TUGDboat, Volume 14 (1994), No. 4

Opening words

Christina Thiele
President, TEX Users Group

Well, we finally made it into your mailbox! The
last issue for 1994! It’s been a tough year for
our publications. Tough year for the editors, too.
With delays due to technical problems and just
plain scheduling problems, it has been a difficult
year for our membership to feel that they are still
connnected to their user group. And what’s so
frustrating in all these delays is that there is so
much that has gone on this past year that we want
to tell you about.

We’ve seen the introduction of the new stan-
dard IATEX, no longer specifying it as ‘2¢’; we've
seen the genesis of such TEX developments as the
Omega project and NTS, the New Typesetting Sys-
tem; the appearance of colour on the typeset page
has provoked a revitalisation in the DVI Standards
Committee; the explosion of work being done to
bring TEX onto the World Wide Web via HTML —
to name but a few which spring to mind.

Information from all over!

You will have noticed the great increase in the dis-
tribution of all manner of TEX-related information,
from CDs to CTAN, from meetings to publications.
There is so much information now available in al-
most all forms of media currently in place, that it’s
hard to keep track of it all. Hard to know what to
read or buy or attend first!

Being a member of TUG—indeed, being a
member of any user group—already provides you
with some ‘navigating tools’— publications, meet-
ings, information posted to archives are some of
the ways in which the wealth of information and
assistance can be made manageable.

TUG publications, in particular the proceed-
ings issue of TUGboat, give members a permanent
record of what’s happening, what people are doing,
information and background on new applications,
advice and examples of how use TEX better, and
generally provide that sense of community which
membership helps foster. Add to that the publi-
cations from other user groups, and you start to
feel overwhelmed by how much information there is,
how much work individuals in the TEX community
are putting into their research—and then into their
writing. How to keep up with it all?

One navigating ‘tool’ you might not think of
is the abstract, a short text which often starts
off a paper. These are a required element in the

425

proceedings issues of TUGboat, but a lot of regular-
issue articles also carry them. As well, TUGboat’s
editor, Barbara Beeton, makes a concerted effort
to get abstracts or summaries of material which
appears in publications such as DANTE’s Komdédie
or the Cahiers from GUTenberg. This issue here
also has the abstracts from the 1994 EuroTgX
meeting.

So, in a few short reading sessions, you can
be on top of what’s happening right now: some
37 abstracts from the 1994 TUG meeting, 3 from
Cahier 18 and 9 from no. 19, rounded off with 19
abstracts from the 1994 EuroTEX meeting. Even if
that’s all you read out of this issue of TUGboat, at
least you’ll be aware of the work being done by a
broad range of members of the TEX community, and
when the time comes that you need that information
in all its detail, you’ll know where to look. An
abstract sure is handy!

1994 also saw TUG begin to provide information
and materials on-line via its subdirectory on CTAN;
we hope to see frequently requested items from
the office made available electronically, allowing
anyone to get basic information directly, rather
than mailing or phoning the TUG office. In addition
to administrative items such as membership forms,
we also have a slowly expanding set of ‘info-sheets’,
short 1- or 2-page documents which can provide
handy information in a summary form. Conference
information for the upcoming meeting in Florida
will also be found there. Use ftp to your nearest
CTAN site and go to tex-archive/usergrps/tug.

And what about 19957

Well, there’s an election coming up! Nominations
are needed for five board members—and one pres-
ident. My term will come to an end with this
summer’s annual meeting in Florida (another event
that’s coming up fast), and after having been on
the board since 1988, it’s time to move over. In-
formation on nomination procedures will appear in
TTN.

There’s just enough room left to squeeze in an
advance reminder for the 1995 Annual Meeting, in
Florida— where they do believe in air-conditioning!
So plan now to come to the TradeWinds hotel;
information will be appearing in TTN, on CTAN,
and on the Web (see the poster for details).

¢ Christina Thiele
15 Wiltshire Circle
Nepean, Ontario
K2J 4K9 Canada

cthiele@ccs.carleton.ca

426

Editorial Comments

Barbara Beeton

TEX meetings in 1994

This year’s TUG meeting was held in Santa Barbara
on the University of California campus, on a penin-
sula overlooking the Pacific Ocean. I won’t go into
details, except to invite you to see for yourself in the
proceedings (published as TUGboat 15 no. 3) the
wide variety of topics on the menu. Some faces from
the past reappeared — Leslie Lamport and Chuck
Bigelow are two whose names should be familiar to
all TUGboat readers. A most enjoyable meeting.

I also attended EuroTEX 94— an even greater
adventure. Held in Sobieszewo, Poland (a seaside
town near Gdansk), it was in a totally new region
for me, and I'm still thankful that Wlodek Bzyl and
his wife were so kind to collect me at the airport.
(Thank you ever so much, Wlodek!)

As always at TEX meetings, there were many
new faces to attach to names I already knew from
e-mail correspondence, and old friends with whom
to catch up on gossip. The accommodations and
the meeting rooms were in a holiday resort, just a
few hundred meters from the Baltic shore.

Wtodek Bzyl and Tomek Przechlewski, editors
of the GUST bulletin, were the meeting organizers.
Hanna Kolodziejska, the President of GUST, also
joined in making everyone feel warmly welcome. A
full report appears later in this issue, so let me just
take this opportunity to thank everyone who made
the experience so memorable.

A new, expanded TEX FAQ

With Robin Fairbairns in command, a UKTEXUG
working party has produced a new, reorganized,
much expanded TEX FAQ (“Frequently Asked Ques-
tions” list, with answers); the results can be seen in
Baskerville Vol. 4 No. 6, December 1994.

The original FAQ was compiled as an adjunct
to the Usenet newsgroup comp.text.tex and main-
tained by Bobby Bodenheimer of Caltech. (Thanks,
Bobby, for all your efforts.) The new edition has
been created with his knowledge, and it is intended
to feed it back to c.t.t via Bobby’s regular posting.

The new FAQ is available electronically from
CTAN, in tex-archive/usergrps/uktug/faq. The
source (for IATEX2c) is there as well as several
predigested versions:

m letterfaq.ps, for U.S. letter-size paper
= newfaq.*, for A4 paper; .dvi, .ps and .pdf
versions, using PostScript fonts, are available

TUGboat, Volume 14 (1994), No. 4

» newfaq-cm.dvi, for those who have only Com-
puter Modern fonts

Thanks to Robin and his colleagues for a fine job.

UKTeX Digest ceases to exist

With the distribution of Volume 94, Issue 48, the
UKTeX Digest ceased to exist. This digest was a
regular visitor to my e-mail in-box, and I learned
many useful things from its contents.

Originally created in July 1987 by Peter Abbott
to announce developments of the UK TEX Archive
at Aston University (another of Peter’s creations), it
was moderated and edited by Peter for its first few
years of existence. Since mid-1990, David Osborne
has been the editor. Through the seven and a half
years of its existence, 336 digests were produced.

With the emergence of CTAN (the Compre-
hensive TEX Archive Network), the need for a
UK-oriented digest has disappeared. However, for
some time David has also been editing the TeX-
hax Digest, the model for UKTeX, and TeXhax will
continue, absorbing contributions that would have
been addressed to UKTeX.

There is still a need for such an electronic distri-
bution list as a question, answer and announcement
forum for the global TEX community, especially for
people without access to news, or who do not have
the time to read the full contents of comp.text.tex.

In any event, this is an appropriate occasion
to publicly express our appreciation to Peter and
David for their efforts through the years, with
special thanks to David for the statistics that I have
shamelessly copied from his notice in the final issue.

Well done!

Miscellaneous gossip

Raman’s thesis, “An Audio System for Technical
Reading (ASTeR)”, has won the ACM Dissertation
Award for 1994. The official presentation will be in
March 1995.

Anyone who attended the 1992 TUG meeting
in Portland will remember Raman’s presentation, a
preliminary report on his research, and his friendly
black Labrador retriever, Aster, to whom the work
is dedicated. Another look at the article in the
proceedings (TUGboat 13, No. 3) will be worth
your time, and increase your awareness that there
is an audience for TEX that isn’t interested only in
how the output looks on paper.

Congratulations and best wishes to both Ra-
man and Aster.

TUGboat, Volume 14 (1994), No. 4

From David M. Jones, creator of the (now sadly
outdated) TEX index: “Reviving the TEX index will
be my New Year’s resolution, but I'm still shy of
making any promises, since my record for keeping
those over the last couple of years has been dismal.
=

(Actually, David has been occupying his spare
time with other useful TEX-related pursuits; he
has contributed ideas and code to the display
math environments of ApS-IATEX, and his name
now appears among the acknowledgements for that
package. David also attended his first TUG meeting
this past summer in Santa Barbara, demonstrating
that he really does exist.)

The question keeps arising on comp.text.tex
and other electronic forums, where is an electronic
version of TUGboat?

Contrary to what is apparently the general be-
lief, TUGDboat does not lend itself easily to electronic
distribution, requiring, as it does, nonstandard (and
sometimes proprietary) fonts, nonstandard versions
of macro packages, multiple files for some arti-
cles, both plain-based and I#TEX processing, and
other varieties of special handling. Moreover, since
TUGboat is just completing its 15*" volume, the
archives contain a variety of input styles and require
several different versions of (I#)TEX for processing,
including the no-longer-available TEX78.

However, the TUG Publications Committee is
looking into ways to get around these problems, so
as to be able to provide at least some of the most
important material in electronic form. Stay tuned.

¢ Barbara Beeton
American Mathematical Society
P.O. Box 6248
Providence, RI 02940 USA
bnb@math.ams.org

427

TUGboat, Volume 14 (1994), No. 4

The TUGY94 Proceedings — Apologia

Michel Goossens, Sebastian Rahtz and
Barbara Beeton

The TUG94 Annual Meeting took place at the
beginning of August 1994, and the deadline for
(revised) compuscripts was the end of August. It
was decided to produce the final camera-ready copy
on a typesetter in Europe, to give the editor and
his assistant a chance to check it before sending
to America. After a last check of the articles
during September, PostScript files for a Linotronic
typesetter at 1270 dpi resolution were generated
at the beginning of October in Geneva. These
files were transferred by Sebastian Rahtz to a
machine connected to the Linotronic typesetter of
the Computing Centre of the University of London,
where Philip Taylor had kindly volunteered to help
produce the bromides.

Now the problems began to get more interest-
ing. The first problem to emerge was with memory
on the Linotronic. Initially, we tried to send 20
page batches, but almost all failed. Cutting this
down to fewer and fewer pages per section, nu-
merous trials over several weeks resulted in almost
no output, as the large collection of Lucida fonts
being downloaded with each job consistently ran
the poor typesetter out of memory. Using the
fine-tuning of dvips to specify the exact memory
available in the typesetter did not help. Since
nothing useful was being accomplished, we decided
to stop including Type-1 Lucida fonts in the output,
and instead generate PK format bitmaps at 1270dpi
using ps2pk.

This resulted in jobs that were much more
acceptable to the typesetter, and rolls of bromide
started to appear. However, several pages, es-
pecially those of the Haralambous papers, used
complex METAFONT fonts which again exhausted
the memory of the typesetter (see table 1). So a
few of the font examples of the Tigwah (yannisT)
and Q (yannisO) papers had to be regenerated at
600 dpi and embedded as EPS pictures in the text.

Note: The table of fonts used in
each paper is not included in this file.

Still not everything was coming out (we were
running now in batches of 10 pages), with about
40 pages causing problems. These were finally
run one by one through the typesetter. The
resulting monstrous heap of rolls of bromide was
cut up, collated and posted off to Barbara Beeton,

427

who (inevitably) found some pages missing; each
of these (seven of them) was transmitted as an
individual PostScript file and printed at the AMS.

The color pages were completely done in the
United States. They fell into two batches. Those
that were available as PostScript files with CMYK
color information had their 4-colour separations
done and films produced at the AMS, while the
BM2FONT color images of Sowa (Colour Examples
10 to 13) were scanned at the printer, Cadmus.

It had been planned to send the colour Post-
Script files direct to the printer, and have them
separated there, but the dvips output seemed to
defeat Cadmus, who claimed to find no colour on
the pages! By this time, help from heaven was
badly needly, and it duly arrived in the shape of
a new RIP in the typesetter at AMS which could
do colour separations directly, without need for
a preliminary processing phase. Fingers crossed,
Barbara threw the TUG94 papers at it, and got
back a pile of correctly separated negatives; the
only problem then was that she had to work out
by eye which was which for each page out of cyan,
magenta, yellow and black. . .

Some other problems, born of incompatibilities
between the (fixed) resolution at which some graph-
ics had been prepared and the higher resolution
of the typesetter, required additional reruns and
falling back on the tried and true cut-and-paste
makeup for several pages, again at AMS. Finally,
the time spent by Barbara on the Proceedings issue
was cut from her time scheduled to work on the
next regular issue (15 #4, the issue you are now
looking at).

All these unforeseen problems, and the fact
that several people in different locations had to deal
with them, meant that the issue was not completely
ready until the end of January 1995. It is only
thanks to the perseverance of Sebastian Rahtz that
the issue finally arrived on your desk. We want to
apologize for this delay and sincerely hope that this
year the Proceedings of the Florida Annual Meeting
will be available before the end of 1995. Moreover
for the following year we propose to change the
whole schedule and have the Proceedings ready at
the Conference, i.e., in July.

Michel Goossens
Sebastian Rahtz
Barbara Beeton

TUGboat, Volume 15 (1994), No. 4

EuroTEX’94

Julita Bolland (text)
Toni Walter (drawings)
Wiodek Bzyl (the prize founder)

Introduction. What and where Sobieszewo is,
probably only a few people in Gdansk know without
checking the map of Poland. The name of Gdansk
may or may not be more familiar. If not, then for all
those who are not particularly good at geography
I'll give some reference information, which cannot
be as detailed as I would like it to be.

Gdansk, an old Baltic seaport, is situated just
at the mouth of the Wista river (the longest river
in Poland). Sometime in the past Gdarisk became a
rich merchant city with an autonomous government.
Merchants were rich enough to gain self-government
and too wise to break relations with the Polish
kingdom.

The incredible wealth of the merchants created
the shape of the city with many granaries, mag-
nificent houses and monumental churches. “Once
upon a time” there was even the second Elizabethan
Theatre in Europe; unfortunately nothing was left
for us.

Knowing vaguely the approximate position of
Gdanisk we can trace the path to Sobieszewo. Some-
where in the mouth of the Wista river, in between
its arms there is a piece of land where houses stand
in groups— that’s Sobieszewo, the very place where
the Eighth European TEX Conference was held this
year on 26-30 September. It may not sound as
exciting as Hawaii or Malaysia, ..., but here the
world was typeset with thick northern forests, grey,
cold Baltic sea and quick-dunes. Or even more,
just imagine spotting unknown mushrooms among
bushes near your foot like notes left by Nature and
little, yellow, transparent dots of Baltic sea honey*
on the beach. But as the Chinese saying goes:

"OEOA W — N,

The Conference started on Monday 26th Sep-
tember and ended on Friday 30th September; how-
ever, some of us came the day before. Approxi-
mately 60 participants from Western, Middle and
Eastern Europe attended the Meeting together with
special guests Barbara Beeton and Christina Thiele.

* In case of misunderstanding check The Oxford
Dictionary under the entry ‘amber’.

429
-~ mﬂw
" g
| ~
W
,./,’4'1 . { AT
1AV x
,’,/' (4 \'

The organisers were GUST (DeGUSTibus non
est disputandum) and Gdansk University. The
event was sponsored by grants from the Polish
Ministry of Education, Addison-Wesley, Springer-
Verlag, GUTenberg, DANTE, UKTug, NTG. Spe-
cial thanks goes to Phil Taylor for his invaluable
help.

There was evening and there was morning,
one day. Although technically it was the first
day (though not the very first one, since the
official opening was celebrated the following day),
nonetheless we were busy visiting Gdansk in the
afternoon, not to mention that some of us started
this day file with ‘a walk along an unguarded beach’
in a group hunting for amber.

The more down-to-TEX part of the programme,
supposed to begin on the 27th of September, was
divided into three topics: Principles, Practice,
Progress. The presented papers have been published
in the Proceedings of the Eighth European TEX
Conference.* But let’s not anticipate events which
don’t belong to this sequence or else we lose control.

There was evening and there was morning, a
second day. The official opening took place in the
morning starting with Phil Taylor’s speech and with
a few warm words said by Wiodek Bzyl and Hanna
Kolodziejska. At this very moment the programme
of the Conference started to run interactively.
Although talks were planned as the main part
of all activities, in a couple of days coffee breaks (or
coffee joints?) took over the schedule. Exchanging

* The Proceedings are available at the bargain
price of 15DM. If you want a copy please contact
us at the address: matwb@halina.univ.gda.pl

430

views, chatting, etc. occurred just at the time of
the coffee breaks (joints?). The organisers, in order
to help us get acquainted with each other, gave a
‘diplomatic’ (standing) party. Champagne, (...),
beer and a little something kept us alive for a few
hours and probably no one was underfull or overfull.
Bogustaw ‘Jacko’ Jackowski and Phil Taylor gave a
special treat whose ‘specialité de la maison’ were
two guitars and the most popular songs.

Evening passed and morning came, that was
the third day. Talks, talks and coffee breaks. The
performers did their best to excite the audience.
The subjects varied from IATEX2cthrough Yannis
Haralambous €2 to METAFONT. The end of the day
was marked by the Babel discussion.

There was evening and there was morning, a
fourth day. On this day the first \bye-s appeared;
however there were still many talks and at the end
of the whole Conference the Cathy Booth prize was
awarded. In Sobieszewo the best paper hasn’t been
chosen arbitrarily, but in democratic and secret
voting.

The winners were Bogustaw Jackowski and
Marek Rycéko who got the prize twice before:
Karlsruhe 1989, Praha 1992, and (a reminder)
in Aston 1993 they gave the keynote talk.

There was evening and there was morning,
fifth, sixth, seventh day. Tutorials and courses
were organized after the Conference. It should be
noted that the most popular one was ‘Book Design
and Typography’ by Marek Rycko and Phil Taylor.

TUGboat, Volume 15 (1994), No. 4

SOZL

|| TEXWINNERS

Conclusion. In a last few words on atmosphere, I
would like to quote Erik Frambach:

You can think of a conference as a concert
for a symphony orchestra. The quality
of the concert depends on the individual
skill of the players but even more on their
ability to cooperate. There was much
enthustasm for any tune regardless of its
significance. Because of this attitude the
players were all at ease, which encouraged
personal communication very much. Very
soon social intercourses became a major
occupation for many.

In this way talks, tutorials, courses became
headlines and footlines for the conference shape.
GoD BLESS YOU MR KNUTH.

The Participants. The conference gathered 59
people from all over Europe. Portraits of some
of them are displayed below. Dear reader, do you
recognize some of them? If yes, please drop an email
to matwb@halina.univ.gda.pl. The individual
with the highest number of correct guesses will be
given a bottle of Gdarisk Gold Wasser at the next
EuroTEX meeting — to be held in the Netherlands.*

Julita Bolland (text)
Toni Walter (drawings)
Wiodek Bzyl (the prize founder)

* Editor’s note: The editor regrets the delay in
TUGboat publication that prevents most readers
from participating in this contest. We will discuss
with Wlodek the possibility of a substitute contest.

TUGboat, Volume 15 (1994), No. 4 431

Head 1. Head 3.

Head 2.
Head 4.

/)/5 N \ /.

Head 7.

TUGboat, Volume 15 (1994), No. 4

Head 8.

TUGboat, Volume 15 (1994), No. 4 433

Head 9. Head 10.

434

Minutes of the N7S meeting held at Lindau
on October 11/12th 1994

Philip Taylor,
Technical Director, MTS project

Present: Philip Taylor, Jif{ Zlatuska, Bernd Raichle,
Friedhelm Sowa, Peter Breitenlohner, Joachim Lam-
marsch.

It was agreed that no progress had apparently
been made on the ‘canonical TEX kit’ project, and
that no progress was likely to be made unless and
until an active proponent of the project emerged
within, or was recruited to, the group; accordingly
the project was officially placed on ice.

It was agreed that in the absence of adequate
funding for the A7TS project proper, no serious
work could be carried out; several possible sources
of funding remained to be explored, and the group
were hopeful that this project would see the light of
day before too long.

It was agreed that the e-TEX project was
both feasible and very worthwhile, and that all
efforts should initially be concentrated on achieving
progress in this area. With the benefit of hindsight
it was agreed that the original proposal to issue
new releases at six-monthly intervals had been
over-optimistic, and that a more realistic timescale
would involve new releases once per year. It
was also agreed that the first release should be
accomplished as soon as possible, consistent with
the need to ensure that the code released was
both bug-free and unlikely to require more than a
minimum of re-thinking in the light of experience.

The group attempted to identify as many ideas
as possible which either have already been proposed
for incorporation in e-TEX, or which were natural
consequences of (or alternatives to) ideas already
proposed. The remainder of this document lists the
various ideas mooted, and discusses their intention
and implementation.

Proposals

\horigin, \vorigin (dimen registers, default =
1 in)

These two registers, requested by Phil, will
serve to make explicit for the first time the canonical
(17, 1) origin decreed by DEK in the definition
of the DVI format, and on which all formats are
currently predicated. Phil explained that his college,
amongst others, had eschewed this convention right
from the outset, and has instead adopted the more
logical (07, 0”) origin, requiring all drivers to be
configured in a non-standard manner. Providing

TUGboat, Volume 15 (1994), No. 4

the origin registers within e-TEX would allow all
drivers to be reconfigured to the standard, whilst
existing practices could be maintained simply by
local initialisation of the registers to (0", 0”). As
e-TEX might eventually require the adoption of a
new version of the DVI format (to encompass, for
example, colour), that might also be the appropriate
time at which to propose universal adoption of a
(0”7, 0") origin.

\(enhancement)state (internal integer registers,
one for each enhancement)

A unified mechanism is proposed for all en-
hancements [1] whereby an internal integer register
is associated with each, the name of the register
being derived from the concatentation of the name
of the enhancement and the word ‘state’; such
registers are read/write, and if their value is zero
or negative the associated enhancement is disabled.
[2] If a positive non-zero value is assigned to any
such register, then the associated enhancement shall
be enabled, and if the register is interrogated then
a positive non-zero value shall indicate that the
associated enhancement is enabled. It is possible
that in a future release differing values assigned
to or returned by such registers may indicate the
revision-level of enhancements, and therefore it is
initially recommended that only the values zero or
one be used.

\TeXXeTstate, \MLTeXstate (internal integer
registers)

These are the only two enhancements currently
under consideration, although Bernd Raichle also
has a proposal for an alternative ligaturing mech-
anism which would probably of necessity form an
enhancement if adopted. MLTEX is not proposed
for incorporation in the first release, but may be in-
corporated in the second. The group acknowledges
the generosity of Michael Ferguson in allowing the
incorporation of his work on MLTEX.

\interactionmode (internal integer register)

Allows read/write access to the present
\scrollmode, \nonstopmode, etc., family of prim-
itives; the values will be a monotonic sequence of
period one, and descriptive names will be associated
through the e-plain (and e-IATEX?) formats. [3]
(additional \tracing. .. detail)

Peter has implemented augmented semantics
for some of the \tracing commands whereby in-
creasingly positive values given increasingly detailed
output.

\protected (new prefix for macro definitions)

Analogous to \long, \outer, etc., causes the
associated macro to be non-expanding in contexts

TUGboat, Volume 15 (1994), No. 4

where such behaviour is likely to be undesirable
(in particular in \writes and \edefs); an explicit
\expandafter \empty may be used to force expan-
sion in these circumstances.

\bind (new prefix for macro definitions)

Proposed by Phil, this was intended to allow
macros to be bound to the current meaning of
embedded control sequences rather than to their
names, in a manner analogous to PostScript’s ‘bind
def’. However the group were unconvinced of the
merits of this proposal, and it was classified as
‘more work needed’ (MWN).

\evaluate {(arithmetic expression)}

Intended for use on the r-h-s of \count, \dimen
and \skip assignments, it would allow the use of
infix arithmetic operators such as +, -, * and /;
the type of the result would, in general, be the
type of the simplest operand forming a part of the
expression, and the normal semantics of TEX would
allow this to be further coerced where necessary.
Parenthesised sub-expressions would be allowed. [4]

\contents (box #)

Proposed by Jiti, this is intended to allow the
TEX programmer access to the sort of information
normally available only via the log file as a result of
a \show; in principle it would generate the simplest
list of TEX tokens which would generate the box
specified, assuming that each token generated still
had its canonical meaning. MWN.

(anchors)

Proposed by Jifi, an “anchor point” would be
in some senses analogous to a mark, but rather
than recording textual information it would instead
record the co-ordinates of itself, relative to the
reference point of the smallest surrounding box.
Additional new primitives would be required to
return the co-ordinates of a specified anchor point.
MWN.

\scantokens {(balanced text)}

Allows an existing token-list to be re-input
under a different catcode regime from that under
which it was created; as it uses all of TEX’s
present \input mechanism, even %%ff mnotation
will be interpreted as if \input. Causes an ‘empty
filename’ to be input, resulting in ‘()’ appearing in
the log file if \tracingscantokens (q.v.) is strictly
greater than zero. If the token list represents more
than one line of input, and if an error occurs, then
\inputlinenumber will reflect the logical input line
from the token list rather than the current input
line number from the current file.

435

\unexpanded {(balanced text)}

An alternative to \protected, for use when a
whole brace-delimited token list (‘balanced text’) is
to be protected from expansion. Intended to be
used in \writes and \edefs.

\every(whatever)

The group discussed many possibilities of im-
plementing additional \every primitives in e-TEX;
most were classified as MWN, but one (\everyeof)
is being considered for e-TEX version 1.

\futuredef (cs) (tok) (tok)

Analogous to \futurelet, but the (cs) will
be expandable, and expand to the next token
encountered (or to the next balanced text if the
next token is of catcode 1). MWN.

\futurechardef (cs) (tok) (char-or-tok)

A combination of \futurelet and \chardef,
will allow the next character to be inspected and
its character code returned iff it has not yet been
tokenised. If tokenisation has already taken place,
will return —1. Intended to allow the catcode of the
next character to be changed based on its value.

\ifdefined (cs)
Allows direct testing of whether or not a given
(cs) is defined.

\ifcsname ... \endcsname

Ditto, but for a sequence of (tokens-expanding-
to-characters); this also avoids wasting of hash table
space.

\unless (boolean-if)

Inverts the sense of the following boolean-if;
particularly useful in conjunction with \ifeof in
\loop ... \ifeof ... \repeat constructs, but also
of use with (say) \ifdefined and \ifcsname.

\TeX(whatever)state

More work needed! A mechanism whereby a
TEX document can ask TEX some questions about
the current state of its digestive tract. For example
it would be nice to know if TEX was currently
involved in an assignment, and if so which part of
the assignment was currently being elaborated.

\marks (integer)

Allows, for the first time, a whole family of
marks rather than just the one provided by TgX;
will also require analogous \topmarks (integer), etc.
The group propose to provide 16 such marks, but
are interested to know if the (I#)TEX community
consider this sufficient. A related \markdef prim-
itive may be provided to simplify mark allocation,
in a manner analogous to the existing \...def
primitives.

436

\deferred \special (or perhaps
\deferredspecial)

At the moment, only \writes are deferred;
there are cases when it would be desirable for other
things, too, to be expanded only during \shipout,
and \specials are one of these.

\textcode (integer)
Could provide a text-mode analogy to TEX’s
\mathcode. MWN.

\middle (delimiter)

Analogous to \left and \right, allows delim-
iters to be classed as \middle, and their spacing
thereby adjusted.

\filename

Would allow access to the name of the file
currently being \input. Lots of discussion on just
how much or how little should be returned. MWN.

\OSname

Very contentious. Would provide the name of
the operating system, and thereby allow documents
to behave differently on different systems. Dep-
recated on that basis, and will not be provided
unless/until a \system primitive is also provided.

\system {(balanced text)}
Definitely not proposed for e-TEX version 1.
Would allow operating system calls to be made, and

their status and result(s) returned in some way. A
lot MWN.

\tracingscantokens (internal integer register)
See \scantokens.

(smarter discretionaries), e.g.
\discretionarylefthyphenmin

Hyphenation after an implicit hyphen is some-
times highly desirable, and the group are inves-
tigating mechanisms whereby this could be both
provided and parameterised. MWN.

\everyhyphen (token list register)

Would allow TgX’s present hard-wired be-
haviour of placing an empty discretionary after
every explicit hyphen to be modified. However,
there are potentially problems of recursion, and
perhaps even a need to remove the hyphen. MWN.

\clubpenalties, \widowpenalties

A start at improving TEX’s penalty system by
making it more flexible. These two penalty ‘arrays’
would allow a different penalty to be associated
with one-line widows, two-line-widows, etc. [5]

\ifenhanced

A boolean-if which would return true iff any
enhancement is enabled. Would allow a e-TEX
document to check if it is being processed in

TUGDboat, Volume 15 (1994), No. 4

‘extended’ more or ‘enhanced’ mode. Phil argues
for this one but the group are unconvinced: the
advice of the TEX community is to be sought.

\lastnodetype

Would allow, for the first time, the unambigu-
ous identification of the type of the last node of one
of TEX’s internal lists, removing (for example) the
ambiguity when \lastpenalty returns 0 (which can
indicate no penalty node, or a penalty node with
value 0). Would return one of a monotonic series of
integers of period one. Meaningful names would be
assigned to these through the e-series formats. [3]

\unnode
Would allow the removal of any node from the
end of one of TEX’s internal lists.

\lastnode

Perhaps analogous to \contents (q.v.), or
perhaps quite different, would allow access to the
value of the last node of one of TEX’s internal lists.
Generalises TEX’s present mechanism whereby only
a subset of nodes can be accessed. MWN.
\readline (integer) to (cs)

Allows a single line to be read from an input
file as if each character therein had catcode 12.
[6] Intended to be used for verbatim copying
operations, in conjunction with \scantokens, or to
allow error-free parsing of ‘foreign’ (non-TEX) files.

\everyeof {(balanced text)}

Provides a hook whereby the contents of a token
list register may be inserted into TEX’s reading
orifice when end-of-file is encountered during file
reading. Would not be invoked if the file indicated
logical e-o-f through the medium of \endinput.
Proposed by Phil to allow clean processing of
file-handling code which requires a (sequence of
characters yielding) \else or \fi to be found in a
file, where no such sequence can be guaranteed.

\listing (internal integer register)

Would allow the generation of a listing contain-
ing (for example) TEX’s analysis of current brace
depth, macro nesting, etc. Different positive values
would allow different amounts of information to be
generated. Would the TEX community like such a
feature?

\defaultextension

Would allow TgX’s present hard-wired be-
haviour of appending .tex to a filename not pos-
sessing an explicit extension to be modified, allowing
an alternative extension to be specified. Would this
be of use to the L2¢/L3 team, and/or to the TEX
world in general?

TUGDboat, Volume 15 (1994), No. 4

(fixed point arithmetic)

Several of the above ideas cannot be imple-

mented at the moment, as they would allow access
to the ‘forbidden area’ of machine-dependent arith-
metic. If TEX’s present floating point calculations
were replaced by Knuth’s fixed-point arithmetic
proposals, then there would no longer be a forbid-
den area and all such ideas could, in principle, be
implemented.

Notes:

[

‘Extensions’ are basically new primitives which
have no effect on the semantics of existing TEX
documents, except insofar as any document
which tests whether such a primitive is, in fact,
undefined, will clearly obtain opposite results
under TEX and e-TEX; ‘enhancements’ are
more fundamental changes to the TEX kernel
which may affect the semantics of existing
TEX documents even if no new primitive is
used or even tested. Such changes may be,
for example, differences in the construction
of TEX’s internal lists, or perhaps different
hyphenation or ligaturing behaviour.

It is currently proposed that all enhancements
be disabled by e-IniTEX immediately prior to
the execution of \dump. This decision was
taken based on the advice of Frank Mittelbach.

3]

437

Question: should there, in fact, be an e-plain
(or e-IATEX) format, or should there simply
be an e-plain.tex file which can be loaded
by a user document? Peter votes for an
e-plain.tex file that will \input plain.tex
but no hyphenation patterns.

Should e-TEX allow access to more powerful
operators than just +, -, * and /7

‘Arrays’ are not very obvious in TEX at the
moment, although there are, for example,
\fontdimens and such-like. But should these
have fixed bounds (as in 256 count registers,
for example), or arbitrary upper bounds (as
in font dimens, if the ‘extra’ elements are as-
signed as soon as the font is loaded). Or should
they be finite-but-unbounded, as in \parshape,
wherein the first element indicates the number
of elements which follow? These questions are
applicable to marks as well as to penalties. . .

Should spaces have catcode 10 for this opera-
tion? Peter thinks so, but based on existing
simulations of this operation, Phil is more
inclined to think they should have catcode 13.

¢ Philip Taylor
The Computer Centre, RHBNC
University of London, U.K.
<P.Taylor@Vax.Rhbnc.Ac.Uk>

438

Tools

TEX innovations at the Louis-Jean
printing house

Maurice Laugier and Yannis Haralambous

Abstract

In this paper we will present several TEX innovations,
conceived, or currently under development, at ILJ (the
Louis-Jean printing house). ILJ was founded in 1804,
at Gap (Southern French Alps) and employs 130 people.
Due to its specialization in typesetting and printing of
scientific books, ILJ has been using TEX since the late
eighties. Currently about 30% of ILJ’s book production
is done with TEX. New developments in the TEX area
snansared or financed bv ILJ are described in this paper.

— — % — —

In exactly ten ycars ILJ (Imprimerie Louis-Jean)
will celebrate its bicentennial. Needless to say, this
printing house has followed closely all developments
of the printing industry: leaden types from the early
XI1Xth century until 20 years ago, photocomposition
in the seventies, and since the early eighties, the
computer. Almost everything has changed: authors
have changed, publishers have changed, even the
product a printing house produces is not the same
anymore: some years ago one was making books,
now they are more and more often accompanied
(and perhaps will be replaced in a few years) by
those small silver disks, called CD-ROMs.

In the old days, the author would most prob-
ably supply a manuscript. Often one had to rival
Champollion’s skills to decipher these manuscripts,
in order to be able to compose them. Later on one
used to receive manuscripts in typed form; no de-
ciphering was necessary any more, but this implied
the work of an intermediate person, usually the au-
thor’s secretary, or the author him/herself.

In the last decenny authors have bought per-
sonal computers; together with these engines they
bought programs that make them believe they can
typeset a book. More and more authors send “ready-
to-print” books on floppies, which most of the time
are “ready-to-throw-away”. Since it is not possible
to teach authors the rudiments of typography, one
has to invest time and energy in getting the most
out of these files, and finally be able to print the
book the author had in mind. For this reason, one
has to be able to offer the whole spectrum of ser-
vices, starting with text input, and finishing with
industrial printing.

TUGDboat, Volume 15 (1994), No. 4

Typesetting a book in TEX is an even bigger
challenge, since the printing process requires also a
strong know-how in programming: one has to know
TEX sufficiently well to either write the TEX code for
a book, or modify the code supplied by the author;
one has to know SGML if the text is received marked
up in that language and has to be converted into
TEX, or inversely, if the author and/or publishier
wishes to have the book in SGML form; one has to
have some knowledge of PostScript in case some-
thing goes wrong at the color separation or flashing
stage, and so on.

It follows that a minimum number of services
ILJ has to supply are:

1. Processing of TrX and BTEX files, at the input,

DVI or PostScript level, that is:

o writing TEX or IXTEX code, or converting
Word, WordPerfect, Mathor, ste., docu-
ments into decent TEX/IATEX code;
correcting it;
checking the page setup;
incorporating illustrations;
coloring it;
providing TEXnical assistance on the de-
velopment of the IXTEX style file;
producing an SGML representation of it;
e selecting or creating if necessary the fonts
required for it.
2. Making high resolution films (1200 to 2400 dpi).
3. Industrial printing, binding, routing.

To be able to solve reasonably quickly the prob-
lems arising in a process as complicated as the one
just described, ILJ had to develop a certain number
of tools. The fact that TEX is an open system with
no commercial maintenance was a risk to take; it
also gave ILJ the opportunity of developing auxil-
iary tools which it would be impossible to make in
conjunction with closed “ready-to-use” systems such
as PageMaker or Quark XPress.

1 Oriental scripts

The second author, while working at the Institute of
Oriental Languages and Civilizations in Paris, wrote
a typesetting system for Oriental languages, based
on TEX. ILJ has contributed to these projects both
technically (by providing the necessary back end for
Oriental typesetting and printing), and financially.
Together with John Plaice (Université de Laval,
Québec), the second author is also developing £ an
extension of TEX internally based on 150/1EC 10646/
UNICODE. ILJ is ready to adopt 1S0/IEC 10646 /UNI-
CODE as the fundamental encoding for text process-
ing, in order to solve once and for all the problem of

TUGboat, Volume 15 (1994), No. 4

TradTeH->SGML

Ouprir fichier Ted

Editer Dicolexico

Editer DicoTraduction

B N

Editer DicoDTD

N

Edition liste tableaus

Options

Quitter

s N o B \ N N ¢ o
) S N NI

Figure 1: The generic menu of Trad TEX—+SGML

encoding ambiguities, a problem which can be very
painful for texts with special needs (texts using sym-
bols and/or non-Latin characters).

2 The TradTEX—+SGML program
2.1 The principle

The Trad TEX—SGML program, developed by Franck
Spozio, is an assistance to conversion of TEX or
ETEX files into SGML. The user of TradTEX—SGML
must have a fairly good knowledge of both TEX and
SGML, since the process of conversion involves a
stage of analysis.

TradTEX—SGML creates a database containing
all TEX codes it has encountered as well as their
structure; this database file is accumulating infor-
mation on TEX commands, from several runs: prim-
itives, standard macros, or user-defined ones. Fur-
thermore it checks the syntactic validity of these
commands, in case the same command is defined
with different structures in different files or contexts.

The file “DicoLexico” contains the TEX com-
mands and their structures. As the reader can see
in fig. 2, this database file can be edited and modi-
fied on the fly. The file “DicoTraduction” contains
the SGML entities corresponding to the TEX com-
mands, as well as their structure. The TEX codes
which have to remain unchanged in the SGML file,
in a <NOTATION> entity (for example, those describ-
ing math formulas) are stored in a special file, called
“liste tableaux”.

When reading the TEX code, TradTEX—SGML
analyzes all TEX tokens; whenever a token has not
been defined or contradicts the description contained
in “DicoLexico”, the user is prompted to specify the
structure of the command (by a dialog as in fig. 3);

439

TradTeH->SGML
Edition de DicolLenico

balise TeH courante:
-|\magnification

type de la balise: k

@® Cde par. O Valeur par.

(O Cde non par. () Ualeur non par.
formalisme des parameétres:

(I« >1"="[«]I« >}{(<nb>[< >Kkdim>|<nb>|<seq>|
<seq><en>|<grp>)}

(Niiiiens)

[Enregistrer) (Recherche]

LEffacer] [Sortir j

Figure 2: Editing the TradTEX—SGML database

TradTe#->SGML Déclaration d'élément

balise courante TeH: \titre
équivalent SGML:
-nom de I'élément: Ititre

-minimisation: |--

-description du contenu de I'élément:

(section,subsection)

-élément(s) a inclure:

-élément(s) a exclure:

Figure 3: Declaring a TFX command in SGML

the data requested are (a) the number of arguments,
(b) the nature of delimiters, (c) if it is acting on one
or more tokens coming after or before, (d) special
characters, etc. Whenever the TEX command affects
the formatting of the text, the corresponding infor-
mations are stored into the file “DicoDTD”; they
will be used to create the DTD file which will mimic
the original formatting specifications of the file.

Once this informations is stored, the user is
prompted for the translation of the token in SGML
(names of elements, attributes, processing instruc-
tions, entities, etc.). This information is then stored
in file “DicoTraduction”.

Once all tokens have been read and verified, the
translation of the TEX file into SGML begins, using
information from all four database files mentioned
above; at the same time a DTD file is created. An
example follows of a ITEX file (with two abstracts,
a section and a subsection, an array of equations,

440

a table, a figure, a list, and a bibliography) and its

SGML conversion:

%\documentstyle [multicol,ts]{book}
\begin{document}
\titre{Une nouvelle approche\lcr pour les
réseaux de neurones :\lcr
la représentation scalaire distribuée}
\begin{multicols}{2}
\resume{’,
Essai de composition sur plusieurs colonnes
Essai de composition sur plusieurs colonnes
Essai de composition sur plusieurs colonnes
\par
Essai de composition sur plusieurs colonnes
\cle{essai, essail}}
\abstract{/
Essai de composition sur plusieurs colonnes
Essai de composition sur plusieurs colonnes
Essai de composition sur plusieurs colonnes
\par\key{essai, essail}}
\end{multicols}
\filet
\begin{multicols}{2}
\section{{Titre de section titre de section}}
Essai de composition sur plusieurs colonnes
\subsection{Titre sous-section.}
Essai de composition sur plusieurs colonnes
\begin{eqnarray}
x & =& 17y \\
y&>&a+ ...+ j +\nonumber\\

& Kt e eEmek net ot p
\end{eqnarray}
\begin{equation}
Vet aisti R N
\end{equation}
Essai de composition sur plusieurs colonnes
Essai de composition sur plusieurs colonnes
\begin{tabular}{||1|1r||}\hline
\haut gnats & gram & \$13.65 \bas\\\cline{2-3}

& each & .01 \\\hline

gnu & stuffed & 92.50 \\\cline{1-1}\cline{3-3}
emur& & 33.33 \\ \hline
armandillo & frozen & 8.99
\end{tabular}
\end{multicols}
\begin{figure}
\vglue 3cm
\caption{Essai premi\‘ere figure}
\end{figure}
\begin{multicols}{2}
Essai de composition sur plusieurs colonnes
Essai de composition sur plusieurs colonnes
\begin{itemize}
\item[\bullet] Essai d’itemisation
\item[\bullet] Essai d’itemisation
\end{itemize}
\begin{figure}
\vglue 8cm

\\\hline

TUGboat, Volume 15 (1994), No. 4

\caption{Essai nouvelle figure}

\end{figure}

Essai de composition sur plusieurs colonnes
\begin{biblio}

\bib{1}{Essai de bibliographie {\it avec} de
1’italique, avec du {\bf gras} dans le textel}
\bib{2}{Essai de bibliographie {\it avec} de
1’italique, avec du {\bf gras} dans le textel}
\end{biblio}

\end{multicols}

\end{document}

The SGML file produced by TradTEX—SGML
is:
<!DOCTYPE "document.dtd">

--\documentstyle [multicol,ts]{book}--
<doc>

<titre id=7??>Une nouvelle approche<?\lcr>
pour les réseaux de
neurones&espace;:<?\lcr> la
représentation scalaire
distribuée

</titre>

<deuxcols>

<resume>

Essai de composition sur plusieurs colonnes

Essai de composition sur plusieurs colonnes
Essai de composition sur plusieurs colonnes
<par>

Essai de composition sur plusieurs colonnes
<cle>essai, essai</cle></resume>
<abstract>

Essai de composition sur plusieurs colonnes

Essai de composition sur plusieurs colonnes

Essai de composition sur plusieurs colonnes
<par><key>essai, essai</key></abstract>
</deuxcols>

<?\filet>

<deuxcols>

<section>Titre de section titre de section
</section>

Essai de composition sur plusieurs colonnes
<subsect>Titre sous-section</subsect>

Essai de composition sur plusieurs colonnes

<formula>\begin{eqnarray}

x & =& 17y \\

y&>&a+ ... +j +\nonumber\\

& WKl i £ n + o +.p
\end{eqnarray}</formula>
<formula>\begin{equation}

Vi e amameuUl

\end{equation}</formula>

Essai de composition sur plusieurs colonnes

Essai de composition sur plusieurs colonnes

<formula>\begin{tabular}{||1|1r||}\hline

\haut gnats & gram & \$13.65 \bas\\\cline{2-3}
& each & .01 \\\hline

gnu & stuffed & 92.50 \\\cline{1-1}\cline{3-3}

TUGboat, Volume 15 (1994), No. 4

emur & 33.33 \\ \hline
armadillo & frozen & 8.99
\end{tabular}</formula>
</deuxcols>
<figure>
<?\vglue 3cm>
<legende>Essai premikegrave;re figure
</legende>
</figure>
<deuxcols>
Essai de composition sur plusieurs colonnes
Essai de composition sur plusieurs colonmnes
<itemize>
<?\item>&1qsb; <formula>\bullet</formula>]
Essai d"itemisation
<?\item>&1qsb; <formula>\bullet</formula>]
Essai d"itemisation
</itemize>
<figure>
<?\vglue 8cm>
<legende>Essai nouvelle figure</legende>
</figure>
Essai de composition sur plusieurs colonnes
<biblio>
<bib>1</bib>Essai de bibliographie
<it> avec</it> de l"italique,
avec du <bf> gras</bf> dans le texte
<bib>2</bib>Essai de bibliographie
<it> avec</it> de l"italique,
avec du <bf> gras</bf> dans le texte
</deuxcols>
<par>
</doc>

And finally the DTD file:

<INOTATION TeX SYSTEM "NotationTeX">
<IELEMENT formula #NOTATION TeX #CURRENT>
<!ELEMENT par -0 >

<!ELEMENT doc -- >

<!ELEMENT titre -- (section,subsection)>
<IATTLIST titre id ID #IMPLIED>
<!ELEMENT deuxcols -- >

<!ELEMENT resume -- >

<!ELEMENT abstract -- >

<!ELEMENT cle -- >

<!ELEMENT subsect -- >

<!ELEMENT figure -- >

<!ELEMENT legende -- >

<!ELEMENT itemize —- >

<!ELEMENT biblio -- >

<!ELEMENT bib -- >

<!ELEMENT it -- >

<!ELEMENT bf -- >

<!ELEMENT section -- >

<!ELEMENT key -- >

<!ELEMENT eitemize -- >

When using a consistent and fairly stable set of
TEX/ITEX macros throughout several documents,
TradTEX—SGML can become more and more auto-

\\\hline

441

matic and produce quick and efficient SGML code.
Interactive SGML editing software is still too expen-
sive for the average author, and often requires work-
ing stations or high-end personal computers; on the
other hand, TEX has become a de facto standard
of document preparation system in several branches
(especially mathematics and computer science): al-
though it may not seem very elegant to a purist,
generation of SGML code out of post-treatment of
TEX code is an efficient low-cost solution, whenever
(and this happens more and more often) the pub-
lisher requests the source code of the book in SGML
form.

TradTEX—SGML is presently implemented on
Macintosh, and is used in real-life production by ILJ.

3 eDVItor

eDVItor is a program developed by Philippe Spozio
(brother of Franck Spozio). It allows interactive
editing of a DVI file, using a mouse-driven cursor
to move blocks of text, insert illustrations, change
colors, etc.

People are often shocked when they see a DVI
file edited with tools similar to those of graphical
programs. It seems that TEX users consider a DVI
file as something immaculate. It is most often cre-
ated by TEX (actually a DVI file can also be created
by DVICopy, DVIDVI, GFtoDVI and other similar
utilities), and a lot of information is pumped out of
it; it can be printed on any device, previewed on any
screen, it can be faxed, or converted to PostScript
(and hence to PDF format). But none of these
drivers and utilities change the text formatting in
a DVI file; DVIDVI will perhaps change the order
of pages, DVICopy will replace characters by other
characters with the same metrics, and drivers do not
modify a DVI file.

There is a reason behind this: according to TEX
ideology, TEX does the ultimate text formatting, it
would be vain to modify it manually. This of course
is true, if we consider TEX’s line breaking algorithm,
or the typesetting of math formulas.

But what about titles, figures, or horizontal
lines? We are forced to admit that these depend
on the taste of the... human typesetter, rather than
on TEX'’s skill. After all, to place a horizontal line
or an illustration, we give millimetric instructions to
TEX, concerning both the size of the object and the
size of the surrounding white space. And these in-
structions can very well be wrong, or slightly wrong.

In the best of all worlds, one would run TEX on
a file as many times as necessary, until the file is per-
fect from all points of view. In a real-life production
world this is unfortunately not possible: a 600-page

442

book can be run only a limited number of times.
eDVItor allows us to make “those small last-minute
changes”, directly on the (otherwise perfect) DVI
file.

Of course, the same changes have to repeated
every time a DVI file is created anew (unless the
corrector is smart enough to report the changes also
to the TEX code file). In fig. 4, the reader can see
a DVI file progressively modified by dragging blocks
of text around.

eDVItor has been implemented both on DOS
and on Macintosh. It allows also insertion of illustra-
tions, by simple copy and paste operations, coloring
of text and color separation of the whole document.
A second version of this program, currently under
a-testing, executes commands placed into the DVI
file by the means of \special commands. Here are
some commands which can be execnted by eDVItor
v2:

e Color processing:

\special{Color colori}

text in color 1
\special{Color color2}

text in coulor 2
\special{Color colori+color2}
texte in coulor 1+2

e Vertical column adjustment:

\special{Post Equalize
Columni,Column2, column3
Height=25cm Pages 17-27}

This command will spread paragraphs so that
columns 1, 2 and 3 of pages 1727 will have the
same height, namely 25cm. To use this func-
tions one has to specify first the parameters
of stretching and shrinking of interparagraph
blank space.

\special{Post Expand sup=1pc inf=-2mm}
This command will modify interline space.
e Positioning and moving around figures:

\special{Post InsertAt x=10cm y=2,4cm
Pages 1,[76] illustration figure.epsl}}

EPSF figure figure.eps is placed at coordi-
nates z =10cm, y =2.4cm on page 1 (folio 76).

e Inclusion of graphical commands: These com-
mands allow framing of a block of text, or po-
sitioning of simple geometrical figures (rectan-
gles, circles, ellipses), eventually filled with a
certain color or gray density.

\special{Post SetFillDensity 30}
\special{Post FilledZoneFrame}

TUGboat, Volume 15 (1994), No. 4

e Inclusion of external DVI files:
\special{Post Import fichier.dvi}

The DVI file fichier.dvi will be merged into
the current DVI file. Suppose you are writing a
book on TEX and want to include an example
of TEX file output: for example a beginning of
chapter page. Up to now there were two solu-
tions: either simulate the beginning of chapter
by writing the corresponding TEX code, or take
the real TEX file you want to show, produce a
DVI file, run dvips with the -E option and ob-
tain an EPSF file, and include the latter in the
original DVI file as an illustration. Of course
the latter solution has the disadvantage that it
is not device independent anymore: the EPSF
file unavoidably contains bitmap fonts in a fixed
resolution. eDVItor allows you to include a DVI
file into another DVI file.!

It should be noted that modifications not in-
volving PostScript are applied to the DVI file when
processed by eDVItor: in that way, (a) one obtains
a new DVI file, modified according to the \special
commands, and processable by any DVI driver, (b)
since the \special commands are in the TEX code,
these modifications are automatically applied when-
ever eDVItor processes the DVI file (so one can pro-
duce new DVI files without fear of losing precious
information added manually, as in the case of ver-
sion 1 of eDVItor).

It is the hope of the authors that eDVItor will be
the first step to a “WYSIWYG” TEX, in the sense of
more effective DVI file manipulation and possibility
of last-minute changes.

© Maurice Laugier
General Director of ILJ,
Imprimerie Louis-Jean, B.P. 87,
05003 Gap Cédex, France
Email: louijean@cicg.grenet.fr

¢ Yannis Haralambous
187, rue Nationale, 59800 Lille,
France.
Email: haralambous@univ-1illel.fr

1 The second author always wondered how D.E. Knuth
did volume E of Computers & Typesetting, where GFtoDVI
printouts are mixed with TEX code.

TUGboat, Volume 15 (1994), No. 4

& Fichier Edition Selectionner Fontes Couleurs Options Outils @ @
ED% dauched.DUI

cm cmr 1.0(c) 1993 --- Page 1/1

cm cm

lr]1‘ |Z' ’SI |4I |5' lﬁl |7I |El I?l lllI I'Il1 I‘ZI |'|5I IHI |'|5I |1EI I”I ll!l l'l!I

IS R eF AP EE R SR

v

Camera Calibration from Spheres an Grid Images

Résumé Lbrinacd
4 gaztis 2inoggs & asmwmwm dlo math heso doreloped m&od kb
cknad, do dbk P e et
w mmmmmmmmwmm ,gwmcptopﬂowmubd!}pwﬂm&mxm@' Lk.g&:okns
o o lan b th

op
distorsion. mamwoemmm a2 nivesns o pmeopenudohc&m br’#nwtmdhvwbobém»&fmv
. ditockion des poids do conbour asoes & W magp b SRS 20uS
ey maies Bloeaa g woards : Cakibration, e pevsrston, sphom, olkipus, dirtor bon,
Bods clbs = Bk » drtn sphams, ollipsg, distor- cadbur poin b ariracton.
siom, disoctson do potnts do ccadonr.

<] I
& Fichier Edition Selectionner Fontes Couleurs Options Outils @ @
fI=———-————— douched.0lll
eDDItor 1.0 (c) 1993 --- Page 1/1

Illllllll]lllllll’Illlllllllllllflllll]I
(T bS] S | e YN e 0 (1 i) R 8 B 0L T] [b} 48 b LRI 5 0§ e 17 13 1

eDDitor v7.0(c) 1993 --- Page 1/1

B
| Camera Calibration from Spheres an Grid Images
7
B par N. DAUCHER, M. DHOME, J.T. LAPRESTE
BL
& Sln CNDS:. 2593
- $ oo Blatso Rucal do Clormon brerned
W Fé3tyr Avbom Code
12|
Bt Résumé Absincd
4 posis @imagps dosybuans, nons swcas Sdoypdy oo ol hass dorelopsd & zerw mathod kd
- ¥ anens o T aphic g e otk e
- tainsques. Nous mmmwmmmmm gchmpﬁ.Vcbuedlwﬁwfmmim@ Loingthe koew
memmk,mwvmmmm Lupmsencanptodols gromelsaal distortion i twdwed by the optiaal s3odem cnd samhing”o
—] istomion. o optiqus o me zachotho s atveant do pwaopmbdnhe&mbrspﬁwsmdbwwbobmwmv
E ST T h R e R e e e e
B | onk pemuis Sumcivir s de bone B By wurdis: Cakbration, ninsie psosmobor, sphem, olkpus, distoron,
18 B cles - Bl » sphes, ollipss, distor- contour potn b exirastion.
= sion, didhoctson do points de condour.
17|
=Gl
% Fichier Edition Selectionner Fontes Couleurs Options Outils @ @

L ||l l!l |!I IQ‘ |5I |ﬁ|]‘ll il‘ |!l l'lll]'HI |'IZI |'Ill lHr lﬁl |lﬁI !HI llll |l!l IZI‘

B
B Camera Calibration from Spheres an Grid Images

7
& par N. DAUCHER, M. DHOME, J.T. LAPRESTE
B LASHA

gm CHRS2° £y20)
[£rone ‘Ruel do Clorron recnind
Eu 63ty Afpsom Codex
Biots clbs: il hoos, dlipss, dstos:
- siom, dskostion o poinks do conbour.
__1‘5 Résumé Lhrined
B Awexamd.s,»m,mmmm o snekh e wohaw dovoloped o zew mothod b £B
4 el o i, do dokam on oror fo caeudel Wb pmro en riorstng
12 e s o P ey G eipis st ol propunly sioat i o et oo mige: Usg th ke
Mcmmh)mxmmm Lavpiise e compbo do Ia éood wed By the opiiaal yadoi

— syshemo optiquo oh 1o echanths sa Jtves 3o
. B, dutection des ﬂxhdﬂemﬁv«rwﬁu&wm&q}mw ally,
) ok penns Qumie i db bore seyt g wurds: Culcoln, ot porsmabe 5ol dc o,
[precisn potntr dotection St 2ph g, allow wy b oblsn conbour poin i axivaction
Bl
5, &
T B

Figure 4: Editing a DVI file with eDVItor

443

444

Recycled METAFONT
Pierre A. MacKay

It is increasingly the fashion for publications to
advertise themselves as ecologically exemplary and
archivally antacid. Academic journals are especially
under scrutiny in such matters, and we can expect
that in the future almost all of them will feel the
necessity of including something like

This journal is printed on recycled
paper meeting the minimum requirements
of American National Standard

for Information Sciences---Permanence

for Paper for Printed Library

Materials, ANSI Z39, 48--1984.

\goodpaper\ \recycle
on the inner cover or one of the other front-matter
pages.

At Humanist Typesetting and Graphics, the
\goodpaper symbol has been in use for quite a
while. Theodora MacKay worked out the following
some years ago, when the Middle Fast Studies
Bulletin converted to non-acid paper, and it has
proved serviceable ever since.

\def\goodpaper{{%
\ooalign{\hfil
\raise.25ex\hbox{%
$\scriptstyle\mathchar"231$}%
\hfillcrcr
\mathhexbox20D}}}

Something similar might be done with the
Type-1 Symbol font, but since this font lacks the
large open circle here set by \mathhexbox20D the
effort would be painful.

The image for recycled paper is more of a
problem since it cannot be generated from any
existing glyphs in the METAFONT repertory. Nor
is it as yet common among Type-1 fonts. So far, I
have seen it only in a Linotype-Hell font, but since
none of the other characters in that font was of
interest, I decided to work out a new METAFONT
version.

The symbol takes a number of forms, but all
with a consistent theme. Three arrows, each of
which is rolled back on itself over a 60° angle, are
arranged to form an equilateral triangle. The arrows
may be broad, (paper bags, boxes, publications) or
narrow (several types of plastic). The broad form
is usually shown in outline, or in white on a dark
circular background. The point of the arrow in its
broad forms is quite blunt, though in the narrow
stick form it often appears in the conventional sharp
style, with swept-back wings. The publication

TUGboat, Volume 15 (1994), No. 4

which first asked for this symbol had previously
used a photoreduction of the light image on a dark
background, but it was clear that this took ink
poorly, so we decided to follow the general model of
the Linotype-Hell symbol, and draw the arrows in
outline.

The construction starts out simply. The basic
arrow (in this case the lower left) starts out heading
straight to the left, then rolls up towards the viewer
and doubles back at an angle to meet the tail of
the second arrow. Sixty degree angles are easy to
handle in METAFONT and the basic framework can
quickly be constructed by treating the tail as if it
were tightly folded over. To get the rolled effect,
half of the folded area is cut away (on a line which
can be seen in schematic form in the source code
listing, lines 6-12).

This leaves far too many sharp corners, which
need to be rounded. Here it is necessary to make
some aesthetic choices. The obvious approach,
which could be achieved by a geometric construc-
tion, would be to make a smooth curve carry round
from the tail of the arrow to its eventual heading
in the direction of the point. This, unfortunately,
makes the tail end of the arrow look grossly unsym-
metrical. In the dozen or so examples I have seen of
this symbol, there is clearly an attempt to retain as
symmetrical a shape for the tail as can be managed,
consistent with the illusion that the arrow is rolling
up out of the surface toward the viewer. Because
the line from a10 to a9 is necessarily straight, the
curve from a8 to al0 needs to have as large a
straight component as can be managed. The values
used as terminal control points for a8, al10 and
all are fudges, arrived at by trial and error (lines
30-33). The curve that runs by point a3 is a precise
match for the curve that runs by point a7.

The criteria used for the shape of the head are
that it should be as broad and blunt as possible,
so long as it retains some sort of point even at 300
dpi. If the tail were thinner, the arrowhead could
be designed a bit sharper, as it is in the rendition
of this symbol on recent imprints of the O’Reilly
& Associates handbooks. For our purposes, the
broader arrow seemed preferable.

It would be nice to be able to rotate the
completed arrow through two transforms and have
the three arrows set in place that way, but the basic
picture is far too complex, and produces META-
FONT’s plaintive message “That transformation is
too hard.” So, with careful attention to the model
on page 138 of the METAFONTbook, all the points
are transformed individually (lines 39-47), and the
picture is twice redrawn.

TUGboat, Volume 15 (1994), No. 4 445

1. cmchar "Recycle";

2. beginchar (Recycle, 18u#,asc_height#,0) ;
3.italcorr 0;

4.adjust_£fit(0,0);

5.numeric tail; tail=2.25cap_stem;

6.% *x/

7. % / / Fold the tail of
8.h / [__ the arrow over

9.% \ / | itself, at an

10. % N/ | angle of 60 degrees
1. % AV | Then cut design along
12. % * line *-------- *

-
w .

. penpos1(tail,90); penpos2(tail,90); penpos4(tail,150);
.% wings and point of arrowhead

—
N

15. penpos5(3.0cap_stem, 150) ; penpos6(2.25cap_hair,60);

16. %

17. x1=.5w—-.25u; x2=3u; bot yll = bot y21 = 0;

18. x2°=x2-(tail / (sqrt 3)); % extend upper edge of tail by

19. % 1/2 base of equilateral triangle

20. y1’=y9=y2’=ylr; % z9 is point of acute angle made by this fold
21. x1-x1°=1.5(x2-x2’); % x1’ is arbitrary point to set

22. % length of oblique arm

23. z4r=z1’ rotatedaround(z2’,60); % rotate to find location of pen4
24. z6=2z5=z4; % all three pens on same center.

25. %

26. %, Cut through construction on line * *

27. z3=whatever[z2’,z4r]; x3=.5[x2’,x2]; % top end of line *—--x%

28. z7=whatever[z21,z41]; y7=y2; % middle of line *---x

29. x8’ -x2=x2-x2’; y8’=0; % bottom of line *---x%
30. %, Fudge start and end of curves.

. x8=x8’+.35(x2-x2); y8=0;

. zl0=whatever[z7,z41]; zll=whatever[z7,z8°];x10=x11=x7+.80crisp;
33. z12=whatever [z3,z4r] ; zl3=whatever[z3,z7];x12=x13=x3+.80crisp;
A

.% Find point of angle between two parts of tail and bisect it
.z9=whatever[z21,z41]; J point of acute angle
.z9-z0’=vwhatever*dir 30; y0’=h; % bisect it.

38. zO=whatever[z9,z0°]; x0=.5w; % point for rotation on bisector
39. forsuffixes $=a,b,c: transform $; endfor

.a=identity;

.b=identity rotatedaround(z0,120);

. c=identity rotatedaround(z0,240);

.pickup crisp.nib;

=R R e W W W W W W W W Ww
W N = O © 00 g O Uk W N

44. for n=1,2,3,4,5,6,7,8,9,10,11,12,13: forsuffixes e=1,,r: forsuffixes $=a,b,c:
45. z$[nle = z[nle transformed $; endfor endfor endfor

46. forsuffixes $=a,b,c:

47. z$8’ = z8’ transformed $;

48. draw z$9--z$1r--z$11--z$8{z$8-2z$11}..2$11{=z$7-2%$8’}. . {z$10-z$7}z$10;

49. draw z$10--z$41--z$51--z$6r--z$5r--z$4r—-

50. z$12{z$3-z%4r}. . {z$7-2$3}z$13--z$7{=z$8’-z$7}. . {z$11-2$8}z%$8;

51. labels($1,$11,$1r,$2,$3,%$4,$51,%5r,%$6r,$7,$8,$9,$10); endfor

52. labels(2’,8’); endchar;

o
b

446

“Recycle” is the first and, as yet, the only
character in the HTG pi font. It is mapped to the
uppercase “R”.

\font\htgpi=htgpil0 at 12pt
\def\recycle{{\htgpi R}}

The parameter file htgpilO.mf is a straight steal
from cmsy10 with only the initial comment lines and
the final line changed. The driver file pifont.mf
is modeled on symbol.mf, even to the point of
retaining the early half of the file for slanted
characters.

.% pifont.mf Driver file for new

. % characters. Parameters based on cmsy
.font_coding_scheme:="Font dependent";
.mode_setup; font_setup;

. font_slant slant;

. font_x_height x_height#;

.font_quad 18u#

if not monospace:+4letter_fit# fi;
.% Slanted symbols here as needed

.% Remaining characters unslanted

. slant :=mono_charic#:=0;
.currenttransform:=identity

yscaled aspect_ratio

scaled granularity;
.Recycle:=ASCII"R";

.input recycle

17. bye.

e e e e =

Who knows what other characters may be added in
the future.

o Pierre A. MacKay
Department of Classics DH-10
Department of Near Eastern

Languages and Civilization
(DH-20)
University of Washington
Seattle, WA 98195 U.S.A.
Phone: 206-543-2268;
FAX:206-543-2267
mackay@cs.washington.edu

TUGDboat, Volume 15 (1994), No. 4

TUGDboat, Volume 15 (1994), No. 4

Indica, an Indic preprocessor for TEX
A Sinhalese TEX System

Yannis Haralambous

Abstract

In this paper a two-fold project is described: the first
part is a generalized preprocessor for Indic scripts (scripts
of languages currently spoken in India—except Urdu—,
Sanskrit and Tibetan), with several kinds of input (BTEX
commands, 7-bit Asc11, CSX, ISO/IEC 10646 /UNICODE)
and TEX output. This utility is written in standard Flex
(the GNU version of Lex), and hence can be painlessly
compiled on any platform. The same input methods are
used for all Indic languages, so that the user does not
need to memorize different conventions and commands
for each one of them. Moreover, the switch from one lan-
guage to another can be done by use of user-defineable
preprocessor directives.

The second part is a complete TEX typesetting sys-
tem for Sinhalese. The design of the fonts is described,
and METAFONT-related features, such as metaness and
optical correction, are discussed.

At the end of the paper, the reader can find ta-
bles showing the different input methods for the four
Indic scripts currently implemented in Indica: Devana-
gari, Tamil, Malayalam, Sinhalese. The author hopes
to complete the implementation of Indic languages into
Indica soon; the results will appear in a forthcoming

paper.

— — % — —

1 Indica
1.1 Introduction

Many Latin-alphabet native writers find the Greek
and Cyrillic alphabets exotic (not to mention African
and phonetic characters). Actually this shouldn’t
happen, since —at least for the upper case— Greek,
Cyrillic and Latin types can have the same design:
they have the same roots, have evolved more-or-less
in the same way, and the same principles of Occiden-
tal type design can be applied to them. There are
even common glyphs to the three (‘A’, ‘B’, ‘E’, ‘H’,
‘M, O, ‘P, ‘T, ‘X’) which will appear only once
in case one wishes to have a big “Greco-Cyrillico-
Latin” font.

The situation is completely different in the case
of Indic languages. Once again all of their scripts
have the same roots, but instead of keeping the same
style and being complementary to each other, they
all have the same set of letters, in the same order,
but with (often very) different shapes. Every child in
India learns the same alphabet “ka-kha-ga-gha-...”
but depending on the region, the letter shapes can
be very different: & & 7T & & T . .. in Devanagari

447

script, & 6 () 22168 ol an. . .in Malayalam, 2 @ ©® &3
€ © . ..in Sinhalese, etc.!

This justifies the choice of a common translit-
eration scheme for all Indic languages. But why is
a preprocessor necessary, after all?

A common characteristic of Indic languages is
the fact that the short vowel ‘a’ is inherent to con-
sonants. Vowels are written by adding diacritical
marks (or smaller characters) to consonants. The
beauty (and complexity) of these scripts comes from
the fact that one needs a special way to denote the
absence of vowel. There is a notorious diacritic,
called “virama”, present in all Indic languages, which
is used for this reason. But it seems illogical to add a
sign, to specify the absence of a sound. On the con-
trary, it seems much more logical to remove some-
thing, and what is done usually is that letters are
either brought very near (in Sinhalese) or written
one over another (Malayalam), or written together
while losing some parts (Devanagari, Bengali, ...).
In this way we obtain those hundreds of beautiful
ligatures which make the charm of Indic scripts.

When typesetting with TEX, the preprocessor
will have to indicate to TEX all the necessary liga-
tures which can be either constructed from charac-
ter parts (as in the case of Velthuis’s Devanagari),
or spread in several 256-character tables (as in the
case of the Sinhalese font described in the second
part of this paper). Also, it often happens that a
vowel is written in front of a group of consonants, al-
though phonologically it comes after the group; and
since the transliteration is always phonetic, the pre-
processor will take the vowel from where it belongs
phonetically and place it where it belongs graphi-
cally.

Finally the preprocessor is needed for the sim-
ple task of inserting \- commands (discretionary hy-
phens) at the appropriate locations: since characters
and ligatures are often constructed from other char-
acters, or belong to several font tables, there is lit-
tle hope for getting efficient hyphenation patterns
so that TEX can hyphenate as it does for Western
languages.

1.2 The interna of Indica

The preprocessor Indica is written in a special way,
allowing easy changes and expansions, thanks to the
use of Flex. Flex is a lexical analyzer, released un-
der GNU copyleft; it generates C code out of simple
pattern matching instructions. The advantage of

1 One could compare this situation to the existence of
Antiqua, old German, and Irish types for the same alphabet
(a differentiation sadly missing from the ISO/IEC 10646/UNI-
CODE encoding).

448

Flex is that without being a good programmer one
can make powerful and error-free C programs.

How does it work? The minimal Flex file is of
the form

w{

Y35

T

...lines of code...
T

main()

{

yylexQ);

}

where the lines of code are of the form
xyz { do_this(); do_that(); }

xyz is a pattern which may appear in the input file,
and do_this();, do_that () ; are arbitrary C com-
mands, executed whenever the pattern is matched
in the input file. This scheme is extremely powerful,
since patterns can be arbitrary regular expressions.
Suppose, for example, that you want to write a pro-
gram which finds all TEX commands followed by a
blank and adds an empty group to them, if needed
(to avoid getting TEXis beautiful, as most TEX users
did at least once in their lives): \TeXy shall be re-
placed by \TeX{} and so on, for every command fol-
lowed by a blank. You can with the following single
line of Flex code:

"\\" [a-zA-Z]+/" " { ECHO; printf("{}"); }

The double quotes indicate verbatim mode, the dou-
ble backslash is the usual C notation to obtain a
backslash in a string, [a-zA-Z]+ is a regular ex-
pression meaning “one or more lowercase/uppercase
letters” and finally /" " means “this pattern should
be matched only if followed by " " (a blank)”. The
ECHO; command transmits the input pattern to the
output, and printf{} adds the {3} string.

The reader may now have realized the power
and ease of use of Flex. Moreover, the generated C
code is automatically optimized for the platform on
which Flex is run so that one can be sure that the
code will compile without problems into a quick and
smooth executable.

Indica is written in Flex. To obtain an exe-
cutable, you will have to run Flex first and then C.
The necessary steps are explained in section 1.3.1.
Having read the excellent book lex € yacc by Levine,
Mason and Brown (1992) the user will be able to
adapt Indica to his/her personal needs, if these are
not already covered by the broad range of Indica’s
input encodings.

TUGDboat, Volume 15 (1994), No. 4

1.3 Guidelines for the use of Indica
1.3.1 How to install Indica

Indica is written in Flex, the GNU version of the
standard UNIX utility Lex.2 On the server you will
find executables for Macintosh and MS-DOS. If you
are on some other platform, or if you want to make
changes to the indica.lex file, you will have to
compile it again. This operation consists of the fol-
lowing (relatively straightforward) steps:

1. run Flex on indica.lex, with the -8 option:
flex -8 indica.lex

2. Flex will create the file lex.yy.c (LEX_YY.C on
MS-DOS); this is a machine-generated, C++
compatible, ANSI C code file. Run your favour-
ite C-compiler on it, and link the result with the
standard ANSI C libraries.

After having fetched or compiled your own exe-
cutable of Indica, you can use it. For this you must
prepare your document using the syntax explained
in section 1.5, and run Indica to produce a regular
TEX or IMTEX file. Indica uses the standard C input
and output streams, so you have to type < and > to
redirect these streams to your files:

Indica < foo.inp > foo.tex

where foo.inp is the document you prepared and
foo.tex is the TEX file Indica will create for you.

In this way Indica can be used as a filter for pip-
ing operations: if your operating system allows pip-
ing and your TEX implementation uses the standard
input stream, you can systematically write Indica
< foo.inp | TeX to pre-process foo.inp and run
TEX on the result, avoiding thereby the creation of
an intermediate TEX file.

1.4 Indica input schemes

TEX can handle only 8-bit fonts (fonts with 256 char-
acters at most). This seems more or less sufficient
for the needs of a certain number of Western Euro-
pean languages, but is definitely unsuitable for Ori-
ental scripts like the Sinhalese one.?> Hence, the use
of a preprocessor is unavoidable. Indica will allow
the use of the same input scheme(s) for all Indic
languages: one will be able to write multilingual In-
dic documents without changing the input conven-
tions, whenever a language switch occurs. There are

2 Actually it uses a very important feature of Flex which is
not part of the POSIX Lex standard, namely exclusive states.
Indica has to be compiled on a Lex version with this feature;
see Levine, Mason, and Brown (1992) for more details.

3 The TEX extension © (Plaice, 1994; Haralambous and
Plaice, 1994) will solve these (and many more) problems by
using internally the UNICODE encoding, and 16-bit virtual
fonts for the output.

TUGDboat, Volume 15 (1994), No. 4

449

.0.1.2 .3 .4 5 .6.7.8.9 .A .B .C.D.E.F

Code positions followed by * are exten-

Usual 7-bit Asci1 (ISO 646)

sions of CSX proposed hereby by the au-
thor. The gray square denotes po-
sitions which have not yet been deter-
mined.

The author would like to point out that
even if certain characters are usually
not used in uppercase form, they could

!

*

. 2
*

[=]'q

B
5; -l I
Z*(CD; =IC
B(€3
*
(o]}
*
(@]
*
=1y i=]

—
(@]}

MO Q e O 0N O WwN - O
o
*

]
*
=i
*
le]]
*
Qi
*
. =l =]
*
5 o2 o P
*
Un o = s

Z- o
2D =
e
O —~1 o
22 o ok —

R
S

QL = D
=]l
N .;U|
E =
Z o—

S

A*

2

R)

=

Basli-B |L__): NN

very well appear inside all-caps text; so,
IHHO, all characters should be included
in the table in lowercase and uppercase
form. Uppercase lettuers missing fro,m the
t/abl\e are: 13, LM, A, I, U,N, A, A,
I,I, U, U,R,R,R,A LU Eand

%

O (a total of 21 codes).

Table 1: The CSX 8-bit input encoding

four possible input schemes, common to Hindi, San-
skrit, Bengali, Tamil, Telugu, Malayalam, Kannada,
Oriya, Gujarati, Gurmukhi, Sinhalese and Tibetan:

1. SEVENBIT, a 7-bit (ISO 646) encoding scheme,
based on Frans Velthuis’ Hindi/Sanskrit tran-
scription. Some extensions were necessary for
Sinhalese, but also for other Indic languages, to
obtain the character set of the (Indic part) of
UNICODE/ISO 10646-1 standard (ISO, 1993).

2. CSX, the Classical Sanskrit Extended encoding,
an 8-bit extension of ISO 646, proposed by an
ad hoc committee, at the 8th World Sanskrit
Conference, in Vienna 1990 (Wujastyk, 1991)
(Table 1). For Sinhalese and other Indic lan-
guages some necesssary extensions were included
in the character set of the (Indic part) of UNI-
CcODE/ISO-IEC 10646-1 standard (ISO, 1993).

3. LATEX, a standardized form of INTEX commands
(for example, only \d{m} is valid for ‘m’, and
not \d m or \d{}m or \def\foo{\d{m}}\foo,
etc.), describing the “standard” transliteration
of Indic languages.

4. UNICODE, the 16-bit version of ISO/TEC 10646-
1 (see ISO, 1993), with an anticipated Sinhalese
encoding by the author (since Sinhalese is not
yet part of ISO 10646).*

4 Although there is not a broad choice of UNICODE-
compatible software yet (Windows NT is the most popular
case of such software), the author believes that UNICODE is al-
ready now the ideal solution for document storage and trans-
mission, especially when used in conjunction with a markup
language like SGML.

The reader will find a complete table of equiva-

lences between (1), (2) and (3), applied to Sinhalese,
in Table 4.

1.5 The Indica syntax

Three kinds of predefined Indica commands exist:

1. commands affecting the input mode:

#SEVENBIT
#CSX
#LATEX
#UNICODE

as described in 1.4.

. commands determining the current (Indic) lan-

guage:
#BENGALI
#GUJARATI
#GURMUKHI
#HINDI
#KANNADA
#MALAYALAM
#0RIYA
#SANSKRIT
#SINHALESE
#TAMIL
#TELUGU
#TIBETAN
#NIL

the last one being used to return for arbitrary
non-Indic text to non-preprocessed mode.

. the

#ALTAS

command, which allows creation of new names
for the commands listed above.

450

Here are the rules you have to follow when using
these commands:

e the “escape character” for Indica commands (or
should I say “directives”?) is #. A command
name consists of this character, followed by at
most 32 uppercase letters or 8-bit characters (in
the range 0x80-0xff). It follows that you can
write, for example, ‘#NIL;’ or ‘#NILthis’, but
not ‘#NILYannis’; in the latter case you can
either leave a blank space (‘#NIL_Yannis’) or
insert an empty group (‘#NIL{}Yannis’) or ap-
ply any other similar TEXtrick.

e TEX and ITEX commands are not affected by
the preprocessor. Be careful, though, because
command arguments will nevertheless be pre-
processed: if you write

#HINDI mohan \TeX\ raake"s
\begin{center} mis paal

then, \TeX and \begin will be left unchanged
by the preprocessor, while center will produce
I9a¥ and \begin{ITd¥} is hardly something
standard IATEX would accept. In these cases it
is advised to write

#HINDI mohan \TeX\ raake"s
#NIL\begin{center }4HINDI mis paal

e Indica commands are not nested: if you switch
to Bengali and then Hindi, you will have to type
#BENGALI once again to return to the former
language (there is no “group closing” command,
bringing you back to the state you were before,
as in TEX for example).

e Input mode switching commands (#SEVENBIT,
#CSX, etc.) can appear anywhere in the text.
They don’t produce any immediate effect when
in NIL language; the corresponding input mode
is stored and applied on forthcoming Indic text.
Default settings (applied automatically at the
begining of every file) are the NIL language, and
SEVENBIT input mode.

e The ALIAS command has the following syntax:
#ALTAS SINHALESE FOO

which has to be written at the beginning of a
line. The first argument is the command name
for which we want to create an alias; the second
argument is the alias itself. After the definition
above, you can use #F00 instead of #SINHALESE.

You can use uppercase Latin alphabet letters,

or 8-bit characters in aliases. For example, you
could define

#ALIAS MALAYALAM M
#ALTIAS NIL N

TUGDboat, Volume 15 (1994), No. 4

and afterwards type only #M to switch to Malay-
alam, and #N to switch back to NIL language.
Or, you could define

#ALTAS MALAYALAM 0e @080

provided your platform has a graphic interface
allowing Sinhalese screen display (Macintosh,
Windows, X-Window. ..) and provided the en-
coding you use places Malayalam characters in
the upper 8-bit range.

Numbers cannot be part of aliases, so the
usual TEX operators #1, #2, ##1...are not af-
fected by Indica. More generally, whenever In-
dica encounters a hash mark followed by an un-
known string (not a predefined command name
or previously defined alias), it leaves both the
hash mark and the string untouched.®

e Indica does not take TEX comment marks into
consideration. If you write

% This is a TeX comment
%#TIBETAN
% etc etc

unlike TEX, Indica will read these lines and
switch to Tibetan language.

e Indica will read only the files you ask it to
read; it will not interpret (IA)TEX \input com-
mands.® On the other hand, a file already pro-
cessed by Indica does not contain any Indica
commands any more, so that you can re-process
it an arbitrary number of times without alter-
ing it. It follows that you could write a batch
file to run Indica on all files of your working
directory, just to be sure that no file has been
left unprocessed.

1.6 Simultaneous text and transcription

If you write your Sinhalese text in LATEX input mode,
you can copy and paste it to some other part of the
document and run it in NIL language mode; it will
produce the “standard” Latin transcription of the
same text. The only precaution you need to take
is to include Christina Thiele’s TEX macro \diatop
(see Thiele, 1987), in the preamble of your docu-
ment. This macro typesets characters with double
or triple diacritization (like &, T, etc.)

5 I‘Cuidado! If you mispell an Indica command, you
will end up with a hash mark and the misspelled string in
your (I#)TEX code and should prepare yourself to get a very
mean (I£)TEX error message: (I2)TEX just hates useless hash
marks.

6 This feature could be implemented in Indica, but would
result in a loss of portability: every TEX implementation has
its own environment variables for file path searching. The
same environment variables should be included into Indica’s
code, so that exactly the same files may be found and opened.

TUGDboat, Volume 15 (1994), No. 4

Here is the expansion of this macro:

\def\diatop [#1|#2]{{\setbox1=\hbox{{#1{ }}}%
\setbox2=\hbox{{#2{ }}}%
\dimenO=\ifdim\wd1>\wd2\wd1l\else\wd2\fi},
\dimenl=\ht2\advance\dimenlby-1ex,
\setbox1=\hbox tol\dimenO{\hss#1\hss}},
\rlap{\raisei\dimeni\box1}%

\hbox tol\dimenO{\hss#2\hss}}}/
%e.g. of use:
% \diatop[\’[{\=0}] gives o macron acute
An example of simultaneous text and transcrip-
tion (illustrating the use of aliases as well) is:

#LATEX

#S s\d{r}tuva #N (s\d{r}tuva) season,

#S aitih\={a}sika #N (aitih\={a}sika)
historical, #S au\d{s}adha #N (au\d{s}adha)
medicines, #S \d{n}aya #N (\d{nl}aya) loan,
#S ko\b{l}a\u{m}ba #N (ko\b{l}a\u{m}ba)
Colombo, \ldots

and (after preprocessing by Indica) TEX will typeset
3D (srtuva) season, @& (aitihasika)
historical, @920 (ausadha) medicines, €ocs
(naya) loan, @3¢ ® (kolarhba) Colombo, . . .

2 Sinhalese TEX

2.1 Introduction to the Sinhalese writing
system

Sinhalese is one of the two major languages spoken
in Sri Lanka (Ceylon), the second being Tamil. Sin-
halese script is a South-Indian script, close to Malay-
alam and Kannada. The alphabet consists of 18
vowels and 35 consonants. It is a syllabic script:
the basic consonant glyph form denotes the conso-
nant followed by the (inherent) short vowel ‘a’: 2
is ‘ka’, @ is ‘kha’ etc. To obtain a consonant not fol-
lowed by a vowel, one uses a special diacritic called
virama. Hence, 28 is ‘k’, @ is ‘kh’, etc. In contrast
to Hindi, a virama is used in all circumstances, even
at the end of a word.

Here are the 35 Sinhalese consonants (with in-
herent short ‘a’ vowel):

DENNORSEVEIRRER~ AR~ HORN
DN EWDHBDIY
DWoORgLYRBLEYLO®

There are also 6 nasalized consonants:

pole s

The vowels have full-size glyphs when they ap-
pear at word beginning:

451

gare a0 e 9 m
0D Y9 & T o QR X

A vowel following a consonant (or a series of
consonants) is denoted by a special stroke, or certain
auxiliary characters appearing on the right or on the
left of the consonant. Here are the letters 2 (ka) and
¢ combined with each one of these vowels:

DD D DD R
2931 29 29 6D O @O
O G ©9

€66Ga8246 6289066
QO¢ ©f OG ©¢9
Special care must be taken in three cases:
1. When a consonant without vowel is followed by
O (r): the virama sign of the consonant and the
‘r’ character are replaced by a special stroke
under the consonant. For example, instead of
6 we will write 2.
If the consonant + ‘r’ combination is fol-
lowed by a vowel, then special rules apply. Here

are the letters z» and ¢ (as above) combined
with & and each one of the vowels above:

DO E) D DA
931 DN 9 D9 OB) OF)
©OR) OB OY)I OB
¢ & 1 g 8§ g ¢ dBagom
g9 €9 ©F ©¢ @B ©¢ O
©¢9.

2. When a consonant without vowel is followed by
& (y): the virama sign of the consonant disap-
pears, and ¢ is replaced by the pseudo-letter 5.
For example, instead of 25 we will write 2.

If the consonant + ‘y’ combination is fol-
lowed by a vowel, then special rules apply. Here

are the letters 2 and ¢ (as above) combined
with ¢3 and each one of the vowels above:

D DB DB DB DB 28
D DY DB DR DB DB
OWB OV COBB OW

452

$0 OBT OB

& & ¢ 6 <8 B g8 ¢ ¢
€,3 &,9 &9 @¢, @8 eoe,
@&, @63 ®¢,9.

3. A third special case occurs, when a consonant
[except ‘r’ itself??] with inherent short ‘a’ vowel
is preceded by ‘r’. In that case the ‘r’ is not
written and a spiral-like stroke is added on top
of the consonant. For example, instead of &
we will write &. This phenomenon does not
occur when the consonant is followed by some

other vowel than ‘a’. Here are all consonants
with ‘r’ spiral strokes:

55680088 RE0

BOHLABBDEIOHES

9B EEDBBED
-

Beside the special cases enumerated above, fre-
quently ligatures occur between consonants. A lig-
ature between two consonants implies that the first
one is not followed by a vowel; the virama sign is
omitted in that case. Here are some examples:

Erem =t ®D+O=2D

D+ 8= B+ Q=

BHO= Bre=xr
B+ O =0

Finally there are two special signs: anusvara
(m) written - and visarga (h) written :. Sinhalese
punctuation follows the English rules. Hyphenation
is done between syllables, i.e., after a vowel.

2.2 Design of the Sinhalese font

Because of the nature of Sinhalese syllables, most
combinations of consonants and vowels had to be
drawn separately (the reader can find a complete
table of consonant/vowel combinations in Table 3).
This brought the total number of distinct charac-
ter positions to more than 460, placed in three 256-
character tables. Despite the large number of char-
acters, the design of a Sinhalese font does not require
a superhuman effort; in fact, the shapes of many Sin-
halese letters are modular, and can be produced by
assembling elementary strokes in different ways.

TUGDboat, Volume 15 (1994), No. 4

To illustrate this feature of Sinhalese letters,
here is a selection of such elementary strokes”:

1. on the left side of the letter: (o) the left stem of
e, (B) same as «, but with an horizontal bar,
as in &), () the left stem of 3, (§) a lowered
closed loop, as in &;

2. the middle part of the letter: (k) a simple base-
line stroke, as in &, (\) the same with a pinch,
as in &, (u) the same with a “bridge” as in ¢s3;

3. on the right part of the letter: () a short stroke
with a rounded loop, as in ¢, (1)) a somewhat
higher stroke with a triangular loop, as in &,
(w) a high and round stroke without loop, as in

.

Out of the combinations of these four left parts,
three middle parts and three right parts we will
make a table to see how many of them actually exist
(NE = “does not exist”):

@ 1] 5 1)
KX Wlk Xl XNl A p
X||e5 & NE|NE ¢ ¢ |NE 3 NE|NE NE NE
Y| NE NE| &® & NE| O Q NE|NE NE NE
w(|D?NE|D DNE|O QNE|® & ®

As we see, more than half of the entries rep-
resent extant characters. Similar phenomena occur
for other groups of Sinhalese letters. And of course
there are also some isolated cases, which have to be
drawn separately (like €%, &9, g and so forth).

This modularity of Sinhalese forms makes the
choice of METAFONT for the realization of a Sin-
halese font even more interesting. The Sinhalese
font, as presented in this paper, was commissioned
from the author by the Wellcome Institute for the
History of Medicine, following a proposal by Do-
minik Wujastyk (to whom the author would like to
express his gratitude).® The character forms were
inspired by the font of Godakumbura (1980), com-
pared to the forms of Disanayaka (a modern Sin-
halese script method; 1993), Clough (a classical 19th
century dictionary with many ligatures, 1892) and
Benbkosuu (the Russian “official” Sinhalese dictio-
nary, 1983), the last one having the most beauti-
ful type, in the author’s humble (and non-Sinhalese
native) opinion. Useful information was also found
in Lambert (1983), a study of south Indian scripts,
and the catalogues of writing systems of the world
(Nakanishi, 1980 and Faulman, 1880).

7 Unfortunately the author does not know the original
names of these strokes.

8 See Somadasa (1994) for the first book printed using
this Sinhalese system.

TUGDboat, Volume 15 (1994), No. 4 453
8 pt 9 pt 10 pt 12 pt
FX 369 pt +6.25% | 401 pt +2.777% | .434pt 0% | 510pt —2.08%
FY .347 pt 0% .391 pt 0% 434 pt 0% | .521 pt 0%
shthin 217 pt +12.21% | 217 pt +10.96% 217 pt 0% 217 pt —15.79%
shfat 906 pt +10% 972 pt +6.66% 998 pt 0% | 1.106 pt —6.67%
usual_left | .406 pt +10% 422 pt +5% A434pt 0% | 495pt —5%
usual_right | .406 pt +10% 422 pt +5% A434pt 0% | 495pt —5%

Table 2: Scaling of font parameters for optical correction

2.2.1 Optical scaling

As we all know, one of the big advantages of META-
FONT drawn characters is optical scaling, that is
scaling of characters in a non-linear way, to correct
certain optical effects. This technique has been ap-
plied by D.E. Knuth, in the Computer Modern fonts,
the first realistic example of a font family drawn in
METAFONT.

The same technique has been used for Sinhalese.
Here are the (technical) details: Sinhalese characters
have been designed using 6 main parameters:

1. FX, horizontal basic unit;

2. FY, vertical basic unit; (in the Computer Mod-
ern fonts the same basic unit is used horizon-
tally and vertically, namely u). In cases where a
length /width had to be defined independently
of its orientation, we have used .5[FX,FY] (the
mean value).

3. shthin, the width of thin strokes;

4. shfat, the width of a certain number of fat
strokes; (in fact, for intermediate cases the vari-
able quantity A[shthin,shfat], with A € [0, 1]
has been used).

5. usual_left, the standard left sidebearing;

6. usual_right, the standard right sidebearing.

Optical correction consisted in scaling these pa-
rameters differently for 8, 9 and 12 points, as in ta-
ble 2 (the reader can see in the second column the
percentage of deviation from the hypothetical lin-
early scaled value).

As the reader can see, the value of shthin re-
mains the same from 8 to 12 points; this guarantees
that thin strokes will not disappear in small point-
sizes (and makes letters look more elegant in large
pointsizes, as in Roman Bodoni fonts). The hori-
zontal basic unit FX gets (proportionally) bigger in
small sizes: letters become up to 6.25% wider; FX
also gets slightly smaller at 12 points: letters be-
come 2.08% narrower. The same tactic is applied to
sidebearings.

The following sample of text illustrates optical
correction. The same text (taken from Gennkosuuy,
1983), is typeset in 8, 9, 10 and 12 point sizes.

G18wsd B-ve o e wlBBedB =) ogl-
B0 8o® O. 6181 oFB 1T DME wwIs B VYO
e3¢ DG LBABELLNDWS B¢ DO,

8 D S8 Qe ¥eoD B SO, et
BB 0P wd B-e Des wedD G(8wsd BrNLOD ©®-
® @D OB HYOWILHDS 0DAB @18 DS 50N
lete

S 8Busd B oRe omse eometBBedB =) o8
o6 2o® 8. 689 oW g DMmE W O
0 s®¢m® DS LABELNDG B¢ WOR.

B 0 G8wsd s wedn Bwe LD,
©eIDSES 300w B Dt WS G183 Loy,
208 00® @R eBWL HEWILHDD cDBT s0z1em
DG IO BSE.

G188z 8o @ ez wttBBeds =)
©edns 8o® 8. 6181 eI Een Dmi 5w
O A0 3028 DG LABELINDS B8 DR,

8 210 G8wsS Des 9e0Dd B BDO-
B, ©e330LE e3-0Pews Bwe s wes 18w’
LMDV 00 QE EEIBW ZEWIEDDS 0B
8 2@ 6wy 151050 DGR,

S8’ B o e LwtdBd-
0B @1 ©ens 2o O. 518Y o8 Ci1e-
€ ODE 2398 OB A0 D3¢ DS
DL 8¢ DOE.

& 20D §(8ws Des wed D B B>
OO, ©@eIDULB) -0t o Des ¢
G2 618353 BB @DO HRE ETIBCS
30wIEHDS 0DARE 5008 DS 5102
DOE.

2.3 “Do I need BigTgX for all those
macros?”

Sorry to disappoint you, but there are no macros.
Indica does all the work for you and its output is
rather unreadable for a human—Dbut quite readable
for TEX. With IWTEX 2¢ and the T1 (Cork) encod-
ing you only need to place the files Tisinha.fd,

454

Tisinhb.fd, Tisinhc.fd in the same place as your
other FD files, and write

\newcommand{\SHa}{\fontfamily{sinhal/,
\selectfont}

\newcommand{\SHb}{\fontfamily{sinhb}}
\selectfont}

\newcommand{\SHc}{\fontfamily{sinhcl}/
\selectfont}

in the preamble of your file. If you wish to install the
Sinhalese fonts in a more formal manner, recognizing
the encoding of the font as being different from T1
(we call it SH1), then you only need to place files
SHisinha.fd, SHisinhb.fd, SHisinhc.fd together
with the other FD files you use, and use the package
sinhala.sty when you run BTEX 2¢. So you would
begin your document like this:

\documentclass{article}
\usepackage{sinhala}
\begin{document}

This method is not recommended, however, if
you switch frequently from Latin to Sinhalese and
your machine is not very powerful: I#TEX 2¢ reads
a file (called nfshl.def) everytime you switch en-
codings; even if this file is very short, the open/close
operations may slow down TEX. The author hopes
that this problem will be solved in future releases of
ITEX 2¢.

If you are not working with BTEX 2¢ then you
have to define the fonts manually, remembering that
they always come in triplets, like

\font\SHa=sinhal0
\font\SHb=sinhb10
\font\SHc=sinhc10

The available point sizes are 8, 9, 10 and 12.
Please contact the author if you need other point
sizes, or scale the ones you have linearly. There is
no bold or slanted style yet (although it would be
straightforward to obtain them out of the META-
FONT code), because the author has never seen such
forms. Any information on Sinhalese typographical
traditions and aesthetics would be most welcome.

References

A.A. Demkosnu O8BhnBwe odcomise
(Pyccro-Cunzanverutt Caosapy). Pyccruit
Azeix, Mocksa, Poccua, 1983.

Rev. B. Clough. 8¢ 9§88 a8 (Sinhalese-
English Dictionary). Wesleyan Mission Press,
Kollupitiya, Sri Lanka, 1892, facsimile edition by
Asian Educational Services, New Delhi, 1982.

J.B. Disanayaka. Let’s read and write Sinhala. Pio-
neer Lanka Publications, London, 1993.

TUGDboat, Volume 15 (1994), No. 4

C. Faulman. Das Buch der Schrift, enthaltend die
Schriftzeichen und Alphabete aller Zeiten und
aller Volker des FErdkreises. Druck und Verlag
der kaiserlich-koniglichen Hof- und Staatsdruk-
kerei, Wien, 1880.

C.E. Godakumbura. Catalogue of Ceylonese Manu-
scripts. The Royal Library, Copenhagen, 1980.

Y. Haralambous and J. Plaice. “First Applica-
tions of Q: Greek, Arabic, Khmer, Poetica,
ISO 10646 /UNICODE, etc.”. In Proceedings of the
15th TEX Users Group Annual Meeting (Santa
Barbara). TUGboat, 15 (3), pp. 344-352, 1994.

ISO. Information technology — Universal Multiple-
octet Coded Character Set. ISO/IEC 10646-
1:1993(e) edition, 1993.

H.M. Lambert Introduction to the Scripts of South
India and Ceylon, manuscript prepared as a
companion to: Introduction to the Devanagari
Script, for Students of Sanskrit, Hindi, Marathi,
Gujarati and Bengali. Oxford University Press,
1983.

J. Levine, T. Mason, and D. Brown. lex & yacc.
O’Reilly & Associates, Inc., Sebastopol, Califor-
nia, 1992.

A. Nakanishi. Writing systems of the World. Charles
E. Tuttle Company, Tokyo, 1980.

J. Plaice. “Progress in the Q Project”. In Proceed-
ings of the 15th TgX Users Group Annual Meet-
ing (Santa Barbara). 1994. TUGboat, 15 (3), pp.
320-324, 1994.

K.D. Somadasa. Catalogue of the Sinhalese Manu-
scripts in the Wellcome Institute for the History
of Medicine. Wellcome Institute, London, 1994.

C. Thiele. “TEX, Linguistics and Journal Produc-
tion”. In TgX Users Group Eighth Annual Meet-
ing, Seattle, August 24-26, 1987. 1987.

D. Wujastyk. “Standardization of Romanized San-
skrit for Electronic Data Transfer and Screen
Representation”. Sesame Bulletin, 4(1), 27-29,
1991.

¢ Yannis Haralambous
187, rue Nationale
59800 Lille, France.

Email: haralambous@univ-1lillel.fr

455

TUGDboat, Volume 15 (1994), No. 4

Table 3: Sinhalese consonants and vowel combinations

Part a. Without vowel, and vowels ‘a’—T’

560683099380 333860Y365D9C9®30 0065886 DE
562683835993 ¥33383863v365888563830388880E8

L@@ FISroo@F F OISR @O w3 G o PO T & BB G €
VR sl FoIxaaNE @00 wGIGloal@ 9 el 31\ JAI S 898150 €
0 G R G 3 3 DD P YO EEE GO el GRS ® 30 @0 S M S aE

QRSB EBEBODDPHOBBBE GO wBHOD RSO [0 QDS EE G WE

ST TS HTTITIIFESTTITITE I vFTEHIH@ED IS CTEHHFE L&

SRS ETOVIFHOTTTE G v3EHIH@SEO IS TS EHIFTSOE

8 GR@8833933HS338863v36568525338038888 8

SRS 8BOVIPHFOBIAIBYEDUBHODR@E® 30 VS H36 VWE
s8R0 YPYHOBUwAEAHEOHEHDVASHEIODERHTO®IOVD)EHBGWE
g 8 8 8 8 ® § 88 8 &8 ® & § § &« F § &8 & F § § 8 &« 8 8 & & & 8 & « & &
khghnch.J"hﬁt.hdhnthdhnphbhmYTIVSS.Shl.f
4 °0 © - + =k + o =) el

456 TUGDboat, Volume 15 (1994), No. 4

Part b. Vowels ‘I’-‘au’, anusvara, visarga

1 1 e € al 0 0 au
G e O) o Q Q Q9
ka| 29 29 0 63 0600 o X om9
kha | @9 o9 ©a ©8 ©cea ©6a) 63 o9
ga| ® ©®9 ©® ¢ 66® e®m e’ v
gha | ¢39 39 @88 @8 o 0tn il 9
fa| 89 8o o8 68 el oth ot o
ca|l D9 Do D D oecd o odF obs
cha | %9 9 ©% oF oco¥ o o4 ok
ja| %9 de ©8 oF ool o%H odF oHbe
jha | 209 e o) 0% XD %N Ox)T 0x)9
fia | X9 XY O O OO O Oy O
tal| Q9 QD9 ©0 0 060 ©d1 dF 09
tha| 9 o ©Q od o6l o odf o
da| 89 &9 o0& 68 o oth o8I ol
dha | &9 Q9 o8 od ool o e ow9
na | €99 499 ©€ C4l 00N O 0L 4N
ta| ®9 D9 G 668 ©eDn o vl D9
tha| 9 Q9 0 od ed o dF ode
da| ¢ ¢ © @ oo ©of ©§ ©¢&9
dha| Q9 Qo ©Q L el 6 oWl 69
na| 9 D9 © &5 ©er 3N I o9
pa| B9 &9 @8 08 o3 e 2 o3 ©H9
pha| &9 &9 @8 of ocd M o od
ba| @9 @9 ©2 © ©0ea e dF o9
bha | 29 ®9 ©®H 0% ©e® 6w o®wl w9
ma| © ©9 00 ® 60 e® 60 O
va| 9 w9 ©w ol o06; 0w 6wl o6
ra| 69 C9 @5 e eed ©d edF @69
a| G2 (G2 O ©¢ 00 O ol oE9
va| D9 D9 6D 6D eed e D ede
Sa| ® @ oo’ o0& e’ oe®m o’ on
sa| 89 B9 68 08 008 6 0¥ B9
sa | 839 ey @ o8 e ewn el o9
ha | 209 9 ©® %8 6w ¥ 6wl w9
la| € €9 Oog ©og o0og ©og ogl og9
fa| ™ o9 O & oeem om om oM

3@ S 8600603 VEEY00¢3 80608008508 ef
3@s8es 000 0sveeYvecs el svyelE

TUGboat, Volume 15 (1994), No. 4

457

Table 4: Table of Devanagari, Tamil, Malayalam and Sinhalese characters and the different input modes

| NAME | D] T [M] S CSX | SEVENBIT | LATEX |
ANUSVARA b ° o m, M .m, M \d{m}, \d{M}
VISARGA : g 8 h, H .h, H \d{h}, \d{H}
VOW. A T | 9 @0 & a, A a a, A
VOW. AA AT | 9 | @0 () a, A aa, A \={a}, \={A}
VOW. AAA - - - &t 8, A "a, .A \"{a}, \"{A}
VOW. AAAA - - - & i, A "aa, .AA | \diatop[\=]\"al, \diatop[\=|\"A]
VOW. 1 g @) o) i1 i i, I
VOW. II E T &0 o} 1 I ii I \={\i}, \={i} \={1}
VOW. U 3 2 o) é u, U u u U
VOW. UU F | om | 90 | &9 4, U uu, U \={u}, \={U}
VOW. VOC. R xR - 8 c3a r, R .T \d{r}, \d{r}
VOW. VOC. RR x - 8 cdaa T, T .R \diatop[\=|\d r], \diatop[\=I\d r]
VOW. VOC. L) - o (839) I, L .1 \d{1}, \d{L}
VOW. VOC. LL [- o | GD9 1, L .L \diatop[\=|\d 1], \diatop[\=|\d L]
VOW. CANDRAE | T - - - é 7711 \u{e}
VOW. SHORT E T a| o S & B “e \v{e}, \v{E}
VOW. E T o af) & e, E e e, E
VOW. Al ﬁ\; o | oag | @D | ai, Ai, Al ai, E ai, Ai, AT
VOW. CANDRA O | 3T - - - o} 7711 \u{o}
VOW. SHORT 0 | 3T | & ® 5,0 ~0 \v{o}, \v{0}
VOW. O AN o | & Q) 0, O o 0, 0
VOW. AU A | g | 89 | D9 | au, Au, AU | au, 0 au, Au, AU
CONS. KA 0 & & (5] k, K k k, K
CONS. KHA T | - 6u @ | kh, Kh, KH kh, K kh, Kh, KH
CONS. GA T - w &) g, G g g G
CONS. GHA) - 0a | & gh, Gh, GH gh, G gh, Gh, GH
CONS. NGA T | m | 8|0 n, N "n \.An}, \.{N}
CONS. CA T| 5 | o D) c, C c ¢, C
CONS. CHA = | - 20 ¢ | ch, Ch, CH ch, C ch, Ch, CH
CONS. JA | ow |) i, J j j, J
CONS. JHA F| - | ow | I | jh,Jh JH jh, J jh, Jh, JH
CONS. NYA T | & | oo (~e i, N “n \"{n}, \"{N}
CONS. TTA T | L s Q t, T .t \d{t}, \d{T}
CONS. TTHA g | - o W | th, Th, TH | .th, .T \d{t}h, \d{T}h, \d{T}H
CONS. DDA T - | w | @ d, D .d \d{d}, \d{D}
CONS. DDHA [} - Y & dh, Dh, DH .dh, .D \d{d}h, \d{D}h, \d{D}H
CONS. NNA T | eor | 6 | €0 n, N .0 \d{n}, \d{N}

458 TUGboat, Volume 15 (1994), No. 4
NAME ID] T [M] S] CSX | SEVENBIT LATEX
CONS. TA da| o ™| D t, T t t, T
CONS. THA q - Ha) O th, Th, TH th, T th, Th, TH
CONS. DA < - 3 ¢ d, D d d, D
CONS. DHA g - w | @ dh, Dh, DH dh, D dh, Dh, DH
CONS. NA Gl b m | n, N n n, N
CONS. NNNA | eor - - 771 771! 7711
CONS. PA q u ol | O p, P) p, P
CONS. PHA L0 - | & ph, Ph, PH ph, P ph, Ph, PH
CONS. BA T - |ou| @ b, B b b, B
CONS. BHA LB 8 [€)) bh, Bh, BH bh, B bh, Bh, BH
CONS. MA Tl w|o2|® m, M m m, M
CONS. YA T | w W | L v, Y y, Y
CONS. RA Tl g |lal| O r, R r, R
CONS. RRA T m 0 - 7N "r 7711
CONS. LA T o | 2| I, L 1 1, L
CONS. LLA & || 8 | & 1 L \b{1}, \b{L}
CONS. LLLA % | 1 54 - 771 "l 771!
CONS. VA T | u| v,V v v, V
CONS. SHA T | ad || & s, S "s \’s, \’S
CONS. SSA Y - | &8 S, S .s \d{s}, \d{s}
CONS. SA q | ev | 0| & s, S s s, S
CONS. HA g |lam [a0 | B h, H h h, H
CONS. FA B0 - -) f,F £ £, F
CONS. NAS. GA | - | - - | & | ig Ng, NG Ng \u{n}g, \u{N}g, \u{N}G
CONS. NAS. CA . . - | ® | e, Ne, NC Nc \u{n}c, \u{N}c, \u{N}C
CONS. NAS. DDA | - | - | - | € | id, Nd, ND N.d \u{nh\d{d}, \u{Nh\d{d}, \u{N}\d{D}
CONS. NAS. DA - - - | € | id, Nd, ND Nd \u{n}d, \u{N}d, \u{N}D
CONS. NAS. BA . . - | ® | mb, Mb, MB Nb \u{m}b, \u{M}b, \u{M}B
CONS. NAS. JA -l - | - | &] i, Nj,NJ Nj \u{n}j, \u{N}j, \u{N}J
CONS. QA) - - - q q q
CONS. KHHA o - - - kh .kh, .K \b{k}\b{h}
CONS. GHHA T - - - g .g \b{g}
CONS. ZA S - - - z z z
CONS. DDDHA g - - - r R \b{r}
CONS. RHA [- - - rh Rh \b{r}h
CONS. YYA T - - - 771 "y 7711

NOTES:

— Columns D, T, M, S, stand respectively for Devanagari, Tamil, Malayalam and Sinhalese. The fonts used
in this paper for the first three scripts have been made by Frans Velthuis (velthuis@rc.rug.nl), Thomas
Ridgeway (165 McGraw Street, Seattle, WA 98109 USA), Jeroen Hellingman (jhelling@cs.ruu.nl) and
the author. Some of them are still under (-status, so please contact their respective authors for more
information on their availability.

— SEVENBIT column: Entries in slanted style are extensions to Frans Velthuis’ transcription, proposed by
the author.

TUGboat, Volume 15 (1994), No. 4

The EAN barcodes by TEX
Petr Olsak

Abstract

In this article, we describe the algorithm for the transfor-
mation from the EAN 13 code (13-digit number) to the
barcode (the sequence of bars and spaces) and we show
the implementation of this algorithm to the macro lan-
guage of TEX. The drawing of the bars is realized by the
TEX primitive \vrule. Some data from the standard for
the EAN barcodes (tolerances and so on) are presented
too. The corresponding TEX macro is available on CTAN
in tex-archive/macros/generic/ean.

— — % — —

I have prepared my first book about TEX written in
Czech (Olsak, 1995). My interest in preparing the
book didn’t end with sending the manuscript or the
type matter to the publisher because the publisher
is our CSTUG (the Czechoslovak TEX users group).
I made the cover design of the book, I worked on
the distribution problems like getting the ISBN, and
SO on.

When I got the ISBN (International Standard
Book Number), I converted it to EAN 13 (European
Article Numbering) and I took concern about the
barcode for this number, because it is commonly
used on book covers. I found out that it would be
very expensive to have commercial firms make the
barcode. On the other hand, using TEX to produce
the barcode is a very natural application of this pro-
gram because of its high accuracy and its algorith-
mic macro language. To find the description of the
conversion algorithm with 13 digits as the input and
the barcode metrics as the output was the only prob-
lem. This algorithm is described in (Benadikov et
al., 1994).

The transformation from ISBN to EAN is sim-
ple. The ISBN is a 10-digit number. The dashes be-
tween digits divide the ISBN into the fields “country-
publisher-number-checksum” and (essentially) can
be ignored. First we write three new constant digits
(978) at the front of the ISBN. Next we compute a
new checksum digit (the last one). The algorithm
for computing the ISBN checksum is different from
the one for computing the EAN checksum. For the
EAN, first we need to compute the sum of digits on
the even positions. Let the sum be e. Next we com-
pute the sum of digits on the odd positions (without
the checksum digit). Let the sum be o. We evalu-
ate the expression 3 x e 4+ 0. The difference between
the result and the next modulo-10 number is the
checksum digit. For example, The TEXbook book
hard cover (Knuth, 1986) has its ISBN 0-201-13447-

459

0 (0: country USA; 201: publisher Addison Wesley;
13447: internal book number assigned by publisher;
0: the checksum digit). We write the three constant
digits at the front and remove the checksum digit to
obtain 9780201134477. Now e = 7+0+04+1+4+7 =
19 and 0 =9+8+2+41+3+4 = 27. The difference
between 3 x 19+ 27 = 84 and 90 is 6 and this is the
checksum digit. We can divide the result by dashes
into 6 digit fields (only for easier reading) and the
result is 9-780201-134476.

The transformation from the EAN number to
the barcode metric is more complicated. The left-
most digit (the 13th position) is 9 for books, but it is
different for other kinds of goods. This digit doesn’t
have its own field in the barcode but it influences
the algorithm for the transformation of the following
digits to their fields. The widths of the bars or white
spaces between the bars are multiples of the basic
so-called “module X”. The size of module X varies
for different SC standards (see below), but the basic
size is 0.33mm. Each digit from positions 12 to 1
is transformed to a field of module width 7X. This
field by definition contains two bars and two white
spaces. The “start mark” of module width 3X (1X
bar, 1X space and 1X bar) is appended before the
digit from the 12th position. The same “stop mark”
(module width 3X) is appended after the last digit
and a so-called “separator mark” of module width
5X (1X space, 1X bar, 1X space, 1X bar and 1X
space) is placed between digits on the 7th and 6th
positions. The “mark” bars are 5X longer than the
bars from the digits.

It is easy to see that the total length of the EAN
barcode is 95X. We also have to consider the 11X
white space to the left of the code and the 7X white
space to the right of the code. These are the min-
imal white “margins”, which are important for the
barcodes on a color background. The total number
of bars is 30.

Each digit is transformed into two bars in its
7X size field according to one of the tables (A, B
and C) shown in Table 1.

Zero in the table stands for the white module
(of size 1X) and one means the black module. For
example, the digit 4 is converted to 1X space, 1X
bar, 3X space and 2X bar by table A and to 2X
space, 3X bar, 1X space and 1X bar by table B. No-
tice that all tables convert the digit into exactly two
spaces and two bars and that the converted field
starts with the space if table A or B is used, and
with the bar if table C is used.

The digits in positions 6 to 1 are transformed
by table C under any circumstance. The digits in
positions 12 to 7 are transformed by table A or B.

460

tab. A tab. B tab. C
0 | 0001101 | 0100111 | 1110010
1 | 0011001 | 0110011 | 1100110
2 | 0010011 | 0011011 | 1101100
31 0111101 | 0100001 | 1000010
4 | 0100011 | 0011101 | 1011100
51 0110001 | 0111001 | 1010000
6 | 0101111 | 0000101 | 1010000
7 | 0111011 | 0010001 | 1000100
8 | 0110111 | 0001001 | 1001000
9 | 0001011 | 0010111 | 1110100

Table 1: Tables A, B and C

The choice depends on the value of the digit in the
13th position, as described in Table 2.

For example, if the digit in position 13 is 9 (our
case for books), the digits in positions 12, 9 and 7
are transformed by table A and the ones in positions
11, 10 and 8 are transformed by table B.

Now we can show the TEX macro. First we load
the special OCRD font for printing out the EAN code

\font\ocrb=ocrb9
\font\ocrbsmall=ocrb7 % for ISBN

\newcount\numlines \newcount\nummodules
\newdimen\X % the module size X,
\newdimen\bcorr
\newdimen\workdimen \newdimen\barheight

[e L Ve

The main macro \EAN (line 11) converts the 13-
digit EAN number to the internal 60-digit number
\internalcode. Each digit of the \internalcode
represents the multiple of the X module size for ei-
ther the white space or the bar. The order of digits is
the same as the order of spaces and bars in the code.
The odd positions in the \internalcode (from the
left) stand for the white spaces and the even ones
for the bars.

9 \def\internalcode{0111}
10 \def\frontdigits{}
1 \def\EAN{\begingroup\EANscan}

=

12 \def\EANscan#1{\if#1-\let\next=\EANscan \else

TUGboat, Volume 15 (1994), No. 4

13th digit | 12 | 11 |10 | 9 | 8 | 7
0 AlA|A|A|A|A
1 A|lA|B|A|B|B
2 A|lA|B|B|A|B
3 AJlA|B|B|BJ|A
4 A|B|A|A|B|B
5 A|B|B|A|A|B
6 A|B|B|B|A|A
7 A|B|A B|A|B
8 A|B|A | B|B|A
9 A|B|B|A|BJ|A

Table 2: Dependence on the 13th digit

in human-readable form. This printout is appended
to the barcode. The METAFONT sources of these
fonts are available on CTAN; they were created by
Norbert Schwarz. I had to make one little correc-
tion in these sources: the command “mode_setup;”
was added to the beginning of the file ocrbmac.mf.
Starting at line 4 some “variables” are declared.

\message{The EAN-13 barcodes macro. Copyright (C) Petr Olsak, 1995}
% for EAN in ‘‘number form’’

% number of bars and of modules.
\newcount\numdigit \newcount\evensum \newcount\oddsum

% internal variables

% the bar correction (see below).
% internal variables

The usage of the macro is

\EAN 9-780201-134476, for example. The pres-
ence of the “-” signs has mno significance.
The macro reads 13 digits and saves them

in \firstdigit, \frontdigits and \enddigits.
At this point, the macro converts the input
into \internalcode using macros \settables,
\usetabAB, \insertseparator and \usetabC. The
\testchecksum macro (line 25) checks for the cor-
rectness of the last (check-sum) digit of the EAN.

% Begin mark at start
% 12--7 digit of EAN

13 \advance\numdigit byl

14 \ifnum\numdigit<13

15 \ifodd\numdigit \advance\oddsum by #1 \else \advance\evensum by #1 \fi
16 \let\next=\EANscan

17 \ifnum\numdigit=1 \settables#1\def\firstdigit{#1}\else

18 \ifnum\numdigit<8 \usetabAB#1l\edef\frontdigits{\frontdigits#1}\else

19 \ifnum\numdigit=8 \insertseparator \A \usetabC #1\def\enddigits{#1}J

TUGboat, Volume 15 (1994), No. 4

461

20 \else \usetabC#1\edef\enddigits{\enddigits#1}J,

21 \fi\fi\fi

22 \else \testchecksum#l\usetabC#1l\edef\enddigits{\enddigits#11}/,

23 \let\next=\EANclose

24 \fi\fi \next}

25 \def\testchecksum#i{\multiply\evensum by3 \advance\evensum by\oddsum
26 \oddsum=\evensum

27 \divide\oddsum by10 \multiply\oddsum by10 \advance\oddsum by10
28 \advance\oddsum by-\evensum \ifnum\oddsum=10 \oddsum=0 \fi

29 \ifnum#1=\oddsum \else

30 \errmessage{The checksum digit has to be \the\oddsum, no #1 !}\fi}

At the time of the \EANclose expansion
(line 31), we close the \internalcode by the
\insertendmark; next we write to the log the EAN
number in the 13-digit form and in the internal 60-
digit representation. The last action is to “run” the
macro \EANbox, which makes the box with the bar-
code. The input parameter to this macro is the 60-
digit \internalcode.

How was the \internalcode made? The
macros starting at line 35 answer this question.

31 \def\EANclose{\insertendmark

These macros are the tables mentioned above rewrit-
ten in the macro language of TEX.

There is no need to define table C in the macro,
because table C is the exact “inverse” of table A.
When we insert the separator (line 52 of the macro),
the odd number of digits (namely 5) is appended to
the \internalcode. This implies that the parity of
the black/white order is changed. Using table \A
is therefore sufficient for the transformation of the
digits in positions 6 to 1 (see line 19).

32 \wlog{EAN: \firstdigit\space\frontdigits\space\enddigitsl}’
33 \wlog{EANinternal: \internalcodel}},
34 \expandafter\EANbox\internalcode. .\endgroup}

35 \def\A{\def\0{3211}\def\1{2221}\def\2{2122}\def\3{1411}\def\4{1132}},
36 \def\5{12313\def\6{1114}\def\7{1312}\def\8{1213}\def\9{3112}}

37 \def\B{\def\0{1123}\def\1{1222}\def\2{2212}\def\3{1141}\def\4{2311}},
38 \def\5{1321}\def\6{4111}\def\7{2131}\def\8{3121}\def\9{2113}}

39 \def\settables#1{\ifnum#1=0 \def\tabs{\A\A\A\A\A\A}\fi

40 \ifnum#1=1 \def\tabs{\A\A\B\A\B\B}\fi
41 \ifnum#1=2 \def\tabs{\A\A\B\B\A\B}\fi
42 \ifnum#1=3 \def\tabs{\A\A\B\B\B\A}\fi
43 \ifnum#1=4 \def\tabs{\A\B\A\A\B\B}\fi
44 \ifnum#1=5 \def\tabs{\A\B\B\A\A\B}\fi
45 \ifnum#1=6 \def\tabs{\A\B\B\B\A\A}\fi
46 \ifnum#1=7 \def\tabs{\A\B\A\B\A\B}\fi
47 \ifnum#1=8 \def\tabs{\A\B\A\B\B\A}\fi
48 \ifnum#1=9 \def\tabs{\A\B\B\A\B\A}\fi}

49 \def\usetabAB#1{\expandafter\scantab\tabs\end \usetabC #1}

50 \def\scantab#1#2\end{#1\def\tabs{#2}}) The tab #1 is activated and removed
51 \def\usetabC#1{\edef\internalcode{\internalcode\csname#1\endcsnamel}}

52 \def\insertseparator{\edef\internalcode{\internalcode 11111}}

53 \def\insertendmark{\edef\internalcode{\internalcode 111}}

Now comes the most important part of our
macro: creating the bars using the TEX primi-
tive \vrule. The internal macro \EANbox (line
54) does this job. This macro reads the 60-digit
\internalcode (ended by two dots) as its param-
eter. It scans two digits per step from the param-
eter (first digit: the white space; second digit: the
black bar) and puts in the appropriate kerns and
rules. Each kern/rule pair is corrected by a so-called

“bar correction”. The standard recommends mak-
ing each rule thinner than what is exactly implied
by the multiple of the X size. This recommendation
is due to the ink behavior during the actual print-
ing. For example, for offset process technology, it is
recommended to reduce the bar width by 0.020 mm.
If the bar width is reduced, the white space must be
enlarged by the same amount in order to preserve
the global distance between bars.

462

The bars 1, 2, 15, 16, 29 and 30 have nonzero
depth (5X) because these are the lines from the
start, the separator and the stop marks. The height
of the bars is 69.24 X in the normal case but it may
be reduced, if the ISBN is appended to the top of the

54 \def\EANbox{\vbox\bgroup\offinterlineskip
55 \setboxO=\hbox\bgroup \kernl1\X\EANrepeat}

TUGboat, Volume 15 (1994), No. 4

code. If the \barheight is zero, than the implicit
height is used. Otherwise the \barheight is used.
This feature gives the user the possibility to set the
bar height individually.

56 \def\EANrepeat#1#2{\if#1.\let\next=\EANfinal \else\let\next=\EANrepeat

57 \advance\numlines byl

58 \advance\nummodules by#1 \advance\nummodules
59 \workdimen=#1\X \advance\workdimen by \bcorr
60 \workdimen=#2\X \advance\workdimen by-\bcorr

by#2
\kern\workdimen
\vrule width\workdimen

61 \ifdim\barheight=Opt height 69.24242424\X \else height\barheight \fi
62 \ifnum\numlines=1 depth5\X\else % the start mark

63 \ifnum\numlines=2 depth5\X\else

64 \ifnum\numlines=15 depth5\X\else % the separator mark

65 \ifnum\numlines=16 depth5\X\else

66 \ifnum\numlines=29 depth5\X\else J the end mark

67 \ifnum\numlines=30 depth5\X\else depthOpt \fi\fi\fi\fi\fi\fi

68 \fi\next}

The \EANfinal macro checks for the correct-
ness of the scanned \internalcode. The number
of the digits must be 60 and the sum of digits must
be 95 (since 95X modules is the total). If the check
fails, the \internalerr macro is activated. How-
ever this situation should never occur. This error
indicates that some internal tables are wrong and/or
the consistency of the macro is broken.

The \vbox is completed by \EANfinal. The
natural depth of the internal \hbox with the bars is

69 \def\EANfinal{\testconsistence

70 \kern7\X\egroup

71 \hbox{\ocrbsmall \kerni0\X \ISBNnum}\kerni\X
72 \dp0=0Opt \boxO \kern-1\X

5X because that is the depth of the mark rules. We
overwrite this depth by zero and append the human-
readable EAN number using the font \ocrb.

If the user writes the ISBN number using the
macro \ISBN (\ISBN 0-201-13447-0 for exam-
ple), these data are appended to the top of the bar-
code and the height of the bars is reduced.

Finally, lines 81 and 82 define the X module size
and the bar correction.

73 \hbox{\ocrb\kern2\X\firstdigit\kern5\X \frontdigits\kern5\X \enddigits}
74 \egroup \global\barheight=0pt \gdef\ISBNnum{}}
75 \def\testconsistence{\ifnum\numlines=30\else\internalerr\fi

76 \ifnum\nummodules=95\else\internalerr\fi}

77 \def\internalerr{\errmassage{Sorry, my internal tables are wrong, may be.l}}

78 \barheight=0pt
79 \def\ISBNnum{}

80 \def\ISBN #1 {\def\ISBNnum{ISBN #1}\barheight=45.151515\X\relax}

81 \X=.33mm % Basic size 100%, SC2 code

82 \bcorr=.020mm 7% Bar-correction for offset process

83 \endinput

e macro was stored in file ean13.tex then
it can be run with plain TEX as shown below:
\input eanl3
\nopagenumbers
\ISBN 80-901950-0-8 \EAN 978-80-901950-0-4
\end

The output looks like:

I‘Sﬂ H ‘ WW) [] W m m“ |
9 ‘788090“1 95004H

TUGboat, Volume 15 (1994), No. 4

X size | standard | scaled | size incl. margins
0.264 SCo 0.800 29.83 x 21.00
0.270 SCOo 0.818 30.58 x 21.53
0.281 SCOo 0.850 31.70 x 22.32
0.297 SC1 0.900 33.56 x 23.63
0.313 SC1 0.950 35.43 x 24.94
0.330 SC2 1.000 37.29 x 26.26
0.346 SC2 1.050 39.15 x 27.58
0.363 SC3 1.100 41.02 x 28.29
0.379 SC3 1.150 42.88 x 30.20
0.396 SC4 1.200 44.75 x 31.51
0.412 SC4 1.250 46.61 x 32.82
0.429 SCh 1.300 48.48 x 34.14
0.445 SCh 1.350 50.34 x 35.45
0.462 SC5h 1.400 52.21 x 36.76
0.478 SCh 1.450 54.07 x 38.08
0.495 SC6 1.500 55.94 x 39.39
0.511 SC6 1.550 57.80 x 40.70
0.528 SC7 1.600 59.66 x 42.01
0.544 SC7 1.650 61.53 x 43.33
0.561 SC7 1.700 63.39 x 44.64
0.577 SC7 1.750 65.26 x 45.96
0.594 SC8 1.800 67.12 x 47.26
0.610 SC8 1.850 68.99 x 48.58
0.627 SC8 1.900 70.85 x 49.90
0.643 SC8 1.950 72.72 x 51.20
0.660 SC9 2.000 74.58 x 52.52
0.700 SC10 2.120 79.05 x 55.67

Table 3: Various sizes of the X module

The macro also works with WTEX (both IATEX 2.09

and ITEX 2¢).

At the end of this article we compare the toler-
ances described in the standard, the TEX accuracy
and the possibilities of some output devices.

The X module size can vary. The macro above
makes EAN barcodes for the basic X module size of
0.33mm. This size is described in the SC2 variant of
the standard as the basic 100% size code. However
the standard also allows some other sizes of the X
module. One can change the parameter \X to obtain
the other size of EAN code. Of course, then the size
of the OCRD font must be changed too.

The allowed sizes of the X module are described
in Table 3.

The small sizes of the X module are recom-
mended for high quality output devices while the
large sizes of X allow the possibility to make the
barcodes even on a low resolution output device.

Depending on the width of the X module, the
standard specifies three tolerance parameters. The
parameter a specifies the tolerance for the bar width,

463

X size | *a | £b | *c
0.26 32 | 38 75
0.28 52 | 41 81
0.30 72 | 44 87
0.32 92 | 47 93
0.33 | 101 | 49 96
0.34 | 105 | 50 99
0.36 | 115 | 53 | 104
0.38 | 124 | 56 | 110
0.40 | 134 | 59 | 116
0.42 143 | 62 | 122
0.44 152 | 65 | 128
0.46 | 162 | 68 | 133
0.48 | 171 | 71 | 139
0.50 | 181 | 73 | 145
0.52 | 190 | 76 | 151
0.54 | 199 | 79 | 157
0.56 | 209 | 82 | 162
0.58 | 218 | 85 | 168
0.60 | 228 | 88 | 174
0.62 | 237 | 91 | 180
0.64 | 246 | 94 | 186

Table 4: The tolerances

the parameter b specifies the tolerance for the dis-
tance between edges (either left or right ones) of
two consecutive bars, and the parameter ¢ speci-
fies the tolerance for the width of the field for one
digit (therefore for width 7X). The Table 4 describes
these tolerances in micrometers (um). I don’t know
why the table column “X size” doesn’t match with
the column “X size” of the previous table. Sorry,
standards are mysterious.

Now we can compare. Consider the basic 100%
size (the X module is 0.33 mm). The tolerance for
the width of the bar is 101 pm, the TEX (in)accuracy
is 0.0054 pm, the pixel size of the phototypesetter
at 2400dpi is approximately 10 pm and the recom-
mended bar correction for the offset process is 20 ym.
If we use the phototypesetter at 1200 dpi, the inaccu-
racy of its output is comparable to the bar correction
for the offset process.

Depending on the inner dvi driver algorithm
the high TEX accuracy may be lost and the toler-
ance parameters may be overcome. The dvi driver
algorithms include one of two possible approaches
to the “rounding” problem. The first approach is
to position and round each rule from dvi individu-
ally. In the second approach, the dvi driver works
only with rounded values (one pixel = one unit) be-
fore making the queue of kern, rule, kern, rule... In
this case, the roundoff error can accumulate and the

464

parameter ¢ can be overcome. But it seems to me
that the barcode scanners can read the code better
if the metrics of the consecutive bars and spaces are
preserved instead of the global width.

As T observed, the dvi drivers usually round the
rule width up to the pixel units and never down. The
consequence of this feature is that spaces tend to be
one pixel smaller than the rules of (presumably) the
same width. Therefore I recommend to add one half
of the pixel size to the bar correction, namely to the
\bcorr register.

I have heard that EAN barcodes are successfully
read from stickers printed by matrix printers with
a very low resolution at module X size of 0.33 mm
or comparably small. That would imply that the
tolerances of the barcode scanners are usually much
higher than those required by the standard.

References

Adriana Benadikovd, Stefan Mada and Stanislav
Weinlich. Cdrové kddy, automatickd identi-
fikace (Barcodes, the Automatic Identification).
Grada 1994, 272 pp., ISBN 80-85623-66-8.

Donald Knuth. The TgXbook, volume A of Comput-
ers and Typesetting. Addison-Wesley, Reading,
MA, USA, 1986. ix+483 pp. Hard cover ISBN 0-
201-13447-0.

Petr Olsdk. Typograficky systém TEX (Typesetting
System TEX). CSTUG 1995, 270 pp., ISBN 80-
901950-0-8.

o Petr Olsdk
Department of Mathematics
Czech Technical University in
Prague
Czech Republic
olsak@math.feld.cvut.cz

TUGboat, Volume 15 (1994), No. 4

464

ance parameters may be overcome. The dvi driver
algorithms include one of two possible approaches
to the “rounding” problem. The first approach is
to position and round each rule from dvi individu-
ally. In the second approach, the dvi driver works
only with rounded values (one pixel = one unit) be-
fore making the queue of kern, rule, kern, rule... In
this case, the roundoff error can accumulate and the
parameter ¢ can be overcome. But it seems to me
that the barcode scanners can read the code better
if the metrics of the consecutive bars and spaces are
preserved instead of the global width.

As 1 observed, the dvi drivers usually round the
rule width up to the pixel units and never down. The
consequence of this feature is that spaces tend to be
one pixel smaller than the rules of (presumably) the
same width. Therefore I recommend to add one half
of the pixel size to the bar correction, namely to the
\bcorr register.

I have heard that EAN barcodes are successfully
read from stickers printed by matrix printers with
a very low resolution at module X size of 0.33 mm
or comparably small. That would imply that the
tolerances of the barcode scanners are usually much
higher than those required by the standard.

References

Adriana Benadikové, Stefan Mada and Stanislav
Weinlich. Cdrové kdédy, automatickd identi-
fikace (Barcodes, the Automatic Identification).
Grada 1994, 272 pp., ISBN 80-85623-66-8.

Donald Knuth. The TgXbook, volume A of Comput-
ers and Typesetting. Addison-Wesley, Reading,
MA, USA, 1986. ix+483 pp. Hard cover ISBN 0-
201-13447-0.

Petr Olsdk. Typograficky systém TEX (Typesetting
System TgX). CSTUG 1995, 270 pp., ISBN 80-
901950-0-8.

o Petr Olsak
Department of Mathematics
Czech Technical University in
Prague
Czech Republic
Email: olsak@math.feld.cvut.cz

TUGboat, Volume 15 (1994), No. 4

Letter

An open letter to the TUG Board

It has been suggested by those whose opinion I re-
spect that my somewhat emotive statements con-
cerning the plan to split TUGboat from the auto-
matic benefits of TUG membership whilst retaining
TTN was not calculated to lead to sympathy for my
cause. Whilst I accept this, I also know that once an
idea has become entrenched it requires more than
moderate words to cause a re-consideration of the
situation, and I therefore feel that the force with
which I put my points was not out of proportion.
However, as many board members were not present
at the meeting, and as it will no doubt take some
time for the minutes to be circulated, I would like
to briefly re-iterate my point of view and to explain
it.

The proposal, as put at the meeting, is to re-
duce the membership fee by $20.00, and in addition
to make TUGboat available as an ‘optional extra’
for a further $15.00; TTN will continue to be sent
to all, and its content will be enlarged and improved.
The arguments adduced in favour of this are that (1)
TUGhboat is of interest to only a minority of mem-
bers, whilst (2) TTN is of interest to all.

Clearly (2) is at best debatable, and at worst to-
tally flawed: several speakers emphasised that they
did not want to receive TTN. Proposition (1) is
interesting, and the obvious question is “on what
is this assertion based?” When were the members
polled to ask if they valued TUGboat or not? How
much of this argument is based on hearsay and ru-
mour, and how much on fact?

When I received my first TUGboat, it was al-
most completely incomprehensible to me: I had no
idea what the majority of articles meant. But then
the same was true for The TEXbook, and for the
Algol-60 and -68 reports: they were initially com-
plete gibberish, expressed in a language that only
the congnoscenti could possibly understand. But I
did not give up: I persevered. And each time that
I re-read TUGboat, or The TEXbook, or the Algol-
6X reports, I learned a little more. And when the
next issue of TUGboat arrived, I was able to read a
small amount of it without excessive effort, although
other parts remained a mystery. But again I did not
give up; again I persevered; and with each issue of
TUGboat my understanding grew.

But as my understanding grew, so did my love
of TEX; each article was a further insight into the

TUGhboat, Volume 15 (1994), No. 4

brain of its designer and creator, Don Knuth; and
the more I learned, the more I wanted to learn.

And finally the day came when I felt confident
enough to propose an article of my own; not too
long, not too technical, but my first faltering step as
an active member of the TEX community, no longer
completely passive and totally dependent on others
for my every TEX need.

And all of this came about through the magic
of TUGboat, under the inspired editorship -of the
irreplaceable Barbara.

Then, several years later, I received my first
copy of TTN. I was horrified: it was almost com-
pletely filled with the disgusting details of the in-
fighting which had taken place before, during and
after the ‘night of the long knives’. It was about
TUG, not about TEX.

But I did not join TUG to learn about TUG,;
TUG is simply a vehicle, not an independent en-
tity with a de facto right to existence. It exists for
one purpose and one purpose only: to propagate the
word about TEX.

And in that last sentence I summarise what I
believe is at the heart of this somewhat heated de-
bate: TUG should be about TEX, not about TUG.

Now you can argue that (a) TUG members
need to know about TUG activities, and (b) that
TTN carries TEX-related matter. With (a), I can
take no exception: of course we need to know
about TUG activities. But we do not need a
whole magazine/journal/w-h-y devoted to the sub-
ject: a few pages in TUGboat, ready-prepared by
the present/incoming TTN team so as to minimise
the load on Barbara, is all that is required. But with
(b), I take great exception: there is no need for a
second TUG publication about TEX; it already has
a first-class publication in TUGboat, and anything
which competes with it simply serves to diminish its
value. When I have read a useful snippet in TUG-
boat, and need to find it again at some point in
the future, I can either consult the on-line indexes,
or scan the back covers (modulo the ragged-right,
“aren’t we clever designers?”, Vol. 7, no. 1) to find
the article of interest. I do not want to have to
remember whether it was in TTN or TUGboat —1
want to know that it was in TUGboat, the definitive
TEX journal.

But yes, I agree; more articles for beginners are
needed. But their place, too, is in TUGboat, at the
very beginning; and each article thereafter should
be a little more complex, until the final one is of the
level demanded by Joachim Schrod and others of
his intellect. And by structuring it in this way, the
reader will be gently led, just beyond the limits of
their own abilility. And with each issue their ability

465

will grow, until they, too, are contributors to the
wonderful world of TEX, not merely passive users.

And therein, dear Board, surely lies the flaw of
your proposal: you seek to divide the TEX commu-
nity into providers and users, thereby emulating all
that is awful about the appalling world of Word Im-
perfect and Quark SlowBoat. Please ask yourselves:
is this really what you want?

Three final points, purely concerned with fi-
nance. (1) Do you really believe that there exists an
organisation stupid enough to pay $60.00 for TUG-
boat alone, when it can pay $55.00, throw away its
copy of TTN, and still receive TUGboat for $5.00
less? (2) Do you really intend to raise your prices to
students, by charging them $5.00 per year more than
they are presently paying? $20.00, being 50% of the
proposed TUG subscription, plus $15.00 for TUG-
boat, is $35.00; (these were the exact figures given
at the business meeting in response to Anita’s query,
although seemingly no-one present noticed this); at
the moment a student pays 50% of $60.00 ($30.00)
and receives TUGboat as an integral part. And (3),
what about economies of scale? As the number of
copies of TUGboat which you produce diminishes,
the unit cost increases; is it your covert intention to
make TUGboat so expensive to produce that you
can eventually justify ceasing its publication alto-
gether?

Yours very sincerely,

Philip Taylor,

The Computer Centre

Royal Holloway and Bedford New
College

University of London

Egham, Surrey TW20 0EX,
England

466

Typesetting Commutative Diagrams

Gabriel Valiente Feruglio

University of the Balearic Islands
Mathematics and Computer Science Dept.
E-07071 Palma de Mallorca (Spain)
dmigvaO@ps.uib.es

Abstract

There have been several efforts aimed at providing TEX
and its derivatives with a suitable mechanism for type-
setting commutative diagrams, with the consequent avail-
ability of several macro packages of widespread use in
the category theory community, and a long debate about
the best syntax to adopt for commutative diagrams in
IXTEX3 has taken place during 1993 in the CATEGORIES
discussion list. From the user’s point of view, however,
there is not much guidance when it comes to choosing
a macro package, and even after a decision is made, the
conversion of diagrams from the particular conventions
of a macro package to another macro package’s conven-
tions may prove to be rather hard.

Typesetting commutative diagrams is a surprisingly
difficult problem, in comparison with TEX macro pack-
ages for other purposes, as judged by the amount of code
needed and years of development invested. The existing
macro packages for typesetting commutative diagrams
are reviewed in this paper and they are compared accord-
ing to several criteria, among them the capability to pro-
duce complex diagrams, quality of the output diagrams,
ease of use, quality of documentation, installation pro-
cedures, resource requirements, availability, and porta-
bility. The compatibility of the different macro packages
is also analyzed.

— — % — —

1 Introduction

Commutative diagrams are a kind of graph that is
widely used in category theory, not only as a concise
and convenient notation but also as a powerful tool
for mathematical thought.

A diagram in a certain category is a collection
of nodes and directed arcs, consistently labeled with
objects and morphisms of the category, where “con-
sistently” means that if an arc in the diagram is
labeled with a morphism f and f has domain A and
codomain B, then the source and target nodes of
this arc must be labeled with A and B respectively.

A diagram in a certain category is said to com-
mute if, for every pair of nodes X and Y, all the
paths in the diagram from X to Y are equal, in
the sense that each path in the diagram determines
through composition a morphism and these mor-

TUGboat, Volume 15 (1994), No. 4

phisms are equal in the given category. For instance,
saying that the diagram®

A1—1-p

gl lg,

—D
c I3

commutes is exactly the same as saying that
gof=Ffog

As a notation, the graphic style of presenta-
tion inherent to commutative diagrams makes state-
ments and descriptions involving categories more clear
and manageable than textual presentations. For in-
stance, consider the definition of an equalizer. A
morphism e : X — A is an equalizer of a pair of
morphisms f : A - Band g: A — Bif foe =
g o e and for every morphism e’ : X’ — A satisfy-
ing foe = goe there exists a unique morphism
k: X' — X such that eok = ¢'.

An equivalent definition is that e is an equalizer
if the upper part of the diagram

X—>A—%2B

A g
k /
: e

XI
commutes and, whenever the lower part of the dia-
gram also commutes, there is a unique k such that
the whole diagram commutes.

As a tool for thought, proofs involving prop-
erties that are stated in terms of commutative dia-
grams can often be given in a “visual” way, in what
has been called diagram chasing. For instance, the
proposition that if both inner squares of the follow-
ing diagram commute, then also the outer rectangle

commutes,

a—tlop_t.c

)bk

A'——= B ——= ('

1 All the diagrams in this paper have been typeset us-
ing the Xy-pic macro package, unless otherwise stated. The
reader should not infer any preference by the author for that
particular macro package, but should understand that some
macro package is needed for the examples in the paper. Sam-
ple diagrams typeset with the other macro packages are given
in Appendix I.

TUGboat, Volume 15 (1994), No. 4

can be proven as follows:

(g’ofYoa = g'o(f oa) (associativity)
= ¢ o(bof) (commutativity
of left square)
= (g'ob)of (associativity)
= (cog)of (commutativity
of right square)
= co(gof) (associativity).

Commutative diagrams? range from simple, rect-

angular matrices of formulae and arrows to complex,
non-planar diagrams with curved and diagonal ar-
rows of different shapes.

2 Constructing commutative diagrams

Commutative diagrams are constructed in most cases
as rectangular arrays, as Donald Knuth does in Ex-
ercise 18.46 of [4]. The objects or vertices are set
much like a \matrix in TEX or an array environ-
ment in BTEX,

and the morphisms or arrows are set either right
after the vertex where they start,

g

>
X

Y Ly
b e

)y

Ye

or in a cell on their own,

Y

A
Y

Y

Y Y Y

< >
< -

depending on the macro package being used, where
the grids correspond to the sample diagram pre-
sented in Appendix I. (Sketching a commutative
diagram on such a grid on paper may prove to be a
mandatory step before typing the actual diagram, at

2 The epithet “commutative” is traditional and originates
in the fact that diagrams may be used to display equations
such as the commutative and associative laws. Although not
all such diagrams which people draw commute in the formal
sense given, this paper adheres to tradition and all such dia-
grams are called commutative diagrams herein.

467

least for all but the simplest diagrams.) This gives
a first distinction,

e one object and all departing morphisms in each
non-empty cell, or

e either one object or one or more morphisms in
each non-empty cell.

Whether they belong together with their source
object in a cell or they use a cell on their own, mor-
phisms are specified by the address of their target
cell. Such addresses can be implicit, absolute or rel-
ative to the source cell, and they can be either arbi-
trary or limited by the available diagonal slopes.

Moreover, some macro packages even support
symbolic addresses, by which nodes are tagged with
identifier names and arrows are specified by making
reference to the names of their source and target
nodes. This is a step forward in the sense of the
IXTEX principle of emphasizing structural descrip-
tions, and in fact it is of great help for designing
complex diagrams because it divides the task into
two separate subtasks, the one of producing a cor-
rect and elegant arrangement of nodes and the other
of laying out the correct arrows and positioning their
labels.

3 Evaluation guidelines

The following aspects are considered in the next sec-
tion for each of the macro packages in turn. The
spirit of these guidelines is to give the potential user
a feeling of what to expect from a macro package
for typesetting commutative diagrams, and they are
based on the experience of the author during the last
few years, as user of some of the macro packages.

3.1 Arrow styles

The arrows used in commutative diagrams often are
of different shapes, in order to distinguish different
kinds of morphisms such as monomorphisms, epi-
morphisms, isomorphisms, and inclusions, to name
just a few, and sometimes they have a shaft other
than a solid line, for instance dashed or dotted, to
indicate that it is the existence of the corresponding
morphisms which is being characterized.

A collection of built-in arrow shapes and shafts
is included in every macro package, and some macro
packages even provide facilities for defining new ar-
row styles, for instance by defining a new control se-
quence name and choosing a particular combination
of tail (the piece that appears at the source end),
head (the piece that appears at the target end), and
shaft, from a predefined pallette of possible heads,
tails, and shafts.

468

3.2 Automatic stretching

Most of the macro packages provide for the auto-
matic stretching of arrows to meet their source and
target nodes, where meeting a node means to get as
close to the (rectangular) box enclosing the node as
dictated by some predefined parameter.

While this may be appropriate for most hor-
izontal and vertical arrows, in the case of diagonal
arrows it may leave the arrow too far from the node,
and extra diagram fine-tuning (see below) is needed
in such cases in order to get the arrow closer to the
node. The macro package by John Reynolds, how-
ever, incorporates basic facilities for associating a
hexagon, octagon, or diamond to a node, instead
of the usual rectangle, although it does not exploit
them in the macros for commutative diagrams.

3.3 Diagram fine-tuning

Given a correct description of the structure, a macro
package has the task of choosing the best possible
arrows to produce the commutative diagram. Some-
times the best choice may not seem good enough,
because only a limited number of slopes may be
available for the arrows, because arrows may cross,
and because arrow labels may superimpose. Manual
fine-tuning belongs therefore to producing complex
commutative diagrams.

Arrow stretching can be regarded as automatic
fine-tuning. Manual fine-tuning facilities, on the
other hand, include moving labels around, moving
arrows around, modifying their size, changing the
distance from the source node to the beginning of
the arrow, as well as from the end of the arrow
to the target node, and setting spacing parameters
such as the gap between columns and between rows.
Some macro packages provide the facility to adjust
these gaps to different values between specific rows
or columns, which is essential in order to get the
proper perspective of a three-dimensional diagram.
Otherwise, empty rows and columns have to be added
to the diagram to get the desired perspective. Ap-
pendix III shows the degree of automatic stretching
provided by each of the macro packages.

3.4 Installation

None of the macro packages requires a complex in-
stallation procedure, and in most cases the only re-
quirement in order to get the package running is to
drop a single macro or style file somewhere in the
TEX search path. Some macro packages, however,
have accompanying special fonts to get better di-
agonal lines and arrows, that is, they provide more

TUGboat, Volume 15 (1994), No. 4

diagonal slopes and a wider variety of arrow heads
and tails to choose from.

In such a case, installation can get more com-
plicated. METAFONT is not as easy to drive or as
familiar to the user as TEX or KTEX; many imple-
mentations do not make it available, and on oth-
ers only the system administrator is able to install
fonts. A ready-to-use collection of the additional
fonts at standard magnifications is distributed, how-
ever, with some macro packages.

3.5 Documentation

This ranges from small text files to comprehensive
user guides, and even to book chapters.

3.6 User support

The authors of the different macro packages have
been receptive to comments and willing to provide
user support. Almost all of the macro packages re-
main under development and are open to sugges-
tions from users. Moreover, further development of
the Xy-pic macro package by Kristoffer Rose and
Ross Moore is being funded by three different sources.

3.7 Ease of use

The relative ease of use of a macro package is a sub-
jective matter, depending to a large extent on pre-
vious experiences in using similar macro packages.
Nevertheless, there are at least two characteristics
of a macro package for typesetting commutative di-
agrams that are worth mentioning.

The way in which the array of cells underlying
a commutative diagram has to be conceived is of
most importance. The requirement, found in some
macro packages, of extra cells for morphisms makes
the macro package much more difficult to use, be-
cause the user has to add many spurious rows and
columns only to hold these morphisms and to get
proper spacing, and the code for the diagrams gets
bigger and more obscure (compare the last two grids
in the previous section).

Orthogonal to the conception of the array of
cells is the way in which coordinates for the source
and target nodes of the arrows have to be specified.
While such addresses are implicit in the name of the
arrow in some macro packages, they are absolute
coordinates, coordinates relative to the cell where
they are declared, or even symbolic coordinates in
other macro packages.

The other aspect is the degree of manual fine-
tuning needed to achieve a readable commutative
diagram. Even when the macro package provides
enough facilities, fine-tuning a complex commuta-
tive diagram may take more time and effort than

TUGboat, Volume 15 (1994), No. 4

conceiving, designing, and coding the whole dia-
gram. Some of the macro packages require visual
or measured adjustment by the user of the size and
position of every node, arrow, and label, whereas
for others most diagrams may be input as easily as
any other mathematical formula in TEX and they
are typeset nicely without any manual adjustment
at all.

3.8 Resource requirements

It is well known that TEX has been designed to sup-
port high-quality typesetting of mathematical text,
and that it does not offer much built-in support
when it comes to drawing and performing arbitrary
computations. Because most of the macro pack-
ages are built on top of TEX, they are forced to
resort to indirect ways of performing computations
and to produce large diagrams by juxtaposition of
small line and arrow segments. Therefore, a com-
plex diagram may take up lots of computations, line
segments, words of TEX memory, and time to type-
set. Appendix IV compares resource requirements
for the different macro packages, showing the main
file size together with statistics of both total time
and marginal time. The statistics are based on sam-
ple runs to typeset the sample diagrams presented
in Appendix I with the different macro packages.

3.9 Availability

All the macro packages reviewed in this paper can
be found in the CTAN archives, and either are in
the public domain or are free software, subject to
the terms of the GNU General Public Licence as
published by the Free Software Foundation. They
are listed in Appendix V.

3.10 Compatibility

Converting a commutative diagram among different
macro packages is no straightforward task, not only
because of the different approaches to constructing a
diagram mentioned in the previous section, but also
because of differences in naming conventions and in
the available arrow styles and slopes. Converting
the sample diagram in Appendix I has taken the au-
thor many hours of careful work, and in some cases
building the diagram again from scratch for another
macro package has proven to be the most efficient
solution.

The macro packages are therefore highly incom-
patible. Nevertheless, the macro package by Paul
Taylor provides some initial facilities for emulating
other macro packages. Maybe a common, agreed-
upon syntax for commutative diagrams (see the last
section below) would provide a suitable framework

469

for solving these incompatibilities. Moreover, al-
though it may seem rather natural that the macro
packages are not compatible with each other, be-
cause the idioms are under development and none
of the authors is, in principle, under any obliga-
tion to the users of the other macro packages, the
adoption of a common standard would have the ad-
vantage to the whole user community that the di-
agrams which have already been drawn with one
macro package could be pasted into a document us-
ing another macro package.

3.11 TgX format requirements

While it would be desirable to be able to typeset a
commutative diagram under any derivative of TEX,
some macro packages can only run on KTEX be-
cause they borrow the picture environment and
one or more of the special fonts 1ine10, linew1O,
circlel0, and circlewl0. Other macro packages
require AAMS-TEX or the amsmath package in BTEX.
The other way round, some macro packages run on
TEX but do not run when used in a TEX document.

3.12 Output quality

This is perhaps the most subjective aspect in these
guidelines, and therefore it is left for the reader to
evaluate. See the sample diagrams in Appendix I,
and make a guess at which of the macro packages
has been used in Valiente (1994).

4 Macro packages

The different macro packages are listed in turn in the
following, under the name of the respective author,
and they are analyzed according to the evaluation
guidelines presented in the previous section. No at-
tempt has been made to put them in chronological
order of development, and the list is sorted by au-
thor name.

4.1 American Mathematical Society

AMS-TEX includes some commands for typesetting
commutative diagrams, which are also available in
AMS-ITEX as a separate option. Only horizon-
tal and vertical arrows are supported, and there-
fore ApS-TEX can only handle “rectangular” com-
mutative diagrams. Moreover, only “plain” arrows
can be used within commutative diagrams, although
AMS-TEX provides about 30 different arrow shapes,
and arrows do not automatically stretch to their
source and target vertices. Commutative diagrams
are specified as an array of cells, with either one ob-
ject or one or more morphisms in each non-empty
cell, although unlike matrices, no column separa-
tor is needed (a special delimiter has to be used,

470

however, in place of missing arrows). Arrow coor-
dinates are implicit in the name of the arrow and
only the four basic directions are available, where
arrows can only extend to the adjacent row and/or
column in the array. The only fine-tuning facilities
provided are a stretching command to force arrows
in the same column to be set to the same length
(actually, to the width of the longest label in that
column), which does not suffice in order to achieve
appropriate arrow stretch when the vertices have dif-
ferent width (this manual stretching facility requires
the whole amsmath package to be loaded in ApS-
KTEX), and a command to change the minimum ar-
row width in a diagram, for instance to get it to fit
on a page. Documentation is as scarce as the fa-
cilities the package provides, only four pages in [11]
and one page in [9].

4.2 Barr

Instead of using a matrix notation, commutative di-
agrams are specified in the macro package developed
by Michael Barr by composing more elementary di-
agrams, using primitive shapes such as squares and
triangles. Arrow coordinates are implicit within these
shape macros. Additional arrows can be specified
by giving the absolute address, within an implicit
picture environment, of their source node, together
with the relative address of their target node as a
slope and a length, but stretching is not automatic
in these cases. It supports diagonal arrows only in
the usual IWTEX slopes, and only a few different ar-
row shapes are available. There are no facilities for
diagram fine-tuning. It only runs on ETEX. Docu-
mentation consists of a 10-page document [1] which
explains the principles and gives detailed examples.

4.3 Borceux

In the macro package developed by Francis Borceux,
commutative diagrams are specified as an array of
cells, with one object and all departing morphisms
in each non-empty cell. There are facilities for intro-
ducing one object and one morphism, or two cross-
ing morphisms, in each non-empty cell, but at most
two items may belong to the same cell. The de-
limiter for columns is, unlike the & character used
in all the other macro packages, the special charac-
ter § that is not even available in many keyboard
layouts. It supports diagonal arrows of different
shapes and in many different, although not arbi-
trary, slopes, and it also supports parallel and ad-
joint (counter-parallel) arrows, some curved arrows,
and automatic stretching. Arrow coordinates are
implicit in the name of the arrow for the 32 princi-
pal directions. Different facilities for diagram fine-

TUGboat, Volume 15 (1994), No. 4

tuning are provided. It only runs on BTEX. Docu-
mentation consists of a detailed 12-page document
[2]. Two restricted macro files are distributed for
small TEX implementations, one that only allows
for plain arrows and another one that also provides
parallel and adjoint (counter-parallel) plain arrows.
A further macro file is distributed with the pack-
age that provides additional triple, quadruple, and
quintuple arrows, parallel and disjoint.

4.4 Gurari

Unlike the case of most of the other macro pack-
ages, Eitan Gurari has developed a general drawing
package on top of TEX. It supports diagonal arrows
of different shapes and arbritrary slopes, curved ar-
rows and loops, automatic stretching, and symbolic
addressing. Arrow coordinates can be symbolic, be-
cause of the possibility of naming any location within
a drawing, but they are relative in the sample dia-
grams presented in the appendices because the macros
used are the ones given in page 160 of [3]. It runs
on both TEX and IXTEX. The macros are well docu-
mented in the book, with several basic chapters and
one chapter devoted to general grid diagrams, but
there is only one page describing commutative dia-
grams and there is only one sample diagram in the
whole book.

4.5 Reynolds

John Reynolds has developed a macro package con-
sisting of a collection of general macros for produc-
ing a wide variety of diagrams and another collection
of macros, which depend on the general macros, for
producing commutative diagrams. It supports di-
agonal arrows only in the usual TEX shapes and
slopes, because the macros depend on the ITEX pic-
ture facilities to draw lines, arrows, and circles, al-
though it also supports parallel and adjoint (counter-
parallel) arrows, loops, and it provides automatic
stretching. Commutative diagrams as specified by
giving the absolute coordinates for each node and
for the source and target node of each arrow, an ap-
proach close to symbolic addressing. Excellent fa-
cilities for diagram fine-tuning are provided. It only
runs on KWTEX. Documentation consists of a rather
cryptic 12-page ASCII file [5] describing the macro
package, together with a IXTEX input file that pro-
duces a 7-page document of sample diagrams.

4.6 Rose

A macro package has been developed by Kristof-
fer Rose on top of a more general drawing language,
called the Xyzpic kernel. It supports diagonal arrows
of different shapes and in many different, although

TUGboat, Volume 15 (1994), No. 4

not arbitrary, slopes, and it also supports paral-
lel and adjoint (counter-parallel) arrows, curved ar-
rows, and loops. Arrows stretch automatically, and
there are ample facilities for defining additional ar-
row styles. Commutative diagrams are specified as
an array of cells, with one object and all departing
morphisms in each non-empty cell. Arrow coordi-
nates for the target node are implicit in the name of
the arrow for the 16 principal directions, and they
can be absolute or relative for all other directions.
Different facilities for diagram fine-tuning are pro-
vided. It runs on both TEX and BTEX. Documenta-
tion is excellent, both a comprehensive guide [6] and
a more technical document [7] are provided with the
package. The latter also describes the Xy-pic kernel.

4.7 Smith

The Fxpanded Plain TEX macro package includes
macros for typesetting commutative diagrams, writ-
ten by Steven Smith, in a file named arrow.tex. It
supports diagonal arrows only in the usual IXTEX
slopes, because the macros depend on the KIEX
font 1ine10, and only a “plain” arrow shape is avail-
able, besides pairs of parallel and adjoint (counter-
parallel) arrows. Commutative diagrams are speci-
fied as an array of cells, with either one object or one
or more morphisms in each non-empty cell. There is
not any automatic stretching of arrows. Arrow co-
ordinates are implicit in the name of the arrow for
the four basic directions, and they are relative ad-
dresses for all other directions. Designing a complex
diagram using this macro package is as difficult as
fine-tuning a simple diagram, even requiring manual
computations of horizontal and vertical dimensions
to get a desired arrow size and slope. It runs on
both TEX and IXTEX. Documentation is enough to
cover the facilities provided by the macros, seven
pages in [8] and a two-page source document named
commdiags.tex, reproducing eleven textbook com-
mutative diagrams.

4.8 Spivak

IAMS-TEX includes an environment for producing
commutative diagrams that supports diagonal ar-
rows of different shapes and in many different, al-
though not arbitrary, slopes. Arrows stretch auto-
matically, and there are ample facilities for defining
additional arrow styles. Commutative diagrams are
specified as an array of cells, with one object and all
departing morphisms in each non-empty cell. Arrow
coordinates are relative addresses, and mnemonics
can be easily defined for the most common arrow co-
ordinates. Superb facilities for diagram fine-tuning
are provided. It only runs on TEX. Documentation

471

is excellent, two chapters in [10] describing every de-
tail from diagram design to coding and fine-tuning.

4.9 Svensson

The most recent addition to the commutative dia-
grams family is the macro package kuvio.tex, de-
veloped by Anders Svensson. It supports diagonal
arrows of different shapes and in many different, al-
though not arbitrary, slopes (implemented by rotat-
ing horizontal arrows through PostScript \special
commands). Arrows stretch automatically, and there
are ample facilities for defining additional arrow styles.
Commutative diagrams are specified as an array of
cells, with either one object or one or more mor-
phisms in each non-empty cell. Arrow coordinates
are implicit in the name of the arrow, and they are
complemented with explicit slope and length param-
eters. Different facilities for diagram fine-tuning are
provided. It runs on both TEX and KTEX. The
macros are well documented in a 54-page guide and
reference manual [12].

4.10 Taylor

A macro package developed by Paul Taylor sup-
ports diagonal arrows of different shapes and slopes,
and even at arbitrary slopes (implemented by rotat-
ing horizontal arrows through PostScript \special
commands). Arrows stretch automatically, and there
are ample facilities for defining additional arrow styles.
Commutative diagrams are specified as an array of
cells, with either one object or one or more mor-
phisms in each non-empty cell. Arrow coordinates
are implicit in the name of the arrow, and they are
complemented with explicit slope and length param-
eters. There are plenty of options for diagram fine-
tuning, either global to the whole document or local
to a single diagram. It runs on both TEX and I TEX.
Documentation is excellent, a quite comprehensive
document [13] that is even provided typeset in book-
let format.

4.11 Van Zandt

As in the case of the macro packages by Eitan Gu-
rari, PSTricks is a general drawing package built on
top of TEX. Instead of extending TEX by defin-
ing graphics primitives, however, it is a collection
of PostScript-based TEX macros, and it can be seen
in fact as a high-level TEX-like interface to the Post-
Script language. It supports diagonal arrows of dif-
ferent shapes and arbritrary slopes, curved arrows
and loops, automatic stretching, and symbolic ad-
dressing for both node and arrow coordinates. It
runs on both TEX and IATEX. The macros are well
documented in [15], although there are only two

472

pages describing commutative diagrams and only
two sample diagrams in the whole document.

5 Discussion
5.1 Syntactic issues

Syntactic issues are so fundamental to user accep-
tance of a macro package for typesetting commu-
tative diagrams, that a volunteer task within the
IATEX3 project was founded in October 1992 under
the name Research on Syntaz for Commutative Dia-
grams, with Paul Taylor as co-ordinator and Michael
Barr and Kristoffer Rose as members.

After an initiative by Michael Barr, who started
a discussion within the categorical community about
the best syntax to adopt for commutative diagrams
in TEX3, a rather heated debate has taken place
in the CATEGORIES discussion list. There were many
contributions between June and August 1993, al-
though the discussion list has been silent in these
matters ever since.

5.2 Curved arrows

The need for curved arrows arises when “parallel”
morphisms have to be distinguished from each other,
for instance when it is not known if the morphism 5 :
A — C'is equal to the composition of the morphisms
g:B—Cand f: A— B,

! g

A—B——=(C
- J
h
because otherwise the composite morphism would
not need to be made explicit.

The need for curved arrows also arises when
there are loops in a diagram. For instance, consider
the definition of an isomorphism.

A morphism f : A — B in a given category
is an isomorphism if there exists a morphism g :
B — A in that category such that go f =id4 and
fog=1idg. That is, if the diagram

idAO f
A——DRB
KO

commutes. One possible trick to eliminate the need
for such curved arrows is to “straighten up” the dia-
gram by appropriately duplicating some nodes. For
the previous example, a morphism f: A — B is an
isomorphism if the following two diagrams commute:
g g
A ~ B T A B ~ A ”B
idA idB

These diagrams, however, look much better with

a curved arrow,

TUGboat, Volume 15 (1994), No. 4

f g g f

A——B—A B——A——>B
e+)
ida idp

and therefore the need for curved arrows cannot al-
ways be eliminated without sacrificing diagram clar-
ity and, perhaps arguably, esthetics. While some
authors of category theory textbooks seem to prefer
to duplicate nodes, others make a thorough use of
curved arrows.

5.3 Design issues

Diagrams are essentially a communication medium,
and therefore good design means a design for read-
ability. Although readability issues can be as subjec-
tive as esthetic issues, however, some basic principles
may help in the design of readable diagrams. The
first principle is to follow the natural order of writ-
ing, which at least within occidental writing con-
ventions means left to right, top to bottom, and
foreground to background. A second principle is to
appropriately give depth to three-dimensional dia-
grams, in such a way that the foreground lies a lit-
tle below the background. This principle finds no
easy justification, because it may seem to contra-
dict the top-to-bottom order of writing by impos-
ing a bottom-to-top order from foreground to back-
ground, but it is true of all kinds of pictorial repre-
sentations.

5.4 User interface

Most of the macro packages provide a simple user
interface, consisting of a certain matrix notation.
While it adheres to the ITEX principle of empha-
sizing structural descriptions, such a specification
may become much too obscure for a complex dia-
gram. Some authors have argued against the use
of alternative technologies (if you want WYSIWYG,
use a pen and paper) but maybe the time has ar-
rived to have a state-of-the-art drawing program
with specific facilities for designing commutative di-
agrams. Omne possible scenario would be to sketch
the arrangement of nodes and arcs on the computer
screen using a mouse, and to let the drawing pro-
gram translate the design into the language of (any
of) the macro packages, taking care of all the time-
consuming details of computing coordinates, choos-
ing appropriate slopes for the arrows, placing ar-
row labels, fine-tuning, etc. Further facilities could
include, for instance, trying different layouts based
both on the structural description of the diagram as
a graph and on knowledge of the kind of graphs that
commutative diagrams are, and performing specific

TUGboat, Volume 15 (1994), No. 4

operations on descriptions such as, for instance, ob-
taining the dual of a commutative diagram.

5.5 Open issues

Although the conceptual framework used for evalu-
ating the different macro packages resulted from the
experience of the author using them and converting
diagrams between them, it is precisely because of the
evaluation having been carried out by only one per-
son that the resulting data may be somewhat biased.
A more general investigation would involve mathe-
maticians and computer scientists writing their own
diagrams, as well as (I#)TEX-competent secretaries
typing their work, and would produce quantitative
measures of learning times for the different macro
packages and, once they are fluent in each macro
package, measures of the time it takes them to tran-
scribe a diagram drawn on paper.

Further additional investigations include evalu-
ating the degree of help given by each macro pack-
age towards improving the quality of the output di-
agrams, for instance by means of informative mes-
sages; quantifying the degree of fine-tuning needed
with each macro package in order to produce a com-
plex diagram; evaluating the robustness of the dif-
ferent macro packages when the user makes common
errors, such as omitting brackets or mistyping com-
mand names; and, last but not least, designing a
standard library of common diagrams against which
the different macro packages could be evaluated and
compared.

6 Acknowledgement

In order to avoid name clashes among the control se-
quences defined in the different macro packages, all
the diagrams have been typeset separately and in-
cluded in the final document as encapsulated Post-
Script files. Thanks to Michel Goossens and Sebas-
tian Rahtz for their advice. Ricardo Alberich Mart{
provided guidance during the design of the experi-
ment to obtain time statistics.

References

[1] Michael Barr. The diagram macros. Electronic
document distributed with the package.

[2] Francis Borceux. User’s guide for diagram 3.
Electronic document distributed with the pack-
age.

[3] Eitan M. Gurari. TgX & KTpX—Drawing
and Literate Programming. McGraw-Hill, New
York, 1994.

[4] Donald E. Knuth. The TgXbook. Addison-
Wesley, 15th printing, 1989.

[5]

(6]

[13]

[14]

473

John Reymnolds. User’s manual for diagram
macros. Electronic document distributed with
the package, December 1987.

Kristoffer H. Rose. Xy-pic user’s guide. Elec-
tronic document distributed with the package,
October 1994.

Kristoffer H. Rose and Ross Moore. Xy-pic
reference manual. Electronic document dis-
tributed with the package, October 1994.

Steven Smith. Arrow-theoretic diagrams. Elec-
tronic document distributed with the package,
May 1994. Chapter 5 in Karl Berry and Steven
Smith, Ezpanded Plain TEX.

American Mathematical Society. ApS-ETEX
version 1.2 user’s guide. Electronic document
distributed with the package, January 1995.
Michael D. Spivak. IAMS-TEX—The Synthe-
sis. The TgXplorators Corporation, Houston,
Texas, 1989.

Michael D. Spivak. The Joy of TpX—A
Gourmet Guide to Typesetting with the AS-
TEX Macro Package. American Mathematical
Society, 2nd edition, 1990.

Anders G. S. Svensson. Typesetting diagrams
with kuvio.tex. Electronic document dis-
tributed with the package, January 1995.

Paul Taylor. Commutative diagrams in TEX
(version 4). Electronic document distributed
with the package, July 1994.

Gabriel Valiente Feruglio. Knowledge Base Ve-
rification using Algebraic Graph Transforma-
tions. PhD thesis, University of the Balearic
Islands, December 1994.

Timothy Van Zandt. PSTricks user’s guide.
Electronic document distributed with the pack-
age, March 1993.

© Gabriel Valiente Feruglio
University of the Balearic Islands
Mathematics and Computer
Science Dept.
E-07071 Palma de Mallorca
(Spain)
dmigvaO@ps.uib.es

474 TUGboat, Volume 15 (1994), No. 4

7 Appendix I: Sample diagrams 7.4 Eitan Gurari
The following diagrams reproduce a fairly complex wL v R
. . . L D)
commutative diagram, taken from [14], using all the A" 77 7
macro packages reviewed in this paper. The diagram L= “ L, r R AR
consists of a pushout construction of partial closed
morphisms of total unary algebras in the foreground, 2 o™ ia ig o
together with a corresponding pushout construction is r
of total morphisms of total signature algebras in the L, Kym R+
background.
. . . m el m m* H
7.1 American Mathematical Society \G 72 = by
i r .
L —4— L. —— R G : G, . H 2\
15 T
”T T“ LG 7.5 John Reynolds
Lm «—2— Kpp —2— Ry \L oyl ¢" SR
ml lm lm* Ll p—w
A
15 r* 7:2 (pm 14 i6 (pm
7.2 Michael Barr
L a R i3 | r
L)y Y Lm D Kr,m Rm*
A / . //(R
L 4., —T R)
m m m
. . . . 2\G ¢ - v i
iz | o™ 4 13 " ry _.v
) G /ZV GT* T* (10 H .)\H
i3 r 5
L Krm B 7.6 Kristoffer Rose
or
m . »G m ~ m*EH AL »L Tk
A/ v / ‘ i1 r /)\R
G <~— G+ — H L L, R
15 r
7.3 Francis Borceux is o™ ia is ot
T
L b2 Sy R
. Y D) Lm 13 Kr,m . Rm*
A/‘ KR \L m m*
L¢ AL ——> m n¢ nH
N P ~ A\G o 7
* / AH
12 ™ 14 ig e G i G = H
N\ Ay N
L,, ¢ '3 ’Kr,m r >Ry
v m m* v
m 76 X L
o
A% /
v N v AH

@Q
Q
B

v
=

TUGboat, Volume 15 (1994), No. 4 475
7.7 Steven Smith 7.10 Paul Taylor
EL e" ER . EL (pT > ER
>\L
AN e A
L — L, R Le—— 14 L,.—» R
| o™ ia is " ia| @™ iy i6 o™
L = Kr,m - Ll Ly, < 13' KT,m i > R
m mt o« L m m’ v
m| n¢ = sH m , ¢ |,
r
)\G/(AH \[/ ' «(Xv
G+——Gp————H Ge— «Gp——>H T
i
7.8 Michael Spivak > _
- 7.11 Paul Taylor emulating F. Borceux
[L r M AL
' / i T /;\R
, . . L S . R
i i i
2 me 4 6 0
I is| g r g in| o™ iy is |o™
m r,m m*
4 ; 4 . 4
m m m* L, < 31 Kr,m > Ry,
/\G/VEG r* 7ZH
¥ ey m m* Y
H
q - Gpe ———— H A m nG — H
A ¢
7.9 Anders Svensson / /;\H
T G F G H
g i »h is T
L
)‘/ ' XH 7.12 Timothy Van Zandt
I i1 Lr r R EL ¢ ER
L
)\/ 21 r /AR
ia o ia is " L L, R
. 1o (pm 14 ig m*
L o 1B Krm T R Z ¢
3 T
l m m* Lm Kr,m Rm*
G H m .
e —|—> IV "
. G *
</ e " 1
G is Gre -l G Gre H

i5 r

476 TUGboat, Volume 15 (1994), No. 4

8 Appendix II: Source code for the sample diagrams

\newcommand{\up}[1]{\raisebox{lem}{$#1$}}
\newcommand{\down} [1]{\raisebox{-1em}{$#1$}}
\newcommand{\Left} [1]{\makebox [6pt] [r]{$#1$}}
\newcommand{\Right} [1] {\makebox [6pt] [1]1{$#1$}}

8.1 American Mathematical Society

$$\begin{CD}

L @<i_1<< L_r @er>> R \\
@Ai_2AA Q@AAi_4A @AAi_6A \\
L_m ©0<i_3<< K_{r,m} @>r>> R_{m~*} \\
QVmVV QVVmV @VVm~*V \\
G @<<i_5< G_{r"*} @>>r"*> H
\end{CD}$$

8.2 Michael Barr

$$\bfig
\putsquare<-2¢-2-2¢-2;500¢500>(0,500) [L‘L_r‘L_m‘K_{r,m};\qquad i_1¢i_2¢i_4°‘]
\putsquare<1‘0‘-2¢1;500500>(500,500) [‘R‘\phantom{K_{r,m}}‘R_{m"*};r¢‘i_6°]
\putsquare<0‘1‘1‘-2;500500>(0,0) [‘\phantom{K_{r,m}}‘G‘G_{r"*};\qquad i_3‘m‘\up m‘i_5]
\putsquare<0‘01°1;500‘500>(500,0)%

[\phantom{K_{r,m}}‘\phantom{R_{m~*}} ‘\phantom{G_{r"*}} ‘H;r‘ ‘\up{m~*}‘r~*]
\putsquare<1¢1¢1°1;1000°1000>(250,250)%

[\Sigma"L‘\Sigma"R‘\Sigma~G‘\Sigma H;\varphi~r‘\varphi m‘\varphi~{m~*}‘\varphi~{r~*}]
\putmorphism(125,1125) (1,1)%

[(\phantom L‘‘{\up{\Right{\lambda"L}}}]1{0}{1}{1}
\putmorphism(1125,1125) (1,1)%

[\phantom R‘‘{\down{\Left{\lambda"R}}}]1{0}{1}{r}
\putmorphism(125,125) (1,1)

[\phantom G‘‘{\up{\Right{\lambda~G}}}]1{0}{1}{1}
\putmorphism(1125,125) (1,1)7%

[\phantom H‘{\down{\Left{\lambda H}}}1{0}{1}{r}
\efig$$

8.3 Francis Borceux

\setdefaultscale{40}
\begin{diagram}
? 7 \Sigma"L ? 7 7 7 \Ear[280] {\varphi“r} ? 7 7 7 \Sigma"R 77

L ? ? \Wmono[130] {\qquad i_1} ? ? L_r ? ? \Ear[130] r ? ? R ?? 77

\Nmono[130] {i_2} ? ? \Sar[280] {\varphi“m} ? ? \nmon0[130] {i_4} 7 ? ? ? \nmon0[130] {i_6} 7 ?
\saR[280] {\varphi~{m~*}} 7?7 77

L_.m ? 7 \Wmono[100] {\qquad i_3} ? ? K_{r,m} ? ? \Ear[100] r ? ? R_{m"*} 77 77

\Sar[130] m ? 7 \Sigma~G ? 7 \saR[130] {\up{m}} ? ? \eaR[280] {\varphi~{r~*}} 7 7
\saR[130] {\up{m~*}} ? ? \Sigma"H 7?7

G 7 7 \wmon0[130] {i_5} 7 7 G_{r"*} 7 7 \eaR[130] {r"*} 7 7 H 77
\end{diagram}

8.4 Eitan Gurari

\Draw

\PenSize(0.25pt)
\ArrowSpec(V,5,3,2)

\ArrowHeads (1)

\GridSpace(10,10)
\GridDiagramSpec () (\MyEdge)
\Define\L(4){,+#1..+#2\,L\,#3\,#4}

TUGboat, Volume 15 (1994), No. 4

\Define\D(4){,+#1..+#2\,D\,#3\,#4}
\Define\MyEdge (5){
\IF \EqText (#3,D) \THEN
\EdgeSpec (D)
\ELSE
\EdgeSpec (L)
\FI
\IF \EqText (#1,#2) \THEN
\RotateTo (#4)
\CycleEdge (#1)
\EdgeLabel (--$#5%--)
\ELSE
\Edge (#1,#2)
\IF \EqText(,#4) \THEN
\EdgeLabel (--$#5%$--)
\ELSE
\EdgeLabel [#4] (--$#5$--)
\FI
\FI}
\GridDiagram(8,8) () () ({
& $\Sigma"L$ \L(6,0,+,\mbox{$\varphi~m$}) \L(0,6,,\mbox{$\varphi-r$}) & & & & & & $\Sigma"R$
\L(6,0,,\mbox{$\varphi~{m~*}$}) //
L \L(-1,1,,\mbox{$\lambda"L$}) & & & L_r \L(0,-3,+,\mbox{i_1}) \L(0,3,,\mbox{r}) & & &
R \L(-1,1,+,\mbox{$\lambda"R$}) & //
L& &&& &/
L s &&k &/
L_m \L(3,0,+,\mbox{m}) \L(-3,0,,\mbox{$i_2%$}) & & & $K_{r,m}$ \L(-3,0,+,\mbox{$i_4%$})
\L(3,0, ,\mbox{m}) \L(0,-3,+,\mbox{i_3}) \L(0,3,,\mbox{r}) & & & $R_{m~*}$
\L(3,0,,\mbox{$m~*$}) \L(-3,0,+,\mbox{i_6}) & //
& & & &&&&//
& $\Sigma~G$ \L(0,6,+,\mbox{$\varphi~{r"*}$}) & & & & & & $\Sigma"H$ //
G \L(-1,1,,\mbox{$\lambda~G$}) & & & $G_{r"*}$ \L(0,-3,,\mbox{$i_5%}) \L(0,3,+,\mbox{$r"*$})
& & & H \D(-1,1,+,\mbox{$\lambda~H$}) & //})
\EndDraw

8.5 John Reynolds

\def\diagramunit{0.6pt}
$$\ctdiagram{

\ctv 0,0:{G}

\ctv 100,0:{G_{r"*}}

\ctv 200,0:{H}

\ctv 0,100:{L_m}

\ctv 100,100:{K_{r,m}}

\ctv 200,100:{R_{m~*}}

\ctv 0,200:{L}

\ctv 100,200:{L_r}

\ctv 200,200:{R}

\ctel 0,100,0,200:{i_2}
\cter 100,100,100,200:{i_4}
\cter 200,100,200,200:{i_6}
\ctel 0,100,0,0:{m}

\cter 100,100,100,0:{m}
\cter 200,100,200,0:{m"*}
\ctetg 100,200,0,200;60:{i_1}
\ctetg 100,100,0,100;60:{i_3}
\cteb 100,0,0,0:{i_5%}

\ctet 100,200,200,200:{r}
\ctet 100,100,200,100:{r}

477

478 TUGboat, Volume 15 (1994), No. 4

\cteb 100,0,200,0:{r"*}

\ctv 75,25:{\Sigma"~G}

\ctv 275,25:{\Sigma~H}

\ctv 75,225:{\Sigma"L}

\ctv 275,225:{\Sigma R}

\ctet 0,0,75,25:{\1lambda"G}

\ctdot

\cteb 200,0,275,25:{\1lambda"H}
\ctsolid

\ctet 0,200,75,225:{\1ambda"L}
\cteb 200,200,275,225:{\1ambda"R}
\ctelg 75,225,75,25;150:{\varphi~m}
\cterg 275,225,275,25;150: {\varphi~{m~*}}
\ctet 75,225,275,225:{\varphi-r}
\cteb 75,25,275,25:{\varphi~{r"*}}
183

8.6 Kiristoffer Rose

\def inemorphism{unique}\dotted\tip\notip
\spreaddiagramrows{-1pc}
\spreaddiagramcolumns{-1pc}
\diagram
& \Sigma"L \xto’[1,0]’[3,0]_{\varphi“m}[4,0] \xto[rrrr] {\varphi~r}
& & & & \Sigma"R \xtol[dddd] {\varphi~{m~*}} \\
L \urto~{\lambda"L} & & \1lto_<<<<{i_1} L_r \rrto"r & & R \urto_{\lambda"R} \\ \\
L_m \uuto”{i_2} \ddto_m & & \1lto_<<<<{i_3} \uuto_{i_4} K_{r,m} \ddto"<<<<m \rrto"r
& & \uuto_{i_6} R_{m~*} \ddto <<<<{m"*} \\
& \Sigma~G \xto’[0,1]’[0,3]_{\varphi~{r"*}}[0,4] & & & & \Sigma"H \\
G \urto"{\lambda"G} & & \1lto~{i_5} G_{r"*} \rrto_{r"*} & & H \urunique_{\lambda"H}
\enddiagram

8.7 Steven Smith

\harrowlength=45pt
\sarrowlength=.30\harrowlength
$$\gridcommdiag{
& & \Sigma"L & & & & {\harrowlength=100pt\mapright~{\varphi“r}}
& & & & \Sigma"R \cr
& \arrow(1,1)\1ft{\lambda"L} & & & & & & & & \arrow(1,1)\rt{\lambda"R} \cr
L & & \mapleft~{\qquad i_1} & & L_r & & \mapright"r & & R \cr \cr
\mapup~{i_2} & & {\varrowlength=100pt\mapdown~{\varphi~m}}
& & \mapup_{i_4} & & & & \mapup_{i_6} & &
{\varrowlength=100pt\mapdown_{\varphi~{m~*}}}
\cr \cr
L_m & & \mapleft~{\qquad i_3} & & K_{r,m} & & \mapright"r & & R_{m"*} \cr \cr
\mapdown™m & & \Sigma"G & & \mapdown_{\up{m}}
& & {\harrowlength=100pt\mapright_{\varphi~{r~*}}}
& & \mapdown_{\up{m~*}} & & \Sigma"H \cr
& \arrow(1,1)\1ft{\lambda"G} & & & & & & & & \arrow(1,1)\rt{\lambda"H} \cr
G & & \mapleft_{i_5} & & G_{r"*} & & \mapright_{r"*} & & H
133

8.8 Michael Spivak

$$\Cgaps{0.5}
\Rgaps{0.5}
\cgaps{1.3;0.7;1;1;1.3
\rgaps{0.7;1;1;1.3;0.7
\CD

& \Sigma"L @() \L{\varphi“m} @(0,-4) @() \L{\varphi“r} @(4,0)

}
}

TUGboat, Volume 15 (1994), No. 4 479

L& &
& \Sigma"R @() \1{\varphi~{m~*}} @(0,-4)
\\
L e() \L{\lambda"L} @(1,1)
& &
L_r @) \L{i_1} \ot @(-2,0) e() \L{r} @(2,0)
& & R @) \1{\lambda"R} @(1,1)
&
\\
\\
L.m @) \L{i_2} \ot @(0,2) @() \L{m} @(0,-2)
& & K_{r,m} e() \L{i_3} \ot @(-2,0) @) \L{r} @(2,0) @e() \1{i_4} \ot @(0,2) @) \1l{m} @(0,-2)
& & R_{m~*} @) \1{i_6} \ot @(0,2) @() \1{m"*} @(0,-2)
&

\\

&

\Sigma~G @() \1{\varphi~{r~*}} @(4,0)
& & & \Sigma"H

&

\\
G @e() \L{\lambda~G} @(1,1)
& & G_{r *} @) \1{i_5} \ot @(-2,0) e() \1{r"*} @(2,0)
& & H @) \1{\lambda"H} \a- @(1,1)

& \\

\endCD$$

8.9 Anders Svensson

\scale=.5

\Diagram

& & \Sigma"L & & & & \rTo"{\varphi‘r} & & & & \Sigma"R \\

& \ruTo"{\lambda"L} & & & & & & & & \ruTo_{\lambda"R} & \\

L & & \dTo_{\varphi“m} \1Mono~{i_1}:{.25} \br & & L_r & & \rTo"r & & R & & \\

& & & & & & & & & & \\

\uMono~{i_2} & & & & \uMono_{i_4} & & & & \uMono_{i_6} & & \dTo"{\varphi~{m~*}} \\
Lk & & &k &l &\

Lm& & & \1Mono~{i_3}:{.25} \br & K_{r,m} & & \rTo"r & & R_{m~*} & & \\

Lk & & &k &gl &\

\dTo_m & & \Sigma"G & & \rTo_{\varphi“{r"*}} \dTo™m:{.25} \br & & & & \dTo {m"*}:{.25} \br & & \Sigma"H \\
& \ruTo"{\lambda"G} & & & & & & & & \ruDashto_{\lambda"H} & \\

G & & \1Mono_{i_5} & & G_{r"*} & & \rTo_{r"*} & & H & & \\

\endDiagram

8.10 Paul Taylor

\diagramstyle[heads=1littleblack,size=1.5em,PS]

\begin{diagram}

& & \Sigma“L & & & & \rTo"{\varphi"r} & & & & \Sigma~R \\

& \ruTo"{\lambda"L} & \vLine & & & & & & & \ruTo_{\lambda"R} & \\

L & & \HonV & \1Embed"{i_1} & L_r & & \rTo"r & & R & & \\

& & & & & &&& &N\

\uEmbed~{i_2} & & \vLine"{\varphi“m} & & \uEmbed_{i_4} & & & & \uEmbed_{i_6} & &
\dTo_{\varphi~{m~*}} \\

& & & & & & &&& &N\

L_m & & \HonV & \1Embed"{i_3} & K_{r,m} & & \rTo"r & & R_{m™*} & & \\

& & \dTo & & \dTo_m & & & & \dTo_{m~*} & & \\

\dTo™m & & \Sigma"G & \hLine & \VonH & & \hLine_{\varphi“{r"*}} & & \VonH & \rTo & \Sigma"H \\

& \ruTo"{\lambda"G} & & & & & & & & \ruDotsto_{\lambda"H} & \\

G & & \1Embed_{i_5} & & G_{r"*} & & \rTo_{r"*} & & H & & \\

\end{diagram}

480 TUGboat, Volume 15 (1994), No. 4

8.11 Paul Taylor emulating Francis Borceux

\diagramstyle[size=1.5em]

\begin{diagram}

& & \Sigma'L & & & & \Ear {\varphi“r} & & & & \Sigma"R \\

& \Near {\lambda"L} & & & & & & & & \neaR {\lambda"R} \\

L & & \Wmono {\qquad i_1} & & L_r & & \Ear r & & R \\ \\

\Nmono {i_2} & & \Sar {\varphi“m} & & \nmonO {i_4} & & & & \nmonO {i_6} & &
\saR {\varphi~{m~*}} \\ \\

L_m & & \Wmono {\qquad i_3} & & K_{r,m} & & \Ear r & & R_{m™*} \\ \\

\Sar m & & \Sigma"G & & \saR {\up{m}} & & \eaR {\varphi“{r"*}} & & \saR {\up{m~*}} & & \Sigma"H \\

& \Near {\lambda"G} & & & & & & & & \neaR {\lambda"H} \\

G & & \wmonO {i_5} & & G_{r"*} & & \eaR {r"*} & & H \\

\end{diagram}

8.12 Timothy Van Zandt

$$\setlength{\arraycolsep}{0.1in}

\begin{array}{cccccc}

& \Rnode{SL}{\Sigma"L} & & & & \Rnode{SR}{\Sigma"R} \\ [0.15in]
\Rnode{L}{L} & & \Rnode{Lr}{L_r} & & \Rnode{R}{R} & \\ [0.15in] \\ [0.15in]
\Rnode{Lm}{L_m} & & \Rnode{Krm}{K_{r,m}} & & \Rnode{Rm}{R_{m~*}} & \\ [0.15in]
& \Rnode{SG}{\Sigma"G} & & & & \Rnode{SH}{\Sigma"H} \\ [0.15in]
\Rnode{G}{G} & & \Rnode{Gr}{G_{r"*}} & & \Rnode{H}{H} & \\ [0.15in]
\end{array}

\psset{nodesep=bpt ,arrows=->}

\everypsbox{\scriptstyle}

\ncLine{Lr}{R} \Aput{r}

\ncLine{Krm}{Rm} \Aput{r}

\ncLine{Gr}{H} \Bput{r~*}

\ncLine{Lr}HL} \bput{0}(0.3){i_1}

\ncLine{Krm}{Lm} \bput{0}(0.3){i_3}

\ncLine{Gr}{G} \Aput{i_53}

\ncLine{SL}{SR} \Aput{\varphi~r}

\ncLine{SG}{SH} \Bput{\varphi~{r~*}}

\ncLine{SR}{SH} \Aput{\varphi~{m~*}}

\ncLine{SL}{SG} \Bput{\varphi~ m}

\ncLine{Lm}{G} \Bput{m}

\ncLine{Krm}{Gr} \aput{03}(0.3){m}

\ncLine{Rm}{H} \aput{0}(0.3){m~*}

\ncLine{Lm}{L} \Aput{i_2}

\ncLine{Krm}{Lr} \Bput{i_4}

\ncLine{Rm}{R} \Bput{i_6}

\ncLine{L}{SL} \Aput[1ipt]{\lambda"L}

\ncLine{R}{SR} \Bput[1pt]{\lambda"R}

\ncLine{G}{SG} \Aput[1pt]{\lambda"G}
\ncLine[linestyle=dashed] {H}{SH} \Bput[1pt]{\lambda"H}$$

TUGboat, Volume 15 (1994), No. 4 481

9 Appendix III: Automatic stretching

The following diagrams illustrate the degree of automatic stretching of arrows provided by each of the
macro packages. A simple square diagram is typeset with a long label for the top-leftmost node in order
to determine if the bottom horizontal arrow stretches to meet its source node, and it is also typeset with a
long label for the top horizontal arrow in order to determine if it stretches long enough to fit the label.

9.1 American Mathematical Society

Arrows do not stretch to meet their source and target nodes, but they stretch to fit their labels, although
only the arrow carrying the long label stretches. Manual fine-tuning is needed in order to get the same
stretch in all the other arrows lying in the same column of the array.

A— .pB AxAxAxA —L . B A LT g
i % di ool s
CT)D C T)D C T D

9.2 Michael Barr

Arrows within the shape macros stretch to meet their source and target arrows, but individual arrows
obtained with \putmorphism do not. In both cases, arrows do not stretch to fit their labels and the required
dimensions have to be given explicitly.

A—1 B AxAxAxAlB Prfrdfefrt
g g g g g g
O ——D O—f—D C—F—D

9.3 Francis Borceux

Arrows stretch to meet their source and target nodes, but they do not stretch to fit their labels.

A%B AxAxAxA;B f*iwé*f
gl lg’ gl lg’ gl lg’
c_ ., D ¢ _, D C_ D

9.4 Eitan Gurari

Arrows stretch to meet their source and target nodes, but they do not stretch to fit their labels.

* fxfxfxfx
A$B A><A><A><A$B ff(%];?f
g gl g g/ g gl
C D C D C D

482 TUGboat, Volume 15 (1994), No. 4

9.5 John Reynolds

Arrows stretch to meet their source and target nodes, although the labels do not get centered on the stretched
arrows. They do not stretch to fit their labels.

A—1 . p Ax AxAxIA~B Frfrfrfeprf
g g’ g g’ g g’
C—p P C—p P O P

9.6 Kiristoffer Rose

Arrows stretch to meet their source and target nodes, although the labels do not get centered on the stretched
arrrows. They do not stretch to fit their labels.

1—1.p AxAxAxA— B U by
I T oo s
C—=D ¢———>D C—=D

9.7 Steven Smith

Arrows do not stretch to meet their source and target nodes, but they stretch to fit their labels.

A i B AxAxAxA f B PR
g9 g g g g g
C 7 D C 7 D C 7 D

9.8 Michael Spivak

Arrows stretch to meet their source and target nodes, but they do not stretch to fit their labels, even
producing overfull \hboxes.

a—f g axaxaxa— T .p AR SIRIRS
NN EN
(7-——if7——+l) (7-—————i?7—————+l) (7-——i?7——+1?

9.9 Anders Svensson

Arrows stretch to meet their source and target nodes, but they do not stretch to fit their labels.

A B A B
g‘ ‘y’ g q' g{ {g’
C C

—— D C———D —— D

f! f f!

Ixfxfxfxfxf

—_ _

AXAXAXALB

TUGboat, Volume 15 (1994), No. 4 483

9.10 Paul Taylor

Arrows stretch to meet their source and target nodes, and they also stretch to fit their labels.

A1 B AxAxAxAd B FEAZASATAS AT
g g g g g g
CTD C f’ D C f’ ‘D

9.11 Timothy Van Zandt

Arrows stretch to meet their source and target nodes, although the labels do not get centered on the stretched
arrows. They do not stretch to fit their labels, and the required dimensions have to be given explicitly.

f f frfxfxfxfxf
A—— B AxAxAx A —— B A—— B
g gl g g/ g g[
f f f

10 Appendix IV: Resource requirements
10.1 Package size

The following table lists the size (in kilobytes) of the main macro files that have to be loaded into TEX or
IXTEX in order to use the respective packages.

package main files size
AMS-BTEX | amscd.sty 10
Barr diagram.tex 40
Borceux Diagram 270
Gurari DraTex.sty and AlDraTex.sty 136
Reynolds diagmac.sty 42
Rose xypic.tex and xy.tex 68
Smith arrow.tex 24
Spivak! amstexl.tex and lamstex.tex 200
Svensson kuvio.tex and arrsy.tex 86
Taylor diagrams.tex 86
Van Zandt pstricks.tex, pst-node.tex and pstricks.con 84

10.2 Time statistics

The following table lists statistics for the time (in seconds) needed to typeset the sample diagrams presented
in Appendix I, using TEX and ITEX 2¢ on a Macintosh SE/30, with the different macro packages. The mean
time and the confidence interval at a significance level of 95% is given for the total time needed to typeset
a diagram and for the marginal time, computed as the difference between the time needed to typeset two
copies of the sample diagram using a macro package and the time needed to typeset one copy of the same
diagram using the same macro package, where these two random variables are assumed to have a normal
distribution and to be independent, and where the mean and the confidence interval have been estimated
from a sample of 30 observations.

L Although IAAS-TEX offers much more than the macros for commutative diagrams, it has to be loaded as a whole in order
to use the macros. Most such macros can be removed from TEX’s memory by loading the file cd.tox (4 kilobytes), freeing up
about 5800 words of memory, and can be later added again by loading the file cd.tex (36 kilobytes), but the whole IAAMS-TEX
has to be loaded before.

484 TUGboat, Volume 15 (1994), No. 4

package total time marginal time

mean | 95% confidence interval mean | 95% confidence interval
AMS-BTEX 18.1367 | 18.0317 18.2416 1.6600 1.5544 1.7660
Barr 48.8033 | 48.7731 48.8335 | 29.9334 | 29.8800 29.9870
Borceux 127.5630 | 127.5060 127.6210 | 28.3170 | 28.1730 28.4600
Gurari 388.4630 | 388.4320 388.4950 | 638.8270 | 638.5000 639.1490
Reynolds 46.7000 | 46.6357 46.7643 | 26.8200 | 26.7520 26.8880
Rose 242.7400 | 242.3810 243.0990 | 210.0730 | 209.2900 210.8500
Smith 22.9600 | 22.9031 23.0169 5.2400 5.1817 5.2980
Spivak 37.3000 | 37.2445 37.3555 11.9833 11.9263 12.0400
Svensson 81.3867 | 81.2902 81.4831 | 44.5733 | 44.4668 44.6799
Taylor 66.8400 | 66.7553 66.9247 | 14.3133 14.1420 14.4850
Taylor emul. Borceux | 67.3533 | 67.3243 67.3823 | 11.4767 | 11.4360 11.5170
Van Zandt 37.8233 | 37.7809 37.8657 | 14.2100 14.1520 14.2680

11

The following table lists the CTAN directories where the different macro packages are stored, together with

Appendix V: Availability
11.1 Availability

the authoritative FTP addresses they are mirrored from.

| package | CTAN directory | mirrored from

AMS-BTEX | macros/latex/packages/amslatex/ | e-math.ams.org
/pub/tex/amslatex/

Barr macros/generic/diagrams/barr/ not mirrored

Borceux macros/generic/diagrams/borceux/ | theory.doc.ic.ac.uk
/tex/contrib/Borceux/diagram-3/

Gurari macros/generic/dratex/ ftp.cis.ohio-state.edu
/pub/tex/osu/gurari/

Reynolds macros/latex209/contrib/misc/ not mirrored

diagmac.sty

Rose macros/generic/diagrams/xypic/ ftp.diku.dk
/diku/users/kris/TeX/

Smith macros/eplain/ ftp.cs.umb.edu

arrow.tex /pub/tex/eplain/

Spivak macros/lamstex/ not
mirrored

Svensson macros/generic/diagrams/kuvio/ math.ubc.ca
/pub/svensson/

Taylor macros/generic/diagrams/taylor/ | theory.doc.ic.ac.uk
/tex/contrib/Taylor/tex/

Van Zandt graphics/pstricks/ princeton.edu

/pub/tvz/pstricks/

TUGboat, Volume 15 (1994), No. 4

The bag of tricks
Victor Eijkhout

Hello all,

One of the things that TEX is commonly said
not to be able to do, is letterspacing. I do not
want to get involved here in the debate over whether
letterspacing is defendable or not. There are places
where it’s bad, and others where it can safely be
used. Karl Berry gave me a particularly neat macro
for letterspacing, and I'll leave its application to the
reader’s discretion’.

The text to be spaced is passed as an argument:

\spreadout{The text} is spread.
The text is spread.

and expandable material in the text is treated cor-
rectly:

\def\MoreText{more text}
\spreadout{Here is \MoreText}
than above.
Here is more text than above.
The amount of spacing is controlled by a macro with
the following default definition:
\def\spreadoutfactor{.15}
The basic idea behind the macro \spreadout

is the following. First get rid of all expandable ma-
terial

\def\spreadout#1{%
\edef\temp{#1}

then start processing the result

\dimenO = \spreadoutfactor em

\expandafter\dospreadout\temp\endmark
where

\def\dospreadout{%

\afterassignment\findospreadout
\let\next= }

This assigns the first token to \next, then calls

\findospreadout. The latter macro basically amounts

to
\next \kern\dimenO

except that it has to test for \endmark.
Actually, there are a few more gadgets in this
macro: the control sequence \uppercase is respected

by replacing \uppercase{text} by \uppercase{\spreadout{text}}.

Furthermore, a control sequence \ellipsis is re-
placed by three spaced dots.
Here are the actual definitions

1 Philip Taylor gives macros for letterspacing in TUGboat
vol. 14, no. 2. Their aim is to letterspace exactly a single line
of text in a box.

485

\def\spreadout#1{%
\begingroup
% prevent expansion of \ellipsis
\def\ellipsis{\noexpand\ellipsis}’
\xdef\temp{#1}/
\endgroup
\dimenO = \spreadoutfactor em
\expandafter\dospreadout\temp\endmark
}

\def\dospreadout{%
\afterassignment\findospreadout
\let\next= }

\def\findospreadout{’
\ifx\next\endmark

\let\nextaction = \relax
\else
\ifx\next\uppercase
\let\nextaction = \douppercase
\else
\ifx\next\ellipsis
\let\nextaction = \doellipsis
\else
\let\nextaction = \dospreadout
\next
\kern\dimenO
\fi
\fi
\fi
\nextaction
}

\def\douppercase#1{%
\uppercase{\spreadout{#1}}\dospreadout}

\def\doellipsis{/
\spreadout{...}\dospreadout}

\def\ellipsis{ellipsis}

\def\endmark{endmark}

(The last two definitions are an addition of mine to
Karl’s macros, since mucking with undefined macros
is somewhat dangerous.)

This macro works well, and, although letter-
spaced words cannot be broken across lines, texts
with spaces will be treated as normal paragraphs.

¢ Victor Eijkhout
Department of Mathematics, MS
6363
UCLA
405 Hilgard Avenue
Los Angeles, CA 90024-1555
Internet: eijkhout®@math.ucla.edu

486

A TgX Autostereogram Generator

Jacques Richer

Introduction

The Plain TEX code autostereogram. tex generates
autostereograms. An autostereogram (often called
simply stereogram) is a single picture that shows
objects in 3D but does not require any special device
for viewing (other than a normal pair of eyes, of
course). Autostereograms have been the subject of
a recent craze throughout the world. They now fill
entire color albums, such as the following beautiful
books:

Stereograms, by Cadence Books, 1994
Ultra-3D, by Montage Publications, 1994
Interactive Pictures, by Benedikt Tashen Ver-
lag, 1994

Hidden Dimensions, by Dan Dyckman, Har-
mony Books, New York, 1994 (this is a funny
3D puzzle book)

They have also been made into postcards and
posters. In this article, I show how the ba-
sic technique for generating such pictures can be
implemented in TEX. I will first explain how auto-
stereogram.tex is used and what it does. The
TEX coding itself will be described last.

Generalities

The image contents (depth information) is specified
to the generator in the form of an ordinary text
file, hereafter called the relief data file, containing
several rows of single digit numbers. These numbers
indicate at which height or depth each pixel should
be perceived by the viewer. In the original version of
this code, no extra file was needed as the image data
was generated from within the TEX code itself (by
the \relief macro), through nested \if\else\fi
constructs; the external file approach is much more
flexible, and easier to use.

The output pixels are identical size \hboxes
that may contain anything TEX can fit in them: a
rule box, a character, or even whole text paragraphs!
The whole picture is obtained by tiling the surface
with copies of a small number of such \hboxes.
These basic tiles determine the texture of the
image, which is totally independent from its 3D
contents. Here, I use four tiles consisting in Os,
in two sizes, the TEX logo, and an empty box, to
help produce a lighter texture. Color can be used
(here Os will be red, if PSTricks is available), and
is highly recommended.

TUGDboat, Volume 15 (1994), No. 4

The image is generated line by line, lines being
totally independent from each other. The algorithm
consists in repeating horizontally an arbitrary initial
pattern of basic tiles, at a repetition rate that is
modulated by depth information. More precisely,
from an initial set of m pixels po, p—1,..., P—(m—1)
on a line, randomly selected from our basic tile set,
one generates n new pixels, where n > m, using
the recurrence relation p; = p;—,,; 0; is an integer
valued monotonic function of depth d; at point 3.
Here, I take that function o; to be simply equal to
m — d;; clearly, if all depths are equal to 0, for all
lines, the final output will consist in identical copies
of the first m-pixel wide vertical stripe; hence m
is called the period of the image. When depths
vary, one gets a horizontally distorted version of the
zero-depth pattern.

The m starting pixels are not under user
control, as far as their depth is concerned, and
printing them will lead to more pixels appearing in
the picture than the user provided data for; so it
may be preferable not to print them. Here they are
not printed.

Depth is perceived when the eyes lock their
relative orientation so that their aiming points are
always separated horizontally by m pixels, or an
integer multiple k& (k may be negative!) of that
distance. Apart from this constraint, the eyes can
move freely and explore the whole picture. A sort of
recursive effect is seen if |k| > 1; this is discussed
in the paper cited below. For the purpose of this
presentation, it is simplest to assume that we are
viewing adjacent m-pixel wide stripes. If the two
stripes are identical, the 3D impression is that of
a flat area floating at some distance away from
us; this distance depends on the so-called vergence
angle between the two lines of sight, that angle
depending in turn on the physical width of a period.

If the left eye locks onto any stripe — which
column it starts in does not matter, as long as it is
not too close to the vertical sides — and the right
eye locks onto the one immediately to its right,
pixels with larger values of d; are perceived as being
closer to the observer than pixels with smaller d;;
if the eyes are crossed (k < 0 — left eye locks onto
right stripe, and vice-versa), larger d; pixels appear
further away. Personally, I find it more difficult to
hold the lock with eyes crossed, but that difficulty
depends very much on the width of a period and
the viewing distance. For the sake of simplicity, I
decided to call d; values depths, even if the word
heights would often be more appropriate.

The translation invariance of the algorithm
makes it possible to build arbitrarily large pictures.

TUGDboat, Volume 15 (1994), No. 4

With autostereograms, 3D perception always occurs
as a result of local distortions in the repetition cycle;
thus an autostereogram covering an entire wall could
show 3D in any of its parts. It is easy to see the
relationship between autostereograms and stereo-
graphic image pairs if one thinks in terms of such
local disparities between two consecutive stripes;
one important difference is that the autostereogram
presents us with a near continuum of stereo pairs
(unfortunately of much lower information content).

For an excellent introduction to the subject
of autostereogram generation, by the inventor of
the technique, see: Christopher W. Tyler & Mau-
reen B. Clarke, “The Autostereogram”, in the
Proceedings of the SPIE-The International Society
of Optical Engineering, SPIE vol. 1256, “Stereo-
scopic Displays and Applications”, J. O. Merritt &
S.S. Fischer, editors, 1990, pages 182-197.

The relief data

To use autostereogram.tex, one must supply a
relief data file. The first line of that text file should
contain the horizontal size of the picture ncolumns,
in pixels, and nothing else; the second line should
contain the vertical size njines, in pixels. The third
line must supply the period m. It should be as large
as possible, subject to constraints to be discussed
below.

The fourth line should contain a small integer
g that will tell the generator what depth level is to
be interpreted as the ground plane. Then should
follow mynes lines each containing exactly ncolumns
decimal digits, the d;s (no spaces). The code could
be easily generalized to allow an arbitrary number
of depth levels. For the following discussion, let’s
assume that the d;s are in the range dpyin..dmax-

If g < duin, relief will be towards the parallel
eye viewer, and if g > dpax, relief will be away
from him/her. Values from dpin t0 dmax will make
it possible to display both receding and advancing
objects. As the foregoing sentences imply, g is not
limited to the dpin--dmax range, but it is best not
to deviate too much from that range. With g # 0,
the algorithm becomes

Pi = Di—(m—[di—g])

and it is necessary to ensure that m+g+1 <i+d;
and d; < m+ g, for any i > m, and dpi, < d; <

dmax- If i/ =i — (m+1) (¢ measures the horizontal
distance from the right edge of the starting stripe),
we must then have ¢/ > ¢ for nontrivial pixels:
problems can arise if g > 0. To prevent such
problems the code will extend the initial stripe
by exactly g columns, using the ground plane

487

000000000000000000000000000000000022222222222220000000000
000000000000000000000000000000000022222000222220000000000000
000000000000000000022222222000000022222000222220000000000000
000000000000000000079977990000000097799777997790000000 00000
000000000000000000 200000000000002222200000000000000000
0000000000000001 77777 1000000000002222200000000000000000
000000000000000111 22221111000000000002222200000000000000000
000000000000000111122211111000000000000000000000000000000000
000000000000000111122111111000000000000000000000000000000000
21111111000000000000000000000000000000000
000
0000000000000000000000OOO00000000000000OOOOOOOOOOOOOOOOOOOOO

Figure 1: Input data for a 3-level picture.

recurrence formula p; = p;_,,. The initial stripe
(more precisely, one line of it) will then consist
(conceptually) of pixels po, p—1, D—2..., Dmtg—1-

The other constraint, d; < m + g, is more
subtle: d; < m + g is necessary, but not sufficient,
because if the shift o; = m — [d; — ¢] is too small,
many of the initial pixels on the current line will
never be used, and the output line could easily
collapse to a series of identical pixels. So the
the input deviations d; — g should be kept small.
There is an inevitable loss of information in the
recurrence relation, and it is necessary to have as
much information as possible to begin with. This
is one reason why a large m is preferable; another
reason is that the perceived angular resolution is
roughly inversely proportional to m since it is equal
to the width of a pixel (which is normally made
smaller when m is larger) divided by the viewing
distance.

Figure 1 shows a small multilevel example (too
small to yield good results). To generate the real
example shown in Figure 3, I applied METAFONT to
the very nice Irish font eiad10 to generate a simple
2-level input file. The (UNIX style) commands

mf "\mode:=aps; " input eiadl0
gftype -i ./eiad10.723gf > eiad.txt

produced a text file eiad.txt containing drawings
of all the characters in the font, where each black
pixel is represented by a * and each white pixel by
a space. From this file I extracted the letter ‘b’,
which I then edited to change spaces into Os and
* into 1s, and padded with extra Os on all four
sides to make it into a rectangular array including
a small margin all around. I finally added the four
parameter lines, to get the file eiadb.dat shown in
Figure 2, which autostereogram.tex converted to
Figure 3.

Note that if the characters are not fat enough,
their thinnest parts will not be visible in 3D because
of the coarse resolution imposed by the use of char-
acter boxes and integer o;s. It is necessary to call
METAFONT with a high resolution mode or to require

0

00
00
00
000000000000000000000000000000000000
0000000000000000000000000%1 000000000

000000000000000000000000111 000
000000000000000000000000111 000
00000000000000000000000111111100
00000000000000000000001111111100
000000000000000000000111111 1000
000000000000000000001111111 1000
000000000000000000011110111 1000
000000000000000011111100111 1000
000000000000001111111000111 1000
000000000000001111100000111 1000
000000000000001100000000111 1000
000000000000000000000000111 1000
000000000000000000000000111 1000
000000000000000000000000111 1000
000000000000000000000000111 100000000001111111100000000000000000000000
000000000000000000000000111 100000001111111111111100000000000000000000
000000000000000000000000111 100000111110000000111111000000000000000000
000000000000000000000000111 100001110000000000001111110000000000000000
000000000000000000000000111 100011100000000000000111111000000000000000
000000000000000000000000111 100110000000000000000001111100000000000000
000000000000000000000000111 1011000000000000000000011111100 000000
000000000000000000000000111 111100000000000000000000111 000000000
000000000000000000000000111 111000000000000000000000011 000000
000000000000000000000000111 110000000000000000000000011 0000000000
000000000000000000000000111 1100000000000000 0011 000000
000000000000000000000000111 100000000000000000000000001 000000000
000000000000000000000000111 100000000000000000000000001 00000
000000000000000000000000111 100000000000000000000000001 00000000
000000000000000000000000111 100000000000000000000000001 000000
000000000000000000000000111 100000000000000000000000000 0000000
000000000000000000000000111 100000000000000000000000000 0000000
000000000000000000000000111 100000000000000000000000000 0000000
000000000000000000000000111 100000000000000000000000000 1000000
000000000000000000000000111 100000000000000000000000000 1000000
000000000000000000000000111 100000000000000000000000000 1000000
000000000000000000000000111 100000000000000000000000000 1000000
000000000000000000000000111 100000000000000000000000000 1000000
000000000000000000000000111 100000000000000000000000000 1000000
000000000000000000000000111 100000000000000000000000000 1000000
000000000000000000000000111 100000000000000000000000000 1000000
000000000000000000000000111 100000000000000000000000000 1000000
000000000000000000000000011 100000000000000000000000000 0000000
000000000000000000000000011 100000000000000000000000000 0000000
00000000000000000000000001 1 110000000000000000000000000 0000000
00000000000000000000000001 1 110000000000000000000000001 0000000
000000000000000000000000001 11000000000000000000000000 0000000
000000000000000000000000001 110000000000000000000000001 00000
000000000000000000000000000 1110000000000000000000000 000000000
0000000000000000000000000 111000000000000000000000011 00000
00000000000000000000000000001111100000000000000 000011 0000000000
000000000000000000000000000001111100000000000000000000011 0000000000
00000000000000000000000000 11111 00000000000000111 00000000000
000000000000000000000000000000111110000000000000000001111110000000000000
000000000000000000000000000000011111000000000000000001111100000000000000
000000000000000000000000000000000111100000000000000111111000000000000000
000000000000000000000000000000000011111000000000001111110000000000000000
000000000000000000000000000000000001111110 1111110 000000000000
000000000000000000000000000000000000011111111111111100000000000000000000
1100800000000000000000000

00
00

Figure 2: Character 98 from font eiad10.

some magnification, (e.g., mf "\mode:=localfont;
mag=magstep(4); " input eiad10). Our imple-
mentation of gftype truncates its output at 80
columns; this limits the range of usable magnifica-
tions.

The input file represents the whole picture
(the same number of pixels will be printed); the
relative positions of elements in this “picture”
will correspond to their relative positions in the
3D output. There will appear to be a small
leftward shift due to the left-right asymmetry in the
recurrence relation. Automatically correcting for
this asymmetry would require dropping user data
on the right and/or adding new ground plane pixels
on the left. Another solution is to put in a small
rightward shift in the input file to begin with. Here
the code makes no centering correction, and leaves
that problem to the user.

TUGboat, Volume 15 (1994), No. 4

The code

Most of the code is trivial. First we declare a
few counter and dimension variables, most of which
have an obvious meaning:

% Load PSTricks, if available, for color
%#\input pstricks.tex
\newcount\lines\newcount\columns
\newcount\nx\newcount\ny
\newcount\ThisPixelColor
\newcount\ReferenceDepth
\newcount\Period
\newcount\StartingStripeWidth
\newdimen\dx\dx=3pt
\newdimen\dy\dy=\dx
\newread\DepthData\newlinechar=‘\""J

Counters \lines and \columns are read from
the data file; \columns will be augmented by the
program to include the necessary number of invisible
pixels, \StartingStripeWidth. Dimension \dx
specifies the pixel size, if we are drawing black and
white square pixels (a random dot autostereogram);
one may set \dy to a different value; the code that
uses \dx and \dy is commented out because we will
use characters instead, as texturing elements.
\Period is the period m of the image, as
defined above. It should be as large as possible, for
the reasons given in the previous section, but it is
limited by the requirement that \Period times the
pixel width should be of the order of an inch or two
(this is about the distance between points your eyes
will converge to on the paper; it must be neither too
small nor too large, for good comfortable viewing).
A random number generator is used to create
the initial stripe on the left hand side of the figure.
The rest of the picture will be obtained by copying
elements from that stripe. The code for the random
number generator, using a simulated shift register,
is taken from an article by Hans van der Meer in
TUGboat, Volume 15 (1994), No. 1, pages 57-58

\catcode‘\@=11

\newcount\@SR

\def\@SRconst{2097152}

\def\SRset#1{\global\@SR#1\relax}

\def\@SRadvance{\begingroup
\ifnum\@SR<\@SRconst\relax \count@=0
\else \count@=1
\fi
\ifodd\@SR \advance\count@ by 1 \fi
\global\divide\@SR by 2
\ifodd\count@

\global\advance\@SR\@SRconst\relax

\fi

TUGDboat, Volume 15 (1994), No. 4

\endgroup}

It is necessary to initialize the register with some
seed value, and to step it a number of times
before its output becomes “random”. We also
define macros \SRtest and \SelectPattern that
use the generator to select randomly between 2 and
4 arguments, respectively.

\SRset{1141651}

\nx=20

\loop\ifnum\nx>0
\@SRadvance\advance\nx by-1\repeat

\def\SRtest#1#2{\@SRadvance
\ifodd\@SR #1\else #2\fi}
\def\SelectPattern#1#2#3#4{
\SRtest{\SRtest{#1}{#2}}%
{\SRtest{#3}{#4}}}
\catcode‘\@=12

Different seed values will result in different texturing
patterns, so one should experiment with seeds if
the output shows distracting accidental defects, like
large holes, or lines that seem to be much darker
or lighter than the average (this particular kind of
defect could also be the result of excessive loss of
information, as explained before; use of a larger
\Period should help cure this).

A test is introduced, \ifPrinting, to dis-
tinguish between invisible starting pixels, and the
printing ones. Continuously testing this flag slows
down operations, but it simplifies the code struc-
ture.

\newif\ifPrinting

Next comes a set of macros defining the basic
tiles: boxes \abox, \bbox, \cbox, \dbox, and
corresponding macros \A, \B, \C, \D. Here, just
about anything is allowed, as long as the pixels all
have the exact same dimensions. Their aspect ratio
can be adjusted, if desired, to compensate for the
non-square aspect ratio of characters in the relief
data file, when it is being edited. Best results are
obtained when pixels are very small, so here I use
3.5pt and 4.5pt characters. The heights and widths
of boxes \abox. ..\dbox are all coerced to 4.5pt, and
depths are coerced to Opt. Note that this will make
the TEX logo overflow into neighboring pixels, but
that doesn’t matter since the result looks good (at
least to me). Box \bbox is left empty, to produce a
ligther texture.

% One way to add a little color:

\ifx\PSTricksLoaded\endinput

\immediate\writel16{Using pstricks}

\else

489

\def\black{}
\def\red{}
\fi

\font\TeXlogo=cmr5 at 3.5pt
\font\Cards=cmsy6 at 4.5pt
\font\Cardlets=cmsy6 at 3.5pt
\newbox\abox\newbox\bbox
\newbox\cbox\newbox\dbox

\setbox\abox=\hbox{/
\black\kern-1.5pt\TeXlogo\TeX}

\setbox\bbox=\hbox{}

\setbox\cbox=\hbox{\red\Cards\char"7E}

\setbox\dbox=\hbox{\red\Cardlets\char"7E}

\wd\abox=4.5pt
\ht\abox=\wd\abox\dp\abox=0pt
\ht\bbox=\ht\abox
\wd\bbox=\wd\abox
\dp\bbox=\dp\abox
\ht\cbox=\ht\abox
\wd\cbox=\wd\abox
\dp\cbox=\dp\abox
\ht\dbox=\ht\abox
\wd\dbox=\wd\abox
\dp\dbox=\dp\abox

The following macros must not insert extra spaces:

\def\A{%
\leftappenditem{\A}\to\CurrentLine,
\ifPrinting\copy\abox\fi}

\def\B{%
\leftappenditem{\B}\to\CurrentLine},
\ifPrinting\copy\bbox\fi}

\def\C{%
\leftappenditem{\C}\to\CurrentLine,
\ifPrinting\copy\cbox\fi}

\def\D{%
\leftappenditem{\D}\to\CurrentLine},
\ifPrinting\copy\dbox\fi}

Boxes containing a black and a white square are
also defined: \noir and \blanc, plus macros \K
and \W; these can be used to generate random dot
autostereograms of the sort presented in Christopher
Tyler’s early papers.

\newbox\blanc\newbox\noir
\setbox\blanc=\hbox to \dx{%

\vrule height\dy

depthOpt widthOpt\hfil}
\setbox\noir=\hbox to \dx{%

\vrule height\dy depthOpt width\dx}

\def\W{%
\leftappenditem{\W}\to\CurrentLine}

490

\ifPrinting\copy\blanc\fi}

\def\K{%
\leftappenditem{\K}\to\CurrentLine,
\ifPrinting\copy\noir\fi}

To implement the p; = p;—y, formula, my
original plan was to use some of TEX’s tables
(1ccode, uccode, etc”.) as arrays to store these
values, but I eventually opted for a well documented
more conservative approach: I use the list manip-
ulation techniques presented in Appendix D of the
TEXbook. An algorithm based on code tables would
certainly show better performance. A list called
\CurrentLine holds symbolically the contents of
the output line that is currently being worked on, in
the form of a list of single letter macro tokens. Every
time one of the basic tiles has been selected, through
a call of the form \selecto; \of\CurrentLine, the
corresponding macro token (\A, \B, \C, \D — or \K,
\W) is inserted with \leftappenditem at the head
of the \CurrentLine list,

\toksdef\ta=0 \toksdef\tb=2

\long\def\leftappenditem#1\to#2{/,
\ta={\\#11}7%
\tb=\expandafter{#21}/,
\xdef#2{\the\ta\the\tb}}

and the same macro is also immediately executed
to copy the box contents at the current position in
the printed output line.

The macro \clearline resets the \nx column
counter, and initializes the list to \outofrange;
\outofrange is used as a sentinel and is useful for
trapping errors and to accelerate the workings of
another important macro, \GobbleRest.

\def\outofrange{\immediate\write16{/,
“~JOut-of-range relief:
left limit reached”"J}}

\def\clearline{%
\gdef\CurrentLine{\\\outofrange}
\global\nx=0}

The macro \select works basically as ex-
plained in the TEXbook (p. 379), except for a little
change that dramatically increases its speed (speed
is important in the present application).

\def\select#1\of#2{}
\gdef\result{\outofrangel}’
\gdef\\##1{\advance#1-1 %

\ifnum#1=0 %
\def\result{##1}/
\let\\=\GobbleRest},

\fi}%

#2\result}

TUGboat, Volume 15 (1994), No. 4

\def\GobbleRest#1\outofrange{}

It does a backward search in the list of p;s for the
(i — 0;)*™" element. It defines \\ to be a macro that
gobbles the next token, doing nothing else, until the
sought after list element has been reached; at that
point, it saves the token for later reinsertion in the
input stream, and redefines \\ to be a macro that
eats everything else in the stream, in one step, up to
the end-of-list marker \outofrange. The execution
time is no longer proportional to the length of
the list, but instead it is roughly proportional to
the value of \Period (assuming most pixels have
o; =~ m)

The top level macro that selects what will
appear at the current position is \MakeThisPixel.
It gets depth values d; from \relief, which was
originally written to supply a fixed, hard coded
pattern; now it gets the data from the current
relief input line \DepthDatalLine, with the help of
\GetNextInputDigit.

\def\MakeThisPixel{{%
\ThisPixelColor\expandafter=\relief’,
\shift%

{\select\ThisPixelColor\of\CurrentLinel}V

}

\def\relief{\expandaftery,
\GetNextInputDigit}
\DepthDataLine\endofline}

\def\GetNextInputDigit#1#2\endofline{’
#1\relax\gdef\DepthDataLine{#2}}

The heart of the autostereogram algorithm is the
trivial (!) \shift macro, whose role should be
obvious by now: it computes o;.

\def\shift{%
\advance\ThisPixelColor
by-\ReferenceDepth
\ThisPixelColor=-\ThisPixelColor
\advance\ThisPixelColor by\Period}

% **xkkkkkkx End of definitions *kkskskskokxk

After reading the main picture parameters, and
doing a simple feasibility check, the code ends with
a very simple main loop over lines and columns. The
width of the required invisible stripe is calculated,
and added to the user specified number of columns.

% Now do the work

\openin\DepthData=eiadb.dat

\read\DepthData to\DepthDatalLine
\columns=\DepthDataLine

TUGboat, Volume 15 (1994), No. 4

\read\DepthData to\DepthDataLine
\lines=\DepthDataline
\read\DepthData to\DepthDataLine
\Period=\DepthDataLine
\read\DepthData to\DepthDataLine
\ReferenceDepth=\DepthDatalLine

\ny=\lines

\nx=\Period\advance\nx by\ReferenceDepth

\ifnum\nx<0
\immediate\writel6{Illegal parameters:
imply forward recursion.
probably raise the reference level.

For this run, it is forced to zero.}

\ReferenceDepth=0
\fi

\StartingStripeWidth=\Period
\ifnum\ReferenceDepth>0
\advance\StartingStripeWidth
by\ReferenceDepth

\fi

\advance\columns by\StartingStripeWidth

\hbadness=10000

\overfullrule=0Opt

\offinterlineskip

\parindent=0pt

Before the main loop begins, a pair of crosses
is written in the center of the page, that are one
\Period apart*; \wd\abox must be replaced by
\dx, if one is using the black and white squares.

\vfill
\nx=0
\line{\hfil\rlap{$+$}7%
\loop\ifnum\nx<\Periody
\hskip\wd\abox\advance\nx by 1%
\repeat\rlap{$+$}\hfil}
\vskip5mm

[To get the spacing right, it is important not to
output any spurious blank space in those parts of
the code.] These crosses can be used as a practice
target, to get used to the particular periodicity of
the picture. The viewer is ready to look at the real
picture when he/she is able to see 3 crosses in line
at the top of the image, in a stable and cozy way.
Looping over columns is done in three parts.
First, \Period invisible pixels are generated ran-
domly (line 11 or 12, below); \SelectPattern
selects among four possibilities. To produce a
random dot autostereogram, one would replace the

* This part of the code had to be modifed to run
within TUGDboat; this is the unmodified version.

You should

491

\SelectPattern line with the \SRtest{\K}{\W}
line, which is presently commented out, and adjust
\dx and \dy as necessary. Then if necessary, a
few more pixels are generated by recurrence (not
at random), with o; = m, to complete the invisible
stripe (line 14). If printed, these pixels would
be perceived as being part of the reference plane.
Finally, the visible part of the line is generated with
the full recurrence algorithm (line 17).

1. \loop\ifnum\ny>0

2. \clearline

3. \message{<\number\ny}

4. \read\DepthData to\DepthDataLine

5. \nx=0 \Printingfalse

6. \line{%

7. \hfil¥

8. \loop\ifnum\nx<\columns?,

9. \ifnum\nx<\StartingStripeWidth

10. \ifnum\nx<\Period %

1. % \SRtest{\K}{\W}%

12. \SelectPattern{\AT{\B}{\C}{\D}%
13. \else%

14. {\select\Period\of\CurrentLinel}%
15. \£fi%

16. \else’,

17. \Printingtrue\MakeThisPixell,

18. \fi%

19. \advance\nx by 1 %

20. \repeat

21. \hfil}%

22. \message{>1}/

23. \advance\ny by -1 %
24. \repeat

25. \closein\DepthData

26. \bye

The reader with normal vision, who has diffi-
culties perceiving depth in autostereograms, should
experiment first with classic stereo pair images, pos-
sibly using a 3D viewer; then he/she should move on
to simple high resolution black and white random
dot autostereograms; these contain fewer distracting
features than the character based autostereograms,
but are not as pretty.

o Jacques Richer
CEntre de Recherche en Calcul
Appliqué (CERCA),
5160, boul. Décarie, bureau 434,
Montréal, PQ, CANADA H3X 2H9
richer@cerca.umontreal.ca

492 TUGboat, Volume 15 (1994), No. 4

+ +

omEx QO TER 0TgR © TEX 9TEX O TER OTER 0 TEX 9IEX Q© TEw 0TgR 0 TeX 9TEX O TER 0IpR 9 TEx 9mx O TEv oTpe

TERER 90 O0v o 0 OTERER 9 0 Qo o 0 OTERER 90 OQv o oTERER 90 Q0o o OTERR 00 Q00 v
TER Q © 0 TEX 9TEX 90U TEX OTEX TER Q0 O TEX OTEX TER 9 © O TEX OTEX CIEREXTER 9 O ©
0 900 ITERVTER OTEX © vvvvm}i’}m}avvmx < vvvvmﬁwvvw [WWWWWWWW 0 YOOV
90 TERERRX 2

v o 9
Q0 OTERFEXTERTER. WUO menvv 9 Qg0 mm}vm Q WOOO owm 9 Qg0 Q00 OTERREXTER © Q?rpx
DX < Oreforelex - O QO @@an O 00 O0UemEEx O OO0 QOUNOEOEX
QQotER Qo QO TER OOW OQotEe OV 1R O % OQotEp OV 150 O % QOQotER OO TR0 O % QQotER OV TR0 (?
<

TEREX © © TEREX TERER © Q0 0 © QX TEReX TEReR © Q0 © © UrpX TeReX TgReR © Q0 © © UrgX TEReX TEReR ©
o Q0o 090 omx Qv Q00 0o0Q omx Qo Q00 00 Q0 omx Qv Q00 00 Q omx Qv Q00 090 ommx
TERTEREREX TERY Qg0 Orgomergx Tergl) QO QOre0 Vg oTergX TeReR) QQOred Ve oTeRex Texek) QQ Ored Ores oTeReX Texek) Q!

o Omx 00 Q omeQ Opx Q000 ome O Cpx QOO0 omEr O px QOO0 gmEe O Opx Q000 o
Q00 O Tex Texerex U000 O Tex | Tekgex Ue00 0 QO mex mmgex Te000 0 Q 1ex mmgex Te000 0 QO 1ex TEgex ©
TERY (?C?v(?(?v Orexe0o Q00 Qo V0 © Q00 Qo Vpralo o Q00 Vv Vo o Q0o Qo O

TeX_Oex Qe Q0o Oex Oex Qe Orpfoo Onex Orex Orpe Orpfoo Onex Orex O Orp0o Orex Orex Ve Orpo
o(?@rpx@@ 90 900 00U Q0 9 90 o0oQ0UEx Q0 9 00 o0Q0UEx Q0 9 00 oQ0UEx Q0 ¢ 0O
TEX Q0 9 Q0 v Qoo Vrrx Qv 0 Qv o Vo Ogex Vv 0 Qo 0 Upo Uprex - Qv 0 Qv 0 Ogo Oerex Vo 0 Qo v Ogo
TEX © © Orgk) o@@@o@om}(@oo@mﬁ? OOOOOO%OOOW o(?g;;?o-rgé? oo(?mﬁ? o(?(?oomgco oo(?m}'c‘? OUQ?O

TEREX TERFEX Q) TEREREX Q0 © Orpx
Qo VoowoQu Q v(?rrﬁ?v(?vvvv(?v@ vav@vvvv@@ v(?r‘@i?vv(?vvvv@@(? v@rnﬁ??vv(?vvvv@@(? 0 QO
TERREX OTEX TEREX TERERTEREX O I
TERDY TERTERTERQ c?"rm}'c‘?o W@U OTERER OO c?m)vc?(?@ Wmﬁ?(?o m}vo@@ OTERER OO m}vo@@
Q Q Q__ 1eliEe < <

© 9 © M OTEX 0 OTEX v TEIER © OTER < TERIER ©
TER Q0 OWW om}v@o QOrpR0Ex oTER © O QU VOrEX oTER © O QOOUEX © vTER © O QOOTrex
=R Q TERERAEX TEREX QO TEROEX TERER © QO TEROEX TERER © QO TEEX TERR® © @ 1efEx
OTEX TER Q?@@ © mﬁ??vmxwv Q0 o TOEXTER Y OV o TEROEXTER 9 Q00 mpOomEexte e Q00 TEx
TERTEX VIg® oTg® © TERERTEX UIER OTEX O TERERTEX OIg® OTEX O TEREW D0 OTEX © TERERTEREX VI OTEX ©

TEX
00 QUIEgR TER © 0 00 QOTEREX TER © © 000 QUIEEXTER © © 00oo QUrEeX 00O QY0 Q UOT‘E@(OO
TEX © % O OTEREX © OTEXERI0 OTEREX © © OTEXIERER O OTEREX © © (4 OTEREX © ©
oo QOO0 o9 vvmxvv QU0 © 9umEx 990 QU0 © 9omx 9ov QU000 o 9mx 9o C?C?(?C?C? < :ﬂrx
Qo9 om0 Qo Orel’ Qo 0 orpgre Q0 O’ Qo 0 ot Q0 Ol Qo 0 otggie OOEL Q0 9 0 otsrgge OO0
Q0 o Urex O 100 © Urex O TERRO0Q © Oex O 1000 0 Omx O mpmeO000 o Umx @
Q0 © QVITERTEX TEX © © VOO0 © QVUTERTEREX © © V00 0 © QVOTERTERX © © VOV © © QVUTERTERX © Q00 © © VOV OTERTEREX ©
o

)) DTEX VY OTEX @ ERREX © Q. OTEX . © VY VTEX @ VY OTEX
TERSECTEREO OTERTEO D TERReX TERETEX TERFER TEREER TEX TEREREXY TERFER OTERESTERTEX
COp0 9 o Q Q?O QU0 o Q OQ? QOO0 t? < QO Q000 © o @OOWU Q Q MV
© OTERER Q0 O TEX © OTERER Qo Q © 0 oTERER Qo O 0o © 0 OTERER Qo O VY VY UTEREY Voo Q [P
v(?n;xm}i?vvvwvC?C?vvQ?rnxmﬁ?vvvvv@@vv@WWW@@U@O@@@@WWWU@Wv@vv@@rﬁxmﬁ?vvvvvv@
Crgre O Oreresrengex Tee O OO OrEreX T O QO OrerepenEReX TER O0 O Orpiare OressreX TR O
=X 0Q Q TEX Q' mxz TEX O Q! m;v TEX TEX © QQ mex
QoTEREX @ QoTeX TEX TER O o, QD9 UTERX TEX TRV o Qv OV 0 09 oTERX TEX TV _©
o Q0 TEmRTEl om0 OO Tl Qo Q0 el om0 QO M V]

<
Qo o Qoo TEx omx Qv o Qo mvm OV o Qo mEx vmx O0v o Qo mxTEX OQ0 o Qo TEX
QUTEX Y OTERV O 09 TER OTEX Q OTER)Y 90 TER O OTEX © OTERY 909 TER © OTgX © OTER)0 O OTER © OTpX © OTERERY 0O
© OTERERER QoTpre®) © OTERERER QUTERFX? © OTERFER QUTERFEX? © OTERRER OTERFER) © © OTERSREX
00 OTERVTEX © © VTER © © OTERTEX © VIER © © O OTERTEX © VTER © O O OTERTEX Q0 Q0O O O OTERTEX © ©
VOOV Q R0 © 0 © Qe U0 © 0 © QOrera V0 © © 0 e Vreo © 0 0 ©
Q00 UERRIEX Q0000 000 UTERERTEX V000 0000 UTERERTEX © 000 oo@o@mm@@@ 0000 OTERERERTEX © O
© 9 TEX O9Q9QUIER OO 9 TEX 90 QVIgR OO © TEX 909 OTER 9 © TEX 9000000 O TEX V0000
(12> ZVEVEVEVEVEVIREVEVIIIV L, 5 5 VIVEVEVEVEVEVIERVEVENAY: 5 5 ZIVEVEVEVEVEVRV] vv@rm@vvvvvvv vmmﬁ?vvvvvvvv © UTEX
% 4 TERERESRERER ©

TERE TEX Moo S TEX (?IW’TEW b ERERE0 OTE OTERek) Va0 Q)
EOO OQ0 Q0 Q TR0 000 0O TEX?Q? Q?Q?Q?Q? Q0 QO w0 0000 © Q mEOQ0V VOO0 © <@
Q Tex QuTEX TEXO Qv Q Tex QoTEX TEXO Qv TEX Q?Q?v”n;)cn—ﬁ?v Qv Q mex QVuTERIv Qo Q 1ex QQoTERXO O

© Crexe TEX @ Orgo o

& Q! < Q! Q O TExTEREx Qo TEX TEREX Q@ <
QU0 O 1o Q Q9000 O o O OoQO0 O mlo O Qo000 Q0 1o O CoQQ0 QU mo O
Qo OreoTex Tex @ O 000 Oewtex Tex 9 e O00 Greotex tex @ g O900 (?Ir)vmxmc v@mw@@v Www v@
C?mﬁ?c? cﬂ? ch OO Wom OO W TEREX Orefreo

TER © QOTEX TER © QOTEX TER © QUTEX TEJWC?Q?OTEX 0 © TE)UC?OOTF)(o
vavW};}ovv@OvavWﬁxvv@@va@Mvv@@vv@mﬁ?mﬁ}&mvv@@vvmmmﬁmv

Figure 3: Output generated from Fig. 2.

492

Stereographic Pictures Using TEX

Reinhard Fofimeier

Abstract

This article shows how to produce stereographic pic-
tures (“magic eye” pictures) using TEX. While it is
possible (though slow) to produce such pictures from
black and white dots, it is easier to use ordinary
glyphs as picture elements.

Resumo

Tiu éi artikolo montras kiel produkti kvazai-tridi-

mensiajn bildojn (konatajn sub la nomo “magia okulo”)

per TEX. Estas eble (kvankam malrapide) konstrui
tiagn bildojn el nigraj kaj blankaj punktoj, sed estas
pli facile uzi ordinarajn pres-signojn kiel bilderojn.

Introduction

Recently, a new kind of stereographic picture has
become rather well known, by names such as “The
Magic Eye” or “Stare-E-O”. Books containing such

TUGboat, Volume 15 (1994), No. 4

pictures (e.g., [1], and other volumes from the same
series) for some time were the best-selling non-fiction
books in Germany, and no doubt things were similar
in a number of other countries.

The new technique differs from the conventional
way to present stereographic views: Instead of hav-
ing two independent views of the same scene, taken
from slightly different angles, all the data here are
contained in one picture, which must be looked at
with a squint, so the visual axes cross behind (or in
front of) the picture, and intersect the picture plane
at a certain distance.

Since much has been written about it, I won’t
give here a detailed description of the phenomenon.
Suffice it to say that the secret of the 3D effect
is that the graphical information in the picture is
roughly periodic, the period being the distance be-
tween the section points of the visual axes and the
picture plane. If the periodicity is perfect, the whole
picture is seen as flat. Everywhere the periodicity is
disturbed, details stand out in relief, seeming closer

TUGboat, Volume 15 (1994), No. 4

distant object (1)

close object (2)

period (2) .
picture

plane

period (1)

left eye right eye

Figure 1: How to look at a magic picture

if the periodicity is less and more distant if it is
greater (cf. figure 1).

The stereo.sty style

The trick in producing a stereo picture is to start
(e.g., at the left) with a certain pattern and to con-
tinue it periodically to the right. The period varies
according to the distance at which a certain point
is to appear: The closer to the eye, the shorter the
period. (We assume here that the visual axes cross
behind the picture.)

The input form of a picture is a two-dimensional
grid of numbers, each number indicating the height
of the point it denotes. The number 0 stands for the
lowest (most distant) plane. Only numbers between
0 and 9 are allowed. A semicolon delimits a line. The
data shown in figure 2 describe a small rectangle
that “floats” one unit above the ground plane.

000000000000000000000000000000;
000000000000000000000000000000;
000000000000000000000000000000;
000000000000111111000000000000;
000000000000111111000000000000;
000000000000111111000000000000;
000000000000111111000000000000;
000000000000111111000000000000;
000000000000111111000000000000;
000000000000000000000000000000;
000000000000000000000000000000;
000000000000000000000000000000;

Figure 2: Input data for a very simple picture

493

While it would be possible to construct patterns
from black and white dots and to draw them, e.g.,
as \vrules, this process is very slow and consumes
a lot of TEX’s resources. Unless the pictures are to
show very fine details, it is easier to use patterns
built from normal TEX glyphs, such as letters and
figures. To facilitate the calculation of the period
length, we use a mono-spacing font, \tt.

Each picture element is produced by a call of
the \Pixel macro. Its only argument denotes the
“altitude” of the point. According to this argument,
the pattern (contained in \Pat) is shifted around
and the correct glyph \A for the new element is
printed:!

1 \newcount\alt

2 \def\Pixel#1{%

\def\Head##1##2! {##1}%
\def\Tail##1##2! {##2}
\edef\A{\expandafter\Head\Pat !}/,
\edef\Rest{\expandafter\Tail\Pat!}},
\edef\T{\Rest}

\alt=#1

\loop\ifnum\alt>0

10 \edef\A{\expandafter\Head\T!}%
11 \edef\T{\expandafter\Tail\T!}}
12 \advance\alt -1

13 \repeat

14 \edef\Pat{\Rest\A}),

15 \A%

16 }

© 00 N O O W

To produce a line of pixels, this macro must be iter-
ated until a semicolon is reached. This is done by the
following macro, \Line, which calls itself recursively
until it sees a semicolon:

17 \def\Line#1{%

18 \if #1;\vskip Opt \else
19 \Pixel#1

20 \expandafter\Line
21 \fi

22 }

We now could simply give an initial value for \Pat
and bracket each line of the picture data by \Line- - -;.
The pattern, however, loses details each time it is
shifted to a shorter period, and cannot recover the
lost information when periods become longer again.
We could end up with a pattern consisting of only
one sort of glyph. So it is better to restore a rea-
sonable value at the beginning of each line. This is

1 The linenumbers in the code segments are added for
clarity and are mot part of the macro text.

494

done in the following macro, \DLine; we simply use
the same start pattern for all lines.

23 \def\DLine#1;{%

24 \edef\Pat{\StartPattern}/,
25 \Line#1;%
26 }

Now let’s have a look at the result of the following
calls, shown in figure 3:

27 \edef\StartPattern{A-CeL’+MX-/()pd=}
28 \DLine 000000000000000000000000000000;

. (as in figure 3)

A-CeL’+MX~/ () pd=A-CeL’+MX-/()p
A-CeL’+MX-/ ()pd=A-CeL’+MX-/()p
A-CeL’+MX~/ () pd=A-CeL’+MX-/ () p
A-CeL’ +MX-/ (pd=A-CCeL’+MX~/ (pd
A-CeL’+MX~-/ (pd=A-CCeL’ +MX~/ (pd
A-CeL’ +MX-/ (pd=A-CCeL’+MX~/ (pd
A-CeL’+MX~-/ (pd=A-CCeL’+MX~/ (pd
A-CeL’+MX-/ (pd=A-CCeL’+MX~/ (pd
A-CeL’ +MX-/ (pd=A-CCeL’+MX~-/ (pd
A-CeL’+MX-/ ()pd=A-CeL’+MX-/()p
A-CeL’+MX~-/ () pd=A-CeL’+MX-/()p
A-CeL’+MX-/ ()pd=A-CeL’+MX-/()p

Figure 3: Picture from the data in figure 2

The effect of figure 3 is not very convincing as the
picture is simply too small: it does not even show two
full periods of the pattern. Now we could inflate the
data to make the picture larger; on the other hand,
TEX can do this for us. We just have to change the
following lines in our macro definitions:

19 \Pixel#1\Pixel#1\Pixel#1,
25 \Line#1;\Line#1;%

to blow up each pixel to a 3 x 2 matrix. (To do
this with loops is left as an exercise to the reader.)
The above data (trimmed somewhat to fit into the
column) then yield the picture in figure 4.

Now, if you have a trained magic eye, you should
be able to see the floating rectangle in the middle of
figure 4, and a somewhat more informative picture
in figure 5. (If you have no experience with such pic-
tures, ask somebody who has, or simply try staring
at it, or forget about the whole thing—it’s not really
vital after alll) Figure 5 shows that it can be useful
to compress the picture vertically, by specifying a
negative \vskip in line 18.

Why No Dot Patterns?

To be really effective and bring out finer details,
magic pictures have to use patterns with a finer res-
olution than that of glyphs. Basically, this can be

TUGboat, Volume 15 (1994), No. 4

done with TEX, e.g. by \vrules and \kerns for black
and white dots?. Details on how to do this can be
found in [2]. This process, however, not only is very
slow but also consumes a lot of TEX’s internal mem-
ory. Unless Big TEX is used, pictures are restricted
to a rather small size.

Conclusion

Given that TEX’s primary domain is typesetting
texts, it is no surprise that the easiest way to pro-
duce magic pictures with TEX is through the use of
character symbols. The pictures produced this way
do not come up to the quality of dot graphics but
certainly do have a charm of their own.

Possible extensions of the macros presented are:

e use of loops to inflate pixels by variable factors;

e reading picture data from an external file, pos-
sibly without the need to insert macro calls into
the data;

e starting each line with a copy of the pattern,
so details at the left edge of the picture can be
seen;

e use of different patterns for each line;

e automatic construction of suitable random pat-
terns.

References

[1] Das magische Auge. Dreidimensionale Illusi-
onsbilder von N. E. Thing Enterprises. Miin-
chen: arsEdition, 1994. Original: Magic Eye,
Kansas City: Andrews and McMeel, 1993.

[2] R. FoBmeier: X Bitmaps in TEX. TUGboat 12
(1991), 2, 229-232.

¢ Reinhard Fofimeier
iXOS Software GmbH
Bretonischer Ring 12
DE-85630 Grasbrunn
Germany
Reinhard.Foessmeier@ixos.de

21 am indebted to Bernd Raichle,
.informatik.uni-stuttgart.de, for this hint.

raichle@azu.

TUGboat, Volume 15 (1994), No. 4 495

[] []

A-CeL’+MX-/ () pd=A-CeL’+MX-/ () pd=A-CeL’+MX-/ () pd=A-CeL’+MX-/ () pd=A-CeL’+MX-/ () pd=A-CeL’+
MX-/ () pd=A- CeL’+MX / O pd=A- CeL’+MX / Opd=A- CeL’+MX / Qpd=A- CeL’+MX / O)pd=A- CeL’+MX /Op

A- CeL’+MX / O pd=A- CeL’+MX / O pd=A- CeL’+MX /O pd=A- CeL’+MX / O pd=A- CeL’+MX / O pd=A- CeL’+
MX-/ () pd=A- CeL’+MX / QO pd=A- CeL’+MX / Qpd=A- CeL’+MX / QO pd=A- CeL’+MX / O pd=A- CeL’+MX /Op
A-CeL’+MX-/ () pd=A- CeL’+MX / O pd=A- CeL’+MX / O pd=A- CeL’+MX / O pd=A- CeL’+MX / Opd=A-CeL’+
MX-/ ()pd=A- CeL’+MX / QO pd=A- CeL’+MX / O pd=A- CeL’+MX / O pd=A- CeL’+MX / QO pd=A- CeL’+MX /Op
A-CeL’+MX-/ () pd=A- CeL’+MX / O pd=A-Ce’+MX-/ () pd=A-Ce’ +MMX-/ () pd=A- Ce’+MMX / O pd=A-Ce’+MM
X-/()pd=A- Ce’+MMX / ()pd=A- Ce’+MMX / (pd=A-Ce’ +MMX-/ (pd==A-Ce’ +MMX-/ (pd==A- Ce’+MMX / (pd==

A- CeL’+MX / O pd=A- CeL’+MX / O pd=A- Ce’+MX / O pd=A- Ce’+MMX / O pd=A- Ce’+MMX / O pd=A- Ce’+MM
Opd=A- Ce’+MMX /O pd=A- Ce’+MMX / (pd=A-Ce’+MMX-/ (pd==A-Ce’+MMX~/ (pd==A- Ce’+MMX / (pd==

L’+MX / O pd=A- CeL’+MX /O pd=A- Ce’+MX / Opd=A- Ce’+MMX—/()pd=A—Ce’+MMX / O pd=A- Ce’+MM
)pd=A—Ce’+MMX—/()pd=A—Ce’+MMX—/(pd=A—Ce’+MMX—/(pd==A—Ce’+MMX—/(pd==A—Ce’+MMX—/(pd==
L7 +MX-/ () pd=A-CeL’ +MX-/ () pd=A-Ce’ +MX-/ () pd=A-Ce’ +MMX-/ () pd=A-Ce’ +MMX-/ () pd=A-Ce”’ +MM
)pd=A-Ce’+MMX-/ () pd=A-Ce’+MMX-/ (pd=A-Ce’ +MMX-/ (pd==A-Ce ’+MMX-/ (pd==A-Ce’ +MMX-/ (pd==
L7 +MX-/ () pd=A-CeL’ +MX-/ () pd=A-Ce’ +MX-/ () pd=A-Ce’ +MMX-/ () pd=A-Ce’ +MMX-/ () pd=A-Ce”’ +MM
)pd=A-Ce’+MMX-/ () pd=A-Ce’+MMX-/ (pd=A-Ce’ +MMX-/ (pd==A-Ce ’+MMX-/ (pd==A-Ce’ +MMX-/ (pd==
L7 +MX-/ () pd=A-CeL’ +MX-/ () pd=A-Ce’ +MX-/ () pd=A-Ce’ +MMX-/ () pd=A-Ce’ +MMX-/ () pd=A-Ce”’ +MM
)pd=A-Ce’+MMX-/ () pd=A-Ce’+MMX-/ (pd=A-Ce’ +MMX-/ (pd==A-Ce’ +MMX~/ (pd==A-Ce’ +MMX-/ (pd==
L7 +MX-/ () pd=A-CeL’ +MX-/ () pd=A-CeL’+MX-/ () pd=A-CeL’+MX-/ () pd=A-CeL’+MX-/ () pd=A-CeL’ +
MX-/ () pd=A- CeL’+MX / QO pd=A- CeL’+MX / O pd=A- CeL’+MX / O pd=A- CeL’+MX / QO pd=A- CeL’+MX /0p

A- CeL’+MX / O pd=A- CeL’+MX / O pd=A- CeL’+MX / O pd=A- CeL’+MX / O pd=A- CeL’+MX / O pd=A- CeL’+
MX-/ () pd=A- CeL’+MX / O pd=A- CeL’+MX / Opd=A- CeL’+MX / O pd=A- CeL’+MX / Qpd=A- CeL’+MX /0p
A-CeL’+MX-/ () pd=A- CeL’+MX / O pd=A- CeL’+MX /O pd=A- CeL’+MX / O pd=A- CeL’+MX /O pd=A-CeL’+
MX-/ ()pd=A- CeL’+MX / QO pd=A- CeL’+MX / QO pd=A- CeL’+MX / QO pd=A- CeL’+MX / O pd=A- CeL’+Mx /0p

-/
-C
-/
-C
-/
-C
-/
-C
-/
-C

h>:><h>:><h>:><h>:><h>><

e
(
e
(
e
(
e
(
e

Figure 4: Picture from the data in figure 2, with inflated pixels

A-Cel,’ +MX- d=A-Cel,’ +MX~- d=A- CeL’+MX d=A-Cel ? +MX d=A-CeL,’ +MX- d=A-Cel,’
+MX-/ () d=A£%gL’+Mx— O d=AS%£ 2+MX-/ () d—A(%gL’+ O d—A(%gL’+MX QOpd= A(%EL’+MX— (
el AR Sndohotel S MBS V54 —A— of SR (oA tol SR) (S ogahr et S AR (gt
+MX=/ () pd=A-CeL’+MX-/ () pd=A-CeL’+MX~/ () pd=A-CeL’+MX-/ () pd= CeL’+MX { Opd=A-CeL’ +MX~/(
A—CeL’+pIX— ()},)d=A—eL’+M£—/()Ed=A—eL’+MX——/()Ed=A—eL’MX——/(P el’X--/)}))d=== -el’
-/ Opd===A=el”X--/)pd===A-eL’X--/) pd===AA-el’ X-- A-el. x———/) d=AA=el.X-——-/)pd=A
A-Cel’+MX-/ (Jpd=A-el’+MX~/ (Jpd=A-g ’+MX——/()Pd =A- e ’+MX— ()Pd=—A e >Mx—/())9d—=A el>MX
~/())pd==A-el”MX~/))pd==A-el’MX~/)) pd==AA-e[.’MX~/)) pd==A"e MXX— =pA-eLL7MXX-/))p==
A=Cel” +MX-/ O)'pd=A-efl’ +MX- () pd=AAZelL’MXX- () pd=AAZelL’MXX~ E’MX XX-)pd=AAA=L,
XXX~ 9d=AAA ~tPSxxS Pd =AA- LE’MXXX) AAA -1, ’MXXX —AAAL ’MXXXX —AAAALE’MXXXX
A-Ce =A-Cel”+MX A- e+ X— ()pd=A d dA Ce+ Ce+
()ngqAA Ce+§§—(()gdﬁd -C+M§ (((M— +M§ ? E A ++ E ﬁ-

=Ce =Le e+ -

Opdpa- Opdpa- -c+M§ ‘(()8 Mﬁx— ()E ~Opd=a
-0yl eyt aatocs B é%imﬁ‘*???EE?XHAQimﬁ‘**%???g%xih(%%&

(O pd=aah-ck iy TRPA LoRA aol)
A=Cel P X~/ () pd 4 P+Mx- pd= e e Opd=AA- ookt) Pa=AAA- T)pdd=AAA- AT
=) pad=AAA-CoCOMX~) pad=AAA— eCeMX--) AARA-6CBIX-—) pApdAAA— CeMX---)p%BdAA CEMMX-—-) pApdAA

43 Cel> 1M/ (Ypd-aCel.» ML/ (pd-h-Chett/ (Opa-hoClell/ (T (pd——b CCe-/ () Opd-——h Cte~/
d===ACCh d==A"CCE~ dolelet S —ALCCCee ALceoces A-
v U ATk s A A9 RSOer, Ak RV AT RSO iy YA A e, oL O ééiiféém
X-7 ¢/ O pd=h-CB+MX-/ (/ O pd=A-Co+MX-/ () pd=A-A-Co+MX-/ () pd=A-A-Co+MX—/ () pd=A-A-Co+MX-/) p
A-Cel’ ﬁ -/ Opd= A—CeL’+ﬁx—/() d=A-CetiX-/ () pd=hA-Ce*tMXE/ () p) pd=A-CetNXE/ ()p) pdoh-Ce tHkE
/) p)pd=A-Ce+MX-/()p)pd=A-Ce+MX-/ () pd=A-Ce+MX-/ () pd=A-Ce+M+MX-/ () pd=A-Ce+M+MX-/ () pd=A-
A-CelL?+MX-/ (O pd=A-CelL” +MX-/ () pd=A-Ce+MX-/ () pd=A-Ce+MX-/ () p) pd=A-Ce / Op)pd=A-Ce+MX-
/ (p)pd=A-Ce*MX-/ ()p)pd=A-Ce+iX-/ (\pd=A-Ce+HX~/ (Y pd=A-Ce+MsMi-/ Opd=A-Ce+M+hX-/ (Ypd=A-
A-CeLl” +MX-/ () pd=A-Cel” +MX-/ () pd=A-CeL,’ +MX-/ () pd=A=CeL’ +MX-/ () pd=A=Ce MX—/()pd=A—CeL’
+MX-/ () pd=A-CeL’+MX-/ () pd=A-CeL’+MX-/ () pd=A-CeL’+MX-/ () pd=A-CeL’ +MX- d=A-CeL’+MX-/ (
PR ASE g Syt SO0y o M A OR my hr MP T R DRy o A MO A OR - g Iy L A
+MX-/ () pd=A-CeLl’ +MX-/ () pd=A-CeLl’+MX~-/ () pd=A-CeL’+MX-/ () pd=A-CeL’ +MX- /()pd A-CeLl’+MX-

Figure 5: A more technical picture

496

IATEX

To reset or not to reset

Johannes Braams

Abstract

This article describes two possible implementations
of a \@removefromreset macro that can be used
to remove a counter from the reset list of another
counter.

1 Introduction

When writing a document class it is sometimes nec-
essary to instruct IMTEX that a certain counter has
to be reset when another counter gets a new value.
This is the case when one wants to number equa-
tions within sections. For this purpose ITEX has
the internal command \@addtoreset.

Lately people have requested to do the oppo-
site; when they use a document class that has set
equation numbering to be within sections they want
to be able to number the equations consecutively
throughout the document. For this one would need
the command \@removefromreset, but that com-
mand is not available in IXTEX.

2 The reset list

When a BTEX counter is defined using the command
\newcounter a number of data structures are set
up that belong to that counter. Say we allocate a
counter foo with the command

\newcounter{foo}

Then among other things the command \thefoo is
defined which is used to represent the value of the
counter in printed text. One of the other things that
are set up is the ‘reset list’. This reset list is a list
of counters that are to be reset when the counter
foo receives a new value with one of the commands
\stepcounter or \refstepcounter. The reset list
for the counter foo is stored in the macro \cl@foo.

Before we can start to think about the imple-
mentation of \@removefromreset, we have to know
what kind of data structure is used to store a reset
list. When we look up the definition of \@addtoreset
to find out how it works we find the following piece
of code:

\def\@addtoreset#1#2{%
\expandafter\@cons
\csname cl@#2\endcsname {{#1}}}

This tells us that \@addtoreset is a command that
has two arguments, the first of which is the name of

TUGboat, Volume 15 (1994), No. 4

a counter to be added to the reset list of the second
argument. This is done using the command \@cons,
so to find out more about the data structure we have
to keep digging. Notice that the name of the counter
to add to the reset list is passed to \@cons inside an
extra pair of braces!.

Searching for the definition of \@cons reveals:

\def\@cons#1#2{Y,
\begingroup
\let\@elt\relax
\xdef#1{#1\Celt #2}
\endgroup}
This shows us that the reset list is a list of counter
names, separated by the command \@elt. So the
expansion of \cl@foo could look like:

\cl@foo -> \@elt {bar}\@elt {baz}\@elt {cnt}

So, when the command \stepcounter{foo} is exe-
cuted the counters bar, baz and cnt are all reset (get
the value 0).

3 Removing an element from the reset list,
the idea

Now that we know what the data structure looks
like we can start to think about how to remove an
element from the list. The essential piece of infor-
mation we have learned from our search is that each
counter name in the reset list is preceded by the
command \@elt.

So the way to the solution to our problem is
obvious. We have to give the command \@elt a new
definition. What should it do? The first thing that
comes to mind is that it should compare the name
following it with some other name. When those two
names are the same we have found the name of the
counter to be removed from the list. But how to do
that? A solution for this is to build up a new reset
list while processing the existing list. If we do that
we simply do not include the counter to be removed
in the new reset list.

4 Removing an element from the reset list,
the implementation

Now that we know the basic idea of how to solve
the problem we can start the implementation. I will
show two possible implementations.

4.1 First implementation

We are going to define the command \@removefromreset.

It will have two arguments. The first argument
is the name of the counter to remove; the second
argument is the name of the counter whose reset
list has to be changed.

\def\Q@removefromreset#1#2{Y%

TUGboat, Volume 15 (1994), No. 4

The first thing to do is to start a group and store
the name of the counter to remove from the reset
list in a command.
\begingroup
\def\toremove{#1}%
Then we save a copy of the current reset list. We
do this because we shouldn’t overwrite it while re-
building a new version.
\expandafter\let\expandafter\old@cl
\csname cl@#2\endcsname
In order to rebuild the reset list from scratch, we
empty it.
\expandafter\let\csname cl@#2\endcsname
\empty
Now we are set up to process the elements of the
reset list, except for the proper definition of \@elt.
Remember that \@elt will be defined by the exe-
cution of \@removefromreset so we have to double
the # marks for the argument of \@elt.
\def\Qelt##1{Y
First we store the argument of \@elt in a command
in order to be able to use \ifx later on for the com-
parison.
\def\found{##1}%
Now we can compare the name of the counter to
remove from the list with the name we have just
found.
\ifx\toremove\found
If they are the same we do nothing, thereby effec-
tively removing it from the list. If they are different
we use \Q@addtoreset to build up the new reset list.
\else
\@addtoreset{##1}{#2}/,
\fi}%
Now we have defined \@elt so we can simply execute

the reset list. This will execute all the occurrences
of \@elt that are in the list.

\old@cl

All that is left to do now is to close the group so
that TEX forgets about any temporary definitions
we made. Notice that the new reset list was built
using \@addtoreset which uses global definitions
inside.

\endgroup}

4.2 Second implementation
A slightly different approach is taken in the following
implementation of \@removefromreset.

\def\@removefromreset#1#2{%
\begingroup

497

This time we use a token register to temporarily
store the new reset list that is to be built up.

\toksdef\newlist8\newlist{}

Again we store the first argument in a control se-
quence for future use in the \ifx test.

\def\toremove{#1}%
Again we use \@elt to check whether the following
list-element is the one we are looking for.
\def\@elt##1{%
Store the list element in a control sequence
\def\found{##1}
and compare it with the one to remove.

\ifx\found\toremove
\else

If it was not the one we are looking for, add the cur-
rent list element to the new copy of the list, stored
in token register \newlist.

\expandafter\newlist\expandafter{’
\the\newlist\Qelt{##1}}
\fi}
Now we can simply execute the reset list which will
execute all the occurrences of \@elt that are in the
list.

\csname cl@#2\endcsname

Finally, we have to remember to copy the contents
of \newlist to the original reset list.

\expandafter\xdef\csname cl@#2\endcsname
{\the\newlist}
\endgroup}

¢ Johannes Braams
PTT Research
St. Paulusstraat 4
2264 X7 Leidschendam
The Netherlands

498

Abstracts

Les Cahiers GUTenberg
Contents of Recent Issues

Numéro 18 — septembre 1994

MICHEL GOOSSENS, I#ATEX2e, un apergu
[[ATEX2¢: an overview]; pp.1-34

Author’s abstract: “This article gives an
overview of the new or extended user commands
available with IATEX2e, the new IATEX release,
compared to the previous version IATEX 2.09. After
introducing the new preamble commands, the exten-
sions for defining new commands and environments,
and handling length and boxes are discussed. The
new font selection commands are explained, both
for text and math, and it is shown how to easily
use different font families. A list of supported class
and package files is given and new possibilities for
controlling page contents and floats are discussed.
Most of this material is described in much greater
detail in The IATEX Companion and in the second
edition of the IATEX Reference Manual.”

The abstract above is quite complete. The
article includes a brief summary of the objectives
for IATEX2¢, neatly capturing what we gain with
the new IATEX:!

— create a single IATEX format, replacing the
many (increasingly incompatible) formats avail-
able previously

— replace variant IATEX ‘dialects’, such as ApS-
IATEX and SLITEX, by add-on packages—
amsmath and slides, in this particular in-
stance —all using the same base format

— add a small number of oft-requested functions

— maintain compatibility at the document level
(that is, IATEX 2.09 source files should not have
to be modified in order to run with the new
IATEX)

— retain IATEX 2.09 conventions in order to make
learning the new elements as easy as possible

— the New Font Selection Scheme (NFSS) be-
comes the standard in IATEX2¢

This article joins other accessible introductions to
the new IATEX: in the TUGboat proceedings issue,
“Document Classes and Packages for IATEX2¢”
by Johannes Braams, and “PostScript Fonts in

1 An elaboration of the main benefits can be
found in TTN 2,4:10-11.

TUGboat, Volume 15 (1994), No. 4

IATEX2e” by Alan Jeffrey; and in the Gdansk
proceedings, Dag Langmyhr’s “How to make your
own document style in IATEX2:”. Braams and
Langmyhr can also be found in MAPs #13 (94.2).

DANIEL FLIPO, BERNARD GAULLE, KARINE
VANCAUWENBERGHE, Motifs francais de césure
typographique [French hyphenation patterns];
pp- 35-60

Author’s abstract: “The aim of this article is to
compare the various current versions of the French
hyphenation files and to propose a completely new
updated and corrected version. A short introduction
is given to French hyphenation as well as to TEX
word-splitting mechanisms.”

BERNARD GAULLE, Commentaires sur la
portabilité des documents (I#)TEX [Comments on
(I#)TEX document portability]; pp.61-86

Author’s abstract: “In Cahier GUTenberg #15,
Daniel Taupin expressed his thoughts and experi-
ences about the portability of TEX documents. This
article reviews, point by point, using the same
headings (with one or two exceptions) and in the
same order each of the elements and discusses their
technical validity. This study reveals some rules
for increasing the portability of (I#)TEX documents
that are both simpler and more elementary than
the ones proposed in the article in question.”

[A summary of the Taupin article appeared in
TUGboat 14 #2, page 146.]

Numéro 19 — janvier 1995

Editor’s mote: Thematic issue entitled “Electronic
Document Exchange: from IATEX to WWW, HTML
and Acrobat.” The issue contains 158 pages in all,
with 9 articles, some of which will be appearing in
translation in an upcoming issue of TUGboat.

CHRISTIAN ROLLAND, Editorial: diffusion des
documents électroniques [Distribution of electronic
documents|; pp.1-2

With all the talk about the “information high-
way” and what it will bring, there already is a
‘real info highway’ in action, with keywords such as
CD-ROM, CD-I, the Internet, WWW. The articles
in this thematic issue were first presented at the
January 19, 1995, one-day meeting organised by
GUTenberg and held in Nanterre, France.

Luc OTTAVy, Systémes d’information sur Internet
(Information systems on the Internet]; pp.3-26
Serving as a solid introduction to the termi-
nology and technology which the remaining articles
repeatedly refer to, the article provides a detailed

TUGboat, Volume 15 (1994), No. 4

overview of how the various elements come together,
from communications protocols to Internet struc-
ture (both global and in France specifically), from
e-mail to telnet, file transfers to browsers. [The pa-
per was originally presented at another conference
in October 1994, and published in Le traitement
électronique du document (1994).]

MICHEL GOOSSENS, Introduction pratique & SGML
[Practical Introduction to SGML]; pp. 27-58.
Author’s abstract: “The international standard
SGML (Standard [Generalized] Markup Language)
deals with the structural markup of electronic doc-
uments. It was adopted by ISO (the International
Organisation for Standardisation) in October 1986.
SGML soon became very popular, also in Europe,
thanks in particular to its enthusiastic acceptance
in the publishing world, large multinational compa-
nies, and, more recently, by the ubiquity of HTML,
the hypertext language of WWW. This article
provides an introduction to the basic ideas of SGML
and should allow the reader a better understanding
of the latest developments in the field of electronic
documents in general, and in WWW in particular.”

FrANCOIS DAGORN, World-Wide Web, formulaires
électroniques, images réactives, etc. [WWW,
electronic forms, clickable images|; pp.59-66
Author’s abstract: “This paper details the
mechanisms used to create electronic forms or
clickable image maps within the World Wide Web.”

CHRISTIAN ROLLAND, Présentation de HTML
[Introducing HTML]; pp.67-84

Author’s abstract: “This article presents a
markup language, HTML (HyperText Markup Lan-
guage), which is used to represent hypertext docu-
ments in World Wide Web. Tags which indicate the
most usual structures are shown; then the hypertext
tags and other features are exhibited.”

VINCENT QUINT, IRENE VATTON, L’édition
structurée et le World-Wide Web [Structured
editing and the World-Wide Web]; pp. 85-97

Creating documents for the World Wide Web
is not an easy task. Many authors create such doc-
uments by hand. This means they usually have to
wrestle with HTML syntax, even if their text editor
provides some tools for the job. An alternative is
to use filters which come with various document
processing systems, but these don’t include all the
Web-specific tools. Neither method is therefore
completely satisfactory.

This paper presents a solution based on the
structured document editor, Grif. The Grif editor
has been extended to take into account specific

499

features of the Web and provides a comfortable
environment for creating Web documents.

MICHEL GOOSSENS, IATEX — HTML aller et retour
[IATEX — HTML there and back]; pp. 98-120

Author’s abstract: “Both IATEX and HTML
are languages that can express the function of the
structural elements of a document, and similarities
between these two systems are shown. A detailed
study of the LaTeX2HTML program, written by
Nikos Drakos, is proposed. LaTeX2HTML allows
a quasi-automatic translation of IATEX documents
into HTML. A brief discussion of the LaTeX2HTML
and SGML2TeX programs that translate HTML into
IATEX concludes the article.”

PHILIPPE LOUARN, Documents électroniques:
une application [Electronic documents: an
application]; pp.121-126

Author’s abstract: “Each year, INRIA produces
an activity report. Although this report is typeset
in an electronic form, it was never exploited in
this way. This paper describes a new process,
based on SGML, which allows users to access the
report by different ways (WWW, Minitel, ftp, ...).
Advantages and disadvantages of this process will be
shown and future developments will be presented.”

YANNIS HARALAMBOUS, HTML — IATEX — PDF,
ou ’entrée de TEX dans I’ére de ’hypertexte
[HTML — IATEX — PDF, or TEX enters the age of
hypertext]; pp.127-147

Author’s abstract: “In this paper we describe
the process of creating electronic hyperdocuments
via IATEX and Adobe Acrobat. After a general
discussion on the advantages and disadvantages of
IATEX in this field, we give a detailed description of
each step and a lot of caveats for the user willing to
obtain efficient Acrobat documents.

The reader will find in this paper a discussion
of the software tools DVIHPS repere and recticrt
as well as the basic principles of the PDF format.”

JACQUES ANDRE, MICHEL GOOSSENS, CHRISTIAN
RoOLLAND, Diffusion des documents électroniques:
bibliographie [Distribution of electronic
documents: a bibliography]; pp.148-157

While each article in the thematic issue has
its own bibliography, this extensive bibliography
includes 99 entries divided into seven headings,
including both paper and electronic materials.

(Compiled by Christina Thiele)

500

Abstracts of the Proceedings of the Eighth
FEuropean TgpX Conference, Gdansk,
September 1994

Editor’s note: Several of the papers presented at
EuroTEX’94 were substantially the same as papers
presented at TUG’94; for such papers, a cross-
reference is given to the TUG’94 Proceedings.

Principles

JANUSZ S. BIEN, Polish texts in multilingual
environments (a case study); pp.3-17

Author’s abstract: “There are two possible
approaches to the more general use of software orig-
inally developed for one specific natural language:
to create a version specific to another natural lan-
guage, or to make a multilingual version preserving
all or most of the features of the original, and
additionally handling also the other language(s) in
question. The second approach is much more dif-
ficult than the first, but for an important class of
users, especially those from the academic milieu,
the first approach is of little use: more and more
papers are now being jointly written by multina-
tional teams communicating over the net; being
able to use the same version both for national and
international papers is an important advantage.

The present paper discusses the most important
aspects of the multilingual adaptation of TEX from
the point of view of typesetting Polish texts.”

BoGusiAw JACKOWSKI and MAREK RYCKO,
Labyrinth of METAFONT paths in outline;
pp. 18-32

Author’s abstract: “The main reason for pub-
lishing this text was our need to share with other
METAFONT fans our experience in non-standard
METAFONT programming. We have shown several
examples of universal (“bitmap-free”) METAFONT
routines and a few possible paths for future devel-
opment.”

KEES VAN DER LAAN, BLUe’s Format— The best
of both worlds; pp.32-44

Author’s abstract: “An independent format—
blue.fmt —is proposed to assist authors with cre-
ating, formatting, exchanging and maintaining com-
puscripts during the lifephases of publications. The
format builds upon manmac.tex and the functional-
ities provided by tugboat.sty. Experience gained
by publishers has been picked up too, because of my
in-depth study of the activities of AMS with respect
to TEX formatting. More recent work of Knuth and
co-authors has been borrowed from gkpmac.tex.

TUGboat, Volume 15 (1994), No. 4

The design goal was to provide a format which
suits me, which is easy to customize —to the world
outside, and in general to changing circumstances —
and which complies with the adages of software
engineering. Another aim of blue.fmt is that it can
be used throughout the life cycle of publications on
modest equipment to format articles, transparencies
and you name it. The hoped for [duration] is a
lifetime. En passant the design process is accounted
for.

New is the handling of a database of refer-
ences — with cross-referencing—or pictures all in
one-pass job.”

KrAus LAGALLY, Bidirectional line breaking with
TEX macros; pp.45-52

Author’s abstract: “TEX was originally de-
signed with European languages in mind, and thus,
whenever a paragraph contains text portions run-
ning in opposite directions, e.g. when combining
English and Arabic or Hebrew in the same doc-
ument, the task of line-breaking becomes rather
complicated.

For a clean solution, Knuth and MacKay have
proposed a modification to TEX, TeX-XeT, which
will produce an extended DVI file containing addi-
tional directional information to be exploited by a
modified DVI driver; and by now there exist several
implementations of this idea, including TeX--XeT
that produces a standard DVI file. The main draw-
back is just that we have to go outside the TEX
standard.

We present a portable technique to handle
bidirectional line-breaking by using TEX macros
alone, albeit at some sacrifice to quality. This
technique has been implemented in version 3.02 of
the author’s multilingual ArabTEX package.”

BERND RAICHLE, Sorting in TEX’s Mouth;
pp- 53-58
[no abstract available]

PETR SOJKA and PAVEL SEVECEK, Hyphenation
in TEX — Quo Vadis?; pp.59-68

Author’s abstract: “Significant progress has
been made in the hyphenation ability of TEX since
its first version in 1978. However, in practice, we
still face problems in many languages such as Czech,
German, Swedish, etc. when trying to adopt local
typesetting industry standards.

In this paper we discuss problems of hyphen-
ation in multilingual documents in general, we show
how we've made Czech and Slovak hyphenation
patterns and we describe our results achieved using

TUGboat, Volume 15 (1994), No. 4

the program PATGEN for hyphenation pattern gen-
eration. We show that hyphenation of compound
words may be partially solved even within the scope
of TEX82. We discuss possible enhancements of
the process of hyphenation pattern generation and
describe features that might be reasonable to think
about to be incorporated in {2 or another successor

to TEX82.”

PHILIP TAYLOR, Defensive programming in TEX:
towards a better class of TEX macro; pp.69-79

Author’s abstract: “Defensive programming is
a fundamental feature of any professional computer
programmer’s toolkit; yet the techniques, while
widely understood in the worlds both of ‘real’ and
of ‘academic’ programming, seem to have received
less than their fair share of attention from within the
world of TEX. It would be unfair to single out any
one package as being deficient in this respect, and
equally unfair to suggest that all package writers
are tarred with the same brush-—some, indeed,
demonstrate a far better than average awareness of
the technique required —but what is perhaps most
disturbing is that non-defensive techniques are still
not only being used but continue to be advocated.
In this paper I seek to redress this imbalance, and
to try to illustrate both the pitfalls into which the
unwary could stumble, and the safeguards which
could be usefully adopted by the wise.”

Practice

VLADIMIR BATAGELJ, Combining TEX and
PostScript; pp.83-90

Author’s abstract: “PostScript is becoming a
de facto standard as a device independent page
description language. By embedding PostScript
elements in TEX we can extend the use of TEX to
new areas of application.

In the first part of this paper we give some
general information about PostScript and its fea-
tures. In the rest of the paper we present some
of our own experiences and solutions in combining
TEX and PostScript:

e dictionaries, prolog files and how to save a lot
of space with PostScript figures produced in
CorelDRAW , Mathematica, ... ;

e writing TEX-PostScript macros, case: draw-
ing graphs (combinatorics) in TEX; PostScript
error handling mechanism, an application in
function graph drawing macro.”

501

LuTz BIRKHAHN, Tdb: An X11 TEX Debugger;
pp- 91-95

Author’s abstract: “Writing TEX macros is an
error-prone task, and finding those errors may still
require solid (TEX) expert knowledge. Conventional
programming languages offer a diversity of debug-
ging tools that are specialized for finding coding
errors. But for debugging TEX code, there are, even
after 15 years of TEX programming world-wide, only
the primitive debugging aids of TEX itself. This
paper describes Tdb, a first approach to a TEX
debugger, that claims to fill that gap.

Tdb consists of an extension to the TEX for-
matter, providing an interface to the famous Tool
Command Language Tcl and its X11 Window Sys-
tem toolkit Tk. Based on this Tcl interface was built
a debugger with a graphical user interface, enabling
the user to do things such as setting breakpoints,
single-stepping through the code or browsing in the
actual macro definitions and variables. The flexible
design based on Tcl and the MCV concept (Model,
View, Controller) allows it to customize and extend
the user interface as well as the debugging functions.
Furthermore, Tk’s interprocess communication fa-
cilities provide a solid basis for integrating Tdb into
a complete TEX development environment.”

WIETSE DoOL and ERIK FRAMBACH, 4TEX: a
workbench for MS-DOS PCs; pp. 96-100

Author’s abstract: “TEX and all its companions
offer an enormous number of possibilities. This is
both an advantage and a disadvantage. The
advantage is that almost anything is possible; the
disadvantage is that you need detailed knowledge of
all related programs to fully exploit the possibilities.

The workbench 4TEX is an attempt to inte-
grate all major TEX-related programs in a shell
that shields you from the tedious and frustrating
job of setting environment variables and program
parameters. 4TEX runs under MS-DOS, 0S/2, and
MS-Windows.

4TEX includes the following tools (amongst oth-
ers): compilers, previewers, a spell-checker, BIBTEX,
MAKEINDEX, TEXCAD, QF1G, graphics convertors
such as HP2xx, BM2FONT and GHOSTSCRIPT, text
convertors such as WP2IATEX and TROFF2TEX.
Note that all programs used by 4TEX are either
freeware or shareware.

Naturally, there is on-line help, and all func-
tions are available through simple menu choices.”

502

MICHEL GOOSSENS and FRANK MITTELBACH,
Real life book production— lessons learned from
The IATEX Companion; pp.101-104
Author’s abstract: “Some aspects of the pro-
duction of The IATEX Companion are described.”
[See also TUGboat 15 no. 3 (1994), 170-173.]

KAREL HORAK, Fighting with big METAFONT
pictures when printing them reversely or [in]
landscape; pp.105-107

[no abstract available]

JORG KNAPPEN, Towards a 256-character IPA
font; pp.108-109
[no abstract available]

OLGA LAPKO, MAKEFONT as part of
CyrTUG-emTEX package; pp.110-114
[no abstract available]

MARION NEUBAUER, Conversion from
WORD /WordPerfect to IATEX; pp.115-119

Author’s abstract: “Production of a large doc-
ument with many contributors requires conversion
of all submitted manuscripts into the IATEX format.
A large proportion of manuscripts is submitted
in the formats of WORD and WordPerfect, two
very popular word processing programs. I will
discuss different approaches to converting such files
to IATEX format.

First of all the differences between the word
processors WORD and WordPerfect versus the doc-
ument preparation system IATEX will be explained,
and problems encountered during text conversion
into I#TEX will be discussed. The conversion can be
done either by means of a separate program (exter-
nal conversion) or using macros, style sheets and a
printer driver from within the word processors (in-
ternal conversion). Advantages and disadvantages
of both methods for different types of text elements
such as plain text, lists, tables and mathematical
formulas will be discussed. This is followed by
an overview of the conversion programs currently
available.”

ERIC PICHERAL, Building and supporting the
GUTenberg archive; pp.120-124

Author’s abstract: “Three years ago, the
GUTenberg Local TEX Users Group established
an archive, accessible via ftp. Its main purpose is
to supply ready-to-use TEX versions convenient for
French-speaking people.”

TUGboat, Volume 15 (1994), No. 4

Progress

JOHANNES BrRAAMS, Document Classes and
Packages for IATEX 2¢; pp. 127-134

Author’s abstract: “In the first section of
this article I describe what document classes and
packages are and how they relate to IATEX 2.09’s
style files. Then the process of upgrading existing
style files for use with IATEX 2¢ is described. Finally
I give an overview of the standard packages and
document classes that are part of the distribution
of IATEX 2¢.”

[See also TUGboat 15 no. 3 (1994), 255-262.]

YANNIS HARALAMBOUS, Typesetting the Holy
Bible in Hebrew, with TEX; pp. 135-152

Author’s abstract: “This paper presents Tiqwah,
a typesetting system for Biblical Hebrew, that uses
the combined efforts of TEX, METAFONT and GNU
Flex. The author describes its use and its features,
discusses issues relevant to the design of fonts and
placement of floating diacritics, and gives a list of
rare cases and typographical curiosa which can be
found in the Bible. The paper concludes with an
example of Hebrew Biblical text (the beginning of
the book of Genesis) typeset by Tiqwah.”

[See also TUGboat 15 no. 3 (1994), 174-191.]

YANNIS HARALAMBOUS and JOHN PLAICE, Q, a
TEX Extension Including Unicode and Featuring
Lex-like Filtering; pp.153-166

Author’s abstract: “Q consists of a series of
extensions to TEX that improve its multilingual
capabilities. It allows multiple input and output
character sets, and will allow any number of internal
codings. Finite state automata can be defined,
using a flex-like syntax, to pass from one coding
to another.

In this paper both a technical introduction and
a few applications of the current implementation of
Q are given. The applications concern typesetting
problems that cannot be solved by TEX (conse-
quently, by no other typesetting system known
to the authors). They cover a wide range, go-
ing from calligraphic script fonts (Adobe Poetica),
to plain Dutch/Portuguese/Turkish typesetting, to
vowelized Arabic, fully diacriticized scholarly Greek,
or decently kerned Khmer.

A few problems Q cannot solve are mentioned,
as challenges for future €2 versions.”

[See also TUGboat 15 no. 3 (1994), 344-352.]

DAG F. LANGMYHR, How to make your own
document styles in IATEX2¢; pp. 167-175
[no abstract available]

TUGboat, Volume 15 (1994), No. 4

FRIEDHELM SOWA, Printing colour pictures;
pp. 176-181

Author’s abstract: “The availability of cheap
colour printers has increased the demand for colour
support in TEX for text and graphics. This paper
shows what components are necessary and available
to satisfy this demand. Further, it points out the
problems that have to be solved to make the TEX
Colour Interface as device independent as possible.

A colour package for printing coloured text
was developed by Jim Hafner and Tom Rokicki by
defining a set of commands which use the special
primitive. This was the base for the colour interface
in the new IATEX. It represents the first and —up
to now —only method to print coloured text.

Printing colour pictures in a TEX document
needs a driver program that is able to exploit the
capabilities of a colour device. The driver must
separate the colours of the picture into the basic
colours used by the colour model supported by
the output device. This was the purpose [for]
develop|ing] the dvidjc-drivers for the Hewlett
Packard inkjet printers and to upgrade BM2FONT
to version 3.0.

The upcoming problems during the develop-
ment of this dot matrix driver and the integration
of colour screens (separated by BM2FONT) showed
that text and graphics have to be treated differently.
A possible description of a TEX Graphics Interface
is proposed.”

[See also TUGboat 15 no. 3 (1994), 223-227.]

PHILIP TAYLOR, e-TEX and NTS: a status report;
pp. 182-187

Author’s abstract: “The NS project was
created under the aegis of DANTE during a meeting
held at Hamburg in 1992; its brief was to investigate
the possibility of perpetuating all that is best in
TEX whilst being free from the constraints which
TEX’s author, Prof. Knuth, has placed on its
evolution. The group is now investigating both
conservative and radical evolutionary paths for
TEX-derived systems, these being respectively e-
TeX (extended TEX) and NTS (a New Typesetting
System). The group is also concerned that whilst
TEX itself is completely stable and uniform across
all platforms, the adjuncts which accompany it
vary from implementation to implementation and
from site to site, and has therefore proposed that
a ‘canonical TEX kit’ be specified whijch, once
adopted, could safely be assumed to form a part
of every TEX installation. Work is now well
advanced on the e-TEX project, whilst the group
are concurrently involved in identifying the key

503

components of a complete portable TEX system and
in investigating sources of funding which will allow
the NTS project to become a reality.”

[See also TUGboat 15 no. 3 (1994), 353-358.]

JIRf ZLATUSKA, Surviving in a multilingual world
with multiple font encodings; pp.188-195

Author’s abstract: “This paper develops con-
structions needed for utilizing the encoding scheme
concept embedded into IATEX 2¢ in order to develop
a system allowing one to use different font encoding
schemes and different languages within one for-
mat and to provide mechanisms for fully functional
switching between them. The concept of language
extends that of TEX based just on proper set of
hyphenation patterns. A practical demonstration
of this is shown in the example defining hyphen-
splitting feature as a modification to the standard
line-breaking behaviour of TEX.”

MICHEL GOOSSENS and SEBASTIAN RAHTZ,
Simple colour design, and colour in IATEX 2¢;
pp. 196-205

Author’s abstract: “This article reviews some
basic principles underlying the use of colour. We
start by a review of the functional use of colour,
explaining how it can help to focus attention, ex-
plain relationships, guide the reader/viewer through
the presented information so that its contents are
easier to absorb and appreciate. Some common
rules for optimizing communication using colour
elements in documents are discussed. We then ex-
plain the colour support in I#TEX2¢ and give some
examples.”

[See also TUGboat 15 no. 3 (1994), 218-222.]

Editor’s mote: For more information on Euro-
TEX’94, held September 26-30 in Gdansk, Poland,
there is a summary in TTN 3,4:17-18. Copies of
the 200-page Proceedings of the EuroTEX94 confer-
ence can be obtained by sending 15 DM (postage
included) to Wlodek Bzyl, Instytut Matematyki,
Uniwersytet Gdanski, Wita Stwosza 57, PL 80-952,
Poland.

(Compiled by Christina Thiele)

504 TUGboat, Volume 15 (1994), No. 4
Calendar
1995 Apr UK TgX Users’ Group, location
to be announced. Topic: Maths is
Jan 5-8 Linguistic Society of America, what TEX does best of all.
69" Annual Meeting, For information, e-mail
Fairmont Hotel, New Orleans. uktug-enquiries@ftp.tex.ac.uk
For information, contact the Apr 29- BachoTgX '95, Poland.
LSA office, Washington, May 1 For information, contact
DC (202-834-1714, Hanna Kolodzeijska,
zzlsa@gallua.gallaudet.edu). (gust@camk . edu.pl).

Jan 12 DANTE TEX-Stammtisch at the Jun 1-2 GUTenberg’95, “Graphique, TEX et
Universitat Bremen, Germany. (For PostScript”, La Grande Motte,
contact information, see Oct 6.) France. For information, call

Jan 19 Journée d’information sur (33-1) 30-87-06-25, or e-mail
la Diffusion des Documents treasorerie.gutenberg@ens.fr or
Electroniques de IATEX a HTML, aro@lirmm.fr.

WWW, et A?robat, Nanterre,) Jun 1-2 IWHD’95: International Workshop
France. F(?r information, e-mail on Hypermedia Design, Montpellier,
. tresorerie.gutenbergQens.fr. France. For information, contact
Jan 19 Portable Documents: Acrobat, the conference secretariat,
SGML & TgX, Joint meeting of the Corine Zicler, LIRMM, Montpellier
UK TEX Users’ Group and BCS ((33) 6741 8503, zicler@lirmm.fr).
Electronic Publishing Specialist Jul 24-28 TUG 16'® Annual Meeting:
Group, The Bridewell Theatre, Real World TEX
London, UK. For information, St. Petersburg Beach, Florida.
contact Malcoln} Clark For information, send e-mail to
(m.clark@warwick.ac. uk). tug95c@scri.fsu.edu. (For a
preliminary announcement, see
TUG Courses, Santa Barbara, California TUGboat 15, no. 2, p. 160.)
Jan 30— Intensive IATEX 2¢ Sep 4-8 EuroTgX’95, Papendal, Arnhem,
Feb 3 Netherlands. For information,

Feb 6-10 Beginning/Intermediate TEX contact eurotex@cs .run.nl.

Feb 13-17 Advanced TEX and Macro Writing For additional information on the events listed

above, contact the TUG office (415-982-8449, fax:

Feb 28— TEX-Tagung DANTE’95, University 415-982-8559, e-mail: tug@tug.org) unless other-

Mar 3 of Gielen, Germany. For wise noted.

information, contact Giinter
Partosch ((0641) 702 2170,
dante95@hrz.uni-giessen.de).

Status as of 31 December 1994

TUGboat, Volume 15 (1994), No. 4

Production Notes

Barbara Beeton

A new approach to TUGboat production

Owing to various circumstances beyond the Editor’s
control, time available for TUGboat production has
diminished to the point where it is no longer possible
for the regular issues of TUGboat to remain a one-
person operation.

As is quite obvious, this issue is embarrassingly
late. But rather than trying to explain why it is
late, I would like to describe what has been done to
try to avoid such delays in the future.

Mimi Burbank and the system management at
SCRI— the Supercomputer Computations Research
Institute at Florida State University —have kindly
made available copious disk space, login access,
and a group identity for a core team of volunteers:
Mimi, Robin Fairbairns, Michel Goossens, Sebastian
Rahtz, Christina Thiele, and myself. Every member
of this team has previous experience in editing or
producing TUGboat, proceedings issues, or similar
TEX publications, so they have been able to “hit
the ground running”.

In the space allotted, we have set up a full,
isolated (IA)TEX system and TUGboat work ar-
eas. Remaining in a management position, I have
populated the tree with the material collected for
issues 15(4), 16(1), et seq., identified which ones
are encoded using plain or IATEX conventions,
and encouraged the team members to work first
on items that match their interests and expertise.
Articles are returned to me as PostScript files to be
printed and given a final reading. I have edited the
input files directly, where practical, and provided
comments by e-mail to the “handler” regarding
adjustments in format. The final version is again
delivered in PostScript form for printing and inclu-
sion in a growing pile of printer-ready copy. No
item has been slighted, with the result that 16(1) is
nearly ready to put together, and should be sent to
the printer —and thence to members—in no more
than a month from 15(4). As I will be out of town
for much of this interval, Mimi Burbank has agreed
to be the manager for 16(1).

The plan for issue 16(2) is a bit different. For
some time, the Publications Committee has been
discussing the idea of theme issues —issues devoted
to a single topic of narrower or wider scope — under
the direction of a guest editor. 16(2) will be the
first of such issues, containing articles related to
electronic documents, in particular SGML, HTML,
hypertext, Acrobat, ..., with Malcolm Clark in

505

charge. Topics for future theme issues will be
announced as plans become more firm; one theme
issue per year is currently foreseen. Suggestions
are welcome for both topics and prospective guest
editors.

Input and input processing

Electronic input for articles in this issue was received
by e-mail, and was also retrieved from remote sites
by anonymous ftp.

In addition to text and various files processable
directly by TgX, the input to this issue includes
METAFONT source code and many encapsulated
PostScript files. More than 200 files were required
to generate the final copy; over 100 more contain
earlier versions of articles, auxiliary information,
and records of correspondence with authors and
referees. These numbers represent input files only;
.dvi files, device-specific translations, and fonts
(.tfm files and rasters) are excluded from the total.

Most articles as received were fully tagged for
TUGboat, using either the usual plain-based or
IATEX conventions.

By number, 47% of the articles, and 63% of
the pages in this issue are in IATEX. (For ease
of production, three mostly-text items which were
originally prepared using I#TEX were converted to
plain, and one, from plain to IATEX.) IATEX2¢
was the version used, thanks to some major systems
work by Robin Fairbairns and Sebastian Rahtz.

Font work was required for the Indica article
by Haralambous, for MacKay’s recycle logo, and for
the Chinese fragment in the EuroTEX'94 report.

Articles were processed individually by mem-
bers of the team according to their own preferred
methods, and the final input and output (Post-
Script) files delivered to the Editor for compilation
into an issue. The Editor created the table of
contents, the cover and front matter, printed out all
the files, checked the copy and conveyed it to the
printer.

Output

The bulk of this issue was prepared at SCRI on
an IBM RS6000 running AIX, using the Web2C
implementation of TEX. The remainder was run
at the American Mathematical Society from files
installed on a VAX 6320 (VMS) and TgX'’ed on a
server running under UNIX on a Solbourne work-
station. Output was printed at AMS at 600dpi on
an HP LaserJet 4M plus; this was used rather than
a typesetter for reasons of both cost and speed.

506

Institutional
Members

The Aerospace Corporation,
El Segundo, California

Air Force Institute of Technology,
Wright-Patterson AFB, Ohio

American Mathematical Society,
Providence, Rhode Island

ArborText, Inc.,
Ann Arbor, Michigan

Brookhaven National Laboratory,
Upton, New York

Centre Inter-Régional de
Calcul Electronique, CNRS,
Orsay, France

CERN, Geneva, Switzerland

College Militaire Royal de Saint
Jean, St. Jean, Quebec, Canada

College of William & Mary,
Department of Computer Science,
Williamsburg, Virginia

Communications

Security Establishment,
Department of National Defence,
Ottawa, Ontario, Canada

CSTUG, Praha, Czech Republic

Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands

Fermi National Accelerator
Laboratory, Batavia, Illinois

Florida State University,
Supercomputer Computations
Research, Tallahassee, Florida

Grinnell College,
Noyce Computer Center,
Grinnell, Iowa

Hong Kong University of

Science and Technology,
Department of Computer Science,
Hong Kong

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Communications Research
Division, Princeton, New Jersey

Iowa State University,
Ames, Towa

Los Alamos National Laboratory,
University of California,
Los Alamos, New Mezico

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Mathematical Reviews,
American Mathematical Society,
Ann Arbor, Michigan

Max Planck Institut
flir Mathematik,
Bonn, Germany

New York University,
Academic Computing Facility,
New York, New York

Nippon Telegraph &
Telephone Corporation,
Basic Research Laboratories,
Tokyo, Japan

Personal TEX, Incorporated,
Mill Valley, California

Princeton University,
Princeton, New Jersey

Smithsonian Astrophysical
Observatory, Cambridge,
Massachusetts

Space Telescope Science Institute,
Baltimore, Maryland

Springer-Verlag,
Heidelberg, Germany

Stanford Linear Accelerator
Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Texas A & M University,
Department of Computer Science,
College Station, Tezas

United States Naval
Postgraduate School,
Monterey, California

United States Naval Observatory,
Washington DC

University of California, Berkeley,
Center for EUV Astrophysics,
Berkeley, California

TUGboat, Volume 15 (1994), No. 4

University of California, Irvine,
Information & Computer Science,
Irvine, California

University of Canterbury,
Christchurch, New Zealand

University College,
Cork, Ireland

University of Delaware,
Newark, Delaware

University of Groningen,
Groningen, The Netherlands

Universitat Koblenz-Landau,
Koblenz, Germany

University of Manitoba,
Winnipeg, Manitoba

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

University of Southern California,
Information Sciences Institute,
Marina del Rey, California

University of Stockholm,
Department of Mathematics,
Stockholm, Sweden

University of Texas at Austin,
Austin, Tezas

Universita degli Studi di Trieste,
Trieste, Italy

Uppsala University,
Uppsala, Sweden

Vrije Universiteit,
Amsterdam, The Netherlands

Wolters Kluwer,
Dordrecht, The Netherlands

Yale University,
Department of Computer Science,
New Haven, Connecticut

