
A LATEX style file generator and editor

Jon Stenerson
TCI Software Research, Las Cruces, New Mexico
Ion-Stenerson@tci s o f t . corn

Abstract

Ths article presents a program that facilitates the creation of customized LATEX
style files. The user provides a style specification and the style editor writes
all the macros. Editing takes place in a graphical user interface composed of
windows, menus, and dialog boxes. While the editor may be used in any LATEX
environment, it is intended primarily for use with TCI Software Research's word
processor Scientific Word.

The current style editor runs under any Windows 3.1 system. The perfor-
mance is acceptable on a 386-based machme and naturally improves on 486's and
Pentiums. As Scientific Word is ported to other systems so will the style editor be
ported.

Introduction These days most word processors do not make

The style editor is a program that facilitates the cre-
ation and modification of styles. It represents a style
as a list of generic markup tags, and thnks of a tag
as a list of parameters whch determine its typeset-
ting properties. It performs the basic operations of
creating a new tag, modifying a tag's parameters, and
deleting a tag. A tag's formatting instructions are not
explicitly displayed. That is to say you do not see
any TEX on the screen. Instead you see dialog boxes
containing icons, menus, radio buttons, check boxes,
and so forth. These prompt you to specify the style
by filling in parameters and selecting options. There
are some screen shots at the end of this article to give
an idea of the style editor's general appearance.

Styles, generic markup tags, and
Scientific Word

A generic markup tag is a device by which an au-
thor specifies a document's logical structure with-
out specifying its visual format. For instance, the
LATEX tag \ sec t ion conveys the information that a
new section is beginning and that the tagged text is
its title. By itself this has no implications for the ap-
pearance of the section heading. It does not tell us
the heading's font, justification, or vertical spacing.
A sfyle file, external to the document, contains asso-
ciations between the tag names and specific typeset-
ting instructions. The style file says what tags exist
and how text marked with those tags should be type-
set. We see that the use of generic markup tags pro-
vides a certain division of labor. I write the article,
someone else writes the style, and TEX and LATEX do
the typesetting. The only style information I need as
an author is a list of tag names and instructions for
their use.

use of generic markup tags.-~he reason is that they
want to be WYSIWYG (what you see is what you get).
Thls means that they display on the video monitor
exactly what you will get when you print the final

copy. Files produced by WYSIWYG word processors
are filled with explicit typesetting instructions like
"put a 14pt Helvetica A at coordinates (100, 112)."
Compare this approach with the generic markup ap-
proach. First, the division of labor mentioned above
is lost and the author is now responsible for all type-
setting decisions. Of course this is also the main at-
traction of such systems. Second, stylistic informa-
tion is now duplicated throughout the document. If
subsection headings have to be left justified rather
than centered the author will have to track them all
down and change them one by one.

At TCI Software Research we are trying the
generic markup approach to word processing. Our
word processor, Scientific Word, is not a WYSIWYG

word processor in the usual sense. Instead it dis-
plays a document's text plus markup. The markup
is graphical, rather than textual, in nature. Whereas
in IPQX you wdl see \ s e c t i o n ~ I n t r o d u c t i o n } , in
Scientific Word you will see the word Introduction in
large blue letters on the video monitor. Ideally the
document's text plus markup tags represents the en-
tire content of the document. In practice there are
some important exceptions where visual formatting
carries a lot of information. For example, in math-
ematical equations and in tables the precise posi-
tioning of text contributes enormously to its mean-
ing. Scientific Word is WYSIWYG to the extent that if
the appearance of an object carries meaning, as in
the case of an equation or table, then that object is
displayed in an approximation to its printed form.
When Scientific Word saves a document on a disk it

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 247

Jon Stenerson

is saved in LATEX form, and from there it can be type-
set and printed.

Being "LATEX-oriented" leaves Scientific Word
open to some of the same criticisms leveled at LATEX.
In particular, authors do not always appreciate the
division of labor I mentioned above. Some of them
need or want more control over the style and cannot
accept that someone else just hands them a style. At
TCI we receive hundreds of requests for style mo&fi-
cations each year. Most of them are quite straightfor-
ward but many are not. It frustrates our customers,
used to WYSIWYG systems, that some apparently triv-
ial operations are not trivial for the casual LATEX user.
T h s suggests the need for another &vision of labor:
style designer versus style writer. Our authors do
not actually want to write styles, they want to spec-
ify styles. I was assigned the task of developing tools
to alleviate t h s problem. The style editor represents
the current state of that research.

For further discussion of markup tags and LATEX
see the first couple chapters of Goossens, Mittel-
bach, and Samarin 1994. For a &scussion of generic
markup in a non-mX environment read about SGML
(Standard Generahzed Markup Language) (Bryan
1988).

The development process

Before continuing with the style editor itself I'd like
to talk a little about the process of designing and im-
plementing the editor. I was trained as an algebraic
geometer in graduate school, had previously worked
as a math professor, and this was my first profes-
sional programming experience. The process of pro-
gramming is still novel enough to me that I feel like
writing about it.

The first part of my research was to work with
our customers in the capacity of style writer. I did
this for four months to learn TEX, to learn how to
thmk about style issues, and to find out what our
customers wanted in the way of style modification.
When I had enough experience to contemplate writ-
ing a program I e-mailed 500 customers and asked if
anyone was interested in the design of a style editor.
About 45 people responded and provided numerous
comments and suggestions.

Still not knowing what a style editor should look
like I decided to make a prototype, learn from my
mistakes, and then build a release version.The pro-
totype was implemented in three months between
December 1993 and February 1994. It was complete
enough to handle some realistic design issues even
though it did not have a nice user interface. I wrote
several styles with it including a style for one chapter
of the new Scientific Word User's Guide.

In retrospect, I think that I spent the wrong
amount of time on the prototype. The last few weeks
of work on the prototype were spent getting it ready

for testers - adding minor features, fixing bugs and
writing documentation. As it turned out the testers
paid little attention to the prototype e&tor. It was
too primitive and too scary and I didn't get the feed-
back I'd hoped for. I either should have either gone
ahead and made a nicer and more polished interface
for the prototype, or I should have quit earlier and
started on the release version editor sooner.

I learned many thmgs from the prototype:

Most importantly I learned that it is possible
to develop a useful style editor. This was not
obvious to me at first, but much of what I did
worked better than I thought it would. I am
now confident that TCI can and will develop a
style editor that allows the casual user with no
W X knowledge to make basic style changes,
and allows the advanced user to create any style

at all.
I learned that a lot more attention had to be paid
to the user interface. I did not spend much time
on the prototype's user interface because I had
to first concentrate on getting the right model
for the styles and getting the right basic func-
tionality. For the style editor release version
we added another programmer, Chris Gorman,
to concentrate on getting the user interface in
shape. He is responsible for much of the slick
look and feel of the final program.

Using the completed prototype to write some
actual styles uncovered a number of flaws in the
model I was using to represent styles.

Writing the code for the prototype uncovered
a number of flaws in my programming tech-
nique. Actually, many of these flaws were un-
covered by John Mackendrick, one of our in-
house testers. I am a better programmer than
I was six months ago. While the prototype al-
ways seemed a little flaky and buggy, the new
program seems much more robust just by virtue
of being better written.

Overall design

The style editor consists of the following compo-
nents:

1. A GUI (Graphical User Interface). This manages
interaction with the user and with the platform.
The only platform Chris and I have worked on
so far is Windows 3.1. We used Microsoft's
Visual C++ and their MFC (Microsoft Founda-
tion Classes) application framework. My under-
standing is that MFC code is supposed to even-
tually be portable to other platforms (Apple's
Macintosh and Unix). So when Microsoft fin-
ishes MFC on those platforms we should be able
to port the style editor.

2. A data structure called the Style. The program
actually represents the style in two different

248 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

A WX style file generator and editor

forms: internal and external. The internal form
is a set of C++ classes suitable for editing. The
nature of these classes lies outside the scope of
thls article. The external form is textual, suit-
able for interpretation as a E-QX style and for
human perusal. I frequently lump the internal
and external data structures together into one
abstract concept that I call the style model.

3. A set of functions called the "core". These func-
tions do the following;

(a) convert between the two style representa-
tions. In other words they read and write
style files.

(b) perform error checking. For example, be-
fore saving a style it makes sure that every
item referred to in the style has been de-
fined in the style.

(c) constructs other files needed by Scientific
Word. Besides the style file there is also a
shell file and a screen appearance file. Each
style file has a shell file that is used as a
template whenever Scientific Word creates
a new document of that style. The screen
appearance file tells Scientific Word what
tags are in the style and determines how
they will appear on the video display.

4. A set of macro writers. These are TEX macros
that interpret the style e&tor output as an ac-
tual style. They accomplish this by reading the
style file and writing macros to implement the
tags described in the style. Thls is all done on
the fly. You d l not normally see the macros
written by the macro writers. They are con-
structed in the computer's memory and do not
assume any printed appearance without insert-
ing a \show command.

The key to the style editor is the last item so I'll
talk about it some more. The macro writers are con-
tained in a file called sebase . c l s. This file is used as
the document class for any style editor style. This is
a misuse of the . c1 s extension because sebase. cl s
does not define any document class. Nor does it de-
fine any macros that may be used to markup a docu-
ment. Rather it is a toolbox. The tools in sebase. c l s

are used to automatically write the macros that will
be used in document markup. Eventually I will make
a format file out of sebase but for now it depends on
using the IKQX format. Style files generated by the
editor are read in with a \usepackage command.

Here is an example. In my scheme the deb t i on
of a section tag would look somethmg like this:

\D iv is ion{

\Name{secti on}
\Level {I)
\Headi ng{Secti onHeadi ng}

\EnterTOC{true}

\StartsOn{NextPage}

\SetRi ghtMark{true}

1
Ths is somewhat simplified but it gives the basic idea
of what the style editor output might look like. In the
file sebase there is a macro writer called \ D i v i s i on
that writes a document division1 macro on the ba-
sis of its parameters. In this case it writes a macro
named \ sec t i on. You see parameters describing the
division's behavior with regard to the table of con-
tents and running header and whether it must start
on a new page, but you do not see any formatting in-
structions for a heading. This is because I distinguish
between the division and its heading. There is just a
reference to a heading. The heading itself is defined
like this:

\Di sp l ayE1 ement{
\Name{SectionHeading}
\Ski pBefore{ZOpt p lus 4pt m i nus 2pt)

\Ski pAfterC12pt p lus 2 p t m i nus l p t)
\ParagraphType{HeadingParagraph}
\Font{MajorHeadi ngFont}
\Components{

Section \sec t i oncount . \Space{Zmm}

\CurrentHeadi ng}

1
I have around 20 macro writers. Each of these is

responsible for writing a certain category of macro.
Thus I have a Division category, a Display Element
category, a List category, a Font category, and so
forth. These are discussed in more d e t d in the next
section.

To get a feeling for how an editing session pro-
ceeds look at the screen shots at the end of t h s ar-
ticle. The first shows the start-up screen. You can
see various controls for adjusting margins and page
sizes. At the top of the screen is a menu labeled Cat-
egory. The second screen shot shows the category
menu pulled down and the &vision category about
to be selected. You can see all of the categories. The
thrd screen shot shows the screen after selecting
the division category. Look at the split screen win-
dow. The left part of the window lists all the in-
stances of the category that have been defined so far.
In this case it lists all of the style's divisions: chap-
ter, section, subsection and appendix. This list may
be added to or deleted from. The figure also shows
that "section" has been selected from the list of all
&visions. The information for the section division is
displayed in a dialog box contained in the right pane
of the split window. This dialog changes radically
depending on the category. One uses the controls
found in that pane to inspect or alter the displayed

1 I started using the term "division" because I
found it awkward to continually refer to sections,
subsections, and chapters as "sections".

TUGboat, Volume 1 5 (1994), No. 3 - Proceedings of the 1994 Annual Meeting

Jon Stenerson

parameters. When the style is saved the information A model for styles
is written in a form sirmlar to that shown above.

Parametrized macro writing is not a new idea.
Preliminaries. I think that a good piece of software

For example, in the code for the Bl&X format there
must be based on a clean and straightforward model.

is a macro called \@startsection. This macro is
In the case of the style editor this means findmg

used to define sectioning macros. It has a number
an abstract representation of a style. My initial re-

of parameters and by specifying various values for
action after learning TEX and thinking about styles

these parameters one defines a wide variety of sec-
for a whde was that it was not possible to write a

tioning commands. Here is a typical defmtion of the
style editor. There seemed to be so much disorga-

\section tag from a human authored style file:
nized "stuff" that I had no idea where to start. Had I
started programming at t h s point I probably would

\def\section{ have picked for my model a particular style file, say
\@startsection {section){l}{\z@) a r t i cl e . sty, and my program would have been an

(3 . Sex plus lex m i n u s .2ex} expert at e&ting all of the parameters and options
{2.3ex plus . 2ex){\l arge\bf)} found in this file. Lnstead I had a few "modelling"

Only a dedicated person can remember what those
parameters do, or that if one is negative it has a
different meaning than if it is non-negative. On the
other hand I have noticed that many styles override
\@startsection itself, suggesting that it may not
have enough parameters! In addition to borrowing
ideas from H&X I have found that Bechtolsheim's TEX

in Practice (Bechtolsheim 1993) is an excellent source
of ideas for parametrized macros.

The idea of macro-writing macros is also not
new. A trivial example is the \ t i t l e macro found
in LATEX styles. It is defined like this:

\def\ti tl e#1{
\def\@ti tle{#l}

It takes a parameter and uses it to write another
macro.

Victor Eijkhout's Lollipop format (Eijkhout
1992) is an example of a complete system of macro
writing tools. I have not had an opportunity to use
Lollipop but from the article I suspect that it would
be possible to put a user interface on it similar to
the one used with sebase. I thank the anonymous
reviewer of t h s article for pointing out the existence
of Eijkhout's work. I am a relative newcomer to TEX
and was not aware of Lollipop but it is clearly re-
lated to what I am doing. Since I don't know Lollipop
I wdl quote verbatim an example from the reference
showing how a subsection heading might be created
in that system:

\Defi neHeadi ng : SubSecti on counter : i
whi tebefore: 18pt w h i t ea f te r : 15pt
Poi nts ize: 14 Style: bold
block: s t a r t Sectioncounter 1 i tera l : ,

Subsectioncounter l i t e r a l : .
f i l l upto:level indent t i t l e

externa1:Contents t i t l e externa1:stop
Stop

You can see that this uses the idea of defining
macros by specifying parameters in the form of key-
word plus value.

talks with Roger Hunter (TCI's president) and ~ n d y
Canham (development team leader). The model that
came out of those meetings was implemented in the
prototype and was subsequently modified for the re-
lease version based on that experience.

I said before that the model has two concrete
representations: one as a C++ class, the other as a
style file. The latter is probably more farmliar to the
reader so we will identify the style file with the style
model. The remainder of this section talks about
style files written by the style editor. The main idea
behind style editor style files is that they contain
no algorithmic mformation. There are no sequences
of instructions, no branches, and no loops. They
consist only of a long list of declarative informa-
tion. Style editor style files use a very uniform syntax
for this declarative data and therefore look different
from other style files.

The style file consists of a list of declarations.
The syntax for a declaration is always the same:

\CategoryName{
\Parameterl{val ue 1)
\ParameterZ{val ue 2)
. . . e t c . . .

J

Every category requires a b e d number and type of
parameters. Parameters are discussed in the follow-
ing subsection, and categories in the subsection after
that.

The samples shown below are simplified. Actual
style editor files contain mformation related to the
operation of the style editor program. They also con-
tain multiple versions of style data related to features
described in the section on the user interface. I will
suppress these kinds of data in the following discus-
sion.

There is nothmg proprietary about style editor
style files. Anyone can go in with an ASCII editor and
make changes to them without the style editor. For
that matter anyone can write an entire style editor
style file without using the style editor.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

A WX style file generator and editor

Parameters. Every parameter expects a value of a
particular type. I've found the following types of pa-
rameters to be adequate:

1. A word parameter requires a string of letters (A-

Z, a-z). These are usually references to macros.

2. A text parameter requires a string of characters.
Any characters that are not among TEX'S special
characters (like braces and dollar signs) are al-
lowed.

3. A boolean parameter requires one of the two
words "true" or "false".

4. A numeric parameter requires a signed decimal
number.

5. A dmension parameter requires a dimension in
the TEX sense of a number plus a unit. The style
echtor knows all of the TEX units and can convert
between them.

6. A glue parameter requires a glue value in the
TEX sense of a natural dimension with a stretch
dmension and a shrink dimension.

7. A component list parameter requires a list of
components. Each component is either text in
the sense given above, or a control sequence
whch is called a reference component in the
style editor.

Some of these were demonstrated in the previous
section's example of a \Division: \Heading is a
word parameter, \EnterInTOC is a boolean param-
eter, and \Level is a numeric parameter. Next look
at the \ D i sp1ayEl ement example also in the previ-
ous section. \Ski pBefore and \Ski pAfter are glue
parameters and \Components is a component list pa-
rameter. The value of \Components in the example
consists of five components: two text components
"Section " and ".", and three reference components.

Categories. Now we'll take a look at some of the
other categories that the style editor knows about.
There are more categories than I can describe even
briefly so I'm just going to try get across a few ideas
about how it all fits together. In particular we will not
see categories that define Lists, Table of Contents, In-
dex, Bibliography, or Math. These perform fairly spe-
cialized functions and after reading what follows you
may be able to imagine their nature.

Document Variables. These are macros that the
document uses to pass dormation back to the style.
A typical example is a macro to handle the docu-
ment's title:

\DocumentVari abl e{
\Name{Ti t l e)
. . .

1
A document variable's most important parame-

ter is its name. It actually has a couple more pararne-
ters that have to do with Scientific Word's handling of

the variable. The macro writer, \DocumentVari able,
writes a macro called \SetTi t l e. The \SetTi t l e
macro is used in the document llke this:

\SetTi t l e{My TUG paper)

This in turn defines a macro \Ti t le whose replace-
ment text is My TUG paper. Thus \SetTi tl e and
\Ti t le have the same relation to each other as
\ti t 1 e and \@ti t 1 e have in LATEX.

The style editor also knows about several built-
in macros that get dormation from the document.
These include \PageNum, and \CurrentHeading.
These keep track of the current page number and
the title of the most recently encountered division.

Fonts. The font category provides an interface
to NFSS. Here is a sample style file entry:

\FontNFSS{
\Name{BodyTextFont}
\Fami 1 y{Seri f)
\Shape{Upri ght)
\Seri es{Medi um)
\Si ze{normal size)

1
\FontNFSS wdl write a macro, \BodyTextFont,
which performs the inlcated font switch. The
precise nature of the various famihes, shapes, se-
ries, and sizes are determined by selecting a "Font
Scheme" elsewhere in the style.

Paragraphs and Environments. The paragraph
category provides an interface to a number of TEX
parameters related to paragraph typesetting: font,
baseline-to-baseline distance, indentations and so
forth. By setting these properly you can create tags
like the \quote and \center found in LATEX. Here is
an example:

\Paragraph{
\Name{Center)
\Font{BodyTextFont)
\ParIndent{Opt}
\LeftIndent{Opt plus l f i l)
\RightIndent{Opt plus l f i 1)
\ParFi 11 Ski p{Opt)
\Parski p{Opt)
\PageBreakPenalty{lOO)
\Hyphenationpenal ty{lOO}

1
When used in conjunction with an environment cate-
gory item this will make available in the document an
environment \begi n{Center) . . . \end{Center)
that typesets a prefix, such as a vertical skip, then
switches to the centering paragraph, and then has a
sufflx.

In-line and display elements. An in-line ele-
ment is just a component list plus a font. It is in-
tended to typeset text whlch is part of a surrounding
paragraph. Here is an example:

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Jon Stenerson

\Name{AbstractLeadin}
\Font {Small CapFont}
\Components{Abstract.\Space{lpc}3

1
T h s creates a macro, \Abst ractLeadi n, which type-
sets the word "Abstract" followed by a period and a
space. It uses a font called \Small CapFont which
must be defined via the Font category. Component
lists may use the names of in-line elements so t h s
\AbstractLeadi n item may be reused throughout
the style.

A display element is intended to be typeset in
its own paragraph and set off from the surrounding
text. We have already seen an example of t h s earlier
in the section.

In-line and display elements are frequently used
in conjunction with a document variable. For exam-
ple, consider generating a macro to typeset the title
of the document. We would first declare a document
variable to hold the title

\DocumentVari abl e{
\Name{Ti t l e}

1
and then declare a display element that uses the doc-
ument variable

\ D i spl ayEl ement{
\Name{TITLE}
\Ski pBeforeCOpt}
\Ski pAfter{Opt}
\Paragraph{CenterHeading}
\Font{MajorHeadi ngFont}
\Components{\Ti t l e}

1
J

T h s produces a macro called \TITLE that typesets
the value of the variable \Ti t l e with the given para-
graph and font settings. The \TITLE macro may be
used in the document but will probably be used in a
title page macro (see below).

Page Setup. This category provides an interface
to many TEX parameters involved in page style: page
size, trim size, margins, headers and footers, foot-
notes and margin notes. Most styles will need to cre-
ate only one item in the page setup category.

Exceptional Pages. An exceptional page is one
that deviates from the surrounding pages in that it
has some special formatting requirements. A typical
example is a title page. A title page has some spe-
cially typeset material and usually has special head-
ers and footers. Here is an example:

\DATE
\Space{lcrn)

3
\ContinueTextOn{ThisPage)
\Speci a1 LeftHeadC)
\Speci alMi ddl eHead{}
\Special Ri ghtHead{)
. . . e t c . . .

1
This writes a macro called \Ti t l ePage whch in turn
causes a new page to begin, typesets the vertical ma-
terial, and then allows text to continue on t h s page.
The vertical material consists of built-in macros such
as \Space or names of elements defined elsewhere in
the style such as \TITLE, \AUTHOR, and \DATE.

The user interface

The prototype editor had a simple interface. In
essence there were dialog boxes in one-to-one cor-
respondence with the macro writers and in each di-
alog box there were controls in one-to-one corre-
spondence with the macro writer's parameters. To a
TEX programmer this interface would probably seem
pretty friendly. If you saw an edit control labeled
"Par. Skip" you'd probably have a good idea of the
sort of thmg you might enter. Editing with the proto-
type was not that far removed from editing the style
file with an ASCII edtor. The major step forward was
the ease with which you could move around the style.
I'm sure that all TEX programmers have had the ex-
perience of searching style files for a macro defini-
tion. The prototype style editor could find any piece
of data instantly.

Most of our customers however do not want to
fill in parameters. They do not want to know what
glue is. They do not even want to see the word "skip"
on the screen. They want to use the mouse to click
on a picture of what they want, check a few boxes
or radio buttons, and have the program do the right
thing. On the other hand I liked the prototype's pow-
erful interface and was not willing to give it up. So
I opted for a hybrid scheme. A category item can
now have two different interfaces: a "quick screen"
in which a few simple options are presented, and a
"custom screen" whch presents all the category's pa-
rameters. The quick screen for the Paragraph cate-
gory has several sets of icons. By selecting an icon
from each set you determine certain characteristics
of the paragraph. For example, one set is labeled
"Paragraph spacing" and it contains two icons. One
icon suggests tight spacing, the other suggests loose
spacing. The custom screen by contrast has several
places where actual dunension and glue values must
be given. To prevent casual users from stumbling
into dialogs they don't understand the program has
two modes. In the first mode many features includ-
ing all the custom screens are hsabled.

2 5 2 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

A &X style file generator and editor

As described so far the quick screen seems lim- References
ited. It has two icons for paragraph spacing, but what
glue values should correspond to these two icons?

Baxter, William Erik. "An Object-Oriented Program-

It clearly depends on the style. I therefore decided
ming System in TEX." These proceedings.

to let the icons themselves be programmable. By se- Bechtolsheim, Ste~hanvon. T E X ~ ~ Practice. Springer-

lecting an icon and pressing the F2 key you get a di- Verlag, New York, NY, USA, 1993.

slog box where a specific glue can be given. hi^ Eijkhout, Victor "Just give me a lollipop (it makes my

value is saved in the style file. Finally, if you can't heart go giddy-up)." TUGboat 13 (3), pages 341-

get the effect you want from the quick screen, the 346,1992.

quick screen F2 modifications, or the custom screen, Goossens, Michel, Frank Mittelbach and Alexander

you can tell the style editor that you want to write Samarin. The DTEX Companion. Addison-Wesley,

t h s macro vourself. You will then have to do so in Reading, MA, USA, 1994.

another macro file.

Conclusion

Mittelbach, Frank. "An extension of the LATEX theo-
rem environment." TUGboat 10 (3), pages 416-
426,1989.

Ogawa, Arthur. "Object-Oriented Programming, De-
The style editor as it now stands is a useful program

scriptive Markup, and TEX." These proceedings.
but there is still a lot of work to be done before it
is a complete program. What I anticipate in the near Bryan, Martin. SGML: an Author's Guide. Addison-

future is that a style writer will prepare a style using Wesley, Reading, MA, USA, 1988.

the style editor together with a little straight TEX to
fill in the gaps. The resulting style, at least those
parts that do not rely on the plain TEX additions,
can be customized by the author without any TEX
knowhow. As time goes by I will manage to get more
and more TEX into the editor's quick screens and
there will be fewer and fewer gaps.

I have more basic functionality planned. For in-
stance, I want to include a fancy "cut and paste" fea-
ture that will facilitate moving tag definitions from
one style to another. The editor will resolve internal
naming conflicts and make sure that auxiliary defini-
tions needed for the tags being moved are moved at
the same time. Having an abstract style representa-
tion should make it possible to move features from
style to style. This in turn will make it possible to
"change styles". A frequent customer request is to
change a document from one style to another. If the
two styles have the same set of markup tags this is
pretty easy. If they do not t h s is pretty hard. If the
style ed tor can reliably move tags from one style to
another then t h s problem will be solved.

Shortly before the TUG meeting I received
preprints of two other papers, Baxter 1994 and
Ogawa 1994, that are found elsewhere in these pro-
ceedings. These talk are about using the object-
oriented paradigm in TEX programming and in doc-
ument markup. In some ways the style editor is also
part of this discussion on the object-oriented ap-
proach. In fact the style editor directly represents
the style as a C++ class in which each generic markup
tag acts as a "style object" that can be acted upon by
an object-oriented interface. I thmk that combining
a style editor of the sort I've described here with a
markup scheme such as described in the above ref-
erences would lead to quite a powerful typesetting
system.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Jon Stenerson

Examples of user interface screens.

TUGboar, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

