXFONTS=C:\TEX\fonts

SET TEXINPUTS=.;C:\TEX\inputs

With other implementations it might be possi-
ble to set environment variables that control the
amount of memory that the program assigns to
the various operating parts.

2. I decide if the executable cinitex.exe is al-
ready in the proper directory; if not, I rename
the executable ctex.exe to that name

if exist C:\TEX\cinitex.exe goto runinitex

rename C:\TEX\ctex.exe cinitex.exe

3. Then I produce the format and \dump it in one
step:

:runinitex

C:\TEX\cinitex %1 \dump

In the above command %1 is the name of the
format I want to produce; in our examples it
might be emplain or emlplain.

4. Next I move the format file to the proper direc-
tory

6 Other implementations may have initex as the initial-
izer, virtex as a “virgin” version of TEX (that is, a pro-
gram without any format preloaded), tex as a version with
plain.fmt preloaded, and latex as a version with lplain.fmt
preloaded. In other systems, particularly UNIX, all these
names are aliases that call the same executable which be-
haves differently according to the name by which it has been
called.

move %1.fmt C:\TEX\ctexfmts

5. Finally I reset the program name to ctex.exe

rename C:\TEX\cinitex.exe ctex.exe

6. At this point, with some implementations of
tex, it might be possible to run a preloading
facility that creates an executable image of the
program with the format preloaded; it speeds
up the preliminary operations of a regular TEX
run a little, but it is not a real necessity; many
implementations do not have this facility.

That’s all. For running (LA)TEX, another com-
mand file sets up the same environment variables
(in case they were not set or had been reset), and
invokes the executable with:7

ctex &emlplain %1

where, as usual, %1 is replaced by the .tex file name
you want to process.

During initialization you might experience a
number of error messages; try to understand which
is the cause and exit the initializer with x at the
program prompt. Some possible causes include:

1. initex did not find some .tex file(s): check
that all the necessary files are on a TEX search
path conforming to the TEXINPUTS environment
variable.

2. initex did not find some font files: check for
spelling errors in the parts you have edited;
check that all .tfm files are in the directory(ies)
identified by the TEXFONTS environment vari-
able.

3. initex complains about the tex.pool file:8 the
file is missing or the file in the directory pointed
at by TEXPOOL does not belong to the particular
TEX implementation you are using; retrieve the
correct tex.pool file and be sure to put it in
the correct directory.

4. initex complains about some undefined con-
trol sequence: check the name of the control
sequence and correct your spelling in the files
you have edited.

5. initex complains about duplicate patterns:
press <Enter> and keep going, but if the prob-
lem shows up again, you’d better get out with
x. In any case, check your hyphenation files
and your lhyphen.tex file; you may have for-
gotten to issue the command \newlanguage or
most probably you made a spelling mistake. If
you made your own patterns the possibility of

7 Change emlplain to emplain if you want to use plain
TEX instead of LATEX.

8 On DOS platforms the name is tex.poo.

TUGboat, Volume 16 (1995), No. 1 27

having inadvertently duplicated some patterns
is normal, but must be corrected.

6. initex complains about memory limitations:
if you are using a “big TEX” implementation
based on a C-source, this should not happen.
If it does, either you want to go into the Guin-
ness book of records for the largest number of
languages treated at the same time, or you have
bad patterns, or your C-source program did not
work properly. If your program comes from a
Pascal source and you have the source code, af-
ter having properly checked that you are not
going into the Guinness book, and that your
patterns are OK, you could carefully modify the
memory declarations in the source code and re-
compile and link the program. I hope you know
what you are doing. If you do not have the
source code, but you have an implementation
(like sb39tex) that allows you to exercise some
control over the memory usage, check the doc-
umentation and proceed accordingly.

With respect to memory limitations, specifi-
cally hyphenation memory limitation, TEX has two
memory areas, the trie and the ops ones, the former
being dedicated to holding the patterns (all the pat-
terns of all the languages that have been loaded) and
the latter to holding the “branch” information of the
pattern structured lists. The greater the number of
patterns, the greater the trie memory occupied; the
more complex the pattern structure, the greater the
ops memory occupied.

When you run initex, the .log (or .lis) file
documents all the relevant information about the
run; in particular, towards the end you will find a
listing that looks like this:

14 hyphenation exceptions

Hyphenation trie of length 8172

has 407 ops out of 750

23 for language 6

15 for language 5

15 for language 4

25 for language 3

110 for language 2

38 for language 1

181 for language 0

from which you can obtain important information
about the memory occupation dedicated to multi-
language issues:

1. the 14 hyphenation exceptions are those that
come with the US-English hyphen.tex file, orig-
inated by Liang and Knuth and described in
The TEXbook, Appendix H. The other lan-
guages I loaded do not have hyphenation excep-

tions because this is my policy when I prepare
my patterns.

There is nothing wrong with hyphenation ex-
ceptions; simply they are better suited for a
non-flexive or moderately flexive language, such
as English, than for flexive languages such as all
the Romance ones. In English, for a noun you
have two forms, for an adjective one form, for a
verb four or five forms. In Italian nouns require
two forms, adjectives up to four, verbs approxi-
mately 60 and this does not include all the pos-
sible agglutinations of enclitic pronouns. For
French, Spanish, Portuguese, Catalan, Roma-
nian, and Latin the situation is similar, so that
if a hyphenation exception involves the stem of
a verb, you may have to input some 60 entries
(at least) in the \hyphenation argument!

2. US-English hyphenation patterns occupy 6075
trie memory words and 181 ops; the standard
size of the trie memory (in a regular-sized TEX
implementation) is 8000 words; French comes
second in complexity, requiring from 1122 to
1433 trie memory words9 and 110 ops; the other
Romance languages require on the average 600
trie memory words and 25 ops. The ops num-
bers are simply additive while the trie mem-
ory words are not, because the cited numbers
include some undocumented overhead, so that
the final trie memory occupied is smaller than
the sum of the single language trie memory oc-
cupied. But during the initex run you need
the availability of at least the sum of the single
language occupations, so that the program can
massage the patterns and compress them in the
proper way.

When you have to control the memory occu-
pation, you must keep these numbers in mind
in order to understand possible complaints by
initex.

3. The ops numbers give you a fairly good idea of
the complexity of the hyphenation rules for a
given language as they are translated into TEX
code. In my experience, German patterns ap-
pear to be the most complicated, requiring 9980
trie memory words and 281 ops; this is the set
of patterns indicated as DEmax in Sojka and
Ševeček [6],10 and if you have to use German

9 Depending on the presence of extended characters; the
numbers refer to my poor-man or extended-character pat-
terns, respectively.
10 However, they report 255 ops while my cinitex exe-

cuted 281; perhaps the files we examined are not exactly the
same.

28 TUGboat, Volume 16 (1995), No. 1

you’d better have a “big TEX” implementation
with a large trie memory size.

6 Language-dependent macros

The best thing to do is to retrieve the babel package;
this is the finest set of multilanguage macros I know
of and I recommend it to everybody. My polyglot
macros are also an acceptable “poor man” alterna-
tive for those who have stuck to cm fonts and relied
on intelligent accent macros. The macros should be
divided into three categories:

1. language selection;

2. label selection;

3. style selection.

If you want to make your own macros, because you
are going to use your multilanguage implementation
in a restricted or in a special way, you can do the
following.

6.1 Language selection

In the lhyphen.tex file all languages were identified
by a literal name mapped to an internal number
of the form \l@language; this allows you to set up
simple macros such as these:11

\def\Lang#1{\expandafter

\language\csname l@#1\endcsname

\csname #1settings\endcsname}

%

\def\englishsetting{\lccode‘’=0

\righthyphenmin=3}

%

\def\italiansettings{\lccode‘’=‘’

\righthyphenmin=2}

%

\def\frenchsettings{\lccode‘’=‘’

\righthyphenmin=3}

%

% and so on

%

You change hyphenation rules simply by issuing
commands of the type

{\Lang{french} ... % french text

} % end french

without forgetting the group braces so that the ac-
tion is confined to the enclosed group alone.

In LATEX you can use the above definitions also
as environments:

\begin{Lang}{french}

11 \lefthyphenmin is supposed to maintain the default
value of 2; of course some settings might change this value,
but if you choose to do so, you should insert an appropriate
setting for every language.

... % french text

\end{Lang}

or you might prefer to define a new environment:

\newenvironment{French}{\Lang{french}}{}

so that you can type:

\begin{French}

... % french text

\end{French}

and thereby following standard LATEX markup style.

6.2 Label selection

What has been described in the previous subsec-
tion is suitable for setting short passages of one lan-
guage within a text composed in another language;
for example, French extracts (properly hyphenated
in French) in an English-language essay (with cita-
tions in an appropriate English style).

If you want to write a whole document in an-
other language you should be able to change “Chap-
ter” into “Chapitre”, “Table” into “Tableau”, and
so on, with a single command. Fortunately, as of 31
March 1992, these words are no longer hardwired
into the LATEX styles; they are contained in control
sequences with self-explanatory names. So, together
with the language settings, you need a \setcaptions
macro of the following type:

\def\setcaptions#1{%

\csname #1captions\endcsname}

%

\def\frenchcaptions{%

\def\refname{R\’ef\’erences}

\def\abstractname{R\’esum\’e}

\def\bibname{Bibliographie}

\def\chaptername{Chapitre}

\def\appendixname{Annexe}

\def\contentsname{Table des mati\‘eres}

\def\listfigurename{Liste des figures}

\def\listtablename{Liste des tableaux}

\def\indexname{Index}

\def\figurename{Figure}

\def\tablename{Tableau}

\def\partname{Partie}

\def\enclname{P.~J.}

\def\ccname{Copie \‘a}

\def\headtoname{A}

\def\pagename{Page}

%

\def\today{\ifnum\day=1\relax

1\/$^{\rm er}$\else\number\day\fi

\space\ifcase\month\or

janvier\or f\’evrier\or mars\or

avril\or mai\or juin\or juillet\or

ao\^ut\or septembre\or octobre\or

TUGboat, Volume 16 (1995), No. 1 29

novembre\or d\’ecembre\fi

\space\number\year}

}

%

% and so on for the other languages

%

With a LATEX2.09 document you can start this way:

\documentstyle{book}

\Lang{french}\setcaptions{french}

\begin{document}

...

\end{document}

The language selection macros and the caption def-
inition commands could also be incorporated into
hyphen.cfg for LATEX2ε, and into lhyphen.tex for
LATEX2.09, so that they remain available with any
document type and you need not specify a partic-
ular option or package every time you start a new
document.

6.3 Style selection

If you want your composition style to be correct, all
the way down to respecting the typographic tradi-
tions of another country, then you should rely com-
pletely on the babel macros.

The most apparent differences consist in these
points:

1. In France (and perhaps in some other countries)
French spacing is normally used; French spac-
ing leaves the same amount of white space af-
ter all punctuation marks, but leaves some thin
space before the “tall” punctuation marks such
as the colon and semicolon, the question and
exclamation marks, the parentheses,12 the quo-
tation marks; such spaces cannot split at the
end of the line. All these punctuation marks
must be made active in text mode so that they
introduce the right amount of white space, or,
conversely gobble extra white space.

2. The quotation marks are the most variable in
different countries; in the US high quotation
marks with the shape of normal or reversed
commas are used; in France and many other
countries guillemets are used; in Italy we use
both types. In some countries open quotation
marks are identical to closed quotation marks
but are lowered; in other countries they are re-
versed, that is left quotation marks are used for
closing a quotation instead of opening it. And
so it goes.

All these marks are present in the extended
fonts, although in the em fonts the guillemets

12 The thin white space goes after the open parenthesis.

are far from optimal; dc fonts and PostScript
fonts have perfect shapes. But in any case suit-
able macros must be set up correctly in order
to insert the proper quotation marks.

3. Ordinal numbers are another point of differ-
ence; in some countries a digit is immediately
followed by the desinence or the final letter of
the corresponding spelled-out ordinal; in other
countries this literal ending is separated by a
period; in yet other countries this ending is set
as an exponent (sometimes underlined). Flex-
ive languages may have different endings for
masculine and feminine, singular and plural.

Elsewhere, ordinals are expressed by roman
numerals; the lowercase roman letters are cus-
tomary in English, and this habit has gained
wide acceptance in many places, while good
style in many countries requires the use of up-
percase roman letters only, possibly from a small
caps font.

For these sorts of style problems, don’t do it
the do-it-yourself way; it’s too difficult (unless you
are a book connoisseur, of course). It’s better to
rely on the babel package, which, although it was
created and is maintained by one man, J. Braams,
benefits from continuing suggestions and construc-
tive criticism by all members of the TEX community,
with the result that the package is constantly being
upgraded and always becoming better.

7 Conclusion

This long tutorial on multilanguage typesetting has
tried to focus on some of the problems concerning
setting texts in different languages by means of a
single program, TEX or LATEX. Configuring the pro-
gram to handle several languages is not that diffi-
cult, but it does require patience, good knowledge
of the software, a long week-end. . . But when you’ve
set up the program the proper way, you will enjoy
it much more than before.

References

[1] Beccari C., Oprea R., Tulei E., “How to make a
foreign language pattern file: Romanian”, TUG-
boat, 16(1):31–42, March 1995.

[2] Braams J., “babel, a multilingual style-option
system for use with LATEX standard document
styles”, TUGboat, 12(2):291–301, June 1991.
Update: TUGboat 14(1):60–62, April 1993.

[3] Goossens M., Mittelbach F., Samarin A., The
LATEX Companion, Addison-Wesley, Reading,
Mass., 1994.

[4] Knuth D.E., The TEXbook, Addison-Wesley,
Reading, Mass., 1990.

30 TUGboat, Volume 16 (1995), No. 1

[5] Lamport L., LATEX A Document Preparation

System, Addison-Wesley, Reading, Mass., 1986.
Second edition, dealing with LATEX2ε, 1994.

[6] Sojka P., Ševeček P., “Hyphenation in TEX
— Quo Vadis?”, Proceedings of the Eighth
European TEX Conference (Sept. 26–30, 1994,
Gdańsk, Poland), 59–68.

⋄ Claudio Beccari

Dipartimento di Elettronica

Politecnico di Torino

Turin, Italy

Email: beccari@polito.it

30 TUGboat, Volume 16 (1995), No. 1

How to make a foreign language pattern

file: Romanian

Claudio Beccari, Radu Oprea and Elena Tulei

Abstract

In this tutorial we show how to make hyphenation
patterns for a language when you know the gram-
matical rules for hyphenation (if they exist). We
also discuss some points related to typographical hy-
phenation when compared with grammatical syllab-
ification.

1 Introduction

In this tutorial we complete the argument of multi-
language typesetting that we started in the previous
article [3]; there the problem of pattern generation
had been omitted because this topic is sort of self
contained and deserves its own discussion.

The problem of creating patterns suitable for
TEX’s hyphenation algorithm is dealt with in Ap-
pendix H of Knuth [10], where a certain statement
may induce TEX users to abstain from creating pat-
tern tables “since patterns are supposed to be pre-
pared by experts who are well paid for their exper-
tise.”

In a way this is desirable, so that pattern tables
for the same language are not created continuously,
leading to multiple, incompatible, different, dubious,
erroneous pattern lists and frustrated users unable
to find a reliable pattern set for the language they
want to use.

In another sense, pattern creation is essential
for the wide-spread dissemination of TEX, which is
now being used at least for all the languages exam-
ined by Sojka and Ševeček [12], and certainly also
for many other modern and ancient languages. An

indirect proof is given by the existence of fonts for
exotic languages, fonts that could not be of any use
if nobody set texts in those languages — setting text
implies breaking words at the end of the line, so that
some sort of hyphenation patterns must be used.

When the first author of this article started
his interest in hyphenation, he had to make up for
patching or creating new patterns for his site be-
cause the patterns available for Italian at that time
did not comply with national regulations and, to be
honest, were quite poor. He ended up with new pat-
terns that were published in TUGboat [2] and then
made their way into the CTAN archives. Recently,
version 4.1, which greatly improves hyphenation of
technical terms, was submitted to the archive man-
agers.

Due to the presence of several foreign visiting
professors and undergraduate and graduate students
in his Polytechnic, Beccari was asked to prepare ver-
sions of (LA)TEX suitable for French, Spanish, Cata-
lan, and Romanian; for his own pleasure he added
Portuguese. He decided to prepare a single multilin-
gual version of the formats so that users would not
have to keep different commands in mind and would
have the possibility of switching back and forth be-
tween languages. The limitations included the fol-
lowing:

1. programs had to run on a cluster of VMS main-
frames running a Pascal-derived “big TEX”;

2. a large number of isolated and clustered UNIX
workstations running C-derived versions of “big
TEX”, a countless number of DOS personal com-
puters, which has the most varied hardware
and software configurations, equipped with the
most unpredictable versions of TEX (from ver-
sion 1.5 (!) to 3.1415), as well as screen and
printer drivers;

3. the DOS personal computers were mostly owned
by students, whose limited budgets were not
sufficient to upgrade and standardize their
equipment.

Beccari therefore had to adopt a “poor man”
policy so that .tex files edited and tested at home
could also be run on the mainframes or the UNIX
stations. This implied sticking to regular cm fonts
and creating a set of “intelligent” accent macros1

that could look ahead and do some intelligent dis-
cretionary break insertion. The results were satis-
factory for all the cited languages except Romanian,
where TEX runs yielded poor results (many overfull

1 By “accent macro” we mean every command that places
a diacritical mark over or under any letter.

TUGboat, Volume 16 (1995), No. 1 31

and underfull hboxes) with line widths shorter than
ca. 100 mm.

With the collaboration of the second and third
authors (Oprea and Tulei), natives speakers of Ro-
manian, we decided to prepare Romanian hyphen-
ation patterns without being confined to cm fonts,
yet still referring to the extended dc or em font set-
up, according to the Cork encoding (see Beccari,
elsewhere in this issue [3]).

The attentive reader may ask himself: “Why
didn’t they simply retrieve the Romanian patterns
that Sojka and Ševeček [12] mention had been pre-
pared by Malyshev or by Samarin and Urvantsev?”
The answer is simple: the articles mentioned in So-
jka and Ševeček deal with Russian; the Romanian
patterns are only mentioned in passing; Sojka prob-
ably got hold of them, but we did not succeed. More-
over, according to Sojka and Ševeček, these Roma-
nian patterns make up a very large set (4121 pat-
terns) that requires a trie size of 4599 words, which
might be too large for a multilingual (LA)TEX imple-
mentation where they are supposed to coexist with
six or seven other pattern sets (including the US-
English patterns that one cannot do without).

2 Grammar vs. typography

Preparing hyphenation patterns for TEX is not a
simple grammar exercise; one must know the gram-
matical rules (if they exist and are not too compli-
cated) of the language for which patterns are being
prepared, and one must also know the typographical
rules valid for the specific country or for a generic
good typographical practice in that language.

It is obvious that typographical hyphenation
must comply with grammar rules; it is less obvious
that the possible hyphen points must not coincide
with syllable divisions, but are a subset of the lat-
ter. Just to set forth a simple example, in Italian the
word idea is syllabified in i-de-a, but typographi-
cally this word has no hyphen points;2 some of (or
all) the syllables may show up again when the word
is connected with other words, as in dell’idea that is
divisible like this: del-l’i-dea.

Syllables and typographic divisions differ in an-
other way; in some when reading their mother lan-
guage, some people feel uncomfortable if they have
to read a word split across a hiatus (that, is a pair
of vowels that do not form a diphthong); more gen-
erally, they feel uncomfortable if the word fragment
that goes to the next line begins with a vowel that

2 For the moment, let us skip the question of minimum
length of the first and last “typographical” word fragments,
that TEX deals with the values stored into the internal
\lefthyphenmin and \righthyphenmin.

does not serve as a semi-consonant; this is not cer-
tainly the case in English-speaking countries, where
a division such as liq-uid3 is not only grammatically
correct but also acceptable to the readers — such a
division, on the other hand, makes Romance lan-
guage speakers shiver unpleasantly! With Romance
language hyphenation patterns, therefore, vocalic
groups should remain undivided, except when semi-
consonants are present.

So we have two different concepts, hyphenation
and syllabification: the former deals with typogra-
phy, while the latter deals with grammar.

A syllable is a word fragment that contains at
least one vowel or equivalent sound; speakers of the
language should be able to pronounce it as an iso-
lated utterance; the set of vowels, diphthongs and
triphthongs of a language is specific to that lan-
guage. Sometimes we are astonished when we see
foreign words that apparently do not contain any
vowels; this is due to the way we are used to clas-
sifying the letters of our alphabet, but there is no
doubt that in several Slavic languages the letter r
plays the rôle of a vowel (črn ‘black’, smrt ‘death’,
Trst ‘Trieste’).

The consonants on either side of such sounds
may belong to the left or to the right syllable, de-
pending on various rules and the acceptability of
pronouncing consonantic clusters by native speakers
of a specific language; however, etymological rules
may alter this kind of division, which explains why
syllabification rules are so different in different lan-
guages.

Unluckily TEX has no notion of vowels and con-
sonants, so that one cannot rely on the fact that
no (incorrect) breakpoints are executed that isolate
groups of consonants; in fact, if you ask TEX to
show the hyphen points for comparands, for exam-
ple, while English is the default language, you get
com-para-nds, which is clearly wrong.

Another point, valid for every language, is the
existence of syllabification rules; we dare say that
these rules exist for every official language, but what
about dialects or regional unofficial languages? It is
quite likely that the latter completely lack a stan-
dard and recognized set of grammatical rules, and
that the language variety might change from village
to village both in spelling and word usage. But if you
must write a report on philological research dealing

3 US hyphenation verified in the Webster dictionary. UK
hyphenation, as given by TEX by means of the pattern file
UKhyphen.tex, is ‘li-quid’. Although the UK hyphenation
file is huge (55 860 bytes, 8527 patterns, 10 995 trie memory
words, 224 ops), it hyphenates the words reported in Ap-
pendix H of The TEXbook in a funny way.

32 TUGboat, Volume 16 (1995), No. 1

with such languages, you probably need to set many
specimens of text, which means that you need pat-
terns for these languages also.

But even if we examine only official languages,
such rules, in particular those regarding syllabifi-
cation, might be too complicated or might refer to
word stress. In the case of complicated rules, the
following statement holds true:

too complicated rules = no rules

As for word stress, TEX (or any other program that
deals with words instead of numbers) does not know
anything about stress, so that it cannot take it into
account for hyphenation purposes.

In English (US and UK alike) the rules are quite
complicated and refer to stress; the example shown
by Knuth in Appendix H of The TEXbook regard-
ing the word record is typical: the stress is different
whether the word is used as a noun or as a verb,
therefore the syllabification turns out to be rec-ord
or re-cord! There is no simple way to get around
these situations.

Another crucial point is the question of com-
pound words, and prefixes and suffixes. Compound
words should preferably be divided at word bound-
aries, while prefixes and suffixes may be treated in
different ways in different languages.

In some languages compound words are very
frequent; in other languages, although compound
words exist, “compound concepts” are expressed
without agglutination — the building of long and
complicated compound words from many smaller
ones — a feature of Germanic languages. Romance
languages prefer constructions that make use of con-
junctions and prepositions; English is different yet
again, often putting together sequences of words
that form a “compound concept” without “gluing”
them to one another. For example, in English you
have the compound list “manufacturing systems
engineering” that in French becomes the preposi-
tional phrase “genie des systèmes de fabrication”.
In any case, compound words are typical of the jar-
gon found in chemistry, regardless of language, and,
no doubt, since chemical names tend to be very
long, they should be divided on the word bound-
aries rather than on syllable boundaries.

Prefixes and suffixes are generally treated in
two different ways in different languages: prefixed
and suffixed words must be divided according to
their etymology, or they may be treated as regular
common words, disregarding the presence of prefixes
and suffixes. Italian and Portuguese belong to the
second class, where prefixes and suffixes may be ig-

nored, while most other languages require etymolog-
ical division — Romanian belongs to this class.

Another problem with some languages is the
fact that hyphenated words change spelling com-
pared to when they are undivided; in German, for
example, the orthographic sequence ck often gets
hyphenated into k-k.

All these problems offer the willing pattern cre-
ator two alternatives: process a language dictionary
with patgen or do everything by hand.

patgen is a program created by Liang for use
with TEX (documentation available from CTAN).
You have to feed the program with a large set of
hyphenated words (several thousand words) and it
will produce the hyphenation patterns that TEX re-
quires. Producing patterns this way is time con-
suming because you need to create a large file of
hyphenated words absolutely without error (either
in spelling or hyphenation), but it is the only prac-
ticable way when dealing with languages for which
the no rules statement applies. And this statement
must be extended to all languages where stress plays
an important rôle in syllabification, and where pre-
fixes and suffixes must be divided automatically, ac-
cording to etymology.

3 Mute vowels

Some languages — French for instance — have mute
vowels; that is, vowels that are not pronounced, or
are pronounced in an indistinct way. According to
grammar rules, these vowels may produce a sylla-
ble, but typographic practice avoids splitting words
which would leave a mute vowel to start the new
line, especially if this happens on the last syllable.
For French hyphenation patterns, M. Ferguson [9]
explicitly inhibited hyphenation for all mute end-
ings. This is another instance where syllabification
and hyphenation are in contrast: if patterns are gen-
erated via patgen, the syllabified list of words fed to
the program must take hyphenation breaks at mute
vowels into account.

In any event, we want to stress the point that
the word fragments obtained through the process of
hyphenation are less than or equal to the number
of syllables the word contains. There is no point in
measuring hyphenation algorithm performance by
counting the number of breakpoints it misses4 (with
a chosen word list), because the point is to measure
the number of wrong breakpoints it produces. The

4 Unless the algorithm is so poor that it misses most
breakpoints!

TUGboat, Volume 16 (1995), No. 1 33

best algorithm should produce no incorrect break-
points (obviously) but apparently this is not achiev-
able with any algorithm.

Beccari’s pattern list for Italian ithyph.tex,
version 3.5, was supposed to correctly hyphenate all
Italian words; after additional checking with dictio-
naries created by L. Bianchi [6], a version 4.0 had
to be produced, in spite of the fact that hundreds of
people at his site had used the patterns and no one
had ever found an incorrect breakpoint.

4 Compound words

patgen can also produce patterns for division of
compound words, but the pattern list may become
extremely complicated, and since compound techni-
cal words are continuously being created, any pat-
tern list becomes obsolete the very moment it is cre-
ated. We are of the opinion that it is too exacting
a request that a computer program provide a com-
plete, fast, accurate, and reliable algorithm suitable
for every language and every situation. Some type
of manual intervention is therefore necessary; below
are some options which have proven useful to us.

(LA)TEX offers the macro \- that allows hyphen-
ation in specific points. If you use \- within a word,
this word can be hyphenated at that and only that
position.5

Another macro with more flexibility is shown
below:

\def\hz{\nobreak\hskip0pt \relax}

\def\allowhyphens{\hz\-\hz}

This new definition allows you to insert a discre-
tionary break without inhibiting hyphenation in the
rest of the word. The only drawback to such a def-
inition is that the name is too long. German TEX
users get around this problem by making the double
quote character " active. Its definition is quite com-
plicated because it has to do a lot of things in dif-
ferent circumstances with a minimum of keyboard-
ing: the double quote prefixed to a vowel inserts
the umlaut (dieresis), while prefixed to certain con-
sonants it inserts the appropriate \discretionary

command (for example, "ck expands to

\discretionary{k-}{k}{ck}

plus no breaks or zero skips to allow hyphenation in
the rest of the word). Among other things, the dou-
ble quote character can change "- into the “soft” dis-
cretionary break obtained via \allowhyphens, de-
fined above.

Active characters are no problem, provided you
add them to the lists of special characters whose

5 Unless you have put several discretionary \- breaks in
the same word.

“activity’ or “specialness” is turned off when you
go into verbatim mode. But it is a shame that all
the standard input characters obtainable with a US
keyboard have already been used for special TEX
purposes.

In fact we would have preferred that a sin-
gle character be used in place of the control se-
quence \allowhyphens, so as to speed up keyboard-
ing. Moreover, when using dc fonts, it should be
possible to refer to character "17 (called a compound
word marker). If such a character could be included
within the hyphenation patterns, and if it could be
easily inserted into the TEX input file, much keybor-
ding could be saved. Unfortunately the character
belongs to the set of the “illegal” ones that (LA)TEX
refuses to read.

For a while, Beccari (compare [2]) used the un-
derscore _ as the single-character command, but
other TEXies at his site were so used to using the
underscore for other purposes (for example in file
names) that his choice was doomed to failure; he
had to delete the definition in order to avoid contin-
uous quarreling with his colleagues.

In any case — call it "-, \allowhyphens, or _—
this macro is suitable for separating prefixes, not for
compound words, whose division should take prece-
dence over syllable division; see the discussion in So-
jka and Ševeček [12]. This question of marking the
boundaries of compound words is still an open one,
and we hope that the LATEX3 team finds a suitable
solution.

5 Patterns

According to Appendix H of The TEXbook, a pat-
tern is a sequence of lowercase alphabetic letters
(and characters of category 12, “other”) separated
by digits.6 The meaning of the digits di and the let-
ters li is as follows: the pattern d1l1d2l2 · · · ln−1dn
implies that if the sequence of letters l1l2 · · · ln−1 ap-
pears in a word, the hyphenation “weights” between
such letters are d1, d2, . . . , dn, where odd digits
allow hyphenation, even digits inhibit hyphenation
and, if two or more (different) patterns specify dif-
ferent weights between the same letters, the highest
digit prevails. The digit 0, being the smallest, is
optional and may generally be omitted.

A pattern list is a sequence of different patterns
separated by spaces (or single end-of-line marks) as
if they were words of a single paragraph given as
arguments to the \patterns primitive command.

6 The special sign “.” marks the beginning or end of a
word.

34 TUGboat, Volume 16 (1995), No. 1

Such a command may be processed only by the ini-
tialization version of TEX and is illegal while using
(LA)TEX in its normal operating version. The or-
der of patterns in the pattern list should not have
any influence, but the list can be maintained much
more easily if it is alphabetized on letters only (i.e.
disregarding digits).

When extended characters are used, the pat-
terns may contain control sequences, but these are
restricted to those that expand to single characters.
If you use the technique outlined in Beccari [3], you
will have no problems, even if you use the standard
(LA)TEX accent macros; just remember to put a digit
(possibly 0) after the control sequences that map to
standard characters — i.e. \oe, \ae, \aa, \o, \ss,
and l.

6 Hyphenation exception lists

TEX can do an excellent job hyphenating words in
a particular language but it is not perfect, because
every language uses words borrowed from other lan-
guages or created with foreign roots and local end-
ings. In some instances, especially when patterns
are generated with patgen, unusual words may have
been omitted from the list fed to patgen so that
these words might get hyphenated incorrectly.

These exceptions can be addressed by using
“hyphenation exception lists”, one for each lan-
guage, that consists of space-delimited hyphenated
words given as arguments to the \hyphenation

primitive. Originally Knuth prepared a list of 14
exceptions for English, but several years of usage
have produced a continuously growing list of ex-
ceptions that is maintained in the CTAN archives.
On this subject it is interesting to read the words
by B. Beeton that accompany the 1992 US English
exception log [4].

We are of the opinion that exception lists should
be avoided as much as possible, at least for those
languages with patterns made by hand: if manual
creation was possible, it means that the syllabifica-
tion rules were simple enough to consider most, if
not all, normal situations. Hyphenation exception
lists then become useful only in specific documents
where unusual words are used: — first and/or fam-
ily names, foreign toponyms, chemical compound
names, and the like. The one exception to this seems
to be English: while the number of hyphenation
rules would seem to argue that the manual approach
could not be considered reasonable, the language is
widely used and a manually-prepared hyphenation
exception log is regularly maintained and updated.

In most other languages hyphenation exception
lists could become too difficult to create, especially if

such languages are flexive.7 With such languages—
and all Romance languages belong to this class —
the conjugation of a verb might include from 60 to
80 different forms, so that if an exception involves
the stem of a verb, some 60 to 80 different entries
must be made in the \hyphenation list for that one
verb.

As a concluding remark it is worth noting that
the patterns inserted via the \patterns command
are static: once they have been processed by initex,
you cannot change them, unless you create a new
format. Hyphenation exceptions introduced via
the \hyphenation command are dynamic, and you
can add new exceptions at any point in your com-
puscript. Any new exception gets added to the
list valid for the current language, and if a word
is entered twice (supposedly with different hyphen
points) the last one is the one TEX uses. Hyphen-
ation exceptions are global and are not limited by
group delimiters.

7 TEX hyphenation mechanism

TEX’s hyphenation mechanism consists in examin-
ing each word to find if it appears in the \hyphen-

ation argument of the current language; if so, it
hyphenates the word accordingly; otherwise, it ex-
amines all possible patterns for dividing the word,
patterns that must appear in the pattern list for the
current language. This done, it compares and saves
the highest digits that the several patterns have pro-
duced between the same pairs of letters, and inserts
(implicit) discretionary breaks where odd digits ap-
pear.

To tell the whole truth, TEX actually does not
insert such discretionary breaks before a certain
number of letters from the beginning of the word
and after another (possibly different) number of let-
ters from the end; with version 3.xx of TEX, such
numbers, call them λ and ρ respectively, can be set
with the commands

\lefthyphenmin = λ

\righthyphenmin = ρ

With US English, the default values are λ = 2
and ρ = 3, but for UK English, the left limit is λ = 3;
for Italian, where there are no mute vowels, it is cor-
rect to put λ = 2 and ρ = 2, although, if the line
width is sufficiently large, λ = 3 and ρ = 3 is more
elegant. These two numbers, therefore, relate to the

7 ‘Flexive’ describes languages where nouns, adjectives
and verbs have different forms (or spellings, if you wish) to
show additional elements of meaning: singular or plural, mas-
culine or feminine, case (nominative, accusative, etc., as in
Latin) for nouns and/or adjectives, and the many forms due
to verb conjugation.

TUGboat, Volume 16 (1995), No. 1 35

typographic style, not to the hyphenation mecha-
nism, and may be varied according to individual
language/national typographical practice and to the
particular style one prefers. This implies that pat-
terns and hyphenation exceptions lists should not
consider these two values and should produce cor-
rect breakpoints even if they are set at λ = 1 and
ρ = 1.

8 Tools

Constructing a pattern list for a language whose hy-
phenation rules are not too complicated is not a dif-
ficult task; you just have to organize yourself with
the following “tools”:

1. a grammar or a very good personal knowledge
of the language;

2. a dictionary where syllabification is shown;8

3. any national or language regulations, if they ex-
ist, that establish rules for typographical hy-
phenation;

4. if available, an excellent tool would be an ortho-
graphic dictionary in computerized form; for
Italian we found the one prepared by Luigi
Bianchi (to be used with AMSpell [6]);

5. a good handbook for typographical typesetting
practice.

Another couple of tools are the \showhyphensmacro
provided by TEX, and a macro set provided by Eijk-
hout [8], called \printhyphens.

The first tool, \showhyphens, outputs TEX hy-
phenation on the screen and into the .log file in
the form of the usual warning message for underfull
hboxes. Eijkhout’s macros instruct TEX to set one
word per line with hyphens inserted at the break-
points identified by TEX’s hyphenation algorithm.
The second approach is more elegant, and allows
you to produce a clean hardcopy; its only draw-
back is that fragile commands tend to break up.
\showhyphens is much simpler, but its output (from
the .log file) does not contain the extended charac-
ters; on the other hand, the output may contain
strange symbols9 or “double caret” sequences, so
that its interpretation requires a little skill by the
user.

Then you should translate the “spoken” syllabi-
fication rules into “abstract” statements of the form:

if vi and ci are vowels and consonants respec-
tively, hyphenate as follows:

8 This is not a trivial recommendation; except for English,
we do not know of any language for which syllabification is a
standard feature of every dictionary.

9 They are the symbols that the computer has in its inter-
nal tables for driving the screen or the printer in correspon-
dence with the internal TEX character “numbers”.

• v1c1v2 → v1-c1v2
• v1c1c2v2 → v1c1-c2v2
• and so on (these rules are just examples

and do not refer to any particular lan-
guage)

If you succeed in translating all the “spoken” rules
in the above form, then you can proceed to con-
struct the pattern list. Otherwise, patgen is proba-
bly the only practical solution: you must start from
the very beginning and construct a huge list (several
thousand words) of perfectly spelled and hyphen-
ated words taken from a language dictionary, then
process this list by means of patgen. But before
starting this heavy task be sure to do everything you
can in order to find out if someone else has already
done it; public archives are there for that purpose!

We will now describe the manual procedure.
Something to keep in mind as you translate the spo-
ken rules into abstract form: prepare a list of words
that contain examples of application of the rules;
counter examples are also precious elements in this
list. Both can later be used to easily check the per-
formance of your hyphenation algorithm.

9 Romanian syllabification “spoken” rules

Our colleague Tulei was able to produce a list of
Romanian syllabification spoken rules in three forms
which are not completely equivalent so that some
intelligent interpretation must be introduced:

1. First form [1]:

(a) if one vowel is followed by a single conso-
nant, the latter belongs to the following
syllable;

(b) two vowels that do not form a diphthong
belong to different syllables;

(c) i and u between other vowels behave as
semi-consonants and start a new syllable;

(d) if a vowel is followed by several consonants
the first consonant belongs to the left syl-
lable and the other consonants to the right
syllable with the exception of the following
items;

(e) if one of the consonants b, c, d, f, g, p, t,
v is followed by l or r, the pair cannot be
split;

(f) the groups ct , cţ, and pt preceded by one
or more consonants get split between the
first and the second elements of the group;

(g) prefixed words are separated according to
etymology if the component words main-
tain their integrity.

2. Second form [13]:

36 TUGboat, Volume 16 (1995), No. 1

(a) a single consonant between two vowels be-
longs to the second syllable;

(b) two consonants between two vowels
are separated unless the second is an l or
an r ;

(c) three or more consonants between two vow-
els are divided so as to leave one or two
consonants with the second syllable, the
latter case occurring when the last conso-
nant is l or r ;

(d) vowels forming a hiatus are divided;

(e) prefixed words are divided according to
their etymology.

3. Third form [5]:

(a) vowels forming a hiatus are divided;

(b) a single consonant between two vowels
belongs to the second syllable; for the
application of this rule the digraphs ch
and gh are considered a single consonant,
as are digraphs imported from other lan-
guages which are not “regular” in Roma-
nian words, such as, for example, sh;

(c) two consonants are divided unless an l or
an r follows one of the consonants b, c, d,
f, g, h, p, t, v ;

(d) three consonants are divided after the first
one if the group ends with l or r; otherwise,
they are divided after the second conso-
nant. The “regular” Romanian consonant
triplets of the latter group are: lpt, mpt,
mpţ, ncs, nct, ncţ, ndv, rct, rtf, stm;

(e) four or five consecutive consonants are di-
vided after the first one, except in adapted
words and neologisms.

For rule 3e the underlying concept seems to be that
division must take place where the second syllable
can be pronounced by a normal Romanian speaker.
In other words, the second syllable must start with
the longest set of consonants that can be found at
the beginning of other Romanian words. The cor-
rect division is therefore ang-strom, not an-gstrom
because there is no Romanian word starting with
gstr, but there are plenty starting with str.

Another remark: among the grammars exam-
ined, none considers the group ngv that appears in
at least one word that is linguistically important:
lingvistic. By analogy with the previous remark,
since no Romanian word starts with gv, we have de-
cided to adopt the division ng-v.

The cratima or liniuţă de unire (intra-word dash
or hyphen) is used to connect most compound words,
but it is also used to mark vocalic elision, much as

Consonants: b, c, d, f, g, h, j, k, l, m, n, p, r,
s, ş, t, ţ, v, x, z

Vowels: a, â, ă, e, i, î, o, u
Special letters: q, w, y

Table 1: Classification of Romanian letters

French and English use an apostrophe. This is a
minor problem because TEX hyphenates words con-
taining the intra-word dash or hyphen only in cor-
respondence with the hyphen character; in the case
where the cratima is used for marking vocalic elision
there should be no line break.

10 Romanian “abstract” rules

Let us put the Romanian spoken rules into abstract
form. As usual, let ci be the consonants, li the liquid
consonants l or r, vi the vowels in general, oi the
vowels belonging to the set {a, â, ă, e, o}, and x is
a specific letter (x in this example). This yields the
following abstract rules:

v1c1v2 → v1-c1v2 (1)

if c1 ∈ {li} and c2 6∈ {li} then

v1c2c1v2 → v1-c2c1v2 (2)

v1c3c2c1v2 → v1c3-c2c1v2 (3)

else

v1c2c1v2 → v1c2-c1v2 (4)

if c2c1 = ct or
c2c1 = cţ or
c2c1 = pt or
c2c1 = pţ then

v1c3c2c1v2 → v1c3c2-c1v2 (5)

else

v1c3c2c1v2 → v1c3-c2c1v2 (6)

v1c4c3c2c1v2 → v1c4-c3c2c1v2 (7)

v1c5c4c3c2c1v2 → v1c5c4-c3c2c1v2 (8)

end if end if

if v1 = v2 then

v1v2 → v1-v2 (9)

else if v1 = i or v1 = u then

o1v1o2 → o1-v1o2 (10)

end if

In order to apply the above rules it is necessary to
define the sets of vowels and consonants; in Roma-
nian we have the situation summarized in Table 1.
The letters q, w, and y are classified as special be-
cause they appear only in words not strictly Ro-
manian, that is imported or adapted from foreign
languages; in order to hyphenate at least some of
these imported words, such letters will be included
in the patterns. Furthermore the digraphs ch, gh,

TUGboat, Volume 16 (1995), No. 1 37

sh, and the like, that are not listed in Table 1, must
be counted as a single consonant.

We considered hiati, diphthongs and triph-
thongs only to a limited extent. Romanian is very
rich in diphthongs and triphthongs, but the same
couples or triplets of vowels may be indivisible or
form a hiatus in different words, or in the conjuga-
tion or declination of the same word they might play
a different rôle and become divisible when they used
not to be — and vice versa. Since it is so difficult
to classify pairs or triplets of vowels as diphthongs
or triphthongs, the best thing to do is not to divide
them at all, except when rules 9–10 are applica-
ble. Furthermore, let us remember the typographic
point of view of avoiding line breaks within a vocalic
group.

11 Romanian patterns

With Romanian, as with other languages where the
rules refer to vowels and consonants, it is necessary
to establish if the former or the latter play a more
important rôle in hyphenation. If we exclude the
division of vocalic clusters (except when rule 10 ap-
plies), there is no doubt that consonants are the dis-
criminating elements, so that patterns may be built
focusing on consonants.

When we want to apply rules 1–10, we must
not implement the patterns by making all the com-
binations of letters implied by such rules. We would
otherwise create a set of patterns that would be un-
necessarily large, because it would contain combina-
tions that never occur in the real language.

Furthermore we use the smallest weight-digits
available, remembering that 0 is also implicitly used
when we do not write anything. So we start with
omitting all vowels, unless specifically required, and
start producing the following patterns that should
take care af all single intervocalic consonants, and
all single consonants at the beginning and ending of
words:

1b 1c 1d 1f 1g 1h 1j 1k 1l 1m 1n 1p 1q 1r

1s 1ş 1t 1ţ 1v 1x 1z

.b2 .c2 .d2 .f2 .g2 .h2 .j2 .k2 .m2 .p2

.s2 .ş .t2 .ţ .v2 .z2

2b. 2c. 2d. 2f. 2g. 2h. 2j. 2k. 2l.

2m. 2n. 2p. 2r. 4s. 2ş. 4t. 2v. 2x.

2z.

Now we consider the l and r rules starting with state-
ment 2; in passing, we also add the digraphs ch
and gh, the digraph sh that appears so often in for-
eign words, and the group tz that appears in several
adapted technical words:

c2h g2h s2h t2z

b2l c2l d2l f2l g2l h2l k2l p2l t2l v2l

b2r c2r d2r f2r g2r h2r k2r p2r t2r v2r

Next, we allow word division between other conso-
nants, inhibiting word division before the first one
of the pair; as well, we introduce some patterns for
dealing with the special letters w and y:

2bc 2bd 2bj 2bm 2bn 2bp 2bs b3s2t 2bt

2bţ 2bv

2cc 2cd 2ck 2cm 2cn 2cs 2ct 2cţ 2cv 2cz

2dg 2dh 2dj 2dk 2dm 2dq 2ds 2dv 2dw

2fn 2fs 2ft

2gd 2gm 2gn 2gt 2g3s2 2gv 2gz

2jm

2hn

2lb 2lc 2ld 2lf 2lg 2lj 2lk 2lm 2ln 2lp

2lq 2lr 2ls 2lt 2lţ 2lv 2lz

2mb 2mf 2mk 2ml 2mn 2mp 2m3s2 2mţ

2nb 2nc 2nd n3d2v 2nf 2ng 2nj 2nl 2nm

2nn 2nq 2nr 2ns n3s2a. n3s2ă n3s2e

n3s2i n3s2o n3s2cr n3s2f ns3h n3s2pl

n3s2pr n3s2t 2nş n3ş2c n3ş2t 2nt 2nţ

2nv 2nz n3z2dr

2pc 2pn 2ps 2pt 2pţ

2rb 2rc 2rd 2rf 2rg 2rh 2rj 2rk 2rl 2rm

2rn 2rp 2rq 2rr 2rs r3s2t 2rş 2rt 2rţ

2rv 2rx 2rz

2sb 2sc 2sd 2sf 2sg 2sj 2sk 2sl 2sm 2sn

2sp 2sq 2sr 2ss 2st 2sv 2sz

2şn

2şt

2tb 2tc 2td 2tf 2tg 2tm 2tn 2tp 2ts 2tt

2tv 2tw

2vn

1w wa2r

2xc 2xm 2xp 2xt

1y 2yb 2yl 2ym 2yn 2yr 2ys

2zb 2zc 2zd 2zf 2zg 2zl 2zm 2zn 2zp 2zr

2zs 2zt 2zv

Some of the patterns have a non-repetitive look in
order to take care of rules 6, 7 and 8; for example
n3s2t overrides 2st so that a word like monstru can
be hyphenated correctly as mon-stru. With just the
“regular” pattern 2ns, the hyphenation would have
been mons-tru.

Finally, we introduce the patterns that involve
vowels; in particular, we inhibit hyphenation when
the last syllable (and the whole word altogether)
ends with an i. This is useful because the final i
is almost mute in the endings of some masculine
non-articulated nouns and adjectives, and in such
cases line breaks are not allowed [7]. But since TEX
does not know anything about the language, we take

38 TUGboat, Volume 16 (1995), No. 1

a conservative approach and inhibit division before
any ending syllable terminated with an i.

a1ia a1a a1ia a1ie a1io ă1ie ă1oa â1ia

e1e e1ia i1i i2ii. 2i. o1o o1ua o1uă

u1u u1ia u1al. u1os. u1ism u1ist u1işt

2bi. 2ci. 2di. 2fi. 2gi. 2li. 2mi.

2ni. 2pi. 2ri. 2si. 2şi. 2ti. 2tri.

2ţi. 2vi. 2zi.

Eventually we add a few patterns that work with
some prefixes:

.ante1 .anti1

.contra1

.de3s2cri

.de2z1aco .de2z1amă .de2z1apro

.de2z1avan .de2z1infec .de2z1ord

.i2n1ad .i2n1am .i2n1of .î2n1ăsp

.î2n1ad .î2n3s2 .în3ş2

.ne1a .ne1î .nema2i3 .ne3s2ta

.re1ac .re1î

.su2b1ord .su2b3r

.supra1

.tran2s1 .tran4s3pl .tran4s3f

12 Tests and conclusion

We were able to obtain a small pattern file con-
taining 350 patterns10 and requiring 31 ops. This
pattern set is much simpler than that mentioned in
Sojka and Ševeček, and the results are simpler too.
However, although the ratio between the number of
patterns cited by these two authors and our set is ap-
proximately 12, our results are not 12 times poorer.
It might be interesting to test them on a large set
of Romanian words in order to compare the differ-
ences. As for our experience, we used these patterns
to typeset a large number of Romanian documents
but never experienced an incorrect line break.

Using Eijkhout’s \printhyphensmacro, we can
verify what we got: feeding this macro some test
words11 we get the following:

a-do-les-cen-ti-lor in-dus-triei
a-pro-b–and in-e-gal
ba-ia jert-f–a
Bu-cu-resti mon-stru
con-struc-tor post-de-cem-bris-t–a
dum-ne-zeu vre-mea
drep-tu-lui Wa-shing-to-nu-lui
dez-a-van-ta-jul watt-me-tru
fla-shul

10 One pattern not mentioned here is 2-2, which makes it
possible to distinguish between the cratima (referred to in
section 9) and the hyphen character, by using appropriate
category codes.
11 For testing purposes, we set λ = 1 and ρ = 1; in normal

Romanian typesetting, it is better to set λ = 2 and ρ = 2.

Let us point out that with the help of such tools
one can verify both the validity of the pattern set
and if any patterns are missing. For example, if a
word turns out to have incorrect hyphen points, it is
possible to find out why: — wrong patterns? miss-
ing patterns? wrong weights? — and to proceed with
corrections. This is how we discovered that we had
originally missed the pattern 2tt, which refers to
a double consonant not present in “normal” Roma-
nian; in fact, without this pattern, wattmetru gets
hyphenated as wa-tt-me-tru, which is obviously
wrong since it has a word fragment without vowels.
Similar situations can be easily spotted by means of
the word list that had been prepared together with
the patterns, as suggested above. With the help of a
dictionary it is possible to spot unusual or doubtful
words, include them in the test word list, and find
out if they get hyphenated correctly.

A few concluding remarks. Romanian is not
particularly easy nor particularly difficult to hyphen-
ate. If one gives up the possibility of TEX doing the
whole task of separating the prefixes, and is willing
to using "- or similar macros for inserting discre-
tionary soft breaks in the prefixed words, the pattern
file one gets is of very modest size although it pro-
duces correct hyphenation in most circumstances.
Such a small file is compatible with the memory lim-
itations of small implementations of TEX the pro-
gram; (LA)TEX can be initialized with several hy-
phenation patterns at the same time, allowing the
user to create a multilanguage tool that allows him/
her to typeset texts in several languages without the
need for changing software when passing from one
language to another.

Acknowledgments

We would like to thank the precious cooperation of
Mihai Lazarescu and Janetta Mereuta who helped
very much with the queries and discussions on the
Internet and with the creation of a test word list
with normal and unusual Romanian words.

References

[1] A.V., Îndreptar ortografic, ortoepic şi de
punctuaţie, Bucureşti, 1971 (ed. III-a).

[2] Beccari C., “Computer Aided Hyphenation for
Italian and Modern Latin”, TUGboat 13(1):23–
33, April 1992.

[3] Beccari C., “Configuring TEX or LATEX for
typesetting in several languages”, TUGboat
16(1):18–30, March 1995.

[4] Beeton B., “Hyphenation Exception Log”,
TUGboat 13(4):452–457, December 1992.

TUGboat, Volume 16 (1995), No. 1 39

[5] Beldescu G., Ortografia actuala a limbii
române, Bucureşti: Editura Ştiinţifică şi En-
ciclopedica, 1985.

[6] Bianchi L., italian.zip. [Includes the com-
plete set of tools for checking correct Italian
spelling in ASCII and (LA)TEX compuscripts;
available from ftp.yorku.ca or contacting di-
rectly L. Bianchi at lbianchi@sol.yorku.ca.]

[7] Breban V., Bojan M., Comşulea E., Negomi-
neanu D., Şerban V., Teiuş S., Limba română
corectă, Bucureşti: Editura Ştiinţifică, 1973.

[8] Eijkhout V., “The bag of tricks”, TUGboat
14(4):424, December 1993.

[9] Ferguson M., frhyph.tex, frhyph7.tex,
frhyph8.tex. [Hyphenation pattern files avail-
able from the CTAN archives in the directory
/tex-archive/languages/french.]

[10] Knuth D.E., The TEXbook, Reading Mass.:
Addison-Wesley, 1990.

[11] Pusztai A. and Ardelean Gh., LATEX, Ghid de
utilizare, Bucureşti: Editura Tehnică, 1994.

[12] Sojka P., Ševeček P., “Hyphenation in TEX
— Quo Vadis?”, Proceedings of the Eighth
European TEX Conference (Sept. 26–30, 1994,
Gdańsk, Poland), 59–68.

[13] Zamsa E., Limba română, recapitulari şi
exerciţii, Bucureşti: Editura Ştiinţifică, 1991.

Appendix

Useful shorthand macros

Although Table 1 shows that just five diacriticized
characters appear in the Romanian alphabet, the
language makes frequent use of these characters, so
that the ASCII source .tex file is filled with se-
quences such as \u{a}, \^a, \^{\i}, \c{s}, \c{t}
(and their uppercase counterparts), to the point
where the source file is almost unreadable. A sin-
gle word may contain several such characters, as for
example ţ̂ışnitură, \c{t}\^{\i}\c{s}nitur\u{a},
that contains four of them, so that to key in the
source file is quite error prone, and finding and cor-
recting possible errors turns out to be quite difficult.

If you have a Romanian keyboard, you can eas-
ily map the input Romanian characters (with in-
ternal code higher than 127) to the appropriate se-
quences: on the screen the text appears without
backslashes and braces, but if you have to send your
file to somebody else on some computer network
global substitutions have to be made to put back
the cumbersome sequences.

Another approach would be to make some char-
acter active and then define it in a suitable way, so

that you may read your source file with a minimum
of extra characters interspersed.

German and Dutch users, who have similar
problems, have chosen the double quote "; nothing
prevents us from doing the same for Romanian, but
the double quote is used so many times explicitly
or behind the scenes by TEX, especially for repre-
senting internal codes in hexadecimal notation, that
we prefer another, more “innocent” character— the
exclamation mark !.

A LATEX guide has been published recently in
Romania [11], where the apostrophe sign has been
made active and defined in such a way as to save
a lot of keystrokes while keying in the source text.
We wonder if the authors actually used the macros
they suggest on page 109 of their guide because the
\newcommand command cannot (ordinarily) operate
on active caracters, but only on control words —
they probably used a regular \def command. Sev-
eral other TEX users around Romania12 who an-
swered our questions on the Internet revealed that
they are using definitions similar to the ones pub-
lished in the Romanian LATEX guide. But the same
criticism remains: the apostrophe is used internally
by the plain and LATEX format files for identifying
octal numbers, and it becomes really difficult to cre-
ate correct definitions so that character “activity”
does not interfere with octal notation.

Therefore we will stick with our choice of the ex-
clamation mark, but what we state here can be ap-
plied to any other “innocent” character. If you use
babel, then you should add the exclamation mark to
the special TEX characters and provide an argument
to \extrasromanian such as, for example:

\addto\extrasromanian{%

\babel@add@special\!}

\addto\extrasromanian{%

\babel@remove@special\!}

\addto\extrasromanian{%

\babel@savevariable{\catcode‘\!}%

\catcode‘\!\active}

In the style file there must be a statement that mem-
orizes the meaning of ! before changing catcode:

\let\@xcl@@=!

and a set of definitions for the active exclamation
mark:

\begingroup

\catcode‘\!=13

\gdef!{\protect\p@xcl@}

\endgroup

12 They are too numerous to be cited here, but we take
this opportunity to thank them warmly.

40 TUGboat, Volume 16 (1995), No. 1

Some macros must be defined in order to test if
what follows the exclamation mark is a non-expand-
able token (i.e. a character token or a primitive TEX
command), or has an expansion:

\def\@Macro@Meaning#1->#2?{%

\def\@Expansion{#2}}

%

\def\TestMacro#1#2#3{%

\expandafter

\@Macro@Meaning\meaning#1->?%

\ifx\@Expansion\empty

\def\@Action{#3}%

\else

\def\@Action{#2}%

\fi

\@Action}

More definitions are needed, and the apparently
tortuous path followed before arriving at the desired
goal is due to the necessity of making such macros
robust, so that they do not break apart when they
appear in moving arguments, such as when writing
to auxiliary files for cross-reference purposes or for
preparing indices or tables of contents.

\def\p@xcl@{\ifmmode

\@xcl@@

\else

\expandafter\ExCl

\fi}

%

\def\ExCl{\futurelet\eXcl\exCl}

%

\def\excL{\Excl{}}

%

\def\exCl{\TestMacro\eXcl{\excL}{%

\ifcat\eXcl a%

\let\eXcL\Excl

\else

\ifcat\eXcl "%

\let\eXcL\Excl

\else

\let\eXcL\excL

\fi

\fi

\eXcL}}

Finally the definitions we were aiming at:

\def\Excl#1{\expandafter

\ifx\csname @xcl@#1\endcsname \relax

\@xcl@@\space #1%

\else

\csname @xcl@#1\endcsname

\fi}

%

\def\hz{\nobreak\hskip\z@}

!a ă !A Ă

!i ı̂ !I Î
!s ş !S Ş
!t ţ !T Ţ
! ! !" `
!- - !|

Table 2: Sequences obtained with the active
exclamation mark and their results. In math mode
the exclamation mark preserves its meaning.

%

\expandafter

\def\csname @xcl@a\endcsname{\u{a}}

\expandafter

\def\csname @xcl@A\endcsname{\u{A}}

\expandafter

\def\csname @xcl@s\endcsname{\c{s}}

\expandafter

\def\csname @xcl@S\endcsname{\c{S}}

\expandafter

\def\csname @xcl@t\endcsname{\c{t}}

\expandafter

\def\csname @xcl@T\endcsname{\c{T}}

\expandafter

\def\csname @xcl@i\endcsname{\^{\i}}

\expandafter

\def\csname @xcl@I\endcsname{\^I}

\expandafter

\def\csname @xcl@"\endcsname{^^12}

\expandafter

\def\csname @xcl@-\endcsname{\char"7F}

\expandafter

\def\csname @xcl@|\endcsname{\hz\-\hz}

When you select the Romanian language the
exclamation mark becomes active and you get the
shorthand notations summarized in Table 2. The
last line of this table requires some additional com-
ment.

1. The sequence !| produces a discretionary break
that does not inhibit hyphenation in the rest of
the word, and is useful for marking the bound-
ary between a prefix and a word stem. This se-
quence complements the regular TEX sequence
\- that inserts a discretionary break but in-
hibits hyphenation in the rest of the word.

2. The sequence !- produces the short dash that
is used for connecting compound words (quite
rare in Romanian); it inserts the \hyphenchar

that TEX treats in a special way for what con-
cerns line breaking. In fact, when this character
appears, TEX breaks the line, if necessary, only
after the short dash.

TUGboat, Volume 16 (1995), No. 1 41

3. The frequent cratima, i.e. the short dash to be
used in place of an elided vowel or for connect-
ing enclitic pronouns (across which line breaks
are forbidden), is obtained by the usual - sign,
but to avoid having TEX treat it as the hyphen-
char, it is necessary (a) to chose a different en-
try in the font table for the hyphen character,
and (b) to assign the “minus sign” an \lccode

different from 0, so that in text mode it can be
treated as a regular letter and it is possible to
enter a special pattern, 2-2 in the pattern list,
so that line breaks are forbidden across it. By
so doing, the number of ops increases by 1, but
still remains very reasonable.

The extended fonts actually include two short
dashes, one with hexadecimal code "2D, and the
other with hexadecimal code "7F. For Roma-
nian, it is therefore necessary to assign a low-
ercase code to "2D so as to use it as a cratima,
and to declare "7F to be the \hyphenchar for
the current extended font.

In order to revert to the original situation
when a different language is selected, it is neces-
sary to restore the \lccodes and the \hyphen-

char assignments. We did not investigate how
this is done in babel, but we did it with our im-
plementation, which is less general, compared
with the facilities offered by babel.

It is worth noting that the exclamation mark fol-
lowed by a character different from one of those
listed in Table 2 reproduces itself; since this mark is
commonly used at the end of a sentence, and there-
fore is followed by a space or an end-of-line mark, a
space is inserted by default by the macro expansion.

A sample (source) text follows, so as to appre-
ciate the shorthand notations just introduced.

Problema desp!ar!tirii cuvintelor !in

silabe se pune mai ales !in scriere,

unde se ivesc dificult!a!ti c\^and

este vorba de vocale sau de consoane

succesive. Dar problema desp!ar!tirii

!in silabe este str\^ans legat!a !si de

pro!|nun!tarea corect!a a unor cuvinte

care con!tin diftongi, triftongi sau

vocale in hiat, dup!a cum se va vedea

mai departe.

La categoria de nume geografice

teritorial!-administrative, {\em

!Indreptarul ortografic} prevede c!a

acestea !"se scriu cu ini!tial!a

majuscul!a la toate cuvintele

componente‘‘, preciz\^andu-se !in

acela!si timp c!a: !"Numele generice

{\em deal, fluviu, insul!a, lac, munte,

peninsul!a, r\^au, vale} etc., c\^and

nu fac parte din denumire, se scriu cu

ini!tial!a mic!a‘‘.

Note that â still requires the full accent sequence,13

but it is just three keystrokes, compared with the
numerous keystrokes required by the other special
characters. Notice the sequence !- that connects
a compound word (after which TEX will break the
line if necessary) and the cratima that connects the
enclitic pronoun (where hyphenation is forbidden).
And finally, notice the reversed and lowered quota-
tion marks and the soft discretionary inserted after
the prefix pro.14 The corresponding typeset text ap-
pears as such:

Problema despărţirii cuvintelor ı̂n silabe se
pune mai ales ı̂n scriere, unde se ivesc difi-
cultăţi când este vorba de vocale sau de con-
soane succesive. Dar problema despărţirii ı̂n
silabe este strâns legată şi de pronunţarea
corectă a unor cuvinte care conţin diftongi,
triftongi sau vocale in hiat, după cum se va
vedea mai departe.

La categoria de nume geografice teritorial-
administrative, Îndreptarul ortografic prevede
că acestea `se scriu cu iniţială majusculă la
toate cuvintele componente“, precizându-se
ı̂n acelaşi timp că: `Numele generice deal,
fluviu, insulă, lac, munte, peninsulă, râu, vale

etc., când nu fac parte din denumire, se scriu
cu iniţială mică“.

⋄ Claudio Beccari
Dipartimento di Elettronica
Politecnico di Torino
Turin, Italy
Email: beccari@polito.it

⋄ Radu Oprea
Dipartimento di Elettronica
Politecnico di Torino
Turin, Italy

⋄ Elena Tulei
Universitatea Tehnică de
Construcţii

Bucureşti, România

13 Up to a couple of years ago, â was used only in the word
România and its derivatives. Since the last spelling reform
this sign is used more often; in the example we have used the
modern spelling.
14 Actually there is no need for this discretionary break—

it was put there just to show its use. With our patterns we
did not succeed in finding a sample text containing something
that really requires the use of a soft discretionary break.

42 TUGboat, Volume 16 (1995), No. 1

TEX and Linguistics

Christina Thiele

Over the past few years a small but persevering
group of us have been working on gathering informa-
tion about the use of TEX for typesetting linguistics
material. And for more than just the past few years,
many people have been developing macros to deal
with the specialized formatting which often arises
in this field.
The information-gathering has yielded some

useful results which have been announced and pub-
lished in various places; this short piece simply col-
lects that all into one article.
There are three main items to present here:

the Technical Working Group (TWG), the ling-tex
list, and an inventory of style files (ling-mac.tex).

1 The TWG for TEX and Linguistics

This TWG was formed in July of 1994, following the
previous half-year’s activity on the ling-tex list
(see below). While activity in the TWG has been
quite minimal, the following people are now part
of the group: Christopher Manning (Stanford Uni-
versity), Rei Fukui (University of Tokyo), myself as
chair, and Stuart Shieber (Harvard University). The
TWGmaintains the inventory of macros (see below),
and is planning a similar inventory of fonts.
The TWG is officially designated as WG-94-10

(SI-TWG= special interest). Our mandate currently
reads as follows: “The main goal is to study and
discuss the requirements for typesetting linguistics
in TEX and as a means of identifying, examining,
testing, and comparing macros, fonts, style files and
other aids for typesetting linguistics.” The liaison
to the Technical Council is Yannis Haralambous.1

2 The ling-tex list

The purpose of ling-tex is to identify material
which is available to typeset linguistics text with
TEX, and to also stimulate testing, improvements
to code and documentation, and so on, all with as
much cooperation and assistance from the original
authors as possible. It is no coincidence that this
is very similar to the mandate of the TWG: at the
time the Technical Council was inviting people to
consider starting up special interest working groups,
it wasn’t clear to me how much of an interest there
might be in TEX and linguistics. The list was a way
to gauge that interest. Initial response was such that

1 For a complete list of Technical Working Groups, ftp
the file twg-list.tex from CTAN in tex-archive/usergrps
(.dvi and .ps files are also available.

by the end of its first month over 150 subscribers had
joined. There was—and continues to be— interest:
the list currently has some 250 subscribers.
Begun late in 1993, the list was originally set

up by George Greenwade at SHSU. ling-tex has
now moved to the University of Oslo, where it is
maintained by Dag Langmyhr. To subscribe to the
list, send a message to ling-tex-requests@ifi.
uio.no. To post messages, address them to ling-
tex@ifi.uio.no. A Web page has recently been
started and will be ready for public viewing by the
time you read this article. The address is http://
www.ifi.uio.no/~dag/ling-tex.html.

3 The ling-mac.tex inventory

One immediate result of the ling-tex list was in-
formation about style files various people had devel-
oped to deal with such formatting issues as tree dia-
grams, examples, glosses, and attribute-value matri-
ces, as well as bibliographies via BibTEX files.

2 The
first draft was circulated in early 1994; it is now
regularly updated and posted to the ling-tex list.
The inventory appears below; most material is for
LATEX rather than plain.

TEX and LATEX Macros for Linguistics

The following list is not intended to be exhaustive
or complete; it is based on information which has
come to light as people have posted messages to the
ling-tex mailing list.
The material is all public domain, but the usual

requests for citing authorship, not changing the con-
tents without changing the file name, and so on
apply. These are the results of volunteers efforts,
and a desire to share those efforts with others; this
should always be kept in mind. Constructive criti-
cism, helpful suggestions, or offers of revised coding
or wording are always welcome.

Index of .sty files

1. avm-doc.tex, avm.sty

2. cgloss4e.sty

3. chomsky.sty

4. cjl-glosses.tex

5. cm-lingmacros.sty

6. covingtn.tex covingtn.sty

7. french.sty

8. glex.sty

9. gloss.tex, gloss.doc.

10. lingmacros.sty

11. lsalike.sty, lsalike.bst

2 The ling-mac.tex file can be found on CTAN in
tex-archive/info/ling-mac.tex. Contact the TWG for ad-
ditions and corrections.

TUGboat, Volume 16 (1995), No. 1 43

12. numquote.doc, numquote.tex, enum.sty

13. pstrees

14. pstricks

15. tree-dvips

16. voorbeeldom.sty

Details on various .sty files

1. avm-doc.tex, avm.sty:
Christopher Manning
(manning@csli.stanford.edu).

Macros for attribute-value matrices. Documenta-
tion available (but not printed in this collection).

csli.stanford.edu:pub/TeXfiles

2. cgloss4e.sty:
This is a modified version of covingtn.sty by Hap
Kolb and Craig Thiersch. For glosses; as with
covingtn.sty, does not require ampersands (&) to
align sets of glossed items.

“[The f]ollowing borrows from M. Covington’s style
files inspired by Midnight by M. de Groot, adapted
to be used with gbt3.sty: examples beginning with
\ex can contain glosses directly. Default is Linguis-
tic Inquiry style with all lines in \rm.”

No documentation, but file is heavily commented.
Posted to ling-tex; not currently available on
archives.

3. chomsky.sty:
Michael Barr.

No documentation; however, file is heavily anno-
tated. Some draft documentation by Ch. Thiele

4. cjl-glosses.tex:
Maintained by by Ch. Thiele
(cthiele@ccs.carleton.ca).

Macros for glosses (seems to work in both plain
TEX and in LATEX). Variants for centred, flush
right or left glosses, and others. Some documen-
tation; needs testing before it can be put out on
the archives.

Posted to ling-tex list; not currently available on
archives.

5. cm-lingmacros.sty:
Christopher Manning and Avery Andrews
(Avery.Andrews@anu.edu.au).

Modified version of lingmacros.sty (see below).

csli.stanford.edu:pub/TeXfiles

6. covingtn.tex, covingtn.sty:
Michael Covington.

LATEX macros for numbered examples, glosses,
phrase structure rules, feature structures, discourse
representation structures, exercises, reference lists,
and miscellany. Documentation.

CTAN: tex-archive/macros/latex/contrib/
covington

7. French Style Files:
Bernard Gaulle (gaulle@idris.fr).

French-based style files offering an easy-to-use mul-
tilingual scheme to work with other languages (En-
glish and German are currently offered). French
patterns are up-to-date and there are a lot of test
files. This package also offers a way to change your
keyboard “on the fly” and to set your default at
initex time, i.e. when creating your format. Two
versions are released per year.

ftp.univ-rennes1.fr:pub/GUTenberg/french

8. glex.sty:
Rob Norris; notes from Chet Creider.

LATEX macros for numbered glosses. All three lines
of a gloss are input; by contrast, cjl-glosses.
tex only takes care of the first 2 lines, requiring
the 3rd line, the translation, to be formatted in-
dependently. On the other hand, glex.sty works
with tabs, while cjl-glosses.tex groups each set
of word-1 over gloss-1 within braces.

[Availability not yet determined.]

9. gloss.tex, gloss.doc:
Part of the Midnight Macros set by Marcel van der
Goot (marcel@cs.caltech.edu).

Macros for vertically aligning words in consecutive
sentences. Documentation.

CTAN: tex-archive/macros/macros/generic/
midnight

10. lingmacros.sty:
Emma Pease, CSLI, Stanford.

Macros for numbered examples, trees, AVM struc-
tures.

csli.stanford.edu:pub/TeXfiles

11. lsalike.sty, lsalike.bst:
Daniel S. Jurafsky, UC Berkeley.

“lsalike style file for BibTEX. It implements a bibli-
ography format which is very close to the LSA style
sheet and resembles the journal Language. Among
its advantages are that it does the lovely dashed
lines for repeated bib entries that makes Language
bibliographies so easy to read, and it also makes
citations of the form ‘Chomsky (1965:134)’ very
easy.”

ftp.icsi.berkeley.edu:pub/ai/jurafsky

12. numquote.doc, numquote.tex, enum.sty:
Bob Mercer, U. of Western Ontario.

LATEX macros for automatic numbering of exam-
ples. Documentation.

Posted to ling-tex list; not currently available on
archives.

44 TUGboat, Volume 16 (1995), No. 1

13. pstrees:
Avery Andrews; requires tree-dvips (see below).

“This package consists of a preprocessor and some
macro-definitions, by which linguistics-style trees
can be specified as convenient indented lists, with
spacing and line-drawing done automatically.”

csli.stanford.edu:pub/TeXfiles

[Note: pstrees contains files which do not include
the prefix “pstrees”; rather, the main files are
trees.**, which may cause confusion if one is not
careful – Ch.]

14. pstricks:
Timothy Van Zandt (tvz@princeton.edu).

This is an extensive collection of PostScript macros
that is compatible with most TEX macro packages,
including Plain TEX, LATEX, AMS-TEX and AMS-
LATEX. Included are macros for color, graphics, ro-
tation, trees and overlays. “PSTricks puts the icing
(PostScript) on your cake (TEX)!” Documentation.

CTAN: tex-archive/graphics/pstricks

15. qtree:
Alexis Dimitriadis
(alexis@babel.ling.upenn.edu).

Tree macros (written by Jeff Siskind) with a front
end allowing trees to be specified in bracket nota-
tion. These macros take into account the size of
the node labels when designing the tree; it is usu-
ally only necessary to give the bracketed structure
to obtain beautiful trees. The node labels them-
selves can be arbitrarily complicated. The output
is .dvi (not PostScript) directives, thus it can be
previewed with xdvi.

Version 2 simplifies the labeling of non-termin
nodes and provides triangular “roofs”. Documen-
tation is included in the distribution file. [Note:
This is a new release, dating from February 1995.]

ai.uga.edu:/pub/tex

16. tree-dvips:
Emma Pease (emma@csli.stanford.edu).

CSLI PostScript drawing macros. These macros
were originally created to draw the lines between
nodes in the trees created by the tree macros in
lingmacros.sty. They will only work with dvips
version 541 or later (by Tomas Rokicki available on
labrea.stanford.edu) but can be easily modified
to be used with earlier versions of dvips and slightly
less easily modified for other .dvi-to-PostScript
convertors. Documentation. [Formerly: tree.tex.]

csli.stanford.edu:pub/TeXfiles

17. treetex:
Anne Brueggemann-Klein and Derick Wood.

Extensive tree-drawing macro set. Documentation
available. See also A. Brueggeman-Klein and Der-
ick Wood, “Drawing trees nicely with TEX,” Elec-
tronic Publishing 2.2:101–115 (1989).

[Availability unknown.]

18. voorbeeldom.sty:
Werenfried Spit
(spit@vm.ci.uv.es, spit@ific.uv.es).

LATEX document-style option which defines an enu-
merate-like environment for typesetting linguistic
examples. No documentation, but the .sty file has
commented examples.

CTAN: tex-archive/macros/latex/contrib/
misc/

What’s available where

CTAN: Most TEXware is available via ftp from CTAN
(Comprehensive TEX Archive Network) sites, in the
directory /tex-archive. CTAN sites include:

United Kingdon ftp.tex.ac.uk
Huntsville, Texas ftp.shsu.edu
Germany ftp.dante.de

The CTAN holdings are too numerous to list here.
For more information, get the readme files from the
/tex-archive directory.

CSLI: In addition to CTAN, there has been a long-
standing ftp site at Stanford:

csli.stanford.edu:pub/TeXfiles

U of Georgia: There is a smaller archive at the Uni-
versity of Georgia which contains files of local in-
terest.

ai.uga.edu:pub/tex

U of Tokyo: There is a small archive at the University
of Tokyo which contains the latest version of the
phonetic font TSIPA and other related files.

tooyoo.l.u-tokyo.ac.jp:pub/TeX/tsipa

⋄ Christina Thiele
15 Wiltshire Circle
Nepean, Ontario
K2J 4K9 Canada
Email: cthiele@ccs.carleton.ca

TUGboat, Volume 16 (1995), No. 1 45

Font Forum

Introducing METAPOST

Alan Hoenig

I am pleased that the article by Yannis Haralam-
bous which immediately follows these comments is
available. People using METAFONT should find it of
great interest and significance.
It has long been clear that METAFONT things

are of interest to only a limited subset of TEX or
LATEX users. Who, after all, has the time to design
fonts? The event that I wish now to report should
significantly alter this perception. As of April of
1995, John Hobby’s METAPOST program has been
placed in the public domain, and I’d like to comment
on this turn of events.

METAPOST is similar to the METAFONT lan-
guage, so METAPOST input files look a lot like
METAFONT files. However, the output is different—
METAPOST produces PostScript output rather than
generic font files, so it is printable on any PostScript
device. It’s not really possible to produce fonts with
METAPOST. Its raison d’être is really toward the
production of high quality graphics for inclusion in
a TEX or LATEX document.
There are differences between METAFONT and

METAPOST, and these are necessitated by the dif-
ferences in use and environment. PostScript de-
scriptions are to be device independent, so all of
METAFONT’s pixel-handling constructs have been
removed. Things like the sharp convention and com-
mands like cullit are not part of the METAPOST
language. Certain enhancements have been added
to the METAPOST language in aid of fine graphics.
For example, METAPOST is also able to easily

include TEX or LATEX text within its graphic output,
so tags on graphs and drawings can now match the
text font exactly. The METAPOST package includes
special macro packages for drawing graphs and for
drawing boxes and ovals. The silly graph in fig-
ure 1 (everything above the caption) was produced
entirely by METAPOST—it read the data points,
connected them with a smooth curve, prepared the
coordinate axes, and integrated the LATEX labels and
tags all by itself.
The output of a successful METAPOST run is a

sequence of files with names like foo.1, foo.2, and
so on. With the epsf macro package they are easily
included in any document that is post-processed by
Tom Rokicki’s dvips (although it may be that other

−1

−0.5

0

0.5

1

Some Test Data

y

0 π/2 π 3π/2 2π

The horizontal coordinate, x

Figure 1: A sample METAPOST graphic.

post-processors can also incorporate them as well).
Plain TEX authors include lines like

\input epsf

...

\epsfbox{foo.1}

in their document, while LATEX users say something
like

\usepackage{epsf}

...

\begin{center}

\leavevmode\epsfbox{foo.1}

\end{center}

in their documents. (You may use \noindent in
place of \leavevmode if you wish. These are often,
but not always, needed in LATEX environments.)

METAPOST is available from any CTAN archive
in the path tex-archive/systems. At least two
executables already exist, for DOS and for OS/2,
and (I believe) it is now part of the Unix web2c
kit. To learn how to use METAPOST, consult the
original METAFONTbook (usable by virtue of the
many similarities between the two languages), and
also the two technical reports by John Hobby. These
two reports, numbered 162 and 164, are part of the
package, but can be obtained by sending email send
162 or send 164 to netlib@research.com. These
reports are valuable not only for their explications
of METAPOST but for the alternative perspectives
they also provide for METAFONT.

⋄ Alan Hoenig

CUNY, 17 Bay Ave.,

Huntington, NY 11743

Email: ajhjj@cunyvm.cuny.edu

46 TUGboat, Volume 16 (1995), No. 1

Some METAFONT Techniques

Yannis Haralambous

Abstract

This paper presents a few ideas on how to solve cer-

tain geometrical problems arising very often in charac-

ter design, not directly solvable by METAFONT’s plain

macros. The first part of the paper presents two geomet-

rical problems: the “k problem” and the “x problem”,

their solutions using dichotomy, and a different solution

using path intersections. The latter was proposed earlier

on the net by the author; although geometrically correct,

it does not work in real-world METAFONT practice: a

nice example of METAFONT code . . . to avoid.

The second part of the paper presents two simple

macros for drawing “loose” Bézier curves; in a sense, the

opposite of the tension operator. Finally, the third part

solves a problem stated by Alan Hoenig: how to extract

text and data from a METAFONT run, without using

the log file. This is done in a straightforward manner by

running a Flex-generated preprocessor over the GF file:

the Flex code for this utility is given in appendix B.

−− ∗ −−

1 Two geometrical problems, solved by
iterated calculations

1.1 Description

Suppose you want to design a character ‘K’, as in the
left part of fig. 1. The character should fit inside a
box of width w and height h, and should consist of
three strokes: the vertical stroke z0 −−z0′ , and the
two oblique strokes z1 − −z2 and z1′ − −z2′ . Only
constraint: the point z1l = z1′r should be fixed (for
example, its coordinates can be (0, h

2
)). So, here is

the problem:

Find a stroke z1−−z2 with fixed z1l, y2l, x2r.

0′

0

1′

1

2

2′

1

2

The “k problem” The “x problem”

2

2l

r

2l

2r

Figure 1: The two problems.

This problem is not trivial, because METAFONT
cannot compute pen positions without knowing in

advance the angle of the pen (this stands both for
defining a new pen with command pickup pen and
for defining a simulated pen with command penpos).
Because it arises when designing the letter ‘K’, we
will call this problem the “k problem”.
The next problem is encountered when design-

ing an ‘X’, as in the right part of fig. 1. Suppose
you want to draw this letter. Once again it should
fit inside the box, and should consist of two strokes.
To keep the same notation as in the previous case,
we have only given names to the pen positions con-
cerning the upper right part of the letter. In this
case the constraints are: z1 is fixed (and not z1l as
in the previous case), as well as y2l and x2r. Here
again is the problem which we call the “x problem”:

Find a stroke z1−−z2 with fixed z1, y2l, x2r.
Well understood, in both cases the direction of

the stroke must be perpendicular to the angle of the
pen: all strokes must keep the same width.

1.2 The solutions (which work)

Let’s start with the “k problem”. In fig. 2, the reader
has a closer look at the situation. Point A is fixed,
point B must lie on a fixed horizontal line H, and
C on a fixed vertical line V . The angle ÂBC must
stay orthogonal. Also the length BC of the vector
BC is fixed. METAFONT cannot compute the angle
φ directly, so that it fits to these constraints. But
once we have chosen a point B′, METAFONT can
calculate the corresponding C′ so that AB′⊥B′C′
and B′C′ = BC.

H

V

A

B B′

C′

ϕ
ϕ′

C

Figure 2: A closer look at the “k problem”.

So let’s choose a random point B′ ∈ H, and
find the corresponding C′. If C′ lies on the right of
V then we know that we should move B′ more to
the left, if C′ lies on the left of V then B′ should be
moved more to the right. We will modify the posi-
tion of B′ by a certain step and start again. This
procedure will be iterated until we get close enough
to V . The step will be halved every time: because
of the well-known equality

∑
i≥1

1

2i
= 1 we are sure

that this process of iterations will converge to the

TUGboat, Volume 16 (1995), No. 1 47

correct result. One may argue that the result will
always be approximate; this is true in mathematics
but a useless remark in computer calculations, since
all values are approximate anyway. Once we have a
sufficient precision we stop; the sufficient precision

depends on the implementation and the resolution
of our character. This process is called dichotomy
(from dÐqa = in two pieces, and tèmnw = to cut),
and is usually one of the first exercises in most pro-
gramming languages. The code is shown below.

def solve k problem(suffix $, $$, $$$)(expr pen width, first try) =
pair z zero; z zero = z$;
numeric x one, y one, x two;
y one = y$$; x one = first try; x two = x$$$;
numeric theta, n; n := 1;
forever:

clearxy; z$ = z zero; z$$ = (x one, y one);
theta := angle(z$$ − z$); pos$$.1(pen width , theta − 90);
if y$ > y$$:
z$$.1r

else:
z$$.1l

fi = z$$;
x one := x one
if x$$.1r > x two: −
else: +
fi abs(first try − x$)/(2 ∗∗ n);
exitif ((abs(x$$.1r − x two) < 0.1) or (n > 13)); n := n+ 1;

endfor
pos$$$(pwidth , theta − 90); z$$$r = z$$.1r;
enddef ;

This procedure expects that you feed it with:
(a) the suffixes of points z1l, z2l and z2r, (b) the
width of the pen, (c) a hint on the first choice for
x2l. It usually works fine when your hint is sim-
ply the x-coordinate of z2r. Theoretically it can go
wrong if the x-projection of z1l−−z1r is bigger than
the first step of the iteration process. But this can
hardly ever happen.
The iteration is stopped either (a) when the dis-

tance of z2r to V is less than a tenth of a pixel, or
(b) if n = 14, because the next step would produce
a denominator 215 = 32,768, which is too big for
(usual) METAFONT. Experience shows that with 8
steps one is usually done—again, all depends on the
resolution.
Let’s consider the second problem now. As the

reader can see in fig. 3, only the position of point A
differs. Nevertheless, this makes a big difference for
METAFONT: in the previous problem, once we had
chosen B′ we could immediately calculate the posi-
tion of C′. This is not the case here: all we know is
that if D′ is the middle of B′C′, then AD′⊥B′C′.
So we need a different technique already to calcu-
late the location of C′ for each step of the iterating
process. This will be done again by iteration.

A

B B′

B′′

B′′′

D′

C′
C

∆′
θ

C

Figure 3: A closer look to the “x problem”.

But first let’s consider two geometrical facts
which we are going to use.

Fact 1. Let C be a circle, centered at O, and
P a point outside the circle. For every line
∆, going through P and intersecting the cir-
cle at pointsX andX ′, the product of lengths
PX ·PX ′ is constant. In particular, if PT is
a tangent to the circle going through P , then

PT
2
= PX · PX ′.

48 TUGboat, Volume 16 (1995), No. 1

As the reader can see on fig. 4, it follows from
the previous fact that if ∆′ is the line going through
P and O, and intersecting the circle at Y and Y ′,

then PT =
√
PY · PY ′.

P

T

X

Y

X′

Y′O

A

B C
a

b

c

θ

Fact 1. Fact 2.

Figure 4: Two facts from elementary Euclidean
geometry.

The second fact is even more trivial:

Fact 2. Let ABC be an orthogonal trian-
gle; the right angle shall be ÂBC; let’s call
ĈAB = θ, and a, b, c the lengths of faces op-
posite to points A,B,C. Then θ = arccos(c

b
).

Let’s return to our problem (see fig. 3). D′ is
on a circle C centered at B′, of radius 1

2
BC (half the

width of the stroke, since B′D′ = D′C′). Also we
know that AD′⊥B′C′ ⇒ AD′⊥B′C′ ⇒ AD′ is tan-
gent to circle C. Let’s draw the line∆, going through
points A and B′. It will intersect C at points B′′ and
B′′′. FromFact 1 we know thatAB′′·AB′′′ = AD′2.
So we do not yet have D′ itself, but the length of
AD′.

Let’s apply now Fact 2 to the orthogonal tri-
angle AD′B′. We obtain: θ = arccos(AD′/AB′).
Once we have the angle and the length of AD′, we
have point D′, and we are done for this step of the
iterating process. The remainder of the solution is
similar to that of the “k problem”: we are moving
B′ around until C′ is close enough to line V .
Let’s try to implement this solution in META-

FONT. Fact 1 can be implemented easily: of course
one should avoid multiplying two lengths (because
of a possible overflow error), but there should be no
problem if we take the square root of each length
first (for purists: lengths are always positive!). So

instead of AD′
2
= AB′′ · AB′′′ = we will formulate

the equation as AD′ =
√
AB′′ ·

√
AB′′′.

Fact 2 is a little harder to implement. As a
matter of fact, the reader may have noticed that
although METAFONT provides exponential and log-
arithmic functions, there are no inverse trigonomet-
ric functions. What should be done? Unfortunately,
METAFONT offers no complex calculus so that for-
mulas such as cos(x) = 1

2
(exi + e−xi) could be ap-

plied; power series cannot be used either because our
candidates for angles are not necessarily in a neigh-
borhood of 0; using an external program to make
this calculation would be highly unorthodox. Let’s
use dichotomy once again!
Here is the code for a arccosd procedure in

METAFONT:

def arccosd(expr ttt) =
if ttt > 1:
message(”error: arccosd argument > 1!!??”); stop;

else: numeric a ;
numeric test , nnn, prev ; test := 45; nnn := 1;
prev := cosd(test);
forever:
nnn := nnn + 1;
if cosd(test) < ttt:
test := test − (90/(2 ∗∗ nnn))

else:
test := test + (90/(2 ∗∗ nnn))

fi;
exitif ((abs(test − prev) < 0.01) or (nnn > 14));
prev := test ;

endfor
fia := test ; enddef ;

The above procedure requires as argument a
number ttt ∈]0, 1[. It stores the result in the nu-
meric variable a_. The first try is always π

4
. Since

we want to solve a specific problem (the “x prob-

lem”), one must consider arccosd for only the first
quadrant: solutions will always be in the range]
0, π
2

[
. One can easily generalize the code to work

in different ranges. In particular it would be nice to

TUGboat, Volume 16 (1995), No. 1 49

modify the code to allow us getting results in the
complex domain for ttt ∈]−∞, 0[∪]1,∞[but the
author can hardly see the utility of these for META-
FONT. . .
Let us now have a look at the solution of the “x

problem”, as it is shown below.
A word of explanation concerning the pen posi-

tion $$ is perhaps necessary. This is a quick way to

obtain the intersection of line ∆′ (fig. 3) and circle
C: the pen $$ lies on ∆′ and points $$r and $$l are
at the right distance from point $$. As we shall see
in the following section this method yields results
that are accurate enough for our purpose.
The same idea has been used to explicitly de-

fine point $$.1: by taking pen position $, the right
edge of the pen is on point D′ of the figure.

def solve x problem(suffix $, $$, $$$)(expr pen width, first try) =
pair z zero; z zero = z$;
numeric x one, y one, x two;
y one = y$$; x one = first try; x two = x$$$;
numeric theta, n, phi , tangent length; n := 1;
forever:
clearxy; z$ = z zero; z$$ = (x one, y one);
theta := angle(z$$ − z$);
pos$$(pen width , theta);
tangent length := sqrt(length(z$$l − z$)) ∗ sqrt(length(z$$r − z$));
arccosd(tangent length/ length(z$$ − z$)); phi := theta − a ;
pos$(2tangent length, phi); z$$.1r = z$r + (z$r − z$$); z$$.1l = z$$;
x one := x one
if x$$.1r > x two: −
else: +
fi
abs(first try − x$)/(2 ∗∗ n);
exitif ((abs(x$$.1r − x two) < 0.1) or (n > 13)); n := n+ 1;

endfor
z$$$l = z$$.1l; z$$$r = z$$.1r; z$$$ = 0.5[z$$$l, z$$$r];
enddef ;

The entries for this procedure are the same as
for solve_k_problem. Again the problem is solved in
the specific case of the right and upper part of letter
‘X’; for the other possible cases, one should either
change the code (straightforward but tedious), or
use symmetry arguments.

1.3 A solution which doesn’t work, and
why

The author must confess that the first time he had
to solve the “x problem” was during a METAFONT
tutorial at the Royal Holloway College (UK) [this
shows how badly the tutorial was prepared. . .mea
culpa]. On the spot I could find no solution, yet on
my way back across the Channel on the ship I found
the code shown below. I am convinced that people
taking the tunnel nowadays write betterMETAFONT
code!
Let C be a circle, centered at B′ and of radius

1

2
BC, as in fig. 5. The intersection of ∆′ and C gives
us points B′′ and B′′′. From Fact 1, we obtain the
length of AD′. Now, D′ is at a known distance from

A, and upon circle C. Take a circle C′, centered at
point A and of radius AD′. The (right) intersection
of circles C and C′ is the desired point D′.

A

B′

B′′

B′′′

D′

C′

C

C′

∆′
θ

Figure 5: A solution of the “x problem” which
doesn’t work in METAFONT.

This method is mathematically correct—but if
you try it out you will get extremely bad results.

50 TUGboat, Volume 16 (1995), No. 1

The problem is that when we define a path, META-
FONT does not consider it as an abstract curve, but
as a set of pixels. When we ask for the intersection
of two paths, we obtain the pixel which is the closest
to the (theoretical) intersection of the paths. In the
solution sketched above, the intersection of the two
circles is taken as an abstract point, and its coor-
dinates are used for calculations. The result is of
course completely deformed.

2 Loosening Bézier curves

Bézier curves are quite beautiful, and METAFONT
allows us to obtain them even out of only partial
information: for example, one can ask for “a curve
leaving point A following a vertical direction and ar-
riving at point B following a horizontal direction”.
There is an infinite number of Bézier curves with ex-
actly these features; METAFONT will choose one of
them, out of hard-wired criteria. Most of the time,
METAFONT’s choice is exactly what you need; but it
may also happen that you want to keep some other
curve in the same set. There are two operators al-
lowing us to do this:

1. tension, which allows us to get tense curves;

2. controls, by which we can explicitly determine
the control points of our Bézier curve.

One can use tension quite intuitively: for a
value of 1, the path remains unchanged; for higher
values the path gets more and more tense. On the
other hand, the operator controls gives us absolute
control of the curve—but this is certainly not intu-
itive; maybe Leonardo da Vinci was smart enough
to be able to guess the control point coordinates of
Joconda’s smile, but the rest of us would probably
be unable to do it.
So it happened that the author often needed

“loose” Bézier curves, and was unable to obtain
them; unfortunately, tension doesn’t work with val-
ues less than .75. (In fact, the METAFONTbook
does not mention what the lower bound of the ten-
sion parameter is; however, repeated tries by the
author have shown that the value .75 still works,
while .75− ǫ produces an error message.) With the
following code, one can get arbitrarily loose Bézier
curves:

def npush(expr p, coef) =
hide(pair firstpt , firstcpt , secondcpt , secondpt ; firstcpt =
postcontrol 0 of p; secondcpt = precontrol 1 of p; firstpt = point 0 of p; secondpt
= point 1 of p; pair intersectpt , newfirstcpt , newsecondcpt ;
intersectpt − firstpt = whatever ∗ (firstcpt − firstpt);
intersectpt − secondpt = whatever ∗ (secondcpt − secondpt);
newfirstcpt = coef [firstcpt , intersectpt]; newsecondcpt = coef [secondcpt , intersectpt];)
firstpt . . controls newfirstcpt and newsecondcpt . . secondpt
enddef ;

The macro npush takes two arguments: the
path we want to loosen, and a numerical coefficient.
For value 0 of this coefficient, the path remains
unchanged. What happens when we increase this
value? Let’s consider the intersection point of the
two Bézier tangents (the tangent at curve beginning
and end). We know that control points always lie
on these two tangents. For values between 0 and 1
of the coefficient, the control points travel between
their original positions and the intersection point.
For value 1 both control points are identified with

the intersection point. For values higher than 1 they
continue their travel outside of the Bézier triangle.
In Appendix A the reader can see the effects of

the npush macro applied uniformly to all paths of a
circle, with values of the coefficient going from −5
to 5.
As the reader has surely already noticed, this

macro doesn’t work when the tangents are parallel
(because there is no Bézier triangle in that case).
A second macro, with a slightly different approach
covers all possible cases:

def mpush(expr p, lcoef , rcoef) =
hide(pair firstpt , firstcpt , secondcpt , secondpt ; firstcpt =
postcontrol 0 of p; secondcpt = precontrol 1 of p; firstpt = point 0 of p; secondpt
= point 1 of p; pair newfirstcpt , newsecondcpt ;
newfirstcpt − firstpt = lcoef ∗ (firstcpt − firstpt);
newsecondcpt − secondpt = rcoef ∗ (secondcpt − secondpt);)
firstpt . . controls newfirstcpt and newsecondcpt . . secondpt
enddef ;

TUGboat, Volume 16 (1995), No. 1 51

This macro has three arguments: the path
which we will modify, and two numerical coefficients,
corresponding to the transformation at curve begin-
ning and at curve end. This time we multiply the
distance of the first control point from curve begin-
ning by the first coefficient, and that of the second
control point from curve end by the second coeffi-
cient. Hence, in this case, value 1 for both coef-
ficients will leave the path unchanged. For values
higher than 1 the path will “swell”, while for values
tending to 0 it will become more and more tense.
These two macros may not be as reliable as

primitive METAFONT operators, but they produce
easily predictable results and are suitable for fine-
tuning of character parts.

3 Getting text and numeric data out of a
font

In his extremely interesting paper on communica-
tion between TEX and METAFONT [1], Alan Hoenig
states that “. . .METAFONT’s file handling abilities
are greatly crippled when compared to TEX. Other

than font pixel files, font metric files, and log files,

METAFONT cannot write files. . .” To remedy that
situation, we present GFtoTXT, a small utility for
reading text (and any other information) out of GF
files produced by METAFONT. As a matter of fact,
METAFONT has a special command, just like TEX,
but until now, no DVI driver was able to use it (as
a possible use, one could very well imagine Post-
Script color instructions embedded in the GF files,
taken over by the PK files and translated into real
PostScript commands by the DVI driver).
GFtoTXT is written in Flex, a UNIX-originated

lexical analyzer, under GNU copyleft. Flex allows
the generation of highly reliable C code out of sim-

ple pattern matching, using regular expressions and
states. The Flex code of GFtoTXT is very short; the
reader can find it in Appendix B. To obtain an exe-
cutable, (a) run this code through Flex, with the -8
option—Flex will produce a C file called lex.yy.c
(or LEX_YY.C on Messy-DOS systems); (b) compile
it using your favourite C compiler. The Flex code
as well as executables can be found on ftp.ens.fr,
in pub/tex/yannis/gftotxt.
How does it work? There is one convention

which must be followed: every string which we want
to extract from the METAFONT run must start with
the character #. This precaution is necessary be-
cause METAFONT itself sends several strings to the
GF file by using internal special commands.
These will be ignored by GFtoTXT. Hence, to ob-

tain the string “Hello world!” in our output file (let’s
call it output.txt), we will include the command

special(”#Hello world!”);

in the METAFONT code of our file (let’s call it
input.mf). GFtoTXT reads from the standard in-
put flow and writes to the standard output flow, so
we only need to redirect these; here is the necessary
command line:

GFtoTXT < input.mf > output.txt

GFtoTXT allows three additional conventions in
METAFONT strings: (a) \n will produce a carriage
return in the output file, and (b) \x followed by a
two-digit (lowercase) hexadecimal number between
00 and ff will produce the corresponding 8-bit
character in the output file, (c) \X followed by a
four-digit (lowercase) hexadecimal number between
0000 and ffff will produce the corresponding 16-
bit character in the output file. Convention (a) is
useful for “formatting” the output file, for example

special(”#(CHAR C A“n (HEIGHT R ”& decimal h& ”)“n (WIDTH R ”& decimal w & ”)“n”);

will produce

(CHAR C A

(HEIGHT R 99.99976)

(WIDTH R 129.99683)

Convention (b) is useful for inserting 8-bit char-
acters (or characters in the range "00–"1f) into the
output file. Finally, convention (c) can be useful to
those of us who use unicode encoding: wouldn’t it
be nice to have METAFONT say to us ♥S+ �gapÀ♥?
the necessary code would be

special(”#“X2665“X03a3“X0027“X0020“X1f00“X03b3“X03b1“X03c0“X1ff6“X2665”);

4 Bottom line

The different METAFONT techniques presented in
this paper are certainly not programmed in the most
elegant way; the author needed them for specific
purposes, and stopped testing and refining when-

ever the specific problem was solved. It is not the
goal of this paper to provide the reader with pow-
erful new tools, but rather to stimulate him/her in
creating his/her own, and to go beyond the plain
and cm base macros. In all three examples, the ba-
sic idea was very simple: iterate calculations until a

52 TUGboat, Volume 16 (1995), No. 1

sufficiently precise approximation is obtained, mod-
ify a path by manipulating the control points in the
background, read the GF file by something else than
GFtoPK or GFtoDVI. By writing down and sharing
such ideas we can make out of METAFONT an even
friendlier and more productive font design tool. To
discuss METAFONT relative issues, but also font de-
sign in general (and why PostScript and TrueType
are less efficient than METAfonts), join the META-
FONT e-mail discussion list! The address of the list
on the Internet is:

metafont@ens.fr

You can subscribe by sending the following subscrip-
tion message to listserv@ens.fr:

SUBSCRIBE METAFONT Your name and institution

References

[1] Hoenig, A. When TEX and METAFONT talk:
Typesetting on curved paths and other special

effects, pp. 549–553, TUGboat 12 (4), 1991

⋄ Yannis Haralambous

187, rue Nationale, 59800 Lille,

France.

Email: haralambous@

univ-lille1.fr

A Transforming a circle through npush

(' & % $
coef = −5 coef = −4 coef = −3 coef = −2.5 coef = −2

! � � �
coef = −1.5 coef = −1.3 coef = −1 coef = −0.8 coef = −0.6

� � � � 	
coef = −0.5 coef = −0.4 coef = −0.3 coef = −0.2 coef = −0.1

 � �
 �
coef = 0 coef = 0.1 coef = 0.2 coef = 0.3 coef = 0.4

� � � � �
coef = 0.5 coef = 0.6 coef = 0.8 coef = 1 coef = 1.3

� � � � �
coef = 1.5 coef = 2 coef = 2.5 coef = 3 coef = 5

TUGboat, Volume 16 (1995), No. 1 53

B The Flex code of GFtoTXT

%{
#define HEXA(A,B) (yytext[(A)]>=’a’? yytext[(A)]-’a’+10 : \

yytext[(A)]-’0’)*16 + (yytext[(B)]>=’a’? yytext[(B)]-’a’+10 : yytext[(B)]-’0’)
long int length_special = 0L; int we_need_it = 0, pre_length = 0;

%}

%x READ_SPECIAL

%x READ_PRE

%%

([\x00-\x3F\x45\x46\x4A-\xEE\xF4\xF8-\xFF])|([\x40\x47].)|([\x41\x48]..) ;

([\x42\x49]...)|(\x43.{24})|(\x44.....) ;

\xEF.# { BEGIN READ_SPECIAL; length_special = yytext[1] - 1L; we_need_it=1; }

\xEF. { BEGIN READ_SPECIAL; length_special = yytext[1]; we_need_it=0; }

\xF0..# { BEGIN READ_SPECIAL; length_special = (yytext[1] * 256L) + yytext[2] - 1L;

we_need_it=1; }

\xF0.. { BEGIN READ_SPECIAL; length_special = (yytext[1] * 256L) + yytext[2];

we_need_it=0; }

\xF1...# { BEGIN READ_SPECIAL; length_special = (((yytext[1] * 256L) +
yytext[2]) * 256L) + yytext[3] - 1L; we_need_it=1; }

\xF1... { BEGIN READ_SPECIAL; length_special = (((yytext[1] * 256L) + yytext[2])
* 256L) + yytext[3]; we_need_it=0; }

\xF2....# { BEGIN READ_SPECIAL;
length_special = (((((yytext[1] * 256L) + yytext[2]) * 256L) + yytext[3]) * 256L)

+ yytext[4] - 1L; we_need_it=1; }

\xF2.... { BEGIN READ_SPECIAL;

length_special = (((((yytext[1] * 256L) + yytext[2]) * 256L) + yytext[3]) * 256L)
+ yytext[4]; we_need_it=0; }

<READ_SPECIAL>. { length_special--; if (we_need_it==1) printf("%c",yytext[0]);
if (length_special==0L) BEGIN 0; }

<READ_SPECIAL>\\x.. { length_special-=4;
if (we_need_it==1) printf("%c",HEXA(2,3)); if (length_special==0L) BEGIN 0; }

<READ_SPECIAL>\\X.... { length_special-=6; if (we_need_it==1)

printf("%c%c",HEXA(2,3),HEXA(4,5)); if (length_special==0L) BEGIN 0; }

<READ_SPECIAL>\\n { length_special-=2; if (we_need_it==1) printf("\n");

if (length_special==0L) BEGIN 0; }

(\xF3....)|(\xF5.{17})|(\xF6.{10}) ;

\xF7.. { pre_length = yytext[2]; BEGIN READ_PRE; }

<READ_PRE>. { pre_length--; if (pre_length == 0) BEGIN 0; }

.|\n ;

%%

main()

{
yylex();

}

54 TUGboat, Volume 16 (1995), No. 1

The Program a2ac—Font Handling on the

PostScript Level

Petr Oľsák

Abstract

In this article, the a2ac program written by the author
is described. The program enables the use of PostScript
fonts while typesetting texts in which accented letters
are used. The font doesn’t need to contain the complete
alphabet of a given language; merely the presence of the
accents themselves (and not all of the accented charac-
ters) is sufficient. The configuration files of the a2ac
program are independent of the PostScript font encod-
ing as well as of the typesetting system encoding. The
program may be used to prepare a font for any typeset-
ting system, but only TEX was tested. The a2ac package
is available on CTAN including the source in C and the
documentation. It can serve as an alternative to the
fontinst program by Alan Jeffrey. The program was
tested on the operating systems SUN OS, Linux, and
DOS.

−− ∗ −−

1 Introduction

The program a2ac (Afm to Afm and add Compos-
ites) works with the afm file (Adobe Font Metrics)
as its input and creates a new modified afm file as
its output. The program reads a so-called “descrip-
tion file” during its work. The changes we want to
make are defined in this file. The program adds the

full description of new composites (accented letters)
including kern pairs, etc., to the output afm file.

The afm file describes information about the
letters using the symbolic name for each character
(Aacute is the A with an acute accent, for example).
Each character is described through one of two pos-
sible ways. Either the character name is bound to a
definite encoding position and to a PostScript pro-
cedure for rendering the image of the character, or
the character is described as a so-called “compos-
ite character”. In this case the encoding position
of the character is set to be −1 and the descrip-
tion of how to make the character from elements
is stored in afm. The elements are usually char-
acters described as mentioned previously and only
their symbolic names (not their encoding positions)
are used.

All desired new composite characters are de-
fined in the description file. Since only the symbolic
names are used, the description file is totally inde-
pendent of the encoding of the PostScript font and
of the encoding used by the typesetting system.

The program already has nonzero intelligence
when it reads the description file. You can declare
and use so-called “variables”. You can write met-
ric and composite information in the form of simple
expressions. You can add new kern pairs using the
information from already existing similar kern pairs
(with exceptions being possible).

An example of the description file format is
shown below.

NC Ecaron 2 ; PCC E 0 0 ; PAT caron 0 Carontop ;

NC Eacute 2 ; PCC E 0 0 ; PAT acute Acuteshift Acutetop ;

NK (Ecaron,Eacute) : E

NC ecaron 2 ; PCC e 0 0 ; PAC caron 0 0 ;

NC eacute 2 ; PCC e 0 0 ; PAC acute acuteshift vshift ;

NK (ecaron,eacute) : e

RK (P,T,V) ecaron 0

RK (P,T) eacute 0

In this example we define new letters Ě, É, ě
and é. First, Ecaron and Eacute are defined as com-
posite letters (NC lines), then new kerns are made
for Ecaron and Eacute. The kerns are the same as
the kerns for the letter E (NK line). Next, ecaron
and eacute are defined as composite letters with
the same kern information as the letter e (NC lines
and NK line). Last, some exceptions for the kerns
are specified. The pairs Pě, Tě and Vě will have no
kern, in contrast to the pairs Pe, Te and Ve, where

negative kerns are usually defined. The same excep-
tions are specified for the pairs Pé and Té.

For more information about the description file
format see the a2ac-eng.doc file, which is included
in the a2ac package.

Ligature information is not defined in the de-
scription file. We will show that it essentially doesn’t
matter. Ligatures are described in the input afm file
at the end of lines with the C prefix as is shown in
our following example:

C 102 ; WX 333 ; N f ; B 20 0 383 683 ; L i fi ; L l fl ;

TUGboat, Volume 16 (1995), No. 1 55

The a2ac program just copies the ligature infor-
mation to the output afm file. This is sufficient for
generating the ligtables which are used by the type-
setting systems. For example, the afm2tfm program
reads this information and generates the proper data

in the ligtable of the tfm format. New ligatures for
TEX can be defined through the enc files. For in-
stance, the LIGKERN information below is present in
the file xl2.enc and defines new ligatures for the
dash characters “--” and “---”.

% LIGKERN hyphen hyphen =: endash ; endash hyphen =: emdash ;

2 Font preparation for TEX

After a2ac is used, preparation of the font for TEX
continues on in the standard way (as for the En-
glish language). You can use the afm2tfm program,
which reads the converted afm file and the encod-
ing information file enc to match the internal TEX
encoding. The result is a TEX virtual font which
includes two kinds of information: the information
about re-encoding from the internal TEX encoding
to the raw PostScript font encoding (as was specified
in the enc file) and the information about building
the accented letters from the elements (as was spec-
ified in the “rebuilt” afm file).

Let us show an example of the PostScript font
preparation for TEX for the Czech and Slovak lan-
guages. First, we run the a2ac program. The com-
mand line looks like this:

a2ac input.afm desc.tab output.afm

The first parameter is the name of the input
afm file, the second one is the name of the descrip-
tion file and the third one is the name of the output
afm file. The extensions (.afm and .tab) are obliga-
tory — the program has no algorithm for adding the
extensions automatically.

The command to run the a2ac program is usu-
ally part of a script or a batch file. For example, the
UNIX script to convert the font from the afm format
to the tfm format may look like this:

a2ac $1.afm cscorr.tab c$2.afm

afm2tfm c$2.afm -t xl2.enc -v c$2 r$2

vptovf c$2.vpl c$2.vf c$2.tfm

The name of this script is mkfnt, say. Then the
usage is simple:

mkfnt Times-Roman ptmr

The file cscorr.tab is included in the a2ac
package. The file includes definitions of compos-
ites for Czech and Slovak accented letters (i.e., the
output font metric includes Czech and Slovak letters
and the proper kerns for these letters). The input
font has to contain the standard set of 26 Latin let-
ters (lower- and uppercase) and all the accents nec-
essary for the composite letters, which means the
acute, caron, ring, quoteright, dieresis, and circum-
flex accents. If the Adobe font in StandardEncoding

is used, then this requirement is satisfied. The out-
put afm file then specifies all characters (plain or
composite) of the Czech and Slovak alphabets and
the new kern information.

The description file cscorr.tab was used with-
out changes for all standard PostScript fonts (32
fonts installed in all rips) with very good results.
Of course, if you want, you can rearrange the
cscorr.tab file for your new font to obtain the best
result.

If the above UNIX script is used, the TEX font
suitable for Czech and Slovak texts is prepared in
the CS-font encoding, which is an extension of the
Computer Modern font encoding (see Section “The
TEX Encoding”).

The output of the script is c*.tfm (for TEX in-
put), r*.tfm and c*.vf (for dvips input). The only
work we must do is place these files into the appro-
priate directories (or rearrange the script to make
this work automatically) and add one line to the
configuration file psfonts.map of the dvips driver.
The line looks like this:

rfont PostScript-Font

If the PostScript font is not installed in the
PostScript RIP of the output device, we have to store
the pfb (pfa) format of the PostScript font in our
computer. Then the line in psfont.map looks like
this:

rfont PostScript-Font </path/to/file.pfb

or (for DOS):

rfont PostScript-Font <d:\path\to\file.pfb

The new font can be loaded into TEX using the
\font command, as shown below. From that point
onward, the font in question is available and text
using the same encoding as the font can be conve-
niently typeset by TEX (and printed with dvips).

\font\newfont=cfont

{\newfont the eight-bit text in the same

encoding as defined in xl2.enc

can be used and the new font

will be shown.}

56 TUGboat, Volume 16 (1995), No. 1

3 The TEX encoding

The input text encoding for TEX doesn’t need to
be the same as the internal TEX encoding. The
re-encoding can be performed by the tcp table of
emTEX, by changes to the xord/xchr vectors in the
tex.ch file (TEX’s WEB source hacking) or by setting
active characters. The enc file describes exactly the
same encoding as the internal TEX encoding into
which the hyphenation patterns have been read.

In the Czech Republic and the Slovak Repub-
lic, the so-called CS-encoding (the encoding of the
CS-fonts) is used very often as the internal TEX en-
coding. The CS-encoding is an extension of the Com-
puter Modern text font encoding and follows the
ISO-8859-2 layout for the Czech and Slovak letters.
The CS-fonts are included in the widely available
TEX installation package with the name CSTEX.

The advantages of the CS-encoding (in compar-
ison to the T1 encoding) from our point of view are
the following:

• The fonts include the letters from the Czech and
Slovak alphabets only. Font generation from
the METAFONT sources is faster and the pk files
are smaller. Exceptions (non-Czech/Slovak let-
ters in names, for example) are accessible by
plain TEX macros or by the \accent primi-
tive.

• The CS-font encoding is the conservative ex-
tension of the Computer Modern text fonts.
Therefore, CS-fonts can replace CM text fonts
in the installation packages without problems
and with backward compatibility. This feature
saves space on the disk. No complicated macro
redefinitions are necessary. For example, the
csplain format, which is included in the CSTEX
package, gives the same results as the original
plain TEX. There are only three differences:
(1) The new letters with codes ≥ 128 are intro-
duced by \catcode, \lccode, \uccode; (2) CS-
fonts are loaded instead of CM text fonts; and
(3) the Czech and Slovak hyphenation patterns
are read in addition to the US English ones.

• The layout of the accented letters in the CS-
font is the subset of the ISO-8859-2 standard.
Therefore, it is possible to use an eight-bit in-
put Czech/Slovak text without re-encoding in
the UNIX environment. The power is in sim-
plicity! The tcp table (emTEX) is used in the
DOS installation because there are many differ-
ent layouts for the Czech/Slovak alphabet and
there is no fixed standard in DOS (in contrast
to the UNIX-like systems).

• Kerning and other aspects of the fonts are
language-dependent. The multi-language font
(T1 encoded, for example) is nonsense from the
typographer’s point of view. In addition, we
can’t rely on the results of the font hacking from
abroad.

The Computer Modern text font encoding (and
its conservative extensions) is font-type dependent.
For example, two different characters are encoded
to the same position depending on \rm versus \tt
font (the ‘fi’ ligature versus downarrow, for exam-
ple) or on \rm versus \it font (the dollar versus the
sterling). This feature implies some problems.

Two files, xl2.enc and xt2.enc, are included
in the a2ac package. These files define extensions of
the CS-font encoding. The extensions include some
characters which are not contained in the Czech and
Slovak alphabets (i.e., in the CS-font), but which are
contained in the Adobe StandardEncoding material.

It is recommended to use xl2.enc for \rm and
\it-like fonts and xt2.enc for \tt-like fonts. The
dollar is in position 36 under any circumstances and
position number 132 was given to the sterling. If
you load the PostScript \it-like font then you need
to know that the sterling is not accessible by the
plain TEX {\it\$} but you need to use a macro
with \char132 code.

Position number 32 is not defined in the
xl2.enc file because the cross accent for the Pol-
ish L and l is not included in the Adobe Standard-
Encoding. The L and l themselves are in positions
163 and 179, respectively. If we need to use these
characters in plainTEX with the PostScript font, the
redefinition of the macros \l and \L is necessary.

Note that the three-letter ligatures are not
included in the Adobe StandardEncoding. This
doesn’t cause any problems because the three-letter
ligatures are not used in Czech and Slovak. If the
font is available in the ExpertEncoding you can do
some hacking at the vpl level to obtain these liga-
tures.

If you want to typeset math using the Post-
Script font, you need to edit the vpl file [1] to include
the uppercase Greek characters taken usually from
the Symbol font. Sorry, but it is not obvious how to
typeset math with the PostScript font; some more
hacking must be done — on the plain TEX macro
level as well as on the \fontdimen font information.
The pretty “look” of math is a result of a font de-
signer’s work and a lot of TEX-macro programming.
“Its emphasis is on art and technology, as in the un-
derlying Greek word” (see [2], Chapter 1.). There-
fore, the pretty math is not accessible from the text
PostScript font via any automatic process.

TUGboat, Volume 16 (1995), No. 1 57

For more information about the CS-font encod-
ing and its history see [3] and appendix F in [4].

4 About the names of the accented letters

The names dquoteright and tquoteright should
be used for the characters d’ and t’ in the descrip-
tion file cscorr.tab. However, we use the names
dcaron and tcaron instead. The reason is that
the uppercase alternatives of the characters d’ and
t’ are Ď and Ť, i.e., Dcaron and Tcaron, respec-
tively. The parameter -V (for afm2tfm to make the
small caps variant of a font) does not work with
the names dquoteright and tquoteright. We use
Lcaron and lcaron instead of Lquoteright and
lquoteright because the semantic for these accents
is same as for Dcaron, dcaron, Tcaron and tcaron.

References

[1] Donald Knuth: Virtual fonts, more fun for grand
wizards. TUGboat 11(1):13–23, April 1990.

[2] Donald Knuth: The TEXbook, vol. A of Com-
puters & Typesetting. Addison-Wesley, Read-
ing, MA, 1986.

[3] Petr Oľsák: Úvaha o fontech v CSTEXu [A re-
flection about fonts in CSTEX], TEXbulletin (of
CSTUG) 3/93 (121–131).

[4] Petr Oľsák: Typografický sytém TEX [Typeset-
ting System TEX], CSTUG 1995, 270 pages.

⋄ Petr Oľsák
Department of Mathematics
Czech Technical University in
Prague

Czech Republic
Email: olsak@math.feld.cvut.cz

−− ∗ −− ∗ −− ∗ −− ∗ −− ∗ −− ∗ −− ∗ −− ∗ −− ∗ −−

Note added by production editor

In order to better understand how the above
procedure works, I decided to download the
program from ftp.tex.ac.uk in the directory
fonts/utilities/a2ac below the CTAN root. I
also got the .afm files for the PostScript fonts from
the directory fonts/psfonts/adobe.

I now was all set to compile the a2ac.c pro-
gram, and start to make the CS-encoded files using
the script mkfnt. It essentially runs the program
afm2tfm that comes with the dvips distribution and
creates .tfm and .vf files for TEX and dvips accord-
ing to the desired encoding (see the Section “Font
Preparation for TEX”). This was done for all “Stan-
dard” PostScript fonts. Figure 1 shows the font ta-
ble for the font NewCenturySchlbk-Roman.

The righthand side of the table shows the char-
acters specific to the Czech and Slovak languages.
To obtain PostScript output from a .dvi file one
more step has to be taken; namely, one has to tell
the dvips program which file to read when a font-
name is encountered. The easiest way of achieving
this is to generate a new “config” file, since several
can be specified with one dvips execution. In this
case, I generated a one-line config.cs file contain-
ing

p +pscs.map

This states that the contents of the file pscs.map
has to be concatenated with the contents of previ-
ously declared map files, in particular the default

psfonts.map. The file pscs.map itself contains one
line for each of the fonts considered: and starts like

rpagd AvantGarde-Demi

rpagdo AvantGarde-DemiOblique

rpagk AvantGarde-Book

rpagko AvantGarde-BookOblique

...

as explained in the text of the article.
As a further exercise, I decided it would be

interesting to make this encoding available with
LATEX, so I started by defining an encoding L2 in the
file L2enc.def (See Chapter 7 of The LATEX Com-
panion, by Goossens et al., Addison-Wesley, 1994
and the file fntguide.tex “LATEX2ε font selection”,
which is distributed electronically and comes with
the standard LATEX2ε distribution.). This file con-
tains merely:

\ProvidesFile{L2enc.def}%

[1995/09/22 CS Encoding]

\DeclareFontEncoding{L2}{}{}

\DeclareFontSubstitution{L2}{ptm}{m}{n}

Next, one has to make font definition .fd files
for each of the fonts one wants to use, e.g., for
the Times-Roman family one would define a file
L2ptm.fd, where ptm is a “short” name chosen in the
framework of the font-selection scheme of Karl Berry
(Version 2), which can represent all possible font
names within the ISO-9660 (and DOS)-compatible
eight characters limit for file names. Below the font
definition file (L2pag.fd) for the L2 encoding of the
AvantGarde font family is shown.

58 TUGboat, Volume 16 (1995), No. 1

00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

0 ı 0 @ P ‘ p … ~ ı̀ ˚ Ŕ Ã ŕ

1 ! 1 A Q a q † ¢ Ê å Á Å á

2 ` ” 2 B R b r ‡ ⁄ ˘ ¸ Â Ň â ň

3 ´ # 3 C S c s • ¥ Ł ł Û Ó ª ó

4 ˇ $ 4 D T d t £ ' ¤ ´ Ä Ô ä ô

5 ˘ % 5 E U e u ¶ · L’ l’ Ĺ Ñ ĺ

6 ¯ & 6 F V f v " ‚ ƒ ÿ Ï Ö Õ ö

7 ˚ ’ 7 G W g w < º § ˇ ı̈ Ÿ õ

8 ¸ (8 H X h x > À ¨ à Č Ř č ř

9 ß) 9 I Y i y \ ê Š š É Ů é ů

A æ * : J Z j z ^ ò è Ò È Ú ú

B œ + ; K [k – _ û Ť t’ Ë ù ë

C fi ø , ¡ L “ l — { - ‹ Ì Ě Ü ě ü

D fl Æ - = M] m ˝ ‰ ˛ › ˝ Í Ý ı́ ý

E Œ . ¿ N ˆ n ˜ | « Ž ž Î ñ ı̂ „

F Ø / ? O ˙ o ¨ } » ã Ù Ď ß d’ “

Figure 1: The layout of the CS encoded font

\ProvidesFile{L2pag.fd}[1995/09/22 L2 (CS) encoding for pag, MG]

\DeclareFontFamily{L2}{pag}{}

\DeclareFontShape{L2}{pag}{db}{n}{<-> cpagd}{}

\DeclareFontShape{L2}{pag}{db}{sl}{<-> cpagdo}{}

\DeclareFontShape{L2}{pag}{m}{n}{<-> cpagk}{}

\DeclareFontShape{L2}{pag}{m}{sl}{<-> cpagko}{}

\DeclareFontShape{L2}{pag}{b}{n}{<->ssub * pag/db/n}{}

\DeclareFontShape{L2}{pag}{bx}{n}{<->ssub * pag/b/n}{}

\DeclareFontShape{L2}{pag}{db}{sc}{<->ssub * pag/db/n}{}

....

The first line (\ProvidesFile) declares the
name and version of the file to the LATEX system
(as it will appear in the .log and on the console).
Then the family name pag for the L2 encoding is
declared. This is followed by four declarations for
the series and shapes for which actual external files
are available, namely:
pagd AvantGarde-Demi
pagdo AvantGarde-DemiOblique
pagk AvantGarde-Book
pagko AvantGarde-BookOblique

The remaining

declarations are substitution rules for combinations
of font parameters which are not available as sepa-
rate instances.

Finally, with such specifications for all used
fonts, one can take a text encoded according to the
given CS-encoding, and run it through LATEX. I have

taken the test file distributed by Petr, and trans-
formed it into LATEX to test the above setup. Fig-
ure 2 shows the LATEX source file. The command

dvips -E -Pcs L2test -o

yields the output shown in Figure 3, where the
same Czech text has been typeset in Times-
Roman, Times-Bold, Times-Roman-SmallCaps,
AvantGarde-BookOblique, and finally AvantGarde-
DemiOblique, showing clearly the advantages of this
system.

⋄ Michel Goossens
CERN, CN Division
CH-1211 Geneva 23
Switzerland
Email: goossens@cern.ch

TUGboat, Volume 16 (1995), No. 1 59

\documentclass[a4paper]{article}

\usepackage[L2]{fontenc}

\renewcommand{\rmdefault}{ptm} % Text font family is Times

\renewcommand{\sfdefault}{pag} % San-serif font family is AvantGarde

\renewcommand{\ttdefault}{pcr} % Teletype font family is Courier

\pagestyle{empty}

\begin{document}

... % text will be in Times-Roman

\bfseries ... % text will be in Times-Bold

\mdseries\scshape ... % text will be in Times-Roman-SmallCaps

\sffamily\bfseries\itshape ... % text will be in AvantGarde-DemiOblique

\mdseries\itshape ... % text will be in AvantGarde-BookOblique

\end{document}

Figure 2: LATEX source of CS document

Tento text je napsán PostScriptovým fontem „Times-Roman“ za použitı́ TEXovské metriky cptmr. Metrika

fontu v české/slovenské variantě byla připravena konvertorem a2ac s následným použitı́m programu afm2tfm. Je

potřeba si všı́mat méně obvyklých slov, jako je slovo št’astný (pı́smeno t’uprostřed slova), nebo třeba slovenské kol’ko.

Věřme, že výsledný text půjde nejen přečı́st, ale bude i typograficky pokud možno v pořádku. Také je třeba „sledovat

chovánı́“ našich „uvozovek“.

Á á Ä ä Č č Ď d’É é Ě ě Í ı́ Ĺ ĺ L’ l’Ň ň Ó ó Ô ô Ö ö Ř ř Ŕ ŕ Š š Ť t’Ú ú Ů ů Ü ü Ý ý Ž ž.

Tento text je napsán PostScriptovým fontem „Times-Bold“ za použitı́ TEXovské metriky cptmb. Metrika

fontu v české/slovenské variantě byla připravena konvertorema2ac s následným použitı́m programuafm2tfm.

Je potřeba si všı́matméně obvyklých slov, jako je slovo št’astný (pı́smenot’uprostřed slova), nebo třeba slovenské

kol’ko. Věřme, že výsledný text půjde nejen přečı́st, ale bude i typograficky pokud možno v pořádku. Také je

třeba „sledovat chovánı́“ našich „uvozovek“.

Á á Ä ä Č č Ď d’ É é Ě ě Í ı́ Ĺ ĺ L’ l’Ň ň Ó ó Ô ô Ö ö Ř ř Ŕ ŕ Š š Ť t’Ú ú Ů ů Ü ü Ý ý Ž ž.

TENTO TEXT JE NAPSÁN POSTSCRIPTOVÝM FONTEM „Times-Roman-SmallCaps“ ZA POUŽITÍ TEXOVSKÉ METRIKY

cptmrc. METRIKA FONTU V ČESKÉ/SLOVENSKÉ VARIANTĚ BYLA PŘIPRAVENA KONVERTOREM a2ac S NÁSLEDNÝM

POUŽITÍM PROGRAMU afm2tfm. JE POTŘEBA SI VŠÍMAT MÉNĚ OBVYKLÝCH SLOV, JAKO JE SLOVO ŠŤASTNÝ (PÍSMENO

Ť UPROSTŘED SLOVA), NEBO TŘEBA SLOVENSKÉ KOL’KO. VĚŘME, ŽE VÝSLEDNÝ TEXT PŮJDE NEJEN PŘEČÍST, ALE BUDE

I TYPOGRAFICKY POKUD MOŽNO V POŘÁDKU. TAKÉ JE TŘEBA „SLEDOVAT CHOVÁNÍ“ NAŠICH „UVOZOVEK“.

Á Á Ä Ä Č Č Ď Ď É É Ě Ě Í Í Ĺ Ĺ L’ L’ Ň Ň Ó Ó Ô Ô Ö Ö Ř Ř Ŕ Ŕ Š Š Ť Ť Ú Ú Ů Ů Ü Ü Ý Ý Ž Ž.

Tento text je napsán PostScriptovým fontem „AvantGarde-BookOblique“ za použitı́ TEXovské
metriky cpagdo. Metrika fontu v české/slovenské variantě byla připravena konvertorem a2ac

s následným použitı́m programu afm2tfm. Je potřeba si všı́mat méně obvyklých slov, jako je
slovo št’astný (pı́smeno t’ uprostřed slova), nebo třeba slovenské kol’ko. Věřme, že výsledný text
půjde nejen přečı́st, ale bude i typograficky pokud možno v pořádku. Také je třeba „sledovat
chovánı́“ našich „uvozovek“.

Á á Ä ä Č č Ď d’ É é Ě ě Í ı́ Ĺ ĺ L’ l’ Ň ň Ó ó Ô ô Ö ö Ř ř Ŕ ŕ Š š Ť t’ Ú ú Ů ů Ü ü Ý ý Ž ž.

Tento text je napsán PostScriptovým fontem „AvantGarde-DemiOblique“ za použitı́ TEXovské
metriky cpagko. Metrika fontu v české/slovenské variantě byla připravena konvertorem a2ac

s následným použitı́m programu afm2tfm. Je potřeba si všı́mat méně obvyklých slov, jako je slovo
št’astný (pı́smeno t’ uprostřed slova), nebo třeba slovenské kol’ko. Věřme, že výsledný text půjde
nejen přečı́st, ale bude i typograficky pokud možno v pořádku. Také je třeba „sledovat chovánı́“
našich „uvozovek“.

Á á Ä ä Č č Ď d’ É é Ě ě Í ı́ Ĺ ĺ L’ l’ Ň ň Ó ó Ô ô Ö ö Ř ř Ŕ ŕ Š š Ť t’ Ú ú Ů ů Ü ü Ý ý Ž ž.

Figure 3: Result of LATEX run on document shown in Fig. 2

60 TUGboat, Volume 16 (1995), No. 1

Problems of the conversion of METAFONT

fonts to PostScript Type 1

Basil K. Malyshev

Abstract

The paper describes problems pertaining to the auto-
matic conversion ofMETAFONT fonts into the PostScript
Type 1 font format. Several methods of conversion are
discussed. A short description of the Paradissa Fonts
Collection is presented. It contains Computer Modern
fonts (used in (LA)TEX) in ATM compatible PostScript
Type 1 format. The use of the collection and the prob-
lems related to it are discussed.

−− ∗ −−

1 Introduction

Intensive quantification of human activities often
implies rapid modifications of many methods of data
production, processing, and use. Thus it seems nec-
essary to adapt the collected data to efficient modern
processing techniques.
One of these problems is the conversion of fonts

defined in METAFONT into the PostScript font for-
mat and reports on the automatic conversion of fonts
described in the METAFONT format to the Post-
Script Type 3 font format have been appearing since
1987 (see Carr, 1987; Henderson, 1989; Hobby, 1989;
Berry & Yanai, 1990). However, these results are lit-
tle used due to the poor rasterization of PostScript
Type 3 fonts at low and middle resolutions on widely
used output devices. Furthermore, the fonts are in-
compatible with Adobe Type Manager (ATM)
which essentially narrows their application area.
The PostScript Type 1 font format as published

by Adobe (Adobe, 1990) allows the possibility of
performing METAFONT → PostScript Type 1 con-
version that promises high quality fonts with a wide
application area (including ATM).
The methods for automating such conversion

are discussed in this paper.

2 METAFONT and PostScript Type 1

When comparingMETAFONT and PostScript Type 1,
we note the following features.

METAFONT is a high level language for font de-
scription. To draw a letter, METAFONT describes
the curve traveled by the center of the pen, and the
shape of this pen is allowed to vary as the pen moves.
Coordinates of all reference points can be defined by
parameters and linear equations governing these pa-
rameters. The main advantage of this approach is
that the same definition readily yields a family of in-
finitely many related fonts of type, each font being

internally consistent. Thus, infinitely many typeface
styles can be obtained from a single definition by
changing only a few parameters. METAFONT does
not dictate its own font parametrization technique,
but provides a designer with all the necessary tools.

METAFONT does not satisfy up-to-date stan-
dards of rasterization, because it yields acceptable
results only at resolutions higher than 300dpi. For
example, 240dpi × 216dpi is already poor, and at
about 100dpi, typical of many graphic displays, the
results are quite unsatisfactory.
PostScript Type 1 is a low level tool for font de-

scription. It reduces the description of a character
outline to lines and Bezier cubic curves specifying
some additional information (declarative hints) for
the rasterizer. It gives excellent results on printers
and other graphical devices with PostScript inter-
preters, and on systems with ATM. Furthermore,
the font structure of PostScript Type 1 allows an
application to perform rasterization only on charac-
ters that are actually used in the document, and to
do it much faster than by METAFONT.
Adobe Type 1 rasterizers can generate variant

fonts at any affine transformation of an original font,
but this is not sufficient to generate several typeface
styles with different optical sizes, weights, widths,
and so on from a single description. To solve this
problem, Adobe Corporation has developed a Mul-
tiple Master Extension of the Adobe Type 1 font for-

mat which can be used to generate a wide variety of
typeface styles from a single font program (Adobe,
1992). This font format contains several outline
typefaces called master designs which describe one
or more design axes. Design axes represent a dy-
namic range of one typographic parameter, such as
the weight or width.

METAFONT, however, provides font parametri-
zation tools which are more flexible and natural for a
designer. Also, a designer can readily add new sym-
bols to a completed font definition in such a way
that they are automatically consistent with the old
ones.
Thus, combining of flexibility of a font descrip-

tion in METAFONT with the high quality of raster-
ization and simple use of PostScript Type 1 fonts
seems to be desirable. Such a link can be represented
by an automatic METAFONT → PostScript Type 1
converter generating fonts of rather high quality.

3 Steps and methods of

MF → Type 1 conversion

The task of converting METAFONT fonts into the
PostScript Type 1 font format may be divided nat-
urally into two rather independent steps:

TUGboat, Volume 16 (1995), No. 1 61

P1

P2

P3

P4

Figure 1: Bezier cubic curve defined by four
points

• extraction of character outlines from the META-
FONT font definitions;

• generation of declarative hints, which help the
renderer to make best character rasterization.

The two steps can be performed by using different
methods discussed below.

3.1 Extraction of character outlines

Each character in the PostScript Type 1 font is de-
scribed by an outline specified by a set of lines and
Bezier cubic curves. For a Bezier cubic curve four
points are used: start point (P1), endpoint (P4),
and two control points (P2 and P3), as shown in
figure 1. The tangent vectors of endpoints are de-
termined from the line segments P1, P2 and P4, P3.
The algebraic equation for this curve is:

P (t) = (1− t)3P1 + 3(1− t)
2tP2

+ 3(1− t)t2P3 + t
3P4

for 0 ≤ t ≤ 1.

Note that the labelling used in figure 1 for end-
points and control points will then be conserved for
all elements forming character outlines.
Character outlines of high quality PostScript

Type 1 fonts should not only describe all glyphs with
sufficient accuracy, but also satisfy some important
rules formulated in Adobe PostScript Type 1 font
format (Adobe, 1990).

A Points at extremes. An endpoint should be
placed at most horizontal or vertical extremes.
This means that most curves should not include
more than 90 degrees of arc.

B Tangent continuity. Whenever one path ele-
ment makes a smooth transition to the next el-
ement, the endpoint joining the two elements
and the Bezier control point associated with
that endpoint (for a curve) or the other end-
point (for a line) should all be collinear.

C Consistency. All character features (stem width,
height, spacing, shapes) that are intended to be
the same should be exactly the same.

D Conciseness. Character outline definitions must
be as concise as possible, without breaking the
other rules.

There are two main approaches to the extrac-
tion of character outlines

• generation of character raster images by META-
FONT with a subsequent recovering of the out-
lines by tracing the pixels and approximating
the resulting outline by lines and Bezier cubic
curves (see section 3.1.1);

• direct extraction of outlines from the META-
FONT programwith subsequent removal of over-
lapping elements and geometric optimization of
resulted outline (see section 3.1.2).

3.1.1 Tracing the pixels of the bitmaps

At first, we need to generate bitmapped fonts by
METAFONT. In PostScript Type 1 font format the
endpoints and control points are defined on a 1000×
1000 grid. To avoid rounding errors after outline
scaling, magnification should be chosen so that font
design size is rasterized into 1000 pixels. Therefore,
the resolution should be chosen as

〈resolution〉
dots

inch
=
72.27pt/inch× 1000 dots

〈design size〉pt
.

Thus, the best resolution for the design size of 10pt
is 7227dpi. This resolution does not require addi-
tional scaling of the resulting outline, and theMETA-
FONT program performs correct coordinate round-
ing.
It is easy to make METAFONT itself to compute

the required magnification by adding

pixels_per_inch:=4000 + 3227;

pixels_per_inch:=pixels_per_inch*4pt#;

tmp:=designsize/2.5;

pixels_per_inch:=pixels_per_inch/tmp;

to mode_def macro definition in the local.mf file.
Many programs will reconstruct a raster image

outlines by tracing the pixels. However, font gen-
eration requires that the outlines satisfy the rules
discussed in section 3.1. Below we consider several
sets of results, and focus on whether these rules are
obeyed or violated.
The software developed by Neil Raine generates

the outlines from the bitmaps by tracing the pixels.
Graham Toal generated Computer Modern fonts at
3000dpi resolution and produced PostScript Type 3
fonts by using Raine’s program. These fonts are
available in CTAN in /tex-archive/fonts/cm/ps-
type3 directory. The examples of these outlines are

62 TUGboat, Volume 16 (1995), No. 1

Apex

Serif

Vertex Vertex

Arm Arm

Flex

Arc Beginning Ending

Figure 2: Neil Raine and Graham Toal cmr10
outlines

Figure 3: cmr10 outlines produced by LIMN from
the GNU font utilities

shown in figure 2. It is easy to see that these outlines
suffer from some defects:

• The violation of rule 3.1.A in the letter ‘C’.
This defect is not occasional, but is common to
most curved stems.

• Asymmetrical vertices in the letter ‘W’ violate
rule 3.1.C.

• Bad transitions from arms to serifs in the let-
ters ‘A’ and ‘W’.

• A middle serif in the letter ‘W’ is unsatisfac-
tory.

Karl Berry and Kathryn Hargreaves developed
the GNU font utilities, and announced them in
TEXhax (Volume 92, Issue 8 and 17). These utili-
ties contain a program LIMN which takes the bitmap

fonts and generates outlines by tracing the pixels.
The results of their operation are shown in figure 3.
The outlines presented in this figure also have

some visible defects:

• The violation of rule 3.1.A in the letter ‘C’.
Similar to the above example, this defect is reg-
ularly repeated.

• Each flex is split into many short line segments,
violating rule 3.1.D.

• Multiple consecutive collinear line segments vi-
olate rule 3.1.D.

These outlines, when compared with Toal’s, of-
fer some evident advantages, namely the apex of the
letter ‘A’ is symmetrical and the vertices of the letter
‘W’ are symmetrical and match each other.

TUGboat, Volume 16 (1995), No. 1 63

Figure 4: cmr10 outlines produced by
FontoGrapher

To make more comparisons, bitmap fonts (at
3613dpi resolution) were traced by FontoGrapher
(version 3.5.1). The resolution 3613dpi = 7227dpi/2
has been chosen because the tracing procedure built
in FontoGrapher can break at too high a resolution.
The result of this experiment is shown in figure 4.
In spite of the fact that rule 3.1.A is satisfied here
(having been violated in the above examples), the
outlines are not free from some defects:

• The apex in the letter ‘A’ is asymmetrical (vi-
olation of rule 3.1.C).

• The vertices in the letter ‘W’ are asymmetrical
and different (violation of rule 3.1.C).

• Arm – serif transitions in the letters ‘A’ and
‘W’ are not satisfactory.

Evidently, it is difficult to obey rule 3.1.Cwhen
directly tracing raster images. On the other hand,
rule 3.1.A seems to be easy to satisfy, and the viola-
tion of this important rule in the first two examples
could probably be attributed to lack of authors’ at-
tention to it.

3.1.2 Extraction of outlines from

METAFONT

Each program considered in section 3.1.1 exhibits its
own defects of outline generation. Besides, there are
defects common to all programs, such as poor dis-
covery of flex features or bad serif –arm transitions.
The information critical for good appearance of

characters is evidently lost when tracing an outline
on a bitmap. Therefore, the extraction of outlines
from METAFONT definitions without raster repre-
sentation of fonts seems to be more fruitful.
The first attempt at extracting the character

envelopes fromMETAFONT was undertaken by Leslie
Carr (1987). Carr’s programs take as input the
METAFONT log file which contains a description of
all the paths that METAFONT traces out in drawing
a character. But using this method one should take
into account the METAFONT pen shape.
Later Daniel M. Berry and Shimon Yanai (1990)

have developed a more successful program, mf2ps,
that finds the internally generated METAFONT en-
velopes, used as the boundaries of the inked region,
and uses these envelopes as the PostScript outlines.
In both these attempts, PostScript Type 3 fonts
have been generated. The outlines generated by the
mf2ps program are shown in figure 5.
To present such envelopes for PostScript Type 3

font the mf2ps program reorders cycled subpaths
and chooses black and white filling for each of them.
This method, although suitable for Type 3 fonts,
fails for Type 1.
To produce outlines suitable for Type 1 fonts,

all envelope overlapping should be removed. The
result of this operation is shown in figure 6. Note
that the resulting outlines contain too many con-
secutive lines and curves split into many pieces. To
obtain outlines free from such defects, I have made
some geometrical optimization. The result is shown
in figure 7.
Now the outlines look significantly better than

those in figures 2, 3 and 4. All the rules from sec-
tion 3.1 have been satisfied. The fragmentation of
the inner side of arc in the letter ‘C’ occurs because
of the high (probably too high) accuracy in the ap-
proximation of the original shape.
There are some slight peculiarities related to a

different encoding of similar shapes. In the letter

64 TUGboat, Volume 16 (1995), No. 1

Figure 5: METAFONT internally generated
envelopes

Figure 6: METAFONT envelopes after removing
overlapping

‘Φ’, for example (figure 8), the outline representa-
tion is somewhat asymmetrical. The outline itself
has a slight asymmetry, but in the process of raster-
ization its asymmetry of encoding may be exagger-
ated.
Nevertheless, this method is a step forward in

improving the character outlines obtained from the
METAFONT font definitions.

3.2 Generation of declarative hints

One of the main problems arising in font rasteri-
zation on a discrete grid is the conservation of the
important geometrical properties of outlines. Iden-
tical parts of the letters differently located on the
grid may take different shapes in a discrete repre-
sentation.
In the PostScript Type 1 font format this prob-

lem is solved by using declarative hints which in-
dicate where a horizontal or vertical stem occurs
in certain coordinates. Those parts of the outlines
which appear inside of the so-called stem hints will
be rendered by special techniques.

Figure 7: METAFONT envelopes after geometrical
optimization

Declarative hints for the outlines obtained at
the previous stage can be generated by font editors
like FontMonger or FontoGrapher as follows:

• styling the outlines in the form of ATM com-
patible font format;

• loading the outlines to a font editor;

• saving the completed font on a disk.

As a result, the saved font contains the declarative
hints.
The hints generated by FontMonger (version

1.0.4) are shown in figure 9. Comparing these out-
lines with the original ones from figure 3, it is easy
to see that FontMonger has changed the outlines so
that rule 3.1.A is satisfied. However, stem hints for
the serifs in the letters ‘A’ and ‘W’ are missing.

TUGboat, Volume 16 (1995), No. 1 65

Figure 8: Asymmetrical coding of the like
symmetrical form in the letter Φ

Figure 9: LIMN generated outlines hinted by
FontMonger

The declarative hints generated by FontoGra-
pher for the same outlines are shown in figure 10.
In this figure the outlines are unchanged, while the
hints for the curved stems in the letter ‘C’ are miss-
ing. That is, FontoGrapher does not even try to
correct the violation of rule 3.1.A, and this viola-
tion has a pernicious effect on its operation. How-
ever, unlike the latter case, all hints for the serifs in
the letters ‘A’ and ‘W’ are found correctly now.
If the outlines are not too accurate (such as

those generated by the LIMN program), then the op-
eration of both FontMonger and FontoGrapher is
not good enough. However, if a font processed by
FontMonger is subsequently processed by Fonto-
Grapher, the obtained results can be significantly
better (figure 11).
In the case of more accurate outlines directly

extracted from METAFONT (figure 7), this approach
is quite suitable, but FontMonger can hardly find
the serifs (figure 12), while the results obtained by
FontoGrapher are quite acceptable (figure 13).
Thus, one can see that FontoGrapher performs

hinting somewhat better than FontMonger. Still
FontMonger also has an advantage useful for mass
conversion of fonts because it has a batch conversion
utility.
The Paradissa Font Collection has been created

using a homegrown algorithm for generating charac-
ter hints. This algorithm has been developed espe-
cially for processing the outlines generated by the
LIMN program. The result of its operation is shown
in figure 14 where it can be seen that almost all
the hints have been found, but the outlines have not
been corrected as in the case of running FontMonger
(figure 9).
In the case of outlines directly extracted from

METAFONT (figure 7), our homegrown algorithm
gives results (figure 15) competitive with those ob-
tained by FontoGrapher (figure 13).

4 Paradissa Font Collection

The Paradissa Font Collection has been developed
using the outlines generated by LIMN and a specially
developed outline filter and hinting algorithm. This
font collection is available from CTAN in the

/tex-archive/fonts/cm/ps-type1/paradissa

directory. The examples of the hinted outlines con-
tained in this collection have already been presented
in figure 14.
The Paradissa Font Collection contains:

• Computer Modern, designed by D. Knuth;

• Euler by H. Zapf;

• CM Cyrillic by N. Glonty & A. Samarin;

66 TUGboat, Volume 16 (1995), No. 1

Figure 10: LIMN generated outlines hinted by
FontoGrapher

Figure 11: LIMN generated outlines hinted first by
FontMonger and then by FontoGrapher

• Special LATEX fonts.

Altogether it contains 165 fonts in ATM com-
patible PostScript Type 1 format with AFM and PFM
files. This set of fonts may be used for printing
most (LA)TEX documents. It is used by the Russian-
English LATEX version developed and supported by
the ProTEX group at IHEP.
This collection can be used for

• printing documents on a PostScript printer by
using, for example, Rokicki’s DVIPS driver. It
should be noted that the typesetting of even
a simple LATEX document may require a lot of
printer memory to download fonts. This prob-
lem is solved, for instance, by the commercial
program DVIPSONE which uses a special tech-

nique for partial font downloading to conserve
the printer’s memory.

• printing documents on a large collection of ma-
trix printers by using DVIPS and ghostscript.

• drawing slides on vector plotters by using the
PostScript plot.ps program which is supplied
with the collection. For drawing documents on
HPGL plotters, the ps2hpgl utility can be used.
It is available on ftp.mathworks.com host in
the /pub/contrib/tools directory.

• displaying documents under MS Windows with
ATM by using the commercial DVIWindo pro-
gram. We also expect that the capability of us-
ing Type 1 fonts will be added to Hippocrates
Sendoukas’ DVIWIN program.

TUGboat, Volume 16 (1995), No. 1 67

Figure 12: BKM outlines hinted by FontMonger
Figure 13: BKM outlines hinted by
FontoGrapher

References

Adobe Systems Inc. PostScript Language Reference
Manual. Addison-Wesley, 1985.

Adobe Systems Inc. Adobe Type 1 Font Format. Ad-
dison-Wesley, August 1990, Version 1.1.

Adobe Systems Inc. Adobe Type 1 Font Format:
Multiple Master Extensions. Adobe Developer
Support, 14 February 1992.

Berry, Daniel, and Shimon Yanai. “Environment for
Translating METAFONT to PostScript.” TUG-
boat 11 (4), p. 525–541, 1990.

Carr, Leslie. “Of Metafont and PostScript.”
TEXniques 5, p. 141–152, August, 1987.

Henderson, Doug. “Outline fonts withMETAFONT.”
TUGboat 10 (1), p. 36–38, 1989.

Hobby, John D. “A METAFONT–like System with
PostScript Output.” TUGboat 10 (4), p. 505–
512, 1989.

Knuth, Donald E. The METAFONTbook. Reading,
Mass.: Addison-Wesley, 1986.

Knuth, Donald E. METAFONT: The Program. Read-
ing, Mass.: Addison-Wesley, 1987.

⋄ Basil K. Malyshev
Institute for High Energy Physics,
IHEP, OMVT, Moscow Region,
RU-142284 Protvino, Russia

Email: malyshev@mx.ihep.su

68 TUGboat, Volume 16 (1995), No. 1

Figure 14: LIMN generated outlines hinted by
homegrown hinter

Figure 15: BKM outlines hinted by homegrown
hinter

4 6
8

10
12

14

6
8

10
12

14
16

0

40

80

120

160

200

240

78 TUGboat, Volume 16 (1995), No. 1

Tight setting with TEX

Alan Jeffrey

1 Introduction

This note describes some experiments with setting
text matter in TEX using Adobe Times, which is a
very tightly spaced text font. Acceptable results are
possible with TEX, but some tweaking is required.

2 Setting text

Here is some text set in Computer Modern:

On November 14, 1885, Senator & Mrs. Le-
land Stanford called together at their San
Francisco mansion the 24 prominent men
who had been chosen as the first trustees of
The Leland Stanford Junior University. They
handed to the board the Founding Grant
of the University, which they had executed
three days before. This document—with var-
ious amendments, legislative acts, and court
decrees—remains as the University’s charter.
In bold, sweeping language it stipulates that
the objectives of the University are “to qual-
ify students for personal success and direct
usefulness in life; and to promote the publick
welfare by exercising an influence in behalf of
humanity and civilization, teaching the bless-
ings of liberty regulated by law, and inculcat-
ing love and reverence for the great principles
of government as derived from the inalienable
rights of man to life, liberty, and the pursuit
of happiness.”

And here is the same text set in Adobe Times:
On November 14, 1885, Senator & Mrs. Leland

Stanford called together at their San Francisco

mansion the 24 prominent men who had been

chosen as the first trustees of The Leland Stan-

ford Junior University. They handed to the board

the Founding Grant of the University, which they

had executed three days before. This document—

with various amendments, legislative acts, and

court decrees—remains as the University’s char-

ter. In bold, sweeping language it stipulates that

the objectives of the University are “to qualify

students for personal success and direct useful-

ness in life; and to promote the publick welfare by

exercising an influence in behalf of humanity and

civilization, teaching the blessings of liberty reg-

ulated by law, and inculcating love and reverence

for the great principles of government as derived

from the inalienable rights of man to life, liberty,

and the pursuit of happiness.”

The first thing I can see about these two texts is
how much darker Adobe Times is—partially this is
because Computer Modern is a very light, brilliant
face, but partially it’s because Adobe’s Times is a
very dark cut, of somewhat dubious character.1

The next point of note is that the Times setting
is two lines shorter. This economy of space is one of
the main reasons for publishers selecting Times as a
book font!
Looking at the Computer Modern setting, it is

very variably set: the difference between the setting
of tight and loose lines is very high, and is much
less so with the Times setting, which is generally
much tighter. In fact, we can make the setting of
Times tighter still, by appropriate settings of the
TEX paragraph parameters:

On November 14, 1885, Senator & Mrs. Leland

Stanford called together at their San Francisco

mansion the 24 prominent men who had been cho-

sen as the first trustees of The Leland Stanford

Junior University. They handed to the board the

Founding Grant of the University, which they had

executed three days before. This document—with

various amendments, legislative acts, and court

decrees—remains as the University’s charter. In

bold, sweeping language it stipulates that the ob-

jectives of the University are “to qualify students

for personal success and direct usefulness in life;

and to promote the publick welfare by exercis-

ing an influence in behalf of humanity and civi-

lization, teaching the blessings of liberty regulated

by law, and inculcating love and reverence for the

great principles of government as derived from the

inalienable rights of man to life, liberty, and the

pursuit of happiness.”

The settings which achieved this were:

\frenchspacing

\leftskip=0pt minus 1pt

\rightskip=0pt minus 1pt

\hfuzz=0pt

\tolerance=800

\emergencystretch=0pt

\doublehyphendemerits=2500

Or, in English:

• No extra space after punctuation, for example
“by law, and”.
• Up to 2pt shrink in the line width, which allows
tight lines to have up to 1pt of “wadding” added
at the left and right.
• No overfull \hboxes allowed, since the wadding
compensates.

1 The settings of Times described are with the older met-
rics (pre mid-1995).

TUGboat, Volume 16 (1995), No. 1 79

• Less tolerance of underfull boxes.

• No extra space for underfull boxes.

• Two hyphenated lines in a row aren’t too bad.

In producing these settings, I realized that Knuth
allowed TEX a lot of flexibility about producing un-
derfull boxes, but very little about producing over-
full boxes, without jutting out into the margin. An
\emergencyshrink would be very useful! In addi-
tion, some typesetters would allow double hyphen-
ated lines but not triple hyphenated lines, but TEX
has no way of specifying that.
One unfortunate result of these settings is the

three stacked occurrences of ‘the’ at the end of the
paragrapgh, especially since the last one has notica-
bly less wadding than the first and second. A bit
of hand-correction produces what I think is proba-
bly the best achievable setting with standard Adobe
Times:

On November 14, 1885, Senator & Mrs. Leland

Stanford called together at their San Francisco

mansion the 24 prominent men who had been cho-

sen as the first trustees of The Leland Stanford

Junior University. They handed to the board the

Founding Grant of the University, which they had

executed three days before. This document—with

various amendments, legislative acts, and court

decrees—remains as the University’s charter. In

bold, sweeping language it stipulates that the ob-

jectives of the University are “to qualify students

for personal success and direct usefulness in life;

and to promote the publick welfare by exercis-

ing an influence in behalf of humanity and civi-

lization, teaching the blessings of liberty regulated

by law, and inculcating love and reverence for the

great principles of government as derived from

the inalienable rights of man to life, liberty, and

the pursuit of happiness.”

However, for those willing to brave virtual fonts,
one last improvement can be achieved. The hyphen
character in Adobe Times has large sidebearings,
which can be reduced by an appropriate virtual font.
This produces:

On November 14, 1885, Senator & Mrs. Leland

Stanford called together at their San Francisco

mansion the 24 prominent men who had been cho-

sen as the first trustees of The Leland Stanford

Junior University. They handed to the board the

Founding Grant of the University, which they had

executed three days before. This document—with

various amendments, legislative acts, and court

decrees—remains as the University’s charter. In

bold, sweeping language it stipulates that the ob-

jectives of the University are “to qualify students

for personal success and direct usefulness in life;

and to promote the publick welfare by exercising

an influence in behalf of humanity and civiliza-

tion, teaching the blessings of liberty regulated by

law, and inculcating love and reverence for the

great principles of government as derived from

the inalienable rights of man to life, liberty, and

the pursuit of happiness.”

The Cork fonts include separate hyphen characters
for in-line hyphenation (for example in the word ‘in-
line’) and for line-breaking hyphenation. It may be
that this can be exploited to produce more beautiful
pages with PostScript fonts.

3 Setting math

Now we can play the same game with some mathe-
matics. Here’s some Computer Modern mathemat-
ics (shown ragged right, to make it easier to see
what’s going on):

Suppose f ∈ Sn and g(x) = (−1)
|α|xαf(x).

Then g ∈ Sn; now (c) implies that ĝ = Dαf̂

and P ·Dαf̂ = P · ĝ = (P (D)g)̂, which is a
bounded function, since P (D)g ∈ L1(Rn).

This proves that f̂ ∈ Sn. If fi → f in
Sn, then fi → f in L

1(Rn). Therefore

f̂i(t) → f̂(t) for all t ∈ Rn. That

f → f̂ is a continuous mapping of Sn
into Sn follows now from the closed graph
theorem. Functional Analysis, W. Rudin,
McGraw–Hill, 1973.

And again in Times, using the mathptm math fonts:

Suppose f ∈ Sn and g(x) = (−1)|α|xα f (x).
Then g ∈ Sn; now (c) implies that ĝ = Dα f̂

and P · Dα f̂ = P · ĝ = (P(D)g)̂, which is

a bounded function, since P(D)g ∈ L1(Rn).
This proves that f̂ ∈ Sn. If fi → f in Sn, then

fi → f in L1(Rn). Therefore f̂i(t) → f̂ (t)
for all t ∈ Rn. That f → f̂ is a continuous

mapping of Sn into Sn follows now from the

closed graph theorem. Functional Analysis,

W. Rudin, McGraw–Hill, 1973.

And again with tighter setting:

Suppose f ∈ Sn and g(x) = (−1)|α|xα f (x).
Then g ∈ Sn; now (c) implies that ĝ= Dα f̂ and

P ·Dα f̂ = P · ĝ= (P(D)g)̂, which is a bounded

function, since P(D)g ∈ L1(Rn). This proves

that f̂ ∈ Sn. If fi → f in Sn, then fi → f in

L1(Rn). Therefore f̂i(t)→ f̂ (t) for all t ∈ Rn.

That f → f̂ is a continuous mapping of Sn into

Sn follows now from the closed graph theorem.

Functional Analysis, W. Rudin, McGraw–Hill,

1973.

80 TUGboat, Volume 16 (1995), No. 1

Suppose f ∈ Sn and g(x) = (−1)
|α|xαf(x). Then g ∈ Sn; now (c) implies that ĝ = Dαf̂ and

P ·Dαf̂ = P · ĝ = (P (D)g)̂, which is a bounded function, since P (D)g ∈ L
1(Rn). This proves that

f̂ ∈ Sn. If fi → f in Sn, then fi → f in L
1(Rn). Therefore f̂i(t) → f̂(t) for all t ∈ R

n. That

f → f̂ is a continuous mapping of Sn into Sn follows now from the closed graph theorem. Functional
Analysis, W. Rudin, McGraw–Hill, 1973.

Suppose f ∈ Sn and g(x) = (−1)|α|xα f (x). Then g ∈ Sn; now (c) implies that ĝ = Dα f̂ and P ·Dα f̂ = P · ĝ =
(P(D)g)̂, which is a bounded function, since P(D)g ∈ L1(Rn). This proves that f̂ ∈ Sn. If fi → f in Sn, then

fi → f in L1(Rn). Therefore f̂i(t) → f̂ (t) for all t ∈ Rn. That f → f̂ is a continuous mapping of Sn into Sn
follows now from the closed graph theorem. Functional Analysis, W. Rudin, McGraw–Hill, 1973.

Suppose f ∈ Sn and g(x) = (−1)|α|xα f (x). Then g ∈ Sn; now (c) implies that ĝ = Dα f̂ and P ·Dα f̂ = P · ĝ =
(P(D)g)̂, which is a bounded function, since P(D)g ∈ L1(Rn). This proves that f̂ ∈ Sn. If fi → f in Sn, then

fi → f in L1(Rn). Therefore f̂i(t)→ f̂ (t) for all t ∈ Rn. That f → f̂ is a continuous mapping of Sn into Sn
follows now from the closed graph theorem. Functional Analysis, W. Rudin, McGraw–Hill, 1973.

Figure 1: Math in Computer Modern, Adobe Times, and tight Adobe Times

The additional math parameters are taken from the
mathptm LATEX2ε package:

\thinmuskip=2mu

\medmuskip=2.5mu plus 1mu minus 1mu

\thickmuskip=4mu plus 1.5mu minus 1mu

It’s impossible to show the effects of tight text and
math setting in the narrow measure of a TUGboat
quotation, so in Figure 1 you can see the effect of
Computer Modern, Adobe Times, and tight Adobe
Times flush right.
It’s worth noting that there’s very little differ-

ence between the loose and tight settings of Adobe
Times, becuase there are very few good linebreaks
for mathematically heavy material, so the only dif-
ference is that the text stretches more and the math
stretches a bit less.

Acknowledgements

This note was inspired by a talk by Richard Southall
at TUG 93, in which he described the problems with
setting tight text with TEX and Computer Modern.
I hope this note shows that acceptable results are
possible with TEX, as long as care is taken with
fonts and setting parameters. However, as Richard
Southall pointed out, TEX is much more prone to
loose setting than to tight.

⋄ Alan Jeffrey

School of Cognitive and

Computing Sciences

University of Sussex

Falmer

Brighton

BN1 9QH

UK

Email: alanje@cogs.susx.ac.uk

80 TUGboat, Volume 16 (1995), No. 1

XΥMTEX for Drawing Chemical Structural

Formulas

Shinsaku Fujita

Abstract

XΥMTEX,
1 a macro package of combined LATEX style

files, has been developed for drawing a wide vari-
ety of chemical structural formulas. The commands
of XΥMTEX have a set of systematic arguments for
specifying substituents and their positions, endo-
cyclic double bonds, and bond patterns. In some
cases, they have an additional argument for specify-
ing hetero-atoms on the vertices of heterocycles. As
a result of this systematic feature, XΥMTEX works
effectively as a practical tool within the “device-
independent” concept of TEX.

1 Introduction

A few years ago, in order to expand the use of TEX
into various fields of chemistry, I decided to write a
book [1] that would use LATEX style files and BibTEX
bst files suitable for such scientific journals as Jour-
nal of the American Chemical Society, Science, and
Nature (potentially there were some thirty journals
in the field which might benefit). However, while
preparing the book I encountered difficulties in in-
troducing methods for drawing formulas of chemical
structures. Although I had dealt with ChemTEX [2],
epic [3] and PICTEX [4] as device-independent meth-
ods, as well as with PostScript [5] and tpic [6] as

1 The Xs of XΥMTEX should be pronounced as a Greek chi

or simply as ‘k’ in ‘kyumtek’.

TUGboat, Volume 16 (1995), No. 1 81

device-dependent methods, it was difficult to rec-
ommend any one of them as a standard method.
ChemTEX typesets structural formulas of high

quality in a device-independent manner. Its com-
mands, however, should be replaced by more sys-
tematic ones in order to cover structures with a wide
range of substitution. As for epic and PICTEX, in
themselves they have no facilities for drawing chem-
ical structures. Moreover, they produce output of
lesser quality than ChemTEX, especially in printing
chemical bonds. Among device-dependent meth-
ods, encapsulated PostScript is now recognized as
the predominant method since chemical structural
formulas are usually drawn with tools whose stor-
ing and printing processes are based on PostScript.
However, it is still desirable to develop a conve-
nient method according to the device-independent
concept, since this is a fundamental philosophy in
TEX typesetting, and encourages electronic submis-
sion and exchange of information.

2 Features of XΥMTEX

Therefore, it seemed necessary to take all of these
issues into consideration and devise something new.
XΥMTEX was developed as a device-independent
method with systematic commands (control sequen-
ces) for drawing structural formulas [7]. The fea-
tures and advantages of XΥMTEX are summarized
below:

1. The name XΥMTEX is the uppercase form of
χυµτǫχ, in which χυµ is the Greek counter-
part of the stem ‘chem’ of ‘chemistry’. When
the logo XΥMTEX is unavailable, you should type
XyMTeX.

2. XΥMTEX requires the LATEX picture environ-
ment only, ensuring portability (since LATEX is
part of most TEX distributions). Thus, wide
adaptations for personal computers are avail-
able and a variety of printers can be used as
output devices.

3. XΥMTEX should be used within a large version
of LATEX.

4. Structural formulas written with XΥMTEX pro-
duce high-quality output, since they use LATEX
fonts.

5. Each command name corresponds to a master
template to be drawn. It can be easily remem-
bered, since it stems from the familiar nomen-
clature of organic compounds.

6. The invariant part of a structure (the master
template containing fixed bonds and atoms) is
automatically printed with no designation.

7. The variant parts of a structure (substituents,
additional bonds and atoms) are designated by

up to four arguments: SUBSLIST, OPT, BOND-
LIST, and ATOMLIST.

8. Substituents and their positions are given by a
single argument (SUBSLIST) in which they are
listed consecutively, with semicolons as delim-
iters. It follows that an arbitrary number of
substituents can be written in the SUBSLIST.

9. A command of frequent occurrence has an op-
tional argument (OPT) of one or two characters
for showing a pattern of bonds or aromatiza-
tion.

10. Additional endocyclic bonds are designated by
an optional argument (BONDLIST) in which one
character corresponds to each of the bonds.

11. A more general command for drawing heterocy-
cles takes an additional argument (ATOMLIST),
so that a set of hetero-atoms are typeset on the
vertices of the master template after truncation
of edges.

12. Commands with a common stem but different
suffixes (‘v’, ‘vi’, ‘h’, ‘hi’) are provided for draw-
ing the same structure in different ways.

13. Each structure created by a XΥMTEX command
is regarded as a letter, or more exactly, as a
TEX box. Thus, it is controlled by the inher-
ent mechanism of TEX in breaking paragraphs
(containing such structures) into lines as well
as in making the lines into pages.

14. The recognition of a XΥMTEX structure as a
TEX box permits us to use XΥMTEX commands
in various LATEX environments such as center,
equation and tabular.

15. In extreme cases, a XΥMTEX command can be
used in the argument of another command. For
example, it may be utilized in the argument
of \section in conjunction with the \protect
command. However, such modes of usage should
not be recommended to regular users, since they
may cause unexpected errors.

3 Drawing Benzene and Naphthalene

Derivatives

Let us first draw benzene and naphthalene deriva-
tives as examples. XΥMTEX contains nine style files
for drawing various categories of chemical structural
formulas (Table 1). Since the macros we will require
are stored in carom.sty, the document file begins as
follows:

\documentstyle[epic,carom]{article}

\begin{document}

(body)

\end{document}

82 TUGboat, Volume 16 (1995), No. 1

where epic.sty is also included in any order as an
option for drawing dotted lines. This is the usual
form of LATEX documents.
The constitution of a command is quite simple.

To draw the structure of 4-nitrophenol, you write
the following simple statements in the body of your
document:

\bzdrv{1==OH;4==NO$_2$}

\bzdrh{1==HO;4==NO$_2$}

where each argument is a SUBSLIST, listing sub-
stituents with their bonds. This generates the fol-
lowing:

"" bb

bb ""bb

""

OH

NO2

�
�

T
T

T
T

�
�
��TT

HO NO2

A semicolon separates each mode of substitution,
where a double equality symbol (==) is used as
a delimiter between a substitution position and a
substituent. Thus, the two arguments state that
position 1 takes a hydroxyl group through a sin-
gle bond (‘1==OH’) and position 4 takes a nitro
group through a single bond (‘4==NO2’), where
each single bond is automatically drawn without ex-
plicit declaration. Since statements in SUBSLIST
arguments follow the nomenclature of organic com-
pounds, as shown in these examples, most organic
chemists and secretaries with appropriate training
can write them down easily. The suffixes ‘v’ and ‘h’
generally indicate vertical and horizontal forms of
printed formulas.
To draw three structures with different aro-

matic expressions for 1-bromo-4-chlorobenzene, you
use \bzdrv[OPT]{SUBSLIST} as follows:

\bzdrv[r]{1==Br;4==Cl}

\bzdrv[l]{1==Br;4==Cl}

\bzdrv[c]{1==Br;4==Cl}

where the letters in brackets are optional arguments
for representing patterns of double bonds. The stan-
dard mode of displaying alternant double bonds (to
the right-hand side of the diagram) is the default
(e.g., when no optional argument is used, as in the
first example); specifying ‘r’ in square brackets will
also yield the right-handed mode. The letter ‘l’
in brackets generates an alternative (left-handed)
mode of alternant double bonds; ‘c’ in square brack-
ets expresses an inner circle. As a result, you get

Table 1: Style Files in XΥMTEX

file name printed structures
aliphat.sty aliphatic compounds
carom.sty vertical and horizontal types of

cyclic compounds
ccycle.sty bicyclic compounds etc.
chemstr.sty basic commands
hcycle.sty pyranoses and furanoses
hetarom.sty vertical types of heterocyclic

compounds
hetaromh.sty horizontal types of heterocyclic

compounds
locant.sty locant numbers
lowcycle.sty five-or-less-membered

carbocycles

three structural formulas with different bond pat-
terns for the same compound:

"" bb

bb ""bb

""

Br

Cl

"" bb

bb ""

bb

""

Br

Cl

"" bb

bb ""
��
��
Br

Cl

The \bzdrv command is also used to typeset p-
and o-benzoquinone derivatives. Thus, the code:

\begin{center}

\bzdrv[p]{1D==O;4D==O;2==Me}

\bzdrv[o]{1D==O;2D==O;4==Me}

\end{center}

produces

"" bb

bb ""

O

O

Me
"" "" bb

bb """
"

O

O
""""

Me

where the optional arguments ‘p’ and ‘o’ control
patterns of endocyclic double bonds. The carbonyl
double bonds are designated by means of a bond
modifier ‘D’ coupled with a preceding locant num-
ber; thus, the string ‘1D==O’ represents an oxygen
atom through an exocyclic double bond.
Naphthalenes and naphthoquinones are typeset

by using the \naphdrv command and so on. For
example, the code:

\begin{center}

TUGboat, Volume 16 (1995), No. 1 83

\naphdrv{1==OH;5==NH$_2$}

\naphdrv[p]{1D==O;4D==O;8==OH}

\end{center}

prints the following fused structures:

"" bb

bb ""

"" bb

bb ""

bb

""bb

""

OH

NH2

"" bb

bb ""

"" bb

bb ""bb

""

O

O

OH

The \naphdrv command also takes optional argu-
ments (‘oa’ to ‘of’) in order to print all possible
structures of o-naphthoquinones. The command is
also capable of drawing other naphthoquinones such
as 2,6-naphthoquinones.

4 Drawing Cyclohexane Derivatives

The command \cyclohexanev and related ones are
used to typeset cyclohexane derivatives. These com-
mands are also contained in carom.sty. They are
capable of drawing geminal substituents by using
appropriate bond modifiers such as ‘Sa’ and ‘Sb’.
For example, the code:

\begin{center}

\cyclohexanev{1D==O;2Sa==Cl;2Sb==Cl}

\cyclohexaneh{1D==O;4Sa==Cl;4Sb==Cl}

\end{center}

produces the following structures:

"" bb

bb ""

O

Cl

Cl
��

�
�

T
T

T
T

�
�

O
Clbb
Cl""

Note that the suffixes ‘v’ and ‘h’ are in accord with
the general convention described above.
For specifying the stereochemistries of cyclo-

hexanes more explicitly, we use bond modifiers of
single type (‘A’ and ‘B’) as well as those of geminal
type (‘SA’ and ‘SB’). For example,

\begin{center}

\cyclohexanev{2A==CH$_3$;3B==CH$_3$}

\cyclohexanev{2SA==CH$_3$;2SB==H;%

3SB==CH$_3$;3SA==H}

\end{center}

yields the following alternative expressions of trans-
1,2-dimethylcyclohexane:

"" bb

bb ""

CH3

CH3
bb

"" bb

bb ""

CH3

H
��

CH3
TT
H

where the α-bonds (‘A’ and ‘SA’) are represented
by dotted lines and the β-bonds (‘B’ and ‘SB’) are
printed with boldfaced lines.
Commands such as \cyclohexanev take an op-

tional argument BONDLIST that contains one or
more letters (‘a’ to ‘f’) for designating endocyclic
double bonds in a bond-by-bond fashion. Thus,
we use \cyclohexanev[BONDLIST]{SUBSLIST}. For
example,

\begin{center}

\cyclohexanev[b]{1D==O;%

4Sa==CH$_3$;4Sb==CH$_3$}

\cyclohexanev[df]{2B==OH;3B==OH}

\end{center}

generates the following structural formulas with en-
docyclic double bonds:

"" bb

bb ""

O

CH3

TT
CH3

��

"" bb

bb ""bb

""
OH

""

OH
bb

XΥMTEX is capable of drawing more complicated
structures such as steroids in a similar way. Let us
write the code:

\begin{center}

\steroid[dim]{3D==O;%

{{13}B}==\lmoiety{H$_3$C};{{17}SB}==HO;%

{{17}SA}==COCH$_3$}

\end{center}

where the optional argument ‘dim’ gives three endo-
cyclic double bonds, giving us a steroid derivative:

"" bb

bb ""

"" bb

bb ""

"" bb

""

"" bb

""

""

""

O
""""

HO

TT

COCH3
H3C

the methyl group of which attaches to the fused 13-
position in such a manner that the right terminal

84 TUGboat, Volume 16 (1995), No. 1

carbon of the methyl is linked to the corresponding
bond by using the command \lmoiety.
The command \steroidchain is used to draw

an insect hormone α-ecdysone just by designating
a set of substituents in the SUBSLIST argument.
Thus, we write the code:

\begin{center}

\unitlength.09pt

\steroidchain[g]{%

2B==HO;3B==HO;{{10}B}==;5B==H;%

6D==O;{{13}B}==;{{14}A}==OH;%

{{20}SA}==CH$_3$;{{20}SB}==H;%

{{22}A}==OH;{{25}}==H}

\end{center}

in which empty substituents are allowed to show
implicit methyl groups at the 10- and 13-positions.
This results in the following complex formula. In
this example, I have slightly reduced the size of the
structural formula by setting \unitlength.09pt—
the default setting in XΥMTEX for unit length is
0.1pt.

"" bb

bb ""

"" bb

bb ""

"" bb

""

"" bb

HObb

HO
""

O
H

OH

"" bb

�
�

T
T

OH

CH3

H
TT

OH

It should be noted that further reduction of sizes
is usually unsuccessful because the LATEX picture
environment is incapable of drawing lines of short
lengths and of arbitrary slopes.
In the future, this restriction concerning line

lengths and slopes should be overcome so that one
could draw chemical structures more conveniently.
XΥMTEX would then become an automatic tool linked
with chemical drawing software. This linkage would
mean that XΥMTEX codes could be created automat-
ically in the future rather than manually as in the
present situation. The future aim for XΥMTEX is
therefore to implement a device-independent method
whose codes would be created automatically with
some kind of graphical user interface.

5 Drawing Heterocycles

For the purpose of drawing heterocyclic compounds,
\documentstyle must contain hetarom.sty in the
optional argument. Let us draw pyridine deriva-
tives, using the following code:

\begin{center}

\pyridinev{4==Cl}

\pyridinevi{4==Cl}

\end{center}

This yields two pyridine structures of inverse types:

bb""

""bbb
b

""
N

Cl

bb""

""bbbb

""

N

Cl

To show a ring nitrogen at the top of the pryidine
derivative, the suffix ‘v’ is used; to mark the pres-
ence of a nitrogen atom at the bottom position of
the ring, ‘vi’ is used. As a result, the correspond-
ing positions in the alternative structures have com-
mon locant numbers, starting from the respective
nitrogen atoms; thus, the 4-chloropyridine has been
drawn in two ways without any changes to the SUBS-
LIST argument. This convention is also applied to
commands for drawing other heterocycles.
The \pyridinev and related commands take

an optional argument BONDLIST to designate en-
docyclic double bonds other than the default set-
tings for alternant double bonds. Thus, we use
\pyridinev[BONDLIST]{SUBSLIST}, in which one
or more characters selected from ‘a’ to ‘f’ are in-
volved in the BONDLIST. For example, the code:

\begin{center}

\pyridinevi[ce]{2D==O;1==Me;5==NC}

\pyridinevi[ace{1+}]{1==Me;3==COO$^{-}$}

\end{center}

produces the following structures:

bb""

""bb

bb

N O
bbbb

Me

NC
bb bb""

""bb ""

bb

+
N

Me

COO−
""

Note that the BONDLIST argument in the latter
example contains a descriptor ‘1+’ for denoting a
plus charge on the ring nitrogen. Such a descrip-
tor consists of a locant number and a character to
be printed, both of which are bundled with braces
according to the TEX grammar.
The default pattern of endocyclic double bonds

for drawing six-membered heterocycles is an alter-
nant pattern to complete their aromaticity. If you
intend to typeset saturated heterocycles, you should
give an empty optional argument:

TUGboat, Volume 16 (1995), No. 1 85

\begin{center}

\pyridinev[]{4D==O;1==Me}

\pyridinevi[]{4D==O;1==Me}

\end{center}

which yields the following structures:

bb""

""bb

N

O

Me

bb""

""bb N

O

Me

In order to show a wide variety of commands
for drawing heterocyclic compounds, let us test the
following statements:

\begin{center}

\pyrimidinevi[e]{%

1==R;3==H;2D==O;4D==S} \qquad

\pyrazinev{2==Me} \\

\pyridazinev{3==Me} \qquad

\pyridazinevi{3==Me} \\

\triazinev[]{2D==O;4D==O;%

6D==O;1==H;3==H;5==H} \qquad

\triazinevi[]{2D==O;4D==O;%

6D==O;1==H;3==H;5==H}

\end{center}

Note that the pair of codes before each \\ constructs
a text line during LATEX processing, since XΥMTEX
views each structure as a letter (or a TEX box). The
following heterocycles result:

bb""

""bb N

N

R

H""

O
bbbb

S

bb""

""bbbb

""

N

N Me
""

bb""

""bbb
b

""
N
N

Me
bb

bb""

""bbbb

""

N
N

Me
""

bb""

""bb

N

NN

O
""""

O

O
bbbb

H

HbbH""

bb""

""bb N

NN

O
bbbb

O

H

H""

O
""""

Hbb

Since 5-membered heterocycles comprise a pre-
dominant family of organic compounds, XΥMTEX has
versatile facilities for drawing them:

\begin{center}

\pyrrolev{1==H;2==Me;5==Me}

\pyrrolev[d]{1==H;2Sa==H;%

2Sb==NHOH;3Sa==H;3Sb==H} \\

\pyrazolev{1==H;3==Ph;5==Ph}

\imidazolev{1==H;2==Me;4==Me;5==Me} \\

\isoxazolev{3==Me;5==Me}

\oxazolev{2==Me;4==Me;5==Me}

\end{center}

The command names come from those of master
templates, i.e., pyrrole, pyrazole, imidazole, isox-
azole, and oxazole. As before, the suffix conven-
tions (‘v’, ‘vi’, ‘h’ and ‘hi’) are also effective in these
commands. The above code yields a variety of 5-
membered cyclic compounds:

""bb N

H

Me
bb

Me
"" ""bb N

H

H

NHOH
TT

H

H
��

""bb N
N

H

Ph
""

Ph
"" ""bb N

N

H

Me
bb

Me
bb

Me
""

""bb O
N

Me
""

Me
"" ""bb O

N

Me
bb

Me
bb

Me
""

XΥMTEX is capable of also drawing fused het-
erocyclic compounds. These compounds can take
a wide variety of substitutions and bond patterns.

86 TUGboat, Volume 16 (1995), No. 1

Every command in XΥMTEX has therefore been de-
signed to be able to deal with such diversity by us-
ing BONDLIST and SUBSLIST arguments. To illus-
trate the flexibility of XΥMTEX commands, let us test
\quinolinevi in various situations:

\begin{center}

\quinolinevi{}

\quinolinevi[AB]{} \\[-16pt]

\quinolinevi[egi]{1==Me}

\quinolinevi[A]{1==Me} \\[16pt]

\quinolinevi[cfhk]{1==Me;2D==O;%

4==OMe;8==\lmoiety{MeO}}

\quinolinevi[Ac]{1==Me;2D==O;%

4==OMe;8==\lmoiety{MeO}} \\[16pt]

\quinolinevi{2==Me;4==Me}

\quinolinevi[bdj]{5D==O} \\

\quinolinevi[r{1+}]{1==Me;4==OMe}

\quinolinevi[fhk{1+}]{%

1Sa==Me;1Sb==Me} \\[16pt]

\quinolinevi[fhk]{1==Me;4SA==OH;4SB==H}

\quinolinevi[fhk]{%

1==H;2Sa==Me;2Sb==Me} \\[16pt]

\quinolinevi[bfhk]{1==Me;4D==O;%

2==(CH$_2$)$_7$CH=CH(CH$_2$)$_3$CH$_3$}

\phantom{\quinolinevi{}}

\end{center}

This gives us the following test structures:

bb

""

""

bb

bb

""

""

bb
""

bb""

bb
N

bb

""

""

bb

bb

""

""

bb
��
��
��
��

N

bb

""

""

bb

bb

""

""

bb

bb

""
N

Me

bb

""

""

bb

bb

""

""

bb
��
��

N

Me

bb

""

""

bb

bb

""

""

bb

bb""

bb
N

Me

O
bbbb

OMe

MeO

bb

""

""

bb

bb

""

""

bb
��
��bb

N

Me

O
bbbb

OMe

MeO

bb

""

""

bb

bb

""

""

bb
""

bb""

bb
N Me

bb

Me

bb

""

""

bb

bb

""

""

bb

""

bb
N

O

bb

""

""

bb

bb

""

""

bb

bb

""

""

bb +
N

Me

OMe

bb

""

""

bb

bb

""

""

bb

""

bb +
N

Me
TT

Me
��

bb

""

""

bb

bb

""

""

bb

""

bb
N

Me

OHH

TT
bb

""

""

bb

bb

""

""

bb

""

bb
N

H

Me

Me
TT

bb

""

""

bb

bb

""

""

bb

""

bb
N

Me

O

(CH2)7CH=CH(CH2)3CH3
bb

This last example contains a long-chain substituent
with a double bond represented by a single equality
symbol (=). For this reason, we use double equality
(==) as a delimiter in the SUBSLIST argument.
XΥMTEX includes other commands for draw-

ing fused heterocycles with two 6-membered rings:
isoquinolines, quinoxalines, quinazolines, cinnolines,
and pteridines. These commands can be used in the
same way as described for the \quinolinevi com-
mand, where ‘v’, ‘vi’, ‘h’, and ‘hi’ are also effective.
XΥMTEX has various commands for drawing het-

erocycles with fused 5- and 6-membered rings: pur-
ines, indoles, indolizines, isoindoles, benzofuranes,
isobenzofuranes, and benzoxazoles. For example,
adenine and 3-methylindole are drawn by using the
following code:

\begin{center}

\purinev[adfh]{3==H;4==NH$_2$}

\indolev{1==H;3==CH$_3$}

\end{center}

which gives the following results:

TUGboat, Volume 16 (1995), No. 1 87

""bb

bb

""

""

bb ""

bb

""
N

NN

N

H""

NH2

""bb

bb

""

""

bb

""

bb
N

H

CH3""

In the preceding paragraphs of this section, each
mother skeleton is associated with a specific com-
mand. This approach is combinatorially explosive
in nature since there are further categories of hete-
rocyclic master templates. More general commands
have therefore been designed to have the additional
function of specifying inner atoms on rings, as in
\sixheterovi[BONDLIST]{ATOMLIST}{SUBSLIST}.
Each of the following code examples contains

two arguments in addition to an empty optional
BONDLIST argument. Among them, the second ar-
gument is an ATOMLIST for specifying the positions
and species of hetero-atoms.

\begin{center}

\sixheterovi[]{1==O;4==N}{4==Me}

\sixheterovi[]{3==O;4==N}{4==Me} \\

\sixheterovi[]{2==O;4==N}{4==Me}

\sixheterovi[]{6==S;4==N}{4==Me}

\end{center}

These codes generate the following structures:

bb""

""bb O

N

Me

bb""

""bb

N
O

Me

bb""

""bb

N

O

Me

bb""

""bb

N

S

Me

The next examples illustrate two ways of draw-
ing pyridine-N-oxide:

\sixheterovi[r{2+}]%

{2==N}{2==O$^{\displaystyle -}$}

\sixheterovi{2==N$^{+}$}{2==O$^{-}$}

which yield the following results:

bb""

""bbb
b

""

+
N
O−bb

bb""

""bbb
b

""

N+

O−bb

Note that pyridine nuclei with a ring nitrogen at
a position other than the top or the bottom can-
not be drawn by using such a specific command as
\pyridinev.
For drawing fused heterocycles with two 6-mem-

bered rings, the \decaheterov command and re-
lated ones are designed to be capable of specifying
any hetero-atoms in the nuclei:

\decaheterov[g]{9==N}{%

1B==CH$_2$OH;{{10}B}==Me}

\decaheterov[]{7==O}{6D==O;9A==H;%

{{10}A}==CH=CH$_2$}

yields

bb

""

""

bb

bb

""

""

bb
N

CH2OH
Me

bb

""

""

bb

bb

""

""

bb

O

O
""""

H

CH=CH2

The \nonaheterov command and related ones are
also able to specify any hetero-atoms in the nuclei
of fused heterocycles. For example:

\nonaheterov[egj]{1==O;3==O}{}

\nonaheterov[]{9==N}{5A==Me;7A==Me;8A==H}

produces

""bb

bb

""

""

bb

""

bb
O

O

""bb

bb

""

""

bb
N

Me

Me

H

6 Further Techniques

More complicated structural formulas can be con-
structed by combining two or more structures cre-
ated by XΥMTEX commands. These structures are
combined within an outer picture environment,
since XΥMTEX is based on the LATEX picture envi-
ronment and two or more picture environments can
be nested. The technique is discussed in Chapter 14
of the on-line manual for XΥMTEX [8].
Another technique for constructing complicated

formulas is to use a XΥMTEX command inside the

88 TUGboat, Volume 16 (1995), No. 1

Table 2: Original XΥMTEX Files in NIFTY-Serve

no.
size

data name
(bytes)

204 76093 xymtexi.lzh—XΥMTEX. An
introduction (in Japanese)

202 77281 xymtexj.lzh—XΥMTEX by
Example (in Japanese)

201 299053 xymtex.lzh—XΥMTEX for
drawing chem. structures

argument of another XΥMTEX command. This tech-
nique is discussed in Chapter 15 of the same on-line
manual cited above.
The book which was the original cause of all this

work on TEX for chemistry [1] contains several com-
mands for the use of chemical fields, e.g., counters
for compounds and derivatives, various reaction ar-
rows, parbox-like boxes for structural formulas, and
chemical equation environments. These commands
combined with the XΥMTEX ones are useful for draw-
ing reaction schemes of multistep syntheses. Many
illustrative examples are described in the Japanese
edition of the XΥMTEX on-line manual. [9]

7 Program Availability

The original location supported by the author is the
NIFTY-Serve archives (FPRINT library No. 7), from
which you can take the compressed packages shown
in Table 2. The XΥMTEX files as listed in Table 1 (in-
cluding the reference manual of about 120 pages [8])
are also available on CTAN:2

tex-archive/macros/

latex209/contrib/xymtex

The present article has been typeset by using
XΥMTEX within LATEX, where the top declaration of
the document file is as follows:

\documentstyle[epic,carom,hetarom]%

{ltugboat}

References

[1] S. Fujita, LATEX for Chemists and Biochemists.
A Guide for Preparing Papers with Personal

Computers [in Japanese], Tokyo Kagaku Dozin,
Tokyo (1993).

2 Thanks to the kind volunteer efforts of Ms. M. Burbank

and Ms. H. Ase.

[2] R.T. Haas and K.C. O’Kane, “Typesetting
chemical structure formulas with the text for-
matter TEX/LATEX”, Computers and Chemistry,
Vol. 11, No. 4, pp. 251–271 (1987).

[3] S. Podar, “Enhancements to the picture envi-
ronment of LATEX”, On-line manual for Version
1.2 dated July 14, 1986. Manual for Version 1.2
dated July 14, 1986.

[4] M.J. Wichura, The PICTEX Manual, TEX Users
Group, Providence (1992).

[5] A.C. Norris and A.L. Oakley, “Electronic pub-
lishing and chemical text processing”, in M.
Clark, ed., TEX. Applications, uses, methods, El-
lis Horwood, Chichester (1990), pp. 207–225; see
also M. Ramek, “Chemical structure formulae
and x/y diagrams with TEX”, pp. 227–258.

[6] C. Kwok, “EEPIC. Extensions to epic and LATEX
picture environment”, On-line manual dated Au-
gust 14, 1988.

[7] S. Fujita, “Typesetting structural formulae with
the text formatter TEX/LATEX”, Computers and
Chemistry, Vol. 18, No. 2, pp. 109–116 (1994).

[8] S. Fujita, “XΥMTEX. A macro package for type-
setting chemical structural formulas”, On-line
manual for XΥMTEX for Version 1.00 (1993).
[Available from CTAN, see article.]

[9] S. Fujita, “XΥMTEX by example” [in Japanese],
On-line manual for XΥMTEX (1994). [Available
from NIFTY-Serve, see Table 2.]

⋄ Shinsaku Fujita

Ashigara Research Laboratories

Fuji Photo Film Co., Ltd.

Minami-Ashigara, Kanagawa-ken,

250-01 Japan

Email: hbh00445@niftyserve.or.

jp

1995

Apr 4 UK TEX Users’ Group,
University of Warwick. BibTEX
and MakeIndex tutorial.
For information, e-mail
uktug-enquiries@ftp.tex.ac.uk

May 24 NTG 15th Meeting, Universiteit
Twente, Enschede, The Netherlands.
For information, contact Gerard
van Nes (vannes@ecn.nl).

Apr 29 –
May 1

BachoTEX ’95, Poland.
For information, contact
Hanna Ko lodzeijska,
(gust@camk.edu.pl).

Jun 1 – 2 GUTenberg ’95, “Graphique, TEX et
PostScript”, La Grande Motte,
France. For information, call
(33-1) 30-87-06-25, or e-mail
treasorerie.gutenberg@ens.fr

or aro@lirmm.fr.

Jun 1 – 2 IWHD ’95: International Workshop
on Hypermedia Design, Montpellier,
France. For information, contact
the conference secretariat,
Corine Zicler, LIRMM, Montpellier
((33) 6741 8503, zicler@lirmm.fr).

Jul 6 DANTE TEX–Stammtisch at the
Universität Bremen, Germany. For
information, contact Martin Schröder
(l15d@zfn.uni-bremen.de;
telephone 0421/628813). 18:30,
Universität Bremen MZH, 4th floor,
across from the elevator.

Jul 24 – 28 TUG 16th Annual Meeting:
Real World TEX,
St. Petersburg Beach, Florida.
For information, send e-mail to
tug95c@scri.fsu.edu. (For a
preliminary announcement, see
TUGboat 15, no. 2, p. 160.)

Jul 27 TEX and Semitic Languages,
Technion, Haifa, Israel.
(For information, contact one
of the organizers: Dan Berry
dberry@cs.technion.ac.il

or Yannis Haralambous
Yannis.Haralambous@univ-lille1.fr.)

TUGboat, Volume 16 (1995), No. 1 89

Calendar

Aug 10 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For details, see Jul 6.)

Sep 4 – 8 EuroTEX ’95, Papendal, Arnhem,
The Netherlands. For information,
contact eurotex@cs.ruu.nl.

Sep 7 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For details, see Jul 6.)

Sep 14 – 15 DANTE e.V., 13th general meeting,
Humboldt-Universität, Berlin,
Germany. (For information,
contact Christiane Schöbel
dante-mv13@rz.hu-berlin.de.)

Sep 14 DANTE TEX–Stammtisch,
Wuppertal, Germany. For
information, contact Andreas Schrell
(Andreas_Schrell@FernUni-Hagen.DE,
telephone 0202/502354).
Second Thursday, 19:30,
Gaststätte Yol, Ernststraße 43,
(near Robert-Daum-Platz),
42117 Wuppertal.

Oct 2 – 5 CyrTUG’95 Annual Meeting,
Protvino (Moscow region), Russia.
(For information, contact
cyrtug@mir.msk.su.)

TUG Courses, San Francisco, California

(For information, contact tug@tug.org.)

Oct 9 – 13 Beginning/Intermediate TEX

Oct 16 – 20 Intensive LATEX

Oct 23 – 27 Modifying LATEX Document Classes

Oct 30 –
Nov 3

Advanced TEX and Macro Writing

Oct 10 DANTE TEX–Stammtisch at the
Universität Bremen, Germany. For
information, contact Martin Schröder
(MS@Dream.HB.North.de; telephone
0421/628813). First Tuesday (if not
a holiday), 18:00, Universität Bremen
MZH, 28359 Bremen, 4th floor,
across from the elevator.

Oct 12 DANTE TEX–Stammtisch,
Wuppertal, Germany.
(For details, see Sep 14.)

Status as of 31 December 1994

Nov 7 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For details, see Oct 10.)

Nov 9 DANTE TEX–Stammtisch,
Wuppertal, Germany.
(For details, see Sep 14.)

Dec 5 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For details, see Oct 10.)

Dec 14 DANTE TEX–Stammtisch,
Wuppertal, Germany.
(For details, see Sep 14.)

1996

Jan 9 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For details, see Oct 10.)

Feb 6 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For details, see Oct 10.)

Mar 5 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For details, see Oct 10.)

Mar 27 – 29 DANTE ’96 and 14th general
meeting of DANTE e.V.,
Universität Augsburg,
Germany. For information,
contact Gerhard Wilhelms
(dante96@Uni-Augsburg.de).

Apr 2 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For details, see Oct 10.)

Apr 7 – 10 EP96, the International Conference
on Electronic Documents,
Document Manipulation and
Document Dissemination,
Xerox Palo Alto Research
Center, Palo Alto, California.
Deadline for submission of papers:

4 December 1995. For information,
contact ep96@xsoft.xerox.com.

May 7 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For details, see Oct 10.)

90 TUGboat, Volume 16 (1995), No. 1

Jul 18 – 21 SHARP 1996: Society for
the History of Authorship,
Reading and Publishing,
Fourth Annual Conference,
Worcester, Massachusetts.
Deadline for proposals: 20 November

1995. For information, contact the
American Antiquarian Society,
cfs@mark.mwa.org.

For additional information on the events listed
above, contact the TUG office (415-982-8449, fax:
415-982-8559, e-mail: tug@tug.org) unless other-
wise noted.

90 TUGboat, Volume 16 (1995), No. 1

Late-Breaking News

Production notes

Mimi Burbank

I oversaw the production of this issue of TUGboat
and I had to manage a production team working in
three different time zones and spanning two conti-
nents. But with e-mail and ftp and so forth, time
and distance were not a problem. It soon was obvi-
ous that some of the production team were at work
for practically all of the 24-hour day. Each mem-
ber was involved in the successful completion of this
issue, as well as maintaining and upgrading the sys-
tem used at SCRI. Bandwidth was often a problem
for those “across the pond” and Mimi’s main activ-
ity was running and previewing files and reporting
back to those across the ocean about layout.
Electronic input for articles in this issue was

received by e-mail as well as retrieved from remote
sites by anonymous ftp. In addition to text, the in-
put to this issue includes METAFONT source code,
38 .fd files, and 11 .vf files. There were a consid-
erable number and variety of PostScript files. One
article contained 39 figures, and required 81 files
to produce final output. Over 200 files were used
(as input files) to generate final copy; over 300 files
represent fonts (.tfm and rasters), device-specific
translations, earlier versions of files, auxiliary infor-
mation, and records of correspondence with authors
and referees. The Y&Y advertisement was received
via anonymous ftp as a PostScript file.

TUGboat, Volume 16 (1995), No. 1 91

All articles were received as fully tagged for
TUGboat, using either plain-based or LATEX con-
ventions described in the Authors’ Guide (see TUG-
boat 10, no. 3, pages 378 – 385). 80% of the articles
received were in LATEX2ε. Several authors requested
copies of the current version of LATEX2ε macros for
TUGboat, and we were happy to provide these.
Font work was required on all of the articles

in the “Font Forum” section. The article by Jef-
frey (page 79) used metrics for Adobe Times which
were generated in 1994. Unfortunately, a major
change to the fontinst macros took place in mid-
1995, resulting in different stretch and shrink val-
ues in all the PostScript font metrics distributed as
PSNFSS. Since Alan’s article deals explicitly with
the effects of changing TEX’s parameters relating to
setting text, using the current Adobe Times PSNFSS
metrics caused disastrous results, so we had to main-
tain a copy of the old metrics for this paper.
The production team has been experimenting

with a pre-release of changes to dvips that allow
automatic partial-downloading of Type1 fonts. The
much smaller PostScript files produced are very con-
venient when they have to be transferred across a
slow transatlantic ftp link. The changes to dvips
were made by Sergey Lesenko, and are described in
a paper which will appear in the 1995 proceedings
issue. We hope that they will appear in standard
dvips soon. Type1 versions of the CM fonts are now
used as standard to avoid printing complications on
different devices.

Output

Though individual articles were worked on by mem-
bers of the production team on their local computer
systems, the final output was prepared at SCRI on
an IBM RS6000 running AIX, using theWeb2C im-
plementation of TEX. Output was printed on a QMS
680 print system at 600 dpi.

Future Issues

The next issue will be a theme issue and will be
guest-edited by Malcolm Clark. 16(3) will be the
TUG’95 proceedings issue, and we plan for 16(4) to
be a bilingual issue featuring articles in both Russian
and English.
Topics for future theme issues will be announced

as plans become firm. Suggestions are welcome for
prospective topics and guest editors. Send them to
the Editor, Barbara Beeton (see address on page 3),
or via electronic mail to TUGboat@ams.org.

ComingNext Issue

Guest-edited issue

The next issue of TUGboat, guest-edited by Mal-
colm Clark, focuses on ‘portable’ electronic docu-
ments. It contains articles on the Standard General-
ized Markup Language, bringing in its relationship
to HTML (Hypertext Markup Language) and the
World Wide Web. The other strands are Adobe’s
Portable Document Format (a hypertext-capable ver-
sion of PostScript, and more), which can be gener-
ated from existing TEX and LATEX documents, and
packages which may be included with LATEX to pro-
duce hypertexts suitable for reading at a screen,
rather than paper. The brave new world it her-
alds is one where the tyranny of paper is broken,
and all ‘documents’ are truly virtual. Xanadu looms
through the mists!

• A Practical Introduction to SGML

Michel Goossens and Janne Saarela

• From LATEX to HTML and Back

Michel Goossens and Janne Saarela

• The Inside Story of Life at Wiley with SGML,

LATEX and Acrobat

Geeti Granger

• LATEX, HTML and PDF, or the entry of TEX
into the world of hypertext

Yannis Haralambous and Sebastian Rahtz

• HTML & TEX: Making them sweat

Peter Flynn

• The Hyperlatex Story

Otfried Schwarzkopf

• The Los Alamos E-print Archives: HyperTEX in

Action

Mark D. Doyle

Institutional

Members

The Aerospace Corporation,
El Segundo, California

∗ Air Force Institute of Technology,
Wright-Patterson AFB, Ohio

American Mathematical Society,
Providence, Rhode Island

∗ ArborText, Inc.,
Ann Arbor, Michigan

∗ Brookhaven National Laboratory,
Upton, New York
Pasadena, California¡

CNRS - IDRIS,
Orsay, France

CERN, Geneva, Switzerland

∗ College Militaire Royal de Saint
Jean, St. Jean, Quebec, Canada

College of William & Mary,
Department of Computer Science,
Williamsburg, Virginia

Communications
Security Establishment,
Department of National Defence,
Ottawa, Ontario, Canada

CSTUG, Praha, Czech Republic

Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands

∗ Fermi National Accelerator
Laboratory, Batavia, Illinois

Florida State University,
Supercomputer Computations
Research, Tallahassee, Florida

Grinnell College,
Noyce Computer Center,
Grinnell, Iowa

Hong Kong University of
Science and Technology,
Department of Computer Science,
Hong Kong

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Communications Research
Division, Princeton, New Jersey

Iowa State University,
Ames, Iowa

Los Alamos National Laboratory,
University of California,
Los Alamos, New Mexico

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Mathematical Reviews,
American Mathematical Society,
Ann Arbor, Michigan

∗ Max Planck Institut
für Mathematik,
Bonn, Germany

New York University,
Academic Computing Facility,
New York, New York

Nippon Telegraph &
Telephone Corporation,
Basic Research Laboratories,
Tokyo, Japan

∗ Personal TEX, Incorporated,
Mill Valley, California

Princeton University,
Princeton, New Jersey

Smithsonian Astrophysical
Observatory, Cambridge,
Massachusetts

Space Telescope Science Institute,
Baltimore, Maryland

Springer-Verlag,
Heidelberg, Germany

∗ Stanford Linear Accelerator
Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Texas A&M University,
Department of Computer Science,
College Station, Texas

∗ United States Naval
Postgraduate School,
Monterey, California

United States Naval Observatory,
Washington DC

University of California, Berkeley,
Center for EUV Astrophysics,
Berkeley, California

92 TUGboat, Volume 16 (1995), No. 1

University of California, Irvine,
Information & Computer Science,
Irvine, California

University of Canterbury,
Christchurch, New Zealand

University College,
Cork, Ireland

University of Delaware,
Newark, Delaware

University of Groningen,
Groningen, The Netherlands

Universität Koblenz–Landau,
Koblenz, Germany

University of Manitoba,
Winnipeg, Manitoba

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

∗ University of Southern California,
Information Sciences Institute,
Marina del Rey, California

University of Stockholm,
Department of Mathematics,
Stockholm, Sweden

University of Texas at Austin,
Austin, Texas

Università degli Studi di Trieste,
Trieste, Italy

Uppsala University,
Uppsala, Sweden

Vrije Universiteit,
Amsterdam, The Netherlands

Wolters Kluwer,
Dordrecht, The Netherlands

Yale University,
Department of Computer Science,
New Haven, Connecticut

(52 institutions listed)

Information about these services can be obtained

from:

TEX Users Group

1850 Union Street, #1637

San Francisco, CA 94123, U.S.A.

Phone: +1 415 982-8449

Fax: +1 415 982-8559

Email: tug@tug.org

North America

Anagnostopoulos, Paul C.

Windfall Software,
433 Rutland Street, Carlisle, MA 01741;
(508) 371-2316; greek@windfall.com

We have been typesetting and composing high-quality
books and technical Publications since 1989. Most of the
books are produced with our own public-domain macro
package, ZzTEX, but we consult on all aspects of TEX and
book production. We can convert almost any electronic
manuscript to TEX. We also develop book and electronic
publishing software for DOS and Windows. I am a
computer analyst with a Computer Science degree.

Cowan, Dr. Ray F.

141 Del Medio Ave. #134, Mountain View, CA 94040;
(415) 949-4911; rfc@netcom.com

Twelve Years of TEX and Related Software Consulting:

Books, Documentation, Journals, and Newsletters

TEX & LATEX macropackages, graphics; PostScript language
applications; device drivers; fonts; systems.

Hoenig, Alan

17 Bay Avenue, Huntington, NY 11743; (516) 385-0736
TEX typesetting services including complete book
production; macro writing; individual and group
TEX instruction.

NAR Associates

817 Holly Drive E. Rt. 10, Annapolis, MD 21401;
(410) 757-5724

Extensive long term experience in TEX book publishing
with major publishers, working with authors or publishers
to turn electronic copy into attractive books. We offer
complete free lance production services, including design,
copy editing, art sizing and layout, typesetting and
repro production. We specialize in engineering, science,
computers, computer graphics, aviation and medicine.

94 TUGboat, Volume 16 (1995), No. 1

TEXConsulting &Production Services

Ogawa, Arthur

40453 Cherokee Oaks Drive,
Three Rivers, CA 93271-9743;
(209) 561-4585

Experienced in book production, macro packages,
programming, and consultation. Complete book production
from computer-readable copy to camera-ready copy.

Quixote Digital Typography, Don Hosek

555 Guilford, Claremont, CA 91711;
(909) 621-1291; Fax: (909) 625-1342;
dhosek@quixote.com

Complete line of TEX, LATEX, and METAFONT services
including custom LATEX style files, complete book
production from manuscript to camera-ready copy;
custom font and logo design; installation of customized
TEX environments; phone consulting service; database
applications and more. Call for a free estimate.

Richert, Norman

1614 Loch Lake Drive, El Lago, TX 77586;
(713) 326-2583

TEX macro consulting.

Type 2000

16 Madrona Avenue, Mill Valley, CA 94941;
(415) 388-8873; Fax: (415) 388-8865
pti@crl.com

$2.50 per page for 2000 DPI TEX and PostScript camera
ready output! We provide high quality and fast turnaround
to dozens of publishers, journals, authors and consultants
who use TEX. Computer Modern, PostScript and
METAFONT fonts available. We accept DVI and
PostScript files only and output on RC paper. $2.25 per
page for 100+ pages, $2.00 per page for 500+ pages; add
$.50 per page for PostScript.

Outside North America

TypoTEX Ltd.

Electronical Publishing, Battyány u. 14. Budapest,
Hungary H-1015; (036) 11152 337

Editing and typesetting technical journals and books with
TEX from manuscript to camera ready copy. Macro writing,
font designing, TEX consulting and teaching.

