
Progress on the Omega Project

John Plaice
Departement d'informatique, Universite Laval, Ste-Foy, Quebec, Canada G1K 7P4

pl ai ce@i f t . ul aval . ca

Abstract

Omega (a). consists of a series of extensions to TEX that improve its multilingual
capabilities. It allows multiple input and output character sets, and will allow
any number of internal encodings. Finite state automata can be defined, using
a f l ex-like syntax, to pass from one coding to another. When these facilities are
combined with large (16-bit) virtual fonts, even scripts that require very complex
contextual analysis, such as Arabic and Khmer, can be handled elegantly.

A year ago (Plaice, 1993), a proposal was made to add
the notion of character cluster to TEX, and that in fact
this notion would be included in an extension of TEX
called Q. The fundamental idea would be that any se-
quence of letters could be clustered to form a single
entity, which could in turn be treated just like a single
character. Last year's proposal was not accompanied
with an implementation. That is no longer the case,
and so the notion of character cluster is now much
clearer. Essentially, the input stream passes through
a series of filters (as many as are needed), and all
sorts of transformations become possible; for exam-
ple, to handle different character sets, to do translit-
erations or to simplify ligature mechanisms in fonts.
In addition, TEX'S restrictions to eight-bit characters
have been eliminated.

Encodings and recodings

If we abstract ourselves from the problems associ-
ated with layout, typesetting can be perceived as a
process of converting a stream of characters into a
stream of glyphs. This process can be straightfor-
ward or very complex. Probably the simplest case
is English where, in most cases, the input encoding
and the font encoding are both ASCII; here, no con-
version whatsoever need take place. At the other
extreme, we might imagine a Latin transcription of
Arabic that is to generate highly ligatured, fully vow-
elized Arabic text; here, the transliteration must be
interpreted, the appropriate form of each consonant
selected, then the ligatures and vowels chosen - the
process is much more complex.

TEX supposes that there are two basic encodings:
the input encoding and the internal encoding, each
of which uses a maximum of eight bits. The conver-
sion from the input encoding to the internal encod-
ing takes place through an array lookup (xord). An
input character is read and converted according to
the xord array. The font encoding is the same as the
internal encoding, except of course for the fact that
several characters can combine to form ligatures.

Suppose that one works in a heterogeneous en-
vironment and that one regularly receives files using
several different encodings. In thls case, one is faced
with a problem, because the TEX conversion of in-
put to internal encoding is hard-wired into the code.
To change the input encoding, one actually has to
change TEX'S code - hardly an acceptable situation.

So how does one get around this problem? The
first possibility is to use preprocessors, which might
themselves be faulty, before actually calling TEX.
The second is to use active characters: at the top
of every file, certain characters are defined to be
macros. However, this process is unreliable, since
other macros might expect those characters to be or-
dinary letters.

Much more appropriate would be to have a
command that states that the input encoding has
changed and, on the fly, that T e switches conver-
sion process, maintaining the s&e internal coding
(if we are still in the same document, we probably
want to use the same font).

It would probably not be too much trouble to
adapt TEX so that it could quickly switch from one
one-octet character encoding to another one. How-
ever, there are now several multi-octet character sets:
JIS, Shift-JIS and EUC in Japan, GB in China and KSC in
Korea. Some of these are fixed-width, stateless 16-
bit codes, while others are variable-width codes with
state. Also, now that the base plane of ISO-10646-
1.2 (Unicode-1 .l) has been defined, we have a 16-bit
character set that can be used for most of the world's
languages. However, for reasons of compatibility,
we may often come across files in UTF format, where
up to 32 bits can be stored in a variable width (1-
6 octets) encoding, but for whch ASCII bytes remain
ASCII bytes. In other words, the conversion process
from input to internal encoding is not at all simple.

To complicate matters even further, it is not
at all clear what the internal encoding should be.
Should it be fixed, in which case the only reasonable
possibility is ISO-10646-1.2? Or should the internal

320 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Progress on the Omega Project

coding itself be variable? If the internal coding is
fured, that will mean that in most cases a conversion
from internal encoding to font encoding wdl have to
take place as well. For example, few Japanese fonts
are internally encoded according to Han Unification,
the principle behind ISO-10646-1.2. Rather, the inter-
nal encoding would be by Kuten numbers or by one
of the JIS encodings. If that is also the case for the in-
put encoding, then a double conversion, not always
simple, nor necessary, would have to take place.

To make matters even worse, one's editor may
not always have the right fonts for a particular lan-
guage. Transliteration becomes a necessity. But
transliteration is completely independent from char-
acter encodings; the same Latin transliteration for
Cyrillic can be used if one is using ISO-646 or ISO-

10646. Nor does transliteration have anything to do
with font encodings. After all, one would want to use
the same Arabic fonts, whether one is typing using a
Latin transliteration in ISO-8859-1, or straight Arabic
in ISO-8859-6 or ISO-10646.

And, to finish us off, the order of characters
in a stream of input may not correspond to the or-
der in which characters are to be put on paper or
a screen. For example, as Haralambous (1993) has
explained, many Khmer vowels are split in two: one
part is placed to the left of a consonantal cluster, and
the other part is placed to the right. He has faced sim-
ilar problems with Sinhalese (Haralarnbous 1994).

Finally, we should remember that error and log
messages must also be generated, and these may not
necessarily be in the same character set as either the
input encoding or the internal encoding.

Transliteration and contextual analysis. It seems
clear that the only viable internal encoding is the
font encoding. However, there is no reason that the
conversion from input encoding to internal encoding
should take but one step. Clearly one can always do
t h s , and in fact, if our fonts are sufficiently large,
we can always do all analysis at the ligature level in
the font. However, such a decision prevents us from
separating distinct tasks, such as - say, for Arabic -
first converting all text to ISO-10646, then transliter-
ating, then computing the appropriate form of each
letter, and only then having the font's ligature mech-
anism take over.

In fact, what we propose is to allow any number
of filters to be written, and that the output from one
filter can become the input to another fdter, much
like UNIX pipes.

!2 Translation Processes

In R, these filters are called Translation Processes
(QTPs). Each RTP is defined by the user in an . o tp
file: with a syntax reminiscent of the Flex lexical an-

alyzer generator, users can define h t e state Mealy
automata to transform character streams into other
character streams.

These user-defined translations tables are not
directly read by S2. Rather, compact representations
(. c t p files) are generated by the OTPtoCTP program.
A . c t p file is read using the R primitive \otp (see
below). Here is the syntax for a translation file:

i n : n ;
O U ~ : n;
tab1 e s : T*
s t a t e s : S*
a1 i ases : A*
expressions: E*

where n means any number. Numbers can be ei-
ther decimal numbers, WEB octal ((3'. . .) or hexa-
decimal ((3". . .) numbers, or visible ISO-646 charac-
ters enclosed between a grave accent and a single
quote (' c ').

The first (second) number specifies the number
of octets in an input (output) character (the default
for both is 1). These numbers are necessary to spec-
ify the translation processes that must take place
when converting to or from character sets that use
more than one octet per character.

Tables are regularly used in character set con-
versions, when algorithrmc approaches cannot be
simply expressed. The syntax for a table T is:

id[nl = {n,n,. . . ,n};

The RTPs, as in Flex, allow a number of states.
Each expression is only valid in a given state. The
user can specify when to change states. States are

often used for contextual analysis. The syntax for a
set S of states is:

id, id, ..., id;

Expressions are pattern-action pairs. Patterns
are written as simple regular expressions, which can
be aliased. The syntax for an alias A is:

where L is a pattern.
If only one state is used, then an expression E

consists of a pattern and an action:

L = > R * ;

where the syntax for patterns is:

L ::= n
I n-n range

I . wildcard
I LL concat.
I L{n,ml occurrences

I (L I . . . I L) choice

/ <L I . . . I L) negative choice

I {id} abbreviation;

and where the simplified syntax for actions is:

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

John Plaice

R ::= string

I n
I \ n
I \ (% -n)
I \ (* + n - n)
I #(R)
I idCRl
I RopR arithmetic;

Patterns are applied to the input stream. When
a pattern has matched the input stream, the action
to the right is executed. A string is simply put on
the output stream. The \nrefers to the n-th matched
character and the \ $ refers to the last matched char-
acter. The \ * refers to the complete matched sub-
stream, while \ (* -n) refers to all but the last n char-
acters. Table lookup is done using square brackets.
All computations must be preceded by a #.

Here is a sample translation from the Chinese
GB2312-80 encoding to ISO-10646:

i n : 1 ;
out: 2;
tab1 es: tabgb[8795] = 1 . . . } ;
expressions:
(e"oo-e"A0) => \ l ;
(@"Al-@" FF) (e"A1-@'IFF) =>

#(tabgb [(\I-@"AO>*@"64 + (\2-@"AO>l) ;
=> QWFFFF;

where we use @"FFFF as the error character. And
here is a common transliteration in Indic scripts:

{consonant}{1,6} {vowel} => \$ \(*-I);

The vowel at the end is placed before the stream of
consonants.

The complete syntax for expressions is more
complicated, as there can be several processing
states. In addition, it is possible to push values back
onto the input stack. Here is the complete syntax:

a t a t e L => R* <= R* <newstate

The state means that if the QTP is in that state then
this pattern-action pair can possibly be used. The
newstate designates the new state if this pattern-
action pair is chosen.

Here is an example from the contextual analysis
of Arabic:

<MEDIAL>{QUADRIFORM}{NOTARABIC-OR-UNI}

=> #(\ I + @"DDOO)
<= \2

<pop : >

9

When in state MEDIAL (in the middle of a word), a
letter with four possible forms is followed by a non-
Arabic letter, then the output is the quadriform let-
ter plus the value @"DDOO. The non-Arabic letter is
placed back on the input stack. Then the current
state is popped and the QTP returns to the previous
state, whatever it was.

Loading RTPs. Loading an QTP is slmilar to loading
a font. The instruction is simply:

\otp\ newname = filename

The . ctp file filename. ctp is read in and stored in
the otp lnfo memory, similar to the font info mem-
ory. A number is assigned to the control sequence
\newname, as for fonts. Thereafter, one can refer
to that RTP either through the generated number or
through the newly-defined control sequence.

Input encodings. When readmg a file from an un-
known source, using anunknown character set, some
sort of mechanism is necessary to determine what
the character set is. There are two possibilities: ei-
ther use a default character set or have some way of
quickly recognizing what the character set is.

Fortunately, most character sets contain ISO-646
as a subset. The ISO-10646-1.2 character set, in both
its 16- and 32-bit versions, retains ISO-646 as its orig-
inal 128 characters. The only widely-used character
set that does not fit this mold is IBM's EBCDIC.

We therefore provide the means for automati-
cally detecting the character set farmly. It suffices
that the user place a comment at the very begin-
ning of each file: the % character is sufficient to
distinguish each of the famdies. A file using an 8-
bit extension of ISO-646 begins with the character
code 0x2 5; a file with 16-bit characters begins with
0x00 0x2 5.l Finally, a file using the EBCDIC encod-
ing begins with Ox6C. Should there be no comment
character, then the default input encoding (ISO-646)
is assumed.

Once Q knows how to read the basic Latin let-
ters, it is possible to declare what translation the in-
put must undergo. This is done with the command
\InputTransl a t i on, e.g. \InputTransl a t i on 1
states that the entire input stream, starting imme-
diately after the newline at the end of this line, will
pass through the first QTP p ro ~es s . ~

It is also possible to change the character set
w i t h a file. This process is more difficult, as it is
not always clear where exactly the change is to take
place. Suppose that we pass from an 8-bit character
set to a 16-bit character set. It is important that we
know what the last 8-bit character is and what the
first sixteen-bit character is.

This question can be resolved by specifying a
particular character as being the one whch changes.

1 A file with 32-bit characters would begin with
0x00 0x00 0x00 0x25, but the current version of R
does not support 32-bit characters.

2 The syntax for the new primitives has not been
finalized. In particular, it is not clear that the explicit
numbering of filters and translation processes is
simple to manipulate. Those who wish to use R
should check the manual for the exact syntax.

322 TUGboat, Volume 15 (1 .994), No. 3 - Proceedmgs of the 1994 Annual Meeting

Progress on the Omega Project

However, to simplify matters, we assume that all in-
put translation changes take place immediately af-
ter the newline at the end of the line in which the
\ InputTransl a t i on command appears.

Transliteration.Once characters have been read,
most likely to some universal character set such as
ISO-10646, then contextual analysis can take place,
independently of the original character set. This
analysis might require several filters, each of which
is similar to the translation process undergone by
the input.

Since the number of filters that we might want
to use is arbitrarily large, there are two commands to
specify filters:

\NumberInputFil t e r s n

states that the first n input filters are active. The
output from the i-th filter becomes the input for the
i + 1-th filter, for i < n.

\ InputFi 1 t e r m i

states that the m-th input filter is the i-th RTP.
Sequences of characters with character codes 5,

10, 11 and 12 successively pass through the trans-
lation processes n translation processes. It should
be understood that the result of the last translation
process should be the font encoding itself; it is in this
encodmg that the hyphenation algorithm is applied.

Our Arabic example then looks hke this:

\o tp \ t rans = IS0646toIS010646
\o tp \ t rans l i t = TeXArabi cToUni code
\otp\fourform = Uni codeToContUni code
\otp\genoutput = ContUnicodeToTeXArabicOut
\ InputFi 1 t e r 0 \ trans1 i t
\ I npu tF i l t e r 1 \ fourform
\ InputFi 1 t e r 2 \genoutput
\NumberInputFi 1 t e r s 3

The TeXArabi cToUni code translator takes the Latin
transliteration and converts it into Arabic. As
for Uni codeToContUni code, it does the contex-
tual analysis for Arabic; that is, it takes Arabic
(in ISO-10646) and, using a private area, deter-
mines which of the four forms (isolated, initial, me-
dial or final) each consonant should take. Finally,
ContUni codeToTeXArabi cOut determines what slot
in the font corresponds to each character. Of course,
nothing prevents the font from having its own so-
phisticated ligature mechanism as well.

Output and special encodings. TEX does not just
generate . d v i files. It also generates . aux, .1 og and
many other files, whch may in turn be read by TEX
again. It is important that the output mechanism be
as general as the input mechanism. For this, we in-
troduce the analogous operations:

\OutputTransl a t i o n
\OutputFi 1 t e r
\NumberOutputFi 1 t e r s

with, of course, the appropriate arguments.
Similarly, in its .dv i files TEX can output

commands that are device-driver specific, using
\special commands. Since the arguments to
\special are themselves strings, it seems appro-
priate to also allow the following commands:

\Speci alTrans1 a t i o n
\Speci a1 F i 1 t e r
\NumberSpeci a1 F i 1 t e r s

Large fonts

TEX is limited to fonts that have a maximum of 256
characters. However, on numerous occasions, a need
has been shown for larger fonts. Obviously, for lan-
guages using ideograms, 256 characters is clearly not
sufficient. However, the same holds true for alpha-
betic scripts such as Latin, Greek and Cyrillic; for
each of these, ISO-10646-1.2 defines more than 256
pre-composed characters. However, many of these
characters are basic character-diacritic mark combi-
nations, and so the actual number of basic glyphs is
quite reduced. In fact, for each of these three alpha-
bets, a single 256-character font will suffice for the
basic glyphs.

We have therefore decided, as a first step, to of-
fer the means for large (16-bit) virtual fonts, whose
basic glyphs d l reside in 8-bit real fonts. This is
clearly only a first step, but it has the advantage of
allowing large fonts, complete with ligature mech-
anisms, without insisting that all device drivers be
rewritten.

In addition to changing TEX, we must also
change DVIcopy and VPtoVF, which respectively be-
come XDVIcopy and XVPtoXVF. The . t f m , .vp and
. v f files are replaced by . xfm, . xvp and . x v f files,
respectively. Of course, the new programs can con-
tinue to read the old files.

. xfm files. The . xfm files are sirmlar to . t f m files,
except that most quantities use 16 or 32 bits. Es-
sentially, most quantities have doubled in size. The
header consists of 13 four-octet words. To distin-
guish . t f m and . xfm files, the first four octets are al-
ways 0 (zero). The next eleven words are the values
for I f , Zh, bc, ec, nw, nh, nd, ni, nl, nk ne, and np; all of
these values must be non-negative and less than z31.

Now, each char-info value is defined as follows:
width index 16 bits
height index 8 bits
depth index 8 bits
italic index 14 bits

tag 2 bits
remainder 16 bits

Each lig-kern-command is of the form:
op byte 16 bits
skip byte 16 bits
next char 16 bits
remainder 16 bits

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

John Plaice

Finally, extensible recipes take double the room.

. xvp files. The . xvp files are simply . vp l files in
which all restrictions to 8-bit characters have been
removed. Otherwise, everything else is identical.

Minor changes. Since the changes above required
carefully examining all of the code for TEX, we took
advantage of the opportunity to remove all restric-
tions to a single octet. So, for example, more than
256 registers (of each lund) can be used. Similarly,
more than 256 fonts can be active simultaneously,

Conclusions

The tranformation of TEX into SZ was a necessary
step for the development of a typesetting tool that
could be used for most (all?) of the world's languages.
Scripts that, for various historical and political rea-
sons, retained their calligraphic tradtions, can now
be printed with ease without sacrificing on aesthet-
ics. In fact, as presented in Haralambous and Plaice
(1994), it is now possible to use calligraphic-style
fonts for Latin-alphabet languages, without any ex-
tra overhead: just change the font and the transla-
tion process, everything else is automatic.

Large fonts are defmitely useful: all the interac-
tions of characters in a font can be examined. How-
ever, it is not necessary to change all our device
drivers. A large virtual font might s t d only reference
small real fonts (unlrkely to be the case in Eastern
Asia, where all fonts are large).

Large fonts, with full interaction between the
characters, mean that one can envisage variable-
width Han characters. According to Lunde (1993),
this topic has been mentioned in several Asian coun-
tries.

Finally, I should like to state that the change
from TEX to is really quite small. Apart from the
idea of character cluster, everything is already there
in TEX. It should be considered a tribute to Donald
Knuth that so little time was required to make these
changes.

Acknowledgements

The SZ project was devised by Yannis Haralambous
and myself. It would never have gotten off the
ground if it had not been for the numerous discus-
sions that I had with Yannis. Many thanks as well for
the discussions in the T e c h c a l Working Group on
Multiple Language Coordination.

Bibliography

Haralambous, Yannis, "The Khmer script tamed by
the lion (of TEX)", TUGboat 14(3), pages 260-270,
1993.

Haralambous, Yannis, "Indic TEX preprocessor: Sin-
halese TEX", TUG94 Proceedings, 1994.

Haralambous, Yannis, and John Plaice, "First applica-
tions of SZ: Adobe Poetica, Arabic, Greek, Khmer,
Unicode", TUG94 Proceedings, 1994.

Lunde, Ken, Understanding Japanese Information

Processing, O'Reilly and Associates, Sebastopol
(CA), USA, 1993.

Pike, Rob, and Ken Thompson, tcs program,
f tp : / / research.at t .com/dis t / tcs .shar .Z,
1993.

Plaice, John, "Language-dependent ligatures", TUG-

boat 14(3), pages 271-274, 1993.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

