
Opening words

Christina Thiele
President, TEX Users Group

Well, we finally made it into your mailbox! The
last issue for 1994! It’s been a tough year for
our publications. Tough year for the editors, too.
With delays due to technical problems and just
plain scheduling problems, it has been a difficult
year for our membership to feel that they are still
connnected to their user group. And what’s so
frustrating in all these delays is that there is so
much that has gone on this past year that we want
to tell you about.

We’ve seen the introduction of the new stan-
dard LATEX, no longer specifying it as ‘2ε’; we’ve
seen the genesis of such TEX developments as the
Omega project and NTS, the New Typesetting Sys-
tem; the appearance of colour on the typeset page
has provoked a revitalisation in the DVI Standards
Committee; the explosion of work being done to
bring TEX onto the World Wide Web via HTML —
to name but a few which spring to mind.

Information from all over!

You will have noticed the great increase in the dis-
tribution of all manner of TEX-related information,
from CDs to CTAN, from meetings to publications.
There is so much information now available in al-
most all forms of media currently in place, that it’s
hard to keep track of it all. Hard to know what to
read or buy or attend first!

Being a member of TUG — indeed, being a
member of any user group— already provides you
with some ‘navigating tools’— publications, meet-
ings, information posted to archives are some of
the ways in which the wealth of information and
assistance can be made manageable.

TUG publications, in particular the proceed-
ings issue of TUGboat, give members a permanent
record of what’s happening, what people are doing,
information and background on new applications,
advice and examples of how use TEX better, and
generally provide that sense of community which
membership helps foster. Add to that the publi-
cations from other user groups, and you start to
feel overwhelmed by how much information there is,
how much work individuals in the TEX community
are putting into their research— and then into their
writing. How to keep up with it all?

One navigating ‘tool’ you might not think of
is the abstract, a short text which often starts
off a paper. These are a required element in the

TUGboat, Volume 14 (1994), No. 4 425

proceedings issues of TUGboat, but a lot of regular-
issue articles also carry them. As well, TUGboat’s
editor, Barbara Beeton, makes a concerted effort
to get abstracts or summaries of material which
appears in publications such as DANTE’s Komödie

or the Cahiers from GUTenberg. This issue here
also has the abstracts from the 1994 EuroTEX
meeting.

So, in a few short reading sessions, you can
be on top of what’s happening right now: some
37 abstracts from the 1994 TUG meeting, 3 from
Cahier 18 and 9 from no. 19, rounded off with 19
abstracts from the 1994 EuroTEX meeting. Even if
that’s all you read out of this issue of TUGboat, at
least you’ll be aware of the work being done by a
broad range of members of the TEX community, and
when the time comes that you need that information
in all its detail, you’ll know where to look. An
abstract sure is handy!

1994 also saw TUG begin to provide information
and materials on-line via its subdirectory on CTAN;
we hope to see frequently requested items from
the office made available electronically, allowing
anyone to get basic information directly, rather
than mailing or phoning the TUG office. In addition
to administrative items such as membership forms,
we also have a slowly expanding set of ‘info-sheets’,
short 1- or 2-page documents which can provide
handy information in a summary form. Conference
information for the upcoming meeting in Florida
will also be found there. Use ftp to your nearest
CTAN site and go to tex-archive/usergrps/tug.

And what about 1995?

Well, there’s an election coming up! Nominations
are needed for five board members —and one pres-
ident. My term will come to an end with this
summer’s annual meeting in Florida (another event
that’s coming up fast), and after having been on
the board since 1988, it’s time to move over. In-
formation on nomination procedures will appear in
TTN.

There’s just enough room left to squeeze in an
advance reminder for the 1995 Annual Meeting, in
Florida— where they do believe in air-conditioning!
So plan now to come to the TradeWinds hotel;
information will be appearing in TTN, on CTAN,
and on the Web (see the poster for details).

⋄ Christina Thiele

15 Wiltshire Circle

Nepean, Ontario

K2J 4K9 Canada

cthiele@ccs.carleton.ca

Editorial Comments

Barbara Beeton

TEX meetings in 1994

This year’s TUG meeting was held in Santa Barbara
on the University of California campus, on a penin-
sula overlooking the Pacific Ocean. I won’t go into
details, except to invite you to see for yourself in the
proceedings (published as TUGboat 15 no. 3) the
wide variety of topics on the menu. Some faces from
the past reappeared — Leslie Lamport and Chuck
Bigelow are two whose names should be familiar to
all TUGboat readers. A most enjoyable meeting.

I also attended EuroTEX ’94 — an even greater
adventure. Held in Sobieszewo, Poland (a seaside
town near Gdańsk), it was in a totally new region
for me, and I’m still thankful that W lodek Bzyl and
his wife were so kind to collect me at the airport.
(Thank you ever so much, W lodek!)

As always at TEX meetings, there were many
new faces to attach to names I already knew from
e-mail correspondence, and old friends with whom
to catch up on gossip. The accommodations and
the meeting rooms were in a holiday resort, just a
few hundred meters from the Baltic shore.

W lodek Bzyl and Tomek Przechlewski, editors
of the GUST bulletin, were the meeting organizers.
Hanna Ko lodziejska, the President of GUST, also
joined in making everyone feel warmly welcome. A
full report appears later in this issue, so let me just
take this opportunity to thank everyone who made
the experience so memorable.

A new, expanded TEX FAQ

With Robin Fairbairns in command, a UKTEXUG
working party has produced a new, reorganized,
much expanded TEX FAQ (“Frequently Asked Ques-
tions” list, with answers); the results can be seen in
Baskerville Vol. 4 No. 6, December 1994.

The original FAQ was compiled as an adjunct
to the Usenet newsgroup comp.text.tex and main-
tained by Bobby Bodenheimer of Caltech. (Thanks,
Bobby, for all your efforts.) The new edition has
been created with his knowledge, and it is intended
to feed it back to c.t.t via Bobby’s regular posting.

The new FAQ is available electronically from
CTAN, in tex-archive/usergrps/uktug/faq. The
source (for LATEX2ε) is there as well as several
predigested versions:

letterfaq.ps, for U.S. letter-size paper
newfaq.*, for A4 paper; .dvi, .ps and .pdf

versions, using PostScript fonts, are available

426 TUGboat, Volume 14 (1994), No. 4

newfaq-cm.dvi, for those who have only Com-
puter Modern fonts

Thanks to Robin and his colleagues for a fine job.

UKTeX Digest ceases to exist

With the distribution of Volume 94, Issue 48, the
UKTeX Digest ceased to exist. This digest was a
regular visitor to my e-mail in-box, and I learned
many useful things from its contents.

Originally created in July 1987 by Peter Abbott
to announce developments of the UK TEX Archive
at Aston University (another of Peter’s creations), it
was moderated and edited by Peter for its first few
years of existence. Since mid-1990, David Osborne
has been the editor. Through the seven and a half
years of its existence, 336 digests were produced.

With the emergence of CTAN (the Compre-
hensive TEX Archive Network), the need for a
UK-oriented digest has disappeared. However, for
some time David has also been editing the TeX-

hax Digest, the model for UKTeX, and TeXhax will
continue, absorbing contributions that would have
been addressed to UKTeX.

There is still a need for such an electronic distri-
bution list as a question, answer and announcement
forum for the global TEX community, especially for
people without access to news, or who do not have
the time to read the full contents of comp.text.tex.

In any event, this is an appropriate occasion
to publicly express our appreciation to Peter and
David for their efforts through the years, with
special thanks to David for the statistics that I have
shamelessly copied from his notice in the final issue.

Well done!

Miscellaneous gossip

Raman’s thesis, “An Audio System for Technical
Reading (ASTeR)”, has won the ACM Dissertation
Award for 1994. The official presentation will be in
March 1995.

Anyone who attended the 1992 TUG meeting
in Portland will remember Raman’s presentation, a
preliminary report on his research, and his friendly
black Labrador retriever, Aster, to whom the work
is dedicated. Another look at the article in the
proceedings (TUGboat 13, No. 3) will be worth
your time, and increase your awareness that there
is an audience for TEX that isn’t interested only in
how the output looks on paper.

Congratulations and best wishes to both Ra-
man and Aster.

From David M. Jones, creator of the (now sadly
outdated) TEX index: “Reviving the TEX index will
be my New Year’s resolution, but I’m still shy of
making any promises, since my record for keeping
those over the last couple of years has been dismal.
:-(”

(Actually, David has been occupying his spare
time with other useful TEX-related pursuits; he
has contributed ideas and code to the display
math environments of AMS-LATEX, and his name
now appears among the acknowledgements for that
package. David also attended his first TUG meeting
this past summer in Santa Barbara, demonstrating
that he really does exist.)

The question keeps arising on comp.text.tex

and other electronic forums, where is an electronic
version of TUGboat?

Contrary to what is apparently the general be-
lief, TUGboat does not lend itself easily to electronic
distribution, requiring, as it does, nonstandard (and
sometimes proprietary) fonts, nonstandard versions
of macro packages, multiple files for some arti-
cles, both plain-based and LATEX processing, and
other varieties of special handling. Moreover, since
TUGboat is just completing its 15th volume, the
archives contain a variety of input styles and require
several different versions of (LA)TEX for processing,
including the no-longer-available TEX78.

However, the TUG Publications Committee is
looking into ways to get around these problems, so
as to be able to provide at least some of the most
important material in electronic form. Stay tuned.

⋄ Barbara Beeton

American Mathematical Society

P.O. Box 6248

Providence, RI 02940 USA

bnb@math.ams.org

TUGboat, Volume 14 (1994), No. 4 427

The TUG94 Proceedings—Apologia

Michel Goossens, Sebastian Rahtz and
Barbara Beeton

The TUG94 Annual Meeting took place at the
beginning of August 1994, and the deadline for
(revised) compuscripts was the end of August. It
was decided to produce the final camera-ready copy
on a typesetter in Europe, to give the editor and
his assistant a chance to check it before sending
to America. After a last check of the articles
during September, PostScript files for a Linotronic
typesetter at 1270 dpi resolution were generated
at the beginning of October in Geneva. These
files were transferred by Sebastian Rahtz to a
machine connected to the Linotronic typesetter of
the Computing Centre of the University of London,
where Philip Taylor had kindly volunteered to help
produce the bromides.

Now the problems began to get more interest-
ing. The first problem to emerge was with memory
on the Linotronic. Initially, we tried to send 20
page batches, but almost all failed. Cutting this
down to fewer and fewer pages per section, nu-
merous trials over several weeks resulted in almost
no output, as the large collection of Lucida fonts
being downloaded with each job consistently ran
the poor typesetter out of memory. Using the
fine-tuning of dvips to specify the exact memory
available in the typesetter did not help. Since
nothing useful was being accomplished, we decided
to stop including Type-1 Lucida fonts in the output,
and instead generate PK format bitmaps at 1270dpi
using ps2pk.

This resulted in jobs that were much more
acceptable to the typesetter, and rolls of bromide
started to appear. However, several pages, es-
pecially those of the Haralambous papers, used
complex METAFONT fonts which again exhausted
the memory of the typesetter (see table 1). So a
few of the font examples of the Tiqwah (yannisT)
and Ω (yannisO) papers had to be regenerated at
600 dpi and embedded as EPS pictures in the text.

Note: The table of fonts used in
each paper is not included in this file.

Still not everything was coming out (we were
running now in batches of 10 pages), with about
40 pages causing problems. These were finally
run one by one through the typesetter. The
resulting monstrous heap of rolls of bromide was
cut up, collated and posted off to Barbara Beeton,

TUGboat, Volume 14 (1994), No. 4 427

who (inevitably) found some pages missing; each
of these (seven of them) was transmitted as an
individual PostScript file and printed at the AMS.

The color pages were completely done in the
United States. They fell into two batches. Those
that were available as PostScript files with CMYK

color information had their 4-colour separations
done and films produced at the AMS, while the
BM2FONT color images of Sowa (Colour Examples
10 to 13) were scanned at the printer, Cadmus.

It had been planned to send the colour Post-
Script files direct to the printer, and have them
separated there, but the dvips output seemed to
defeat Cadmus, who claimed to find no colour on
the pages! By this time, help from heaven was
badly needly, and it duly arrived in the shape of
a new RIP in the typesetter at AMS which could
do colour separations directly, without need for
a preliminary processing phase. Fingers crossed,
Barbara threw the TUG94 papers at it, and got
back a pile of correctly separated negatives; the
only problem then was that she had to work out
by eye which was which for each page out of cyan,
magenta, yellow and black. . .

Some other problems, born of incompatibilities
between the (fixed) resolution at which some graph-
ics had been prepared and the higher resolution
of the typesetter, required additional reruns and
falling back on the tried and true cut-and-paste
makeup for several pages, again at AMS. Finally,
the time spent by Barbara on the Proceedings issue
was cut from her time scheduled to work on the
next regular issue (15 #4, the issue you are now
looking at).

All these unforeseen problems, and the fact
that several people in different locations had to deal
with them, meant that the issue was not completely
ready until the end of January 1995. It is only
thanks to the perseverance of Sebastian Rahtz that
the issue finally arrived on your desk. We want to
apologize for this delay and sincerely hope that this
year the Proceedings of the Florida Annual Meeting
will be available before the end of 1995. Moreover
for the following year we propose to change the
whole schedule and have the Proceedings ready at

the Conference, i.e., in July.

Michel Goossens
Sebastian Rahtz
Barbara Beeton

Minutes of the NTS meeting held at Lindau
on October 11/12th 1994

Philip Taylor,
Technical Director, NTS project

Present: Philip Taylor, Jǐŕı Zlatuška, Bernd Raichle,
Friedhelm Sowa, Peter Breitenlohner, Joachim Lam-
marsch.

It was agreed that no progress had apparently
been made on the ‘canonical TEX kit’ project, and
that no progress was likely to be made unless and
until an active proponent of the project emerged
within, or was recruited to, the group; accordingly
the project was officially placed on ice.

It was agreed that in the absence of adequate
funding for the NTS project proper, no serious
work could be carried out; several possible sources
of funding remained to be explored, and the group
were hopeful that this project would see the light of
day before too long.

It was agreed that the ε-TEX project was
both feasible and very worthwhile, and that all
efforts should initially be concentrated on achieving
progress in this area. With the benefit of hindsight
it was agreed that the original proposal to issue
new releases at six-monthly intervals had been
over-optimistic, and that a more realistic timescale
would involve new releases once per year. It
was also agreed that the first release should be
accomplished as soon as possible, consistent with
the need to ensure that the code released was
both bug-free and unlikely to require more than a
minimum of re-thinking in the light of experience.

The group attempted to identify as many ideas
as possible which either have already been proposed
for incorporation in ε-TEX, or which were natural
consequences of (or alternatives to) ideas already
proposed. The remainder of this document lists the
various ideas mooted, and discusses their intention
and implementation.

Proposals

\horigin, \vorigin (dimen registers, default =
1 in)

These two registers, requested by Phil, will
serve to make explicit for the first time the canonical
(1′′, 1′′) origin decreed by DEK in the definition
of the DVI format, and on which all formats are
currently predicated. Phil explained that his college,
amongst others, had eschewed this convention right
from the outset, and has instead adopted the more
logical (0′′, 0′′) origin, requiring all drivers to be
configured in a non-standard manner. Providing

434 TUGboat, Volume 15 (1994), No. 4

the origin registers within ε-TEX would allow all
drivers to be reconfigured to the standard, whilst
existing practices could be maintained simply by
local initialisation of the registers to (0′′, 0′′). As
ε-TEX might eventually require the adoption of a
new version of the DVI format (to encompass, for
example, colour), that might also be the appropriate
time at which to propose universal adoption of a
(0′′, 0′′) origin.

\〈enhancement〉state (internal integer registers,
one for each enhancement)

A unified mechanism is proposed for all en-
hancements [1] whereby an internal integer register
is associated with each, the name of the register
being derived from the concatentation of the name
of the enhancement and the word ‘state’; such
registers are read/write, and if their value is zero
or negative the associated enhancement is disabled.
[2] If a positive non-zero value is assigned to any
such register, then the associated enhancement shall
be enabled, and if the register is interrogated then
a positive non-zero value shall indicate that the
associated enhancement is enabled. It is possible
that in a future release differing values assigned
to or returned by such registers may indicate the
revision-level of enhancements, and therefore it is
initially recommended that only the values zero or
one be used.

\TeXXeTstate, \MLTeXstate (internal integer
registers)

These are the only two enhancements currently
under consideration, although Bernd Raichle also
has a proposal for an alternative ligaturing mech-
anism which would probably of necessity form an
enhancement if adopted. MLTEX is not proposed
for incorporation in the first release, but may be in-
corporated in the second. The group acknowledges
the generosity of Michael Ferguson in allowing the
incorporation of his work on MLTEX.

\interactionmode (internal integer register)
Allows read/write access to the present

\scrollmode, \nonstopmode, etc., family of prim-
itives; the values will be a monotonic sequence of
period one, and descriptive names will be associated
through the ε-plain (and ε-LATEX?) formats. [3]

〈additional \tracing... detail〉
Peter has implemented augmented semantics

for some of the \tracing commands whereby in-
creasingly positive values given increasingly detailed
output.

\protected (new prefix for macro definitions)
Analogous to \long, \outer, etc., causes the

associated macro to be non-expanding in contexts

where such behaviour is likely to be undesirable
(in particular in \writes and \edefs); an explicit
\expandafter \empty may be used to force expan-
sion in these circumstances.

\bind (new prefix for macro definitions)
Proposed by Phil, this was intended to allow

macros to be bound to the current meaning of
embedded control sequences rather than to their
names, in a manner analogous to PostScript’s ‘bind
def’. However the group were unconvinced of the
merits of this proposal, and it was classified as
‘more work needed’ (MWN).

\evaluate {〈arithmetic expression〉}
Intended for use on the r-h-s of \count, \dimen

and \skip assignments, it would allow the use of
infix arithmetic operators such as +, -, * and /;
the type of the result would, in general, be the
type of the simplest operand forming a part of the
expression, and the normal semantics of TEX would
allow this to be further coerced where necessary.
Parenthesised sub-expressions would be allowed. [4]

\contents 〈box #〉
Proposed by Jǐŕı, this is intended to allow the

TEX programmer access to the sort of information
normally available only via the log file as a result of
a \show; in principle it would generate the simplest
list of TEX tokens which would generate the box
specified, assuming that each token generated still
had its canonical meaning. MWN.

〈anchors〉
Proposed by Jǐŕı, an “anchor point” would be

in some senses analogous to a mark, but rather
than recording textual information it would instead
record the co-ordinates of itself, relative to the
reference point of the smallest surrounding box.
Additional new primitives would be required to
return the co-ordinates of a specified anchor point.
MWN.

\scantokens {〈balanced text〉}
Allows an existing token-list to be re-input

under a different catcode regime from that under
which it was created; as it uses all of TEX’s
present \input mechanism, even %%ff notation
will be interpreted as if \input. Causes an ‘empty
filename’ to be input, resulting in ‘()’ appearing in
the log file if \tracingscantokens (q.v.) is strictly
greater than zero. If the token list represents more
than one line of input, and if an error occurs, then
\inputlinenumber will reflect the logical input line
from the token list rather than the current input
line number from the current file.

TUGboat, Volume 15 (1994), No. 4 435

\unexpanded {〈balanced text〉}
An alternative to \protected, for use when a

whole brace-delimited token list (‘balanced text’) is
to be protected from expansion. Intended to be
used in \writes and \edefs.

\every〈whatever〉
The group discussed many possibilities of im-

plementing additional \every primitives in ε-TEX;
most were classified as MWN, but one (\everyeof)
is being considered for ε-TEX version 1.

\futuredef 〈cs〉 〈tok〉 〈tok〉
Analogous to \futurelet, but the 〈cs〉 will

be expandable, and expand to the next token
encountered (or to the next balanced text if the
next token is of catcode 1). MWN.

\futurechardef 〈cs〉 〈tok〉 〈char-or-tok〉
A combination of \futurelet and \chardef,

will allow the next character to be inspected and
its character code returned iff it has not yet been
tokenised. If tokenisation has already taken place,
will return −1. Intended to allow the catcode of the
next character to be changed based on its value.

\ifdefined 〈cs〉
Allows direct testing of whether or not a given

〈cs〉 is defined.

\ifcsname ... \endcsname

Ditto, but for a sequence of 〈tokens-expanding-
to-characters〉; this also avoids wasting of hash table
space.

\unless 〈boolean-if〉
Inverts the sense of the following boolean-if;

particularly useful in conjunction with \ifeof in
\loop ... \ifeof ... \repeat constructs, but also
of use with (say) \ifdefined and \ifcsname.

\TeX〈whatever〉state
More work needed! A mechanism whereby a

TEX document can ask TEX some questions about
the current state of its digestive tract. For example
it would be nice to know if TEX was currently
involved in an assignment, and if so which part of
the assignment was currently being elaborated.

\marks 〈integer〉
Allows, for the first time, a whole family of

marks rather than just the one provided by TEX;
will also require analogous \topmarks 〈integer〉, etc.
The group propose to provide 16 such marks, but
are interested to know if the (LA)TEX community
consider this sufficient. A related \markdef prim-
itive may be provided to simplify mark allocation,
in a manner analogous to the existing \...def

primitives.

\deferred \special (or perhaps
\deferredspecial)

At the moment, only \writes are deferred;
there are cases when it would be desirable for other
things, too, to be expanded only during \shipout,
and \specials are one of these.

\textcode 〈integer〉
Could provide a text-mode analogy to TEX’s

\mathcode. MWN.

\middle 〈delimiter〉
Analogous to \left and \right, allows delim-

iters to be classed as \middle, and their spacing
thereby adjusted.

\filename

Would allow access to the name of the file
currently being \input. Lots of discussion on just
how much or how little should be returned. MWN.

\OSname

Very contentious. Would provide the name of
the operating system, and thereby allow documents
to behave differently on different systems. Dep-
recated on that basis, and will not be provided
unless/until a \system primitive is also provided.

\system {〈balanced text〉}
Definitely not proposed for ε-TEX version 1.

Would allow operating system calls to be made, and
their status and result(s) returned in some way. A
lot MWN.

\tracingscantokens (internal integer register)
See \scantokens.

〈smarter discretionaries〉, e.g.
\discretionarylefthyphenmin

Hyphenation after an implicit hyphen is some-
times highly desirable, and the group are inves-
tigating mechanisms whereby this could be both
provided and parameterised. MWN.

\everyhyphen (token list register)
Would allow TEX’s present hard-wired be-

haviour of placing an empty discretionary after
every explicit hyphen to be modified. However,
there are potentially problems of recursion, and
perhaps even a need to remove the hyphen. MWN.

\clubpenalties, \widowpenalties
A start at improving TEX’s penalty system by

making it more flexible. These two penalty ‘arrays’
would allow a different penalty to be associated
with one-line widows, two-line-widows, etc. [5]

\ifenhanced

A boolean-if which would return true iff any
enhancement is enabled. Would allow a ε-TEX
document to check if it is being processed in

436 TUGboat, Volume 15 (1994), No. 4

‘extended’ more or ‘enhanced’ mode. Phil argues
for this one but the group are unconvinced: the
advice of the TEX community is to be sought.

\lastnodetype

Would allow, for the first time, the unambigu-
ous identification of the type of the last node of one
of TEX’s internal lists, removing (for example) the
ambiguity when \lastpenalty returns 0 (which can
indicate no penalty node, or a penalty node with
value 0). Would return one of a monotonic series of
integers of period one. Meaningful names would be
assigned to these through the ε-series formats. [3]

\unnode

Would allow the removal of any node from the
end of one of TEX’s internal lists.

\lastnode

Perhaps analogous to \contents (q.v.), or
perhaps quite different, would allow access to the
value of the last node of one of TEX’s internal lists.
Generalises TEX’s present mechanism whereby only
a subset of nodes can be accessed. MWN.

\readline 〈integer〉 to 〈cs〉
Allows a single line to be read from an input

file as if each character therein had catcode 12.
[6] Intended to be used for verbatim copying
operations, in conjunction with \scantokens, or to
allow error-free parsing of ‘foreign’ (non-TEX) files.

\everyeof {〈balanced text〉}
Provides a hook whereby the contents of a token

list register may be inserted into TEX’s reading
orifice when end-of-file is encountered during file
reading. Would not be invoked if the file indicated
logical e-o-f through the medium of \endinput.
Proposed by Phil to allow clean processing of
file-handling code which requires a (sequence of
characters yielding) \else or \fi to be found in a
file, where no such sequence can be guaranteed.

\listing (internal integer register)
Would allow the generation of a listing contain-

ing (for example) TEX’s analysis of current brace
depth, macro nesting, etc. Different positive values
would allow different amounts of information to be
generated. Would the TEX community like such a
feature?

\defaultextension

Would allow TEX’s present hard-wired be-
haviour of appending .tex to a filename not pos-
sessing an explicit extension to be modified, allowing
an alternative extension to be specified. Would this
be of use to the L2ε/L3 team, and/or to the TEX
world in general?

〈fixed point arithmetic〉
Several of the above ideas cannot be imple-

mented at the moment, as they would allow access
to the ‘forbidden area’ of machine-dependent arith-
metic. If TEX’s present floating point calculations
were replaced by Knuth’s fixed-point arithmetic
proposals, then there would no longer be a forbid-
den area and all such ideas could, in principle, be
implemented.

Notes:

[1] ‘Extensions’ are basically new primitives which
have no effect on the semantics of existing TEX
documents, except insofar as any document
which tests whether such a primitive is, in fact,
undefined, will clearly obtain opposite results
under TEX and ε-TEX; ‘enhancements’ are
more fundamental changes to the TEX kernel
which may affect the semantics of existing
TEX documents even if no new primitive is
used or even tested. Such changes may be,
for example, differences in the construction
of TEX’s internal lists, or perhaps different
hyphenation or ligaturing behaviour.

[2] It is currently proposed that all enhancements
be disabled by ε-IniTEX immediately prior to
the execution of \dump. This decision was
taken based on the advice of Frank Mittelbach.

TUGboat, Volume 15 (1994), No. 4 437

[3] Question: should there, in fact, be an ε-plain
(or ε-LATEX) format, or should there simply
be an e-plain.tex file which can be loaded
by a user document? Peter votes for an
e-plain.tex file that will \input plain.tex

but no hyphenation patterns.

[4] Should ε-TEX allow access to more powerful
operators than just +, -, * and / ?

[5] ‘Arrays’ are not very obvious in TEX at the
moment, although there are, for example,
\fontdimens and such-like. But should these
have fixed bounds (as in 256 count registers,
for example), or arbitrary upper bounds (as
in font dimens, if the ‘extra’ elements are as-
signed as soon as the font is loaded). Or should
they be finite-but-unbounded, as in \parshape,
wherein the first element indicates the number
of elements which follow? These questions are
applicable to marks as well as to penalties . . .

[6] Should spaces have catcode 10 for this opera-
tion? Peter thinks so, but based on existing
simulations of this operation, Phil is more
inclined to think they should have catcode 13.

⋄ Philip Taylor

The Computer Centre, RHBNC

University of London, U.K.

<P.Taylor@Vax.Rhbnc.Ac.Uk>

Recycled METAFONT

Pierre A. MacKay

It is increasingly the fashion for publications to
advertise themselves as ecologically exemplary and
archivally antacid. Academic journals are especially
under scrutiny in such matters, and we can expect
that in the future almost all of them will feel the
necessity of including something like

This journal is printed on recycled

paper meeting the minimum requirements

of American National Standard

for Information Sciences---Permanence

for Paper for Printed Library

Materials, ANSI Z39, 48--1984.

\goodpaper\ \recycle

on the inner cover or one of the other front-matter
pages.

At Humanist Typesetting and Graphics, the
∞© \goodpaper symbol has been in use for quite a
while. Theodora MacKay worked out the following
some years ago, when the Middle East Studies

Bulletin converted to non-acid paper, and it has
proved serviceable ever since.

\def\goodpaper{{%

\ooalign{\hfil

\raise.25ex\hbox{%

$\scriptstyle\mathchar"231$}%

\hfil\crcr

\mathhexbox20D}}}

Something similar might be done with the
Type-1 Symbol font, but since this font lacks the
large open circle here set by \mathhexbox20D the
effort would be painful.

The image for recycled paper is more of a
problem since it cannot be generated from any
existing glyphs in the METAFONT repertory. Nor
is it as yet common among Type-1 fonts. So far, I
have seen it only in a Linotype-Hell font, but since
none of the other characters in that font was of
interest, I decided to work out a new METAFONT

version.
The symbol takes a number of forms, but all

with a consistent theme. Three arrows, each of
which is rolled back on itself over a 60◦ angle, are
arranged to form an equilateral triangle. The arrows
may be broad, (paper bags, boxes, publications) or
narrow (several types of plastic). The broad form
is usually shown in outline, or in white on a dark
circular background. The point of the arrow in its
broad forms is quite blunt, though in the narrow
stick form it often appears in the conventional sharp
style, with swept-back wings. The publication

444 TUGboat, Volume 15 (1994), No. 4

which first asked for this symbol had previously
used a photoreduction of the light image on a dark
background, but it was clear that this took ink
poorly, so we decided to follow the general model of
the Linotype-Hell symbol, and draw the arrows in
outline.

The construction starts out simply. The basic
arrow (in this case the lower left) starts out heading
straight to the left, then rolls up towards the viewer
and doubles back at an angle to meet the tail of
the second arrow. Sixty degree angles are easy to
handle in METAFONT and the basic framework can
quickly be constructed by treating the tail as if it
were tightly folded over. To get the rolled effect,
half of the folded area is cut away (on a line which
can be seen in schematic form in the source code
listing, lines 6–12).

This leaves far too many sharp corners, which
need to be rounded. Here it is necessary to make
some aesthetic choices. The obvious approach,
which could be achieved by a geometric construc-
tion, would be to make a smooth curve carry round
from the tail of the arrow to its eventual heading
in the direction of the point. This, unfortunately,
makes the tail end of the arrow look grossly unsym-
metrical. In the dozen or so examples I have seen of
this symbol, there is clearly an attempt to retain as
symmetrical a shape for the tail as can be managed,
consistent with the illusion that the arrow is rolling
up out of the surface toward the viewer. Because
the line from a10 to a9 is necessarily straight, the
curve from a8 to a10 needs to have as large a
straight component as can be managed. The values
used as terminal control points for a8, a10 and
a11 are fudges, arrived at by trial and error (lines
30–33). The curve that runs by point a3 is a precise
match for the curve that runs by point a7.

The criteria used for the shape of the head are
that it should be as broad and blunt as possible,
so long as it retains some sort of point even at 300
dpi. If the tail were thinner, the arrowhead could
be designed a bit sharper, as it is in the rendition
of this symbol on recent imprints of the O’Reilly
& Associates handbooks. For our purposes, the
broader arrow seemed preferable.

It would be nice to be able to rotate the
completed arrow through two transforms and have
the three arrows set in place that way, but the basic
picture is far too complex, and produces META-
FONT’s plaintive message “That transformation is
too hard.” So, with careful attention to the model
on page 138 of the METAFONTbook, all the points
are transformed individually (lines 39–47), and the
picture is twice redrawn.

TUGboat, Volume 15 (1994), No. 4 445

1. cmchar "Recycle";

2. beginchar(Recycle,18u#,asc_height#,0);

3. italcorr 0;

4. adjust_fit(0,0);

5. numeric tail; tail=2.25cap_stem;

6. % * /

7. % / / Fold the tail of

8. % / /______ the arrow over

9. % \ / | itself, at an

10. % \ / | angle of 60 degrees

11. % \/_________| Then cut design along

12. % * line *--------*

13. penpos1(tail,90); penpos2(tail,90); penpos4(tail,150);

14. % wings and point of arrowhead

15. penpos5(3.0cap_stem,150); penpos6(2.25cap_hair,60);

16. %

17. x1=.5w-.25u; x2=3u; bot y1l = bot y2l = 0;

18. x2’=x2-(tail / (sqrt 3)); % extend upper edge of tail by

19. % 1/2 base of equilateral triangle

20. y1’=y9=y2’=y1r; % z9 is point of acute angle made by this fold

21. x1-x1’=1.5(x2-x2’); % x1’ is arbitrary point to set

22. % length of oblique arm

23. z4r=z1’ rotatedaround(z2’,60); % rotate to find location of pen4

24. z6=z5=z4; % all three pens on same center.

25. %

26. % Cut through construction on line *---------------*

27. z3=whatever[z2’,z4r]; x3=.5[x2’,x2]; % top end of line *---*

28. z7=whatever[z2l,z4l]; y7=y2; % middle of line *---*

29. x8’-x2=x2-x2’; y8’=0; % bottom of line *---*

30. % Fudge start and end of curves.

31. x8=x8’+.35(x2-x2’); y8=0;

32. z10=whatever[z7,z4l]; z11=whatever[z7,z8’];x10=x11=x7+.80crisp;

33. z12=whatever[z3,z4r]; z13=whatever[z3,z7];x12=x13=x3+.80crisp;

34. %

35. % Find point of angle between two parts of tail and bisect it

36. z9=whatever[z2l,z4l]; % point of acute angle

37. z9-z0’=whatever*dir 30; y0’=h; % bisect it.

38. z0=whatever[z9,z0’]; x0=.5w; % point for rotation on bisector

39. forsuffixes $=a,b,c: transform $; endfor

40. a=identity;

41. b=identity rotatedaround(z0,120);

42. c=identity rotatedaround(z0,240);

43. pickup crisp.nib;

44. for n=1,2,3,4,5,6,7,8,9,10,11,12,13: forsuffixes e=l,,r: forsuffixes $=a,b,c:

45. z$[n]e = z[n]e transformed $; endfor endfor endfor

46. forsuffixes $=a,b,c:

47. z$8’ = z8’ transformed $;

48. draw z$9--z$1r--z$1l--z$8{z$8-z$1l}..z$11{z$7-z$8’}..{z$10-z$7}z$10;

49. draw z$10--z$4l--z$5l--z$6r--z$5r--z$4r--

50. z$12{z$3-z$4r}..{z$7-z$3}z$13--z$7{z$8’-z$7}..{z$1l-z$8}z$8;

51. labels($1,$1l,$1r,$2,$3,$4,$5l,$5r,$6r,$7,$8,$9,$10); endfor

52. labels(2’,8’); endchar;

53.

“Recycle” is the first and, as yet, the only
character in the HTG pi font. It is mapped to the
uppercase “R”.

\font\htgpi=htgpi10 at 12pt

\def\recycle{{\htgpi R}}

The parameter file htgpi10.mf is a straight steal
from cmsy10 with only the initial comment lines and
the final line changed. The driver file pifont.mf

is modeled on symbol.mf, even to the point of
retaining the early half of the file for slanted
characters.

1. % pifont.mf Driver file for new

2. % characters. Parameters based on cmsy

3. font_coding_scheme:="Font dependent";

4. mode_setup; font_setup;

5. font_slant slant;

6. font_x_height x_height#;

7. font_quad 18u#

8. if not monospace:+4letter_fit# fi;

9. % Slanted symbols here as needed

10. % Remaining characters unslanted

11. slant:=mono_charic#:=0;

12. currenttransform:=identity

13. yscaled aspect_ratio

14. scaled granularity;

15. Recycle:=ASCII"R";

16. input recycle

17. bye.

Who knows what other characters may be added in
the future.

⋄ Pierre A. MacKay
Department of Classics DH-10
Department of Near Eastern

Languages and Civilization
(DH-20)

University of Washington
Seattle, WA 98195 U.S.A.
Phone: 206-543-2268;

FAX:206-543-2267
mackay@cs.washington.edu

446 TUGboat, Volume 15 (1994), No. 4

TUGboat, Volume 15 (1994), No. 4 447

Indica, an Indic preprocessor for TEX
A Sinhalese TEX System

Yannis Haralambous

Abstract

In this paper a two-fold project is described: the first
part is a generalized preprocessor for Indic scripts (scripts
of languages currently spoken in India—except Urdu—,
Sanskrit and Tibetan), with several kinds of input (LATEX
commands, 7-bit ascii, CSX, ISO/IEC 10646/unicode)
and TEX output. This utility is written in standard Flex
(the gnu version of Lex), and hence can be painlessly
compiled on any platform. The same input methods are
used for all Indic languages, so that the user does not
need to memorize different conventions and commands
for each one of them. Moreover, the switch from one lan-
guage to another can be done by use of user-defineable
preprocessor directives.

The second part is a complete TEX typesetting sys-
tem for Sinhalese. The design of the fonts is described,
and METAFONT-related features, such as metaness and
optical correction, are discussed.

At the end of the paper, the reader can find ta-
bles showing the different input methods for the four
Indic scripts currently implemented in Indica: Devana-
gari, Tamil, Malayalam, Sinhalese. The author hopes
to complete the implementation of Indic languages into
Indica soon; the results will appear in a forthcoming
paper.

−− ∗ −−

1 Indica

1.1 Introduction

Many Latin-alphabet native writers find the Greek
and Cyrillic alphabets exotic (not to mention African
and phonetic characters). Actually this shouldn’t
happen, since —at least for the upper case— Greek,
Cyrillic and Latin types can have the same design:
they have the same roots, have evolved more-or-less
in the same way, and the same principles of Occiden-
tal type design can be applied to them. There are
even common glyphs to the three (‘A’, ‘B’, ‘E’, ‘H’,
‘M’, ‘O’, ‘P’, ‘T’, ‘X’) which will appear only once
in case one wishes to have a big “Greco-Cyrillico-
Latin” font.
The situation is completely different in the case

of Indic languages. Once again all of their scripts
have the same roots, but instead of keeping the same
style and being complementary to each other, they
all have the same set of letters, in the same order,
but with (often very) different shapes. Every child in
India learns the same alphabet “ka-kha-ga-gha-. . . ”
but depending on the region, the letter shapes can
be very different: k K g G R c C. . . in Devanagari

script, � � �� � � �. . . in Malayalam, H P X C
h p x. . . in Sinhalese, etc.1

This justifies the choice of a common translit-
eration scheme for all Indic languages. But why is
a preprocessor necessary, after all?
A common characteristic of Indic languages is

the fact that the short vowel ‘a’ is inherent to con-
sonants. Vowels are written by adding diacritical
marks (or smaller characters) to consonants. The
beauty (and complexity) of these scripts comes from
the fact that one needs a special way to denote the
absence of vowel. There is a notorious diacritic,
called “virāma”, present in all Indic languages, which
is used for this reason. But it seems illogical to add a
sign, to specify the absence of a sound. On the con-
trary, it seems much more logical to remove some-
thing, and what is done usually is that letters are
either brought very near (in Sinhalese) or written
one over another (Malayalam), or written together
while losing some parts (Devanagari, Bengali, . . .).
In this way we obtain those hundreds of beautiful
ligatures which make the charm of Indic scripts.
When typesetting with TEX, the preprocessor

will have to indicate to TEX all the necessary liga-
tures which can be either constructed from charac-
ter parts (as in the case of Velthuis’s Devanagari),
or spread in several 256-character tables (as in the
case of the Sinhalese font described in the second
part of this paper). Also, it often happens that a
vowel is written in front of a group of consonants, al-
though phonologically it comes after the group; and
since the transliteration is always phonetic, the pre-
processor will take the vowel from where it belongs
phonetically and place it where it belongs graphi-
cally.
Finally the preprocessor is needed for the sim-

ple task of inserting \- commands (discretionary hy-
phens) at the appropriate locations: since characters
and ligatures are often constructed from other char-
acters, or belong to several font tables, there is lit-
tle hope for getting efficient hyphenation patterns
so that TEX can hyphenate as it does for Western
languages.

1.2 The interna of Indica

The preprocessor Indica is written in a special way,
allowing easy changes and expansions, thanks to the
use of Flex. Flex is a lexical analyzer, released un-
der gnu copyleft; it generates C code out of simple
pattern matching instructions. The advantage of

1 One could compare this situation to the existence of
Antiqua, old German, and Irish types for the same alphabet
(a differentiation sadly missing from the ISO/IEC 10646/uni-
code encoding).

448 TUGboat, Volume 15 (1994), No. 4

Flex is that without being a good programmer one
can make powerful and error-free C programs.
How does it work? The minimal Flex file is of

the form

%{

%}

%%

...lines of code...

%%

main()

{

yylex();

}

where the lines of code are of the form

xyz { do_this(); do_that(); }

xyz is a pattern which may appear in the input file,
and do_this();, do_that(); are arbitrary C com-
mands, executed whenever the pattern is matched
in the input file. This scheme is extremely powerful,
since patterns can be arbitrary regular expressions.
Suppose, for example, that you want to write a pro-
gram which finds all TEX commands followed by a
blank and adds an empty group to them, if needed
(to avoid getting TEXis beautiful, as most TEX users
did at least once in their lives): \TeX shall be re-
placed by \TeX{} and so on, for every command fol-
lowed by a blank. You can with the following single
line of Flex code:

"\\"[a-zA-Z]+/" " { ECHO; printf("{}"); }

The double quotes indicate verbatim mode, the dou-
ble backslash is the usual C notation to obtain a
backslash in a string, [a-zA-Z]+ is a regular ex-
pression meaning “one or more lowercase/uppercase
letters” and finally /" " means “this pattern should
be matched only if followed by " " (a blank)”. The
ECHO; command transmits the input pattern to the
output, and printf{} adds the {} string.
The reader may now have realized the power

and ease of use of Flex. Moreover, the generated C
code is automatically optimized for the platform on
which Flex is run so that one can be sure that the
code will compile without problems into a quick and
smooth executable.
Indica is written in Flex. To obtain an exe-

cutable, you will have to run Flex first and then C.
The necessary steps are explained in section 1.3.1.
Having read the excellent book lex & yacc by Levine,
Mason and Brown (1992) the user will be able to
adapt Indica to his/her personal needs, if these are
not already covered by the broad range of Indica’s
input encodings.

1.3 Guidelines for the use of Indica

1.3.1 How to install Indica

Indica is written in Flex, the gnu version of the
standard unix utility Lex.2 On the server you will
find executables for Macintosh and MS-DOS. If you
are on some other platform, or if you want to make
changes to the indica.lex file, you will have to
compile it again. This operation consists of the fol-
lowing (relatively straightforward) steps:

1. run Flex on indica.lex, with the -8 option:

flex -8 indica.lex

2. Flex will create the file lex.yy.c (LEX_YY.C on
MS-DOS); this is a machine-generated, C++
compatible, ANSI C code file. Run your favour-
ite C-compiler on it, and link the result with the
standard ANSI C libraries.

After having fetched or compiled your own exe-
cutable of Indica, you can use it. For this you must
prepare your document using the syntax explained
in section 1.5, and run Indica to produce a regular
TEX or LATEX file. Indica uses the standard C input
and output streams, so you have to type < and > to
redirect these streams to your files:

Indica < foo.inp > foo.tex

where foo.inp is the document you prepared and
foo.tex is the TEX file Indica will create for you.
In this way Indica can be used as a filter for pip-

ing operations: if your operating system allows pip-
ing and your TEX implementation uses the standard
input stream, you can systematically write Indica
< foo.inp | TeX to pre-process foo.inp and run
TEX on the result, avoiding thereby the creation of
an intermediate TEX file.

1.4 Indica input schemes

TEX can handle only 8-bit fonts (fonts with 256 char-
acters at most). This seems more or less sufficient
for the needs of a certain number of Western Euro-
pean languages, but is definitely unsuitable for Ori-
ental scripts like the Sinhalese one.3 Hence, the use
of a preprocessor is unavoidable. Indica will allow
the use of the same input scheme(s) for all Indic
languages: one will be able to write multilingual In-
dic documents without changing the input conven-
tions, whenever a language switch occurs. There are

2 Actually it uses a very important feature of Flex which is
not part of the POSIX Lex standard, namely exclusive states.
Indica has to be compiled on a Lex version with this feature;
see Levine, Mason, and Brown (1992) for more details.

3 The TEX extension Ω (Plaice, 1994; Haralambous and
Plaice, 1994) will solve these (and many more) problems by
using internally the unicode encoding, and 16-bit virtual
fonts for the output.

TUGboat, Volume 15 (1994), No. 4 449

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

0.

1.

2.

3. Usual 7-bit ascii (ISO 646)
4.

5.

6.

7.

8. ä∗ Ä∗

9. r
¯

A. ñ∗ Ñ∗ l̃ ṁ ˘̄a ˘̄ı ˘̄u n
¯

B. ´̄a `̄a ´̄ı `̄ı ě∗ Ě∗ ǒ∗ Ǒ∗ ´̄u `̄u
C. ē∗ Ē∗ ō∗ Ō∗ ǟ ∗ Ǟ ∗ ŕ. r̀. n̆

∗ N̆∗ m̆∗ M̆∗ ´̄r.
D. ã ı̃ ũ ẽ õ ĕ ŏ l

¯
Ẽ∗ Õ∗ L

¯
∗

E. ā ß Ā ı̄ Ī ū Ū r. R. r̄. R̄. l. L. l̄. L̄. ṅ
F. Ṅ t. T. d. D. n. N. ś Ś s. S.

√ m. M. h. H.

Code positions followed by ∗ are exten-
sions of CSX proposed hereby by the au-
thor. The gray square denotes po-
sitions which have not yet been deter-
mined.
The author would like to point out that
even if certain characters are usually
not used in uppercase form, they could
very well appear inside all-caps text; so,
IHHO, all characters should be included
in the table in lowercase and uppercase
form. Uppercase letters missing from the
table are: R

¯
, l̃, Ṁ, ˘̄A , ˘̄I , ˘̄U , N

¯
, ´̄A , `̄A ,

´̄I , `̄I , ´̄U , `̄U , Ŕ. , R̀. , ´̄R. , Ã, Ĩ, Ũ, Ĕ and
Ŏ (a total of 21 codes).

Table 1: The CSX 8-bit input encoding

four possible input schemes, common to Hindi, San-
skrit, Bengali, Tamil, Telugu, Malayalam, Kannada,
Oriya, Gujarati, Gurmukhi, Sinhalese and Tibetan:

1. SEVENBIT, a 7-bit (ISO 646) encoding scheme,
based on Frans Velthuis’ Hindi/Sanskrit tran-
scription. Some extensions were necessary for
Sinhalese, but also for other Indic languages, to
obtain the character set of the (Indic part) of
unicode/ISO 10646-1 standard (ISO, 1993).

2. CSX, the Classical Sanskrit Extended encoding,
an 8-bit extension of ISO 646, proposed by an
ad hoc committee, at the 8th World Sanskrit
Conference, in Vienna 1990 (Wujastyk, 1991)
(Table 1). For Sinhalese and other Indic lan-
guages some necesssary extensions were included
in the character set of the (Indic part) of uni-
code/ISO-IEC 10646-1 standard (ISO, 1993).

3. LATEX, a standardized form of LATEX commands
(for example, only \d{m} is valid for ‘m. ’, and
not \d m or \d{}m or \def\foo{\d{m}}\foo,
etc.), describing the “standard” transliteration
of Indic languages.

4. UNICODE, the 16-bit version of ISO/IEC 10646-
1 (see ISO, 1993), with an anticipated Sinhalese
encoding by the author (since Sinhalese is not
yet part of ISO 10646).4

4 Although there is not a broad choice of unicode-
compatible software yet (Windows NT is the most popular
case of such software), the author believes that unicode is al-
ready now the ideal solution for document storage and trans-
mission, especially when used in conjunction with a markup
language like SGML.

The reader will find a complete table of equiva-
lences between (1), (2) and (3), applied to Sinhalese,
in Table 4.

1.5 The Indica syntax

Three kinds of predefined Indica commands exist:
1. commands affecting the input mode:

#SEVENBIT

#CSX

#LATEX

#UNICODE

as described in 1.4.
2. commands determining the current (Indic) lan-
guage:

#BENGALI

#GUJARATI

#GURMUKHI

#HINDI

#KANNADA

#MALAYALAM

#ORIYA

#SANSKRIT

#SINHALESE

#TAMIL

#TELUGU

#TIBETAN

#NIL

the last one being used to return for arbitrary
non-Indic text to non-preprocessed mode.

3. the
#ALIAS

command, which allows creation of new names
for the commands listed above.

450 TUGboat, Volume 15 (1994), No. 4

Here are the rules you have to follow when using
these commands:

• the “escape character” for Indica commands (or
should I say “directives”?) is #. A command
name consists of this character, followed by at
most 32 uppercase letters or 8-bit characters (in
the range 0x80–0xff). It follows that you can
write, for example, ‘#NIL;’ or ‘#NILthis’, but
not ‘#NILYannis’; in the latter case you can
either leave a blank space (‘#NIL Yannis’) or
insert an empty group (‘#NIL{}Yannis’) or ap-
ply any other similar TEXtrick.
• TEX and LATEX commands are not affected by
the preprocessor. Be careful, though, because
command arguments will nevertheless be pre-
processed: if you write

#HINDI mohan \TeX\ raake"s

\begin{center} mis paal

then, \TeX and \begin will be left unchanged
by the preprocessor, while center will produce
c�nt�r and \begin{c�nt�r} is hardly something
standard LATEX would accept. In these cases it
is advised to write

#HINDI mohan \TeX\ raake"s

#NIL\begin{center}#HINDI mis paal

• Indica commands are not nested: if you switch
to Bengali and then Hindi, you will have to type
#BENGALI once again to return to the former
language (there is no “group closing” command,
bringing you back to the state you were before,
as in TEX for example).
• Input mode switching commands (#SEVENBIT,
#CSX, etc.) can appear anywhere in the text.
They don’t produce any immediate effect when
in NIL language; the corresponding input mode
is stored and applied on forthcoming Indic text.
Default settings (applied automatically at the
begining of every file) are the NIL language, and
SEVENBIT input mode.
• The ALIAS command has the following syntax:

#ALIAS SINHALESE FOO

which has to be written at the beginning of a
line. The first argument is the command name
for which we want to create an alias; the second
argument is the alias itself. After the definition
above, you can use #FOO instead of #SINHALESE.
You can use uppercase Latin alphabet letters,
or 8-bit characters in aliases. For example, you
could define

#ALIAS MALAYALAM M

#ALIAS NIL N

and afterwards type only #M to switch to Malay-
alam, and #N to switch back to NIL language.
Or, you could define

#ALIAS MALAYALAM .2/>3�

provided your platform has a graphic interface
allowing Sinhalese screen display (Macintosh,
Windows, X-Window. . .) and provided the en-
coding you use places Malayalam characters in
the upper 8-bit range.
Numbers cannot be part of aliases, so the
usual TEX operators #1, #2, ##1. . . are not af-
fected by Indica. More generally, whenever In-
dica encounters a hash mark followed by an un-
known string (not a predefined command name
or previously defined alias), it leaves both the
hash mark and the string untouched.5

• Indica does not take TEX comment marks into
consideration. If you write

% This is a TeX comment

%#TIBETAN

% etc etc

unlike TEX, Indica will read these lines and
switch to Tibetan language.
• Indica will read only the files you ask it to
read; it will not interpret (LA)TEX \input com-
mands.6 On the other hand, a file already pro-
cessed by Indica does not contain any Indica
commands any more, so that you can re-process
it an arbitrary number of times without alter-
ing it. It follows that you could write a batch
file to run Indica on all files of your working
directory, just to be sure that no file has been
left unprocessed.

1.6 Simultaneous text and transcription

If you write your Sinhalese text in LATEX input mode,
you can copy and paste it to some other part of the
document and run it in NIL language mode; it will
produce the “standard” Latin transcription of the
same text. The only precaution you need to take
is to include Christina Thiele’s TEX macro \diatop
(see Thiele, 1987), in the preamble of your docu-
ment. This macro typesets characters with double
or triple diacritization (like ǟ , r̄. , etc.)

5 !‘Cuidado! If you mispell an Indica command, you
will end up with a hash mark and the misspelled string in
your (LA)TEX code and should prepare yourself to get a very
mean (LA)TEX error message: (LA)TEX just hates useless hash
marks.

6 This feature could be implemented in Indica, but would
result in a loss of portability: every TEX implementation has
its own environment variables for file path searching. The
same environment variables should be included into Indica’s
code, so that exactly the same files may be found and opened.

TUGboat, Volume 15 (1994), No. 4 451

Here is the expansion of this macro:
\def\diatop[#1|#2]{{\setbox1=\hbox{{#1{ }}}%

\setbox2=\hbox{{#2{ }}}%

\dimen0=\ifdim\wd1>\wd2\wd1\else\wd2\fi%

\dimen1=\ht2\advance\dimen1by-1ex%

\setbox1=\hbox to1\dimen0{\hss#1\hss}%

\rlap{\raise1\dimen1\box1}%

\hbox to1\dimen0{\hss#2\hss}}}%

%e.g. of use:

% \diatop[\’|{\=o}] gives o macron acute

An example of simultaneous text and transcrip-
tion (illustrating the use of aliases as well) is:

#LATEX

#S s\d{r}tuva #N (s\d{r}tuva) season,

#S aitih\={a}sika #N (aitih\={a}sika)

historical, #S au\d{s}adha #N (au\d{s}adha)

medicines, #S \d{n}aya #N (\d{n}aya) loan,

#S ko\b{l}a\u{m}ba #N (ko\b{l}a\u{m}ba)

Colombo, \ldots

and (after preprocessing by Indica) TEX will typeset

@�»((sr.tuva) season,��¹H�AH (aitihāsika)
historical, ��8È (aus.adha) medicines, °�
(n.aya) loan, �H�Pp (kol¯

am̆ba) Colombo, . . .

2 Sinhalese TEX

2.1 Introduction to the Sinhalese writing

system

Sinhalese is one of the two major languages spoken
in Sri Lanka (Ceylon), the second being Tamil. Sin-
halese script is a South-Indian script, close to Malay-
alam and Kannada. The alphabet consists of 18
vowels and 35 consonants. It is a syllabic script:
the basic consonant glyph form denotes the conso-
nant followed by the (inherent) short vowel ‘a’: H
is ‘ka’, P is ‘kha’ etc. To obtain a consonant not fol-
lowed by a vowel, one uses a special diacritic called
virāma. Hence, M is ‘k’, U is ‘kh’, etc. In contrast
to Hindi, a virāma is used in all circumstances, even
at the end of a word.
Here are the 35 Sinhalese consonants (with in-

herent short ‘a’ vowel):

H P X C h p x � � � � �
 ¨ ° ¸ À � È Ð Ø à è ð
ø � � P (0 8 @ H Ð
There are also 6 nasalized consonants:

X ` h ° p x
The vowels have full-size glyphs when they ap-

pear at word beginning:

� �� �� �	 � � � �� �� ��
� �� � � �� � � ��
A vowel following a consonant (or a series of

consonants) is denoted by a special stroke, or certain
auxiliary characters appearing on the right or on the
left of the consonant. Here are the lettersH (ka) and
� combined with each one of these vowels:

H H� H� H	 I J K L H�
H� H� H� �H �M�H

�H� �H� �H�
� � � � � � � � ¡ �� �� �� �£

�� �� �¢ ���
Special care must be taken in three cases:

1. When a consonant without vowel is followed by
� (r): the virāma sign of the consonant and the
‘r’ character are replaced by a special stroke
under the consonant. For example, instead of
M� we will write HO.
If the consonant + ‘r’ combination is fol-
lowed by a vowel, then special rules apply. Here
are the letters H and � (as above) combined
with � and each one of the vowels above:

HOHO� HO� HO	 IOJOH� H�
HO� HO� HO� HO� �HO�MO
�HO�HO� �HO� �HO�

¥ ¥� ¥� ¥	 ¦ § ¡ £�� £��
¥� ¥� �¥ �¨ �¥ �¥� �¥�

�¥�.
2. When a consonant without vowel is followed by
� (y): the virāma sign of the consonant disap-
pears, and � is replaced by the pseudo-letter È.
For example, instead of M� we will write HÈ.
If the consonant + ‘y’ combination is fol-
lowed by a vowel, then special rules apply. Here
are the letters H and � (as above) combined
with � and each one of the vowels above:

HÈ HÈ� HÈ� HÈ	 HÉ HÊ
HË HÌ HÈ� HÈ� HÈ� HÈ�
�HÈ �HÍ�HÈ �H�

452 TUGboat, Volume 15 (1994), No. 4

0� �HÈ� �HÈ�
© ©� ©� ©	 �É �Ê �Ë �Ì ©�
©� ©� ©� �© ��Í �©

�©� �©� �©�.
3. A third special case occurs, when a consonant
[except ‘r’ itself??] with inherent short ‘a’ vowel
is preceded by ‘r’. In that case the ‘r’ is not
written and a spiral-like stroke is added on top
of the consonant. For example, instead of �
we will write &. This phenomenon does not
occur when the consonant is followed by some
other vowel than ‘a’. Here are all consonants
with ‘r’ spiral strokes:

N V ^ f n v ~ ��� �
� ¦ ® ¶ ¾ Æ ¤ Î Ö Þ æ
î ö þ �È & V . 6 > F N

Ö
Beside the special cases enumerated above, fre-

quently ligatures occur between consonants. A lig-
ature between two consonants implies that the first
one is not followed by a vowel; the virāma sign is
omitted in that case. Here are some examples:

� + � = � M + (=(
M + 8 =8 Õ + È =@
Õ + À =H Õ + � = P

½ + À =h
Finally there are two special signs: anusvara

(m.) written � and visarga (h.) written
. Sinhalese
punctuation follows the English rules. Hyphenation
is done between syllables, i.e., after a vowel.

2.2 Design of the Sinhalese font

Because of the nature of Sinhalese syllables, most
combinations of consonants and vowels had to be
drawn separately (the reader can find a complete
table of consonant/vowel combinations in Table 3).
This brought the total number of distinct charac-
ter positions to more than 460, placed in three 256-
character tables. Despite the large number of char-
acters, the design of a Sinhalese font does not require
a superhuman effort; in fact, the shapes of many Sin-
halese letters are modular, and can be produced by
assembling elementary strokes in different ways.

To illustrate this feature of Sinhalese letters,
here is a selection of such elementary strokes7:

1. on the left side of the letter: (α) the left stem of
�, (β) same as α, but with an horizontal bar,
as in , (γ) the left stem of �, (δ) a lowered
closed loop, as in �;

2. the middle part of the letter: (κ) a simple base-
line stroke, as in Ø, (λ) the same with a pinch,
as in , (µ) the same with a “bridge” as in C;

3. on the right part of the letter: (χ) a short stroke
with a rounded loop, as in C, (ψ) a somewhat
higher stroke with a triangular loop, as in �,
(ω) a high and round stroke without loop, as in
p.

Out of the combinations of these four left parts,
three middle parts and three right parts we will
make a table to see how many of them actually exist
(ne = “does not exist”):

α β γ δ

κ λ µ κ λ µ κ λ µ κ λ µ

χ Ø � ne ne @ C ne � ne ne ne ne
ψ à ne ne � ¨ ne À � ne ne ne ne
ω (h? ne p ne � È ne ø � p

As we see, more than half of the entries rep-
resent extant characters. Similar phenomena occur
for other groups of Sinhalese letters. And of course
there are also some isolated cases, which have to be
drawn separately (like°, �, P and so forth).
This modularity of Sinhalese forms makes the

choice of METAFONT for the realization of a Sin-
halese font even more interesting. The Sinhalese
font, as presented in this paper, was commissioned
from the author by the Wellcome Institute for the
History of Medicine, following a proposal by Do-
minik Wujastyk (to whom the author would like to
express his gratitude).8 The character forms were
inspired by the font of Godakumbura (1980), com-
pared to the forms of Disanayaka (a modern Sin-
halese script method; 1993), Clough (a classical 19th
century dictionary with many ligatures, 1892) and
Bel~koviq (the Russian “official” Sinhalese dictio-
nary, 1983), the last one having the most beauti-
ful type, in the author’s humble (and non-Sinhalese
native) opinion. Useful information was also found
in Lambert (1983), a study of south Indian scripts,
and the catalogues of writing systems of the world
(Nakanishi, 1980 and Faulman, 1880).

7 Unfortunately the author does not know the original
names of these strokes.

8 See Somadasa (1994) for the first book printed using
this Sinhalese system.

TUGboat, Volume 15 (1994), No. 4 453

8 pt 9 pt 10 pt 12 pt
FX .369 pt +6.25% .401 pt +2.777% .434 pt 0% .510 pt −2.08%
FY .347 pt 0% .391 pt 0% .434 pt 0% .521 pt 0%
shthin .217 pt +12.21% .217 pt +10.96% .217 pt 0% .217 pt −15.79%
shfat .906 pt +10% .972 pt +6.66% .998 pt 0% 1.106 pt −6.67%
usual_left .406 pt +10% .422 pt +5% .434 pt 0% .495 pt −5%
usual_right .406 pt +10% .422 pt +5% .434 pt 0% .495 pt −5%

Table 2: Scaling of font parameters for optical correction

2.2.1 Optical scaling

As we all know, one of the big advantages of META-
FONT drawn characters is optical scaling, that is
scaling of characters in a non-linear way, to correct
certain optical effects. This technique has been ap-
plied by D.E. Knuth, in the Computer Modern fonts,
the first realistic example of a font family drawn in
METAFONT.
The same technique has been used for Sinhalese.

Here are the (technical) details: Sinhalese characters
have been designed using 6 main parameters:

1. FX, horizontal basic unit;
2. FY, vertical basic unit; (in the Computer Mod-
ern fonts the same basic unit is used horizon-
tally and vertically, namely u). In cases where a
length/width had to be defined independently
of its orientation, we have used .5[FX,FY] (the
mean value).

3. shthin, the width of thin strokes;
4. shfat, the width of a certain number of fat
strokes; (in fact, for intermediate cases the vari-
able quantity λ[shthin,shfat], with λ ∈ [0, 1]
has been used).

5. usual_left, the standard left sidebearing;
6. usual_right, the standard right sidebearing.

Optical correction consisted in scaling these pa-
rameters differently for 8, 9 and 12 points, as in ta-
ble 2 (the reader can see in the second column the
percentage of deviation from the hypothetical lin-
early scaled value).
As the reader can see, the value of shthin re-

mains the same from 8 to 12 points; this guarantees
that thin strokes will not disappear in small point-
sizes (and makes letters look more elegant in large
pointsizes, as in Roman Bodoni fonts). The hori-
zontal basic unit FX gets (proportionally) bigger in
small sizes: letters become up to 6.25% wider; FX
also gets slightly smaller at 12 points: letters be-
come 2.08% narrower. The same tactic is applied to
sidebearings.

The following sample of text illustrates optical
correction. The same text (taken from Bel~koviq,
1983), is typeset in 8, 9, 10 and 12 point sizes.

��A�Õ A�H 0í� �H�8� @HEI��ýI � ��E-
¸� ��Xø). ��¦A �BÕ �ë³)0� @H�� X�Ð �K�
@ýØ��H (��� @�¸�¸�(� Û� H��.

27 �H�(��A�Õ è@ H��Ð A�H �Ð¸�(�½, �@�-
)�½ @�Xø��I A�H è@ H��Ð ��A�Õ �Ð¸�(�½ �ý-
ø 0í� �H�8� Øß����Ð(½��¹� @ýØ��H (��� Øß�ÆÐ�
H��.

��A�Õ A�H 0í� �H�8� @HEI��ýI � ��-
E¸� ��Xø). ��¦A �BÕ �ë³)0� @H�� X�Ð
�K� @ýØ��H (��� @�¸�¸�(� Û� H��.

27 �H�(��A�Õ è@ H��Ð A�H �Ð¸�(�½,
�@�)�½ @�Xø��I A�H è@ H��Ð ��A�Õ �Ð¸�-
(�½ �ýø 0í� �H�8� Øß����Ð(½��¹� @ýØ��H
(��� Øß�ÆÐ� H��.

��A�Õ A�H 0í� �H�8� @HEI��ýI �
��E¸� ��Xø). ��¦A �BÕ �ë³)0� @H��
X�Ð �K� @ýØ��H (��� @�¸�¸�(� Û� H��.

27 �H�(��A�Õ è@ H��Ð A�H �Ð¸�(�-
½, �@�)�½ @�Xø��I A�H è@ H��Ð ��A�Õ
�Ð¸�(�½ �ýø 0í� �H�8� Øß����Ð(½ ��¹-
� @ýØ��H (��� Øß�ÆÐ� H��.

��A�Õ A�H 0í� �H�8� @HEI�-
�ýI � ��E¸� ��Xø). ��¦A �BÕ �ë-
³)0� @H�� X�Ð �K� @ýØ��H (���
@�¸�¸�(� Û� H��.

27 �H�(��A�Õè@H��Ð A�H �Ð-
¸�(�½, �@�)�½ @�Xø��I A�H è@ H�-
�Ð ��A�Õ �Ð¸�(�½ �ýø 0í� �H�8�
Øß����Ð(½��¹� @ýØ��H (��� Øß�ÆÐ�
H��.

2.3 “Do I need BigTEX for all those

macros?”

Sorry to disappoint you, but there are no macros.
Indica does all the work for you and its output is
rather unreadable for a human—but quite readable
for TEX. With LATEX2ε and the T1 (Cork) encod-
ing you only need to place the files T1sinha.fd,

454 TUGboat, Volume 15 (1994), No. 4

T1sinhb.fd, T1sinhc.fd in the same place as your
other FD files, and write

\newcommand{\SHa}{\fontfamily{sinha}%

\selectfont}

\newcommand{\SHb}{\fontfamily{sinhb}%

\selectfont}

\newcommand{\SHc}{\fontfamily{sinhc}%

\selectfont}

in the preamble of your file. If you wish to install the
Sinhalese fonts in a more formal manner, recognizing
the encoding of the font as being different from T1

(we call it SH1), then you only need to place files
SH1sinha.fd, SH1sinhb.fd, SH1sinhc.fd together
with the other FD files you use, and use the package
sinhala.sty when you run LATEX2ε. So you would
begin your document like this:

\documentclass{article}

\usepackage{sinhala}

\begin{document}

...

This method is not recommended, however, if
you switch frequently from Latin to Sinhalese and
your machine is not very powerful: LATEX2ε reads
a file (called nfsh1.def) everytime you switch en-
codings; even if this file is very short, the open/close
operations may slow down TEX. The author hopes
that this problem will be solved in future releases of
LATEX2ε.
If you are not working with LATEX2ε then you

have to define the fonts manually, remembering that
they always come in triplets, like
\font\SHa=sinha10

\font\SHb=sinhb10

\font\SHc=sinhc10

The available point sizes are 8, 9, 10 and 12.
Please contact the author if you need other point
sizes, or scale the ones you have linearly. There is
no bold or slanted style yet (although it would be
straightforward to obtain them out of the META-
FONT code), because the author has never seen such
forms. Any information on Sinhalese typographical
traditions and aesthetics would be most welcome.

References

A.A. Bel~koviq ��A��Ó1�H 0í��H�8�
(Russko-Singal~ski� Slovar~). Russki�

�zyk, Moskva, Rossia, 1983.
Rev. B. Clough. A�H ��Z_A �H����� (Sinhalese-
English Dictionary). Wesleyan Mission Press,
Kollupitiya, Sri Lanka, 1892, facsimile edition by
Asian Educational Services, New Delhi, 1982.

J.B. Disanayaka. Let’s read and write Sinhala. Pio-
neer Lanka Publications, London, 1993.

C. Faulman. Das Buch der Schrift, enthaltend die
Schriftzeichen und Alphabete aller Zeiten und
aller Völker des Erdkreises. Druck und Verlag
der kaiserlich-königlichen Hof- und Staatsdruk-
kerei, Wien, 1880.

C.E. Godakumbura. Catalogue of Ceylonese Manu-
scripts. The Royal Library, Copenhagen, 1980.

Y. Haralambous and J. Plaice. “First Applica-
tions of Ω: Greek, Arabic, Khmer, Poetica,
ISO 10646/unicode, etc.”. In Proceedings of the
15th TEX Users Group Annual Meeting (Santa
Barbara). TUGboat, 15 (3), pp. 344-352, 1994.

ISO. Information technology — Universal Multiple-
octet Coded Character Set. ISO/IEC 10646-
1:1993(e) edition, 1993.

H.M. Lambert Introduction to the Scripts of South
India and Ceylon, manuscript prepared as a
companion to: Introduction to the Devanagari
Script, for Students of Sanskrit, Hindi, Marathi,
Gujarati and Bengali. Oxford University Press,
1983.

J. Levine, T. Mason, and D. Brown. lex & yacc.
O’Reilly & Associates, Inc., Sebastopol, Califor-
nia, 1992.

A. Nakanishi.Writing systems of the World. Charles
E. Tuttle Company, Tokyo, 1980.

J. Plaice. “Progress in the Ω Project”. In Proceed-
ings of the 15th TEX Users Group Annual Meet-
ing (Santa Barbara). 1994.TUGboat, 15 (3), pp.
320-324, 1994.

K.D. Somadasa. Catalogue of the Sinhalese Manu-
scripts in the Wellcome Institute for the History
of Medicine. Wellcome Institute, London, 1994.

C. Thiele. “TEX, Linguistics and Journal Produc-
tion”. In TEX Users Group Eighth Annual Meet-
ing, Seattle, August 24–26, 1987. 1987.

D. Wujastyk. “Standardization of Romanized San-
skrit for Electronic Data Transfer and Screen
Representation”. Sesame Bulletin, 4(1), 27–29,
1991.

⋄ Yannis Haralambous
187, rue Nationale
59800 Lille, France.
Email: haralambous@univ-lille1.fr

TUGboat, Volume 15 (1994), No. 4 455

Table 3: Sinhalese consonants and vowel combinations

Part a. Without vowel, and vowels ‘a’–‘ r̄. ’

a ā ä ǟ i ı̄ u ū r. r̄.

� �� �� �	 � � � �� �� ��
ka M H H� H� H	 I J K L H� H�
kha U P P� P� P	 Q R S T P� P�
ga B X X� X� X	 Y Z A \ X� X�
gha e C C� C� C	 a b c d C� C�
ṅa m h h� h� h	 i j k l h� h�
ca u p p� p� p	 q D s t p� p�
cha } x x� x� x	 y z { | x� x�
ja � � �� �� �	 � � � � �� ��
jha � � �� �� �	 � � � � �� ��
ña � � � � � � � � � � �
t.a � � �� �� �	 � � � � �� ��
t.ha � � �� �� �	 � � � � �� ��
d. a £ � � 	 ¡ ¢ £ ¤ � �
d.ha Í ¨ ¨� ¨� ¨	 © ª « ¬ ¨� ¨�
n. a Õ ° °� °� °	 ± ² ³ ´ °� °�
ta ½ ¸ ¸� ¸� ¸	 ¹ º » ¼ ¸� ¸�
tha Å À À� À� À	 Á Â Ã Ä À� À�
da £ � � � � � � � � ¡
dha Í È È� È� È	 É Ê Ë Ì È� È�
na Õ Ð Ð� Ð� Ð	 Ñ Ò Ó Ô Ð� Ð�
pa Ý Ø Ø� Ø� Ø	 Ù Ú Û Ü Ø� Ø�
pha å à à� à� à	 á â ã ä à� à�
ba í è è� è� è	 é ê ë ì è� è�
bha õ ð ð� ð� ð	 ñ ò ó ô ð� ð�
ma ý ø ø� ø� ø	 ù ú û ü ø� ø�
ya � � �� �� �	 � � � � �� ��
ra � � �� � � � � �� �	 �� ��
la % � � 	 ! " # $ � �
va � ((� (� () * + , (� (�
śa 5 0 0� 0� 0	 1 2 3 4 0� 0�
s.a = 8 8� 8� 8	 9 : ; < 8� 8�
sa E @ @� @� @	 A B C D @� @�
ha M H H� H� H	 I J K L H� H�
l.a U P P� P� P	 Q R S T P� P�
fa Õ Ð Ð� Ð� Ð	 Ñ Ò Ó Ô Ð� Ð�

456 TUGboat, Volume 15 (1994), No. 4

Part b. Vowels ‘l.’–‘au’, anusvara, visarga

l. l̄. e ē ai o ō au am. ah.

� �� � � �� � � �� �� �

ka H� H� �H �M �H �H� �H� �H� H� H

kha P� P� �P �U �P �P� �P� �P� P� P

ga X� X� �X �B �X �X� �X� �X� X� X

gha C� C� �C �e �C �C� �C� �C� C� C

ṅa h� h� �h �m �h �h� �h� �h� h� h

ca p� p� �p �u �p �p� �p� �p� p� p

cha x� x� �x �} �x �x� �x� �x� x� x

ja �� �� �� �� �� ��� ��� ��� �� �

jha �� �� �� �� �� ��� ��� ��� �� �

ña �� �� �� �� �� �� �� ��� �� �

t.a �� �� �� �� �� ��� ��� ��� �� �

t.ha �� �� �� �� �� ��� ��� ��� �� �

d. a � � � �¥ � � � � � � � �

d.ha ¨� ¨� �¨ �­ �¨ �¨� �¨� �¨� ¨� ¨

n. a °� °� �° �µ �° �°� �°� �°� °� °

ta ¸� ¸� �¸ �½ �¸ �¸� �¸� �¸� ¸� ¸

tha À� À� �À �Å �À �À� �À� �À� À� À

da �� �� �� �£ �� �� �¢ ��� �� �

dha È� È� �È �Í �È �È� �È� �È� È� È

na Ð� Ð� �Ð �Õ �Ð �Ð� �Ð� �Ð� Ð� Ð

pa Ø� Ø� �Ø �Ý �Ø �Ø� �Ø� �Ø� Ø� Ø

pha à� à� �à �å �à �à� �à� �à� à� à

ba è� è� �è �í �è �è� �è� �è� è� è

bha ð� ð� �ð �õ �ð �ð� �ð� �ð� ð� ð

ma ø� ø� �ø �ý �ø �ø� �ø� �ø� ø� ø

ya �� �� �� �� �� ��� ��� ��� �� �

ra �� �� �� �� �� ��� ��� ��� �� �

la � � � �% � � � � � � � �

va (� (� �(�� �(�(� �(� �(� (� (

śa 0� 0� �0 �5 �0 �0� �0� �0� 0� 0

s.a 8� 8� �8 �= �8 �8� �8� �8� 8� 8

sa @� @� �@ �E �@ �@� �@� �@� @� @

ha H� H� �H �M �H �H� �H� �H� H� H

l.a P� P� �P �U �P �P� �P� �P� P� P

fa Ð� Ð� �Ð �Õ �Ð �Ð� �Ð� �Ð� Ð� Ð

TUGboat, Volume 15 (1994), No. 4 457

Table 4: Table of Devanagari, Tamil, Malayalam and Sinhalese characters and the different input modes

name D T M S CSX SEVENBIT LATEX

anusvara � ò � � m. , M. .m, M \d{m}, \d{M}

visarga , ð �
 h. , H. .h, H \d{h}, \d{H}

vow. a a � � � a, A a a, A

vow. aa aA � � �� ā, Ā aa, A \={a}, \={A}

vow. aaa - - - �� ä, Ä "a, .A \"{a}, \"{A}

vow. aaaa - - - �	 ǟ , Ǟ "aa, .AA \diatop[\=|\"a], \diatop[\=|\"A]

vow. i i � � � i, I i i, I

vow. ii I � �W � ı̄, Ī ii I \={\i}, \={i} \={I}

vow. u u � 	 � u, U u u, U

vow. uu U � 	W �� ū, Ū uu, U \={u}, \={U}

vow. voc. r � - � �� r., R. .r \d{r}, \d{R}

vow. voc. rr � - ` �� r̄. , r̄. .R \diatop[\=|\d r], \diatop[\=|\d r]

vow. voc. l � - � � l., L. .l \d{l}, \d{L}

vow. voc. ll � - a �� l̄. , L̄. .L \diatop[\=|\d l], \diatop[\=|\d L]

vow. candra e e� - - - ĕ ??!! \u{e}

vow. short e eÿ � � � ě, Ě ^e \v{e}, \v{E}

vow. e e � � � e, E e e, E

vow. ai e� � F� �� ai, Ai, AI ai, E ai, Ai, AI

vow. candra o aA� - - - ŏ ??!! \u{o}

vow. short o aAÿ 	 � � ǒ, Ǒ ^o \v{o}, \v{O}

vow. o ao � �> � o, O o o, O

vow. au aO 	� �W �� au, Au, AU au, O au, Au, AU

cons. ka k � � H k, K k k, K

cons. kha K - � P kh, Kh, KH kh, K kh, Kh, KH

cons. ga g - � X g, G g g, G

cons. gha G - � C gh, Gh, GH gh, G gh, Gh, GH

cons. nga R � � ÕX ṅ, Ṅ "n \.{n}, \.{N}

cons. ca c � � p c, C c c, C

cons. cha C - � x ch, Ch, CH ch, C ch, Ch, CH

cons. ja j À � � j, J j j, J

cons. jha J - � � jh, Jh, JH jh, J jh, Jh, JH

cons. nya � � � ñ, Ñ ~n \~{n}, \~{N}

cons. tta V (� � t., T. .t \d{t}, \d{T}

cons. ttha W - � t.h, T. h, T. H .th, .T \d{t}h, \d{T}h, \d{T}H

cons. dda X - ! d. , D. .d \d{d}, \d{D}

cons. ddha Y - " ¨ d.h, D. h, D. H .dh, .D \d{d}h, \d{D}h, \d{D}H

cons. nna Z 0 # ° n. , N. .n \d{n}, \d{N}

458 TUGboat, Volume 15 (1994), No. 4

name D T M S CSX SEVENBIT LATEX

cons. ta t 8 $ ¸ t, T t t, T

cons. tha T - % À th, Th, TH th, T th, Th, TH

cons. da d - & � d, D d d, D

cons. dha D - ' È dh, Dh, DH dh, D dh, Dh, DH

cons. na n @ (Ð n, N n n, N

cons. nnna n� � - - ??!! ??!! ??!!

cons. pa p H * Ø p, P p p, P

cons. pha P - + à ph, Ph, PH ph, P ph, Ph, PH

cons. ba b - , è b, B b b, B

cons. bha B - - ð bh, Bh, BH bh, B bh, Bh, BH

cons. ma m P . ø m, M m m, M

cons. ya y X / � y, Y y y, Y

cons. ra r ` 0 � r, R r r, R

cons. rra r� � 1 - ??!! "r ??!!

cons. la l h 2 l, L l l, L

cons. lla � � 3 P l
¯

L \b{l}, \b{L}

cons. llla �� x 4 - ??!! "l ??!!

cons. va v p 5 (v, V v v, V

cons. sha f ° 6 0 ś, Ś "s \’s, \’S

cons. ssa q - 7 8 s., S. .s \d{s}, \d{S}

cons. sa s ¸ 8 @ s, S s s, S

cons. ha h È 9 H h, H h h, H

cons. fa ' - - Ð f, F f f, F

cons. nas. ga - - - X n̆g, N̆g, N̆G Ng \u{n}g, \u{N}g, \u{N}G

cons. nas. ca - - - ` n̆c, N̆c, N̆C Nc \u{n}c, \u{N}c, \u{N}C

cons. nas. dda - - - h n̆d. , N̆d. , N̆D. N.d \u{n}\d{d}, \u{N}\d{d}, \u{N}\d{D}

cons. nas. da - - - ° n̆d, N̆d, N̆D Nd \u{n}d, \u{N}d, \u{N}D

cons. nas. ba - - - p m̆b, M̆b, M̆B Nb \u{m}b, \u{M}b, \u{M}B

cons. nas. ja - - - x n̆j, N̆j, N̆J Nj \u{n}j, \u{N}j, \u{N}J

cons. qa * - - - q q q

cons. khha � - - - k
¯
h
¯

.kh, .K \b{k}\b{h}

cons. ghha � - - - g
¯

.g \b{g}

cons. za) - - - z z z

cons. dddha w - - - r
¯

R \b{r}

cons. rha x - - - r
¯
h Rh \b{r}h

cons. yya y - - - ??!! "y ??!!

notes:

— Columns D, T, M, S, stand respectively for Devanagari, Tamil, Malayalam and Sinhalese. The fonts used
in this paper for the first three scripts have been made by Frans Velthuis (velthuis@rc.rug.nl), Thomas
Ridgeway (165 McGraw Street, Seattle, WA 98109 USA), Jeroen Hellingman (jhelling@cs.ruu.nl) and
the author. Some of them are still under β-status, so please contact their respective authors for more
information on their availability.
— SEVENBIT column: Entries in slanted style are extensions to Frans Velthuis’ transcription, proposed by
the author.

TUGboat, Volume 15 (1994), No. 4 459

The EAN barcodes by TEX

Petr Oľsák

Abstract

In this article, we describe the algorithm for the transfor-
mation from the EAN 13 code (13-digit number) to the
barcode (the sequence of bars and spaces) and we show
the implementation of this algorithm to the macro lan-
guage of TEX. The drawing of the bars is realized by the
TEX primitive \vrule. Some data from the standard for
the EAN barcodes (tolerances and so on) are presented
too. The corresponding TEX macro is available on CTAN

in tex-archive/macros/generic/ean.

−− ∗ −−

I have prepared my first book about TEX written in
Czech (Olsak, 1995). My interest in preparing the
book didn’t end with sending the manuscript or the
type matter to the publisher because the publisher
is our CSTUG (the Czechoslovak TEX users group).
I made the cover design of the book, I worked on
the distribution problems like getting the ISBN, and
so on.

When I got the ISBN (International Standard
Book Number), I converted it to EAN 13 (European
Article Numbering) and I took concern about the
barcode for this number, because it is commonly
used on book covers. I found out that it would be
very expensive to have commercial firms make the
barcode. On the other hand, using TEX to produce
the barcode is a very natural application of this pro-
gram because of its high accuracy and its algorith-
mic macro language. To find the description of the
conversion algorithm with 13 digits as the input and
the barcode metrics as the output was the only prob-
lem. This algorithm is described in (Benadikov et
al., 1994).

The transformation from ISBN to EAN is sim-
ple. The ISBN is a 10-digit number. The dashes be-
tween digits divide the ISBN into the fields “country-
publisher-number-checksum” and (essentially) can
be ignored. First we write three new constant digits
(978) at the front of the ISBN. Next we compute a
new checksum digit (the last one). The algorithm
for computing the ISBN checksum is different from
the one for computing the EAN checksum. For the
EAN, first we need to compute the sum of digits on
the even positions. Let the sum be e. Next we com-
pute the sum of digits on the odd positions (without
the checksum digit). Let the sum be o. We evalu-
ate the expression 3× e + o. The difference between
the result and the next modulo-10 number is the
checksum digit. For example, The TEXbook book
hard cover (Knuth, 1986) has its ISBN 0-201-13447-

0 (0: country USA; 201: publisher Addison Wesley;
13447: internal book number assigned by publisher;
0: the checksum digit). We write the three constant
digits at the front and remove the checksum digit to
obtain 978020113447?. Now e = 7+0+0+1+4+7 =
19 and o = 9+8+2+1+3+4 = 27. The difference
between 3× 19 + 27 = 84 and 90 is 6 and this is the
checksum digit. We can divide the result by dashes
into 6 digit fields (only for easier reading) and the
result is 9-780201-134476.

The transformation from the EAN number to
the barcode metric is more complicated. The left-
most digit (the 13th position) is 9 for books, but it is
different for other kinds of goods. This digit doesn’t
have its own field in the barcode but it influences
the algorithm for the transformation of the following
digits to their fields. The widths of the bars or white
spaces between the bars are multiples of the basic
so-called “module X”. The size of module X varies
for different SC standards (see below), but the basic
size is 0.33mm. Each digit from positions 12 to 1
is transformed to a field of module width 7X. This
field by definition contains two bars and two white
spaces. The “start mark” of module width 3X (1X
bar, 1X space and 1X bar) is appended before the
digit from the 12th position. The same “stop mark”
(module width 3X) is appended after the last digit
and a so-called “separator mark” of module width
5X (1X space, 1X bar, 1X space, 1X bar and 1X
space) is placed between digits on the 7th and 6th
positions. The “mark” bars are 5X longer than the
bars from the digits.

It is easy to see that the total length of the EAN

barcode is 95X. We also have to consider the 11X
white space to the left of the code and the 7X white
space to the right of the code. These are the min-
imal white “margins”, which are important for the
barcodes on a color background. The total number
of bars is 30.

Each digit is transformed into two bars in its
7X size field according to one of the tables (A, B
and C) shown in Table 1.

Zero in the table stands for the white module
(of size 1X) and one means the black module. For
example, the digit 4 is converted to 1X space, 1X
bar, 3X space and 2X bar by table A and to 2X
space, 3X bar, 1X space and 1X bar by table B. No-
tice that all tables convert the digit into exactly two
spaces and two bars and that the converted field
starts with the space if table A or B is used, and
with the bar if table C is used.

The digits in positions 6 to 1 are transformed
by table C under any circumstance. The digits in
positions 12 to 7 are transformed by table A or B.

460 TUGboat, Volume 15 (1994), No. 4

tab. A tab. B tab. C
0 0001101 0100111 1110010
1 0011001 0110011 1100110
2 0010011 0011011 1101100
3 0111101 0100001 1000010
4 0100011 0011101 1011100
5 0110001 0111001 1010000
6 0101111 0000101 1010000
7 0111011 0010001 1000100
8 0110111 0001001 1001000
9 0001011 0010111 1110100

Table 1: Tables A, B and C

13th digit 12 11 10 9 8 7
0 A A A A A A
1 A A B A B B
2 A A B B A B
3 A A B B B A
4 A B A A B B
5 A B B A A B
6 A B B B A A
7 A B A B A B
8 A B A B B A
9 A B B A B A

Table 2: Dependence on the 13th digit

The choice depends on the value of the digit in the
13th position, as described in Table 2.

For example, if the digit in position 13 is 9 (our
case for books), the digits in positions 12, 9 and 7
are transformed by table A and the ones in positions
11, 10 and 8 are transformed by table B.

Now we can show the TEX macro. First we load
the special OCRb font for printing out the EAN code

in human-readable form. This printout is appended
to the barcode. The METAFONT sources of these
fonts are available on CTAN; they were created by
Norbert Schwarz. I had to make one little correc-
tion in these sources: the command “mode setup;”
was added to the beginning of the file ocrbmac.mf.
Starting at line 4 some “variables” are declared.

1 \message{The EAN-13 barcodes macro. Copyright (C) Petr Olsak, 1995}

2 \font\ocrb=ocrb9 % for EAN in ‘‘number form’’

3 \font\ocrbsmall=ocrb7 % for ISBN

4 \newcount\numlines \newcount\nummodules % number of bars and of modules.

5 \newcount\numdigit \newcount\evensum \newcount\oddsum % internal variables

6 \newdimen\X % the module size X,

7 \newdimen\bcorr % the bar correction (see below).

8 \newdimen\workdimen \newdimen\barheight % internal variables

The main macro \EAN (line 11) converts the 13-
digit EAN number to the internal 60-digit number
\internalcode. Each digit of the \internalcode

represents the multiple of the X module size for ei-
ther the white space or the bar. The order of digits is
the same as the order of spaces and bars in the code.
The odd positions in the \internalcode (from the
left) stand for the white spaces and the even ones
for the bars.

The usage of the macro is
\EAN 9-780201-134476, for example. The pres-
ence of the “-” signs has no significance.
The macro reads 13 digits and saves them
in \firstdigit, \frontdigits and \enddigits.
At this point, the macro converts the input
into \internalcode using macros \settables,
\usetabAB, \insertseparator and \usetabC. The
\testchecksum macro (line 25) checks for the cor-
rectness of the last (check-sum) digit of the EAN.

9 \def\internalcode{0111} % Begin mark at start

10 \def\frontdigits{} % 12--7 digit of EAN

11 \def\EAN{\begingroup\EANscan}

12 \def\EANscan#1{\if#1-\let\next=\EANscan \else

13 \advance\numdigit by1

14 \ifnum\numdigit<13

15 \ifodd\numdigit \advance\oddsum by #1 \else \advance\evensum by #1 \fi

16 \let\next=\EANscan

17 \ifnum\numdigit=1 \settables#1\def\firstdigit{#1}\else

18 \ifnum\numdigit<8 \usetabAB#1\edef\frontdigits{\frontdigits#1}\else

19 \ifnum\numdigit=8 \insertseparator \A \usetabC #1\def\enddigits{#1}%

TUGboat, Volume 15 (1994), No. 4 461

20 \else \usetabC#1\edef\enddigits{\enddigits#1}%

21 \fi\fi\fi

22 \else \testchecksum#1\usetabC#1\edef\enddigits{\enddigits#1}%

23 \let\next=\EANclose

24 \fi\fi \next}

25 \def\testchecksum#1{\multiply\evensum by3 \advance\evensum by\oddsum

26 \oddsum=\evensum

27 \divide\oddsum by10 \multiply\oddsum by10 \advance\oddsum by10

28 \advance\oddsum by-\evensum \ifnum\oddsum=10 \oddsum=0 \fi

29 \ifnum#1=\oddsum \else

30 \errmessage{The checksum digit has to be \the\oddsum, no #1 !}\fi}

At the time of the \EANclose expansion
(line 31), we close the \internalcode by the
\insertendmark; next we write to the log the EAN

number in the 13-digit form and in the internal 60-
digit representation. The last action is to “run” the
macro \EANbox, which makes the box with the bar-
code. The input parameter to this macro is the 60-
digit \internalcode.

How was the \internalcode made? The
macros starting at line 35 answer this question.

These macros are the tables mentioned above rewrit-
ten in the macro language of TEX.

There is no need to define table C in the macro,
because table C is the exact “inverse” of table A.
When we insert the separator (line 52 of the macro),
the odd number of digits (namely 5) is appended to
the \internalcode. This implies that the parity of
the black/white order is changed. Using table \A

is therefore sufficient for the transformation of the
digits in positions 6 to 1 (see line 19).

31 \def\EANclose{\insertendmark

32 \wlog{EAN: \firstdigit\space\frontdigits\space\enddigits}%

33 \wlog{EANinternal: \internalcode}%

34 \expandafter\EANbox\internalcode..\endgroup}

35 \def\A{\def\0{3211}\def\1{2221}\def\2{2122}\def\3{1411}\def\4{1132}%

36 \def\5{1231}\def\6{1114}\def\7{1312}\def\8{1213}\def\9{3112}}

37 \def\B{\def\0{1123}\def\1{1222}\def\2{2212}\def\3{1141}\def\4{2311}%

38 \def\5{1321}\def\6{4111}\def\7{2131}\def\8{3121}\def\9{2113}}

39 \def\settables#1{\ifnum#1=0 \def\tabs{\A\A\A\A\A\A}\fi

40 \ifnum#1=1 \def\tabs{\A\A\B\A\B\B}\fi

41 \ifnum#1=2 \def\tabs{\A\A\B\B\A\B}\fi

42 \ifnum#1=3 \def\tabs{\A\A\B\B\B\A}\fi

43 \ifnum#1=4 \def\tabs{\A\B\A\A\B\B}\fi

44 \ifnum#1=5 \def\tabs{\A\B\B\A\A\B}\fi

45 \ifnum#1=6 \def\tabs{\A\B\B\B\A\A}\fi

46 \ifnum#1=7 \def\tabs{\A\B\A\B\A\B}\fi

47 \ifnum#1=8 \def\tabs{\A\B\A\B\B\A}\fi

48 \ifnum#1=9 \def\tabs{\A\B\B\A\B\A}\fi}

49 \def\usetabAB#1{\expandafter\scantab\tabs\end \usetabC #1}

50 \def\scantab#1#2\end{#1\def\tabs{#2}} % The tab #1 is activated and removed

51 \def\usetabC#1{\edef\internalcode{\internalcode\csname#1\endcsname}}

52 \def\insertseparator{\edef\internalcode{\internalcode 11111}}

53 \def\insertendmark{\edef\internalcode{\internalcode 111}}

Now comes the most important part of our
macro: creating the bars using the TEX primi-
tive \vrule. The internal macro \EANbox (line
54) does this job. This macro reads the 60-digit
\internalcode (ended by two dots) as its param-
eter. It scans two digits per step from the param-
eter (first digit: the white space; second digit: the
black bar) and puts in the appropriate kerns and
rules. Each kern/rule pair is corrected by a so-called

“bar correction”. The standard recommends mak-
ing each rule thinner than what is exactly implied
by the multiple of the X size. This recommendation
is due to the ink behavior during the actual print-
ing. For example, for offset process technology, it is
recommended to reduce the bar width by 0.020mm.
If the bar width is reduced, the white space must be
enlarged by the same amount in order to preserve
the global distance between bars.

462 TUGboat, Volume 15 (1994), No. 4

The bars 1, 2, 15, 16, 29 and 30 have nonzero
depth (5X) because these are the lines from the
start, the separator and the stop marks. The height
of the bars is 69.24X in the normal case but it may
be reduced, if the ISBN is appended to the top of the

code. If the \barheight is zero, than the implicit
height is used. Otherwise the \barheight is used.
This feature gives the user the possibility to set the
bar height individually.

54 \def\EANbox{\vbox\bgroup\offinterlineskip

55 \setbox0=\hbox\bgroup \kern11\X\EANrepeat}

56 \def\EANrepeat#1#2{\if#1.\let\next=\EANfinal \else\let\next=\EANrepeat

57 \advance\numlines by1

58 \advance\nummodules by#1 \advance\nummodules by#2

59 \workdimen=#1\X \advance\workdimen by \bcorr \kern\workdimen

60 \workdimen=#2\X \advance\workdimen by-\bcorr \vrule width\workdimen

61 \ifdim\barheight=0pt height 69.24242424\X \else height\barheight \fi

62 \ifnum\numlines=1 depth5\X\else % the start mark

63 \ifnum\numlines=2 depth5\X\else

64 \ifnum\numlines=15 depth5\X\else % the separator mark

65 \ifnum\numlines=16 depth5\X\else

66 \ifnum\numlines=29 depth5\X\else % the end mark

67 \ifnum\numlines=30 depth5\X\else depth0pt \fi\fi\fi\fi\fi\fi

68 \fi\next}

The \EANfinal macro checks for the correct-
ness of the scanned \internalcode. The number
of the digits must be 60 and the sum of digits must
be 95 (since 95X modules is the total). If the check
fails, the \internalerr macro is activated. How-
ever this situation should never occur. This error
indicates that some internal tables are wrong and/or
the consistency of the macro is broken.

The \vbox is completed by \EANfinal. The
natural depth of the internal \hbox with the bars is

5X because that is the depth of the mark rules. We
overwrite this depth by zero and append the human-
readable EAN number using the font \ocrb.

If the user writes the ISBN number using the
macro \ISBN (\ISBN 0-201-13447-0 for exam-
ple), these data are appended to the top of the bar-
code and the height of the bars is reduced.

Finally, lines 81 and 82 define the X module size
and the bar correction.

69 \def\EANfinal{\testconsistence

70 \kern7\X\egroup

71 \hbox{\ocrbsmall \kern10\X \ISBNnum}\kern1\X

72 \dp0=0pt \box0 \kern-1\X

73 \hbox{\ocrb\kern2\X\firstdigit\kern5\X \frontdigits\kern5\X \enddigits}

74 \egroup \global\barheight=0pt \gdef\ISBNnum{}}

75 \def\testconsistence{\ifnum\numlines=30\else\internalerr\fi

76 \ifnum\nummodules=95\else\internalerr\fi}

77 \def\internalerr{\errmassage{Sorry, my internal tables are wrong, may be.}}

78 \barheight=0pt

79 \def\ISBNnum{}

80 \def\ISBN #1 {\def\ISBNnum{ISBN #1}\barheight=45.151515\X\relax}

81 \X=.33mm % Basic size 100%, SC2 code

82 \bcorr=.020mm % Bar-correction for offset process

83 \endinput

If the macro was stored in file ean13.tex then
it can be run with plain TEX as shown below:

\input ean13

\nopagenumbers

\ISBN 80-901950-0-8 \EAN 978-80-901950-0-4

\end

The output looks like:

ISBN 80-901950-0-8

9 788090 195004

TUGboat, Volume 15 (1994), No. 4 463

X size standard scaled size incl. margins
0.264 SC0 0.800 29.83 × 21.00
0.270 SC0 0.818 30.58 × 21.53
0.281 SC0 0.850 31.70 × 22.32
0.297 SC1 0.900 33.56 × 23.63
0.313 SC1 0.950 35.43 × 24.94
0.330 SC2 1.000 37.29 × 26.26
0.346 SC2 1.050 39.15 × 27.58
0.363 SC3 1.100 41.02 × 28.29
0.379 SC3 1.150 42.88 × 30.20
0.396 SC4 1.200 44.75 × 31.51
0.412 SC4 1.250 46.61 × 32.82
0.429 SC5 1.300 48.48 × 34.14
0.445 SC5 1.350 50.34 × 35.45
0.462 SC5 1.400 52.21 × 36.76
0.478 SC5 1.450 54.07 × 38.08
0.495 SC6 1.500 55.94 × 39.39
0.511 SC6 1.550 57.80 × 40.70
0.528 SC7 1.600 59.66 × 42.01
0.544 SC7 1.650 61.53 × 43.33
0.561 SC7 1.700 63.39 × 44.64
0.577 SC7 1.750 65.26 × 45.96
0.594 SC8 1.800 67.12 × 47.26
0.610 SC8 1.850 68.99 × 48.58
0.627 SC8 1.900 70.85 × 49.90
0.643 SC8 1.950 72.72 × 51.20
0.660 SC9 2.000 74.58 × 52.52
0.700 SC10 2.120 79.05 × 55.67

Table 3: Various sizes of the X module

The macro also works with LATEX (both LATEX 2.09
and LATEX2ε).

At the end of this article we compare the toler-
ances described in the standard, the TEX accuracy
and the possibilities of some output devices.

The X module size can vary. The macro above
makes EAN barcodes for the basic X module size of
0.33mm. This size is described in the SC2 variant of
the standard as the basic 100% size code. However
the standard also allows some other sizes of the X
module. One can change the parameter \X to obtain
the other size of EAN code. Of course, then the size
of the OCRb font must be changed too.

The allowed sizes of the X module are described
in Table 3.

The small sizes of the X module are recom-
mended for high quality output devices while the
large sizes of X allow the possibility to make the
barcodes even on a low resolution output device.

Depending on the width of the X module, the
standard specifies three tolerance parameters. The
parameter a specifies the tolerance for the bar width,

X size ±a ±b ±c

0.26 32 38 75
0.28 52 41 81
0.30 72 44 87
0.32 92 47 93
0.33 101 49 96
0.34 105 50 99
0.36 115 53 104
0.38 124 56 110
0.40 134 59 116
0.42 143 62 122
0.44 152 65 128
0.46 162 68 133
0.48 171 71 139
0.50 181 73 145
0.52 190 76 151
0.54 199 79 157
0.56 209 82 162
0.58 218 85 168
0.60 228 88 174
0.62 237 91 180
0.64 246 94 186

Table 4: The tolerances

the parameter b specifies the tolerance for the dis-
tance between edges (either left or right ones) of
two consecutive bars, and the parameter c speci-
fies the tolerance for the width of the field for one
digit (therefore for width 7X). The Table 4 describes
these tolerances in micrometers (µm). I don’t know
why the table column “X size” doesn’t match with
the column “X size” of the previous table. Sorry,
standards are mysterious.

Now we can compare. Consider the basic 100%
size (the X module is 0.33mm). The tolerance for
the width of the bar is 101µm, the TEX (in)accuracy
is 0.0054µm, the pixel size of the phototypesetter
at 2400dpi is approximately 10µm and the recom-
mended bar correction for the offset process is 20µm.
If we use the phototypesetter at 1200dpi, the inaccu-
racy of its output is comparable to the bar correction
for the offset process.

Depending on the inner dvi driver algorithm
the high TEX accuracy may be lost and the toler-
ance parameters may be overcome. The dvi driver
algorithms include one of two possible approaches
to the “rounding” problem. The first approach is
to position and round each rule from dvi individu-
ally. In the second approach, the dvi driver works
only with rounded values (one pixel = one unit) be-
fore making the queue of kern, rule, kern, rule. . . In
this case, the roundoff error can accumulate and the

464 TUGboat, Volume 15 (1994), No. 4

parameter c can be overcome. But it seems to me
that the barcode scanners can read the code better
if the metrics of the consecutive bars and spaces are
preserved instead of the global width.

As I observed, the dvi drivers usually round the
rule width up to the pixel units and never down. The
consequence of this feature is that spaces tend to be
one pixel smaller than the rules of (presumably) the
same width. Therefore I recommend to add one half
of the pixel size to the bar correction, namely to the
\bcorr register.

I have heard that EAN barcodes are successfully
read from stickers printed by matrix printers with
a very low resolution at module X size of 0.33mm
or comparably small. That would imply that the
tolerances of the barcode scanners are usually much
higher than those required by the standard.

References

Adriana Benadiková, Štefan Mada and Stanislav
Weinlich. Čárové kódy, automatická identi-
fikace (Barcodes, the Automatic Identification).
Grada 1994, 272 pp., ISBN 80-85623-66-8.

Donald Knuth. The TEXbook, volume A of Comput-
ers and Typesetting. Addison-Wesley, Reading,
MA, USA, 1986. ix+483 pp. Hard cover ISBN 0-
201-13447-0.

Petr Oľsák. Typografický systém TEX (Typesetting
System TEX). CSTUG 1995, 270 pp., ISBN 80-
901950-0-8.

⋄ Petr Oľsák
Department of Mathematics
Czech Technical University in

Prague
Czech Republic
olsak@math.feld.cvut.cz

466 TUGboat, Volume 15 (1994), No. 4

Typesetting Commutative Diagrams

Gabriel Valiente Feruglio
University of the Balearic Islands
Mathematics and Computer Science Dept.
E-07071 Palma de Mallorca (Spain)
dmigva0@ps.uib.es

Abstract

There have been several efforts aimed at providing TEX
and its derivatives with a suitable mechanism for type-
setting commutative diagrams, with the consequent avail-
ability of several macro packages of widespread use in
the category theory community, and a long debate about
the best syntax to adopt for commutative diagrams in
LATEX3 has taken place during 1993 in the CATEGORIES

discussion list. From the user’s point of view, however,
there is not much guidance when it comes to choosing
a macro package, and even after a decision is made, the
conversion of diagrams from the particular conventions
of a macro package to another macro package’s conven-
tions may prove to be rather hard.

Typesetting commutative diagrams is a surprisingly
difficult problem, in comparison with TEX macro pack-
ages for other purposes, as judged by the amount of code
needed and years of development invested. The existing
macro packages for typesetting commutative diagrams
are reviewed in this paper and they are compared accord-
ing to several criteria, among them the capability to pro-
duce complex diagrams, quality of the output diagrams,
ease of use, quality of documentation, installation pro-
cedures, resource requirements, availability, and porta-
bility. The compatibility of the different macro packages
is also analyzed.

−− ∗ −−

1 Introduction

Commutative diagrams are a kind of graph that is
widely used in category theory, not only as a concise
and convenient notation but also as a powerful tool
for mathematical thought.

A diagram in a certain category is a collection
of nodes and directed arcs, consistently labeled with
objects and morphisms of the category, where “con-
sistently” means that if an arc in the diagram is
labeled with a morphism f and f has domain A and
codomain B, then the source and target nodes of
this arc must be labeled with A and B respectively.

A diagram in a certain category is said to com-

mute if, for every pair of nodes X and Y , all the
paths in the diagram from X to Y are equal, in
the sense that each path in the diagram determines
through composition a morphism and these mor-

phisms are equal in the given category. For instance,
saying that the diagram1

A

��

g

//
f

B

��

g0

C //
f 0

D

commutes is exactly the same as saying that

g′ ◦ f = f ′
◦ g.

As a notation, the graphic style of presenta-
tion inherent to commutative diagrams makes state-
ments and descriptions involving categories more clear
and manageable than textual presentations. For in-
stance, consider the definition of an equalizer. A
morphism e : X → A is an equalizer of a pair of
morphisms f : A → B and g : A → B if f ◦ e =
g ◦ e and for every morphism e′ : X ′ → A satisfy-
ing f ◦ e′ = g ◦ e′ there exists a unique morphism
k : X ′ → X such that e ◦ k = e′.

An equivalent definition is that e is an equalizer
if the upper part of the diagram

X //e
A

//
f

//
g

B

X 0

OO

k

>>

e0

}
}
}
}
}
}
}
}

commutes and, whenever the lower part of the dia-
gram also commutes, there is a unique k such that
the whole diagram commutes.

As a tool for thought, proofs involving prop-
erties that are stated in terms of commutative dia-
grams can often be given in a “visual” way, in what
has been called diagram chasing. For instance, the
proposition that if both inner squares of the follow-
ing diagram commute, then also the outer rectangle
commutes,

A

��

a

//
f

B

��

b

//
g

C

��

c

A0 //
f 0

B0 //
g0

C 0

1 All the diagrams in this paper have been typeset us-
ing the XY-pic macro package, unless otherwise stated. The
reader should not infer any preference by the author for that
particular macro package, but should understand that some
macro package is needed for the examples in the paper. Sam-
ple diagrams typeset with the other macro packages are given
in Appendix I.

TUGboat, Volume 15 (1994), No. 4 467

can be proven as follows:

(g′ ◦ f ′) ◦ a = g′ ◦ (f ′ ◦ a) (associativity)
= g′ ◦ (b ◦ f) (commutativity

of left square)
= (g′ ◦ b) ◦ f (associativity)
= (c ◦ g) ◦ f (commutativity

of right square)
= c ◦ (g ◦ f) (associativity).

Commutative diagrams2 range from simple, rect-
angular matrices of formulae and arrows to complex,
non-planar diagrams with curved and diagonal ar-
rows of different shapes.

2 Constructing commutative diagrams

Commutative diagrams are constructed in most cases
as rectangular arrays, as Donald Knuth does in Ex-
ercise 18.46 of [4]. The objects or vertices are set
much like a \matrix in TEX or an array environ-
ment in LATEX,

•

•

•

•

•

•

•

•

•

•

•

•

•

and the morphisms or arrows are set either right
after the vertex where they start,

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

�✒❄

✻
�✒

✲

✲

❄
✛ ✲

✻

❄

✛ ✲

✛ ✲

�✒❄

✻
�✒

❄

or in a cell on their own,

•

•

•

•

•

•

•

•

•

•

•

•

•

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

❄

✻

��✒

��✒

❄ ✲

✲

✛

✛

✛

❄

✻

✲

✲

✲

❄

✻

��✒

��✒

❄

depending on the macro package being used, where
the grids correspond to the sample diagram pre-
sented in Appendix I. (Sketching a commutative
diagram on such a grid on paper may prove to be a
mandatory step before typing the actual diagram, at

2 The epithet “commutative” is traditional and originates
in the fact that diagrams may be used to display equations
such as the commutative and associative laws. Although not
all such diagrams which people draw commute in the formal
sense given, this paper adheres to tradition and all such dia-
grams are called commutative diagrams herein.

least for all but the simplest diagrams.) This gives
a first distinction,

• one object and all departing morphisms in each
non-empty cell, or

• either one object or one or more morphisms in
each non-empty cell.

Whether they belong together with their source
object in a cell or they use a cell on their own, mor-
phisms are specified by the address of their target
cell. Such addresses can be implicit, absolute or rel-
ative to the source cell, and they can be either arbi-
trary or limited by the available diagonal slopes.

Moreover, some macro packages even support
symbolic addresses, by which nodes are tagged with
identifier names and arrows are specified by making
reference to the names of their source and target
nodes. This is a step forward in the sense of the
LATEX principle of emphasizing structural descrip-
tions, and in fact it is of great help for designing
complex diagrams because it divides the task into
two separate subtasks, the one of producing a cor-
rect and elegant arrangement of nodes and the other
of laying out the correct arrows and positioning their
labels.

3 Evaluation guidelines

The following aspects are considered in the next sec-
tion for each of the macro packages in turn. The
spirit of these guidelines is to give the potential user
a feeling of what to expect from a macro package
for typesetting commutative diagrams, and they are
based on the experience of the author during the last
few years, as user of some of the macro packages.

3.1 Arrow styles

The arrows used in commutative diagrams often are
of different shapes, in order to distinguish different
kinds of morphisms such as monomorphisms, epi-
morphisms, isomorphisms, and inclusions, to name
just a few, and sometimes they have a shaft other
than a solid line, for instance dashed or dotted, to
indicate that it is the existence of the corresponding
morphisms which is being characterized.

A collection of built-in arrow shapes and shafts
is included in every macro package, and some macro
packages even provide facilities for defining new ar-
row styles, for instance by defining a new control se-
quence name and choosing a particular combination
of tail (the piece that appears at the source end),
head (the piece that appears at the target end), and
shaft, from a predefined pallette of possible heads,
tails, and shafts.

468 TUGboat, Volume 15 (1994), No. 4

3.2 Automatic stretching

Most of the macro packages provide for the auto-
matic stretching of arrows to meet their source and
target nodes, where meeting a node means to get as
close to the (rectangular) box enclosing the node as
dictated by some predefined parameter.

While this may be appropriate for most hor-
izontal and vertical arrows, in the case of diagonal
arrows it may leave the arrow too far from the node,
and extra diagram fine-tuning (see below) is needed
in such cases in order to get the arrow closer to the
node. The macro package by John Reynolds, how-
ever, incorporates basic facilities for associating a
hexagon, octagon, or diamond to a node, instead
of the usual rectangle, although it does not exploit
them in the macros for commutative diagrams.

3.3 Diagram fine-tuning

Given a correct description of the structure, a macro
package has the task of choosing the best possible
arrows to produce the commutative diagram. Some-
times the best choice may not seem good enough,
because only a limited number of slopes may be
available for the arrows, because arrows may cross,
and because arrow labels may superimpose. Manual
fine-tuning belongs therefore to producing complex
commutative diagrams.

Arrow stretching can be regarded as automatic
fine-tuning. Manual fine-tuning facilities, on the
other hand, include moving labels around, moving
arrows around, modifying their size, changing the
distance from the source node to the beginning of
the arrow, as well as from the end of the arrow
to the target node, and setting spacing parameters
such as the gap between columns and between rows.
Some macro packages provide the facility to adjust
these gaps to different values between specific rows
or columns, which is essential in order to get the
proper perspective of a three-dimensional diagram.
Otherwise, empty rows and columns have to be added
to the diagram to get the desired perspective. Ap-
pendix III shows the degree of automatic stretching
provided by each of the macro packages.

3.4 Installation

None of the macro packages requires a complex in-
stallation procedure, and in most cases the only re-
quirement in order to get the package running is to
drop a single macro or style file somewhere in the
TEX search path. Some macro packages, however,
have accompanying special fonts to get better di-
agonal lines and arrows, that is, they provide more

diagonal slopes and a wider variety of arrow heads
and tails to choose from.

In such a case, installation can get more com-
plicated. METAFONT is not as easy to drive or as
familiar to the user as TEX or LATEX; many imple-
mentations do not make it available, and on oth-
ers only the system administrator is able to install
fonts. A ready-to-use collection of the additional
fonts at standard magnifications is distributed, how-
ever, with some macro packages.

3.5 Documentation

This ranges from small text files to comprehensive
user guides, and even to book chapters.

3.6 User support

The authors of the different macro packages have
been receptive to comments and willing to provide
user support. Almost all of the macro packages re-
main under development and are open to sugges-
tions from users. Moreover, further development of
the XY-pic macro package by Kristoffer Rose and
Ross Moore is being funded by three different sources.

3.7 Ease of use

The relative ease of use of a macro package is a sub-
jective matter, depending to a large extent on pre-
vious experiences in using similar macro packages.
Nevertheless, there are at least two characteristics
of a macro package for typesetting commutative di-
agrams that are worth mentioning.

The way in which the array of cells underlying
a commutative diagram has to be conceived is of
most importance. The requirement, found in some
macro packages, of extra cells for morphisms makes
the macro package much more difficult to use, be-
cause the user has to add many spurious rows and
columns only to hold these morphisms and to get
proper spacing, and the code for the diagrams gets
bigger and more obscure (compare the last two grids
in the previous section).

Orthogonal to the conception of the array of
cells is the way in which coordinates for the source
and target nodes of the arrows have to be specified.
While such addresses are implicit in the name of the
arrow in some macro packages, they are absolute
coordinates, coordinates relative to the cell where
they are declared, or even symbolic coordinates in
other macro packages.

The other aspect is the degree of manual fine-
tuning needed to achieve a readable commutative
diagram. Even when the macro package provides
enough facilities, fine-tuning a complex commuta-
tive diagram may take more time and effort than

TUGboat, Volume 15 (1994), No. 4 469

conceiving, designing, and coding the whole dia-
gram. Some of the macro packages require visual
or measured adjustment by the user of the size and
position of every node, arrow, and label, whereas
for others most diagrams may be input as easily as
any other mathematical formula in TEX and they
are typeset nicely without any manual adjustment
at all.

3.8 Resource requirements

It is well known that TEX has been designed to sup-
port high-quality typesetting of mathematical text,
and that it does not offer much built-in support
when it comes to drawing and performing arbitrary
computations. Because most of the macro pack-
ages are built on top of TEX, they are forced to
resort to indirect ways of performing computations
and to produce large diagrams by juxtaposition of
small line and arrow segments. Therefore, a com-
plex diagram may take up lots of computations, line
segments, words of TEX memory, and time to type-
set. Appendix IV compares resource requirements
for the different macro packages, showing the main
file size together with statistics of both total time
and marginal time. The statistics are based on sam-
ple runs to typeset the sample diagrams presented
in Appendix I with the different macro packages.

3.9 Availability

All the macro packages reviewed in this paper can
be found in the CTAN archives, and either are in
the public domain or are free software, subject to
the terms of the GNU General Public Licence as
published by the Free Software Foundation. They
are listed in Appendix V.

3.10 Compatibility

Converting a commutative diagram among different
macro packages is no straightforward task, not only
because of the different approaches to constructing a
diagram mentioned in the previous section, but also
because of differences in naming conventions and in
the available arrow styles and slopes. Converting
the sample diagram in Appendix I has taken the au-
thor many hours of careful work, and in some cases
building the diagram again from scratch for another
macro package has proven to be the most efficient
solution.

The macro packages are therefore highly incom-
patible. Nevertheless, the macro package by Paul
Taylor provides some initial facilities for emulating
other macro packages. Maybe a common, agreed-
upon syntax for commutative diagrams (see the last
section below) would provide a suitable framework

for solving these incompatibilities. Moreover, al-
though it may seem rather natural that the macro
packages are not compatible with each other, be-
cause the idioms are under development and none
of the authors is, in principle, under any obliga-
tion to the users of the other macro packages, the
adoption of a common standard would have the ad-
vantage to the whole user community that the di-
agrams which have already been drawn with one
macro package could be pasted into a document us-
ing another macro package.

3.11 TEX format requirements

While it would be desirable to be able to typeset a
commutative diagram under any derivative of TEX,
some macro packages can only run on LATEX be-
cause they borrow the picture environment and
one or more of the special fonts line10, linew10,
circle10, and circlew10. Other macro packages
require AMS-TEX or the amsmath package in LATEX.
The other way round, some macro packages run on
TEX but do not run when used in a LATEX document.

3.12 Output quality

This is perhaps the most subjective aspect in these
guidelines, and therefore it is left for the reader to
evaluate. See the sample diagrams in Appendix I,
and make a guess at which of the macro packages
has been used in Valiente (1994).

4 Macro packages

The different macro packages are listed in turn in the
following, under the name of the respective author,
and they are analyzed according to the evaluation
guidelines presented in the previous section. No at-
tempt has been made to put them in chronological
order of development, and the list is sorted by au-
thor name.

4.1 American Mathematical Society

AMS-TEX includes some commands for typesetting
commutative diagrams, which are also available in
AMS-LATEX as a separate option. Only horizon-
tal and vertical arrows are supported, and there-
fore AMS-TEX can only handle “rectangular” com-
mutative diagrams. Moreover, only “plain” arrows
can be used within commutative diagrams, although
AMS-TEX provides about 30 different arrow shapes,
and arrows do not automatically stretch to their
source and target vertices. Commutative diagrams
are specified as an array of cells, with either one ob-
ject or one or more morphisms in each non-empty
cell, although unlike matrices, no column separa-
tor is needed (a special delimiter has to be used,

470 TUGboat, Volume 15 (1994), No. 4

however, in place of missing arrows). Arrow coor-
dinates are implicit in the name of the arrow and
only the four basic directions are available, where
arrows can only extend to the adjacent row and/or
column in the array. The only fine-tuning facilities
provided are a stretching command to force arrows
in the same column to be set to the same length
(actually, to the width of the longest label in that
column), which does not suffice in order to achieve
appropriate arrow stretch when the vertices have dif-
ferent width (this manual stretching facility requires
the whole amsmath package to be loaded in AMS-
LATEX), and a command to change the minimum ar-
row width in a diagram, for instance to get it to fit
on a page. Documentation is as scarce as the fa-
cilities the package provides, only four pages in [11]
and one page in [9].

4.2 Barr

Instead of using a matrix notation, commutative di-
agrams are specified in the macro package developed
by Michael Barr by composing more elementary di-
agrams, using primitive shapes such as squares and
triangles. Arrow coordinates are implicit within these
shape macros. Additional arrows can be specified
by giving the absolute address, within an implicit
picture environment, of their source node, together
with the relative address of their target node as a
slope and a length, but stretching is not automatic
in these cases. It supports diagonal arrows only in
the usual LATEX slopes, and only a few different ar-
row shapes are available. There are no facilities for
diagram fine-tuning. It only runs on LATEX. Docu-
mentation consists of a 10-page document [1] which
explains the principles and gives detailed examples.

4.3 Borceux

In the macro package developed by Francis Borceux,
commutative diagrams are specified as an array of
cells, with one object and all departing morphisms
in each non-empty cell. There are facilities for intro-
ducing one object and one morphism, or two cross-

ing morphisms, in each non-empty cell, but at most
two items may belong to the same cell. The de-
limiter for columns is, unlike the & character used
in all the other macro packages, the special charac-
ter � that is not even available in many keyboard
layouts. It supports diagonal arrows of different
shapes and in many different, although not arbi-
trary, slopes, and it also supports parallel and ad-
joint (counter-parallel) arrows, some curved arrows,
and automatic stretching. Arrow coordinates are
implicit in the name of the arrow for the 32 princi-
pal directions. Different facilities for diagram fine-

tuning are provided. It only runs on LATEX. Docu-
mentation consists of a detailed 12-page document
[2]. Two restricted macro files are distributed for
small TEX implementations, one that only allows
for plain arrows and another one that also provides
parallel and adjoint (counter-parallel) plain arrows.
A further macro file is distributed with the pack-
age that provides additional triple, quadruple, and
quintuple arrows, parallel and disjoint.

4.4 Gurari

Unlike the case of most of the other macro pack-
ages, Eitan Gurari has developed a general drawing
package on top of TEX. It supports diagonal arrows
of different shapes and arbritrary slopes, curved ar-
rows and loops, automatic stretching, and symbolic
addressing. Arrow coordinates can be symbolic, be-
cause of the possibility of naming any location within
a drawing, but they are relative in the sample dia-
grams presented in the appendices because the macros
used are the ones given in page 160 of [3]. It runs
on both TEX and LATEX. The macros are well docu-
mented in the book, with several basic chapters and
one chapter devoted to general grid diagrams, but
there is only one page describing commutative dia-
grams and there is only one sample diagram in the
whole book.

4.5 Reynolds

John Reynolds has developed a macro package con-
sisting of a collection of general macros for produc-
ing a wide variety of diagrams and another collection
of macros, which depend on the general macros, for
producing commutative diagrams. It supports di-
agonal arrows only in the usual LATEX shapes and
slopes, because the macros depend on the LATEX pic-
ture facilities to draw lines, arrows, and circles, al-
though it also supports parallel and adjoint (counter-
parallel) arrows, loops, and it provides automatic
stretching. Commutative diagrams as specified by
giving the absolute coordinates for each node and
for the source and target node of each arrow, an ap-
proach close to symbolic addressing. Excellent fa-
cilities for diagram fine-tuning are provided. It only
runs on LATEX. Documentation consists of a rather
cryptic 12-page ASCII file [5] describing the macro
package, together with a LATEX input file that pro-
duces a 7-page document of sample diagrams.

4.6 Rose

A macro package has been developed by Kristof-
fer Rose on top of a more general drawing language,
called the XY-pic kernel. It supports diagonal arrows
of different shapes and in many different, although

TUGboat, Volume 15 (1994), No. 4 471

not arbitrary, slopes, and it also supports paral-
lel and adjoint (counter-parallel) arrows, curved ar-
rows, and loops. Arrows stretch automatically, and
there are ample facilities for defining additional ar-
row styles. Commutative diagrams are specified as
an array of cells, with one object and all departing
morphisms in each non-empty cell. Arrow coordi-
nates for the target node are implicit in the name of
the arrow for the 16 principal directions, and they
can be absolute or relative for all other directions.
Different facilities for diagram fine-tuning are pro-
vided. It runs on both TEX and LATEX. Documenta-
tion is excellent, both a comprehensive guide [6] and
a more technical document [7] are provided with the
package. The latter also describes the XY-pic kernel.

4.7 Smith

The Expanded Plain TEX macro package includes
macros for typesetting commutative diagrams, writ-
ten by Steven Smith, in a file named arrow.tex. It
supports diagonal arrows only in the usual LATEX
slopes, because the macros depend on the LATEX
font line10, and only a “plain” arrow shape is avail-
able, besides pairs of parallel and adjoint (counter-
parallel) arrows. Commutative diagrams are speci-
fied as an array of cells, with either one object or one
or more morphisms in each non-empty cell. There is
not any automatic stretching of arrows. Arrow co-
ordinates are implicit in the name of the arrow for
the four basic directions, and they are relative ad-
dresses for all other directions. Designing a complex
diagram using this macro package is as difficult as
fine-tuning a simple diagram, even requiring manual
computations of horizontal and vertical dimensions
to get a desired arrow size and slope. It runs on
both TEX and LATEX. Documentation is enough to
cover the facilities provided by the macros, seven
pages in [8] and a two-page source document named
commdiags.tex, reproducing eleven textbook com-
mutative diagrams.

4.8 Spivak

LAMS-TEX includes an environment for producing
commutative diagrams that supports diagonal ar-
rows of different shapes and in many different, al-
though not arbitrary, slopes. Arrows stretch auto-
matically, and there are ample facilities for defining
additional arrow styles. Commutative diagrams are
specified as an array of cells, with one object and all
departing morphisms in each non-empty cell. Arrow
coordinates are relative addresses, and mnemonics
can be easily defined for the most common arrow co-
ordinates. Superb facilities for diagram fine-tuning
are provided. It only runs on TEX. Documentation

is excellent, two chapters in [10] describing every de-
tail from diagram design to coding and fine-tuning.

4.9 Svensson

The most recent addition to the commutative dia-
grams family is the macro package kuvio.tex, de-
veloped by Anders Svensson. It supports diagonal
arrows of different shapes and in many different, al-
though not arbitrary, slopes (implemented by rotat-
ing horizontal arrows through PostScript \special
commands). Arrows stretch automatically, and there
are ample facilities for defining additional arrow styles.
Commutative diagrams are specified as an array of
cells, with either one object or one or more mor-
phisms in each non-empty cell. Arrow coordinates
are implicit in the name of the arrow, and they are
complemented with explicit slope and length param-
eters. Different facilities for diagram fine-tuning are
provided. It runs on both TEX and LATEX. The
macros are well documented in a 54-page guide and
reference manual [12].

4.10 Taylor

A macro package developed by Paul Taylor sup-
ports diagonal arrows of different shapes and slopes,
and even at arbitrary slopes (implemented by rotat-
ing horizontal arrows through PostScript \special
commands). Arrows stretch automatically, and there
are ample facilities for defining additional arrow styles.
Commutative diagrams are specified as an array of
cells, with either one object or one or more mor-
phisms in each non-empty cell. Arrow coordinates
are implicit in the name of the arrow, and they are
complemented with explicit slope and length param-
eters. There are plenty of options for diagram fine-
tuning, either global to the whole document or local
to a single diagram. It runs on both TEX and LATEX.
Documentation is excellent, a quite comprehensive
document [13] that is even provided typeset in book-
let format.

4.11 Van Zandt

As in the case of the macro packages by Eitan Gu-
rari, PSTricks is a general drawing package built on
top of TEX. Instead of extending TEX by defin-
ing graphics primitives, however, it is a collection
of PostScript-based TEX macros, and it can be seen
in fact as a high-level TEX-like interface to the Post-
Script language. It supports diagonal arrows of dif-
ferent shapes and arbritrary slopes, curved arrows
and loops, automatic stretching, and symbolic ad-
dressing for both node and arrow coordinates. It
runs on both TEX and LATEX. The macros are well
documented in [15], although there are only two

472 TUGboat, Volume 15 (1994), No. 4

pages describing commutative diagrams and only
two sample diagrams in the whole document.

5 Discussion

5.1 Syntactic issues

Syntactic issues are so fundamental to user accep-
tance of a macro package for typesetting commu-
tative diagrams, that a volunteer task within the
LATEX3 project was founded in October 1992 under
the name Research on Syntax for Commutative Dia-

grams, with Paul Taylor as co-ordinator and Michael
Barr and Kristoffer Rose as members.

After an initiative by Michael Barr, who started
a discussion within the categorical community about
the best syntax to adopt for commutative diagrams
in LATEX3, a rather heated debate has taken place
in the CATEGORIES discussion list. There were many
contributions between June and August 1993, al-
though the discussion list has been silent in these
matters ever since.

5.2 Curved arrows

The need for curved arrows arises when “parallel”
morphisms have to be distinguished from each other,
for instance when it is not known if the morphism h :
A → C is equal to the composition of the morphisms
g : B → C and f : A → B,

A
@A BC

h

OO
//

f
B //

g
C

because otherwise the composite morphism would
not need to be made explicit.

The need for curved arrows also arises when
there are loops in a diagram. For instance, consider
the definition of an isomorphism.

A morphism f : A → B in a given category
is an isomorphism if there exists a morphism g :
B → A in that category such that g ◦ f = idA and
f ◦ g = idB. That is, if the diagram

A

@AGFidA ED�� //f

Boo
g EDBC idB@AOO

commutes. One possible trick to eliminate the need
for such curved arrows is to “straighten up” the dia-
gram by appropriately duplicating some nodes. For
the previous example, a morphism f : A → B is an
isomorphism if the following two diagrams commute:

A
//

idA

//

f

B
//

g

A B
//

idB

//

g

A
//

f

B

These diagrams, however, look much better with
a curved arrow,

A
@A BC

idA

OO
//

f
B //

g
A B

@A BC

idB

OO
//

g
A //

f
B

and therefore the need for curved arrows cannot al-
ways be eliminated without sacrificing diagram clar-
ity and, perhaps arguably, esthetics. While some
authors of category theory textbooks seem to prefer
to duplicate nodes, others make a thorough use of
curved arrows.

5.3 Design issues

Diagrams are essentially a communication medium,
and therefore good design means a design for read-
ability. Although readability issues can be as subjec-
tive as esthetic issues, however, some basic principles
may help in the design of readable diagrams. The
first principle is to follow the natural order of writ-
ing, which at least within occidental writing con-
ventions means left to right, top to bottom, and
foreground to background. A second principle is to
appropriately give depth to three-dimensional dia-
grams, in such a way that the foreground lies a lit-
tle below the background. This principle finds no
easy justification, because it may seem to contra-
dict the top-to-bottom order of writing by impos-
ing a bottom-to-top order from foreground to back-
ground, but it is true of all kinds of pictorial repre-
sentations.

5.4 User interface

Most of the macro packages provide a simple user
interface, consisting of a certain matrix notation.
While it adheres to the LATEX principle of empha-
sizing structural descriptions, such a specification
may become much too obscure for a complex dia-
gram. Some authors have argued against the use
of alternative technologies (if you want WYSIWYG,
use a pen and paper) but maybe the time has ar-
rived to have a state-of-the-art drawing program
with specific facilities for designing commutative di-
agrams. One possible scenario would be to sketch
the arrangement of nodes and arcs on the computer
screen using a mouse, and to let the drawing pro-
gram translate the design into the language of (any
of) the macro packages, taking care of all the time-
consuming details of computing coordinates, choos-
ing appropriate slopes for the arrows, placing ar-
row labels, fine-tuning, etc. Further facilities could
include, for instance, trying different layouts based
both on the structural description of the diagram as
a graph and on knowledge of the kind of graphs that
commutative diagrams are, and performing specific

TUGboat, Volume 15 (1994), No. 4 473

operations on descriptions such as, for instance, ob-
taining the dual of a commutative diagram.

5.5 Open issues

Although the conceptual framework used for evalu-
ating the different macro packages resulted from the
experience of the author using them and converting
diagrams between them, it is precisely because of the
evaluation having been carried out by only one per-
son that the resulting data may be somewhat biased.
A more general investigation would involve mathe-
maticians and computer scientists writing their own
diagrams, as well as (LA)TEX-competent secretaries
typing their work, and would produce quantitative
measures of learning times for the different macro
packages and, once they are fluent in each macro
package, measures of the time it takes them to tran-
scribe a diagram drawn on paper.

Further additional investigations include evalu-
ating the degree of help given by each macro pack-
age towards improving the quality of the output di-
agrams, for instance by means of informative mes-
sages; quantifying the degree of fine-tuning needed
with each macro package in order to produce a com-
plex diagram; evaluating the robustness of the dif-
ferent macro packages when the user makes common
errors, such as omitting brackets or mistyping com-
mand names; and, last but not least, designing a
standard library of common diagrams against which
the different macro packages could be evaluated and
compared.

6 Acknowledgement

In order to avoid name clashes among the control se-
quences defined in the different macro packages, all
the diagrams have been typeset separately and in-
cluded in the final document as encapsulated Post-
Script files. Thanks to Michel Goossens and Sebas-
tian Rahtz for their advice. Ricardo Alberich Mart́ı
provided guidance during the design of the experi-
ment to obtain time statistics.

References

[1] Michael Barr. The diagram macros. Electronic
document distributed with the package.

[2] Francis Borceux. User’s guide for diagram 3.
Electronic document distributed with the pack-
age.

[3] Eitan M. Gurari. TEX & LATEX—Drawing

and Literate Programming. McGraw-Hill, New
York, 1994.

[4] Donald E. Knuth. The TEXbook. Addison-
Wesley, 15th printing, 1989.

[5] John Reynolds. User’s manual for diagram
macros. Electronic document distributed with
the package, December 1987.

[6] Kristoffer H. Rose. XY-pic user’s guide. Elec-
tronic document distributed with the package,
October 1994.

[7] Kristoffer H. Rose and Ross Moore. XY-pic
reference manual. Electronic document dis-
tributed with the package, October 1994.

[8] Steven Smith. Arrow-theoretic diagrams. Elec-
tronic document distributed with the package,
May 1994. Chapter 5 in Karl Berry and Steven
Smith, Expanded Plain TEX.

[9] American Mathematical Society. AMS-LATEX
version 1.2 user’s guide. Electronic document
distributed with the package, January 1995.

[10] Michael D. Spivak. LAMS-TEX—The Synthe-

sis. The TEXplorators Corporation, Houston,
Texas, 1989.

[11] Michael D. Spivak. The Joy of TEX—A

Gourmet Guide to Typesetting with the AMS-

TEX Macro Package. American Mathematical
Society, 2nd edition, 1990.

[12] Anders G. S. Svensson. Typesetting diagrams
with kuvio.tex. Electronic document dis-
tributed with the package, January 1995.

[13] Paul Taylor. Commutative diagrams in TEX
(version 4). Electronic document distributed
with the package, July 1994.

[14] Gabriel Valiente Feruglio. Knowledge Base Ve-

rification using Algebraic Graph Transforma-

tions. PhD thesis, University of the Balearic
Islands, December 1994.

[15] Timothy Van Zandt. PSTricks user’s guide.
Electronic document distributed with the pack-
age, March 1993.

⋄ Gabriel Valiente Feruglio
University of the Balearic Islands
Mathematics and Computer

Science Dept.
E-07071 Palma de Mallorca

(Spain)
dmigva0@ps.uib.es

474 TUGboat, Volume 15 (1994), No. 4

7 Appendix I: Sample diagrams

The following diagrams reproduce a fairly complex
commutative diagram, taken from [14], using all the
macro packages reviewed in this paper. The diagram
consists of a pushout construction of partial closed
morphisms of total unary algebras in the foreground,
together with a corresponding pushout construction
of total morphisms of total signature algebras in the
background.

7.1 American Mathematical Society

L
i1

 ���� Lr
r

����! R

i2

x
?
?

x
?
?i4

x
?
?i6

Lm
i3

 ���� Kr;m
r

����! Rm�

m

?
?
y

?
?
ym

?
?
ym

�

G ����

i5

Gr� ����!
r�

H

7.2 Michael Barr

Lm Kr;m
� �

L Lr� �i1

6

6

i2

6

6

i4

Rm�
-

R-r

6

6

i6

G Gr�� �
i5

i3

?

m

?

m

H-
r�

r

?

m�

�
G

�
H-

'r
�

�
L

�
R-'r

?

'm

?

'm
�

�L
��� �R���

�G
��� �H���

7.3 Francis Borceux

�
L

'r
qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq �
R

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

�L
�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

�R

L
i1

qqqqqqqqqqqqqqqqqq

qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq

qq
qqq
qqq
qqq
qqq
qqq
q

Lr
r

qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq R

i2

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

'm

qqq
qqq
qq
qqq
qqq
qqq
q

qqq
qqq
qq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

i4

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

i6

qqq
qqq
qq
qqq
qqq
qqq
q

qqq
qqq
qq
qqq
qqq
qqq
q

'm
�

Lm
i3

qqqqqqqqqqqqqqqqqq

qqq
qq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq

qqq
qq
qqq
qqq
qqq
qq
qq Kr;m

r
qqq
qq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq Rm�

m

qq
qqq
qqq
qqq
qqq
qqq
q

qq
qqq
qqq
qqq
qqq
qqq
q

�
G

qq
qqq
qqq
qqq
qqq
qqq
q

qq
qqq
qqq
qqq
qqq
qqq
q

m

qqq
qq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq'r
�

qq
qqq
qqq
qqq
qqq
qqq
q

qq
qqq
qqq
qqq
qqq
qqq
q

m�

�
H

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

�G
�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

�H

G
qqqqqqqqqqqqqqqqqq

qqq
qqq
qq
qqq
qqqq
qqq

qqqqqqqqqqqqqqqqqq

qqq
qqq
qq
qqq
qqqq
qqq

i5
Gr�

qqq
qq
qqq
qqq
qqqq

qq
q

qqqqqqqqqqqqqqqqqqr�
H

7.4 Eitan Gurari

�
L

�
R

L Lr R

Lm Kr;m Rm�

�
G

�
H

G Gr� H

'm

'r

'm
�

�L

i1 r �R

m

i2 i4

m

i3 r

m�

i6

'r
��G

i5 r�
�H

7.5 John Reynolds

G Gr� H

Lm Kr;m Rm�

L Lr R

6

i2

6

i4

6

i6

?

m

?

m

?

m�

� i1

� i3

�
i5

-r

-r

-
r�

�
G

�
H

�
L

�
R

��
�1�
G

. . . .1
�H

��
�1�
L

��
�1

�R

?

'm

?

'm
�

-'r

-
'r

�

7.6 Kristoffer Rose

�
L

'm

��

//'r

�
R

��

'm
�

L

<<�L y
y
y
y
y

Lr
oo i1 //r

R

;;

�R

w
w
w
w
w

Lm

OO

i2

��

m

Kr;m
oo i3

OO

i4

��

m

//r
Rm�

OO

i6

��

m�

�
G

'r
�

//
�
H

G

<<�G y
y
y
y
y

Gr�
oo

i5

//
r�

H

;;

�H

TUGboat, Volume 15 (1994), No. 4 475

7.7 Steven Smith

�
L 'r - �

R

���
�L

����R

L
i1� Lr

r - R

i2

6
'm

?

6
i4

6
i6

?

'm
�

Lm
i3� Kr;m

r -Rm�

m

?

�
G

?

m -
'r

�

?

m�

�
H

���
�G

����H

G �
i5

Gr�
-

r�
H

7.8 Michael Spivak

�
L

u

'm

w

'r
�
R

u

'm
�

L
�
���

�L

Lru x

i1
w

r R
�
���

�R

Lm

u

v

i2

u

m

Kr;mu x

i3
w

r

u

v

i4

u

m

Rm�

u

v

i6

u

m�

�
G

w

'r
�

�
H

G
�
���

�G

Gr�u x

i5
w

r�
H
�
���

�H

7.9 Anders Svensson

�����������������

'r

�

�

�

�

��L

�

�

�

�

�

�R

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

'm

�������� i1
��������

r

�
�

�

�

�

�

�

�

i2

�
�

�

�

�

�

�

�

i4

�
�

�

�

�

�

�

�

i6

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

'm
�

������ i3
������

r

�

�

�

�

�

�

�

�

m
�����������������

'r
�

�

�

�

�

�

�

�

�

m

�

�

�

�

�

�

�

�

m�

�

�

�

�

��G

�
�
�
�
�

�H
�������

i5
�������

r�

�
L

�
R

L Lr R

Lm Kr;m Rm�

�
G

�
H

G Gr� H

7.10 Paul Taylor

�
L 'r

I �
R

L J
i1
J

�
L I

Lr
r

I R
�
R

I

Lm

i2

N

N

J
i3
J

'm

Kr;m

N

N

i4

r
I Rm�

N

N

i6

�
G

H

'r
�

I �
H

H

'm
�

G

m

H

J

i5
J

�
G I

Gr�
H

m

r�
I H
H

m�

. .
. .

. .
.

�
H

I

7.11 Paul Taylor emulating F. Borceux

�
L 'r - �

R

��
�L
� ��

�R
�

L �
i1
+ Lr

r - R

Lm

i2

+

6

� i3
+

'm

?

Kr;m

+

6

i4

r - Rm�

+

6

i6

�
G

'r
�

- �
H

?

'm
�

��
�G
� ��

�H
�

G

m

?
�

i5
+ Gr�
?

m

r�
- H
?

m�

7.12 Timothy Van Zandt

�
L

�
R

L Lr R

Lm Kr;m Rm�

�
G

�
H

G Gr� H

r

r

r�

i1

i3

i5

'r

'r
�

'm
�

'm

m

m m�

i2 i4 i6

�L

�R

�G

�H

476 TUGboat, Volume 15 (1994), No. 4

8 Appendix II: Source code for the sample diagrams

\newcommand{\up}[1]{\raisebox{1em}{$#1$}}

\newcommand{\down}[1]{\raisebox{-1em}{$#1$}}

\newcommand{\Left}[1]{\makebox[5pt][r]{$#1$}}

\newcommand{\Right}[1]{\makebox[5pt][l]{$#1$}}

8.1 American Mathematical Society

$$\begin{CD}

L @<i_1<< L_r @>r>> R \\

@Ai_2AA @AAi_4A @AAi_6A \\

L_m @<i_3<< K_{r,m} @>r>> R_{m^*} \\

@VmVV @VVmV @VVm^*V \\

G @<<i_5< G_{r^*} @>>r^*> H

\end{CD}$$

8.2 Michael Barr

$$\bfig

\putsquare<-2‘-2‘-2‘-2;500‘500>(0,500)[L‘L_r‘L_m‘K_{r,m};\qquad i_1‘i_2‘i_4‘]

\putsquare<1‘0‘-2‘1;500‘500>(500,500)[‘R‘\phantom{K_{r,m}}‘R_{m^*};r‘‘i_6‘]

\putsquare<0‘1‘1‘-2;500‘500>(0,0)[‘\phantom{K_{r,m}}‘G‘G_{r^*};\qquad i_3‘m‘\up m‘i_5]

\putsquare<0‘0‘1‘1;500‘500>(500,0)%

[\phantom{K_{r,m}}‘\phantom{R_{m^*}}‘\phantom{G_{r^*}}‘H;r‘‘\up{m^*}‘r^*]

\putsquare<1‘1‘1‘1;1000‘1000>(250,250)%

[\Sigma^L‘\Sigma^R‘\Sigma^G‘\Sigma^H;\varphi^r‘\varphi^m‘\varphi^{m^*}‘\varphi^{r^*}]

\putmorphism(125,1125)(1,1)%

[\phantom L‘‘{\up{\Right{\lambda^L}}}]{0}{1}{l}

\putmorphism(1125,1125)(1,1)%

[\phantom R‘‘{\down{\Left{\lambda^R}}}]{0}{1}{r}

\putmorphism(125,125)(1,1)

[\phantom G‘‘{\up{\Right{\lambda^G}}}]{0}{1}{l}

\putmorphism(1125,125)(1,1)%

[\phantom H‘‘{\down{\Left{\lambda^H}}}]{0}{1}{r}

\efig$$

8.3 Francis Borceux

\setdefaultscale{40}

\begin{diagram}

? ? \Sigma^L ? ? ? ? \Ear[280] {\varphi^r} ? ? ? ? \Sigma^R ??

? \Near[50] {\lambda^L} ? ? ? ? ? ? ? ? \neaR[50] {\lambda^R} ??

L ? ? \Wmono[130] {\qquad i_1} ? ? L_r ? ? \Ear[130] r ? ? R ?? ??

\Nmono[130] {i_2} ? ? \Sar[280] {\varphi^m} ? ? \nmonO[130] {i_4} ? ? ? ? \nmonO[130] {i_6} ? ?

\saR[280] {\varphi^{m^*}} ?? ??

L_m ? ? \Wmono[100] {\qquad i_3} ? ? K_{r,m} ? ? \Ear[100] r ? ? R_{m^*} ?? ??

\Sar[130] m ? ? \Sigma^G ? ? \saR[130] {\up{m}} ? ? \eaR[280] {\varphi^{r^*}} ? ?

\saR[130] {\up{m^*}} ? ? \Sigma^H ??

? \Near[50] {\lambda^G} ? ? ? ? ? ? ? ? \neaR[50] {\lambda^H} ??

G ? ? \wmonO[130] {i_5} ? ? G_{r^*} ? ? \eaR[130] {r^*} ? ? H ??

\end{diagram}

8.4 Eitan Gurari

\Draw

\PenSize(0.25pt)

\ArrowSpec(V,5,3,2)

\ArrowHeads(1)

\GridSpace(10,10)

\GridDiagramSpec()(\MyEdge)

\Define\L(4){,+#1..+#2\,L\,#3\,#4}

TUGboat, Volume 15 (1994), No. 4 477

\Define\D(4){,+#1..+#2\,D\,#3\,#4}

\Define\MyEdge(5){

\IF \EqText(#3,D) \THEN

\EdgeSpec(D)

\ELSE

\EdgeSpec(L)

\FI

\IF \EqText(#1,#2) \THEN

\RotateTo(#4)

\CycleEdge(#1)

\EdgeLabel(--$#5$--)

\ELSE

\Edge(#1,#2)

\IF \EqText(,#4) \THEN

\EdgeLabel(--$#5$--)

\ELSE

\EdgeLabel[#4](--$#5$--)

\FI

\FI}

\GridDiagram(8,8)()()({

& Σ^L \L(6,0,+,\mbox{φ^m}) \L(0,6,,\mbox{φ^r}) & & & & & & Σ^R

\L(6,0,,\mbox{φ^{m^*}}) //

L \L(-1,1,,\mbox{λ^L}) & & & L_r \L(0,-3,+,\mbox{i_1}) \L(0,3,,\mbox{r}) & & &

R \L(-1,1,+,\mbox{λ^R}) & //

& & & & & & & //

& & & & & & & //

L_m \L(3,0,+,\mbox{m}) \L(-3,0,,\mbox{i_2}) & & & $K_{r,m}$ \L(-3,0,+,\mbox{i_4})

\L(3,0,,\mbox{m}) \L(0,-3,+,\mbox{i_3}) \L(0,3,,\mbox{r}) & & & R_{m^*}

\L(3,0,,\mbox{m^*}) \L(-3,0,+,\mbox{i_6}) & //

& & & & & & & //

& Σ^G \L(0,6,+,\mbox{φ^{r^*}}) & & & & & & Σ^H //

G \L(-1,1,,\mbox{λ^G}) & & & G_{r^*} \L(0,-3,,\mbox{i_5}) \L(0,3,+,\mbox{r^*})

& & & H \D(-1,1,+,\mbox{λ^H}) & //})

\EndDraw

8.5 John Reynolds

\def\diagramunit{0.6pt}

$$\ctdiagram{

\ctv 0,0:{G}

\ctv 100,0:{G_{r^*}}

\ctv 200,0:{H}

\ctv 0,100:{L_m}

\ctv 100,100:{K_{r,m}}

\ctv 200,100:{R_{m^*}}

\ctv 0,200:{L}

\ctv 100,200:{L_r}

\ctv 200,200:{R}

\ctel 0,100,0,200:{i_2}

\cter 100,100,100,200:{i_4}

\cter 200,100,200,200:{i_6}

\ctel 0,100,0,0:{m}

\cter 100,100,100,0:{m}

\cter 200,100,200,0:{m^*}

\ctetg 100,200,0,200;60:{i_1}

\ctetg 100,100,0,100;60:{i_3}

\cteb 100,0,0,0:{i_5}

\ctet 100,200,200,200:{r}

\ctet 100,100,200,100:{r}

478 TUGboat, Volume 15 (1994), No. 4

\cteb 100,0,200,0:{r^*}

\ctv 75,25:{\Sigma^G}

\ctv 275,25:{\Sigma^H}

\ctv 75,225:{\Sigma^L}

\ctv 275,225:{\Sigma^R}

\ctet 0,0,75,25:{\lambda^G}

\ctdot

\cteb 200,0,275,25:{\lambda^H}

\ctsolid

\ctet 0,200,75,225:{\lambda^L}

\cteb 200,200,275,225:{\lambda^R}

\ctelg 75,225,75,25;150:{\varphi^m}

\cterg 275,225,275,25;150:{\varphi^{m^*}}

\ctet 75,225,275,225:{\varphi^r}

\cteb 75,25,275,25:{\varphi^{r^*}}

}$$

8.6 Kristoffer Rose

\definemorphism{unique}\dotted\tip\notip

\spreaddiagramrows{-1pc}

\spreaddiagramcolumns{-1pc}

\diagram

& \Sigma^L \xto’[1,0]’[3,0]_{\varphi^m}[4,0] \xto[rrrr]^{\varphi^r}

& & & & \Sigma^R \xto[dddd]^{\varphi^{m^*}} \\

L \urto^{\lambda^L} & & \llto_<<<<{i_1} L_r \rrto^r & & R \urto_{\lambda^R} \\ \\

L_m \uuto^{i_2} \ddto_m & & \llto_<<<<{i_3} \uuto_{i_4} K_{r,m} \ddto^<<<<m \rrto^r

& & \uuto_{i_6} R_{m^*} \ddto^<<<<{m^*} \\

& \Sigma^G \xto’[0,1]’[0,3]_{\varphi^{r^*}}[0,4] & & & & \Sigma^H \\

G \urto^{\lambda^G} & & \llto^{i_5} G_{r^*} \rrto_{r^*} & & H \urunique_{\lambda^H}

\enddiagram

8.7 Steven Smith

\harrowlength=45pt

\sarrowlength=.30\harrowlength

$$\gridcommdiag{

& & \Sigma^L & & & & {\harrowlength=100pt\mapright^{\varphi^r}}

& & & & \Sigma^R \cr

& \arrow(1,1)\lft{\lambda^L} & & & & & & & & \arrow(1,1)\rt{\lambda^R} \cr

L & & \mapleft^{\qquad i_1} & & L_r & & \mapright^r & & R \cr \cr

\mapup^{i_2} & & {\varrowlength=100pt\mapdown^{\varphi^m}}

& & \mapup_{i_4} & & & & \mapup_{i_6} & &

{\varrowlength=100pt\mapdown_{\varphi^{m^*}}}

\cr \cr

L_m & & \mapleft^{\qquad i_3} & & K_{r,m} & & \mapright^r & & R_{m^*} \cr \cr

\mapdown^m & & \Sigma^G & & \mapdown_{\up{m}}

& & {\harrowlength=100pt\mapright_{\varphi^{r^*}}}

& & \mapdown_{\up{m^*}} & & \Sigma^H \cr

& \arrow(1,1)\lft{\lambda^G} & & & & & & & & \arrow(1,1)\rt{\lambda^H} \cr

G & & \mapleft_{i_5} & & G_{r^*} & & \mapright_{r^*} & & H

}$$

8.8 Michael Spivak

$$\Cgaps{0.5}

\Rgaps{0.5}

\cgaps{1.3;0.7;1;1;1.3}

\rgaps{0.7;1;1;1.3;0.7}

\CD

& \Sigma^L @() \L{\varphi^m} @(0,-4) @() \L{\varphi^r} @(4,0)

TUGboat, Volume 15 (1994), No. 4 479

& & &

& \Sigma^R @() \l{\varphi^{m^*}} @(0,-4)

\\

L @() \L{\lambda^L} @(1,1)

& &

L_r @() \L{i_1} \0t @(-2,0) @() \L{r} @(2,0)

& & R @() \l{\lambda^R} @(1,1)

&

\\

\\

L_m @() \L{i_2} \0t @(0,2) @() \L{m} @(0,-2)

& & K_{r,m} @() \L{i_3} \0t @(-2,0) @() \L{r} @(2,0) @() \l{i_4} \0t @(0,2) @() \l{m} @(0,-2)

& & R_{m^*} @() \l{i_6} \0t @(0,2) @() \l{m^*} @(0,-2)

&

\\

& \Sigma^G @() \l{\varphi^{r^*}} @(4,0)

& & & & \Sigma^H

\\

G @() \L{\lambda^G} @(1,1)

& & G_{r^*} @() \l{i_5} \0t @(-2,0) @() \l{r^*} @(2,0)

& & H @() \l{\lambda^H} \a- @(1,1)

& \\

\endCD$$

8.9 Anders Svensson

\scale=.5

\Diagram

& & \Sigma^L & & & & \rTo^{\varphi^r} & & & & \Sigma^R \\

& \ruTo^{\lambda^L} & & & & & & & & \ruTo_{\lambda^R} & \\

L & & \dTo_{\varphi^m} \lMono^{i_1}:{.25} \br & & L_r & & \rTo^r & & R & & \\

& & & & & & & & & & \\

\uMono^{i_2} & & & & \uMono_{i_4} & & & & \uMono_{i_6} & & \dTo^{\varphi^{m^*}} \\

& & & & & & & & & & \\

L_m & & & \lMono^{i_3}:{.25} \br & K_{r,m} & & \rTo^r & & R_{m^*} & & \\

& & & & & & & & & & \\

\dTo_m & & \Sigma^G & & \rTo_{\varphi^{r^*}} \dTo^m:{.25} \br & & & & \dTo^{m^*}:{.25} \br & & \Sigma^H \\

& \ruTo^{\lambda^G} & & & & & & & & \ruDashto_{\lambda^H} & \\

G & & \lMono_{i_5} & & G_{r^*} & & \rTo_{r^*} & & H & & \\

\endDiagram

8.10 Paul Taylor

\diagramstyle[heads=littleblack,size=1.5em,PS]

\begin{diagram}

& & \Sigma^L & & & & \rTo^{\varphi^r} & & & & \Sigma^R \\

& \ruTo^{\lambda^L} & \vLine & & & & & & & \ruTo_{\lambda^R} & \\

L & & \HonV & \lEmbed^{i_1} & L_r & & \rTo^r & & R & & \\

& & & & & & & & & & \\

\uEmbed^{i_2} & & \vLine^{\varphi^m} & & \uEmbed_{i_4} & & & & \uEmbed_{i_6} & &

\dTo_{\varphi^{m^*}} \\

& & & & & & & & & & \\

L_m & & \HonV & \lEmbed^{i_3} & K_{r,m} & & \rTo^r & & R_{m^*} & & \\

& & \dTo & & \dTo_m & & & & \dTo_{m^*} & & \\

\dTo^m & & \Sigma^G & \hLine & \VonH & & \hLine_{\varphi^{r^*}} & & \VonH & \rTo & \Sigma^H \\

& \ruTo^{\lambda^G} & & & & & & & & \ruDotsto_{\lambda^H} & \\

G & & \lEmbed_{i_5} & & G_{r^*} & & \rTo_{r^*} & & H & & \\

\end{diagram}

480 TUGboat, Volume 15 (1994), No. 4

8.11 Paul Taylor emulating Francis Borceux

\diagramstyle[size=1.5em]

\begin{diagram}

& & \Sigma^L & & & & \Ear {\varphi^r} & & & & \Sigma^R \\

& \Near {\lambda^L} & & & & & & & & \neaR {\lambda^R} \\

L & & \Wmono {\qquad i_1} & & L_r & & \Ear r & & R \\ \\

\Nmono {i_2} & & \Sar {\varphi^m} & & \nmonO {i_4} & & & & \nmonO {i_6} & &

\saR {\varphi^{m^*}} \\ \\

L_m & & \Wmono {\qquad i_3} & & K_{r,m} & & \Ear r & & R_{m^*} \\ \\

\Sar m & & \Sigma^G & & \saR {\up{m}} & & \eaR {\varphi^{r^*}} & & \saR {\up{m^*}} & & \Sigma^H \\

& \Near {\lambda^G} & & & & & & & & \neaR {\lambda^H} \\

G & & \wmonO {i_5} & & G_{r^*} & & \eaR {r^*} & & H \\

\end{diagram}

8.12 Timothy Van Zandt

$$\setlength{\arraycolsep}{0.1in}

\begin{array}{cccccc}

& \Rnode{SL}{\Sigma^L} & & & & \Rnode{SR}{\Sigma^R} \\ [0.15in]

\Rnode{L}{L} & & \Rnode{Lr}{L_r} & & \Rnode{R}{R} & \\ [0.15in] \\ [0.15in]

\Rnode{Lm}{L_m} & & \Rnode{Krm}{K_{r,m}} & & \Rnode{Rm}{R_{m^*}} & \\ [0.15in]

& \Rnode{SG}{\Sigma^G} & & & & \Rnode{SH}{\Sigma^H} \\ [0.15in]

\Rnode{G}{G} & & \Rnode{Gr}{G_{r^*}} & & \Rnode{H}{H} & \\ [0.15in]

\end{array}

\psset{nodesep=5pt,arrows=->}

\everypsbox{\scriptstyle}

\ncLine{Lr}{R} \Aput{r}

\ncLine{Krm}{Rm} \Aput{r}

\ncLine{Gr}{H} \Bput{r^*}

\ncLine{Lr}{L} \bput{0}(0.3){i_1}

\ncLine{Krm}{Lm} \bput{0}(0.3){i_3}

\ncLine{Gr}{G} \Aput{i_5}

\ncLine{SL}{SR} \Aput{\varphi^r}

\ncLine{SG}{SH} \Bput{\varphi^{r^*}}

\ncLine{SR}{SH} \Aput{\varphi^{m^*}}

\ncLine{SL}{SG} \Bput{\varphi^m}

\ncLine{Lm}{G} \Bput{m}

\ncLine{Krm}{Gr} \aput{0}(0.3){m}

\ncLine{Rm}{H} \aput{0}(0.3){m^*}

\ncLine{Lm}{L} \Aput{i_2}

\ncLine{Krm}{Lr} \Bput{i_4}

\ncLine{Rm}{R} \Bput{i_6}

\ncLine{L}{SL} \Aput[1pt]{\lambda^L}

\ncLine{R}{SR} \Bput[1pt]{\lambda^R}

\ncLine{G}{SG} \Aput[1pt]{\lambda^G}

\ncLine[linestyle=dashed]{H}{SH} \Bput[1pt]{\lambda^H}$$

TUGboat, Volume 15 (1994), No. 4 481

9 Appendix III: Automatic stretching

The following diagrams illustrate the degree of automatic stretching of arrows provided by each of the
macro packages. A simple square diagram is typeset with a long label for the top-leftmost node in order
to determine if the bottom horizontal arrow stretches to meet its source node, and it is also typeset with a
long label for the top horizontal arrow in order to determine if it stretches long enough to fit the label.

9.1 American Mathematical Society

Arrows do not stretch to meet their source and target nodes, but they stretch to fit their labels, although
only the arrow carrying the long label stretches. Manual fine-tuning is needed in order to get the same
stretch in all the other arrows lying in the same column of the array.

A
f

����! B

g

?
?
y

?
?
yg0

C ����!
f 0

D

A�A�A�A
f

����! B

g

?
?
y

?
?
yg0

C ����!

f 0

D

A
f?f?f?f?f?f
��������! B

g

?
?
y

?
?
yg0

C ����!

f 0

D

9.2 Michael Barr

Arrows within the shape macros stretch to meet their source and target arrows, but individual arrows
obtained with \putmorphism do not. In both cases, arrows do not stretch to fit their labels and the required
dimensions have to be given explicitly.

C D-
f 0

A B-
f

?

g

?

g0

C D-
f 0

A�A�A�A B-
f

?

g

?

g0

C D-
f 0

A B-
f ? f ? f ? f ? f ? f

?

g

?

g0

9.3 Francis Borceux

Arrows stretch to meet their source and target nodes, but they do not stretch to fit their labels.

A
f

qqq
qqq
qq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq B

g

qq
qqq
qqq
qqq
qqq
qqq
q

qqq
qqq
qq
qqq
qqq
qq
qq

qq
qqq
qqq
qqq
qqq
qqq
q

qqq
qqq
qq
qqq
qqq
qq
qq

g0

C
qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqqf 0
D

A�A�A�A
f

qqq
qqq
qq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq B

g

qq
qqq
qqq
qqq
qqq
qqq
q

qqq
qqq
qq
qqq
qqq
qq
qq

qq
qqq
qqq
qqq
qqq
qqq
q

qqq
qqq
qq
qqq
qqq
qq
qq

g0

C
qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqqf 0
D

A
f ? f ? f ? f ? f ? f

qqq
qqq
qq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq B

g

qq
qqq
qqq
qqq
qqq
qqq
q

qqq
qqq
qq
qqq
qqq
qq
qq

qq
qqq
qqq
qqq
qqq
qqq
q

qqq
qqq
qq
qqq
qqq
qq
qq

g0

C
qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqqf 0
D

9.4 Eitan Gurari

Arrows stretch to meet their source and target nodes, but they do not stretch to fit their labels.

A B

C D

f

g g0

f 0

A�A�A�A B

C D

f

g g0

f 0

A B

C D

f ? f ? f ? f ? f ? f

g g0

f 0

482 TUGboat, Volume 15 (1994), No. 4

9.5 John Reynolds

Arrows stretch to meet their source and target nodes, although the labels do not get centered on the stretched
arrows. They do not stretch to fit their labels.

A B

C D

-
f

?

g

?

g0

-

f 0

A�A�A�A B

C D

-
f

?

g

?

g0

-

f 0

A B

C D

-
f ? f ? f ? f ? f ? f

?

g

?

g0

-

f 0

9.6 Kristoffer Rose

Arrows stretch to meet their source and target nodes, although the labels do not get centered on the stretched
arrrows. They do not stretch to fit their labels.

A //

f

��

g

B

��

g0

C //
f 0

D

A�A�A�A //

f

��

g

B

��

g0

C //
f 0

D

A //

f?f?f?f?f?f

��

g

B

��

g0

C //
f 0

D

9.7 Steven Smith

Arrows do not stretch to meet their source and target nodes, but they stretch to fit their labels.

A
f - B

g

? ?

g0

C -

f 0
D

A�A�A�A
f - B

g

? ?

g0

C -

f 0
D

A
f?f?f?f?f?f- B

g

? ?

g0

C -

f 0
D

9.8 Michael Spivak

Arrows stretch to meet their source and target nodes, but they do not stretch to fit their labels, even
producing overfull \hboxes.

A w

f

u

g

B

u

g0

C w

f 0
D

A�A�A�A w

f

u

g

B

u

g0

C w

f 0
D

A w

f ? f ? f ? f ? f ? f

u

g

B

u

g0

C w

f 0
D

9.9 Anders Svensson

Arrows stretch to meet their source and target nodes, but they do not stretch to fit their labels.

�������!

f

�
�

�

�

�

�

�
!

g

�
�

�

�

�

�

�
!

g0

�������!

f 0

A B

C D

��!

f

�
�
�
�
�
�
�
!

g

�
�
�
�
�
�
�
!

g0

�������!

f 0

A�A�A�A B

C D

�������!

f?f?f?f?f?f

�
�

�

�

�

�

�
!

g

�
�

�

�

�

�

�
!

g0

�������!

f 0

A B

C D

TUGboat, Volume 15 (1994), No. 4 483

9.10 Paul Taylor

Arrows stretch to meet their source and target nodes, and they also stretch to fit their labels.

A
f
- B

C

g

?

f 0

- D
?

g0

A�A�A�A
f
- B

C

g

?

f 0

- D
?

g0

A
f ? f ? f ? f ? f ? f

- B

C

g

?

f 0

- D
?

g0

9.11 Timothy Van Zandt

Arrows stretch to meet their source and target nodes, although the labels do not get centered on the stretched
arrows. They do not stretch to fit their labels, and the required dimensions have to be given explicitly.

A B

C D

f

g g0

f 0

A�A�A�A B

C D

f

g g0

f 0

A B

C D

f ? f ? f ? f ? f ? f

g g0

f 0

10 Appendix IV: Resource requirements

10.1 Package size

The following table lists the size (in kilobytes) of the main macro files that have to be loaded into TEX or
LATEX in order to use the respective packages.

package main files size

AMS-LATEX amscd.sty 10
Barr diagram.tex 40
Borceux Diagram 270
Gurari DraTex.sty and AlDraTex.sty 136
Reynolds diagmac.sty 42
Rose xypic.tex and xy.tex 68
Smith arrow.tex 24
Spivak1 amstexl.tex and lamstex.tex 200
Svensson kuvio.tex and arrsy.tex 86
Taylor diagrams.tex 86
Van Zandt pstricks.tex, pst-node.tex and pstricks.con 84

10.2 Time statistics

The following table lists statistics for the time (in seconds) needed to typeset the sample diagrams presented
in Appendix I, using TEX and LATEX2ε on a Macintosh SE/30, with the different macro packages. The mean
time and the confidence interval at a significance level of 95% is given for the total time needed to typeset
a diagram and for the marginal time, computed as the difference between the time needed to typeset two
copies of the sample diagram using a macro package and the time needed to typeset one copy of the same
diagram using the same macro package, where these two random variables are assumed to have a normal
distribution and to be independent, and where the mean and the confidence interval have been estimated
from a sample of 30 observations.

1 Although LAMS-TEX offers much more than the macros for commutative diagrams, it has to be loaded as a whole in order
to use the macros. Most such macros can be removed from TEX’s memory by loading the file cd.tox (4 kilobytes), freeing up
about 5800 words of memory, and can be later added again by loading the file cd.tex (36 kilobytes), but the whole LAMS-TEX
has to be loaded before.

484 TUGboat, Volume 15 (1994), No. 4

package total time marginal time

mean 95% confidence interval mean 95% confidence interval
AMS-LATEX 18.1367 18.0317 18.2416 1.6600 1.5544 1.7660
Barr 48.8033 48.7731 48.8335 29.9334 29.8800 29.9870
Borceux 127.5630 127.5060 127.6210 28.3170 28.1730 28.4600
Gurari 388.4630 388.4320 388.4950 638.8270 638.5000 639.1490
Reynolds 46.7000 46.6357 46.7643 26.8200 26.7520 26.8880
Rose 242.7400 242.3810 243.0990 210.0730 209.2900 210.8500
Smith 22.9600 22.9031 23.0169 5.2400 5.1817 5.2980
Spivak 37.3000 37.2445 37.3555 11.9833 11.9263 12.0400
Svensson 81.3867 81.2902 81.4831 44.5733 44.4668 44.6799
Taylor 66.8400 66.7553 66.9247 14.3133 14.1420 14.4850
Taylor emul. Borceux 67.3533 67.3243 67.3823 11.4767 11.4360 11.5170
Van Zandt 37.8233 37.7809 37.8657 14.2100 14.1520 14.2680

11 Appendix V: Availability

11.1 Availability

The following table lists the CTAN directories where the different macro packages are stored, together with
the authoritative FTP addresses they are mirrored from.

package CTAN directory mirrored from

AMS-LATEX macros/latex/packages/amslatex/ e-math.ams.org

/pub/tex/amslatex/

Barr macros/generic/diagrams/barr/ not mirrored

Borceux macros/generic/diagrams/borceux/ theory.doc.ic.ac.uk

/tex/contrib/Borceux/diagram-3/

Gurari macros/generic/dratex/ ftp.cis.ohio-state.edu

/pub/tex/osu/gurari/

Reynolds macros/latex209/contrib/misc/ not mirrored
diagmac.sty

Rose macros/generic/diagrams/xypic/ ftp.diku.dk

/diku/users/kris/TeX/

Smith macros/eplain/ ftp.cs.umb.edu

arrow.tex /pub/tex/eplain/

Spivak macros/lamstex/ not
mirrored

Svensson macros/generic/diagrams/kuvio/ math.ubc.ca

/pub/svensson/

Taylor macros/generic/diagrams/taylor/ theory.doc.ic.ac.uk

/tex/contrib/Taylor/tex/

Van Zandt graphics/pstricks/ princeton.edu

/pub/tvz/pstricks/

TUGboat, Volume 15 (1994), No. 4 485

The bag of tricks

Victor Eijkhout

Hello all,
One of the things that TEX is commonly said

not to be able to do, is l e t t e r s pa c i ng . I do not
want to get involved here in the debate over whether
letterspacing is defendable or not. There are places
where it’s bad, and others where it can safely be
used. Karl Berry gave me a particularly neat macro
for letterspacing, and I’ll leave its application to the
reader’s discretion1.

The text to be spaced is passed as an argument:

\spreadout{The text} is spread.

The t ex t is spread.

and expandable material in the text is treated cor-
rectly:

\def\MoreText{more text}

\spreadout{Here is \MoreText}

than above.

Her e i s mo r e t e x t than above.

The amount of spacing is controlled by a macro with
the following default definition:

\def\spreadoutfactor{.15}

The basic idea behind the macro \spreadout

is the following. First get rid of all expandable ma-
terial

\def\spreadout#1{%

\edef\temp{#1}

then start processing the result

\dimen0 = \spreadoutfactor em

\expandafter\dospreadout\temp\endmark

where

\def\dospreadout{%

\afterassignment\findospreadout

\let\next= }

This assigns the first token to \next, then calls
\findospreadout. The latter macro basically amounts
to

\next \kern\dimen0

except that it has to test for \endmark.
Actually, there are a few more gadgets in this

macro: the control sequence \uppercase is respected
by replacing \uppercase{text}by \uppercase{\spreadout{text}}.
Furthermore, a control sequence \ellipsis is re-
placed by three spaced dots.

Here are the actual definitions

1 Philip Taylor gives macros for letterspacing in TUGboat

vol. 14, no. 2. Their aim is to letterspace exactly a single line

of text in a box.

\def\spreadout#1{%

\begingroup

% prevent expansion of \ellipsis

\def\ellipsis{\noexpand\ellipsis}%

\xdef\temp{#1}%

\endgroup

\dimen0 = \spreadoutfactor em

\expandafter\dospreadout\temp\endmark

}

\def\dospreadout{%

\afterassignment\findospreadout

\let\next= }

\def\findospreadout{%

\ifx\next\endmark

\let\nextaction = \relax

\else

\ifx\next\uppercase

\let\nextaction = \douppercase

\else

\ifx\next\ellipsis

\let\nextaction = \doellipsis

\else

\let\nextaction = \dospreadout

\next

\kern\dimen0

\fi

\fi

\fi

\nextaction

}

\def\douppercase#1{%

\uppercase{\spreadout{#1}}\dospreadout}

\def\doellipsis{%

\spreadout{...}\dospreadout}

\def\ellipsis{ellipsis}

\def\endmark{endmark}

(The last two definitions are an addition of mine to
Karl’s macros, since mucking with undefined macros
is somewhat dangerous.)

This macro works well, and, although letter-
spaced words cannot be broken across lines, texts
with spaces will be treated as normal paragraphs.

⋄ Victor Eijkhout

Department of Mathematics, MS

6363

UCLA

405 Hilgard Avenue

Los Angeles, CA 90024-1555

Internet: eijkhout@math.ucla.edu

A TEX Autostereogram Generator

Jacques Richer

Introduction

The Plain TEX code autostereogram.tex generates
autostereograms. An autostereogram (often called
simply stereogram) is a single picture that shows
objects in 3D but does not require any special device
for viewing (other than a normal pair of eyes, of
course). Autostereograms have been the subject of
a recent craze throughout the world. They now fill
entire color albums, such as the following beautiful
books:

• Stereograms, by Cadence Books, 1994
• Ultra-3D, by Montage Publications, 1994
• Interactive Pictures, by Benedikt Tashen Ver-

lag, 1994
• Hidden Dimensions, by Dan Dyckman, Har-

mony Books, New York, 1994 (this is a funny

3D puzzle book)

They have also been made into postcards and
posters. In this article, I show how the ba-
sic technique for generating such pictures can be
implemented in TEX. I will first explain how auto-

stereogram.tex is used and what it does. The
TEX coding itself will be described last.

Generalities

The image contents (depth information) is specified
to the generator in the form of an ordinary text
file, hereafter called the relief data file, containing
several rows of single digit numbers. These numbers
indicate at which height or depth each pixel should
be perceived by the viewer. In the original version of
this code, no extra file was needed as the image data
was generated from within the TEX code itself (by
the \relief macro), through nested \if\else\fi

constructs; the external file approach is much more
flexible, and easier to use.

The output pixels are identical size \hboxes
that may contain anything TEX can fit in them: a
rule box, a character, or even whole text paragraphs!
The whole picture is obtained by tiling the surface
with copies of a small number of such \hboxes.
These basic tiles determine the texture of the
image, which is totally independent from its 3D
contents. Here, I use four tiles consisting in ♥s,
in two sizes, the TEX logo, and an empty box, to
help produce a lighter texture. Color can be used
(here ♥s will be red, if PSTricks is available), and
is highly recommended.

486 TUGboat, Volume 15 (1994), No. 4

The image is generated line by line, lines being
totally independent from each other. The algorithm
consists in repeating horizontally an arbitrary initial
pattern of basic tiles, at a repetition rate that is
modulated by depth information. More precisely,
from an initial set of m pixels p0, p−1, . . . , p−(m−1)

on a line, randomly selected from our basic tile set,
one generates n new pixels, where n ≫ m, using
the recurrence relation pi = pi−σi

; σi is an integer
valued monotonic function of depth di at point i.
Here, I take that function σi to be simply equal to
m − di; clearly, if all depths are equal to 0, for all
lines, the final output will consist in identical copies
of the first m-pixel wide vertical stripe; hence m

is called the period of the image. When depths
vary, one gets a horizontally distorted version of the
zero-depth pattern.

The m starting pixels are not under user
control, as far as their depth is concerned, and
printing them will lead to more pixels appearing in
the picture than the user provided data for; so it
may be preferable not to print them. Here they are
not printed.

Depth is perceived when the eyes lock their
relative orientation so that their aiming points are
always separated horizontally by m pixels, or an
integer multiple k (k may be negative!) of that
distance. Apart from this constraint, the eyes can

move freely and explore the whole picture. A sort of
recursive effect is seen if |k| > 1; this is discussed
in the paper cited below. For the purpose of this
presentation, it is simplest to assume that we are
viewing adjacent m-pixel wide stripes. If the two
stripes are identical, the 3D impression is that of
a flat area floating at some distance away from
us; this distance depends on the so-called vergence

angle between the two lines of sight, that angle
depending in turn on the physical width of a period.

If the left eye locks onto any stripe — which
column it starts in does not matter, as long as it is
not too close to the vertical sides — and the right
eye locks onto the one immediately to its right,
pixels with larger values of di are perceived as being
closer to the observer than pixels with smaller di;
if the eyes are crossed (k < 0 — left eye locks onto
right stripe, and vice-versa), larger di pixels appear
further away. Personally, I find it more difficult to
hold the lock with eyes crossed, but that difficulty
depends very much on the width of a period and
the viewing distance. For the sake of simplicity, I
decided to call di values depths, even if the word
heights would often be more appropriate.

The translation invariance of the algorithm
makes it possible to build arbitrarily large pictures.

With autostereograms, 3D perception always occurs
as a result of local distortions in the repetition cycle;
thus an autostereogram covering an entire wall could
show 3D in any of its parts. It is easy to see the
relationship between autostereograms and stereo-
graphic image pairs if one thinks in terms of such
local disparities between two consecutive stripes;
one important difference is that the autostereogram
presents us with a near continuum of stereo pairs

(unfortunately of much lower information content).
For an excellent introduction to the subject

of autostereogram generation, by the inventor of
the technique, see: Christopher W. Tyler & Mau-
reen B. Clarke, “The Autostereogram”, in the
Proceedings of the SPIE–The International Society
of Optical Engineering, SPIE vol. 1256, “Stereo-
scopic Displays and Applications”, J.O. Merritt &
S. S. Fischer, editors, 1990, pages 182–197.

The relief data

To use autostereogram.tex, one must supply a
relief data file. The first line of that text file should
contain the horizontal size of the picture ncolumns,
in pixels, and nothing else; the second line should
contain the vertical size nlines, in pixels. The third
line must supply the period m. It should be as large
as possible, subject to constraints to be discussed
below.

The fourth line should contain a small integer
g that will tell the generator what depth level is to
be interpreted as the ground plane. Then should
follow nlines lines each containing exactly ncolumns

decimal digits, the dis (no spaces). The code could
be easily generalized to allow an arbitrary number
of depth levels. For the following discussion, let’s
assume that the dis are in the range dmin..dmax.

If g ≤ dmin, relief will be towards the parallel
eye viewer, and if g ≥ dmax, relief will be away
from him/her. Values from dmin to dmax will make
it possible to display both receding and advancing
objects. As the foregoing sentences imply, g is not
limited to the dmin..dmax range, but it is best not
to deviate too much from that range. With g 6= 0,
the algorithm becomes

pi = pi−(m−[di−g])

and it is necessary to ensure that m + g + 1 ≤ i + di

and di ≪ m + g, for any i > m, and dmin ≤ di ≤
dmax. If i′ = i− (m + 1) (i′ measures the horizontal
distance from the right edge of the starting stripe),
we must then have i′ ≥ g for nontrivial pixels:
problems can arise if g > 0. To prevent such
problems the code will extend the initial stripe
by exactly g columns, using the ground plane

TUGboat, Volume 15 (1994), No. 4 487

60
17
10
0
00
00
000000000000000000000000000000000000002222200000000000000000
000000000000000000000000000000000000002222200000000000000000
000000000000000000000000000000000000002222200000000000000000
000000000000000000000000000000000022222222222220000000000000
000000000000000000000000000000000022222000222220000000000000
000000000000000000022222222000000022222000222220000000000000
000000000000000000022222220000000022222222222220000000000000
000000000000000000022222200000000000002222200000000000000000
000000000000000111122222111000000000002222200000000000000000
000000000000000111122221111000000000002222200000000000000000
000000000000000111122211111000000000000000000000000000000000
000000000000000111122111111000000000000000000000000000000000
000000000000000111121111111000000000000000000000000000000000
00
00

Figure 1: Input data for a 3-level picture.

recurrence formula pi = pi−m. The initial stripe
(more precisely, one line of it) will then consist
(conceptually) of pixels p0, p−1, p−2 . . . , pm+g−1.

The other constraint, di ≪ m + g, is more
subtle: di < m + g is necessary, but not sufficient,
because if the shift σi = m − [di − g] is too small,
many of the initial pixels on the current line will
never be used, and the output line could easily
collapse to a series of identical pixels. So the
the input deviations di − g should be kept small.
There is an inevitable loss of information in the
recurrence relation, and it is necessary to have as
much information as possible to begin with. This
is one reason why a large m is preferable; another
reason is that the perceived angular resolution is
roughly inversely proportional to m since it is equal
to the width of a pixel (which is normally made
smaller when m is larger) divided by the viewing
distance.

Figure 1 shows a small multilevel example (too
small to yield good results). To generate the real
example shown in Figure 3, I applied Metafont to
the very nice Irish font eiad10 to generate a simple
2-level input file. The (UNIX style) commands

mf "\mode:=aps; " input eiad10

gftype -i ./eiad10.723gf > eiad.txt

produced a text file eiad.txt containing drawings
of all the characters in the font, where each black
pixel is represented by a * and each white pixel by
a space. From this file I extracted the letter ‘b’,
which I then edited to change spaces into 0s and
* into 1s, and padded with extra 0s on all four
sides to make it into a rectangular array including
a small margin all around. I finally added the four
parameter lines, to get the file eiadb.dat shown in
Figure 2, which autostereogram.tex converted to
Figure 3.

Note that if the characters are not fat enough,
their thinnest parts will not be visible in 3D because
of the coarse resolution imposed by the use of char-
acter boxes and integer σis. It is necessary to call
Metafont with a high resolution mode or to require

72
68
15
0
00
00
00
00
000000000000000000000000011100
00000000000000000000000011111000
00000000000000000000000011111100
00000000000000000000000111111100
00000000000000000000001111111100
0000000000000000000001111111111000
0000000000000000000011111111111000
0000000000000000000111101111111000
0000000000000000111111001111111000
0000000000000011111110001111111000
0000000000000011111000001111111000
0000000000000011000000001111111000
0000000000000000000000001111111000
0000000000000000000000001111111000
0000000000000000000000001111111000
000000000000000000000000111111100000000001111111100000000000000000000000
000000000000000000000000111111100000001111111111111100000000000000000000
000000000000000000000000111111100000111110000000111111000000000000000000
000000000000000000000000111111100001110000000000001111110000000000000000
000000000000000000000000111111100011100000000000000111111000000000000000
000000000000000000000000111111100110000000000000000001111100000000000000
000000000000000000000000111111101100000000000000000001111110000000000000
000000000000000000000000111111111100000000000000000000111111000000000000
000000000000000000000000111111111000000000000000000000011111100000000000
000000000000000000000000111111110000000000000000000000011111110000000000
000000000000000000000000111111110000000000000000000000011111111000000000
000000000000000000000000111111100000000000000000000000001111111000000000
000000000000000000000000111111100000000000000000000000001111111100000000
000000000000000000000000111111100000000000000000000000001111111100000000
000000000000000000000000111111100000000000000000000000001111111110000000
000000000000000000000000111111100000000000000000000000000111111110000000
000000000000000000000000111111100000000000000000000000000111111110000000
000000000000000000000000111111100000000000000000000000000111111110000000
000000000000000000000000111111100000000000000000000000000111111111000000
000000000000000000000000111111100000000000000000000000000111111111000000
000000000000000000000000111111100000000000000000000000000111111111000000
000000000000000000000000111111100000000000000000000000000111111111000000
000000000000000000000000111111100000000000000000000000000111111111000000
000000000000000000000000111111100000000000000000000000000111111111000000
000000000000000000000000111111100000000000000000000000000111111111000000
000000000000000000000000111111100000000000000000000000000111111111000000
000000000000000000000000111111100000000000000000000000000111111111000000
000000000000000000000000011111100000000000000000000000000111111110000000
000000000000000000000000011111100000000000000000000000000111111110000000
000000000000000000000000011111110000000000000000000000000111111110000000
000000000000000000000000011111110000000000000000000000001111111110000000
000000000000000000000000001111110000000000000000000000001111111100000000
000000000000000000000000001111110000000000000000000000001111111100000000
000000000000000000000000000111111000000000000000000000001111111000000000
000000000000000000000000000111111000000000000000000000011111111000000000
000000000000000000000000000011111000000000000000000000011111110000000000
000000000000000000000000000001111100000000000000000000011111100000000000
000000000000000000000000000000111110000000000000000000111111000000000000
000000000000000000000000000000111110000000000000000001111110000000000000
000000000000000000000000000000011111000000000000000001111100000000000000
000000000000000000000000000000000111100000000000000111111000000000000000
000000000000000000000000000000000011111000000000001111110000000000000000
000000000000000000000000000000000001111110000000111111000000000000000000
000000000000000000000000000000000000011111111111111100000000000000000000
0011111111100000000000000000000000
00
00
00
00

Figure 2: Character 98 from font eiad10.

some magnification, (e.g., mf "\mode:=localfont;

mag=magstep(4); " input eiad10). Our imple-
mentation of gftype truncates its output at 80
columns; this limits the range of usable magnifica-
tions.

The input file represents the whole picture
(the same number of pixels will be printed); the
relative positions of elements in this “picture”
will correspond to their relative positions in the
3D output. There will appear to be a small
leftward shift due to the left-right asymmetry in the
recurrence relation. Automatically correcting for
this asymmetry would require dropping user data
on the right and/or adding new ground plane pixels
on the left. Another solution is to put in a small
rightward shift in the input file to begin with. Here
the code makes no centering correction, and leaves
that problem to the user.

488 TUGboat, Volume 15 (1994), No. 4

The code

Most of the code is trivial. First we declare a
few counter and dimension variables, most of which
have an obvious meaning:

% Load PSTricks, if available, for color

%\input pstricks.tex

\newcount\lines\newcount\columns

\newcount\nx\newcount\ny

\newcount\ThisPixelColor

\newcount\ReferenceDepth

\newcount\Period

\newcount\StartingStripeWidth

\newdimen\dx\dx=3pt

\newdimen\dy\dy=\dx

\newread\DepthData\newlinechar=‘\^^J

Counters \lines and \columns are read from
the data file; \columns will be augmented by the
program to include the necessary number of invisible
pixels, \StartingStripeWidth. Dimension \dx

specifies the pixel size, if we are drawing black and
white square pixels (a random dot autostereogram);
one may set \dy to a different value; the code that
uses \dx and \dy is commented out because we will
use characters instead, as texturing elements.

\Period is the period m of the image, as
defined above. It should be as large as possible, for
the reasons given in the previous section, but it is
limited by the requirement that \Period times the
pixel width should be of the order of an inch or two
(this is about the distance between points your eyes
will converge to on the paper; it must be neither too
small nor too large, for good comfortable viewing).

A random number generator is used to create
the initial stripe on the left hand side of the figure.
The rest of the picture will be obtained by copying
elements from that stripe. The code for the random
number generator, using a simulated shift register,
is taken from an article by Hans van der Meer in
TUGboat, Volume 15 (1994), No. 1, pages 57–58.

\catcode‘\@=11

\newcount\@SR

\def\@SRconst{2097152}

\def\SRset#1{\global\@SR#1\relax}

\def\@SRadvance{\begingroup

\ifnum\@SR<\@SRconst\relax \count@=0

\else \count@=1

\fi

\ifodd\@SR \advance\count@ by 1 \fi

\global\divide\@SR by 2

\ifodd\count@

\global\advance\@SR\@SRconst\relax

\fi

\endgroup}

It is necessary to initialize the register with some
seed value, and to step it a number of times
before its output becomes “random”. We also
define macros \SRtest and \SelectPattern that
use the generator to select randomly between 2 and
4 arguments, respectively.

\SRset{1141651}

\nx=20

\loop\ifnum\nx>0

\@SRadvance\advance\nx by-1\repeat

\def\SRtest#1#2{\@SRadvance

\ifodd\@SR #1\else #2\fi}

\def\SelectPattern#1#2#3#4{%

\SRtest{\SRtest{#1}{#2}}%

{\SRtest{#3}{#4}}}

\catcode‘\@=12

Different seed values will result in different texturing
patterns, so one should experiment with seeds if
the output shows distracting accidental defects, like
large holes, or lines that seem to be much darker
or lighter than the average (this particular kind of
defect could also be the result of excessive loss of
information, as explained before; use of a larger
\Period should help cure this).

A test is introduced, \ifPrinting, to dis-
tinguish between invisible starting pixels, and the
printing ones. Continuously testing this flag slows
down operations, but it simplifies the code struc-
ture.

\newif\ifPrinting

Next comes a set of macros defining the basic

tiles : boxes \abox, \bbox, \cbox, \dbox, and
corresponding macros \A, \B, \C, \D. Here, just
about anything is allowed, as long as the pixels all
have the exact same dimensions. Their aspect ratio
can be adjusted, if desired, to compensate for the
non-square aspect ratio of characters in the relief
data file, when it is being edited. Best results are
obtained when pixels are very small, so here I use
3.5pt and 4.5pt characters. The heights and widths
of boxes \abox. . .\dbox are all coerced to 4.5pt, and
depths are coerced to 0pt. Note that this will make
the TEX logo overflow into neighboring pixels, but
that doesn’t matter since the result looks good (at
least to me). Box \bbox is left empty, to produce a
ligther texture.

% One way to add a little color:

\ifx\PSTricksLoaded\endinput

\immediate\write16{Using pstricks}

\else

TUGboat, Volume 15 (1994), No. 4 489

\def\black{}

\def\red{}

\fi

\font\TeXlogo=cmr5 at 3.5pt

\font\Cards=cmsy6 at 4.5pt

\font\Cardlets=cmsy6 at 3.5pt

\newbox\abox\newbox\bbox

\newbox\cbox\newbox\dbox

\setbox\abox=\hbox{%

\black\kern-1.5pt\TeXlogo\TeX}

\setbox\bbox=\hbox{}

\setbox\cbox=\hbox{\red\Cards\char"7E}

\setbox\dbox=\hbox{\red\Cardlets\char"7E}

\wd\abox=4.5pt

\ht\abox=\wd\abox\dp\abox=0pt

\ht\bbox=\ht\abox

\wd\bbox=\wd\abox

\dp\bbox=\dp\abox

\ht\cbox=\ht\abox

\wd\cbox=\wd\abox

\dp\cbox=\dp\abox

\ht\dbox=\ht\abox

\wd\dbox=\wd\abox

\dp\dbox=\dp\abox

The following macros must not insert extra spaces:

\def\A{%

\leftappenditem{\A}\to\CurrentLine%

\ifPrinting\copy\abox\fi}

\def\B{%

\leftappenditem{\B}\to\CurrentLine%

\ifPrinting\copy\bbox\fi}

\def\C{%

\leftappenditem{\C}\to\CurrentLine%

\ifPrinting\copy\cbox\fi}

\def\D{%

\leftappenditem{\D}\to\CurrentLine%

\ifPrinting\copy\dbox\fi}

Boxes containing a black and a white square are
also defined: \noir and \blanc, plus macros \K

and \W; these can be used to generate random dot
autostereograms of the sort presented in Christopher
Tyler’s early papers.

\newbox\blanc\newbox\noir

\setbox\blanc=\hbox to \dx{%

\vrule height\dy

depth0pt width0pt\hfil}

\setbox\noir=\hbox to \dx{%

\vrule height\dy depth0pt width\dx}

\def\W{%

\leftappenditem{\W}\to\CurrentLine%

\ifPrinting\copy\blanc\fi}

\def\K{%

\leftappenditem{\K}\to\CurrentLine%

\ifPrinting\copy\noir\fi}

To implement the pi = pi−σi
formula, my

original plan was to use some of TEX’s tables
(lccode, uccode, etc. . .) as arrays to store these
values, but I eventually opted for a well documented
more conservative approach: I use the list manip-
ulation techniques presented in Appendix D of the
TEXbook. An algorithm based on code tables would
certainly show better performance. A list called
\CurrentLine holds symbolically the contents of
the output line that is currently being worked on, in
the form of a list of single letter macro tokens. Every
time one of the basic tiles has been selected, through
a call of the form \selectσi \of\CurrentLine, the
corresponding macro token (\A, \B, \C, \D — or \K,
\W) is inserted with \leftappenditem at the head
of the \CurrentLine list,

\toksdef\ta=0 \toksdef\tb=2

\long\def\leftappenditem#1\to#2{%

\ta={\\#1}%

\tb=\expandafter{#2}%

\xdef#2{\the\ta\the\tb}}

and the same macro is also immediately executed
to copy the box contents at the current position in
the printed output line.

The macro \clearline resets the \nx column
counter, and initializes the list to \outofrange;
\outofrange is used as a sentinel and is useful for
trapping errors and to accelerate the workings of
another important macro, \GobbleRest.

\def\outofrange{\immediate\write16{%

^^JOut-of-range relief:

left limit reached^^J}}

\def\clearline{%

\gdef\CurrentLine{\\\outofrange}%

\global\nx=0}

The macro \select works basically as ex-
plained in the TEXbook (p. 379), except for a little
change that dramatically increases its speed (speed
is important in the present application).

\def\select#1\of#2{%

\gdef\result{\outofrange}%

\gdef\\##1{\advance#1-1 %

\ifnum#1=0 %

\def\result{##1}%

\let\\=\GobbleRest%

\fi}%

#2\result}

490 TUGboat, Volume 15 (1994), No. 4

\def\GobbleRest#1\outofrange{}

It does a backward search in the list of pis for the
(i − σi)

th element. It defines \\ to be a macro that
gobbles the next token, doing nothing else, until the
sought after list element has been reached; at that
point, it saves the token for later reinsertion in the
input stream, and redefines \\ to be a macro that
eats everything else in the stream, in one step, up to
the end-of-list marker \outofrange. The execution
time is no longer proportional to the length of
the list, but instead it is roughly proportional to
the value of \Period (assuming most pixels have
σi ≈ m)

The top level macro that selects what will
appear at the current position is \MakeThisPixel.
It gets depth values di from \relief, which was
originally written to supply a fixed, hard coded
pattern; now it gets the data from the current
relief input line \DepthDataLine, with the help of
\GetNextInputDigit.

\def\MakeThisPixel{{%

\ThisPixelColor\expandafter=\relief%

\shift%

{\select\ThisPixelColor\of\CurrentLine}%

}}

\def\relief{\expandafter%

\GetNextInputDigit%

\DepthDataLine\endofline}

\def\GetNextInputDigit#1#2\endofline{%

#1\relax\gdef\DepthDataLine{#2}}

The heart of the autostereogram algorithm is the
trivial (!) \shift macro, whose rôle should be
obvious by now: it computes σi.

\def\shift{%

\advance\ThisPixelColor

by-\ReferenceDepth

\ThisPixelColor=-\ThisPixelColor

\advance\ThisPixelColor by\Period}

% ******** End of definitions ********

After reading the main picture parameters, and
doing a simple feasibility check, the code ends with
a very simple main loop over lines and columns. The
width of the required invisible stripe is calculated,
and added to the user specified number of columns.

% Now do the work

\openin\DepthData=eiadb.dat

\read\DepthData to\DepthDataLine

\columns=\DepthDataLine

\read\DepthData to\DepthDataLine

\lines=\DepthDataLine

\read\DepthData to\DepthDataLine

\Period=\DepthDataLine

\read\DepthData to\DepthDataLine

\ReferenceDepth=\DepthDataLine

\ny=\lines

\nx=\Period\advance\nx by\ReferenceDepth

\ifnum\nx<0

\immediate\write16{Illegal parameters:

imply forward recursion. You should

probably raise the reference level.

For this run, it is forced to zero.}

\ReferenceDepth=0

\fi

\StartingStripeWidth=\Period

\ifnum\ReferenceDepth>0

\advance\StartingStripeWidth

by\ReferenceDepth

\fi

\advance\columns by\StartingStripeWidth

\hbadness=10000

\overfullrule=0pt

\offinterlineskip

\parindent=0pt

Before the main loop begins, a pair of crosses
is written in the center of the page, that are one
\Period apart*; \wd\abox must be replaced by
\dx, if one is using the black and white squares.

\vfill

\nx=0

\line{\hfil\rlap{$+$}%

\loop\ifnum\nx<\Period%

\hskip\wd\abox\advance\nx by 1%

\repeat\rlap{$+$}\hfil}

\vskip5mm

[To get the spacing right, it is important not to
output any spurious blank space in those parts of
the code.] These crosses can be used as a practice
target, to get used to the particular periodicity of
the picture. The viewer is ready to look at the real
picture when he/she is able to see 3 crosses in line
at the top of the image, in a stable and cozy way.

Looping over columns is done in three parts.
First, \Period invisible pixels are generated ran-
domly (line 11 or 12, below); \SelectPattern

selects among four possibilities. To produce a
random dot autostereogram, one would replace the

* This part of the code had to be modifed to run
within TUGboat; this is the unmodified version.

TUGboat, Volume 15 (1994), No. 4 491

\SelectPattern line with the \SRtest{\K}{\W}

line, which is presently commented out, and adjust
\dx and \dy as necessary. Then if necessary, a
few more pixels are generated by recurrence (not
at random), with σi = m, to complete the invisible
stripe (line 14). If printed, these pixels would
be perceived as being part of the reference plane.
Finally, the visible part of the line is generated with
the full recurrence algorithm (line 17).

1. \loop\ifnum\ny>0

2. \clearline

3. \message{<\number\ny}

4. \read\DepthData to\DepthDataLine

5. \nx=0 \Printingfalse

6. \line{%

7. \hfil%

8. \loop\ifnum\nx<\columns%

9. \ifnum\nx<\StartingStripeWidth

10. \ifnum\nx<\Period %

11. % \SRtest{\K}{\W}%

12. \SelectPattern{\A}{\B}{\C}{\D}%

13. \else%

14. {\select\Period\of\CurrentLine}%

15. \fi%

16. \else%

17. \Printingtrue\MakeThisPixel%

18. \fi%

19. \advance\nx by 1 %

20. \repeat%

21. \hfil}%

22. \message{>}%

23. \advance\ny by -1 %

24. \repeat

25. \closein\DepthData

26. \bye

The reader with normal vision, who has diffi-
culties perceiving depth in autostereograms, should
experiment first with classic stereo pair images, pos-
sibly using a 3D viewer; then he/she should move on
to simple high resolution black and white random
dot autostereograms; these contain fewer distracting
features than the character based autostereograms,
but are not as pretty.

⋄ Jacques Richer
CEntre de Recherche en Calcul

Appliqué (CERCA),
5160, boul. Décarie, bureau 434,
Montréal, PQ, CANADA H3X 2H9
richer@cerca.umontreal.ca

+ +

♥TEX ♥ TEX♥ ♥TEX♥ ♥ TEX ♥TEX ♥ TEX♥ ♥TEX♥ ♥ TEX ♥TEX ♥ TEX♥ ♥TEX♥ ♥ TEX ♥TEX ♥ TEX♥ ♥TEX♥ ♥ TEX ♥TEX ♥ TEX♥ ♥TEX♥

♥♥♥ ♥ ♥ ♥ ♥TEX♥TEX ♥TEX♥♥♥ ♥ ♥ ♥ ♥TEX♥TEX ♥TEX♥♥♥ ♥ ♥ ♥ ♥TEX♥TEX ♥TEX♥♥♥ ♥ ♥ ♥ ♥TEX♥TEX ♥TEX♥♥♥ ♥ ♥ ♥ ♥TEX♥TEX

TEXTEX♥ ♥ ♥ ♥♥♥ ♥ ♥ ♥TEXTEX♥ ♥ ♥ ♥♥♥ ♥ ♥ ♥TEXTEX♥ ♥ ♥ ♥♥♥ ♥ ♥ ♥TEXTEX♥ ♥ ♥ ♥♥♥ ♥ ♥ ♥TEXTEX♥ ♥ ♥ ♥♥♥ ♥
♥TEX ♥TEXTEX♥TEX♥ ♥ ♥ ♥ TEX ♥TEX ♥TEXTEX♥TEX♥ ♥ ♥ ♥ TEX ♥TEX ♥TEXTEX♥TEX♥ ♥ ♥ ♥ TEX ♥TEX ♥TEXTEX♥TEX♥ ♥ ♥ ♥ TEX ♥TEX ♥TEXTEX♥TEX♥ ♥ ♥ ♥

♥ ♥ ♥ ♥ ♥TEX♥♥TEX♥ ♥TEX ♥ ♥ ♥ ♥ ♥TEX♥TEX♥ ♥ ♥TEX ♥ ♥ ♥ ♥ ♥TEX♥TEX♥ ♥ ♥TEX ♥ ♥ ♥ ♥ ♥TEX♥TEX♥ ♥ ♥TEX ♥ ♥ ♥ ♥ ♥TEX♥TEX♥

TEXTEXTEXTEX♥ ♥ ♥ ♥ TEXTEXTEXTEX♥ ♥ ♥ TEXTEXTEXTEX♥ ♥ ♥ TEXTEXTEXTEX♥ ♥ ♥ TEXTEXTEXTEX♥ ♥ ♥

♥♥ ♥TEXTEXTEX♥TEX♥TEX♥♥TEXTEX♥♥♥ ♥TEXTEXTEX♥TEX♥ ♥♥TEXTEX♥♥♥♥ ♥TEXTEXTEX♥TEX♥ ♥♥TEXTEX♥♥♥♥ ♥TEXTEXTEX♥TEX♥ ♥♥TEXTEX♥♥♥♥ ♥TEXTEXTEX♥TEX♥ ♥♥TEX

♥♥TEX♥TEX♥TEX ♥ ♥♥ ♥♥TEX♥TEX♥TEX ♥ ♥♥ ♥♥♥TEX♥TEX♥TEX ♥ ♥♥ ♥♥♥TEX♥TEX♥TEX ♥ ♥♥ ♥♥♥TEX♥TEX♥TEX ♥ ♥
♥♥♥TEX♥♥♥♥ TEX♥♥ ♥ ♥♥♥TEX♥♥♥ TEX♥♥ ♥ ♥♥♥TEX♥♥♥ TEX♥♥ ♥ ♥♥♥TEX♥♥♥ TEX♥♥ ♥ ♥♥♥TEX♥♥♥ TEX♥♥
♥♥TEXTEX♥TEXTEXTEX♥ ♥♥♥ ♥♥TEXTEXTEXTEXTEX♥ ♥♥♥ ♥ ♥♥TEXTEXTEXTEXTEX♥ ♥♥♥ ♥ ♥♥TEXTEXTEXTEXTEX♥ ♥♥♥ ♥ ♥♥TEXTEXTEXTEXTEX♥ ♥

♥ ♥♥♥ ♥ ♥♥ ♥TEX ♥♥ ♥♥♥ ♥ ♥♥ ♥TEX ♥♥ ♥♥♥ ♥ ♥♥ ♥TEX ♥♥ ♥♥♥ ♥ ♥♥ ♥TEX ♥♥ ♥♥♥ ♥ ♥♥ ♥TEX

TEX♥TEXTEXTEXTEXTEX♥♥♥♥TEX♥♥TEX♥TEXTEXTEXTEX♥♥♥♥TEX♥♥TEX♥ ♥TEXTEXTEXTEX♥♥♥♥TEX♥♥TEX♥ ♥TEXTEXTEXTEX♥♥♥♥TEX♥♥TEX♥ ♥TEXTEXTEXTEX♥♥♥♥TEX

♥♥ ♥TEX ♥♥ ♥ ♥TEX♥♥ ♥TEX ♥♥♥♥ ♥TEX♥♥ ♥TEX ♥♥♥♥ ♥TEX♥♥ ♥TEX ♥♥♥♥ ♥TEX♥♥ ♥TEX ♥♥♥♥ ♥

♥♥♥♥ TEXTEXTEX♥TEX ♥TEX♥♥♥♥ TEX TEXTEXTEX ♥TEX♥♥♥ ♥♥ TEX TEXTEXTEX ♥TEX♥♥♥ ♥♥ TEX TEXTEXTEX ♥TEX♥♥♥ ♥♥ TEX TEXTEXTEX ♥
TEX♥♥ ♥♥♥♥♥♥ ♥TEXTEX♥♥ ♥♥♥♥♥ ♥TEXTEX♥♥ ♥ ♥♥♥♥♥ ♥TEXTEX♥♥ ♥ ♥♥♥♥♥ ♥TEXTEX♥♥ ♥ ♥♥♥♥♥ ♥
TEX ♥TEX ♥TEX♥♥♥TEX♥♥♥TEX ♥TEX ♥TEX♥♥TEX♥♥♥TEX ♥TEX ♥TEX♥♥TEX♥♥♥TEX ♥TEX ♥TEX♥♥TEX♥♥♥TEX ♥TEX ♥TEX♥♥TEX♥♥
♥♥♥TEX ♥♥ ♥♥ ♥♥ ♥♥♥TEX ♥♥ ♥ ♥♥ ♥♥♥♥TEX ♥♥ ♥ ♥♥ ♥♥♥♥TEX ♥♥ ♥ ♥♥ ♥♥♥♥TEX ♥♥ ♥ ♥♥
TEX ♥♥ ♥♥♥ ♥♥♥TEX♥♥♥TEXTEX ♥♥ ♥♥♥ ♥♥TEX♥♥♥TEXTEX ♥♥ ♥♥♥ ♥♥TEX♥♥♥TEXTEX ♥♥ ♥♥♥ ♥♥TEX♥♥♥TEXTEX ♥♥ ♥♥♥ ♥♥TEX♥♥
TEX ♥ ♥♥TEX♥ ♥♥♥♥♥ ♥ ♥TEX ♥ ♥♥TEX♥ ♥♥♥♥ ♥ ♥TEX ♥ ♥♥TEX♥ ♥♥♥♥ ♥ ♥TEX ♥ ♥♥TEX♥ ♥♥♥♥ ♥ ♥TEX ♥ ♥♥TEX♥ ♥♥♥♥
♥♥ TEXTEX ♥ ♥ ♥ ♥♥ TEX♥♥♥ TEXTEX ♥ ♥ ♥♥ TEX♥♥♥♥ TEXTEX ♥ ♥ ♥♥TEX♥♥♥♥ TEXTEXTEX ♥ ♥ ♥♥TEX♥♥♥♥ TEXTEXTEX ♥ ♥ ♥♥TEX

♥♥♥♥ ♥ ♥ ♥♥♥ ♥ ♥♥TEX♥♥♥♥ ♥ ♥ ♥♥♥♥ ♥♥TEX♥♥ ♥♥♥ ♥ ♥ ♥♥♥ ♥♥TEX♥♥ ♥♥♥ ♥ ♥ ♥♥♥♥ ♥♥TEX♥♥ ♥♥♥ ♥ ♥ ♥♥♥♥ ♥♥
TEXTEXTEX ♥TEXTEXTEX TEXTEXTEXTEX ♥TEXTEXTEX TEXTEXTEXTEXTEX ♥TEXTEXTEX TEXTEXTEXTEXTEX♥TEXTEXTEX TEXTEXTEXTEXTEX♥TEXTEXTEX

TEX♥♥ TEX♥TEX♥TEX♥♥ ♥TEXTEX♥♥ TEX♥TEX♥♥♥ ♥TEXTEX♥♥♥ ♥TEX♥ ♥♥♥ ♥TEXTEX♥♥♥ TEX♥ ♥♥♥ ♥TEXTEX♥♥♥ TEX♥ ♥♥♥
♥ ♥ ♥ ♥ TEXTEX♥TEX♥ ♥TEX♥ ♥ ♥ ♥ TEX♥TEX♥ ♥TEX♥ ♥ ♥ TEX♥TEX♥ ♥TEX♥ ♥ ♥ TEX♥TEX♥ ♥ ♥TEX♥ ♥ ♥ TEX♥TEX♥ ♥

TEX♥♥♥ ♥♥TEXTEX♥♥TEX ♥TEX♥♥♥ ♥♥TEX♥♥TEX ♥TEX♥ ♥♥ ♥♥TEX♥♥TEX ♥TEX♥ ♥♥ ♥♥♥♥TEX ♥ ♥TEX♥ ♥♥ ♥♥♥♥TEX

TEX♥♥ ♥ TEXTEX♥TEXTEXTEX♥♥ ♥ TEX♥TEXTEXTEX♥ ♥ ♥ TEX♥TEXTEXTEX♥ ♥ ♥ TEX♥TEXTEXTEXTEX♥ ♥ ♥ TEX♥TEX

♥TEXTEX♥ ♥♥♥ ♥ TEX♥♥TEXTEX♥ ♥♥ ♥ TEX♥♥TEXTEX♥ ♥ ♥♥ ♥ TEX♥♥TEXTEX♥ ♥ ♥♥♥ TEX♥♥TEXTEXTEX♥ ♥ ♥♥♥ TEX

TEX♥TEX ♥TEX♥ ♥TEX♥ ♥ TEXTEX♥TEX ♥TEX♥ ♥TEX ♥ TEXTEX♥TEX ♥TEX♥ ♥TEX ♥ TEXTEX♥TEX ♥TEX♥ ♥TEX ♥ TEXTEX♥TEXTEX ♥TEX♥ ♥TEX ♥

♥ ♥ ♥♥TEXTEX♥ TEX♥ ♥ ♥ ♥ ♥ ♥♥TEXTEXTEX♥ ♥ ♥ ♥ ♥ ♥ ♥♥TEXTEXTEX♥ ♥ ♥ ♥ ♥ ♥ ♥♥TEXTEX ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥♥TEXTEX ♥ ♥

TEX ♥ ♥TEX♥TEXTEXTEX♥♥ ♥TEXTEX ♥ ♥TEX♥TEXTEX♥♥ ♥TEXTEX ♥ ♥ ♥TEX♥TEXTEX♥♥ ♥TEXTEX ♥ ♥ ♥TEX♥TEXTEX♥ ♥TEXTEX ♥ ♥ ♥TEX♥TEXTEX♥ ♥

♥ ♥ ♥♥♥♥ ♥ ♥ ♥ ♥TEX ♥ ♥ ♥♥♥♥ ♥ ♥ ♥TEX ♥ ♥ ♥ ♥♥♥♥ ♥ ♥ ♥TEX ♥ ♥ ♥ ♥♥♥♥ ♥ ♥TEX ♥ ♥ ♥ ♥♥♥♥♥ ♥ ♥TEX

♥ ♥♥ ♥ ♥TEXTEXTEX♥♥♥♥♥TEX♥ ♥♥ ♥ ♥TEXTEXTEX♥♥♥♥TEX♥ ♥♥ ♥ ♥TEXTEXTEX♥♥♥♥TEX♥ ♥♥ ♥ ♥TEXTEXTEX♥♥♥TEX♥ ♥♥ ♥ ♥ ♥TEXTEXTEX♥♥♥
TEXTEX♥♥♥ ♥♥TEX ♥ TEXTEX♥♥♥ ♥♥TEX ♥ TEXTEXTEX♥♥♥ ♥♥TEX ♥ TEXTEXTEX♥♥♥ ♥♥TEX ♥ TEXTEXTEX♥♥♥♥ ♥♥TEX ♥
♥♥ ♥♥♥♥TEX♥TEXTEX ♥ ♥♥♥♥ ♥♥♥♥TEX♥TEXTEX ♥ ♥♥♥♥ ♥ ♥♥♥♥TEX♥TEXTEX ♥ ♥♥♥♥ ♥ ♥♥♥♥TEX♥TEXTEX ♥♥♥♥ ♥ ♥♥♥♥ ♥TEX♥TEXTEX ♥

♥ ♥ TEX♥♥ ♥ ♥♥♥ ♥TEXTEX ♥ ♥ TEX♥♥ ♥♥♥ ♥TEXTEX ♥ ♥ ♥ TEX♥♥ ♥♥♥ ♥TEXTEX ♥ ♥ ♥ TEX♥♥ ♥♥♥ ♥TEX ♥ ♥ ♥ TEXTEX♥♥ ♥♥♥ ♥
♥ ♥TEXTEXTEX ♥ ♥ ♥TEX ♥ ♥TEXTEXTEX ♥ ♥ ♥TEX ♥ ♥TEXTEXTEX ♥ ♥ ♥TEX ♥ ♥TEXTEXTEX ♥ ♥ ♥TEX ♥ ♥TEXTEXTEXTEX ♥ ♥ ♥TEX

TEXTEXTEX♥TEXTEX♥♥TEX♥TEX♥♥ TEXTEXTEX♥TEXTEX♥TEX♥TEX♥♥ TEXTEXTEX♥TEXTEX♥TEX♥TEX♥♥ TEXTEXTEX♥TEXTEX♥TEX♥TEX♥ TEXTEXTEX♥ ♥TEXTEX♥TEX♥TEX

♥TEX♥♥ ♥ ♥ ♥ ♥♥ ♥♥TEX♥♥ ♥ ♥ ♥♥ ♥♥TEXTEX♥♥ ♥ ♥ ♥♥ ♥♥TEXTEX♥♥ ♥ ♥ ♥♥♥♥TEXTEX♥♥ ♥ ♥ ♥♥
♥ ♥TEXTEX♥♥♥♥ TEX ♥ ♥ ♥ ♥TEXTEX♥♥♥♥ ♥ ♥ ♥ ♥ ♥TEXTEX♥♥♥♥ ♥ ♥ ♥ ♥ ♥TEXTEX♥♥♥♥ ♥ ♥ ♥ ♥ ♥TEXTEX♥♥♥ ♥♥ ♥ ♥

♥♥TEXTEX♥♥ ♥ ♥TEX♥ ♥♥♥♥ ♥♥TEXTEX♥♥ ♥ ♥ ♥ ♥♥♥♥ ♥♥♥TEXTEX♥♥ ♥ ♥ ♥ ♥♥♥♥ ♥♥♥TEXTEX♥♥ ♥ ♥ ♥ ♥♥♥ ♥♥♥TEXTEX♥♥ ♥ ♥ ♥ ♥ ♥♥
♥TEXTEXTEX♥TEXTEX ♥TEX♥♥♥♥ ♥TEXTEXTEX♥TEXTEXTEX♥♥♥♥ ♥♥TEXTEXTEX♥TEXTEXTEX♥♥♥♥ ♥♥TEXTEXTEX♥TEXTEXTEX♥♥♥ ♥♥TEXTEXTEX♥TEXTEXTEXTEX♥♥
♥ TEX ♥♥ ♥ TEX♥TEX♥ TEX ♥♥♥ TEX♥TEX♥ TEX ♥♥♥ TEX♥TEX♥ TEX ♥♥♥ TEXTEX♥ TEX ♥♥♥ TEX

♥♥TEXTEXTEXTEX♥TEX♥ ♥ ♥♥TEXTEXTEXTEX♥♥ ♥ ♥♥ ♥TEXTEXTEXTEX♥♥ ♥ ♥♥ ♥TEXTEXTEXTEX♥♥ ♥ ♥♥ ♥TEXTEXTEX TEX♥♥ ♥

TEX♥♥ ♥♥ TEXTEX♥TEX♥ ♥TEXTEX♥♥ ♥♥ TEXTEXTEX♥ ♥TEXTEX♥♥♥ ♥♥ TEXTEXTEX♥ ♥TEXTEX♥♥♥ ♥♥ TEXTEXTEX♥ TEXTEX♥♥♥ ♥♥ TEXTEXTEX♥
♥♥ ♥ ♥♥ ♥ TEX ♥TEX ♥♥ ♥ ♥♥ TEX ♥TEX ♥♥♥ ♥ ♥♥ TEX ♥TEX ♥♥♥ ♥ ♥♥ TEXTEX ♥♥♥ ♥ ♥♥ TEX

♥ ♥TEX ♥ ♥TEX♥♥ ♥ ♥ ♥ TEX♥ ♥TEX ♥ ♥TEX♥♥ ♥ ♥ TEX♥ ♥ ♥TEX ♥ ♥TEX♥♥ ♥ ♥ TEX♥ ♥ ♥TEX ♥ ♥TEX♥♥ ♥ ♥TEX♥ ♥ ♥TEX ♥ ♥TEXTEX♥♥ ♥ ♥

TEXTEX♥ ♥ ♥TEXTEXTEX♥ ♥♥TEXTEX♥ ♥ ♥TEXTEXTEX♥ ♥♥TEXTEXTEX♥ ♥ ♥TEXTEXTEX♥ ♥♥TEXTEXTEX♥ ♥ ♥TEXTEXTEX♥ ♥TEXTEXTEX♥ ♥ ♥ ♥TEXTEXTEX♥

♥ ♥ ♥TEX♥TEX ♥ ♥ ♥TEX♥ ♥ ♥ ♥TEX♥TEX ♥ ♥TEX♥ ♥ ♥ ♥ ♥TEX♥TEX ♥ ♥TEX♥ ♥ ♥ ♥ ♥TEX♥TEX ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥TEX♥TEX ♥ ♥

TEXTEX♥TEX♥♥ ♥ ♥ ♥ ♥ ♥♥TEXTEX♥TEX♥♥ ♥ ♥ ♥ ♥♥TEXTEX♥♥TEX♥♥ ♥ ♥ ♥ ♥♥TEXTEX♥♥TEX♥♥ ♥ ♥ ♥ ♥TEXTEX♥♥TEX♥♥ ♥ ♥ ♥ ♥
♥ ♥ ♥ ♥TEXTEX♥TEX ♥♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥TEXTEX♥TEX ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥TEXTEX♥TEX ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥TEXTEX♥TEX ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥TEXTEXTEX♥TEX ♥ ♥

♥ ♥ TEX ♥ ♥ ♥ ♥ ♥TEX♥ ♥ ♥ ♥ TEX ♥ ♥ ♥ ♥TEX♥ ♥ ♥ ♥ TEX ♥ ♥ ♥ ♥TEX♥ ♥ ♥ ♥ TEX ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ TEX ♥ ♥ ♥ ♥ ♥

TEX♥♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥TEXTEXTEX♥♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥♥TEXTEXTEX♥♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥♥TEXTEXTEX♥♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥TEXTEXTEX♥♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥TEX

TEXTEXTEXTEX♥ ♥ ♥TEX TEXTEXTEXTEX♥ ♥ ♥TEX TEXTEXTEXTEXTEX♥ ♥ ♥TEX TEXTEXTEXTEXTEX♥ ♥ ♥TEX TEXTEXTEXTEXTEXTEX♥ ♥ ♥TEX

♥ ♥ ♥ TEX♥TEX♥TEX♥TEXTEXTEXTEX♥ ♥ ♥ ♥ TEX♥TEX♥TEX♥TEXTEXTEX♥ ♥ ♥ ♥ TEX♥TEX♥TEX♥TEXTEXTEX♥ ♥ ♥ ♥ TEX♥TEX♥TEX♥TEXTEX♥ ♥ ♥ ♥ TEX♥TEX♥TEX♥TEXTEX

♥ ♥ ♥ ♥TEXTEX♥ ♥ ♥ ♥ ♥ ♥TEXTEX♥ ♥ ♥ ♥ ♥ ♥TEXTEX♥ ♥ ♥ ♥ ♥ TEXTEX♥ ♥ ♥ ♥ ♥ ♥ TEXTEX

TEXTEX♥TEX♥TEXTEX♥♥TEXTEX♥♥TEX♥TEXTEX♥TEX♥TEXTEX♥♥TEXTEX♥♥TEXTEXTEX♥TEX♥ ♥TEXTEX♥♥TEXTEX♥♥TEXTEXTEX♥TEX♥ ♥TEXTEX♥♥TEX♥♥TEXTEXTEX♥ ♥TEX♥ ♥TEXTEX♥♥TEX♥♥
TEX♥♥ ♥♥♥ ♥♥ ♥ TEXTEX♥♥ ♥♥♥ ♥♥ ♥ TEX♥♥ ♥♥♥♥ ♥♥ ♥ TEX♥♥ ♥♥♥♥ ♥ ♥ TEX♥♥♥ ♥♥♥♥ ♥ ♥
♥ TEX ♥♥TEXTEX♥♥♥♥ ♥ TEX ♥♥TEXTEX♥♥♥♥ ♥ TEX ♥♥♥TEXTEX♥♥♥♥ ♥ TEX ♥♥♥TEXTEX♥♥♥♥ ♥ TEX ♥♥♥TEXTEX♥♥♥

TEX ♥ TEX♥ ♥♥TEX♥ TEXTEX♥TEX ♥ TEX♥ ♥♥TEX♥ TEXTEX♥TEX♥ TEX♥ ♥♥TEX♥ TEXTEX♥TEX♥ TEX♥ ♥TEX♥ TEXTEXTEX♥TEX♥ TEX♥ ♥TEX♥ TEX

♥♥ ♥♥♥TEX♥ ♥TEX ♥ ♥ ♥♥ ♥♥♥TEX♥ ♥TEX ♥ ♥ ♥♥♥♥TEX♥ ♥ ♥TEX ♥ ♥ ♥♥♥♥TEX♥ ♥TEX ♥ ♥ ♥♥♥♥TEX♥ ♥TEX

♥ ♥TEX♥ ♥ TEXTEXTEXTEX♥ ♥♥ ♥TEX♥ ♥ TEXTEXTEXTEX♥ ♥♥ ♥ ♥ ♥ TEXTEXTEXTEXTEX♥ ♥♥ ♥ ♥ TEXTEXTEXTEX TEX♥ ♥♥ ♥ ♥ TEXTEXTEXTEX

♥ ♥TEX♥♥♥♥ ♥ ♥TEXTEXTEX♥ ♥ ♥TEX♥♥♥♥ ♥ ♥TEXTEXTEX♥ ♥ ♥TEX♥♥♥ ♥ ♥TEXTEXTEXTEX♥ ♥ ♥♥♥♥ ♥ ♥ ♥TEXTEXTEXTEX♥ ♥ ♥♥♥♥ ♥ ♥ ♥TEXTEX

♥ ♥TEXTEXTEX♥♥♥ TEXTEXTEX ♥ ♥TEXTEXTEX♥♥♥ TEXTEXTEX ♥ ♥TEXTEXTEX♥♥ TEXTEXTEX ♥ ♥TEXTEXTEX♥♥♥ TEXTEXTEX ♥ ♥TEXTEXTEX♥♥♥ TEX

♥♥♥ ♥ TEX♥♥ ♥ ♥♥♥♥♥ ♥ TEX♥♥ ♥ ♥♥♥♥♥ ♥ TEX♥♥ ♥ ♥♥♥♥♥ ♥♥ TEX♥♥ ♥ ♥♥♥♥♥ ♥♥ TEX♥♥ ♥
♥♥ ♥TEX♥TEXTEX ♥♥TEX♥♥♥♥ ♥TEX♥TEXTEX ♥♥TEX♥♥♥♥ ♥TEX♥TEXTEX ♥♥TEX♥♥♥♥ ♥TEX♥TEXTEX ♥♥TEX♥♥♥♥ ♥TEX♥TEXTEX ♥♥
♥TEX♥♥ TEXTEX ♥♥ ♥TEX♥TEX♥♥ TEXTEX ♥♥ ♥TEX♥TEX♥♥ TEXTEX ♥♥ ♥TEX♥TEX♥♥ TEXTEX ♥♥ ♥TEX♥TEX♥♥ TEXTEX ♥♥
♥ TEX♥ ♥♥♥TEX ♥TEX♥ ♥ TEX♥ ♥♥♥TEX ♥TEX♥ ♥ TEX♥ ♥♥♥TEX ♥TEX♥ ♥ TEX♥ ♥♥♥TEX ♥TEX♥ ♥ TEX♥ ♥♥♥TEX ♥

♥ ♥♥TEX♥♥TEXTEX♥TEX♥ ♥ ♥♥♥♥ ♥♥TEX♥♥TEXTEX♥TEX♥ ♥ ♥♥♥♥ ♥♥TEX♥♥TEXTEX♥TEX♥ ♥ ♥♥♥♥ ♥♥TEX♥♥TEXTEX♥TEX♥ ♥ ♥♥♥♥ ♥♥TEX♥♥TEXTEX♥TEX♥ ♥

Figure 3: Output generated from Fig. 2.

492 TUGboat, Volume 15 (1994), No. 4

492 TUGboat, Volume 15 (1994), No. 4

Stereographic Pictures Using TEX

Reinhard Fößmeier

Abstract

This article shows how to produce stereographic pic-
tures (“magic eye” pictures) using TEX. While it is
possible (though slow) to produce such pictures from
black and white dots, it is easier to use ordinary
glyphs as picture elements.

Resumo

Tiu ĉi artikolo montras kiel produkti kvazaŭ-tridi-
mensiajn bildojn (konatajn sub la nomo “magia okulo”)
per TEX. Estas eble (kvankam malrapide) konstrui
tiajn bildojn el nigraj kaj blankaj punktoj, sed estas
pli facile uzi ordinarajn pres-signojn kiel bilderojn.

Introduction

Recently, a new kind of stereographic picture has
become rather well known, by names such as “The
Magic Eye” or “Stare-E-O”. Books containing such

pictures (e.g., [1], and other volumes from the same
series) for some time were the best-selling non-fiction
books in Germany, and no doubt things were similar
in a number of other countries.

The new technique differs from the conventional
way to present stereographic views: Instead of hav-
ing two independent views of the same scene, taken
from slightly different angles, all the data here are
contained in one picture, which must be looked at
with a squint, so the visual axes cross behind (or in
front of) the picture, and intersect the picture plane
at a certain distance.

Since much has been written about it, I won’t
give here a detailed description of the phenomenon.
Suffice it to say that the secret of the 3D effect
is that the graphical information in the picture is
roughly periodic, the period being the distance be-
tween the section points of the visual axes and the
picture plane. If the periodicity is perfect, the whole
picture is seen as flat. Everywhere the periodicity is
disturbed, details stand out in relief, seeming closer

TUGboat, Volume 15 (1994), No. 4 493

✉

✉

❥ ❥left eye right eye✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔

❚
❚

❚
❚

❚
❚

❚
❚

❚
❚

❚
❚

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆❆

︸ ︷︷ ︸

period (1)

period (2)
︷ ︸︸ ︷

distant object (1)

close object (2)

picture
plane

Figure 1: How to look at a magic picture

if the periodicity is less and more distant if it is
greater (cf. figure 1).

The stereo.sty style

The trick in producing a stereo picture is to start
(e.g., at the left) with a certain pattern and to con-
tinue it periodically to the right. The period varies
according to the distance at which a certain point
is to appear: The closer to the eye, the shorter the
period. (We assume here that the visual axes cross
behind the picture.)

The input form of a picture is a two-dimensional
grid of numbers, each number indicating the height
of the point it denotes. The number 0 stands for the
lowest (most distant) plane. Only numbers between
0 and 9 are allowed. A semicolon delimits a line. The
data shown in figure 2 describe a small rectangle
that “floats” one unit above the ground plane.

000000000000000000000000000000;
000000000000000000000000000000;
000000000000000000000000000000;
000000000000111111000000000000;
000000000000111111000000000000;
000000000000111111000000000000;
000000000000111111000000000000;
000000000000111111000000000000;
000000000000111111000000000000;
000000000000000000000000000000;
000000000000000000000000000000;
000000000000000000000000000000;

Figure 2: Input data for a very simple picture

While it would be possible to construct patterns
from black and white dots and to draw them, e.g.,
as \vrules, this process is very slow and consumes
a lot of TEX’s resources. Unless the pictures are to
show very fine details, it is easier to use patterns
built from normal TEX glyphs, such as letters and
figures. To facilitate the calculation of the period
length, we use a mono-spacing font, \tt.

Each picture element is produced by a call of
the \Pixel macro. Its only argument denotes the
“altitude” of the point. According to this argument,
the pattern (contained in \Pat) is shifted around
and the correct glyph \A for the new element is
printed:1

1 \newcount\alt

2 \def\Pixel#1{%

3 \def\Head##1##2!{##1}%

4 \def\Tail##1##2!{##2}%

5 \edef\A{\expandafter\Head\Pat!}%

6 \edef\Rest{\expandafter\Tail\Pat!}%

7 \edef\T{\Rest}%

8 \alt=#1

9 \loop\ifnum\alt>0

10 \edef\A{\expandafter\Head\T!}%

11 \edef\T{\expandafter\Tail\T!}%

12 \advance\alt -1

13 \repeat

14 \edef\Pat{\Rest\A}%

15 \A%

16 }

To produce a line of pixels, this macro must be iter-
ated until a semicolon is reached. This is done by the
following macro, \Line, which calls itself recursively
until it sees a semicolon:

17 \def\Line#1{%

18 \if #1;\vskip 0pt \else

19 \Pixel#1%

20 \expandafter\Line

21 \fi

22 }

We now could simply give an initial value for \Pat

and bracket each line of the picture data by \Line· · ·;.
The pattern, however, loses details each time it is
shifted to a shorter period, and cannot recover the
lost information when periods become longer again.
We could end up with a pattern consisting of only
one sort of glyph. So it is better to restore a rea-
sonable value at the beginning of each line. This is

1 The linenumbers in the code segments are added for

clarity and are not part of the macro text.

494 TUGboat, Volume 15 (1994), No. 4

done in the following macro, \DLine; we simply use
the same start pattern for all lines.

23 \def\DLine#1;{%

24 \edef\Pat{\StartPattern}%

25 \Line#1;%

26 }

Now let’s have a look at the result of the following
calls, shown in figure 3:

27 \edef\StartPattern{A-CeL’+MX-/()pd=}

28 \DLine 000000000000000000000000000000;

. . . (as in figure 3)

A-CeL’+MX-/()pd=A-CeL’+MX-/()p
A-CeL’+MX-/()pd=A-CeL’+MX-/()p
A-CeL’+MX-/()pd=A-CeL’+MX-/()p
A-CeL’+MX-/(pd=A-CCeL’+MX-/(pd
A-CeL’+MX-/(pd=A-CCeL’+MX-/(pd
A-CeL’+MX-/(pd=A-CCeL’+MX-/(pd
A-CeL’+MX-/(pd=A-CCeL’+MX-/(pd
A-CeL’+MX-/(pd=A-CCeL’+MX-/(pd
A-CeL’+MX-/(pd=A-CCeL’+MX-/(pd
A-CeL’+MX-/()pd=A-CeL’+MX-/()p
A-CeL’+MX-/()pd=A-CeL’+MX-/()p
A-CeL’+MX-/()pd=A-CeL’+MX-/()p

Figure 3: Picture from the data in figure 2

The effect of figure 3 is not very convincing as the
picture is simply too small: it does not even show two
full periods of the pattern. Now we could inflate the
data to make the picture larger; on the other hand,
TEX can do this for us. We just have to change the
following lines in our macro definitions:

19 \Pixel#1\Pixel#1\Pixel#1%

25 \Line#1;\Line#1;%

to blow up each pixel to a 3 × 2 matrix. (To do
this with loops is left as an exercise to the reader.)
The above data (trimmed somewhat to fit into the
column) then yield the picture in figure 4.

Now, if you have a trained magic eye, you should
be able to see the floating rectangle in the middle of
figure 4, and a somewhat more informative picture
in figure 5. (If you have no experience with such pic-
tures, ask somebody who has, or simply try staring
at it, or forget about the whole thing—it’s not really
vital after all!) Figure 5 shows that it can be useful
to compress the picture vertically, by specifying a
negative \vskip in line 18.

Why No Dot Patterns?

To be really effective and bring out finer details,
magic pictures have to use patterns with a finer res-
olution than that of glyphs. Basically, this can be

done with TEX, e.g. by \vrules and \kerns for black
and white dots2. Details on how to do this can be
found in [2]. This process, however, not only is very
slow but also consumes a lot of TEX’s internal mem-
ory. Unless Big TEX is used, pictures are restricted
to a rather small size.

Conclusion

Given that TEX’s primary domain is typesetting
texts, it is no surprise that the easiest way to pro-
duce magic pictures with TEX is through the use of
character symbols. The pictures produced this way
do not come up to the quality of dot graphics but
certainly do have a charm of their own.

Possible extensions of the macros presented are:

• use of loops to inflate pixels by variable factors;

• reading picture data from an external file, pos-
sibly without the need to insert macro calls into
the data;

• starting each line with a copy of the pattern,
so details at the left edge of the picture can be
seen;

• use of different patterns for each line;

• automatic construction of suitable random pat-
terns.

References

[1] Das magische Auge. Dreidimensionale Illusi-
onsbilder von N. E. Thing Enterprises. Mün-
chen: arsEdition, 1994. Original: Magic Eye,
Kansas City: Andrews and McMeel, 1993.

[2] R. Fößmeier: X Bitmaps in TEX. TUGboat 12
(1991), 2, 229–232.

⋄ Reinhard Fößmeier

iXOS Software GmbH

Bretonischer Ring 12

DE-85630 Grasbrunn

Germany

Reinhard.Foessmeier@ixos.de

2 I am indebted to Bernd Raichle, raichle@azu.

.informatik.uni-stuttgart.de, for this hint.

TUGboat, Volume 15 (1994), No. 4 495

• •

A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+
MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()p
A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+
MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()p
A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+
MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()p
A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-Ce’+MX-/()pd=A-Ce’+MMX-/()pd=A-Ce’+MMX-/()pd=A-Ce’+MM
X-/()pd=A-Ce’+MMX-/()pd=A-Ce’+MMX-/(pd=A-Ce’+MMX-/(pd==A-Ce’+MMX-/(pd==A-Ce’+MMX-/(pd==
A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-Ce’+MX-/()pd=A-Ce’+MMX-/()pd=A-Ce’+MMX-/()pd=A-Ce’+MM
X-/()pd=A-Ce’+MMX-/()pd=A-Ce’+MMX-/(pd=A-Ce’+MMX-/(pd==A-Ce’+MMX-/(pd==A-Ce’+MMX-/(pd==
A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-Ce’+MX-/()pd=A-Ce’+MMX-/()pd=A-Ce’+MMX-/()pd=A-Ce’+MM
X-/()pd=A-Ce’+MMX-/()pd=A-Ce’+MMX-/(pd=A-Ce’+MMX-/(pd==A-Ce’+MMX-/(pd==A-Ce’+MMX-/(pd==
A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-Ce’+MX-/()pd=A-Ce’+MMX-/()pd=A-Ce’+MMX-/()pd=A-Ce’+MM
X-/()pd=A-Ce’+MMX-/()pd=A-Ce’+MMX-/(pd=A-Ce’+MMX-/(pd==A-Ce’+MMX-/(pd==A-Ce’+MMX-/(pd==
A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-Ce’+MX-/()pd=A-Ce’+MMX-/()pd=A-Ce’+MMX-/()pd=A-Ce’+MM
X-/()pd=A-Ce’+MMX-/()pd=A-Ce’+MMX-/(pd=A-Ce’+MMX-/(pd==A-Ce’+MMX-/(pd==A-Ce’+MMX-/(pd==
A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-Ce’+MX-/()pd=A-Ce’+MMX-/()pd=A-Ce’+MMX-/()pd=A-Ce’+MM
X-/()pd=A-Ce’+MMX-/()pd=A-Ce’+MMX-/(pd=A-Ce’+MMX-/(pd==A-Ce’+MMX-/(pd==A-Ce’+MMX-/(pd==
A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+
MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()p
A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+
MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()p
A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+
MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()p

Figure 4: Picture from the data in figure 2, with inflated pixels

A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’
+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/(
A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’
+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/(
A-CeL’+MX-/()pd=A-eL’+MX-/()pd=A-eL’+MX--/()pd=A-eL’MX--/()pd==A-eL’X--/()pd===A-eL’X-
-/()pd===A-eL’X--/)pd===A-eL’X--/)pd===AA-eL’X--/)pd==AA-eL’X---/)pd=AA-eL’X----/)pd=A
A-CeL’+MX-/()pd=A-eL’+MX-/()pd=A-eL’+MX--/()pd=A-eL’+MX-/()pd==A-eL’MX-/())pd==A-eL’MX
-/())pd==A-eL’MX-/))pd==A-eL’MX-/))pd==AA-eL’MX-/))pd==A-eL’MXX-/))p==A-eLL’MXX-/))p==
A-CeL’+MX-/()pd=A-eLL’+MX-()pd=AA-eLL’MXX-()pd=AA-eLL’MXX-)pd=AAA-LL’MXXX-)pd=AAA-LL’M
XXX-)pd=AAA-LL’MXX-))pd=AA-LL’MXXX-))p=AAA-LL’MXXX-))p=AAALL’MXXXX))p=AAAALL’MXXXX))p=
A-CeL’+MX-/()pd=A-CeL’+MX-()pd=AA-Ce+MX-()pd=AA-Ce+MX-()pdpdAA-Ce+MX-(()pdpdAA-Ce+MX-(
()pdpdAA-Ce+MX-(()pdpdAA-C+MX-((()pdAA-C+MX-((()pdAA-C+MX-X-(()pdAA-C++MX-X-(()pdAA-C+
A-CeL’+MX-/()pd=A-CeL’+MX-()pd=AA-Ce+MX-()pd=AA-Ce+MX-()pdpd=A-Ce+MXX-()pdpd=A-Ce+MXX-
()pdpd=A-Ce+MXX-()pdpd=A-C+MXX-(()pd=A-C+MXX-(()pd=A-C+MXXXX-()pd=A--C+MXXXX-()pd=A--C
A-CeL’+MX-/()pd=A-CeL’+MX-()pd=AA-Ce+MX-()()pd=AA-Ce+MX-()()d=AA-Ce+MXX-()()d=AA-Ce+MX
X-()()d=AA-Ce+MXX-()()d=AACe+MXXX-()d=AACeCe+MXXX-()d=AACeCeMXXX-()d=AAACeCeMXXX-()d=A
A-CeL’+MX-/()pd=A-CeL’+MX-()pd=AA-Ce+MX-()()pd=AA-Ce+MX-())pd=AAA-e+MX-(())pd=AAA-e+MX
-(())pd=AAA-e+MX-(())pd=AA-e+MX--(()d=AA-e-e+MX--(()d=AA-ee+MX---()d=AA--ee+MX---()d=A
A-CeL’+MX-/()pd=A-CeL’+MX-()pd=AA-Ce+MX-()pd=AA-CeCe+MX-)pd=AAA-CeCeMX-)pdd=AAA-CeCeMX
-)pdd=AAA-CeCeMX-)pdd=AAA-eCeMX--)pdAAA-eCeMX--)pdpdAAA-CeMX---)pdpdAA-CeMMX---)pdpdAA
A-CeL’+MX-/()pd=A-CeL’+M-/()pd=A-CCe+M-/()()pd=A-CCeM-/()()pd==A-CCe-/()()pd===A-CCe-/
()()pd===A-CCe-/()()pd==A-CCe-/()(()==A-CCCCe-/()(()=A-CCCCe-//()(()A-CCCCe-///()(()A-
A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-Ce+MX-/(/()pd=A-Ce+MX-/(/()pd=A-Ce+MX-/(/()pd=A-Ce+M
X-/(/()pd=A-Ce+MX-/(/()pd=A-Ce+MX-/()pd=A-A-Ce+MX-/()pd=A-A-Ce+MX-/()pd=A-A-Ce+MX-/()p
A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-Ce+MX-/()pd=A-Ce+MX-/()p)pd=A-Ce+MX-/()p)pd=A-Ce+MX-
/()p)pd=A-Ce+MX-/()p)pd=A-Ce+MX-/()pd=A-Ce+MX-/()pd=A-Ce+M+MX-/()pd=A-Ce+M+MX-/()pd=A-
A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-Ce+MX-/()pd=A-Ce+MX-/()p)pd=A-Ce+MX-/()p)pd=A-Ce+MX-
/()p)pd=A-Ce+MX-/()p)pd=A-Ce+MX-/()pd=A-Ce+MX-/()pd=A-Ce+M+MX-/()pd=A-Ce+M+MX-/()pd=A-
A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’
+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/(
A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’
+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/()pd=A-CeL’+MX-/(

Figure 5: A more technical picture

496 TUGboat, Volume 15 (1994), No. 4

LATEX

To reset or not to reset

Johannes Braams

Abstract

This article describes two possible implementations
of a \@removefromreset macro that can be used
to remove a counter from the reset list of another
counter.

1 Introduction

When writing a document class it is sometimes nec-
essary to instruct LATEX that a certain counter has
to be reset when another counter gets a new value.
This is the case when one wants to number equa-
tions within sections. For this purpose LATEX has
the internal command \@addtoreset.

Lately people have requested to do the oppo-
site; when they use a document class that has set
equation numbering to be within sections they want
to be able to number the equations consecutively
throughout the document. For this one would need
the command \@removefromreset, but that com-
mand is not available in LATEX.

2 The reset list

When a LATEX counter is defined using the command
\newcounter a number of data structures are set
up that belong to that counter. Say we allocate a
counter foo with the command

\newcounter{foo}

Then among other things the command \thefoo is
defined which is used to represent the value of the
counter in printed text. One of the other things that
are set up is the ‘reset list’. This reset list is a list
of counters that are to be reset when the counter
foo receives a new value with one of the commands
\stepcounter or \refstepcounter. The reset list
for the counter foo is stored in the macro \cl@foo.

Before we can start to think about the imple-
mentation of \@removefromreset, we have to know
what kind of data structure is used to store a reset
list. When we look up the definition of \@addtoreset
to find out how it works we find the following piece
of code:

\def\@addtoreset#1#2{%

\expandafter\@cons

\csname cl@#2\endcsname {{#1}}}

This tells us that \@addtoreset is a command that
has two arguments, the first of which is the name of

a counter to be added to the reset list of the second
argument. This is done using the command \@cons,
so to find out more about the data structure we have
to keep digging. Notice that the name of the counter
to add to the reset list is passed to \@cons inside an
extra pair of braces!.

Searching for the definition of \@cons reveals:

\def\@cons#1#2{%

\begingroup

\let\@elt\relax

\xdef#1{#1\@elt #2}

\endgroup}

This shows us that the reset list is a list of counter
names, separated by the command \@elt. So the
expansion of \cl@foo could look like:

\cl@foo -> \@elt {bar}\@elt {baz}\@elt {cnt}

So, when the command \stepcounter{foo} is exe-
cuted the counters bar, baz and cnt are all reset (get
the value 0).

3 Removing an element from the reset list,

the idea

Now that we know what the data structure looks
like we can start to think about how to remove an
element from the list. The essential piece of infor-
mation we have learned from our search is that each

counter name in the reset list is preceded by the
command \@elt.

So the way to the solution to our problem is
obvious. We have to give the command \@elt a new
definition. What should it do? The first thing that
comes to mind is that it should compare the name
following it with some other name. When those two
names are the same we have found the name of the
counter to be removed from the list. But how to do
that? A solution for this is to build up a new reset
list while processing the existing list. If we do that
we simply do not include the counter to be removed
in the new reset list.

4 Removing an element from the reset list,

the implementation

Now that we know the basic idea of how to solve
the problem we can start the implementation. I will
show two possible implementations.

4.1 First implementation

We are going to define the command \@removefromreset.
It will have two arguments. The first argument
is the name of the counter to remove; the second
argument is the name of the counter whose reset
list has to be changed.

\def\@removefromreset#1#2{%

TUGboat, Volume 15 (1994), No. 4 497

The first thing to do is to start a group and store
the name of the counter to remove from the reset
list in a command.

\begingroup

\def\toremove{#1}%

Then we save a copy of the current reset list. We
do this because we shouldn’t overwrite it while re-
building a new version.

\expandafter\let\expandafter\old@cl

\csname cl@#2\endcsname

In order to rebuild the reset list from scratch, we
empty it.

\expandafter\let\csname cl@#2\endcsname

\empty

Now we are set up to process the elements of the
reset list, except for the proper definition of \@elt.
Remember that \@elt will be defined by the exe-
cution of \@removefromreset so we have to double
the # marks for the argument of \@elt.

\def\@elt##1{%

First we store the argument of \@elt in a command
in order to be able to use \ifx later on for the com-
parison.

\def\found{##1}%

Now we can compare the name of the counter to
remove from the list with the name we have just
found.

\ifx\toremove\found

If they are the same we do nothing, thereby effec-
tively removing it from the list. If they are different
we use \@addtoreset to build up the new reset list.

\else

\@addtoreset{##1}{#2}%

\fi}%

Now we have defined \@elt so we can simply execute
the reset list. This will execute all the occurrences
of \@elt that are in the list.

\old@cl

All that is left to do now is to close the group so
that TEX forgets about any temporary definitions
we made. Notice that the new reset list was built
using \@addtoreset which uses global definitions
inside.

\endgroup}

4.2 Second implementation

A slightly different approach is taken in the following
implementation of \@removefromreset.

\def\@removefromreset#1#2{%

\begingroup

This time we use a token register to temporarily
store the new reset list that is to be built up.

\toksdef\newlist8\newlist{}

Again we store the first argument in a control se-
quence for future use in the \ifx test.

\def\toremove{#1}%

Again we use \@elt to check whether the following
list-element is the one we are looking for.

\def\@elt##1{%

Store the list element in a control sequence

\def\found{##1}

and compare it with the one to remove.

\ifx\found\toremove

\else

If it was not the one we are looking for, add the cur-
rent list element to the new copy of the list, stored
in token register \newlist.

\expandafter\newlist\expandafter{%

\the\newlist\@elt{##1}}

\fi}

Now we can simply execute the reset list which will
execute all the occurrences of \@elt that are in the
list.

\csname cl@#2\endcsname

Finally, we have to remember to copy the contents
of \newlist to the original reset list.

\expandafter\xdef\csname cl@#2\endcsname

{\the\newlist}

\endgroup}

⋄ Johannes Braams

PTT Research

St. Paulusstraat 4

2264 XZ Leidschendam

The Netherlands

