
Documents, Compuscrip ts, Programs, and Macros

Jonathan Fine
203 Coldharns Lane, Cambridge, CB1 3HY England

l.Fine@pmms.cam.ac.uk

Abstract

Certain aspects of the history and nature of the TEX typesetting program

are described. This leads to a discussion of strategies for possible future

developments. For clarity, the key terms document, compuscript, program and

macro are defined.

The main argument is that improved macro packages and .dv i file

processors will solve many problems, and that a rigorous syntax for input

compuscripts should be developed and used. Such a strategy will allow a

different and superior typesetting engine, should such arise, to be used in the

place of TEX. It will also allow the same compuscript to be used for other,

non-typesetting, purposes.

The Beginning reduces the decisions and labor involved in writing

Much has changed since the creation of TEX by

Donald Knuth in the years around 1980. Many

millions now use computers for document prepara-

tion and production, and these computers are many

times more powerful than those so used in 1980.

Laser printers are now cheap and commonplace.

Postscript has become a widely avdable standard

for driving phototypesetters. The occupation of

specialists has become a widespread daily activity.

Much indeed has changed.

TEX is one typesetting system among dozens if

not hundreds, counting not only DTP packages but

also the various word processors available. Here are

some of Tg's particular characteristics

extremely reliable and bug-free
available on almost all machnes

available at no or low cost

constant unchanging behaviour

portable ASCII input

high quality output

mathematical setting capabilities

programmability via macros

which leave it without rival for use by the scientific

scholarly community, and elsewhere.

TEX has limitations. If it &d not, it could not be.

Hegel wrote, 'that one who will do something great

must learn to limit oneself'. It was wise of Knuth,

not to create a text editor for use with TEX. Nor

did he create general indexing or cross-referencing

tools. Nor a spell-checker. All but the most basic

functions are omitted, to be supplied by macros and

parameter values. This gives a great flexibility, and

the program. Knuth supplies a basic collection of

'plain' macros. But even that most basic part of

computer typesetting, persuading an output device

to emit a typeset page, this vital part of the system

lies outside the limited system for whch Knuth

himself took responsibility.

Indeed, thls abdication of responsibility is a

master stroke. The output devices are numerous,

diverse, and more are yet to come. Therefore,

typesetting is brought to a stop with the production

of the . dvi file, which is a rigorously specified

description of the location of every character and

rule on the page. Each implementation is then

responsible for transforming this . dv i file to meet

the requirements of the various output devices.

Because there is a rigorous standard for . dvi files,

t h s separation of duties is a pleasant cooperation.

Moreover, the same . dv i standard and processors

can now be used by other typesetting systems, new

and yet to be.

Knuth did not write editor, indexer, or output

device driver. Nor did he write more than a

few thousand lines of macros. He did write TEX

the program (and METAFONT, and the Computer

Modern fonts). To support this activity he also

wrote the WEB system for documentation or literate

programming. The skillful use of this tool has

contributed greatly, I believe, to the h g h quahty

and thus durability of TEX. This lesson needs must

be well learnt and comprehended by those who seek

to provide an improved replacement.

I thmk it very important to understand just

what it is we have with TEX. Richard Palais (1992)

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 381

Jonathan Fine

gives another, balanced, discussion of the nature of

TEX, with which I am in broad agreement. Frank Mit-

telbach (1990) carefully investigates and describes

some of the typesetting limitations of TEX. Philip

Taylor (1992) exaggerates the deficiencies of TEX. In

particular, of his list (pages 438 - 440) of 10 claimed

limitations, at least 5 (namely 1, 3, 4, 5 and 6)

are quite possible with TEX as it is today. The

same applies (see Jonathan Fine (to appear)) to his

goal (page 441) of a multiwindowed interactive &s-

play. There is a difference, it is important to note,

between interacting with a visual or graphic repre-

sentation of a document (so far as I know Scientific

Word is the only TEX-compatible system that allows

this) and having immediate preview of the result

of changes to the underlying ASCII representation

(as provided by Textures for smaller documents).

Philip Taylor (1992a) seems to have no relevance to

our discussion.

Stability

It is 5 years since Knuth (1989) released version 3

of TEX, and 4 years since his announcement (Knuth

1990)

My work on developing TEX, METAFONT,

and Computer Modern has come to an end.

I wdl make no further changes except to

correct extremely serious bugs.

which triggered a continuing debate on how, or

whether, a successor to TEX should be provided. But

much and more can be done with TEX as it is. Knuth

wrote (loc. cit.)

Of course I do not claim to have found the

best solution to every problem. I simply

claim that it is a great advantage to have a

fixed point as a building block. Improved

macro packages can be added on the input

side; improved device drivers can be added

on the output side.

and it is to these possibilities that we will now turn.

The purpose of a macro package is to transform

an input document, written according to some rigor-

ous or Informal syntax, into a sequence of primitive

typesetting commands, and thus, via the funda-

mental operations of line breaking, hyphenation,

ligatures, boxes and glue, table formation and so

forth have TEX the program produce typeset pages

in the form of a .dvi file, and perhaps also some

auxiliary text files. However, TEX does not contain a

word-processor or text editor, and so offers little or

no help in the composition of the input document.

Many benefits result from having a rigorously

defined syntax for input documents, and so many

problems disappear. Such rigor allows the same

document to be processed in different ways for

different purposes, such as editing, typesetting,

spell-checking, on-line documentation, hypertext,

or, if a program source file, compilation. Although

this is not a new idea (see Charles Goldfarb (1990),

pages 7-8)

Markup should describe a document's

structure and other attributes rather than

specify processing to be performed on

it, as descriptive markup need be done

only once and will suffice for all future

processing.

Markup should be rigorous so that

the techniques avdable for processing

rigorously-defined objects hke programs

and data bases can be used for processing

documents as well.

none of the existing TEX macro packages is able to

so typeset such a rigorously marked-up document.

Moreover, the usual response to an error in mark-

up is to have TEX the program generate an error

message or worse, not generate an error. T h s

behaviour is not a failing of TEX the program.

Rather, it is a opportunity for improvement on the

input side. The author has such work in progress.

It is worth noting that Knuth's WEB system

made such a dual use (typesetting and compilation)

of a single input file. This he did by writing two

preprocessing programs (WEAVE and TANGLE) that

convert a WEB input file into TEX and Pascal input

files. For future reference note that although TEX

source files are portable to any machine which

has TEX installed, WEB files require the additional

programs WEAVE and TANGLE to be also present.

On the output side, much can be done with

. dvi files, provided suitable programs are available.

By means of \specials , the device driver can

be instructed to insert change bars, rotate tables,

greyscale or color fonts, and so forth. All t h s is

possible now, with TEX as it is, provided suitable

programs are avdable.

It should be well understood that support for

color, rotated tables, and other such goodies is not a

matter of changing or 'improving' TEX the program.

Rather, it requires matchmg facilities in the macro

package used and in the . dvi file processor. TEX

the program has no more involvement with the

printing process that the moveable type typesetter

of old, whose labor is blind to the color of the

mk, or texture of the paper, used for the printing.

Of course, the typographer or designer cares, or

should, about these things.

382 TUGboat, Volume 15 (1994), No. 3 - Proceedings of the 1994 Annual Meeting

Documents, Compuscripts, Programs, and Macros

There are other possibilities. Words to be

indexed can be tagged using \specials (or even

the whole word placed w i t h the \special) and

then extracted from the . dvi file. There are several

advantages to this method. Firstly, it avoids the

problems due to the asynchronous nature of the

output routine, and also due to the expansion of

macros during the \write command. Secondly, it

allows the indexing software to extract adational

information from the . dvi file, such as the location

on the page (either by h e or by physical location).

Thdly, this last data may be useful for hypertext

applications. One can even cut-and-paste among

. dvi files (see Asher 1992, von Bechtolsheim 1989,

and Spivak et al. 1989). All this is possible so long

as the TEX macros are properly set up, and so long

as the . dvi file processing programs are avdable.

It is worth noting here that the work of the DVI

driver standards committee (Reid and Hosek 1989,

and Schrod 1991) seems to support my contention,

that much remains to be done, to get the best out

of what is already available to us. Lavagnino (1991),

and Vesilo and Dunn (1993) discuss examples of

how some applications require that much more than
printed pages be produced. These problems can

be solved by means of a suitable combination of

macros and . dvi file processing programs.

Growth

This then is the background against which our use

of TEX develops, and into which any successor will

be introduced. TEX can still reach the highest typo-

graphical standards. But it seems that it is precisely

in those areas, such as input file preparation and

post-processing of the output file, which lay outside

the limits that enabled Knuth's achievement, that

the TEX system is deficient.

In particular, the lack of a front end for

document preparation, that exploits the computing

and graphical display capabhties that so many

users now have available (and so few when TEX was

first written) is a major obstacle to more widespread

acceptance.

Elsewhere (Fine, to appear) I have indicated how

TEX as it is today (and wdl be, major bugs aside,

for the rest of time) can be used as the typesetting

engine for such a visual document preparation

system. However, any such wdl require programs

that are specific to the architecture and capabilities

of the host machine.

Much more can be done with TEX than is

commonly realised. It is a powerful typesetting

engine that can be turned to many purposes. Except

for particular typographic functions (see Mittelbach

1990), such as detection and hence control of

rivers of white space in paragraphs, most or all

of its perceived limitations can be overcome by

a judicious combination of improved macros and

awhary programs. I have much work in progress

(and less completed than I would like to admit) on

improving macros.

The difficulty with auxiliary programs is that

they are not automatically portable in the same

manner as TEX the program is, and that they tend to

become numerous and subject to change, much like

macro packages.

A singular virtue of TEX, as vital to its success as

the ground upon which we walk, and as commonly

appreciated, is that it provides a programming

environment, available and identical in operation on

all machines. Thls is the TEX macro language. It

is the basis for the portability of TEX documents.

Moreover, transfer of such programs is no more

than transfer, of ASCII files.

Imagine now that we have a similar foundation

for the writing of .dvi file processors. All manner

of problems would go away, or at least be mitigated.

There are about 10 standards for using \speci a1 s

to access Postscript. The lack of a macro language

gives an unwanted rigidity to the . dvi file proces-

sors, and so each standard is (or is not) hard-coded

into each particular . dvi program.

Many indexing and hypertext problems can be

resolved by post-processing the . dvi file, but not

in a portable manner unless the . dvi processing -
program is simdarly portable. Elsewhere (Fine, to

appear) I have indicated how a visual front end to

TEX can be assembled out of a suitable combination

of a previewer (which is itself a . dvi file processor),

a . dvi file editor, and TEX as it is but running a
I

suitable and rather special macro package. Y
- --

For such to be flexible, its outer form must be

controlled by macros or the like. For such to be

portable, the supporting programs must be both

portable and ported.

Definitions

In order that my conclusions be stated as precisely

as is possible, I will make some definitions.

By a document I will mean a physical graphical

and perhaps substantial object containing text in

various fonts, and perhaps other items such as

symbols and photographs. Examples of a document

are a book, a magazine or journal, a preprint, and

a restaurant menu. These are substantial items, in
the sense of their being made out of stuff. The

TUGboat, Volume 15 (1994), No. 3 -Proceedmgs of the 1994 Annual Meeting 383

Jonathan Fine

quality of the ink and paper, and the impression of

the one on the other, are subtle aesthetic qualities

of the document, in no sense determined by the

typesetting process.

However, I will also regard an image on the

screen of a computer to be a document, although of

the insubstantial or un-stuffy kind. Such documents

allow a different range of interactions with the

reader, usually called the user, than the printed

page. Indeed, in external form many computer
programs are documents in this broad sense.

By a compuscript, or script for short, I mean

a h t e sequence of symbolic or numerically coded

characters, such as ASCII, satisfying a formal or

informal syntax. It may also contain references to

external entities, which may be other documents, or

to non-document elements such as photographs or

illustrations. It is sometimes convenient to break

a script down into complements, which are either

mark-up or text. The syntax is then a system of

rules which relate the mark-up to the text. Examples

of compuscripts are TEX and LATEX document source

files (these have an informal syntax), and SGML and

program source files (which have a rigorous syntax).

By a program I mean an executable binary file.

Program files cannot be read as a comprehensible

sequence of characters. They contain machine in-

structions that are specific to the host machme on

which the program is to be run. Properly written,

programs will run as quickly as any software can

to perform their given function, but to change a

program is usually a slow and sometimes labori-

ous process. Knuth wrote TEX the program and

METRFONT the program. More exactly, he wrote

documents which were then transformed via a com-

piler and other tools (literate programming) into

versions of TEX the program, one for each machine

archtecture. He also wrote the 'plain' macros for

TEX, and the Computer Modern source files for
METAFONT.

We can now say what macros are. A collection

of macros is a compuscript whch controls or influ-

ences the operation of a program. This definition

includes both the configuration or option files that

many programs use to store system data and user

preferences, but also the macro files used by TEX

and METAFONT, or any other code written to be ex-

ecuted by an interpreting program. The distinction

between a program and macros is not always clear-

cut. For example, many microprocessors contain

microcode which is called upon to perform various

functions. Emulation is often achieved by expand-

ing machine code for one processor into sequences

of machne instructions for another. If not present,

it is common to emulate machne instructions to a

mathematics coprocessor.

The US photographer Ansell Adams compared

the negative to the score for a piece of music, and the

print to the performance. Adams is famed for his

marvellous atmospheric photographs of Yosernite

National Park. Developing h s photographic anal-

ogy (is it a rule that every article should have one

bad pun?), the compuscript is the negative for the

production of a document, the program the futed

darkroom equipment, while the macros are the con-

sumeable papers and chemicals and also the skill,

habits, standards and creativity of the darkroom

operator. Incidentally, many negatives require spe-

cial human activity related to their content such as

'dodging' and 'burning' (this means giving more or

less exposure to different parts of the negative) in

order that they come out at their best.

Note added in Proof

There are several articles also in these proceedings

that bear upon the topics discussed here. Rokicki

expresses the idea of a programmable . d v i file

processor, although as an implementor his focus is

more on what is immediately possible or practical.

I should have realised for myself the important

'color' motive, whose difficulties in the production

setting are well expressed by Sofka. Laugier and

Haralambous describe Philippe Spozio's interactive

and visual . d v i file editor, and also Franck Spozio's

TEX to SGML translation tools. These programs go

some way to resolving, for documents marked up

in the traditional plain TEX or LATEX manner, various

real world problems, which are among the motives

for the point of view I adopt in my article.

The deficiencies of T@ are once again exagger-

ated by Taylor. It is possible, for example, to typeset

material on a grid, to flow text around insertions, to

treat the two-page spread or even the chapter as the

region over whch page make-up and optirnisation

are performed, all this is possible with today's TEX,

by writing admittedly tricky macros. The goal of

Schrod is to provide a formal model of TEX the pro-

gram (particularly its macro facilities) with which a

user can interact, whereas my goal is to have formal

syntax for compuscripts that can be understood by

TEX (given suitable macros) and by the user alike.

Finally, the papers of Baxter, Ogawa, and

Downes discuss progress and problems in the

typesetting of structured documents-again, us-

ing traditional TEX macro tools. It is my contention

that the macro development and performance dif-

ficulties that they face can be greatly eased by

3 84 TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Documents, Compuscripts, Programs, and Macros

the introduction of powerful development tools,

amongst whlch will be sophisticated macros that

will combine compuscript parsing macros with style

sheet values to give rise to the document production

macros.

Conclusions

It should now be clear that Knuth is responsible

for only one part of the TEX typesetting system,

although that part is its mighty heart or engine. It

is my opinion that, good though they are, there is

considerable room for improvement in those parts

of the TEX system that Knuth did not provide, viz.

macros and . dv i file processors.

Perhaps in the next 20 years, someone will

write a worthy successor to TEX. This would be, like

TEX itself, a great achievement. To supplant TEX, it

will need to be substantially better. I would expect

such a system to continue to use more-or-less if

not exactly the same .dvi file format as TEX. It

would be nice if both TEX and its successor shared at

least one syntax for the compuscripts that are to be

processed into documents. This will surely require

that both operate to a syntax that is as rigorous as

that for the . dv i files. Work on defining such a

syntax and creating suitable TEX macros to process

such documents can begin today, without knowing

what the future may bring, but all the same helping

to bring it about.

To hope for compatibility at the level of macros

or format files is probably too much, and likely to be

self-defeating. Fortunately, many though formats

are, they are, or at least should be, few in relation

to documents.

TEX as it is today can be used as the engine

of an interactive and visual typesetting system. I

encourage all those who want to write programs to

join with me in turning this possibility into a reality.

A valuable first step, with independent benefits and

merits of its own, would be to write a 'universal'

. dv i Me processor that is controlled by macros,

just as TEX is a universal typesetting engine.

If all is done properly, and to rigorous stan-

dards for both input and output, then it will be a

simple matter to replace TEX the program by the new

and much improved engine, when and if it arrives.

Indeed, part of the whole strategy is to provide a

clear r6le and interface for the typesetting engine.

Donald Knuth has not written much on succes-

sors to TEX. It is thus our responsibility to read

carefully what he has written. I close by repeating

his advice quoted earlier

Of course I do not claim to have found the

best solution to every problem. I simply

claim that it is a great advantage to have a

fixed point as a budding block. Improved

macro packages can be added on the input

side; improved device drivers can be added

on the output side.

Bibliography

Asher, Graham. "Inside Type & Set", TUGboat, 13

(I), pages 13 - 22, 1992.

Bechtolsheim, Stephan von. "A . dvi file processing

program", TUGboat, 10 (3), pages 329 - 322, 1989.

Clark, Malcolm. "NEXTEX: A personal view", TUG-

boat, 14 (4), pages 374 - 380, 1993.

Fine, Jonathan. "Editing . dvi files, or visual TEX,

TUGboat, (to appear)

Goldfarb, Charles. The SGML Handbook, Oxford

University Press, 1990

Knuth, Donald E. "The new versions of TEX and

METAFONT", TUGboat, 10 (3), pages 325 - 328,

1989.

Knuth, Donald E. "The Errors of TEY, TUGboat, 10

(4), pages 529 - 531, 1989.

Knuth, Donald E. "The future of TEX and META-

FONT", TUGboat, 11 (4), page 489, 1990.

Lavagnino, John. "Simultaneous electronic and pa-

per publication", TUGboat, 12 (3), pages 401 - 405,

1991.

Mittelbach, Frank. "E-TEX: Guidelines for future TEX",

TUGboat, 11 (3), pages 337-345, 1990.

Palais, Richard. "Moving a fixed point", TUGboat, 13

(4), pages 425 - 432, 1992.

Reid, Tom and Don Hosek. "Report from the D V I

driver standards committee", TUGboat, 10 (2),

pages 188- 191, 1989.

Schrod, Joachim. "Report on the D V I Driver Stan-

dard", TUGboat, 12 (2), pages 232 - 233, 1991.

Spivak, Michael, Micheal Ballantyne, and Yoke Lee.

"HI-TEX cutting & pasting", TUGboat, 10 (21, pages

164 - 165, 1989.

Taylor, Philip. "The future of TEX", TUGboat, 13 (41,

pages 426 - 442, 1992.

Taylor, Philip. "NTS: the future of TEX?", TUGboat,

14 (3), pages 177- 182, 1992.

Vesilo, R.A. and Dunn, A. "A multimedia docu-

ment system based on TEX and DVI documents",

TUGboat, 14 (I), pages 12 - 19, 1993.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

