

Users Group Board of Directors

Memberships and Subscriptions
TUGboat (ISSN 0896-3207) is published quarterly

by the Users Group, Balboa Building, Room

307, 735 State Street, Santa Barbara, CA 93101,

U. S. A.

1994 dues for individual members are as follows:
Ordinary members: $60

8 Students: $30

Membership in the w Users Group is for the
calendar year, and includes all issues of TUGboat

and and TUG NEWS for the year in which

membership begins or is renewed. Individual mem-
bership is open only to named individuals, and

carries with it such rights and responsibilities as
voting in the annual election. A membership form

is provided on page ???.
TUGboat subscriptions are available to organi-

zations and others wishing to receive TUGboat in a

name other than that of an individual. Subscription
rates: North America $60 a year; all other countries,

ordinary delivery $60, air mail delivery $80.
Second-class postage paid at Santa Barbara,

CA, and additional mailing offices. Postmaster:

Send address changes to TUGboat, TEX Users
Group, P. 0. Box 869, Santa Barbara, CA 93102-

0869, U.S. A.

Institutional Membership
Institutional Membership is a means of showing

continuing interest in and support for both TEX
and the Users Group. For further information,

contact the TUG office.

TUGboat @ Copyright 1994, w Users Group

Permission is granted to make and distribute verbatim

copies of this publication or of individual items from this

publication provided the copyright notice and this permission

notice are preserved on all copies.

Permission is granted to copy and distribute modified

versions of this publication or of individual items from

this publication under the conditions for verbatim copying,

provided that the entire resulting derived work is distributed

under the terms of a permission notice identical to this one.

Permission is granted ,to copy and distribute transla-

tions of this publication or of individual items from this

publication into another language, under the above condi-

tions for modified versions, except that this permission notice

may be included in translations approved by the 'l$X Users

Group instead of in the original English.

Some individual authors may wish to retain traditional

copyright rights t o their own articles. Such articles can be

identified by the presence of a copyright notice thereon.

Donald Knuth, Grand Wizard of m - a r c a n a t

Christina Thiele, President*
Michel Goossens* , Vice President

George Greenwade*, Treasurer
Peter Flynn* , Secretary

Barbara Beeton
Johannes Braams, Special Director for NTG

Mimi Burbank

Jackie Damrau
Luzia Dietsche

Michael Doob
Michael Ferguson

Bernard Gaulle, Special Director for G UTenberg

Yannis Haralambous
Dag Langmyhr, Special Director for

the Nordic countries
Nico Poppelier

Jon Radel

Sebastian Rahtz
Tom Rokicki
Chris Rowley, Special Director for U K W U G
Raymond Goucher, Founding Executive Directort

Hermann Zapf, Wizard of Fontst

"member of executive committee

+ hono~ary

Addresses
All correspondence,

payments, etc.

w Users Group

P. 0. Box 869
Santa Barbara,

CA 93102-0869 USA

Parcel post,
delivery services:

TEX Users Group
Balboa Building

Room 307

735 State Street

Santa Barbara, CA 93101

USA

Telephone
805-963-1338

Fax
805-963-8358

Electronic Mail
(Internet)

General correspondence:
TUG@tug.org

Submissions to TUGboat:

TUGboat@Math.AMS.org

is a trademark of the American Mathematical

Society.

Printed in U.S.A.

1994 Annual Meeting Proceedings

'l&X Users Group

Fifteenth Annual Meeting

University of California, Santa Barbara, July 31-August 4, 1994

COMMUNICATIONS OF THE 'IJjX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON
PROCEEDINGS EDITORS MICHEL GOOSSENS

SEBASTIAN RAHTZ

VOLUME 15, NUMBER 3 SEPTEMBER 1994

SANTA BARBARA CALIFORNIA U.S.A.

Editorial and Production Notes

These Proceedings were prepared with TEX on vari-
ous Unix workstations at CERN in Geneva. PostScript
files for a Linotronic typesetter at 1270 dpi resolution
were generated with Tom Rohcki's dvi ps program.
From these files Philip Taylor produced the bromides
on the Linotronic of the Computing Centre of the Uni-
versity of London. The color pages were completely
done in the United States.

The present Proceedings are typeset in the Lu-
cida Bright typeface designed by Bigelow & Holrnes.
For LATEX the 1 ucbr package (corning with LATEX^^ in
the PSNFSS system) for defming the fonts was used
and a scaling factor of .94 has been applied to make
the pages come out at an information density close
to that of Computer Modern at 10pt. The complete
set of fonts used is LucidaBright for text, LucidaSans
for sans serif, LucidaTypewriter for teletype, and Lu-
cidaNewMath for the maths.

The authors sent their source files electronically
via electronic mail or deposited them with ftp on
a CERN machine. Most referees were also able to
use ftp to obtain a Postscript copy of the paper they
had to review, and I got their comments, if practi-
cal, via email, which made communication relatively
straightforward and fast. I would like to thank the
authors for their collaboration in keeping (mostly)
to the original production schedule. I also want to
express my gratitude to the various referees, who
kindly agreed to review the paper assigned to them.
I am convinced that their comments and suggestions
for improvements or clarifications have made the pa-
pers clearer and more mformative.

Eight of the contributed papers were in plain
TEX while the others used WX. All files associated
to a given paper reside in a separate subdirectory
in our tug94/papers du-ectory, and each of the pa-
pers is typeset as a separate job. A makefi l e re-
siding in our tug94/papers/tug94 du-ectory takes
care that each paper is picked up from its directory
and is processed with the right parameters. Informa-
tion about the page numbers for the given job is writ-
ten to the aux file using the \AtEndDocurnent com-
mand for W X and by redefining the \endarti cl e
command for plain TEX. A sed script then collects
this information and writes it into a master file. This
master file is read in a subsequent run by using the
\AtBeginDocurnent command for LATEX and by re-
defining the \a r t i cl e command for plain TEX.

All LATEX files were run in native LATEX^^ mode
(if they were not already coded in LATEXZE-about
half of the LATEX papers were-it was in most cases
sufficient to replace \begi nCdocumentsty1 e) by
\begi nCdocumentc1 ass)). At CERN we run TEX ver-
sion 3.1415, based on Karl Berry's web2c-6.1 di-
rectory structure. This system could be used for
most papers without problems, but Haralambous' R

f o n t s formats i n p u t s m f

tug94 baragar . . . yannisT

Figure 1: The directory s t ructure f o r
preparing the TUG94 Proceedings

(yanni SO), and Phd Taylor's nljS paper, needed the
TEX--XxT extensions, which have not yet been ported
to that latest version of web2c. Therefore we had
to build two special formats (one for I$&X2€, and
one for plain) with the TEX--XxT mods and the older
T~X3.141/web2c-d. The fonts used inHaralambous's
Tiqwah paper needed 60 instead of the standard 50
fontdi mens, so we also had to recompile METAFONT.

When the dvi-files were translated into Postscript
with dvips, METRFONT would generate the font
bitmap pk files on the fly, as they were needed, with
the desired mode-def. In total 334 supplementary
METAFONT source files were received for running
the various papers in the Proceedings.

Although most pictures were avadable as Encap-
sulated PostScript files, for two articles (the one by
Sofka, and the BM2FONT paper by Sowa) they could
not be printed. Therefore we pasted originals ob-
tained from the respective authors into the relevant
places in the text.

Acknowledgements

These Proceedings would never have been ready in
time were it not for the help of Sebastian Rahtz dur-
ing the final stages of the production cycle. Build-
ing upon hls experience gained last year when edit-
ing the TUG93 Proceedings, he developed a vastly im-
proved production system for the generation of thls
year's Proceedings. Together we translated the old
TUGboat styles into IP;TEX~E classes, and used these
for all @X runs. With the help of Oren Patashmk
and Joachlm Schrod we also developed a first ver-
sion of a Chicago-hke TUGboat BIBTEX bibliography
style and introduced the correspondmg necessary
changes into the class files.

I also want to thank Barbara Beeton, Mimi Bur-
bank, Pierre MacKay, and Christina Thiele who, to-
gether, have reread the preprint versions of all pa-
pers. They have pointed out several remaining typos
and provided me and the authors with many useful
comments and suggestions for improvement. Last
but not least I want to acknowledge the competence
and dedication of Phd Taylor (RHBNC, University of
London) during the final production stage of going
to film.

Michel Goossens

Innovation

The 15th Annual TEX Users Group Meeting, Santa Barbara, USA

Abstract

TUG'94 was organized by:
Chairperson: Patricia Monohon
Bursary: Bernard Gaulle
Culture and Events: Janet Sullivan
Courses: John Berlin
Proceedings: Michel Goossens
Programme: Malcolm Clark & Sebastian Rahtz
TUGly Telegraph John Berlin & Malcolm Clark

Acknowledgements and Thanks Monday August 1 st

The organizers would llke to publicly acknowledge
the contributions made by several individuals, by
TEX Local User Groups, or by companies to the Bur-
sary and Social Funds, or who offered free copies of
books or software to the participants. In particular
we would like to thank DANTE e.V., GUTenberg, UK-
TUG, and TUG, as well as Addison-Wesley, O'Reilly &
Associates, and Prime Time Freeware.

We would also like to mention the vendors:
Addison-Wesley, Blue Sky Research, Kinch Computer
Co., Micro Programs, Inc., Quixote Digital Typogra-
phy, Springer Verlag, and Y&Y, who by their continu-
ing support contribute to the success of the Annual
TUG Meetings.

Special thanks go to Katherine Butterfield, Suki
Bhurgi, and Wendy McKay for helping with staffing
the on-campus TUG office.

Conference Programme

Sunday July 3 1 st

Keynote

Lucida and TEX: lessons of logic and history:
Charles Bigelow

Keynote

Looking back at, and forward from, LATEX:
Leslie Lamport

Colour and UTEX

The (Pre)History of Color in Rokiclu's dvi ps:

James Hafner

Advanced 'special' support in a dvi driver:
Tom Rokicki

Colour separation and Postscript: Angus Duggan

Simple colour design and EQX: Sebastian Rahtz
and Michel Goossens

Printing colour pictures: Friedhelm Sowa

Color book production using TEX: Michael Sofia

Inside PSTricks: Timothy van Zandt and Denis
Girou, presented by Sebastian Rahtz

A LATEX style file generator: Jon Stenerson

Document classes and packages in m X z E :
Johannes Braams

Postscript font support in m X z E : Alan Jeffrey

Tuesday August 2nd

Publishing, languages, literature and fonts TEX Tools

Real life book production-lessons learned from
The J ~ Q X Companion:
Frank Mittelbach and Michel Goossens

Typesetting the holy Bible in Hebrew, with TEX:
Yannis Haralambous

Adaptive character generation and spatial
expressiveness: Michael Cohen

H d Yamis Haralambous

Automatic conversion of METAFONT fonts to
Type1 Postscript:
Basil Malyshev, presented by Alan Hoenig

BIBTEX 1.0: Oren Patashnik

A typesetter's toolkit: Pierre MacKay

Symbolic Computation for Electronic Publishing:
Michael P. Bamett and Kevin R. Perry

Concurrent Use of Interactive TEX Previewer with
an Emacs-type Editor:
Minato Kawaguti and Norio Kitajima

An Indic TEX preprocessor - Sinhalese TEX:
Yannis Haralambous

Pascal pretty-printing: an example of "preprocessing
w i t h TEX": Jean-luc Doumont

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

The 15th Annual TEX Users Group Meeting, Santa Barbara, USA

Wednesday August 3rd

Futures

Towards Interactivity for TEX: Joachim Schrod

The Floating World: Chris Rowley and Frank
Mittelbach

Sophisticated page layout with TEX: Don Hosek

Progress in the Omega project: John Plaice

Object-Oriented Programming, Descriptive Markup,
and TEX: Arthur Ogawa

An Object-Oriented Programming System in TEX:
William Erik Baxter

A World Wide Web interface to CTAN: Norm Walsh

First applications of R: Adobe Poetica, Arabic,
Greek, Khmer:
Yannis Haralambous and John Plaice

E-TEX & N T S : progress so far, and an invitation
to discussion: Philip Taylor, Jifi ZlatuSka, Peter
Breitenlohner and Friedhelm Sowa

Thursday August 4th

Publishing and design

TEX innovations by the Louis-Jean Printing House:
Maurice Laugier and Yannis Haralambous

Design by template in a production macro
package: Michael Downes

Less is More: Restricting TEXS Scope Enables
Complex Page Layouts: Alan Hoenig

Documents, Compuscripts, Programs and Macros:
Jonathan Fine, presented by Malcolm Clark

Integrated system for encyclopaedia typesetting
based on TEX: Marko Grobelnik, Dunja Mladenii,
Darko Zupanit and Borut inidar

An Example of a Special Purpose Input Language
to LATEX: Henry Baragar and Gail E. Harris

Colour Pages These are in a separate section at the
back of these proceedings. They are referenced
in the articles with the tag "Color Example".

Author page index

Henry Baragar:
Michael P. Barnett:
Will~am Baxter:
Charles Bigelow:
Johannes Braarns:
Michael Cohen:
Jean-luc Doumont:
Michael Downes:
Angus Duggan:
Jonathan Fine:
Denis Girou:
Michel Goossens:
Marko Grobelnik:
James Lee Hafner:
Yannis Haralambous:
Gail E. Harris:
Alan Hoenig:
Don Hosek:
Alan Jeffrey:
Minato Kawaguti:
Norio Kitajima:
Maurice Laugier:
Basil K. Malyshev:
Pierre A. MacKay:
Frank Mittelbach:
Dunja Mladenit:
Arthur Ogawa:
Oren Patashmk:
Kevin R. Perry:
John Plaice:
Sebastian Rahtz:
Tomas Rokiclu:
Chris Rowley:
Joachim Schrod:
Michael D. Sofia:
Friedhelm Sowa:
Jon Stenerson:
PMip Taylor:
Timothy Van Zandt:
Norman Walsh:
Borut inidar:
Darko Zupanif:

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Lucida and TEX: lessons of logic and hstory

Charles Bigelow
Bigelow & Holrnes, P.O. Box 1299, Menlo Park, CA 94026
bigelow@cs.stanford.edu

Abstract

The development of Lucida fonts for TEX included many lessons, some being
simply the idiosyncracies of Don Knuth's self-taught opinions about typography,
and others being important aspects of mathematical and scientific composition
that are unknown to typographers. Another aspect of thls talk is how typeface
designs are conceived, created, developed, evolved, etc., which involves reference
to Times and Computer Modern.

A paper similar in content was published elsewhere.'

C. Bigelow and K. Holmes. The Design of a Unicode Font. Proceedings of RIDT'94. Electronic Publishing,
Origination, Dissemination and Design, 6(3), pages 289-306, 1993.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 169

Real life book production-lessons learned from The LATEX Companion

Michel Goossens
CERN, CN Division, CH12 11 Geneva 23, Switzerland

mi chel . goossens@cern. ch

Frank Mittelbach
Zedernweg 62, D55128 Mainz, Germany

Mi t t e l bach@mzdrnza. zdv .hi -Mai nz. de

Abstract

Some aspects of the production of The BTEX Companion are described.

Deciding to write a book for the TUG Conference in Aston (Birmingham, UK)

Text processing support staff at CERN, as, without
doubt, in many other research institutes, universi-
ties or companies, had followed Leslie Lamport's ad-
vice in the LATEX Reference manual (Lamport 1985),
and developed a Local Guide, which describes how
LATEX can be used on CERN's various computer plat-
forms, explains which interesting style files are a v d -
able, and provides a set of examples and pointers
to further mformation. Alexander Samarin and one
of the authors (Michel) had long planned to expand
the material in that guide, to make it more generally
available.

When Frank visited CERN in April 1992 to give
a presentation on the Q X 3 project, we talked to
him about our idea. We outlined vaguely what we
wanted to write, and Frank found the idea "interest-
ing". After he got back home he proposed to talk to
Peter Gordon of Addison-Wesley, to see whether they
would be interested. They were, and at that point, all
three of u s decided that it would be a good idea to
collaborate.

Defining contents and time scale

At the end of June 1992 Michel had a first meeting
with Frank in Mainz, where they wrote a detailed
table of contents, down to the section level, whch
contained in most cases an extended outline, with an
estimated number of pages.

Work by each of the authors, as assigned in the
plan discussed in Mainz, continued over the summer,
so that by the time of the Prague EuroTEX Conference
in September 1992 we already had a nice 300 page
preprint, which we discussed in great detail during
various meetings in the Golden City. We also met
with Peter Gordon, our editor at Addison-Wesley, and
finalized aspects of the contract we had been &s-
cussing previously. The final date for delivery of the
compuscript was tentatively set for April 1st 1993, in
order to having a chance of getting the book printed

in the summer.
Further work on the book during the autumn

and the winter was essentially carried out by Frank
and Michel, since Alexander went back to Russia at
the end of October 1992, and when he finally re-
turned to Geneva in March 1993, he took up a job
with ISO, and had very little time left to spend on the
book.

Getting feedback

The text, as it was at the end of 1992, was sent to sev-
eral of our colleagues and friends in the mX world,
and they kindly spent part of their Christmas hol-
idays reading the first complete draft of the book.
At the same time Addison-Wesley had some chapters
read by a few of their reviewers.

It is extremely important and helpful to have
feedback at an early stage, not only to find possi-
ble mistakes, but also to receive comments and sug-
gestions from other people, who can often shed an
interesting new light on points whch are taken for
granted, or point out grey areas in style and expla-
nation.

Design specification

In the meantime Frank was hard at work trying to
translate the page specifications (for headings, fig-
ures, captions, running titles, etc.) as given by the
Addison-Wesley designer into values of TEX glue,
rules, boxes, and penalties. It was not always evident
how to translate the fured-space approach of the clas-
sical design specs into TEX'S page-layout paradigm;
so on various occasions "clarifications" had to be ob-
tained.

Coding conventions

It was soon realized that it is extremely important
to have a common way to generically mark up com-
mands, environments, counters, packages, or any

170 TUGboar, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Real life book production-lessons learned from The W&X Companion

other global distinctive document element. T h s not Getting ready to print
only ensures a homogeneous presentation through-
out the book, but also allows one to change presen-

By the end of the summer we had included all the

tation form without modifying the input text; one
comments of the copy-editor into the compuscript,

merely has to change the definition of the generic
and done most of the updates for L5&XZE. We then

command (a few examples are shown in table 1). As
went on to the proofreading stage, where, again with

a supplementary benefit one can decide to globally
Marsha Finley acting as liaison, a proofreader reread

(and automatically) enter certain of the marked-up
all pages after "final typesetting", pointing out re-

entities in the index.
maining typos or errors in cross-references.

Setting up communication channels

In order to make communication between the pro-
duction people in the Boston area and ourselves eas-
ier, it was decided to bring in the expertise of a pro-
duction bureau, Superscript, with its competent man-
ager Marsha Finley, and her colleague Anne Knight.
Another decision was to have the complete text re-
viewed by a professional copy-editor.

Around Easter 1993 we thus started to copy
Postscript files with ftp (quite a new procedure to all
the production people involved, who were, at best,
used to transporting 3.5 inch dskettes between their
Macs or IBM PCs and the printing bureau). These files
were then retrieved on the Sun in the Readmg of-
fice of Addison-Wesley, printed locally, and picked
up by Marsha, who took the pages to the copy-editor.
The latter returned the edited copy to Marsha, several
copies were made, and Frank and Michel both got a
copy via Federal Express. The changes were then in-
troduced into the text, by either Frank or Michel, and,
whenever we had a problem, we would solve it via e-
mail with Marsha.

And then came b T ~ x 2 ~

Whlle this iterative process was getting well under
way, an unexpected event happened. Frank and
Leslie Lamport, who was visiting Mainz in the spring
of 1993, decided to consolidate Q X into a new ver-
sion, LATEX 2 E , which would bring together the various
dialects and formats floating around on the various
networks and archives, and include the New Font Se-
lection Scheme (NFSS) by default. It would also in-
clude a few limited extensions and propose a better
style writer interface.

This very good news for the LATEX community,
however, meant for us that we were now describ-
ing and using an evolving software system. After
the copy-editing stage, in several tens of places non-
trivial changes had to be introduced in the text,
new paragraphs written, and complete new sections
added in some parts. Moreover, the Companion was
typeset with the alpha release of the continuously-
changing version of LATEX^^, thus giving us some sur-
prises from time to time (of whch one or two even
ended up in the first printing of the book).

Tuning UTEX and hand work

While we were preparing the final run, we had to
tune the IK&X parameters extensively, in particular
to allow for the huge number of floats we had to deal
with, but also for finding suitable glue settings and
penalties. There was also some hand tuning needed.

Table 2 shows the amount of hand-formatting
we found necessary to produce the final copy of the
book.

To flag all visual formatting clearly (so that it
could easily be identified and removed in case the
text needed changing), we never used the standard
Q X commands directly. Instead we defined our
own set of commands, often simply by saying, e.g.,
\newcornrnand{\finalpagebreak}{\pagebreak}.

The table dvides the commands used into three
groups. The first deals with changes to the length of
the page: \ f ina l longpage and \ f ina l shortpage
run a page long or short, respectively, by one
\basel i neski p. The command \ f i nal forcedpage
enlarges a given page and is therefore always fol-
lowed by an explicit page break in the source. The
second group contains the commands for "correct-
ing" LAT~XS decision about when to start a new page,
and the final group contains a single command for
adding or subtracting tiny bits of vertical space to
improve the visual appearance.

The average number of corrections made with
commands from the first group is slightly over 20%,
or one out of five double spreads, since we applied
such a change always to pairs of pages. If you look at
the chapters with a large percentage of corrections,
you will find that they contain either very large in-
line examples or large tables that should stay within
their respective sections.

Hard page breaks were inserted, on average, ev-
ery tenth page, often in conjunction with a command
from the first group. In most cases t h s was used to
decrease the number of lines printed on the page.

Most uses of \ f i nal f i xedski p can be classified
as "correcting shortcomings in the implementation
of the design." With an average of about 16% this
may seem hgh. But in fact such micro adjustments
usually come in pairs, so t h s corresponds to approx-
imately one correction every 12 pages.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Michel Goossens and Frank Mittelbach

Preparing the index

As already mentioned above, most of the important
document elements were entered into the index in an
automatic way by using generic mark-up to tag them.
But that is not enough to have a good index, and
indeed, we went over each page and asked ourselves
which keywords should be entered into the index so
as to direct the reader to the information on that

page. In fact quite a few readers' comments that
we received after the first printing had to do with
suggestions for addng additional keywords into the
index.

Production problems

Since we were working in different locations (Geneva
and Mainz) on different workstations (Digital and
Hewlett-Packard) and with mostly non-identical ver-
sions of LATEX (Frank was "improving" IKTEX~~ con-
tinuously, whereas Michel was using a "frozen" ver-
sion that got updated every now and then), small dif-
ferences could appear in line and page breaks, lead-
ing on many occasions to a state of mini-panic, which
had to be relieved by an exchange of one or more ur-
gent e-mail messages, often sent well after midnight,
when the other members of our families had already
long gone to bed.

The first printing

After a final Q X run of our complete 560-page book,
late on December lst, Michel was able to copy the the
resulting Postscript file, 9.5 Mbytes in size, in 26 self-
contained pieces, by ftp from the CERN computer
to Reading. This was necessary since the Postscript
files had to be transferred on 1.44 Mbyte PC diskettes
between the Sun at Addison-Wesley and the Varityper
4300P 1200 Postscript printer of the service bureau,
where the camera-ready pages were produced.

Taking a break, or so we thought

So, we could spend a nice 1993 Christmas holiday,
hoping that everything would go all right, and, fair
enough, we received the first printed copy of our
book just after the New Year. Soon our first readers
started to send us comments and suggestions, and to
point out problems of various kinds (printing, typos,
unclear explanations).

In March Addison-Wesley informed us that we
had to prepare an updated version of the book for
a second printing at the beginning of May. We thus
started to introduce the suggested corrections and
improvements into the text, finally ending up with
over 160 pages that we wanted to reprint (many of
them containing only tiny changes, but also, owing to
knock-on effects, sometimes several pages in a row

had to be reproduced). We also took advantage of
readers' comments to redo the complete index.

Conclusion

We hope we have been able to convey in t h s short
article some of the excitement, fun and frustration
people experience when trying to write a book.

We are well aware of the fact that those of you
who have been involved in the production of books
or large documents have come across several of
these problems before. We nevertheless hope that
by telling our "story" some of the lessons we learnt
will be useful to some of you.

References

Goossens, Michel, Frank Mittelbach, and Alexander
Samarin. The BTEX Companion. Reading Mass.:
Addison-Wesley, 1994.

Lamport, Leslie. BTEX-A Document Preparation
System-User's Guide and Reference Manual.
Reading Mass.: Addison-Wesley, 1986.

Acknowledgements

We would like to thank Geeti Granger and Gareth
Suggett for their helpful comments and suggestions.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Real life book production-lessons learned from The MTEX Companion

W X command (control sequence) '\stop' should be input as \Lcs{stop} to produce the text and the
reference, as \xLcs{stop} to produce only the reference and as \nxLcs{stop} to only typeset the command
sequence in the text.

\Lmcs makes a main index entry for places where one defines or really talks about a command.

\newcommand{\Lmcs}[l]C\mbox{\normalfont\ttfamily\bs#l}\xLmcs{#l}}
\newcommand{\xLmcs} [I] {\i ndex{"#l@{\ttfami 1 y\protect\idxbs8'#1} 1 idxbf}}

The \Lcsextra command is for producing a subentry for a command name.

\newcommand{\Lcsextra}[l](\mbox{\normalfont\ttfami1y\bs#l}\xLcsextra{#l}}
\newcommand{\xLcsextra}[2]{\index{#1@{\ttfamily\protect\idxbs#l}!#2}}
\newcommand{\Lmcsextra}[l]{\mboxC\normalfont\ttfamily\bs#l}\xLmcsextra{#l}}
\newcommand{\xLmcsextra}[2]{\index{#l~\ttfamily\protect\idxbs#l}!#2lidxbf}}

For flagging a range of pages covered by a definition, we use the "rangel" (start of range), and "ranger" (end
of range) construct.

\newcommand{\xLcsextrarangel } [2] {\i ndex{"#l@{\ttfami 1 y\protect\i dxbs"#l} ! #2 1 (I}
\newcommand{\xLcsextraranger} [2] {\i ndex{"#l@{\ttfami 1 y\protect\i dxbs1'#1} ! #2 I)}}

Table 1: Examples of generic tags used to reference command sequences

Chapter

Number o f pages

2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 A l

36 36 18 40 16 58 44 16 36 36 26 50 18 36

\fi nal 1 ongpage

\final shortpage

\finalforcedpage

Pagelengthchange

Average per page

0 3 1 0 3 1 0 4 2 3 0 4 9 7 4

0 5 4 4 0 2 1 0 0 0 8 6 0 0 2

1 0 0 2 2 0 1 0 0 1 0 1 0 0

1 8 5 6 5 12 15 2 3 9 10 10 7 6

.03 .22 .29 .15 .33 .08 .34 .13 .08 .25 .38 .2 .39 .17

\fi nal pagebreak

\f i nal newpage

Pagebreakchange

Average perpage

4 5 2 4 3 7 1 2 1 0 6 4 5 3 6

0 1 0 0 0 0 0 0 0 0 0 1 0 0

4 6 2 4 3 7 12 1 0 6 4 6 3 6

. l l .17 . l l .1 .19 .12 .27 .06 0 .17 .15 .12 .17 .17

\final fi xedski p

Average perpage

Table 2: Manual work-some numbers (from Goossens, Mittelbach and Sarnarin (1994))

4 3 4 1 1 0 8 2 2 0 1 4 6 1 0 7 3

. l l .08 .22 .28 0 .14 .05 .13 0 .39 .23 .2 .38 .08

Sum

Average per page

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

9 17 11 21 8 27 29 5 3 29 20 26 17 15

.25 .47 .61 .53 .5 .47 .66 .31 .08 .81 .77 .52 .94 .42

Typesetting the Holy Bible in Hebrew, with TEX

Yannis Haralarnbous
Centre d'~tudes et de Recherche sur le Traitement Automatique des Langues
Institut National des Langues et Civilisations Orientales, Paris.
Private address: 187, rue Nationale, 59800 Lille, France.
Yanni s .Haralambous@univ-lillel.fr

Abstract

This paper presents Tiqwah, a typesetting system for Biblical Hebrew, that uses
the combined efforts of TEX, METAFONT and GNU Flex. The author describes its
use and its features, discusses issues relevant to the design of fonts and placement
of floating diacritics, and gives a list of rare cases and typographcal curiosa which
can be found in the Bible. The paper concludes with an example of Hebrew Biblical
text (the beginning of the book of Genesis) typeset by Tiqwah .

Introduction cannot be guessed out of the context (for example in

The Tiqwah system uses the possibilities of TEX,
METAFONT and GNU Flex to typeset Biblical Hebrew.
T h s is not a simple task: (a) special fonts had to
be created, described in the section 'Fonts for type-
setting the Holy Bible in Hebrew' on page 177; (b)
several levels of diacritics are required; they have
to be entered in a reasonable way (see 'Vowels' on
page 176, and 'Masoretic accents and other symbols'
on page 176), and placed correctly under or over
the characters (see 'An algorithm for placing floating
chacritics' on page 179). The Bible being the most de-
manding Hebrew text (from the typographical point
of view), Tiqwah can trivially be used to typeset any
other Hebrew text, classical or modern; in addition
to Tiberian vowels, Babylonian and Palestinian vow-
els are also included in the font, as are special char-
acters for Yiddish.

T h s paper is divided into three parts: the first
one, more pragmatic, describes the requirements and
use of the Tiqwah system; the second one discusses
the design of the fonts and the algorithm of floating
diacritics placement; fmally, the third part gives a list
of rare cases and typographical curiosa found in the
Hebrew Bible, and the way to produce them through
Tiqwah.

But first, for the reader not familiar with the
Hebrew language, a short introduction to the Hebrew
system of diacritization.

Diacritization. In Hebrew, as in other Semitic lan-
guages, only consonants and long vowels are writ-
ten as letters: the reading process includes a perma-
nent "guessing" of words out of the available data-
the consonants and long vowels, as well as the gram-
matical, syntactic and semantic context.' To prevent
misunderstandings, in cases where the short vowels

tr t rd ths t s wht I mn - try to read this to see
what I mean.

names or foreign words), or in cases where the text is
extremely important and should by no means be al-
tered (the case of holy texts, like the Bible), short vow-
els have been added, in the form of diacritics. This
is the first level of hacritization; it can be applied to
any text; at school, chddren first learn vowelized He-
brew.

A second degree of diacritization is the use of
cantillation marks or Masoretic marks or neumesm2
This method of &acritization applies only to the He-
brew Bible.

Finally, a third degree of chacritization and
markup (less important in volume than the two
previous ones) consists of using editorial marks for
scholarly editions (locations where text is missing,
diverging sources, etc.). For t h s purpose, mainly
two signs are used: the circellus (a small circle)
and the asterisk. Also a dot is sometimes placed
over each letter of a word-it is called punctum
extraordinarium.

One reads in Levine (1988, pp. 36-37): ". . .unlike
Psalmodic technique which reserves its motifs for a
single syllable toward the phrase-end, Biblical chant
assigns a motif to each word. It does t h s with signs
called neumes (te'amim in Hebrew). . . .The root of
"neume" in Hebrew, ta'am has several meanings:
'taste'; 'accent'; 'sense'. Neumes impart taste (into-
nation) to Scripture through melody, accent through
placement (above or below the stressed syllable),
and sense (rhetoric) by their ability to create a pause
or to run words together. In addition to these func-
tions, neumes provide a means of memorizing the
intonation, accentuation, and rhetoric of the hand-
written scrolls read publicly, for only consonants ap-
pear on the scrolls. Vowels and punctuation-as well
as neumes-appear only in printed editions of the
Hebrew Bible."

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Typesetting the Holy Bible in Hebrew, with TEX

It follows that printed Hebrew Biblical text can
globally be subdivided into four strata:

4. Editorial marks
3. Cantillation marks

2. Vowels, semi-vowels and Sewa
1. Text

The placement of diacritics falls into the following
groups:

1. inside the letter: the dageS or mappiq dot;

2. over the letter: vowels (holem in the Tiberian
system of vowelization, and all Palestinian and

Tiqwah p a ~ k a g e , ~ consisting of a preprocessor writ-
ten in GNU Flex, fonts written in METAFONT, and TEX
macros. The preprocessor being written entirely in
GNU Flex (without using any system-dependent sub-
routines), can be compiled in a straightforward man-
ner on any platform having a GNU Flex executable and
an ANSI C (preferably gcc) compiler.

Once Tiqwah has been installed, typesetting is
done in two steps: an input file is prepared using the
syntax described below; the preprocessor then reads
this file, and produces a LATEX^^ (or plain TEX) file
which can then be run through TEX in the usual way.S

Babylonian vowels), Spirantization (rafe), can- fieparing the input file. If you wish to write your file
Idlation marks (zaqeph, rebia, gerei, g a r i a ~ ~ ~ f in LATEX^^, you have to include the line
etc.), editorial marks (circellus, asterisk, punc-
tum extraordinarium);

3. under the letter: vowels (hireq, sere, segol, etc.),
semi-vowels (hafeph-patah, etc.), absence of
vowel (Sewa), cantdlation marks (silluq, atnah,
etc.);

4. before the letter (on its right): prepositive can-
tillation marks (dehi, yetib, etc.);

5. after the letter (on its left): postpositive cantil-
lation marks (segolta, sinnor, etc.).

All strata of diacritics can be combined. It has
always been a typesetter's nightmare (or delight, de-
pending on the case) to produce fully diacriticized
Hebrew text: sometimes the combinations of dia-
critics get even wider than the character that carries
them; in these cases, dacritics will float under (or
over) the irnmedlately following letter, according to
rules given in the section 'An algorithm for placing
floating diacritics' on page 179. These actions can
eventually change the appearance of the whole word.
In that section we give an analytic approach of float-
ing diacritic placement, and the corresponding algo-
rithm used by Tiqwah's TEX macros.

The reader can find more information on the
grammar of Biblical Hebrew in Lettinga (1980); for an
introduction to the modern edition of the Bible BHS
(Biblia Hebraica Stuttgartensia), see Wonneberger
(1990).

Using Tiqwah

Requirements. To typeset in Biblical Hebrew using
Tiqwah, one needs a decent TEX ~ y s t e m , ~ a relatively
powerful machine (being able to run BigTEX) and the

In this context, by 'decent TEX system' we mean a
TEX implementation featuring Peter Breitenlohner's
TEX--XET as well as a METAFONT implementation
with user-configurable parameters (the internal pa-
rameter max-font-dimen of METAFONT has to take
a value of at least 53, to be able to generate Tiqwah
fonts).

\usepackageCti qwah}

in the preamble. Plain TEX users will write

\ input tiqwamac. t ex

at the beginning. However, the author recommends
the use of LATEX&, because of its powerful font se-
lection scheme.

A Tiqwah input file contains text, T E X / ~ X
macros, and preprocessor directives. The latter
concern only Hebrew script. To type Hebrew text
you need to enter Hebrew mode; t h s is done by the
preprocessor directive <H>. To leave Hebrew mode,
enter the directive </H>. For Yiddish, the directives
are <Y> and </Y>. The drectives <H> and <Y>

are the only ones recognized by the preprocessor
outside Hebrew/Yiddish mode.

Once you are inside Hebrewfliddish mode, you
type Hebrew text in Latin transcription, from left
to right. No special indication needs to be given to
TEX about font or writing direction switching-this is
done automatically. The following sections describe
the transcription you have to use as well as all other
features of the preprocessor.
Letters. The Hebrew transcription of letters (conso-
nants and long vowels) is given in Table 2 of the ap-
pendix (page 187); the Yiddish one will be given to-
gether with all other features of the Yiddish part of
Tiqwah, in a forthcoming paper, dedicated entirely
to t h ~ s language.

Here is a simple example of code producing non-
vowelized Hebrew text:

Tiqwah will be included in ScholarT~X; it is part
of the long awaited version 1 of the latter, together
with new Greek, Arabic, Estrangello, Serto, Chaldean,
Coptic and Akkadian cuneiform fonts.

An adaptation of the Tiqwah system to R (the
TEX extension prepared by John Plaice and the au-
thor) is under preparation; it will allow typesetting
in Biblical Hebrew, without a preprocessor.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 175

Yannis Haralambous

<H>ym hm*lx hw?:' hm?:qwm hn?:mw*k pywtr
b* ' w l m</H> will produce

n5lp9 in113 -pa37 nlp7 ~ i 7 n5m7 nl.
Some notes concerning the transcription of let-

ters of Table 2: there is no distinction between me-
dial and final forms; these are automatically applied
by TEX. The asterisk * transcribes the dageS, map-
piq or Sureq dot.6 The broken lamed 5 is used au-
tomatically whenever no upper diacritic is present;'
this feature can be turned off by the command line
option -nobroken of the preprocessor. The charac-
ter k is a ligature of the letters aleph and lamed; a
variant form of it is k. This ligature is not used in
the Bible, and hence is not applied automatically by
the preprocessor: it has to be explicitly requested by
the code '/1 (instead of '1 which will produce the
normal 5%).

In the same table, the reader will also encounter
the symbol C; it is called "nun invers" and is used in
Nu 10:3 5-36 and Ps 107. The "broken waw" : is used
in Nu 25:12. See the section 'Inverted and broken
letters' for more details.
Vowels. Hebrew vowels and their transcriptions are
displayed in Tables C and D (p. 188). Table 3 dis-
plays the three systems of vowelization available:
Tiberian (the most frequent one), Palestinian and
Babylonian. Tiberian vowels are used by default. To
switch to Palestinian or Babylonian, one uses the di-
rectives <PALESTINIAN> and <BABYLONIAN>. The di-
rective for Tiberian is <TIBERIAN>. The same text
can be typeset in any one of the three systems just by
adding/removing one of these directives; here is an
example of the same text, written in the three vowel
systems:

Most vowels can be entered in two different
ways: either by a "phonetic" one- (or two-) letter
code (a for patah, A for qame;, etc.) or by a three-
letter code in uppercase form, surrounded by < and >
(<PAT> for patah, <QAM> for qames, etc.). Both meth-
ods are equivalent and can be arbitrarily mixed.

Vowels are entered after letters, except in the
case of the patah furtivum, where the code <PTF> has
to be entered before x, h", or ' (n, 7 and Y are the only
letters which can take a patah furtivum8). The rafe
accent can be found in table 5.

Following advice by Phdippe Cassuto, we will
attempt to differentiate the dageS and the Sureq
applied to the letter waw, in the next version of Tiq-
wah.
' With one exception: the holem.
8The combination "letter 'ayin with patah

furtivum" is not displayed in the table because
it is graphically indistinguishable from the normal

Below is the same example of simple Hebrew
text with its transcription, thls time vowelized:

will produce
n p ? inllp Tsn?;! P~Q;II N S ~ n5@;! D:

Masoretic accents and other sy&bols.Tables E
and F (p. 189, 190) display Masoretic cantillation
marks and miscellaneous symbols: the Sephardic
varika, and punctuation marks maqqeph, setuma,
petuha, soph pasuq. Two styles of Masoretic
accents are provided: oldstyle (as found in
BHK' and Holzhausen Bible (1889), Lowe and
Brydone Bible (1948)) and modern (as in BHS~).
The distinction is made at the TEX level, by macros
(\modernmasoreti c and \ol ds ty l emasoreti c),
which can be used inside or outside Hebrew mode;
the default style is oldstyle. Table 6 shows the
glyphs of modern Masoretic accents. The same
remark as in the previous section, concerning
alternative input of codes, applies in this case also.

Masoretic accents are entered after the letter to
which they belong; they can be placed before or after
vowels belonging to the same letter-their order is
not important. Prepositive accents are placed before
the first letter of the word. Postpositive accents, such
as padfa, placed inside a word, wdl be typeset between
letters.

Finally, Table 7 (page 190) displays a collection
of typographical curiosa: symbols used in various
contexts and for various purposes. The single and
double primes ' and " are used for numerals and ab-
breviations. The upper two dots diacritical mark is
also used for numerals: it indicates thousands. The
asterisk * is used both as an editorial mark (like the
circellus, but apparently with slightly &fferent mean-
ing), and as a replacement character for missing let-
ters (see the section 'Missing letters' on page 183).
The zero-like symbol 0 is used to indicate a rniss-
ing word in Jdc 20:13 (Holzhausen Bible (1889), Lowe
and Brydone Bible (1948) only). The isolated dageS
is used to indicate a missing letter with dage$ in Jes
54:16 (BHS only). The "tetragrammaton" 43 is a sym-
bol for the name of God; it can be obtained by the
directives <YYY> or <TETRACRAMMATON>. The dotted
circle o is used in textbooks as a basis for diacritics.
Other preprocessor directives. A few directives do
not produce glyphs, and hence are not included in
the tables:

'ayin with patah. T h s can be changed if there is a
demand for differentiation of the two patah types.

Throughout this paper, BHS will be the Biblia
Hebraica Stuttgarrensia BHS (1987), and BHK the
Biblia Hebraica BHK (1925), edited by Rudolf Kittel.

176 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Typesetting the Holy Bible in Hebrew, with TEX

1. <NI L> placed after a letter will prevent the final We have completed the description of the pre-
form to be applied to it. For example, for nu- processor's use and features. Now we d turn our-
merals or stand-alone letters which have to be selves to issues concerning the design of fonts and
in medial form: the placement of floating diacritics.
<H>k<NIL> k</H> will produce 1 3.

2. <EOW> placed after a letter will force it to be in fi- Fonts for typesetting the Holy Bible in
nal form. even if other letters follow. For exam- Hebrew
ple, in Jes 9:6 one reads ;r$l~]S; . . this word has
been entered as
<H>1 "ma<EOW>r"bQe<AZL>h</H>). See the sec-
tion 'Letters not obeying rules of contextual
analysis' on page 182 for more details.

3. <EMPTY> wdl produce an invisible character
of normal width. It can be used as a basis for
stand-alone diacritics in the case of missing
words (see 'Missing words' on page 183).

4. <SMALL> and <BIG> will produce small and big
letters, see section 'Bigger and smaller letters'
on page 181 for more details; they act only on
one letter at a time.

More features may be added to the preprocessor if
necessary.

Running the preprocessor. Once you have prepared
the input file, for example genesi s . i np, you run the
preprocessor by writing
t iqwah opt ions < genesis. i np > genesis. tex
where opt ions can be the following:

1. -h displays a few lines describing the command
line options;

2. -p produces plain TEX instead of @ Q X output
(typesetting with Tiqwah in plain TEX is not rec-
ommended);

3. -1 followed by a number, indicates the maxi-
mum line length of code produced by the pre-
processor; default is 80. This applies only to
commands inside Hebrew/Yiddish mode, the
remainder of the file is not modified;

4. -nobroken disables the automatic broken
lamed insertion. With this option,
<H>w"l <SIL> 'Ao=yAl a<RBM>d"t2i y</H> will

produce Y7i15;'&)) Jes 23:4; without it, you

would get 70?'j:-k&1. It should be noted that
the holem vowel fits on the broken lamed: a
special "broken-lamed-with-holem" glyph is
provided in the font (5);

5. -d produces debugging output sent to the
s tde r r stream, for those who want to modify
the code of the preprocessor.

Running TEX/IATEX. As usual, TEX has to be TEX--XET,
otherwise you will get an error message about the
unknown commands \begi nR and \endR.

If you are using W&X~,C, you have to include
the line \usepackage{tiqwah} in the preamble; if
you are using plain TEX (not recommended), write
\ input t i qwamac. tex instead.

Designing fonts for Biblical typesetting is quite a
challenge: on the one hand, one has to face centuries
of tradition, and the inevitable comparison with mas-
terpieces of typography; on the other hand, unlike
Western typography, there is no room for innova-
tion: modern Hebrew typefaces are widely used in
Israel and elsewhere, but certainly not for Biblical
text! Working under such tight restrictions can be
compared to composing fugues or painting Byzan-
tine icons: there are very strict rules to struggle with,
and you can't avoid being hooked by the master-
pieces others have done and whch fatally are out of
reach.. .

Fortunately, digital font creation does not al-
ways need to be original and innovative (although at
the end it always will have new features, since the
phototypesetting machmes are fundamentally differ-
ent from the traditional presses). After all, we are in
the age of reproduction.. .

The author started with the idea in mind to re-
produce as faithfully as possible the most beauti-
ful Hebrew font he could find. There seems to be a
consensus among a large group of scholars that one
of the most beautiful Hebrew types ever done was
the one of the Biblia Hebraica, edited by Kittel and
printed in Germany in the early twenties. Unfortu-
nately the molds were lost in the bombing of Leipzig,
so only printed copies of that book could be studied
by the author to get the necessary information for
reproducing the font.

6 polnts I l polnts 36 polnts

Figure 1: The letter 1 at point sizes 6, 11, 36

Doing this, and studying other books as well,
such as a Haggadah by Saul Raskin (Raslun 1941),
printed in New York in 1941, and old Talmudic books

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 177

Yannis Haralambous

printed in Vienna in the late xrxth century, the au-
thor realized that Hebrew fonts have a fascinating
feature: there is a remarkable deviation between dif-
ferent point sizes (in T~Xnical terms: they have a high
degree of metaness). While for Latin typefaces the
changes between small and large point sizes affect
mostly the width of strokes, in Hebrew, letter shapes
often change considerably. And what's even more
unusual: changes that occur when going from small
sizes to the normal size often occur the other way
around when going from normal to large size: for
example, one can see, in Fig. 1, the letter gimel at 6,
11, and 36 points (magnified so that they all have the
same physical size). While the right tail of the let-
ter moves more to the right when going from 6 to 11
points, it retracts again when going from 11 to 36,
and almost becomes vertical.

Here is a (possible) explanation for this
behaviour: the reasons for metaness in the
small-to-normal range are different than those in
the normal-to-large range. In the former case, the
problem to solve is legibility. As a matter of fact,
many Hebrew letters look quite similar in normal
size: compare samekh and final mem, or kaph and
bet, at 11 (or higher) points in the Table of Appendix
A. Their distinctive features are so discrete that
they could well disappear if the normal size was
reduced linearly; a well-drawn small point Hebrew
font has to bring these distinctive features to the
foreground. Compare these letters again at 6 points:
kaph and final mem are round while samekh and bet
remain quadratic. On the other hand, when going
from normal to large, one follows purely esthetic
criteria: elegance is the main goal. In this context,
Hebrew letters follow "Bodoni-like" esthetics: they
have very important fat strokes and very fine thin
ones. Hebrew letters use -even more than Latin
letters- the effect of contrast between fat and thin
strokes.

Being hooked by the beauty of this script the au-
thor decided not only to produce a most decent He-
brew font, but also to cover the whole range of opti-
cal METAmorphoses of the types. On table 1 of the
appendix (page 186), the reader can see the first re-
sults of this adventure; they are by no means final!
The author hopes to be able to improve these char-
acters to meet the level of the Hebrew typographical
tradition.

Technical details. Drawing a font with such a high
degree of metaness is a process not far from morph-
ing, a techmque used more and more in video and
cinema.1° Nevertheless there is an important differ-
ence between METAFONT "morphg" and the usual

lo Morphing is the continuous interpolation be-
tween two pictures; it has been used in special ef-
fects, for example to show faces being transformed
into other faces.

morphmg we see in movies. To morph two images,
we are not changing the grayscale (or color) weight of
each pixel, but the coordinates of Bezier curve con-
trol points. Interpolation becomes very uncertain,
since it is by no means trivial that the set of interpo-
lated Bezier curves will still produce a decent char-
acter shape.

The solution to t h s problem is to detect "ten-
dencies" in the letter shape metaness and to be
guided by these while morphing: for example, the
lower left stroke of the letter aleph has the tendency
of protruding to the left when point sizes become
small. This has to be taken into account for all paths
of this stroke, so that the transformation is homoge-
neous. The best way to do t h s is to determine "cen-
ters of gravity" which will move during the transfor-
mation; then it suffices to define all the important
control points of the stroke with respect to a center
of gravity: in this way the movement of the latter will
produce an homogeneous move (and hence, transfor-
mation) of the whole stroke.

Animportant precaution is to limit the metaness
of certain quantities to a certain range of point sizes.
For example, the width of fat strokes can vary ar-
bitrarily (after all, it is directly related to the letter
point size), but other characteristics should not "vary
too much"; in other words, they should remain stable
outside of a certain point size range. That is the case,
for example, of the "hanging left stroke" of letter fi-
nal pe, in small point sizes; this stroke extrudes al-
ready to the left at point size 8; for point sizes lower
than 8, the amount of extrusion remains stable, oth-
erwise the character shape would be deformed; same
phenomenon for the height of the intersection point
of the vertical and the oblique stroke of letter final
~ a d e : after point size 24 the intersection height re-
mains stable, since at this point size it has reached
an extremal point. The idea of this paragraph could
be stated as: "morphing should be applied only for
interpolations inside the regular range; for extrapo-
lations, the usual metaness (stroke widths, etc.) is
applied."

One of the most important parts of many He-
brew letters is the "flame" (or "crown"). Figure 2
shows the different METAFONT reference points and
paths used for the definition of a standard META-
FONT "flamev-subroutine.

Rashi. Besides the "quadratic" Hebrew font, which
is shown in table 1 of the Appendix, the author has
also developped a Rashi font. This type was used in
Synagogue books for comments on the Biblical text.
Synagogal books, whch are often masterpieces of ty-
pography, combine several point sizes of Rashi and
quadratic in various page setups. On the other hand,
Rashi is not used in scholarly editions. Rashi is not
diacriticized (neither vowels, nor cantillation marks);

178 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Typesetting the Holy Bible in Hebrew, with TEX

xloc

xloc

xloc

Figure 2: The METRFONT description of the character part "flame"

nevertheless, the author has included vowels, semi-
vowels and Sewa in the Rashi font, just in case some-
body wants to break that rule.. .

The Rashi font has only the usual metaness (op-
tical scaling through variation of stroke width). Here
are the characters of point size 10, in their real phys-
ical size, compared with the quadratic font at the
same size:

Rashi: ~ ~ 7 ~ ~ 5 ~ ~ ~ ~ 1 l ~ f l > 7 3 ~ ~ ~ f t b 7 > 3 f ,

Quadratic: n ~ l ? ~ ~ 7 ~ ~ ~] 2 ~ ~ ? 5 1 3 ~ ~ n t l 1 f f 1%

In a forthcoming article, the author will give exam-
ples taken from Synagogal books with comments in
Rashi.

1 I

An algorithm for placing floating diacritics. After a
close study of the typesetting of diacriticized text in
the Hebrew Bibles, and numerous discussions with
Johannes de Moor, the author was led to the follow-
ing considerations:

1. We divide the set of diacritics into two cate-
gories: primary and secondary. Primary dia-
critics are vowels, semi-vowels and Sewa (stra-
tum 2); all others are secondary ones (strata 3-
4). Secondary diacritics are always appended to
the left of primary diacritics belonging to the
same letter.

2. Every consonant has an upper and a lower
symmetry axis, on which diacritics are
centered: these are not necessarily identified
with the symmetry axis of the character's
box: for example, the lower symmetry axis of
character 1 is going through the middle of the
vertical stroke, and not through the middle
of the imaginary character box (as its upper
symmetry axis).

In Fig. 3, the reader can see the choice of
upper and lower symmetry axes for each char-
acter, as well as the "forbidden zones", which
should be avoided by diacriticsll.

3. Suppose that:

we have a letter L followed by letter L';

l 1 The reader will notice two letters he in Fig. 3,

Figure 3: Upper and lower symmetry axes for with different lower symmetry axes: the second one

Hebrew characters shows the axis used for the patah furtivum. The
same process is applied to the letter het.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Yannis Haralambous

letter L carries a primary diacritic P and
a secondary diacritic S, both under it, S
being necessarily appended to the left of P;

the lower symmetry axis of letter L is A
and the one of L' is A'.

Then we have three possible choices, in the fol-
lowing order of preference:

(a) P is centered on A (see Fig. 4, 1);

(b) the group of diacritics SP is centered on A
as a whole (see fig. 4, 2);

(c) the group of diacritics SP is centered on A
as a whole, furthermore a kern is added be-
tween L' and L (see fig. 4, 3) so that dia-
critic S does not overlap on L' or its dia-
critics.

Once these choices as well as their order of pref-
erence have been determined, the algorithm for plat-
ing diacritics under (or over) a word is the following:

for (letters of the word starting from the left)

{
try choice (a)
if ((a) not successful) {

try choice (b)
if ((b) not successful) {

apply choice (c)

I
I

go to next letter

I
where the criterium of "success" is the fact that the
diacritics of the current letter do not overlap with the
following letter (if t h s letter has a descender part)
or its diacritics, or its lower symmetry axis. Here is
an example of such a situation. The reader can see a
few (imaginary) words illustrating the three choices
described above:12

t l 1 A --• (2) 111 (1)

: A ?> - - (4) (3)
In case (I), we have three letters bet, the medial one
having a primary diacritic segol and a secondary dia-
critic atnah. On the left side there is no diacritic, and
the lower symmetry axis of the left bet is far enough
from the atnah of the medial letter to allow place-
ment of the diacritics according to choice 1: the segol
is centered under the letter, and the atnah concate-
nated to it.

In case (2), instead of bet we have placed a za-
yin at the end of the word. There is no diacritic un-
der that letter, but its lower symmetry axis is much

closer to the medial bet than it was in case (I) , so that
now, the diacritics of the medial letter, placed as be-
fore, would inevitably touch the symmetry axis of the
zayin. TEX automatically switches to choice 2, and
checks that, without additional kerning, the diacrit-
ics remain indeed inside the authorized area.

In case (3), we add a diacritic segol to the letter
zayin. Choice 2 is not valid anymore, and TEX auto-
matically kerns letters zayin and the bet so that the
atnah is at a safe distance from the segol to the left
of it. T h s is choice 3, and it always works, because
there are no limits set on TEX'S operation of kerning.

Word (4) has been included to show TEX'S reac-
tion in front of a punctuation mark: (a) TEX does not
float the diacritic under the punctuation mark as in
case (I), and (b) it does not switch either for choice 2,
like in (2). The reason is that both operations (a) and
(b) are reserved for letters which are considered as
part of a whole (the word); the punctuation mark be-
longing to a different entity must be placed indepen-
dently, and should not participate in the algorithm of
floating diacritic placement. As the reader can see in
(4), TEX kerns between the punctuation mark and the
letter until the atnah is clearly not under it anymore.

NOTES:

1. Certain characters have descenders: p 1
7 Y or ascenders: 5; these parts of characters
are considered "forbidden zonesv-no diacritic
should overlap or even touch them (forbidden
zones are visible on fig. 3 as shaded areas).

2. The algorithm only concerns diacritics that are
centered over or under the character with re-
spect to the symmetry axes shown in Fig. 3; un-
centered diacritics (like the holem) obtain fixed
positions before applying the algorithm. The re-
gion they occupy becomes a forbidden zone, just
like letter descenders or ascenders.13

3. If there are both upper and lower diacritics, the
algorithm has to be applied twice, once for each
case. Choices are independent, but a possible
kerning due to application of choice 3 to one of
the two parts could modify the choice applied
to the other part.

4. If there is already a kern between two letters, it
must be taken into account before applying the
algorithm.

5 . While inside a line, TEX is typesetting by count-
ing blank space with respect to character boxes
(and not diacritic boxes), at the beginning of
a line the maximum between the width of dia-
critic box and the width of character box must

l2 These words are displayed in a magnified 8-
13 An exception to this rule is the letter 1 (waw with

holem magnum), where the right dot is sufficiently
point font, so that diacritics are larger, relative
to characters, and the three choices become more

below the standard diacritic height for additional

obvious.
diacritics to be placed as if the dot was not there.

180 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Typesetting the Holy Bible in Hebrew, with TEX

I Letter I Letter I

Choice 1

Letter Letter

I syrnrnet y

Choice 2 Choice 3

Figure 4: Three possible choices of diacritics positioning, in order of preference.

be taken into account (so that diacritics do not 'nsz Gn 27:46,
protrude over the beginning of a line). el.&?? Gn 30:42,

-: I- .

Rare cases and typographical curiosa

It is forbidden-and has always been forbidden-to
change the text of the Hebrew Bible. The Masorets
and other Bible cornmentors have proposed some
modifications to the text, which had to be made ap-
parent without changing the text itself. For this rea-
son, many (typo-)graphical tricks have been used to
indicate potential modifications of the text. These
may differ from one Bible edition to the other (al-
though they seem to be quite stable between rabbini-
cal editions), and may not appear in modern study
editions of the Bible, like the BHS. Here is a list of
such curiosa, after a short search by the author,'"~
well as the way to achieve them with Tiqwah.

Bigger and smaller letters. These are letters bigger
or smaller than ordinary text. They can appear at any
location inside a word. They are vertically justified at
the upper bar of Hebrew letters (and not at the base-
line), so that big letters are protruding downwards
only, and small letters are "hanging". The eventual
dageS dot belongs to the point size of the letter it-
self (bigger or smaller than ordinary text), while the
eventual diacritics are typeset in the same size as or-
dinary text. In the case of big letters, lower diacrit-
ics are lowered so that they keep the same distance
to the letter a s in the case of ordinary letters; in the
case of small letters they are not raised, and remain
at their default position.

Here are all possible occurrences the author
could detect:

n9WFtN13 Gn i : i ,

9 1 ~ " P Gn 2:4.

7n5371 . . Gn 23:2,

l4 The author would be grateful for any help or
suggestions o n completing this list.

/)fi$-?$j Lv 11:42 [big waw].

n5pn;il LV 13:33,

l4)-%?9 Nu 14: 17 [big yod],

'n22 JOS 14:11,

1 5 ~ Jes 56:1,

nIJlT1 Jer 14:2,

?lg$D3 Na 1:4,

N:@~'PS 24:4 [small waw],

?lsa! Ps 80:16,

' ~ V D Prv 1:l [small final nun].

7$1?i Prv 16:28,

c?&, ~ r v 28:17,

23 I >?Prv30:15,

W"? Hi 7:6,

lugv Hi 9:34,

~$-'?@-sY ..A, . . Hi 16: 14 [small h a 1 sadel.

Tn Hi 33:9,

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Yannis Haralambous

l'v Cant 1:1,

'$5 Ru 3:13.

NIT ~ h r 1:12,

?I??: Thr 2:9,

3'iD Qoh 7: 1,

7'ib Qoh 12:13,

l$n Est 1:6,

N~~SWl3 : - Est 9 7 ,

k?!~l~ st 9 9 ,

NQ!'l Est 9:9 [big waw and small zayin],

3h3nf Est 9:29,

~ l ~ y e w p . . Da 6:20.

l c h 1:l.

Tb produce big and small letters, one uses the
preprocessor directives <BIG> and <SMALL> respec-
tively. These affect only the first letter following
them, e.g., to obtain NlB7Rttt3 . . Da 6:20, one writes

<H>b*i S"<SMALL>~~~";BIC>~QA~A<TIP> ' </H>.

Raised letters. At three locations in the Bible, the
' author encountered raised 'ayin letters, and at one
location, a raised nun. Contrary to small letters as
described in the previous section, these are typeset
in the regular point size. The diacritics remain under
the normal baseline except in the case of a patah
diacritic, which was raised as well, in BHS and BHK.

Here are all occurrences of raised 'ayin the au-
thor could find:

l!'$ [in Holzhausen Bible (1889), Lowe and Bry-
done Bible (1948)l or

lys?3 [in BHS and BHK] Ps 80:14,

~'%l Hi 38:13,

D'*v%J Hi 38:15.
The raised nun was encountered in

ntb'p-jo J ~ C 18:30.
~ o t h r'iised letters are regular characters of the

Tiqwah font. The raised 'ayin can be produced by the
input code ' / (' /a in the case of raised 'ayin with
patah). The raised nun with patah can be obtained
by the input code n / / a (n followed by a single slash
n / produces the inverted nun, see section 'Inverted
and broken letters').

Letters aleph, resh and 'ayin with dageS dot. The
author has found three locations in the Hebrew Bible,
where the letter aleph takes a dageS dot: in BHS the
dots are placed in the lower part of the letter; in BHK
they are ignored; while in Holzhausen Bible (1889),
Lowe and Brydone Bible (1948) they are placed in
the upper or in the lower part of the letter. Here
are these occurrences, as they appear in Holzhausen
Bible (1889), Lowe and Brydone Bible (1948):

SN'~:) Esr 8:18.
At a single location in the Bible the author found

the letter 'ayin with dageS: 1317~93 1s 5:12. This
letter appears in Holzhausen ~ible'(1889), Lowe and
Brydone Bible (1948) but not in BHS. In BHK a large
dot is placed over the character.

Finally, the letter resh with dageS occurs in n'7Q
Prv 14:lO.

To produce these letters with Tiqwah, use codes
' ?:, '/, r* and ' * as shown in table 2 of the appendix.

Letters not obeying rules of contextual analysis.
In some cases a letter does not appear in final form
as it should, and conversely a letter inside a word
is written in final form (for example to indicate a
contraction of two word:). Here are two cases the

author has detected: 32107 . . Jes 9:6, with a final

mern inside the word, and ;l7Yp;! 7 &3 Hi 38:1, where
the nun of the first word is not in final form.

To impose a final form one uses the preproces-
sor directive <EOW> (EOW stands for "end of word"),
after the letter: <H>1 "ma<EOW>r" bQe<AZL>h</H> to
obtain the example above. To avoid a final form
one uses the directive <NIL>, after the letter as well:
<H>mi <MER><NIL></H> for the example. More tech-
nically, in the first case, the preprocessor considers
it is at the end of a word and treats the two parts
of the word as distinct-but concatenated-words; in
the second case an invisible character of zero width
makes it thmk it is not at the end of the word.

Letters with more than one vowel. Again because
of contractions or other grammatical phenomena, a
letter can carry more than one vowel. Here is an ex-

ample: 7 ~ ~ 3 Ez 9:11, where the letter kaph carries
both a Sewpand a holem. Input of such letters is
straightforward.

Isolated dageS. The author encountered an isolated,
vowelized dageS in BHS: -:.I;! Jes 54:16.

To obtain this character with Tiqwah, use
the directive <DAGESH>. The invisible box of this
character is sufficiently wide to carry vowels and/or
other diacritics. It is treated as any other letter,
so you have to use the directive <EOW> (see the
section 'Other preprocessor directives' on page 176)
to obtain our unique example (otherwise the letter
nun will not be final). Here is its Tiqwah code:
<H>hin<EOW><DAGESH>e<MEH></H>.

Unusual letters. In Nu 10:35-36 as well as in Ps 107,
one encounters the horizontally inverted letter nun
C. In the critical apparatus of BHK one can read ">
invers: [editio Bombergiana Jacobi ben Chajjirn anni
1524/25] YDC3 et P'3CKnt33". Both in BHS and BHK
the types used for this character are not very satis-
factory, while in Holzhausen Bible (1889), Lowe and

182 TUGboat, Volume 1 5 (1 ! 394), No. 3 -Proceedings of the 1994 Annual Meeting

Typesetting the Holy Bible in Hebrew, with TEX

Brydone Bible (1948) a type of the same quality as the
ordinary nun is used.

This character is obtained by the code n/. It
seems that other inverted characters may exist (an in-
verted lamed seems to be hidden in the Bible text.. .).
They will be added to the Tiqwah system, whenever
necessary.

In Nu 25:12, there is a "broken" waw with right
holem, in the word P??v. Thls character is obtained
by the code w/Ao.

Finally, there is a variant form of the letter qoph,
in Ex 32:25, Pz't9F3, and in Nu 25:12,

P ' lpp"5~. This litter is mentioned in the Masorah
as "qof joined and without taggim" (see Yeivin 1980,
546); it can be obtained by the code q/.

Missing letters. The treatment of missing letters is
typical of the work and restrictions of Masorets: they
were not allowed to add letters that were missing,
so while vowelizing the consonants they did so also
for the missing letters, and by that action made their
existence apparent.15

In the Holzhausen Bible (1889), and Lowe and
Brydone Bible (1948), an asterisk is used to denote
a missing letter. T h s asterisk is vowelized just like
any ordinary letter. In BHS and BHK different meth-
ods are used: in some cases, empty space is left; in
other cases no empty space is left and the diacritics
of the missing character are just squeezed between
those of (not missing) letters (a phenomenon occur-
ing also in Holzhausen Bible (1889), Lowe and Bry-

done Bible (1948); for example in the word Ll>f@~l; Ps
137:6 where a hireq is squeezed between the lamed
and the final mem).

Here are the missing letters detected by the au-
thor, as printed in Holzhausen Bible (1889) and in
Lowe and Brydone Bible (1948):

:-S&W: 2s 16:23,

*-YY 2s 18:20, ,..

SP131) Jes 32:15,

nnn: Jes s5:13,

l S The reader can compare this with the glasses or
gloves worn by the invisible man in H. G. Wells's
homonymous novel.

Y1.E: Jer 10:13,

Pi* Jer 17:19,
7 .

S97*1 Jer 18:23,
< : , . :

137: Jer 40:3,

YV7: Ez 18:20,

;?p:n:~?) EZ 2519,

nr?v'3: EZ 42:9,

P:n3?-3 Ez 46: 19,

$3V]: Prv 4:16,

"$1': PN 23:25,

?P: Hi 2:7,

P9@$??'$3 Thr 1:18,

AS: ~ h r 2:2,

7%' Thr 5:3.

]a>@'?;! . . Da 2:9,

'f * Da 2:43.
4. :

In Tiqwah one writes <AST> to obtain the letter-
like asterisk (warning, the ASCII asterisk * is used
only for the dageS, mappiq and Sureq dot!). If one
prefers to leave an empty space, one can use the di-
rective <EMPTY>. Unlike <NIL> , this one produces
an invisible character with non-zero width; it can
be vowelized just like any character. Finally, < N I L >
can be used if we want to squeeze the diacritics of
the missing character between the existing charac-
ters/diacritics.

Here is an example: <H>b" <AST>agei yd</H>
will give the (imaginary) word f93f>; by replacing
<AST> by <EMPTY> in the code, one would get ?'a_?
and finally, by using < N I L > instead of <AST> or
<EMPTY>, the result would be fl$->.

Missing words. To indicate the location of missing
words, all combinations of the preceding techniques
are used. In BHK and BHS, empty vowelized charac-
ters are used; in Holzhausen Bible (1889), Lowe and
Brydone Bible (1948), a single asterisk, in the mid-
dle of the diacritics of the missing word is used. In
a single case, a digit zero is used instead of asterisk.
Here are the missing words detected by the author,
as printed in Holzhausen Bible (1889), Lowe and Bry-
done Bible (1948):

0. Jdc 20:13,
2.. .

2s 833,
IT :

* 2R 19:31, .. :

* 2R 19:37, . .
* Jer 31:37, .. 7

: Jer 50:29,

* Ru 3:6, ,- ..

* Ru3:17. - ..

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Yannis Haralambous

To obtain the digit zero in Tiqwah, use the di-
rective <ZERO>. For the remaining examples, the di-
rectives explained in the section 'Missing letters' on
page 183 are used in a straightforward manner.

Conclusion

As hmted by its name (Tiqwah means "hope" in He-
brew), the author has made this system hoping that
it will lead to a revival of Biblical Hebrew typography.
Its three main axes (fonts, typesetting, user inter-
face) are based on three powerful programming lan-
guages: METAFONT for font creation, TEX for type-
setting, and G N U Flex for preprocessing. The open-
ness and flexibility of these languages guarantees the
platform independence and consistency of the Tiq-
wah system.

The author would like to express his gratitude
to Prof. Johannes de Moor of the Theologische Uni-
versiteit van de Gereformeerde Kerken (Kampen) for
his constant and friendly guidance and support. Also
he would like to thank Jean Kahn (Paris) for his help
in the hunt for rare cases and typographical curiosa,
and Alan Hoenig (New York), Daniel Navia (Paris) and
Relnhard Wonneberger (Mainz) for their warm re-
sponse and friendly advice. Last, but not least, many
thanks to those who have fetched the preprint of
thls paper on the net and have generously provided
suggestions and corrections: Abe Stone (Princeton),
Aaron Naiman (Maryland), Scott Smith (MIT), Malki
Cyrnbalista (Weizmann Institute, Israel).

References

BHK. P921n31 P9NS2J ;nln Biblia Hebraica, edidit Rud.
Kittel, Professor Lipsiensis (Editio altera emenda-
tior stereowpica). Stuttgart, 1925.

BHS. D921n31 P9N92J ;nln Biblia Hebraica Stuttgarten-
sia. Stuttgart, 1987.

Holzhausen Bible. P9>in31 P'N923 73ln. Vienna, 1889.

Lettinga, J.P. Grammaire de l'hebreu biblique. E.J.
Brill, Leiden, 1980.

Levine, J.A. Synagogue Song in America. White Cliffs
Media Company, Crown Point, Indiana, 1988.

Lowe and Brydone Bible. PS21n31 N J mln.
London, 1948.

R a s h , S. Haggadah, nbD 7ttl 7717. Academy Photo
Offset Inc., New York, 1941.

Wonneberger, R. Understanding BHS. A Manual for
the Users of Biblia Hebraica Stuttgartensia. Ed-
itrice Pontificio Instituto Biblico, Roma, 1990.

Yeivin, I. Introduction to the Tiberian Masorah. Schol-
ars Press, Missoula, Montana, 1980.

TUGboat, Volume 15 (1994), No. 3 - Proceedings of the 1994 Annual Meeting

Typesetting the Holy Bible in Hebrew, with TEX

Table 1: Hebrew characters in point sizes 6-36 (part A)

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Yannis Haralambous

Table 1: Hebrew characters in point sizes 6-36 (Part B)

TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Typesetting the Holy Bible in Hebrew, with TEX

Table 2: Hebrew letters and their input codes

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Yannis Haralambous

Table 3: Hebrew vowels (Tiberian, Palestinian & Babylonian) and their input codes

Table 4: Special Hebrew vowels, special characters and their input codes

TUGboat, Volume 1 5 (1994), No. 3 - Proceedings of the 1994 Annual Meeting

Typesetting the Holy Bible in Hebrew, with TEX

Darga

/.
/ \

I I

\ - 1

I

<SIL>

Xs i 1

Galgal

Mereka
kepula

<GAL>

Xgal

Mehupak

..
/ \

\ I

\ - /

A

<ATN>

Xatn

Azla

Mun*

<ZQP>

X Z ~ P

'Ole

<AZL>

X a z l

Punc tum

Sduq

, .
/ \

i I
\ - /

L

<T IP>

X t i p

weyored

extraordi-
narium

Tipma Atn*

Zaqeph
parvum I magnum

<ZQM>

Xzqm

<OLE>

Xol e

. .
/ \

i I

' - /

<PUN>

Xpun

Mereka

. .
/ \

i I

\ - /
./

<MER>

Xme r

'Illuy

Varika

Table 5: Oldstyle Hebrew masoretic accents and their input codes

Rebia
magnum

<RBM>

Xrbm

<ILL>
X i 1 1

Praepositivi

w
, .

/ \

I I

\ - /

<VAR>

Xvar

<REM>

Xrem

iWGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

..
/ \

\ I
\ - /

J

<MUN>

Xmun

SalSelet

Setuma
Rebia

mugrash

GereS

<CER>

Xge r

Postpositivi

<SHP>

Xshp

TeliSa
parvum

0 . .
/ \

i I

\ - /

<PCR>

Xpc r

Yetib Dehl

I

<DEH> I <YET>

Xdeh I Xye t

. .
/ \

1 I
\ - /

<

<MEH>

Xme h

Sinnorit

PaQa

P e t a a
TeliSa

magnum

GarSayim

<SIN>

Xs i n

Circellus

I (..\I

\ - /

<L IN>
X l i n

<TLM>

X t l m

. .
/ \

I I

\ - /
JJ

<MEK>

Xme k

<PZM>

Xpzm
<CAR>

Xgar

Circellus

Segolta
Lineola

(paseq)

Maqqeph

. .
/ \

i I
\ - /

Z

<DAR>

Xdar

Pazer

< PAZ>

Xpaz

<CIR>

Xc i r

Sinnor,
Zarqa

. . . .
/ \

i I
\ - /

<SEG>

Xseg

Soph

pasuq

<SET>

Xse t

Pazer
magnum

Tebir Rafe

<TEB>

X teb

CU . .
/ \

i I

\ - /

<ZAR>

Xzar

<PET>

Xpet

<RAF>

X r a f

- -

7 /.
/ \

1 I
\ - /

<PAS>

Xpas

9
, .

/ \

I I

\ - /

<TLP>

X t l p

Yannis Haralambous

Table 6: Modern Hebrew masoretic accents and their input codes

Pazer

. .
I \

\ - 1

<PAZ>

Xpaz

Table 7: Miscellaneous symbols and their input codes

Azla

\ /.
I \

I l l 1

\ - /

<AZL>

Xazl

I

!

TUGboat, Volume 15 (1994), No. 3 - Proceedings of the 1994 Annual Meeting

Sinnorit

1 /.
/ \

I I

\ - 1

<SIN>

X s i n

/I

! !

. .
I //.\ I

\ - '

<MIL>
Xmi1

Postpositivi

Tebir

/.
/ \

I I
\ - /

*/

<TEB>

Xteb

Praepositivi

*

<AST>

Xast

Sinnor,
Zarqa

7 . .
/ \

\ - /

<ZAR>

Xzar

PaSf-a

/ . \

\

I 1 1 1 1 1
\ - '

<PAS>

Xpas

I / \ I
\ - 1

<ASA>

Xasa

Rebia
mugrash

/. /
/ \

\ - /

<REM>

Xrem

Deh

/.
I \

I I

\ - /

\

<DEH>

Xdeh

* o .
<ZERO>

Xzer
<DAGESH>

Xdag

I / . . \ I

\ - /

<XXX>
Xxxx

Typesetting the Holy Bible in Hebrew, with TEX

GENESIS

Caput I. N

DS: 72>-1n11 . L :I- > ~ P " ~ ' ? . . :!- QIDV . A 7 7 9'i3?S C. TIT P';~?N .,. ...: Hian 87 .

D

. . : I AT I - - L... T I.. :

+lvgv PS) 737-9791
+ ,. :,-

Figure 5: The book of Genesis, as printed in an 1889 Viennese Bible

TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Adaptive character generation and spatial expressiveness

Michael Cohen
Human Interface Lab, University of Aizu 965-80, Japan
mcohen@u-ai zu. ac. j p

Abstract

Zebrackets is a system of meta-METAFONTs to generate semi-custom striated
parenthetical delimiters on demand. Contextuahzed by a pseudo-environment in
L Q X , and invoked by an aliased pre-compiler, Zebrackets are nearly seamlessly
invokable in a variety of modes, manually or automatically generated marked
matching pairs of background, foreground, or hybrid delimiters, according to
a unique index or depth in the expression stack, in 'demux,' unary, or binary
encodings of nested associativity. Implemented as an active filter that re-presents
textual information graphically, adaptive character generation can reflect an
arbitrarily wide context, increasing the information density of textual presentation
by reconsidering text as pictures and expanding the range of written spatial
expression.

Adaptive Character Generation:
Zebrackets

Zebrackets ICohen 921 ICohen 931 takes a small-
scale approach to hierarchical representation, focus-
ing on in-line representation of nested associativ-
ity, extending parentheses (also known as "lunulae"
c~ennard 911), and square brackets (a.k.a. "crotch-
ets"), by systematically striating them according to
an index reflecting their context.

Functionality. Table 1 crosses three of the dimen-
sions currently supported by Zebrackets, using a L I S P

function (which performs a generalized "inclusive
or") as a scaffolding.

index is the semantic value of the pattern being su-
perimposed on the delimiters:

unique generates a unique, incremental index
for each pair of delimiters

depth calculates the depth of the delimited ex-
pression in an evaluation stack, useful for
visualizing expression complexity

encoding scheme refers to the way that the index is
represented visually:

demux named after a demultiplexer, or data
selector, which selects one of n lines us-
ing 1g2 In1 selectors, puts a 'slider' on
the delimiter. Such a mode is useful
for establishing spatial references, as in
f top)(middle)(bottom$.

unary creates a simple tally, a column of tick
marks

binary encodes the index or depth as a binary
pattern, the most compact of these repre-
sentations

The demux encoding mode always has ex-
actly one band or stripe, but the unary and
b ina ry encodings have variable numbers, and
use an index origin of zero to preserve back-
wards compatibility. Since the striations are
adaptively chosen, the complexity of the delim-
ited expression determines the spacing of the
streaks. Without NFSS, the maximum number of
stripes for a self-contained face is lg, i: I = 7.
Otherwise, for overly rich expressions that ex-
ceed visual acuity, Zebrackets can be limited to a
fxed striation depth, wrapping around (repeat-
ing) the indexing scheme if the delimiters ex-
haust the range of uniquely encodable values, as
seen in the unique x {dernuxl unary] sextants.

type controls the style of the striations superim-
posed on pairs of delimiters:

background bands drop out segments from
the delimiters

foreground explicitly put in black ticks, which
are more legible if less inconspicuous

hybrid combines these two styles, dropping
out bands at all the possible slot locations,
and then striping the actual index

Eventually perhaps, greyscale striations (not
yet implemented) might interpolate between
these approaches, causing the ticks to disap-
pear at normal reading speed, but be visible
when doing a detailed search.

Foreground Zebrackets only work well with
thinner faces, and background Zebrackets only
with bolder faces. Figure 1 exercises Zebrack-
ets through an obstacle course of less common
fonts, showing some of the legibility problems,
even with figure/ground modes chosen to flat-
ter the filigrees.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Adaptive character generation and spatial expressiveness

demux

encoding

I I II ~ D E F U N ANY (LST)

I I II (COND :(NULL LST) NIL:
background ! !CAR LST) T)

type

(DEFUN ANY (L S T ~

(COND ((N U L L LST) NIL:

((CAR LST) T:

foreground

index

ZDEFUN ANY (LST)

(COND f (NULL LST) NIL)

C (CAR LST) T)

Z T (ANY (CDR LST)))) Z

unique depth

hybr id

background

b inary

unary

(DEFUN ANY (LST)

f COND (f NULL L S T ~ NIL)

t f CAR L S T ~ T>

(T (ANY Z C D R LST)) 3 Z)

I D E F U N ANY :LST:

!COND ! f NULL LST? NIL:

 CAR LSTS T F
f~ :ANY :CDR LST:: 1 : :

(DEFUN ANY (L S T ~

(COND ((NULL LST) NIL;

((CAR LST) T)

(T (ANY (CDR LST:] 1) ;)

<DEFUN ANY :LST:'

<COND <;NULL LST, NIL:-
: .,
i. .CAR LST: T i

.T <ANY <CDR LST: i > :: :
(DEFUN ANY ~ L S T ~

~ C O N D ((N U L L LST; NIL;
.. ..
,:CAR LST: T;

foreground

hybr id

background

(DEFUN ANY (LST)

(COND ((NULL LST) NIL)

((CAR LST) T)

(T (ANY ~ C D R LST))))

(DEFUN ANY (LST)

(COND ((N U L L LST! NIL)

((C A R LST! T)

(T (ANY (CDR LST) 3)))

<DEFUN ANY (LST)

f COND f (NULL LST) NIL)
, ,
t <CAR LST) T)

+'T . [ANY . /CDR LST';.:.. , t t .' .

(DEFUN ANY (L S T ~

C C O N D ; (NULL L S T ~ NIL;

((CAR L S T ~ T;

I I f COND ((N U L L LST) NIL)
foreground

((CAR LST) T)

hybr id

(DEFUN ANY <LST>

{COND ((NULL LST) NIL)

C (CAR LST) T)

(T (ANY (CDR LST:;)))

::DEFUN ANY {LST)

< COND i f NULL LST? NIL)

C f CAR LST? T)

(T (ANY ;CDR LST;?)) ::

Table 1: index:{unique, depth} x encoding:{demux, unary, b inary} x type:{background, foreground,
hybr i d l (10 pt . cmtcsc Zebrackets, selected to match size and font [small caps] of text)

TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Michael Cohen

ACTIVE INGREDIENT: Hydramethylnon [tetrahydro-5, 5-dimethyl-
2(1_H)-pyrimidinone~3-i4-~trifluoromethyl)phenyl~-l-~2-~4-~trifluoro-
methyl! phenyl]ethenylj-2-propenylidenejhydrazone]

ACTIVE INGREDIENT: Hydramethylnon [tetrahydro-5, 5-dimethyl-
2:~1_H~-pyrimidinonef3-f4-~trifluoromethyljphenyl]-l-f2-~4-~trifluoro-
methyl) phenyljethenyl)-2-propenylidenefhydrazonei

ACTIVE INGREDIENT: Hydramethylnon Itetrahydro-5, 5-dimethyl-
2:~1_H~:-pyrimidinone~3-~4-~trifluoromethyl)phenyl~-1-~2-i4-~trifluoro-
methyl; phenyljetheny1)-2-propenylidenefhydrazonej

ACTIVE INGREDIENT: HYdTamethylnOn \tetrahydro-5, 5-dimethyl-

2(1_H)-pyrimidinonet3-\4-(trinuoromethyljphenyl\-1-(2-\4-(trinuoro-

methyl) phenyllethenylj-2-propenyiidene)hy~zone\

Figure 1: Application of Zebrackets to a chemical formula (sans serif bold extended with background,
sans serif with hybrid, sans serif dernibold condensed with hybrid, "fumy face" [negative inclination] with
foreground)

1rnplementation.The implementation of Zebrack-
ets comprises two aspects: a filter to generate per-
muted invocations of the underlying delimiters,
and the delimiter glyphs themselves. The filter
is composed of (an ad hoc collection of) csh and
sh shell scripts and C and per1 :wall & Schwartz
911 programs. The two-pass filter parses se-
lected text, invoked explicitly with editor utilities
like Emacs' she1 1 -command-on- regi on command
:Stallman 88:, or implicitly as a precompiler. In
the latter case, sections of the document set off
by the LATEX f ~ a m p o r t 862 pseudo-environment
\begi n{zebrackets}{<parameters.. . >}

\end{zebrackets}
are replaced by zebracket invocations. This pseudo-
environment is interpreted by a precompiler, like
a macro processor, that replaces vanilla delimiters
with zebracketed, and emits METAFONT EKnuth 86;
source that will be invoked at image time.

The first pass parses the expression using a
stack, establishes the maximum number of stripe
slots needed, and generates the necessary META-
FONT files. For the unique index mode, the max-
imum number of striations is the number of bits
needed to represent its hghest index, which is equal
to [lg2]delimiter pairs1 1. Using the context estab-
lished by the first pass, the second pass replaces each
delimiter with LATEX code invoking its respective ze-
bracketed version by effectively traversing the under-
lying tree. As seen in Figure 1, different styles of de-
limiters (like rounded parentheses and square brack-
ets) are handled separately, and the respective stria-
tion slots are spaced out evenly along the height of
the delimiter.

For example, invoking the aliased precom-
piler/compiler on a document containing the con-
tents of Figure 2 runs the zebrackets filter on

"(a * (b + c))" (with arguments that mean "au-
tomatically generate (uniquely) indexed foreground-
striated binary-encoded 10pt. delimiters using cmr
base parameters"), determines that only one poten-
tial striation is needed, encodes the indices as bi-
nary patterns, replaces the source text with that in
Figure 3,l and generates the zpf bcmrl0. mf ~ o u r c e , ~
as well as the appropriate . tfm and . pk files, which
together yield "(a " (b + cj)" at preview (TeXview
f~ok ick i 931 via TeXMenu f~chlangmann 921 on
Nextstep) or printing (dvi ps f~ok ick i 921) time.

By having indirected the glyphs one extra level,
Zebrackets implements a meta-META FONT. Dynamic
fonts f ~ n u t h 881 :Andre & Borgh 891 :Andre &
Ostromoukhov 891 employ what is sometimes called
"dynamic programming," which is basically lazy eval-
uation of a potentially sparse domain. Although
each Zebrackets character is essentially determined
at edit-time, and the actual specification involves
human-specified ranges for zebracketing, because of
the communication between document and META-
FONT, character generation is context-sensitive and
adaptive, since the automatic specification can be
conceptually lumped together with the compilation
(via 1 atex) and imaging.

Currently the size of the dehmiters and the
name of the Computer Modern model font are

1 Idempotency of font declarations is finessed by
the \i fundefi ned condition fKnuth 84:, pages 40,
308.

The syntax of METAFONT terminates a token
upon encountering a digit, so no numbers can be
used directly as part of a font name. Therefore, the
number of striations is mapped to an alpha character
('a'-0 stripes, 'b 'a 1 stripe, . . .), which becomes,
after 'z' [for Zebrackets], 'b' or 'p' [for parentheses, or
brackets], and 'b', 'f', or 'h' [for back- or foreground,
or hybrid], the fourth character in the font name.

194 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Adaptive character generation and spatial expressiveness

\documentsty1 e[zebrackets] {a r t i cl e l
\begi n{document}

Figure 2: Sample (W X pseudo-environment) input

\documentsty1 e [zebrackets] {a r t i cle}
\begin{document}

Figure 3: Sample (Zebrackets filter) output

explicitly passed as parameters to the pseudo-
environment. A more elegant approach would be
to code the Zebrackets filter directly as a bona fide
LATEX environment, which could determine delim-
iter size and font at compile time (writing infor-
mation to an .aux file and using something like
"\immediate\writel8"to escape to the operating
system to create and invoke mf files). Zebrackets'
implementation as a precompiler insulates the char-
acters from useful positional and contextual infor-
mation, like page position and current font and size.
Otherwise, Zebrackets is compatible with (perhaps
redundant) IPQX dunensions, as overstated by Fig-
ure 4.

The Zebrackets filters slow down document
compilation considerably. However, since they are
usually image-level compatible, a document may be
previewed quickly in a Zebrackets-less mode, while
the cycle-intensive Zebracketsrun in the background,
eventually seamlessly strobing into the previewer
without any layout change or page motion.

Spatial Expressiveness

Figure 4: Celebration of nesting hyperbole: Round
and rectangular tagged Zebrackets reinforcing in-
terleaved (to the limits of TEX'S semantic nesting
stack size) tagged over- and underbraces, framing,
over- and underlining, emboldening, itahcization,
case, natural operator precedence, and canonical
left-right reading order

Zebrackets is a focused realization of adaptive
character generation, useful in certain contexts, but
ultimately less important than its conceptual ambi-
tions. The logical extension of typography is arbitrar-
ily tuned characters, calculated globally and gener-
ated uniquely. Adaptive character the
destiny of electronic publishing, glyphs adjusted in

The notion of a futed alphabet font is inherently lim- arbitrarily subtle ways to carry information and fit
ited, even one extended into a family by techniques space.
like weighting, itahcization, emboldening, and lo-
cal contextual tools like ligature and kerning. Com-
puters offer the potential of "chameleon fonts," al-
tered, depending on their context, to heighten leg-
ibility (readability, balance, or proportion) or evoke
emotions that complement, remforce, or amplify the
words and ideas.

Zebrackets and Multiple Master Typefaces. Read-
ing publications like Baseline and Emigre, one might
think that the only computer-driven typographic in-
novations are on the Macintosh, using tools like
Fontographer. This imbalance is perhaps because
the formahzation of a meta-language (and its corol-
lary meta*-languages) is less accessible to artists
than graphical techniques.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Michael Cohen

The notion of a meta-font language can be
hkened to Adobe Multiple Master Typeface i ~ d o b e
921 E~piekermann & Ginger 931 with an arbitrary
number of axes, or dimensions, each correspond-
ing to a parameter. (Selection of a base font can be
thought of as setting lower level parameters.) Usu-
ally the glyph space is thought of as continuous, and
the arguments, or components of the index vector,
are floating point.

Zebrackets' integral characterization of the text
yields a quantized specification of a font; real num-
bers would allow for continuous variation (within, of
course, the resolution of h t e precision encoding),
expanding even further the ability to custom-tailor a
font for a context. Suchvariety might manifest as ar-
bitrarily soft typefaces, perhaps employing greyscale
or dynamic effects, or tuned by the reader, to match
visual acuity.

Quantification of dimensionality. Visual languages
combine textual and graphical elements. Spatial ex-
pressiveness is achieved not only via effects like Ze-
brackets, but any kind of systematic control of doc-
ument presentation-explicit parameters like mar-
gins, but also implicit global characteristics, hke con-
sistency or contrast of typographic features.

Words have different expressive qualities than
pictures, but treating text as pictures, interpolating
between ID textual streams and Z D graphical rep-
resentations, enables some of the best qualities of
both. Table 2 attempts to align thls spatial expres-
siveness with computer languages and cornmunica-
tion modalities, suggesting that typeset documents
have a dimensionality somewhere between 1 and 2.3

It is amusing to try to estimate the value of this
non-integral dimension. We can assume that a doc-
ument composed entirely of (captionless) pictures
is fully 2-dimensional, and a document stripped of
graphical cues, denuded ASCII, to be entirely one-
dimensional, and that the interpolation between is
(linearly) proportional to the fraction of the respec-
tive components, as shown in Figure 5.

Using an information theoretic assumption that
a metric of a vector is proportional to its length, and
that languages are Huffman encoded, so that cliched
expressions are terse, then the most expressive will
be the longest, and a heuristic for spatial expressive-
ness is simply to compare the magnitude of a graph-

Of course time must be considered another di-
mension, or design axis. Temporal techniques, like
Emacs' flashng pairs of parentheses, d l become
important in ways difficult for us to imagine now,
and cinematographic techniques will start to infil-
trate books (as in World-Wide Web). Perhaps rotating
colors through letters, or gently inflating/deflating
them, will make them easier to read. And, of course,
(hyperlinked) video is inherently temporal.

ical file with that of the underlying text:

Igraphicsl - I teal +

S =
1 graphics I (1)

where Itextcfl is the length of the text substrate,
lgraphicsl is the length of the graphcal file (wbch
includes all the text), and S is the dimension of
spatial expressiveness. In particular, the character
counts of the Postscript (. ps) file and the detexed
H&X (. tex) and bibliography (. bbl) files can be used
to characterize the relative weights of the respec-
tive components. Using this formula, a simple shell
script, shown in Figure 6, calculates the dimension of
this document to be about 1.94. This value is Inflated
by including the font encoding in the ps file, but such
a dilation is an expected consequence of sharpening
the granularity of the document rendering. A (per-
haps not undesirable) consequence of such a defini-
tion is that dimension varies with output resolution.

In contrast, we would expect the spatial ex-
pressiveness of a graphically-challenged document,
detexed source embraced by a minimalist compil-
ing context to be closer to unity. As seen in Ta-
ble 3, and corresponding with this intuition, small
documents are mostly graphical, with dimensional-
ity near 2, but as their textual component length-
ens, they become more vector-like, with dimension
closer to 1. The same text, but zebracketed, yields,
as expected, hlgher values of spatial expressiveness,
except for the lowest character counts, where the
heuristic manifests artifacts of detex idiosyncrasies.
Anyway, the test files used to generate these metrics
are more than a little artificial, because empty lines
are needed to prevent TEX'S paragraph buffer from
overflowing, and Zebrackets' wrap-around restriction
currently makes it impossible to generate even a con-
trived document in which every character is unique.

The usefulness of such a metric is bounded by
the validity of its model; particularly suspect is the
assumption of equivalence of graphical information,
yielding artifacts of an over-simplified characteriza-
tion. It seems intuitive that the information in text
scales according to length ("A = B" has roughly half as
much information as "A = B = C"), but does, for exarn-
ple, a Postscript (macroscopic) moveto carry, on the
average, the same amount of information as a same-
length fraction of a (microscopic) font encoding in a
document prelude? Only arguably, in a relaxed, in-
formal sense of "spatial expressiveness." The data
must be regarded as preliminary, and further analy-
sis is indicated.

Paradigm shift: the end of fonts. As adaptive char-
acter generation becomes increasingly intricate, com-
pressed encodings become less relevant (since each
font is disposable), and the distance between the
bitmap and the next least abstract representation

196 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Adaptive character generation and spatial expressiveness

Table 2: Correspondence of dimension with hierarchy of languages and media as richness of expression

spatial expressiveness
(dimensionality)

1

3

Figure 5: Partitioning of document into graphcal and textual components: the fraction of a document's
graphical content determines its dimensionality

computer
language

ASCII

JIS, EUC i ~ u n d e 931
Unicode

Rich Text Format (r t f)
TEX/UTEX/M ETA FONT

+ Zebrackets
device independent (dvi)

Postscript (ps)
texture maps

Renderman (r i b)

dimensionality slider

grows. Fonts as we know them will become single-
tons, eclipsed by transformations and geometric ma-
nipulations. Document manipulation d l be orga-
nized as filters-not only conventional idioms like
emboldening, underlining, size and color contexts,
but also legibility sliders, path-following and space-
filling constraints, visual overtones, and temporal
effects. Not only will characters be morphed, but
characteristics d l be crossed and composed. Such
promiscuous intermingling of these filters, danc-
ing to graphical rhythms that reverberate through
the document, will legitimize an intermarriage be-
tween perspectives and multiple inheritance of eclec-
tic legacies.

communication
modality

emad

typewriting
typesetting

handwriting
drawing & photography

painting

sculpture

1
2~ partition:

graphical layout, typography, . . .

&I example of such local manifestation of global
context, inspired by the notion of a cross-reference
as a back-traversable hyperlink, can be seen in this
paper's references section, whose (superimposed
demux-style) zebracketed keys indicate the pages of
all the respective citations. An extension to Zebrack-
ets (the intricacies of which deserve another paper)
automatically uses . aux, . bbl, and . i dx files to stri-
ate the bibliographic tags for back-references, each
of the delimiter slots representing a page of the doc-
ument. (The body of a paper, excluding the bibliog-
raphy, can be at most seven pages long, since only up
to seven striations are currently encoded by Zebrack-
ets.) The left delimiter points to the \ci t e s and the
right indicates the \noci tes . Notice, for instance,
that E ~ n u t h 86; gets two explicit citations (one of
which is here) and one invisible one.

2
I D partition:

textual substrate

Conclusion. The handwritten "publishing" of pre-
Gutenberg scribes was arbitrarily subtle, with its at-
tendant human caprice (and mistakes). Printing can
be thought of as having rigidified this information
transmission. The research described here loosens
some of that determinism, not by randomizing the
presented information, but by softening the digitized
boundaries, thereby expanding the range of expres-
sion. Contextual fonts like Zebrackets indicate evolv-
ing modes of written representation, algorithmic de-
scriptions driving adaptive displays, as style catches
up to technology.

References

i ~ d o b e 921 Adobe. Adobe Type 1 Font Format:
Multiple Master Extensions. Technical report,
Adobe Systems, February 1992.

:Andre & Borghi 891 J. Andre and B. Borgh. Dy-
namic fonts. In J. Andre and R. Hersh, editors,
Proc. Int. Conf. on Raster Imaging and Digital
Typography, pages 198-203, Lausanne, Switzer-
land, October 1989. Cambridge University Press.
ISBN 0-521-37490-1.

:Andre & Ostromoukhov 891 J. Andre and V. Os-
tromoukhov. Punk: de METAFONT a Postscript.
Cahiers GUTenberg, 4:123-28, 1989.

ICohen 921 M. Cohen. Blush and Zebrackets:
Two Schemes for Typographical Representa-
tion of Nested Associativity. Visible Language,
26(3+4):436-449, Summer/Auturnn 1992.

7UGboat, Volume 15 (1 994), No. 3 - Proceedings of the 1994 Annual Meeting

Michael Cohen

! / b i n/sh
INPUTFILENAME='basename $ 1 . t ex '
GRAPHICS='dvips -0 " ! c a t w $INPUTFILENAME.dvi I wc -c '
TEXT='cat BINPUTFILENAME.tex $INPUTFILENAME.bbl I detex I wc -c '
echo 'echo 3 k $GRAPHICS $TEXT - $GRAPHICS / 1 + p I dc'

Figure 6: Shell script to estimate spatial expressiveness (dimensionality) of a compiled IPQX document

Table 3: Quantification of spatial expressiveness: stripped down and striped up

C~ohen 931 M. Cohen. Zebrackets: a Pseudo-
dynamic Contextually Adaptive Font. TUG-
boat: Communications o f the TEX Users Group,
14(2):118-122, July 1993. ISBN 0896-3207.

EKnuth 84; D. E. Knuth. The T~Xbook. Addison-
Wesley, 1984. ISBN 0-201-13448-9.

tKnuth 86: D. E. Knuth. The METRFONTbook.
Addlson-Wesley, 1986. ISBN 0-201-13444-6.

fKnuth 881 D. E. Knuth. A punk meta-font. TUG-
boat: Communications of the TEX Users Group,
9(2):152-168, August 1988. ISBN 0896-3207.

E~amport 862 L. Larnport. LATEX: A DocumentPrepa-
ration System. Addlson-Wesley, 1986. ISBN 0-201-
1 5 790-X.

CLennard 911 J. Lennard. But I Digress: Parentheses
in English Printed Verse. Oxford University Press,
1991. ISBN 0-19-811247-5.

ilunde 931 K. Lunde. Understanding Japanese
Information Processing. O'Reilly & Associates,
1993. ISBN 1-56592-043-0.

 upto ton & Miller 902 E. Lupton and J. A. Miller. Type
writing. Emigre, (15):i-viii, 1990.

f~olucki 921 T. G. Rokicki. dv i ps 5.491, 1992.

f~okicki 92; T. Rokicki. NeXlTeX3.141,1993.

f~okicki 933 T. Rokicki. TeXview 3.0,1993.

fschlangmann 922 H. Schlangmann. TeXmenu,
1992. 4.1.

i~piekermann & Ginger 931 E. Spiekermann and
E. Ginger. Stop Stealing Sheep & find out how type
works. Adobe Press, 1993. ISBN 0-672-48543-5.

f~tallman 88: R. M. Stallman. GNU Emacs Manual.
Free Software Foundation, 1988.

:wall & Schwartz 912 L. Wall and R. L. Schwartz.
Programming perl. O'Reilly & Associates, Inc.,
1991. ISBN 0-937175-64-1.

target
characters

1
10

100
1000

10000
100000

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

pages
1
1
3

23
228

2273

without Zebrackets with Zebrackets
TEXT

14
41

311
3011

30011
300011

S
1.988
1.988
1.988
1.963
1.867
1.819

TEXT
49
76

346
3046

30046
300046

GRAPHICS
4073
4193
6001

21009
154907

1501805

GRAPHICS
4090
6427

30194
84223

226971
1661796

S
1.996
1.990
1.948
1.856
1.806
1.800

Yannis Haralarnbous
Centre d'~tudes et de Recherche sur le Traitement Automatique des Langues
Institut National des Langues et Civilisations Orientales, Paris.
Private address: 187, rue Nationale, 59800 Lille, France.
Yanni s . Haral ambous@uni v-1 i 11 e l . f r

Abstract

The goal of H M is to H w i z e LATEX. It is a concept, a document markup
syntax and a package of programs, macros and fonts. The concept of H M is
the use of word processors as "rich" TEX input devices. The user shall input, edit
and store a document in the most friendly and natural manner (in other words,
without a single LATEX command), and be provided with syntactically correct and
platform-independent W X output. The document input, markup and editing is
done using any word processor with RTF output and TrueType (or Postscript)
screen display possibilities (for example Word and Wordperfect for Mac, Windows,
NeXT, X-Window etc.). H M will convert the RTF output into b Q X code.

Paper withdrawn by the author.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Problems of the conversion of METAFONT fonts to Postscript Type 1

Basil K. Malyshev
Institute for High Energy Physics, IHFP, OMVT, Moscow Region, RU-142284 Protvino, Russia

ma1 yshevemx. i hep. su

Abstract

The paper describes problems pertaining to the automatic conversion of META-

FONT fonts into the Postscript Type 1 font format. Several methods of conversion
are discussed. A short description of the Paradissa Fonts Collection is presented.
It contains Computer Modern fonts (used in (LA)TEX) in ATM compatible Post-
Script Type 1 format. The use of the collection and the problems related to it are
bscussed.

T h s paper will be published in the next issue of Taboa t .

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

The (Pre)History of Color in Rokicki's dv i ps

James Lee Hafner
IBM Research Division, Almaden Research Center, K53/802, 650 Harry Road, San Jose, CA 95120-6099, USA

haf ne real maden. i bin. corn

Abstract

In t h s paper I give an abbreviated history of the current scheme for using color
with Rokicki's dvips program up to the end of 1993. The real story begins in
early 1990, when a local user asked if I could add to the fledgling FoilTEX project
support for color to take advantage of our new color printers. This started a major
effort, in collaboration with Tom Rokicki, to find an efficient and simple method
for specifying color in TEX documents.

Introduction our new color printers. (At the time, I was not aware

The \speci a1 command enables you to make
use of special equipment that might be avail-
able to you, e.g., for printing books in glorious
T~XIIicolor.

D. E. Knuth

As the quote above indicates, the grand wizard him-
self expected that color could (would?) be incorpo-
rated into TEX. He expected that this would be done
through the use of \special commands to the dvi
driver. In spite of t h s , not much was done with color
for many years. Even SLITEX, where color is very de-
sirable, was written to handle color in a rather cum-
bersome way.

In t h s paper, I will describe the efforts that went
into the design and development of the current color
support in Tom Roluclu's dvi ps program. I consider
this the prehistory of true color support because only
some of the real color issues were addressed (and
many of these were done via simple hacks). Before
we go into dvi ps's method, let me set the stage.

The availability of color PostScript printers cre-
ated a need for a better method to handle color. In
stepped a number of people, including Leslie Lam-
port who wrote co lor . s t y and Timothy Van Zandt
who wrote PStricks. These all use literal PostScript
commands passed to the dvi driver and then to the
output PostScript file to create color effects. Unfor-
tunately, there are problems with the use of literal
PostScript. Namely, since each page is generally a
self-contained graphics object, color effects on one
page would not readily pass over to the next. Fur-
thermore, effects at the end of a current page might
trickle into the footnotes or page footer. This forces
the use of these color utilities to be limited to very
small parts of documents, e.g., single boxes. On the
positive side, most dvi-to-Postscript drivers handle
these lands of literal PostScript \speci a1 s, so usabil-
ity/portability was not an issue.

My character enters the story in early 1990,
when a local user asked if I could add to the fledgling
FoilTEX project support for color to take advantage of

of the two packages mentioned above.) Using dvi 2ps
and dvi a1 w, I massaged some primitive color sup-
port into these programs but certain obstacles came
immediately to light. For example, in dvi a1 w, large
characters and all rules are placed immediately on
the first pass of the page, and then the graphcs en-
vironment is set up for the main characters. This is
efficient for memory use but not for consistent color.
If one tries to set a large square root sign in color, the
opening check mark is fine but the long rule above
the enclosed formula will always be black. Similar
splits of colors occur for large brackets.

Finally, I came across Rokicki's dvi ps and deter-
mined that this is very well suited for color. Some of
the reasons for this are stated below. This started a
collaboration with Tom about how one could achieve
the desired effects. In the next section I discuss the
relevant issues. Later I talk about the first real at-
tempts at getting at the problem. Finally, we describe
the current system in some detail and discuss some
of the limitations.

The Issues

There were a number of issues that we had to deal
with at three different levels of the process. At the
TEX-level (i.e., for the user macros) we wanted them
to work across formats so that they could be used
in FoilTEX as well as Plain TEX and LATEX, for exam-
ple. We had two somewhat conflicting requirements
at this level as well. We wanted to allow the naive
user to specify colors without having to know a spe-
cific color model (do you know what RGB= (1, .5 , . 2)
will look like? do you even know what RGB stands for
or the notation (1, . 5 , .2)?). At the same time we
wanted enough functionality in the underlying sys-
tem to let sophisticated color experts use a broad
range of color models and effects. Furthermore, the
macros should lend themselves to the kind of effects
one would expect with regards to TEX'S grouping. For
example, it should be possible to nest colors with the
expected results.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 201

James Lee Hafner

Eauallv imwortant from our woint of view. A First Pass - .
the macros should be device-independent. In par-
ticular, they should not be written so that only
PostScript printers could handle them. This means
that the \special keywords should not invoke lit-
eral PostScript, but be generic. The transformation
from these generic keywords to the device language
(e.g., PostScript) should be handled by the driver it-
self. As far as I know, at present only dvips and
TeXview on a NeXT handle these \speci a1 s. Hope-
fully, in the next era in this history (see Rokicki's arti-
cle in these proceedings), more drivers will be added
to this list.

Furthermore, nesting mformation should not
get lost at each new page or other structural break,
nor should the order of the pages matter when pro-
cessing. This of course requires careful handling at
the dnver level. It must track this nesting mforma-
tion and be able to restore state for any speclfic page.
Structural breaks include but are not limited to mar-
gin paragraphs, footnotes, headers and footers.

On the other hand, it is important to note when
deahg with color that different rendering devices
(even if they are POSTSCRIPT devices) can produce
dramatically different perceptual colors on the same
input. For example, on a Tektronix wax printer, green
is dark and rich whereas on an X-display the same
color is much lighter and even phosphorescent. Ide-
ally the driver should be able to customize itself for
t h s dscrepancy, at least on named colors.

Dvi ps's prescanning processes and its ability to
modify its behavior for different printers were ideally
suited to these ends. (Besides, it is well written code
and so easy to dive into to add modifications.)

There is one issue that we did not address. That
is the issue of "floats". By floats, we mean anything
that appears in some place other than at the current
point where TEX encounters it. This includes the ob-
vious floats llke figures and tables as well as the more
subtle issue of footnotes (particularly long footnotes
that might get split across pages) and saved boxes.
The problem here is that color attributes at the time
the float is processed may conflict with color at-
tributes at the time the float is placed in the docu-
ment. For example, a float that is encountered when
text is blue and background is yellow may float to a
page that has a yellow background. There are two
possible approaches to this, namely, the float picks
up the attributes on the page on which it is set or it
takes its attributes (and the surrounding attributes)
with it to the float page. In this case, the float may

In the frrst attempts at addressing t h s problem of
color, we ignored the device-independence of the
\special keywords and attempted to find a solu-
tion that required very minimal (if any) changes to
the original dvi ps code.

We used literal PostScript strings in \speci a1
macros. There were two h d s of macros. Ones that
just set the color state, and another that tried for
nesting. This saved the current color state on the
PostScript stack, set the color and at the end of the
grouping, restored the color state from the stack. For
example,

\def\textRed{%
% s e t color t o Red

\speci a1 ips: 1 0 0 setrgbcolor}}
% save current color

\def\Red#l{\speci a1 {ps : currentrgbcol or}
% s e t color and typeset #1'

\textRed #1
% restore old color

\speci a1 {ps : setrgbcolor}}

To help with changes across page boundaries,
we made a small modification to the bop (Beginof-
Page), eop (EndOfPage), and s t a r t in the header
files. Basically, eop saved the current color, bop re-
stored the color and s t a r t initialized the color on
the PostScript operand stack. Tom suggested that we
do t h s on a separate color stack, an idea we never
implemented because we soon abandoned t h s ap-
proach. We realized that this method was inherently
flawed because it was too much tied to PostScript and
it only worked if the document was processed front
to back with all pages printed. We thought about
storing more of the color stack information in the
PostScript itself, but this still suffered from a nurn-
ber of limitations, not the least of which is the first
one mentioned above.

The Current Scheme

After reahzing that any attempt to do t h s work in
the PostScript code was either doomed or too costly
in terms of PostScript resources, we determined that
it would be best to have dvi ps track everything inter-
nally, primarily during the prescan and then when a
color is changed (either by starting a new color region
or closing one), simply output a "set color" command
in PostScript.

Below are the basic features of t h s scheme.

have a boxed backg;oAd that differs from the main The \speci a1 Keywords. AU color \speci a1 s be-
page on whch it is set. As should be obvious, this gin with the keyword color (with one exception).
problem is very subtle and it is not clear what ap- The "parameters" to this keyword and their desired
proach is the best to take. Some local grouping a la effects are described below:
the current scheme may provide a partial solution to ColorName
the problem using the first approach, though we have Declare the current color to be the specified
not experimented with it at all. color. Furthermore, drop all current color stack

202 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

The (Pre)History of Color in Rokicki's dvi ps

hstory, and tell the driver to set the new color
state to ColorName (see the section on Header
Files).

Model Parameters
Same effect on the color stack hstory as above.
The new color state wdl have model determined
by Model, e.g., rgb, cmyk, c i e , lab, etc., and
parameters Parameters in that model.

push ColorName
Append or save the current color to the color
stack, set the new color to ColorName.

push Model Parameters
Same as above but build the new color state
from the model and parameters.

POP
Take previous color off the color stack and tell
the driver to use this for the new color state
(used for closing of group).

There is one additional color special keyword.
This is background. It is used with either the options
ColorName or Model Parameters to tell the driver to
set the background color of the current page and
subsequent pages.

Some things to note about this system. First, it
is completely generic, with no reliance on PostScript.
Second, it assumes that some color names are known
to the driver or are defined in the output file. For ex-
ample, in PostScript, dvi ps could predefine Red to
be 1 0 0 se t rgbco lo r or 0 1 1 0 setcmykcolor.
(In fact it uses the latter.) The user might also be able
to use the drivers' literal strings mechanism to pre-
define their own color names. T h d , there are two
types of color settings. The first is just a "set color
and forget the stack." The other "push"es the current
color on the stack, sets a new color, and (presumably
at the end of a group) "popWs the last pushed color off
the stack to restore. This is the basic nesting mecha-
nism. It is limited only by the resources dvi ps uses.
Fourth, the parsing of the flags is in a hierarchical
order. First comes the co lor keyword to indicate a
color special. Next is either a known color name or
a color model. After the color model are the param-
eters for the chosen color. This is in slight contrast
to PostScript itself which is more stack oriented and
expects the parameters first. We felt that if the driver
didn't understand a particular model it should recog-
nize this in the order it parses the \speci a1 string.

This functionality of being able to specify the
model and parameters allows sophisticated color
users a simple option to get special effects.

Header Files. As mentioned above, we assume that
a certain set of color names is already known ei-
ther to the driver internally or is passed to the out-
put file for the printer interpreter. In dvips t h s
is done in the second manner via the co lo r .pro
header file. Ths is prepended automatically to the
output stream as soon as any color special is en-
countered. In this file, two thmgs are defined. First,

the PostScript command setcmykcolor is defined
in terms of se t rgbcolor in order that the output
can be processed by some old PostScript interpreters,
i.e., ones that do not recognize this function. More
precisely, this is done only if the current interpreter
requires a definition for t h s function. Other color
models could also be defined here if necessary. Sec-
ond, the predefined color names are defined in terms
of the CMYK (Cyan, Magenta, Yellow, Black) color
model. The reasons for this choice are that most
color printers use this physical model of printing.
Ths is a subtractive color space as opposed to the
additive color (RGB - Red, Green, Blue) of most dis-
plays. Another reason is that I had a good template
for matching color names to parameters in the CMYK
color space for a particular printer.

These colors are only conditionally defined in
co lo r . pro. If they are known by the userdi c t , then
no new defmtion is added. The reason for t h s is that
a particular device might need to have different pa-
rameters set. Dvi ps's configuration file mechanism
can then easily be used to customize the color param-
eters for a particular device by inclusion of a special
device header file.

I emphasize at t h s point the dstinction between
physical device and output data stream. The latter is
PostScript or HPGL or PCL or some such. The former
is the actual physical device. These devices can vary
widely even under the same data stream. An analogy
is the difference between a write-whte or a write-
black printer and the need for finely tuned bitmap
fonts for each. They may both be PostScript printers,
but they print differently. The driver should be able
to compensate for the physical characteristics of a
given device, if at all possible. -

The Color Macros. The color macros, defined in
the style file colordvi . s t y , come in basically two
flavors. One kind sets a new color by issuing a
\speci a1 {color ColorName} or \speci a1 {col o r
Model Parameters}. The second is a combination of
pushes, sets and pops for nested local colors. Fur-
thermore, there are user definable colors of both
types, where the user declares the color model and
the parameters. Finally, there is a \background
macro for setting the background color. For exam-
ple, the revised version of the \textRed and \Red
macros defined above are:

% s e t co lor t o Red
\def\textRed{\special {color Red}}

% save cu r r en t co lo r and s e t Red
\def\Red#l{\special {color push Red}

% typese t # 1 and r e s t o r e o ld co lo r
1 \speci a1 {color pop}}

These are described in more detail in Hafner
(1992) as well as in the documentation for dvi ps and
for FoilTEX. Note, that these macros are completely
device independent, hence the name of the style file.
The macros are all in plain TEX form, so that they can

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 203

James Lee Hafner

be used in any format or macro package. In other
words, they are not WX specific.

As for the color names, we used most of the
names from the Crayola crayon box of 64 colors with
a couple of additions and some deletions. Adhtions
were the named Pantone colors not already included
(e.g., RubineRed) and a couple of other well-rendered
colors which we named ourselves (e.g., RoyalBlue).
Deletions were mostly for colors that did not render
well on our printers. In particular, the new fluores-
cent colors were eliminated. We chose these color
names over, say, the X11 colors for a couple of rea-
sons. First, we originally tried the X1 l colors but they
suffered from bad rendering on all devices tested.
They just did not match their names (at least to me
on my display or printer). Second, we could match
the crayon names to the Pantone tables for a par-
ticular printer, and so give an approximate Pantone
match to the color names as well as a good set of pa-
rameters. This information could (should?) be used
at printer setup time to fine tune the parameters
of the predefined colors to nearly match a Pantone
(via special header files as mentioned above). In this
way, output devices can be approximately calibrated
to produce similar and expected results. The color
names were also very descriptive of the actual color
and very familiar to (at least) the North American
TEXies. So, naive users have some idea of what to ex-
pect from certain color macros.

Tracking the Color Stack. The color stack or history
is tracked by dvi p s in an internal structure. During
the prescan which always goes from front to back on
the dvi file, the color stack is tracked and a snap-
shot is taken at the beginning of every page. Dur-
ing the output pass, regardless of what pages are
being processed, the driver knows the state of the
stack at the beginning of every page. First one out-
puts both the background color (if necessary) and the
top color on the color stack (i.e., the current color
active at the beginning of the page) for the page be-
ing processed. Then color pushes just augment the
color stack. Color pops just drop colors off the stack.
Skipped pages are handled in the same way. T h s
tracking 'keeps everything consistent from page to

page.

The only remaining issue is how other struc-
tural problems, llke margin paragraphs, headers and
footers, itemize tags, floats and the like deal with
color changes. Other than floats, these can be han-
dled with simple redesign of the basic macros that
deal with these page layout areas. Namely, they sim-
ply need to protect themselves with some local color
macros. Unfortunately, most formats were written
before t h s issue of color came up, so certain prob-
lems can arise. As far as I know, FoilTEX is the only
format that has the color macros integrated into it.
For example, the header and footer macros have their
regions wrapped in a local color command that de-
faults to the root color of the document. So, for ex-
ample, if the root color is blue, and there is some
green text that gets split across page boundaries,
then the text will resume green at the beginning of
the next page and furthermore, the footer of the cur-
rent page and header of the the next page will still be
set in blue.

The mechanism described here is basically a
hack to deal with these problems. A more structural
approach at the driver level will be described by Tom
Rokicki. At the user level, there is now some color
support (e.g., \normal co lor and the color package
by David Carlisle) in the new version of I4QX that is
designed to help deal with some of these problems
in the context of existing drivers. It should be noted
that the user interface in the color package is very
different from the one we have presented.

Concluding Remarks

The story doesn't end here, of course. We don't claim
to have solved all the problems (there are still many)
nor to have provided the functionality that a profes-
sional publisher might want (refer to the paper by
Michael Sofka on that point). The next era in the story
is for Tom Rokicki to write (see his paper in this pro-
ceedings). Hopefully, Rokiclds new developments
will provide a basis for a very powerful mechanism
for setting color and one that can be easily integrated
into plain TEX and the next generations of W X (and
other formats).

Acknowledgements

The Remaining Issues. We have discussed almost We thank Tom Rokicki for his comments on this pa-

every issue that was raised in the beginning. These per as well as for h s acceptance of support for color

included the simplicity of the macros themselves so in dvi p s and his continued interest in the subject.
they can work with any format, can be used by naive Thanks also to Sebastian Rahtz for the invitation to
users with simple and generally recognizable names participate in this session.
(Crayola crayons), still fully support arbitrary color
models (if the driver can handle them), and their in- References

the particular Output data stream' we
Hafner, James L., "FoilTEX, a BTEX-like system for

also discussed, in our implementation in dvi ps, how
typesetting foils", TUGboat, 13 (31, pages 347-

nesting and crossing of page boundaries are handled
in a clean way. Furthermore, the implementation also

356, 1992.

can be easily customized for device-dependent dif-
ferences. even within the same data stream.

2 04 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Driver Support for Color in TEX: Proposal and Implementation

Tomas Gerhard Rokicki
Hewlett-Packard Laboratories

1501 Page Mill Road

Palo Alto, CA 94303
Internet: rok ick i@cs . s tan fo rd . edu

Abstract

The advent of inexpensive medium-resolution color printing devices is creating

an increasing demand for flexible and powerful color support in TEX. In this

paper we discuss a new implementation of color support and propose an initial
standard for color and color-like specials. We first discuss the difficulties that

are presented to the driver writer in supporting color, and other features, by

presenting a number of hard examples. Second, we present an implementation
of a driver that provides a solution to many of the problems discussed. Best

of all, this solution includes modular C code that is easily integrated into other

drivers, automatically translating the hlgher-level special commands into existing
low-level special commands.

Introduction from each font need to be downloaded. T h s type

This paper has two parts: a collection of difficulties,
and a proposed partial solution. The collection

of difficulties is by far the easier part to write
and to read; it is always easier to criticize than
to originate. Nonetheless, it includes some subtle
conclusions. The proposed solution does not come

near to solving all of the problems raised in the

first section, but it attempts to solve at least one,
as one step towards a more general solution for the

remaining ones.
Our perspective is that of a dv i driver writer.

We care not for the user; let the macro programmers

provide a convenient interface. Rather, we attempt
to provide the primitive functionality from which

specific effects can be accomplished.
For driver writers, on the other hand, we have

untold sympathy. We will even do much of the

work for them, by providing a set of C routines that

implement the new functionality.
In order to understand why each problem is

difficult, and what conclusions we can draw from

each problem, we need to understand the limitations
of TEX and of the various device drivers. Whle there

is only one TEX, there are many different types of

device dnvers, each with its own requirements and
capabilities. We can divide the drivers into four
categories according to their style of operation.

The first lund is a driver that scans the entire

d v i file (or at least up to the last required page)

before generating any output. This prescan phase
usually determines what fonts and what characters

of driver is typically necessary for laser printers.

The second type of driver does not perform this

prescan phase, usually because the output device

does not support downloaded fonts; this is typically
the case for dot-matrix printers or FAX machines.

T h s type of driver must render the entire page
before shipping even the first row of pixels; it too

buffers information, but at the page level instead of

the document level.
Both of these types of drivers typically process

the pages in the order they are given in the dv i

file. A previewer, our third type of driver, does
no such thing; instead, the pages are processed in

some random order, and quick access to each page

is desired.
The fourth and last type of driver we recognize

is the driver that generates a d v i file as output.

These include programs that do pagination tricks,
like d v i d v i and dv ise lec t , and programs that

expand virtual fonts, llke dv i copy, and even the

d v i c o l orsep program that does color separation.
Because TEX does not support color directly,

we conclude that any such support must come

through specials. Thus, the task of the device

driver writer is two-fold: to recognize and parse the
specials that direct his rendering, and to perform

the rendering appropriately. T h s paper is primarily

concerned with the first task. Color rendering and

imaging is incredibly complex, so other than a few
minor points, we shall not yet concern ourselves
with these issues. Instead, we adopt the current

TUGboar, Volume 15 (19941, No. 3 -Proceedings of the 1994 Annual Meeting 205

Tomas Gerhard Rolucki

solution, as described in Dr. Hafner's paper in these
proceedings.

Part One: The Problems

Now we are ready to present some sample difficul-

ties and draw some conclusions from each.

Colored text and rules. Our first example is the
most basic; we want to specify that some text or

rules in our document be red. Because TEX does not

allow us to attach color information directly to text
or rules, t h s must be implemented as a change of

state for our abstract rendering engine. Since we are

using specials to implement colors, this change of
state must occur at the point in the dv i file that the

special is emitted. Therefore, specials that indicate
state changes must be used to implement colors.

Even at t h s early stage, problems arise. It is

not always obvious to the user where a special will
be emitted. In general, it occurs in the same place

in the linear stream of text that the user types,
but occasionally t h s is not the case. Consider, for
example, LATEX 2.09's 1 i s t environment. Placing a

special imrnehately after an \i tern command causes
the special to occur in the dvi file before the bullet,

coloring the bullet; this is not the intuitive result.
(Technically, this happens because the special does

not cause a switch to horizontal mode and is thus
simply attached to the current vertical list; the

bullet is inserted at the head of each paragraph,
whch starts with the switch to horizontal mode.)

On the other hand, this can be considered simply
a side-effect of the way the list environment is

implemented; adding a \l eavevmode command
before the special command works around this
difficulty. I&TEX~€ solves this particular problem

using color nesting, but s~milar problems can arise
in other situations and with other macro packages.

If the state change occurs at the point at which

the special occurs, then how shall we define the
range of the color command? One alternative

is to define the range to be that sequence of dv i
commands enclosed between two specials. A second
is to define it to be until the end of the enclosing

TEX box. A third is to define it to be until the end

of the enclosing TEX group. A fourth is to use some

combination of these.
Unfortunately, the box solution f d s in a nurn-

ber of ways. First, there is no real notion of boxes
at the dv i level. Indeed, this can make it difficult

to color a paragraph red-that paragraph might be
split across several pages, and thus several boxes,

with no overall enclosing box.

The first solution subsumes the third. Groups
are not visible at the dv i level, but TEX'S aftergroup

command can be used to make specific groups

visible. Therefore, the range of color commands
must be from special to special.

Nested colors. The next question is whether to nest
colors. In other words, should we be able to color a

word red, without having to figure out and restore
the color of the enclosing paragraph? Somehow it

seems more consistent with TEX to allow nesting of
colors, and in many situations, nesting colors solves

some important problems. For instance, nesting is

used in the previous version of color support in
dvi ps and in the current version of ETEX~~ to allow

headlines to work correctly. Certainly it is not hard
to implement. Thus, we should allow the nesting of
colors.

Should the driver be responsible for maintain-
ing the color stack, or should the TEX macros?

Either is easily implemented, and since the color
stack should never nest deeply, the resources con-
sumed by either should be negligible. If we use

TEX, we can always make the current color available
to the user of the macro package, provided that

we standardize on some representation. On the

other hand, we might not want to require that the
color stack be provided by the macro package-and

implementing a color stack is easy enough that we

might as well provide one at the dvi driver level.
Providing one at the driver level does not require
the TEX macros to use it. In any case, backwards
compatibility with the current color implementation

requires a color stack. The driver should implement
color stacking, and some macro packages might also
maintain the color stack for their own purposes.

Should we also include a command to set the
current color, independent of state changes? If

we are using a set of simple macros that just set

the color and ignore the stacking capability of the
driver, this might cause the stack to get increasingly

deep. And just issuing a pop stack command before
each color command fails with the first color. Since

it is a pretty easy feature to provide, we might as
well. The driver should implement non-stacked color
changing.

Colored text split across pages. Now imagine the

word "example," in red, split across two pages. At
the dv i level, the "begin red" special wdl occur near

the end of one page, and the "end red" special will
occur near the beginning of the next. Thus, dv i

drivers must maintain the color stack information
across pages.

206 TLTGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Driver Support for Color in TEX: Proposal and Implementation

In the context of page reversal, page selection, of text. On the other hand, to provide just this

and random page access, this requires that the dvi functionality if it is desired, it is easy to provide a

driver store the contents of the color stack for each global context that is always used for attributes not

page it might need to revisit, and set up the output set in the current context. This global context will

device state appropriately. Ths is not hard to provide functionality backwards compatible with

implement once the requirement is understood. the current FoilT~x color model, and it Milll allow

Page break in colored region with black headline.

There is a danger that a color region split across

pages might also cause some headlines or footers
to become contaminated with color. There is

nothing in the dv i file indicating that some text is

a headhe or footline, so a straightforward nested
color implementation wdl have this problem. The

only real solution to t h s is to have the output
routine put that information in the dvi file. Sirmlar

problems arise with footnotes, figures, and marginal
notes. The T a output routine must indicate the
origin of text in order for the color to be maintained

correctly.
Alternatively, the output routine can simply

reset the color to black in regions such as headlines,

footlines, marginal note, and floats; this is the
solution currently adopted in fiT~X2~.

Split footnote with colored regions. It might be

desired to color headlines or marginal notes. Indeed,
footnotes might have colored regions that are split
across pages. A single page break might split

both a pagebody colored region and a footnote
colored region. Therefore, the driver should actually

maintain separate and independent color contexts,
each with its own color stack, and the output routine

should issue the necessary commands to switch

among them.

In the case of marginal notes, it may not be
clear what the enclosing color context is. A marginal

note might occur inside of a float or inside of a
normal pagebody paragraph. Therefore, the driver

should maintain a stack o f color contexts.

Such contexts make it easy to do things like
color all headers red; simply invoke the header

context, push or set the color red, and then return

to the previous context.
It is not clear how many different sources of

text there might be, so the color stacks should be
dynamically allocated by name inside the driver.

Footnotes within a colored region. Floats pose

an interesting problem. If an entire section of a
document is colored, should the included footnotes

be colored as well? What happens if the floats move

into the next section? As a logical consequence of
the color context idea, they should (by default) not

be colored, since they are from a different stream

setting the color of entire regions of a document. On

the other hand, it Mrlll not allow floats or foomotes

that have portions on pages after the end of the

color region to have the appropriate color; the color
contexts must be used to obtain that effect. A

special "global" color context should be used as a

default for parameters not set in the current context.
To summarize, all stack push and pop com-

mands affect the context on the top of the context
stack; this is the current context. Colors (and other

items) are always searched for h s t in the current

context and then, if not found, in the global context.
An alternative, and perhaps preferable, im-

plementation is to search in the current context,
and then in the next context on the context stack,
etc. Ths may be more natural, but it undoes the

"defaulting" that we currently get if we set the
pagebody to red and draw a marginal note. We be-

lieve t h s defaulting is more important, so we have
implemented evaluation to only search the current

and the global context, rather than all of the ones

on the context stack.
Everything we have described so far is easy to

implement. At the beginning of each page, we have
a particular stack of contexts, whlch we save away

in case we ever need to render that page again. In

order to generate that data structure for a particular
page, we must scan the dvi file from the front to

that page. In other words, in the presence of color,
it is no longer possible to read the dvi postamble

and skip backwards on the previous page pointers

in order to quickly find a page. On the other hand,

the processing required to skip pages is negligible.
In order to properly render any page, all previous

pages must be scanned.
Because it is trivial to write out specials to set

the stacks to any desired state, page reversal is also
implementable. Indeed, it is easy to elinmate the

stacks altogether using a dvi to dvi translator, thus
allowing the use of simpler drivers, or translating

the specials to a form recognized by a particular

driver. The only trick is to use a syntax that allows

the dv i to dv i program to easily distinguish those
specials it must manipulate from those that it must

leave alone.

Changebars. The color mechanism we have de-

scribed will also help with tasks other than color.

TUGboat, Volume 1 5 (1994), No. 3 --Proceedings of the 1994 Annual Meeting

Tomas Gerhard Roluclu

For instance, changebars are also complicated by

the asynchronous nature of TEX'S output routine.

Defimng changebar on and changebar off to be
color-type commands gives us the full nesting and

state saving capabilities we used for color. Indeed,

we can use the context switching commands to give

us a vertical reference position, and define some

changebar parameter to give a horizontal offset
from that position, allowing dual-column change-

bars. This solves the problem of having changebars

span inappropriate figures and not span appropriate

ones.
The current implementation does not yet sup-

port changebars, but the author feels that the
changes should be straightforward. Indeed, as with

color, it is possible for a dvi to dv i program to

convert a dv i file that specifies changebars into one
that uses explicit rules. Color and color context
specials are appropriate for tasks other than color.

Colored backgrounds. Another use of color, espe-

cially for slides, is in setting the current background

color. Instead of mohfying characters and rules
between specials, this affects the entire page back-

ground before anything is drawn. There is no

reason not to allow this to nest just like other color
commands do, even though the primitives are at a

different level. Thus, we must be able to specify the
background color.

Colored background with headline on first page.
Because of the way specials are sent out, headhne
text is emitted before any specials attached to the

page contents. Thus, if the first page has a headline,
that headline will occur in the dv i file before any

page content such as specials. Therefore, the page
global attribute values in effect at the beginning of

a page, or before the first character or rule in the

dv i file, might not be what is intended.
To solve this problem, we define that the

page globals in effect at the end of the page are

what define the values for the page background,
orientation, or other page globals. T h s has two
effects. The simple one is that page globals must be

syntactically distinguishable from non-page-global
color information. Indeed, t h s last requirement also

allows us to distinguish a page-global rotation from

a local rotation. Page globals must be syntactically
different from local attributes.

A more important effect is that either pages

must be fully prescanned before rendering can
begin, or the driver must be prepared to restart the

rendering of a page if a page global is encountered
with different values from those currently in effect.

Currently, many drivers prescan anyway. For those

that do not, they cannot send out the first row of

pixels until the entire page has been scanned anyway

(a character at the top of the page might be the last
character rendered in the dvi file), so rerendering

when necessary is not terribly inconvenient. Thus,

to support page globals, pages must be prescanned

or possibly rerendered.

Paper size specification. One important page global
is the specification of the paper size. Indeed, the

lack of a standard for this information makes the

driver's job much more difficult; knowing the job is
intended for A4 paper can allow the driver to either

request the appropriate paper, or shift or scale the

page to fit. Certainly paper size is a typesetting-level
and not a print-level option. Paper size should be

specified as a page global on the first page. The
desired paper size should be specified in the dvi file.

Imposition of pages with colored backgrounds
or varying paper sizes. One function of dvi to

dv i programs is page imposition-where pages are

laid out in a specific order and orientation so that

the folded signatures contain them in the proper
order. When pages are imposed, the semantics

of the page global options such as paper size and

background color change slightly; this is simply
a complexity that must be dealt with by the dv i

to dv i program. It is possible to approximate
some of these combinations using the appropriate

dv i commands; for instance, page background

commands can be converted into commands to
draw a large background rule in the appropriate

color.

Envelope/media selection. Page globals, such as
paper size, might change in a particular job. For

instance, many modern printers include an envelope
tray; it would be convenient to have a media-

selection page global that would allow a standard
letter style to properly print the envelope, or select

a sheet of letterhead for the first page of a long

letter. Drivers should support different paper sizes
within a single document.

Coloring the backgrounds of boxes. Occasionally

a user might want to color the background of a

particular TEX box. There are several problems with
this. The first is that the box information simply is

not available at the dvi level. The second is that

the box dimensions tightly enclose the contents;
does the user really intend to have the italic "f"
protruding from the colored region? Finally, t h s is
somethmg that is easy to do at the TEX macro level

by simply drawing a rule of the appropriate size

208 TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Driver Support for Color in TEX: Proposal and Implementation

and color before setting the box. Many things still small text and other single-color highlights. It is

should be implemented at the T g level. important to be able to specify what colors are

intended to be spot colors. We need a standard for
Colored table backgrounds. One of the more corn-

specifying and using spot colors.
mon uses of color is to decorate the backgrounds

For previewing or rendering on low-resolution
of tables-each column gets a distinct shade or

printers, it is often useful to disable dithering for
color. This is quite difficult to implement, although

small fonts in order to end up with somethg that
Timothy Van Zandt has had success with his co l -

is readable.
o r tab . sty. The primary difficulty is obtaining

the column dimensions-height and width-before Fountains. Another comment request is fountains.

rendering the text of the columns. Many common These are smooth graduations of color over an

reauirements still defv easy solution. area. For instance, many slides are rendered with ., ,

Included graphics and other objects. It should also

be possible to include graphics and do other ren-

dering with specials, in the way they were intended.

The main requirement is that these types o f specials
be syntactically different from the color specials, so
that dvi to dvi programs know which specials to
manipulate and which to leave alone.

As an aside, it is important that the mechanism

for including graphics respect the dvi magnification

and any rotation and scaling commands, so that
imposition and scaling work correctly. In addition,

it would be convenient to be able to easily calculate

the size of the enclosing rectangle from just the

special arguments so that, if nothng else, an outline
can be drawn. The dvi magnification should be
respected in scaling graphics, and some standard for
sizing/scaling included objects should be defined.

And while we are off the topic, there is no

excuse for not rendering Postscript graphics and

fonts with previewers and non-Postscript drivers.
The fine freely-available programs Ghostscript and

ps2pk do all the hard work of rendering for virtually

any platform; a few dozen or hundred lines of
interface code is usually all that is necessary for a

fail-safe interface. If you can't fully use PostScript in
your T g environment, it is time to complain.

White on black It is not necessary to wait for a

color device to support color. Even black and whlte

printers should support the two colors black and
white, includmg being able to render white text on

a black background. This is useful in itself and

for color separations. Even black and white devices
need "color" support.

Dithered text. When approximating gray text on the

screen or to a low-resolution printer using dither

patterns, the resulting image is often impossible to
read. This is because the dither pattern sacrifices

the high resolution needed to render characters for
the ability to approximate gray levels.

In professional printing, spot colors, rather
than four-color separations, are used to render

a background that is deep blue at the bottom and

lighter blue at the top. A rainbow can also be

considered a fountain. Fountains are normally
approximated by drawing hundreds or thousands

of narrow rules, each of a color midway between

its neighbors. Whatever color model is chosen for
TEX, it would be extremely nice to be able to render

fountains.

There are many more examples, including clip-

ping paths, character fountains, chokes, spreads,
and the complexities of color vision, color render-

ing, and color models, that we will not address

here.

Part Two: Some Solutions

This second part proposes a solution and imple-

mentation for some of the problems listed above.
T h s implementation is used in both dvips and

dvi dvi, and the code is freely available to be used

in any manner whatsoever.
First we will discuss a categorization of specials.

Next, we will define a syntax, and' finally, we will

describe some keywords and what they mean.
Before we delve into the technical de tds , let

us dispose of one objection: why not just introduce
a little language for specials? In essence, that is

- -

essentially what we are doing; some might ask why

not give it variables, types, and control flow as

well. Of course, TEX is already a language; any
processing that can be done at the special level

is probably better and more portably done using

TEX. Also, we would rather people spend their

time learning a more practical language, such as
Postscript. Indeed, some may consider what we are

proposing as already unnecessarily complex-and
they may be right.

With even a very simple language, implement-

ing things such as change bars, colored table back-

grounds, and much more would be straightforward.
We are not ready yet to define such a language,

but we see it as an extension of what we propose

here.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Tomas Gerhard Rokicki

Syntax and parsing. Specials are case-sensitive.

Words are defined as sequences of characters de-

limited by any of tabs, spaces, commas, equal signs,

or open or close parentheses. If one of the delunlt-
ing characters is an equals sign, then the word on

the left of the equals sign is associated with the

word on the right.

The first word of the special is the keyword. The

remainder of the special are its optional arguments.

If a double quote occurs, everythmg up until the
next double quote is considered a single argument.

If a left quote occurs, the following argument
is treated as a string without the left quote. If such

an argument is opened as a file name, the argument

is treated as a command to be executed, and the
output from that command is read as the input

from the file.
The types of words are string, number, and

dimension. Strings or keywords are sequences

of numbers, digits, or any character other than

delimiters. Numbers consist of an optional negative
sign followed by a sequence of digits, optional

decimal point and additional sequence of digits.

Dimensions are numbers, followed by an optional
true, followed by one of i n , p t , bp, dd, cm, or mm.
They are interpreted exactly as in TEX.

5. Objects are everythmg else, including snippets

of Postscript code and included graphcs.

psfi 1 e-foo . ps 11 x=72 11 y=72
urx-452 ury=930 rwi=500

With the above syntax, it is easy to syntactically

identify the type of a special without needing to

understand the specific instances.

Interpretation. We have introduced the idea of a
dvi color context that can be saved and restored

in a non-nested fashion. We allocate contexts

dynamically as they are encountered; a macro

package might define one for each of footnotes,
pagebody, figures, headers, marginal notes, and

global. The output routine will then issue the
appropriate 'switch context' commands at each

~o in t .

context push header

<header s tu f f>

context pop
context push pagebody

<pagebody>
context push figure

<figure>

context pop

<more pagebody>

Categories of specials. We divide specials into
five categories: context switches, foreground state
changes, background state changes, document glob-

als, and objects.

1. Context switches push and pop contexts onto

the context stack by name. If the context

named does not exist, it is created. The default
context at startup is global .

context <push/pop> <name>

2. Foreground state changes set, push, or pop a

foreground state item, such as a color.

a t t r i bu t e <push/pop/set> <name>
[<val ue>] *

3. Background state changes set, push, or pop a
background state item, such as a background

color or paper type.

a t t r i bu t e <push/pop/set> page

<name> [ival ue>] *

4. Document globals set some resource require-

ment or provide some other mformation. These
specials must always occur somewhere on the

first page.

context push margin-note
<margin note>

context pop
<more pagebody>

context pop

Default values for attributes are more trouble-

some. Consider a document that, on page ten,

sets a specific special attribute woomp to the value
there-it-is, and this value remains set for the rest

of the document. If this document is reversed, the
set would then occur at the beginning of the new

document-but something must be done to undo

the special at the place where page ten now occurs.
The solution is straightforward. If a context

stack does not have an entry for a particular

attribute when a set occurs, the set is interpreted
as a push; otherwise, the set is interpreted as a pop

followed by a push. Thus, for a flat sequence of

sets, the first wdl allocate an entry on the context

stack for the attribute, and all others wdl modify
that attribute. If it becomes necessary to reset an

attribute to its default value, a pop will suffice.

The following implementation effectively flat-

tens all contexts into a s im~le seauence of set
attr ibute <push/pOp/set> attributes and pops. Pops ar; only issued to reset

<name> [<value>] *

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Driver Support for Color in TEX: Proposal and Implementation

attributes to their defaults; there are no correspond- should consider rerendering the page from the

ing pushes except the implicit ones introduced by beginning after performing (h s h i n g) a prescan.

the sets. If the driver has not yet rendered any characters

Thus, with the provided C code, it is trivial to or rules, or if the driver is scanning rather than

integrate color contexts into an existing driver. rendering, this return code can be ignored.

Implementation. Implementing these specials is
straightforward. The key idea is that we need to

maintain the stack states for each page and restore

them appropriately. In addition, an implementation

can choose between always prescanning the first
time a page is encountered, either on a page

or document basis, or possibly re-rendering the
page if it should turn out to be necessary. Our

implementation supports both possibilities.
Essentially, the code provided flattens all con-

text specials and attribute settings to a simple

sequence of attribute sets and pops. All page spe-
cials are moved to the very beginning of a page,

and all document specials are moved to the very

beginning of a document. The dvi dvi program pro-

vided does t h s from the provided dvi file; for all
other drivers, this special translation and movement

happens dynamically.
When a new dvi file is started, the driver is

responsible for calling i n i t c o n t e x t s o to initialize
the various data structures. At the beginning and

end of each page, the driver should call bopcon-
t e x t s () and eopcontexts (). These need not come

in matched pairs; if page rendering is interrupted

for any reason (such as the user selecting the next
page before rendering is completed) the driver must

not call eopcontexts() but should instead simply

call bopcontexts() for the next page.
The exception to this, of course, is that each

page must be fully scanned at least once, and

eopcontexts () called, before any subsequent page

can be rendered.
The driver must provide the subroutine dospe-

c i a1 () that is responsible for parsing and under-
standing specials in the normal manner. Typically

this already exists in almost all drivers. But rather

than calling this subroutine every time a special
is encountered, the driver should instead call the

supplied routine contextspeci a1 0. T h s subrou-

tine will check if the special is one of the context

specials described here, and if so, translate it to the
appropriate flat specials, calling dospeci a1 () for

each one. If the special is not a context special, then

the driver's dospeci a1 () routine is invoked.

If the special was a page special or a document
special, and t h s is the first time this page has been

encountered, contextspeci a1 () wdl return the

special value RERENDER indicating that the driver

To identify pages, the driver should also pro-

vide a routine called dvi 1 oc () that returns a long

value indicating the byte position in the dvi file.
The call to bopcontexts() at the beginning

of a page may cause the dnver's dospecial ()

routine to be invoked many times, once for every

outstanding page attribute and local attribute.
To handle document global specials, the entire

first page must always be fully prescanned.
The way the code works is as follows. At

the beginning of each page that has not been
previously encountered, the full stack contents of

each context are saved and associated with the dvi
file location for that page. If the page has been
encountered, then the stack contents are restored,

issuing any necessary set attribute specials for

current attributes in the global context. In addition,

any page attribute values are set. The context stack
is set to hold just the global context.

When a push context special is encountered,
the context associated with that name is found. If

none exists, one is allocated. If the context stack has
more than just the global context, then the attribute

values from the context on top of the context stack
are hidden. In any case, the attribute values for the

context being pushed are made visible.

Attribute values are hidden by searching for the
same attribute in the global context. If one exists,

then its value is emitted with a flat set attribute

special. Otherwise, the value is reset with a pop

attribute special.
Attribute values are made visible by simply

executing a flat set attribute special for each value.

When a pop context special is encountered,
the context stack is checked to make sure it has

at least two entries. If not, an error routine is

called. Otherwise, the top context is popped, and
all attribute values in that context are hidden. If

the resulting context stack has more than just one

context, then the attributes in that context are made

visible.
When an attribute push special is encountered,

then the attribute name and value pair are added

to the current context, and the new value is made

visible.

When an attribute set special is encountered,
if the context on top of the context stack has such

an attribute, than that attribute is changed and the

new value made visible. Otherwise, the set attribute

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Tomas Gerhard Rolucki

special is treated precisely as though it were a push the code, is available in both dvi ps and dvi dvi on
attribute special. l abrea . s tanford.edu.

When an attribute pop special is encountered,

the context on top of the context stack is searched
for that attribute. If the context has no such

attribute, an error is reported. Otherwise, the

attribute is hidden, and the attribute/value pair is

popped from the context. If the same attribute
exists in the current context (further down on the

stack), then that attribute value is made visible.

Note that attributes do not need to nest "cor-

rectly"; the following sequence is legal:

a t t r i b u t e
<text>

a t t r i b u t e

<text>

push color red

push changebar on

a t t r i b u t e pop color

< text>
a t t r i b u t e pop changebar

In addition, pushng and popping contexts
simply makes them visible and hidden; it does not

affect their values. Thus, assuming that the global
context is on the context stack, after the following

sequence, the color in the global context will be
green:

a t t r i b u t e push color red

context push header
context push global
a t t r i b u t e s e t color green

context pop

context pop

Backwards compatibility. For backwards compati-

bility, existing dvi ps specials are fully supported.
Most specials fall into the object category and

are automatically passed through to dospeci a1 0.
These specials include those for EPSF inclusion and

literal Postscript code.

The existing color macros are trivially sup-

ported by translation. The existing color macros
never change contexts (they always use the implicit

global context), so the semantics are unchanged

with one exception. The explicit color set macro
is now legal even when there are colors on the

color stack; only the topmost entry on the stack is
affected.

The four specials header, papersi ze, 1 and-

scape, and ! are document global specials and are

translated as such. The next release of dvi ps will

also allow papersize and landscape specials to
apply on a page basis.

The code implementing these color specials,

along with documentation describing how to use

Future work. We plan to continue the development
of special capabilities using this form of interface.

In particular, we hope to add support for colored

box backgrounds, changebars, and s d a r things
through a simple language. As we or others

enhance the released code, any drivers that use this

will automatically get the new capabilities. And, the
dvi dvi program will provide full support for these

specials for those drivers that don't use the code.

Acknowledgments. The ideas in this paper are pri-
marily derived from discussions with James Hafner,

David Carlisle, Leslie Lamport, Frank Mittelbach,
Sebastian Rahtz, and Tim Van Zandt. The confusion

and complexity is attributable to me. I can only
hope that this code wdl evolve quickly and stabilize
into a useful and powerful base for using color in

TEX.

212 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

DVISep - A colour separator for DVI files

Angus Duggan
Harlequin Ltd., Barrington Hall, Barrington, Cambridge CB2 SRG, United Kingdom

angus@harl equi n . co. u k

Abstract

This paper describes a simple colour separator for DVI files written by the author,
and explores the implementation and lirmtations of such a colour separator. The
colour separator recognises the colour support \special commands used by
dvips. It produces multiple DVI files as output from a single input file, each
containing a single separation from the input colour.

Introduction an ink should not be combined with other ink on the

DVISep is a simple colour separation program for
DVI files. It reads a single DVI file, outputting
separation files for each process colour and spot
colour found in the input file. DVISep recognises
the colour \speci a1 commands used by Tomas Ro-
kicki's dvi ps driver, but is not limited to use with
dvi ps. DVISep is part of the second release of the
author's DVIUtils package of DVI manipulation pro-

page; for instance, a spot colour should probably not
be printed on top of a process colour background.

Figures 1 and 2 illustrate the difference between
overprinting and knockout. If knockouts are set, the
shapes drawn last erase the corresponding areas of
shapes drawn before them; if overprinting is used,
the colours of previously drawn shapes are combined
with the latterly drawn shapes.

grams.
Colour printing presses and printers normally

Using DVISep

use four process colours (cyan, magenta, yellow and The simplest use of DVISep takes an input filename:

black) printed on top of each other to create the il-
lusion of many colours. Cyan ink absorbs red light,
reflecting only blue and green. Magenta ink absorbs
green light, reflecting red and blue, and yellow ink
absorbs blue light, reflecting red and green. Black is
also used as a process colour because the cyan, ma-
genta, and yellow inks do not have perfect absorb-
tion, and a combination of solid cyan, magenta and
yellow usually looks a muddy brown colour instead
of truly black.

Colour separation is the process of splitting the
image into appropriate proportions of the process
colours for the colours desired. DVISep generates
separate files for each of the process colours, con-
taining only the parts of the image with the appro-
priate colours in them.

In addition to process colours, printed pages
may use spot colours. Spot colours are used in sev-
eral circumstances; when there are only a couple of
colours in a document, it may be cheaper to print it
with spot colours rather process colours; special inks
(e .g. textured, metallic, neon colours or luminescent
colour) are required sometimes; and sometimes it is

dvi sep f i 1 e . dvi

T h s generates the output files Bl ac k . dvi ,
Cyan. dvi, Magenta. dvi, Ye1 1 ow. dvi, and spot. dvi
for each spot colour used in the input file'.

The \speci a1 commands currently recognised
by DVISep are a subset of those defined by Tomas
Rokicki's dvi ps driver. The \speci a1 commands
start with either color or background, followed by
a colour specification. The colour specification may
be either a colour name, for example Maroon, or the
name of a colour space (rgb, hsb, cmyk, or gray) fol-
lowed by an appropriate number of numeric parame-
ters (3 for rgb and hsb, 4 for cmyk, or 1 for gray). The
numeric parameters are all within the range 0-1, in&-
cating the intensity of each colour component. Note
that for additive colour spaces (gray, rgb, and hsb)
zero values of the parameters indicate that no light
should be reflected from the page (i.e., the page is
marked black), whereas for subtractive colour spaces
(cmyk) zero values indicate that no light should be ab-
sorbed by the page (i.e., the page is left white). The

On systems with restricted filename length the
necessary to provide an exact colour match, for in- spot colour names are reduced using a heuristic
stance in a paint or ink catalogue. rule which attempts to create a recognisable name.

Having decided which colours to use, there are DVISep does not overwrite other files of the same
still different ways of combining those colours on the name unless explicitly told to, so other files which
page. Each object on the page may knockout or over- accidentally match the reduced spot colour name
print other objects. Knockouts cause blank areas to will be preserved.
appear on other separations; this may be useful when

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Angus Duggan

Figure 1: Colour separation with knockout Figure 2: Colour separation with overprinting

double quote form of colour specification supported
by dv i ps is not supported by DVISep.

A second form of \speci a1 command sup-
ported is c o l o r push followed by a colour speclfica-
tion; this saves the current colour and sets the curent
colour to the new colour. The command co l o r pop
sets the current colour to the colour last saved with
a co lo r push command

Colours specified by a colour space and pararn-
eters are converted to CMYK process colours before
use. There is an option to DVISep which affects
this conversion process. The -u flag turns on un-
dercolour removal and black generation. RGB and
HSB colours are initially converted to CMY colours.
Undercolour removal removes an equal amount of
each of the CMY components, and black generation
adds that amount to the black component, yielding
a CMYK colour.

Colours specified by names are looked up in
a colour defimtion table; DVISep reads a default

colours may also have one of the optional keywords
overpr i n t or knockout at the end of the line. Com-
ment lines in the colour specification file are indi-
cated by '#' as the first non-blank character on the
line. Extra colour specification files can be loaded
by passing the -c file option to DVISep. If a colour
name in an extra colour specification file matches an
existing name, the specification in the extra file is
used. More than one extra colour specification files
can be loaded by using several instances of the -c
option.

The -0 and -k options to DVISep inchcate whe-
ther it is to overprint or knockout process colours;
knockouts for process colours are the default. Whe-
ther spot colours overprint or knockout is deter-
mined by the colour specification file; they will nor-
mally knockout unless the colour specification con-
tains the ove r p r i n t keyword.

How DVISep works
colour d e h t i o n file when it initialises, which tells it

Upon starting, DVISep reads a default colour specifi-
the name, colour space, and parameters for named

cation file, and then processes its arguments, which
colours' colours are dehned the cO1our may result in it reading more colour specification
specification files. The format of these colour spec-

flies. Colours specified in RGB or HSB space are trans-
ification files is very simple - each line begins with

formed into CMY space when they are used, and then
a colour name, followed by either a colour space

into CMYK through undercolour removal and black
and numeric parameters' Or the keyword and

generation. The transformation from RGB and HSB
a single numeric parameter for spot colours. Spot

214 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

DVISep - A colour separator for DVI files

to CMY is very simplistic; the algorithms in Foley,
van Dam, Feiner and Hughes (Foley et a1.1990) are
used. If undercolour removal and black generation
are turned on, the amount of black generated will be
equal to the minimum value of the other colour com-
ponents.

In general, colour transformation is more com-
plicated than ths; the representable range of colours
on devices differs, dependmg on the printing process
and ~nks used. The same colour values Mrlll produce
noticeably different results not only on hfferent de-
vices, but also on different calibrations of the same
device type and on different printing surfaces. Ths
problem is beyond the scope of DVISep - a colour
matching system is required to solve these problems.

DVISep makes several passes over the input DVI
file. The first pass is used to bulld up a structure
containing information about the pages in the file.
The start and end of each page is noted, and lists
of the spot colours and fonts used are generated.
DVISep then makes one pass over the input file for
each process colour and spot colour, to write out
the separation files. On each output pass, the ini-
tial colour is set to black, and a colour stack is main-
tained by noting the co lor push and co lo r pop
special commands. As each page is scanned, DVISep
looks for colour changing \speci a1 s and commands
that mark the page (characters and rules). The ac-
tion taken for page-marking commands depends on
whether the current colour is a process colour or
a spot colour, and whether the colour is overprint-
ing or knoclung out other colours. The name of the
separation files is generated from the process and
spot colour names. DVISep avoids writing out pages
which do not contain any ink.

Process colour handling. When page-marking com-
mands are found during process-colour separating,
the current colour is examined to see if it is a process

out flag is set for process colours, or the spot colour
was specified with the knockout keyword (or no ex-
tra keyword at all), then a command is issued to set
the current colour to white, and the page-marlung
commands are written to the separation file. Knock-
outs done in t h s way wdl only work if the imag-
ing model of the output device is a paint-and-stencil
model like postscript2, where whte areas painted
over black areas erase them. If this imaging model
is not assumed, knockouts have to be done by de-
termining the difference of the shapes of the ob-
jects printed in the separation colour and the objects
which are knocked out. The results of t h s process
can not be represented in DVI format without gener-
ating custom fonts for the output resolution.

If the knockout flag for process colours is not
set, or a spot colour is specified with the overwr i te
flag, then the page-marking commands up to the next
change of colour are ignored. This allows different
separations to have page-marking commands at the
same position on the page, causing the Inks to over-
print and combine when printed. The page marking
commands cannot be completely thrown away, how-
ever, because character and rule setting commands
may move the current horizontal position. If charac-
ters are being ignored, DVISep reads and caches the
TFM (TEX font metric) file for the current font, moving
the current position right by the width of the charac-
ter.

Spot colour handling. Spot colour separations are
handled in a slrmlar way to process colours, except
that only one component is considered when decid-
ing if the colour should be printed, knocked out, or
ignored. The numeric parameter to the colour spec-
ification of a spot colour is a tint value, which in-
dicates how much of the colourant should be ap-
plied, and hence the gray level for the following page-
marlung commands.

colour. If the current colour is a process colour with
-

a non-zero component of the separation colour being
Background handling. The background colour com-

generated, a colour support \speci a1 command will
mand needs some special handling in DVISep. The

be issued which sets the colour to a shade of gray cor-
last background command issued on each page is the

respondmg to the amount of the component present.
one which takes effect (this is Rokiclu's definition of
the background special command), so this informa-

For example, if the CMYK colour (0.87 0.68 0.32 0) is
tion must be stored in the page idormation during

specified in the input file, a command to set the gray
level to 0.13 will be issued for the cyan separation (re-

the initial scan. The background colour is treated

member that the gray parameters are inverted with
much like other colours; if it is a process colour, then

respect to CMYK parameters), a command for a gray
appropriate background commands wdl be set for

level of 0.32 wilI be issued for the magenta separa-
each separation file, depending upon the amount of

tion, and a command for a gray level of 0.68 wdl be is-
the separation component in the background colour.

sued for the yellow separation. The colour command
If the background colour is a spot colour, then the
background command will only appear in the spot

will onlybe issued before the first page-marlung com-
colour separation file. mand after each colour change.

If the current colour is a process colour with 2 PostScfipt is a trademark of Adobe Systems
a zero component of the separation colour, or a Incorporated
spot colour, then DVISep needs to decide whether to
knockout existing objects on the page. If the knock-

TUGboat, Volume 15 (1994), No. 3 - Proceedings of the 1994 Annual Meeting

Angus Duggan

Using DVISep The double quote form of colour specification

DVISep normally takes a single input DVI file, and
produces a DVI file for each process and spot colour
used in a document. There are several other options
which control DVISep's behaviour.

The -c, -k, -0, and - u flags have already been
mentioned; the first flag names additional colour
specification files to read, the next two flags indicate
whether DVISep is to knockout or overprint process
colours, and the last flag indicates whether to ap-
ply undercolour removal and black generation to RGB
and HSB colours when converting to CMYK.

The -s colour and -p options are often used
together; -s selects a single separation to output,
and -p causes this separation to be written to stan-
dard output. This allows separations to be filtered
through other programs from within scripts, without
having to know the filename that DVISep would cre-
ate for the separation colour.

Normally DVISep will not overwrite existing
files; the -f option forces it to do so.

The usual DVrUtils options of -v for version in-
formation and -q for quiet running also apply.

Using DVISep with dvi ps. DVISep can be used with
any device driver which supports Rokicki's colour
\speci a1 commands. Input CMYK, RGB, and HSB
colours (and named colours whch are specified in
these colour spaces) are converted to explicit gray
scale commands.

It is important that drivers should know which
separation is being output, so that halftone screens
can be generated at the correct angles. There is no
standard method of communicating this information
to the driver; DVISep issues a new \speci a1 com-
mand to indicate the separation. T h s special com-
mand has the keyword separat ion followed by the
separation name.

If the output of DVISep is being output through
dvi ps, header files should be used to set up the sep-
aration screen angles. Process colour screens are tra-
ditionally at 15" for cyan, 75" for magenta, 0" for yel-
low, and 45" for black. The eye is very good at pickmg
out vertical and horizontal features, whch is why the
least noticeable colour (yellow) has the angle nearest
to orthogonal.

A header file that sets the screen angle to 15"
without changing the screen frequency or spot func-
tion3 might be defined as:

%!

%%DocumentProcessCo1ors : Cyan
currentscreen exch pop 1 5 exch setscreen

Some hgh-end PostScript RIPS can be configured
to ignore user settings of frequency and spot func-
tions, because the user's settings are not always ap-
propriate to the final output device.

is not supported by DVISep, because its parameter
(an arbitrary PostScript string) does not give easily
usable information about what colour is required.

DVISep supports an extended form of colour
\special command, whch allows spot colours to
be specified from within TEX. This command takes
the form spot plate tint, indicating the separation
plate on which the colour is to appear, and its in-
tensity. This colour command is not directly com-
patible with dvips; if the document is to be pro-
cessed by dvi ps before separating (e.g., for preview-
ing) then spot colours should be specified by named
colours, with a process colour approximation to the
spot colour in the col o r . pro header file.

Limitations

DVISep has some limitations, which need to be borne
in mind when using it. One of these limitations
has been mentioned already; knockouts assume that
printing in white can erase areas already printed in
other colours. T h s limitation may be a problem for
output drivers for a lot of devices, but fortunately not
for PostScript drivers.

A more serious limitation from the user's point
of view is that DVISep does not currently handle
PostScript inclusions at all. There are reasons for t h s
omission;

1. The \speci a1 commands used to insert Post-
Script code are output driver dependent.

2. The PostScript inclusion may reset the current
colour. To a certain extent, this problem can
be alleviated by putting the inclusion into each
separation and redefining the colour-setting op-
erators or transfer functions to set the colour
to white for colours which should not appear
on the current separation. This is not a total
solution, because the inclusion can still access
the original colour operators (and many applica-
tions produce PostScript which does this), and
because overprinting cannot be done with inclu-
sions.

Both of these problems are insurmountable in
the general case; there is no way of hding the origi-
nal colour operators completely, because the dictio-
nary in which they reside is read-only, and itself is
impossible to hde. The second problem is insur-
mountable because PostScript does not have the con-
cept of transparency, except in the limited case of
image masks. Sampled images may contain a mix
of colours, and there is no facility for making some
of the image pixels ovewi t e existing objects on the
page, and malung others leave the existing page un-
touched.

DVISep does not yet provide registration marks
for aligning pre-separated plates, or taglines for iden-
tifying separations. I hope to add these soon.

216 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

DVISep - A colour separator for DVI files

DVISep does not attempt to trap the separations
at all (trapping is used to reduce registration errors,
by enlarging or reducing areas painted on different
separations so that they have a very small overlap).

Conclusions

Colour separation is not necessary for many print-
ers, especially desktop printers, which use their own
colour rendering techniques to print continuous tone
data. Separation is necessary when going to press
with hlgher resolution work. Separating the DVI file
is quite easy, but some assumptions have to be made
about the imaging model which will be used. If film
or plates are being produced, separating the DVI file
may save time and effort, by removing the empty
pages from the separation files before printing.

The second release of the DVIUtils programs (in-
cluding DVISep) will be available for anonymous FTP.

References

Foley, James D, Andries van Dam, Steven K. Feiner,
and John F Hughes. Computer Graphics, Princi-
ples and Practice. Addison-Wesley, Reading, MA,
USA, second edition, 1990.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Simple colour design, and colour in LATEX&

Sebastian Rahtz
ArchaeoInformatica, 12 Cygnet Street, York YO2 lAG, United Kingdom

sebastian.rahtz@cl.cam.ac.uk

Michel Goossens
CERN, CN Division, CH1211 Geneva 23, Switzerland

m i chel . goossens@cern. ch

Abstract

This article reviews some basic principles underlying the use of colour. We start
by a review of the functional use of colour, explaining how it can help to focus
attention, explain relationships, guide the viewer/reader through the presented
information so that its contents is easier to absorb and appreciate. Some common
rules for optimizing communication using colour elements in documents are
hscussed. We then explain the colour support in mXZE and give some examples.

Introduction

When considering the use of colour in a document,
we should thnk about it as a tool, not a gadget to
merely make the page look "pretty". The painter
Eugene Delacroix wrote

"La couleur est par excellence la partie de
l'art qui detient le don magique. Alors que
le sujet, la forme, la ligne s'adressent d'abord
a la pensee, la couleur n'a aucun sens pour
l'intelligence, mais elle a tous les pouvoirs sur
la sensibilite, elle remue des sentiments."

This sentence summarizes perfectly the r61e
that colour plays in the construction of the visual irn-
age. By choosing the right colour, the typographer
can add an affective value to the message, thus help-
ing it to be understood more clearly.

The world of colour

The Greek philosopher Aristotle had already, in the
4th century B.C., studied the mixing of colours by
letting daylight shine through glasses of different
colours. But it was only in the 17th century, thanks
to experiments with glass prisms by Sir Isaac New-
ton, that the spectral theory of light was discovered,
thus ending a period of almost 2200 years in which
colours were ordered on a straight line from the light-
est to the darkest colour, starting with white and
ending with black. Newton ordered the colours on
a closed circular ring, a representation still in use
today1.

Gerritsen (1988) gives an overview of the theory
of colour from antiquity to the present. He reviews
several models that have been proposed over the
years in order to classify colours. He shows that

Light can be decomposed into three "primary"
components, from whch one can build all possible
colours. On a cathode ray tube, these colours are red,
green and blue, and one of the more popular colour
models is therefore called the RGB model. The print-
ing industry does not use these primary colours, but
rather their complements: cyan, magenta and yel-
low. This is because inks "subtract" their supplemen-
tary colours from the white light which falls on the
surface, e.g., cyan mk absorbs the red component of
white light, and thus, in terms of the additive pri-
maries, cyan is white minus red, i.e., blue plus green.
Sirmlarly, magenta absorbs the green component and
corresponds to red plus blue, while yellow, which ab-
sorbs blue, is red plus green. In fact, for practical
purposes in the printing industry a process called
"undercolour removal" takes places. In this proce-
dure a fourth "colour", black, is added to the printing
process, with an intensity equal to the equal amount
of cyan, magenta and yellow present in the sample.
T h s way one creates a darker black than is possible
by mixing the three coloured inks. T h s colour model
is called the CMYK model, where the h a 1 " K stands
for the black component. Color Example 1 gives a
simplified view of the relation between the RGB and
CMYK models.

Colour harmony

Harmonies are arrangements of colour that are pleas-
ing to the eye. Scores of books giving the opinions of
experts have been written on colour harmony, and
the conclusions of many of these works are often

choosing a suitable model depends clearly on the
application area, e.g., mixing properties, human
perception, hue values, gray levels.

218 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Simple colour design, and colour in LATEXZ~

contradictory. Reasons to explain t h s are not hard
to find (Judd and Wyszecki 1963):

(a) Colour harmony is a matter of emotional re-
sponse, likes and bslikes, and even the same
person can change h e r b s mind over time,
since old combinations can become boring,
while frequent exposure to some new combi-
nation can make us appreciate it.

(b) Colour harmony depends on the absolute size
of the areas covered by the colours as well as
on the design and the colours themselves. For
instance, a nice looking mosaic pattern can look
completely unattractive when viewed magnified
by a factor of ten.

(c) Colour harmony depends on the relative sizes
of the areas as well as on their colours.

(d) Colour harmony depends on the shape of the
elements as well as on their colours.

(e) Colour harmony depends on the meaning or in-
terpretation of the design as well as on their
colours. It is important to note that colour har-
mony for a portrait painter is quite a different
subject from colour harmony in abstract design
or typography.

Therefore one can only try and formulate a few
principles for the construction of colour harmonies.

(a) Colour harmony results from the juxtaposition
of colours selected to an orderly plan that can
be recognized and emotionally appreciated.

(b) When comparing two similar sequences of co-
lour, the observer wdl choose the one most fa-
d a r as the most harmonious.

(c) Groups of colours that appear to have a com-
mon aspect or quality are considered to be har-
monious.

(d) Colours are perceived as harmonious only if the
combination of colours has a plan of selection
which is unambiguously recognizable.

Experimentally it has been observed that the eye
prefers combinations where primary colours are in
equilibrium with their complementary colours, and
that our perception of a colour changes in relation
to the environment in which it is embedded. Color
Example 3 shows effects of saturation or absorption
of the three primary colours with respect to white
(leftmost column) or black (second column) and with
respect to its complementary colour (t h d column)
or a gray tone of the primary colour itself (rightmost
column).

Constructing colour harmonies

To explain h s theory of colours Itten, in his book
The Art o f Colour (Itten 19741, uses a model based
on a harmonic colour circle subdivided into twelve
equal parts (see Color Example 2). It contains the

three primary colours yellow, red, 'and blue, 120"
apart. Their complementary colours, purple, green,
and orange, also called the secondary colours, are po-
sitioned diametrically opposite their respective pri-
maries. The circle contains six more colours, inter-
mediate between each primary and its adjacent sec-
ondaries. The harmonic colour circle is only a sim-
plification. Indeed, all possible colours can be rep-
resented on the surface of a sphere, which has the
harmonic colours at its equator, whte at the north
pole, and black at the south pole. Thus moving from -

the equator towards the south, respectively north
pole yields darker, respectively lighter variants of
a given colour. This also means that to each point
on the colour sphere, there exists a diametrically
opposed point with complementary characteristics,
e.g., to light greenish blue one opposes dark orange
red. Century long artistic experience has shown that
a few simple basic rules allow artists to construct ef-
fective colour harmonies in their works. Following
Itten, we shall discuss a few of them below.

Two-colour harmonic combinations. Complemen-
tary colours, lying at diametrically opposite points of
the colour circle (sphere) define 2-colour harmonies,
llke the 2-tuples (red, green), (blue, orange), plus an
almost &te amount constructed using possible
combinations on the sphere.

Three-colour harmonic combinations. When inside
the colour circle one constructs an equilateral trian-
gle, the colours at each edge form a 3-colour har-
mony. The most fundamental 3-tuple (yellow, red,
blue) is well know in all forms of art, publishing, and
the world of publicity, for its effectiveness, since it
can be used in a wide variety of patterns, layouts,
and in all kinds of light and dark combinations. The
secondary colour 3-tuple (purple, green, orange) has
also a strong character, and is often used. Other 3-
tuples are also possible. One can also construct other
3-tuples by replacing the equilateral triangle by an
isosceles one, or by worlung on the colour sphere
and combining light and dark variants. As a special
case, one can put one edge of the triangle at the white
point (north pole), and create the harmony (white,
dark greenish blue, dark orange red), or on the black
point (south pole), yielding the harmony (black, light
greenish blue, light orange red).

Four-colour harmonic combinations. One can con-
struct a 4-colour harmony by takmg the colours ly-
ing on the edges of a square, e.g., the 4-tuple (yellow,
orange-red, purple, greenish blue). It is also possible
to use a rectangle, combining two pairs of comple-
mentary colours.

Higher order harmonies (like six-colour) are
equally easy to obtain using sirmlar geometric mod-
els, by using the harmonic circle or the colour sphere.
Note, however, that each combination has its own

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 219

Sebastian Rahtz and Michel Goossens

character, and set of basic laws, and only a long ex-
perience will show which of the various sets of har-
monies is most efficient for a given application.

Colour and readability

The readability of a message or sign is closely linked
to how our visual system processes the information
presented to it. Factors which influence the visibility
of colours are:

(a) intensity: pure colours of the spectrum have the
highest intensity;

(b) contrast: between the different colours;

(c) purify: pure colours are more visible than
graded variants, where white is added, making
them fainter, or black, making them darker.

Color Example 4 shows some of the most effec-
tive colour contrasts, which can be used for max-
imum readability or visibility, e.g., on slides, road
signs, or publicity leaflets.

Colour in the printing industry

A detailed discussion of problems encountered when
producing books in colour with TEX can be found in
Michael Sofka's article in these proceedings. In t h s
section, we merely present a short overview.

As already mentioned, the printing industry
mostly uses the CMYK model to describe the colours
on a page. Goossens and Rahtz (1994b, page 7) con-
tains an example with the five Olympic rings and a
multi-colour ellipse. It is shown how applying suc-
cessively the coloured inks gives the picture its final
colour. One starts with the cyan mk (top left), then
applies the magenta (top right), yellow (bottom left),
and finally the black inks (bottom right), to obtain
the uicture in full colour. The urocess is shown with
the four separate stages, and ;he cumulative effect.

For high quality typeset output, the use of
PostScript is now almost universal, and level 2 of the
PostScript language offers full support for colour.
In fact it not merely supports the RGB and CMYK
models, but also the HSB (Hue Saturation Brightness),
CIE (Commission Internationale de l'&clairage stan-
dard) plus various special colour spaces; in indus-
try and arts the Munsell and Pantone, and more re-
cently the Focoltone and Trumatch systems, have
become common for colour matching. The detads of
these, and algorithms for converting between colour
models, are exhaustively discussed in Adobe Systems
(1991, pp.176-199). Very useful discussions of us-
ing colour in Postscript are given in Kunkel (1990)
and McGilton and Campione (1992), and our discus-
sion is based largely on what we have learnt from
these three books, and Reid (1986). It should be
noted that full Level 2 PostScript provides a num-
ber of important new commands which considerably
ease preparation of colour separations (see section

'Simple colour separation using dv i ps' on page 222
below).

Using colours with I ~ T E X ~ ~

With the release of w x 2 . 5 colour macros are now
a standard supported package (together with graph-
ics file inclusion, rotation, and scaling). These are,
of course, dependent on the abilities of the driver
in use, as all colour is done using \specia l com-
mands. Hafner and Rokiclu's co l o rdv i package (see
Hafner, this volume) was the first to try and address
some of the complexities of colour support - TEX
does not have internal support for colour attributes
of text, and TEX 'grouping' across pages, floats, foot-
notes etc will not always yield the expected results.
LATEX& has extended support to cope with most sit-
uations, and it is hoped that more driver support will
make this even better. Tomas Rokicki's paper in this
volume discusses the problems in more detail. The
LATEX& colour package builds on the experience of
co l o rdv i , both in terms of the \speci a1 commands
themselves (allowing for an extensible set of colour
models), and in the macros.

One of the important features inherited from
co lo rdv i is the use of a layer of colour 'names'
above the actual specification given to the printer;
Hafner worked out a set of 68 CMYK colours whch
correspond to a common set of Crayola crayons,
and these are predefined in the header files used by
dvips, and the user calls them by name, allowing
for tuning of the header files for a particular printer.
New colours desired by the user can, of course, be de-
fined using CMYK, RGB or other colour models, but
in our examples we will use the Crayola names.

The L+QXZE colour support offers a variety of
facilities for:

colouring text;

colouring box backgrounds;

setting the page colour;

defining new colour names

We will look at the interface, and then consider
some uses for them.

The new UTEXZ~ commands There are two types of
text colour commands, whch correspond to the nor-
mal font-changing macros. The first one is a com-
mand:

[\textcol or{colourname}{text} I
This takes an argument enclosed in brackets and
writes it in the selected colour. This should be used
for local or nested colour changes, since it restores
the original colour state when it is completed, e.g.,

This w i l l be i n b lack
\ t ex t co lo r {B l ue}{Thi s t e x t wi 11 be blue)
and t h i s reve r t s t o b lack

220 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Simple colour design, and colour in LATEXZ~

The second type of colour command is of the form:

This colour command takes only one argument and
simply sets a new colour at this point. No previous
colour information is saved, e.g.,

\col or{Red} A1 1 the f o l l owing t e x t
wi l l be red.

\color{Black} Set the t e x t colour
t o black again.

The command does however respect normal TEX
grouping; if we write

We s t a r t i n black, but now
{\color{red) a1 1 t e x t
i s i n red, {\color(green} but t h i s
should be i n green} and t h i s
should be back i n red.}
And we f i n i s h i n black

we will see2

We start in black, but now all text is in red, 1,111 i h ~ \
iho t~ lc l be i t1 green and this should be back in red.
And we finish in black

The background of a normal LR TEX box can also be
coloured:

This takes the same argument forms as \ textcol or,
but the colour specifies the background colour of the
box. There is also an extended form:

I \ f col orbox fcolourname1 fcolournamel 1

This has an extra colourname argument, and puts a
frame of the first colour around a box with a back-
ground specified by the second colour.

The normal \fboxsep and \fboxrule com-
mands vary the h e width, and offset of the frame
from the text, as the examples in Color Example 5
show.

Defining new colours. The colour names 'whte',
'black', 'red', 'green', 'blue', 'cyan', 'magenta' and 'yel-
low' are predefined by all driver files. New colour
names can be defmed with:

1 \def i necol or{name}{model} {spec} 1
where spec is usually a list of comma-separated num-
bers needed by the model. Typically, drivers can cope
with the models gray, rgb and cmyk (although the
system is extensible), allowing, e.g.:

\ de f i neco lor { l i ghtgrey}{gray}{ . 25)

\definecolor{cornflowerblue}{rgb}{.4, .6, .93}

\def i necolor{CreenYellow}{cmyk}{ .15,0, .69,0}

The small examples of colour like this will be set
using gray scales in this paper.

If you know that the driver has predefined
colour models, you can access these directly. Thus
dvi ps has a header file of CMYK colours configurable
for different devices (as discussed above), and sup-
ports the extra named model. We can access these
colours in the normal way:

It is also possible to use the \ tex tcolor and
\color macros with an explicit colour model and
specifications, to avoid the overhead of defining new
colors and using up TEX macro space:

\color [model] {specification)
\ tex tco l or [model] {specification} {text}

This enables us to gray-out text like Espandal'rer by
typing \ tex tcolor [gray] {O. S){Expandafter}.

Examples of colour in document design. The sim-
ple text colouring described in the preceding section
is moderately easy to implement and use. Color Ex-
ample 6 shows how a simple formal specification can
be enhanced with coloured keywords. Shading the
background of boxes is also a common requirement, -
a simple example to emphasize some text might be:

. The greyscale simulation of col-our as

minted here is also not ineffective. For more sophs-
iicated use, the PSTri cks package by Timothy van
Zandt offers a more flexible set of commands (see
the article by Denis Girou in the Cahiers GUTenberg
Girou (1994) for a full discussion, and many exam-
ples, of PSTricks); the colour support in LATEX&
is compatible with PSTri cks, so the same colour
names and defmtions can be used. The gradient
colour fill in the background of Color Example 8 is
an example of more complicated use.

A common requirement is to combine coloured
text and shaded areas in a tabular format. This is
surprisingly difficult to program in M&X, and cannot
be undertaken lightly; however, another package by
Van Zandt, col or tab , takes care of almost all needs,
utilizing the Q X Z E colour primitives. The full set
of macros and syntax is described in the documen-
tation (it works in plain TEX, with BTEX'S "tabular" ta-
bles, and in Carlisle's "longtable" documents). Color
Example 7 shows the results, with a real table taken
from a travel brochure (the code is given in Goossens
and Rahtz 1994b). This example shows how colour
is used to highlight similar structural elements of a
table to allow reader to navigate more freely and ef-
fectively through the information. It also shows a ba-
sic principle of colour work, namely not to use more
than two or three different colours, since the codi-
fication (the meaning associated to each colour) will
be lost. In this case we have used red for the head-
ing, the alternation white/yellow to outline rows, and
cyan to draw attention to the price column. It also

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Sebastian Rahtz and Michel Goossens

shows the efficiency of the fundamental 3-colour har-
mony, the 3-tuple (red, blue, yellow), as discussed
earlier. For an interesting discussion of the use of
colour in publishmg, we recommend White (1990).

Another very common application area for co-
loured text or background is colour overhead trans-
parencies. Color Example 8 shows a typical colour
scheme for slides, using van Zandt's seminar pack-
age (see Goossens and Rahtz 199413 in Cahiers
GUTenberg for more details), including the use of
a graded colour fiil for the slide frame. As well as
coloured background, frame and lettering, we have
used another colour for emphasis in the text, and
highlighted the bullet lists with yet more colour.
Most readers will probably agree that this represents
distracting overkill, and that only one emphasis tech-
nique should be used at a time.

Simple colour separation using dvi ps

A document containing colour material can be type-
set using LATEX and run through dvips to create a
colour PostScript document that can be previewed
on screen, or printed on a colour printer. But if one
wants to produce a "real" book using offset printing
the printer d l require four versions of each page,
containing, respectively, the gray levels correspond-
ing to the proportions of Cyan, Magenta, Yellow and
Black. Colour work is usually typeset on special film,
to high tolerances, since each page is overprinted
four times, and registration must be exact. Some
typesetting systems can produce the four separa-
tions automatically, but more commonly it is done
with PostScript manipulation. A high-level profes-
sional quality requires sophisticated tools that are
beyond the scope of this paper. Nevertheless, a TEX
user can produce straightforward CMYK separations
with dvips, using an approach that requires only
PostScript Level 1 operators.

The principle of dv i ps separations is that each
output page is produced four times (using the - b 4
command-line switch, or b 4 in a configuration file),
and a header file which redefines the colour oper-
ators differently for each of the four pages. The
header file (distributed with dv i ps, maintained by Se-
bastian Rahtz, and largely derived from Kunkel1990
and Reid 1986), uses the bop-hook handle to incre-
ment a counter at the beginning of each page, and
so check whether a C, M, Y or K page is being pro-
duced. The setcmykcol our operator is then rede-
fined to produce just one of the four colours, in grey,
and RGB colours are converted to CMYK before go-
ing through the same process. The setgray opera-
tor is only activated on the black ('K') page. A listing
of the PostScript code is given in Goossens and Rahtz
(1994b).

The output from separation can be seen (simu-

lated) in Table 1 for the earlier example of I,

I Magenta I I

Table 1: Separation output

Black

where the box is set in 'ForestGreen', whose CMYK
value is '0.91 0 0.88 0.12'. Notice that the 'M' page
will be blank, as neither the green box nor the black
text need any magenta.

w&&&

References

Adobe Systems. Postscript Language Reference Man-
ual second edtion. Addison-Wesley, Reading,
M A , 1991.

Foley, James D., Andries van Dam, Steven K. Feiner,
and John F. Hughes. Computer Graphcs, Princi-
ples and Practice. Addison-Wesley, Reading, M A ,
USA, second edition, 1990.

Gerritsen, Erans. Evolution in Color. Schiffer Publish-
ing Ltd, West Chester, PA, USA, 1988.

Girou, Denis. "Presentation de PSTricks". Cahiers
GUTenberg 16, pages 21-70, 1994.

Goossens, Michel and Sebastian Rahtz. "Composi-
tion en couleur avec LATEX". Cahzers GUTenberg
16, pages 5-20, 1994.

Goossens, Michel and Sebastian Rahtz. "Preparer des
transparents avec Seminar". Cahiers GUTenberg
16, pages 71-82, 1994.
See also "Colour slides with LATEX and seminar".
BaskervLUe 4 (I), pages 12-16, 1994.

Itten, Johannes. Art of Colour. Von Nostrand Rein-
hold, New York, NY, USA, 1974.

Judd, Deane B. and Giinter Wyszecki. Color in Busi-
ness, Science, and Industry. John Wiley and Sons,
New York, second edition, 1963.

Kunkel, Gerard. Graphic Design with PostScript.
Scott, Foresman and Company, 1990.

McGilton, Henry and Mary Campione. PostScript by
Example. Addison-Wesley, Readmg, MA, 1992.

Reid, Glenn. PostScript Language Program Design.
Addison-Wesley, Reabng, MA, 1986.

Rokicki, Tomas. DVIPS: A TEX Driver, 1994. elec-
tronic distribution with software, version 5.5 5 .

Van Zandt, Timothy. PSTricks: PostScript macros for
Generic TEX. User's Guide. Version 0.93, 1993.
electronic distribution with software.

Van Zandt, Timothy. seminar.sty: A BTEX style for
slides and notes. User's Guide. Version 1.0, 1993.
electronic distribution with software.

Whte, Jan V. Color for the Electronic Age. Watson-
Guptil Publications, 1990.

222 TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Printing colour pictures

Friedhelm Sowa
Heinrich-Heine-University, Computing Centre, UniversitatsstraBe 1, D 40225 Diisseldorf, Germany
sowa@convex.rz.uni-duesseldorf.de

Abstract

Printing colour pictures in a TEX document needs a driver program that is able to
exploit the capabilities of a colour device. The driver must separate the colours
of the picture into the basic colours used by the colour model supported by
the output device. This was the purpose to develop the dvi djc-drivers for the
Hewlett Packard inkjet printers and to upgrade BMZFONT to version 3.0.

The solution described in this article proposes a device independent
approach to printing coloured TEX-documents, not only on expensive Postscript
devices but also on cheap colour printers.

How it started

Good reasons. During the last few years the hard-
ware industry has supplied the market with different
kinds of colour printers. In particular ink jet print-
ers with increasing quality and decreasing prices
appeared on the market. So not surprisingly, more
and more TEX users demanded dvi driver programs,
that exploit the colour ability of these printers.

The answer to this question usually was the
recommendation to use the colour package by Jim
Hafner and Tom Rokich and to print the formatted
document via dvips using GhostScript. T h s was
a good recommendation, but the supplementary
megabytes, necessary for a GhostScript installation,
could be a problem. Another problem is the quality
of the output produced by GhostScript, whch is way
below what users expect of TEX output. Moreover
the procedure is rather complicated and slow.

Yet it was not only the avadability of good
and cheap colour printers that brought the colour
problem into the foreground. There were also the
discussions and decisions on colour support in TEX
by the LATEX^ and NTS groups that made it clear
that an interface wdl be designed similar to the
known implementation of the dvi ps driver.

For all these reasons it was decided to write a
driver program for the HP DeskJet family, hoping
that it could be an example for other devices. It
is even to be expected that it could be adapted to
the final design of a graphics and colour interface,
whch is to b e developed in the future.

Wolfgang R. Muller, whch had to be extended in a
way, that it could use the different inks of the HP
DeskJet printers, support the \speci a1 -commands
for coloured text and, the most important and
difficult point, produce mixed colours from the
primary colours cyan, magenta, yellow and black.

Colour separation could be done by BMZFONT,

so that no special interface for the driver program
had to be written. The four colour separations of
the picture had to be stored in fonts, differentiated
by their names, and then included into a document
by overprinting each other.

T h s plan seemed to maintain the compatibhty
to dvips and the output it produces on paper, as-
suming that coloured text and pictures are handled
similarly by Postscript. At the end of t h s paper it
wdl be explained why this assumption was wrong.

Colour models

Before describing the dvi d j c driver and the new
features of BMZFONT version 3.0, some remarks
have to be made on the different colour models we
have to deal with in the real electronic world. The
most important and mostly used models are based
either on the primary colours red, green and blue,
or on cyan, magenta, yellow and black.

The RGB-model. The colours red, green and blue
are used for phosphorescent surfaces to produce
mixed colours, a technique used in colour monitors.
The following diagram shows what colours result
from overlapping areas of fully saturated primary

An easy solution. The starting point of the project
was a driver program for a dot matrix device Digitized pictures mostly use the RGB model by

and a program which could separate colours of a storing the colour of the pixels in three bytes, each

The driver program was dvi dot, written by representing the intensities of the primary colours

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 223

Friedhelm Sowa

in the range between 0 and 25 5, where 255 means The effect of mixing the primary colours of the
a full saturation of the colour. Some economical CMY-model is demonstrated by a diagram similar
picture formats use up to 256 colours by using a to the one above, for the case of full saturation of
pixel index to a palette of such colour triplets like cyan, magenta and yellow:
PCX or GIF. Others like TIFF or TIGA use 24 bits When producing the four hfferent separations
for each pixel and can reproduce up to 16,7 million of a colour picture, screens of different angles
possible colours. should be used to avoid moire effects. The common

angles are 0" (yellow), 15" (magenta), 45" (black) and

55" (cyan).

Colour separation with BM2 FONT

The way it works. To generate colour separations
of a picture with BMZFONT, it was necessary to

extend the program with the following features:

converting RGB-colours to the CMYK colour
model;

correcting ink impurities;

extracting the common black component of the
colours.

Figure 1: additive colour mix The intensities of the complementary colours

are calculated by subtracting the saturation of
The CMY-model. The primary "lours ma- red, green and blue from 255, which means full
genta and yellow are used for reflecting surfaces llke saturation of ths colour:
paper. Depending on the t e c h q u e of a printer it

is more or less difficult to position spots of primary cyan = 255 -red

colours on paper w i t h a limited area to achieve a magenta = 2 5 5 - green

good quality picture. yellow = 255 - blue

Figure 2: subtractive colour mix

The first problem is the saturation of the colour
mk, because full saturation produces colours that

are too intense. So usually a colour saturation of
about 60% is used for printing each primary colour.

The second problem is that areas of overlaying
primary colours do not produce a solid black but a

colour that looks hke a mixture of dark brown and
green. So in practice black mk, which extends the
CMY-model to a CMYK-model, is used in addition
for printing colour pictures.

This is done in BMZFONT3.0 for all bitmap

formats, which come with a colour palette, and for

TIFF files with RGB triplets, representing up to ZZ4
possible colours.

Correcting the impurity of the ink used is
a very device dependent task. The process is

known as Undercolour Removal. It removes a part

of yellow intensity under magenta and partially
magenta under cyan before finding out black:

cyan = cyan - r,magenta
magenta = magenta - ryyellow

BMZFONT uses 0.3 both for ry and r,, but
further versions will read those values from the

command line, because colour printers different

from the HP DeskJet 5xxC might need other values
to get good results.

The blackness of the pixel colour is the min-

imum value of the new CMY triplet (see figure 2).
T h s blackness now has to be subtracted from the

calculated primary colour intensities. The last step

is not yet implemented in BMZFONT, because its

effect depends on the generated screens, whose
angles are dfferent from those mentioned before.
As the current solution gave good results on the HP

224 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Printing colour pictures

DeskJet printers, we released this version without
implementing another routine, which still has to be

tested for different devices.

All this is done in bfferent runs, where the

actual colour is given by the -k option on the
command line. Each run produces one picture in
the selected colour as one or more TEX fonts, which
are to be overlaid in the document. Former versions

of BM2FONT deleted the white space around the

rectangle containing the picture, whose corners are
determined by the first significant black pixel. This

feature is not useful for colour pictures, so it should

be switched off by using the - j option.

Input for TEX. The main input for TEX and the
driver programs is created by BM2FONT in the

form of the . t f m and . pk files, while the input
files, generated in each run for the primary CMYK
colours, construct the picture in the document.
Unlike halftone pictures, where we deal with black

and whte pixels on paper, we now have to tell TEX,
to write into the dv i file, which colour is to be used

when printing the single parts of the colour picture.

This is done by a \specia l command, similar
to the one which is defined in the co lo rdv i -

package, created by Jim Hafner and Tom Rokicki:

\speci a1 {co lo r push #1}##1

\speci a1 {co lo r pop}

Here we have in # 1 the colour, for example
"Apricot", and in # # I the text that is to be printed

in the desired colour. The dvips driver uses the
file co lo r .p ro to tell the Postscript device how to

produce this colour \Apricot:

/Apr i cot10 0.32 0.52 0 setcmykcol o r }

For efficiency reasons we b d not implement
inside the d v i d j c driver a routine to read a de-
vice specific colour description from an ASCII file.

Instead, the driver was supplied with a mobfied

macro file c o l o rd j c . tex/sty , knowing that this

was not the final solution. The difference is, that
instead of the name of the colour the intensities

of the primary colours cyan, magenta, yellow and
black are written into the \speci a1 literal, while

the new colour is defined as

\newcolor Apr ico t {O 0.32 0.52 0 }

The current version 3.0 of BMZFONT provides
no special TEX code to typeset colour pictures. This

code is contained in the co lo rd j c file. There
a macro \l oadcmykpi c [# l , #2, #3, #41 is defined,
which loads the descriptions of the coloured screens

into the document. Then the complete picture is
positioned within the text by using the command

\cmy k p i c C pic, , pic,, picYI p i c b l

A framed picture can be typeset by using the

\fcmykpic command. Both commands expect in
pic, the names of the pictures, whch are defined by
the -f option in each of the four runs of BM2FONT.

The macros are written under the assumption,

that a transparent imaging model is used, rather
than an opaque imaging model. The opaque model

replaces within the desired area on the page any

colour, which was printed before, whde the trans-

parent model overprints the already coloured area.
So it is possible to get mixed colours simply by

overlaying the four planes of the picture in order
to generate the final composite image. The original

TEX does not know anythmg about imaging models,
because it only expects black ink on white paper.

But using colour for typesetting text as well as
graphics requires the choice of an imaging model

with respect to driver programs. Later on this
problem will be discussed in connection with future
developments.

The complete process for creating and typeset-
ting a colour picture could look like the following,

starting with the colour separation

Inside the TEX document one should add the follow-
ing commands

\l oadcmykpi c [p i cc, p i cm, p i cy , p i cb l

\f cmykpi c [p i cc , p i cm , p i cy , p i cb]

It is important to mention that the colour

macros used for typesetting colour pictures are the

same that are used for typesetting colour text, when
they are expanded by TEX. This means for the usage
of a dv i d j c driver, that we get the mixed colour

of green in areas where two overlaying components

of text in the primary colours cyan and yellow have
coloured pixels at the same position.

The dvidjc-drivers

The old dv i dot driver program, developed by Wolf-
gang R. Miiller at the Computing Centre of the

Heinrich-Heine-University, had to be extended by

code to interpret the literals of the \speci a1 com-
mands, which are written into the dv i file when

using the macros of the co l o rd j c style.

i f (memcmp(comment, "co lor " , 5)){
f p r i n t f (p ro t , "specia l ~ % s < < ignored", comment) ;
re turn ;

I
parm = comment+6;
i f (!memcmp(parm, "pop", 3)) {

TUGboat, Volume i 5 (1994), No. 3 - Proceedings of the 1994 Annual Meeting

Friedhelm Sowa

parm +=4; c o l s t - ;
i f (co l s t < 0) {

The monochrome version converts coloured
areas withn the bitmap of a page into different

c o l s t = 0;
f p r i n t f (prot , " co lo r stack underflow") ;

I
I

e lse {
i f (!memcmp(parm, "push cmyk", 9)){

parm +=lo; colst++;
i f (c o l s t > smax-1) {

c o l s t = smax-1;
f p r i n t f (p r o t , " co lo r stack overf low") ;

I
I

i f (sscanf (parm, "%l g%l g%1g%1 g" ,
&cy,&ma,&ye,&bl)<4){

f p r i n t f (p ro t ," co lo r : cmyk values <%s>
incomplete ",comment);

r e t u r n ;
1

levels of grey. Colour versions distinguish between
the additional avadability of black mk or the primary
colours cyan, magenta and yellow. In the latter case,
black - or better a very dark colour - is produced
by printing overlaying pixels in primary colours.

Of course good colour reproduction depends
on the printer, its resolution, the purity of the ink,

and on the kind of paper. All those factors influence
some parts of the program:

the generation of printer control sequences;
the allocation of memory for colour bitmaps;
the positioning of the threshold values for

intensities of the primary colours.

The necessary code is written in the hardcopy pro-
I

cedure or preceded by a #i fdef DJCOLOUR, D l 500C
This code handles the most simple case, where

or 550C. We mention this to invite everybody to
text has be printed in a given mixed

extend the dvi djc. source to support printers
colour, which is made of CMYK intensities. Those

other than the HP DesNet.
intensities are defined by the \newcolor macro. In the future the information about the CMYK
So the driver program knows how to handle the intensity of a colour like should
operation codes, enclosed by color push cmyk be read from a device specific instead of getting
and color pop. that information by a \special command when

Colour production. Producing the desired mixed readmg the dvi operation codes. So the dvi file

colour by the dvidjc driver is relevant only for contains a color Apricot and the description file

printing coloured text, not for colour pictures. The specifies how the mixed colour "Apricot" is realized

screens made by BMZFONT already have the cyan. on that device.

magenta, yellow or black pixels at those positions,
where for example a blue sky or a red nose should
be shown. Producing mixed colours for text is a
task which has to be done by the program.

This is implemented by defining a 4 times 4
grid for each primary colour, which contains in
certain positions a threshold value, that inhcates
whether a pixel is to be coloured or left white. This
maskrnat table is used to generate the bitmap for
the current primary colour. The colour intensity is
transformed to a value between 1 and 16, then a
mask is generated with bits turned on in positions
where the transformed intensity is less than the
threshold value. The colour bitmap is then built up
by switching on the bits which are black in both the
mask and the originally black bitmap of the page.
Color Example 11 shows the result of that process.

Different printers. The available dvi d j c dnver,
released in January 1994, supports the colour W
DeskJet printers 500C and 550C and all mono-
chrome printers with PCL support. When compiling
the source it depends on a compiler definition,
specifying the printer, to be supported by the
generated program.

Previewing. The dvi d j c driver package contains
a previewer dvivgac for MS-DOS, whch supports
colour output. The driver starts in halftone mode,
showing in the left part of the graphics screen the
first page selected in the document, while in the
right screen information about the usage of the
program is given. When pressing a cursor key a
rectangle appears on the left, showing the area of
the page, which is magnified on the right.

Color Example 12 shows the hardcopy of a
screen corresponding to the titlepage of the dvi d j c
documentation.

The next step

One of the next jobs wdl be to make the colour
driver more generic as mentioned before and to
distinguish between different imaging models. The
authors of the package can not do this on their own.
The result of further efforts will be a summary of
the work of other people with access to different
colour printers, with programming experience and
some enthusiasm for TEX.

The most important job for the future can not
be done only by hacking code. Writing a colour

226 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Printing colour pictures

driver requires a complete recommendation how to The conversion of graphics into an easy to

include graphics, both monochrome and coloured, handle rectangular box consisting of characters, is

into a TEX document. In spite of the fact that the an advantage compared to existing DVI drivers.

described method works, a standard is necessary, But t h s method makes it impossible for colour

because there are some problems left. supporting drivers to distinguish between text and

Problem with Postscript. The Postscript colour

model works under the default assumption that a

coloured region on the page is printed after the

colour in an overlapping part of another region is
removed. T h s knockout mode is unknown to the
HP DeskJet printers, and was the reason why the

first attempt to check the compatibility between the

dvi d j c drivers and the combination of dvi ps and
ChostSc r i p t was discouraging: the pictures looked

ugly, cyan text within a yellow box was not green.

But reading the Postscript manual helped.
Simulation of knockout mode can be done by

TEX, to achieve compatibility. If, for example, a

yellow coloured text is to be printed inside a cyan

box, then the text simply has to be positioned by
using the colour \White before using the yellow

colour. This was the cheapest method for the
dvid jc drivers to simulate an opaque imaging

model.

This example should also make it clear that over-

print mode is not useful when using colours with
equal intensities of primary colours.

Anyway it is advisable not to mix the ink of a

region containing text and the ink of a background
area of the text. Overprinting that region would
not produce the desired colour for the text. But
what is correct for text is not necessarily correct

for pictures. Here we need mixed colours, when the

screens for the primary colours are overprinted.

A solution for that problem could be a \spe-
c i a1 , that tells the driver to switch into overprint

mode or back into knockout mode. A probably bet-
ter way could be to design a graphics interface, that

enables driver programs to get Information about

the kind of picture included. Dependmg on the
characteristics of the included graphic, the driver

could switch to the appropriate mode automatically.

Problem with BMZFONT. The main &sadvantage

of BMZFONT is the usage of TEX fonts to include
graphics into a document. This is the reason why
the number of pictures printed in a document is
limited. When printing colour pictures, up to four
times more fonts than for a monochrome picture

are generated.

graphcs. A solution by marking that part of a

page with enclosing \speci a1 commands would be

contrary to the aim of BMZFONT to print included

pictures with any device driver.
It looks like the expansion to colour support

signals the beginning of the end of BMZFONT. We

are conftdent that the long standmg demand of a

graphics standard and the problems connected with
global colour support in TEX will lead to a solution

that is similar to the one adopted by the driver

family of the emT@ package and by dvi ps. External
files will contain the graphics, and the typographic

information like metric and colour will be derived

from a description file.

Colour Pictures

Color Example 9 shows the locations of European

home pages in the World Wide Web (WWW). The pic-

ture comes from //s700. u m i nho. pt/europa. html.
Color Example 10 is a picture of the campus of

the University of Dortmund, Germany, while Color

Example 11 shows the same picture separated in its
four colour components cyan, magenta, yellow and

black.
Color Example 12 is a screen dump of the

dvivgac previewer in colour mode. The original

picture was scanned from page 304, The T m o o k .

Colours were added with the Xpai n t program.

Bibliography

Clark, Adrian F. Practical Halftoning with TH,
TUGboat 12 (I), pages 157-165, 1991

Hilgefort, Ulrich, Farbe aufs Papier,

c't 4, pages 132-139, 1994.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Color Book Production Using TEX

Michael D. Sofka
Publication Services, Inc., 1802 Duncan Road, Champaign, IL 61821 USA

mi ke@psarc. com

Abstract

When typesetting a color book the goal is to produce a separate printer plate for
each of the colors. The process of splitting the printed output into separate plates
is called color separation. There are two color separation methods commonly
used. Custom color separation selects colors from a standard pallet. A different
plate is created for each color in the book. Process color separation separates
the colors into the subtractive color components cyan, magenta and yellow, and
creates a separate black plate by a process called undercolor removal. These four
plates are used by a printing press to mix the colors on paper when the book is
printed. Color separation is a more involved process than simply assigning RGB
values to a desktop color printer. This article addresses the issues of professional
color separation, and demonstrates how TEX with a suitable dvi driver can be used
to produce quality custom and process color books.

Introduction printer2 is two sets of negative film or camera-ready

There has been recent interest in using color with
TEX. This is evident by macro packages such as Foil-
TEX (Hafner 1992), the discussions about color on
NTS-L (New Typesetting System List), and the new
standard color support in LATEX^^ (Goossens, Mittel-
bach, and Sarnarin 1994). This interest was most
likely initiated by the availability of low cost desktop
color printers, and the desire to make use of these
printers1 with TEX.

Foil-TEX, W X color styles, and other macro
packages provide an easy way for the owners of desk-
top color-printers to use color with TEX. Their goal is
a simple method, using macros and specials, to se-
lect color output on a desktop printer. This is dif-
ferent from what is required in color book produc-
tion. When typesetting a color book the goal is to pro-
duce separate plates for each color used by the print-
ing press. An example Mrlll help to clarify this. Imag-
ine that you are typesetting a book that will have red
section headings. The final product required by the

' There are unfortunately 3 potential uses of the
word "printer" in this article. To avoid confusion, I
wdl use the term desktop printer to refer to a low res-
olution device, color or otherwise, which is used to
print files. The term printer will refer to a person or
corporation that prepares printing press plates and
uses those plates to print books. Finally, imageset-
ter will be used to describe a high resolution printer
that images to photographic paper or film. An im-
agesetter is also called a typesetter, but I will use
that term for a person who sets type (electronically
or otherwise).

copy.3 The first set will be the "black" film, which
contains only the black text. The second set wdl be
the "red" film and will contain only the red section
headings. But, both sets of film will be printed on a
black and whte imagesetter because it is the respon-
sibility o f the printer to provide the correct color ink
to the printing press.

The process of dividing the pages into separate
printer plates is called color separation. Color sepa-
ration is a more involved process than assigning RGB
values to a desktop color-printer. The question ad-
dressed by this article is: "can color separation be
done with TEX?", and the answer is: "yes, with an ap-
propriate dvi driver." At Publication Services we have
been typesetting color books in TEX since 1987. In
1993 we typeset our frrst process color book. This
was done using a collection of specials that provide
information about the current color, its type (process
or custom) and its marking model, or how the color
interacts with other colors placed on the paper un-
derneath it.

The person who makes plates and runs the
printing press (see footnote 1).

Film is clear acetate which is used to expose
plates for an offset printing press. Fllm is printed
with a negative image, that is transferred once to
produce a positive plate. Camera ready copy, or
CRC, is photograplc film exposed by an imageset-
ter. Before transferring to a plate, a negative must
be made of CRC. Because of the loss of quahty when
shooting the negative from CRC, negative film is usu-
ally requested for color books.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Color Book Production Using TEX

This article will explain the color separation pro-
cess and describe how TEX can be used to support
electronic color separation. It will concentrate on the
PostScript color model, and the quality control steps
necessary to ensure good color reproduction. Some
of the common mistakes made by authors attempt-
ing their own color separation wdl be discussed, so
pay attention.

The PostScript Color Model

The PostScript page description language (Adobe
Systems 1990) has become a de facto standard in the
publishing world. For this reason I d l be discussing
color separation assuming the PostScript imaging
model. The general principles, however, apply to any
color separation, and we have typeset custom color
books using Cora (Linotype 1988).

An important element of the PostScript imag-
ing model is that all marlung is opaque. That is, any
mark placed on the page will completely cover (re-
move) any existing marks it overlaps. This applies
equally for solid characters and rules, and for tinted
regions. Not all imaging devices work this way, and
any attempt to color separate non-Postscript out-
put must take into account the page description lan-
guages imaging model.4

Adobe defined a series of commands for set-
ting color in PostScript. Some of these commands
are now built into level 2 PostScript, but others are
conventions defining how to interpret other com-
mands. If you are preparing PostScript files for
color separation you should familiarize yourself with
these commands and conventions. They are listed in
Adobe Systems (1989), and updated (and simplified)
in Adobe Systems (1990).

Custom versus process color separation. There are
two methods of color separation used in book pro-
duction. These wdl be referred to here as custom
color separation and process color separation, al-
though the terminology used by other typesetters
and by printers may vary. Custom color separation5
is the process described in the introductory exam-
ple. Each element of the book design is set in a spec-
ified color. Each of these colors is printed on a sep-
arate piece of film. The colors themselves are as-
signed based on standard color references similar to
those used to select house paints. One common ref-
erence for custom colors is the Pantone system (Pan-

The imagesetter language Cora, for example, as-
signs priorities to overlapping tinted regions. The fi-
nal marks are those of the region with the highest
priority. Cora also allows the specification of dif-
ferent tint and pattern values for the intersection of
regions.

Custom colors are often called "spot" colors in
desktop publishulg and drawing programs.

tone 1991, Pantone 1991). Pantone sells standard ap-
proved color charts, and inks. A book design, for ex-
ample, may ask that Pantone 231 (a light red) be used
for all section heads. The typesetter's task in this
case is to provide two negatives for each page, the
printers job is to prepare plates from these negatives
and select an approved Pantone 231 mk for the color
plate. If late in the typesetting process the the pub-
lisher changes the design to use Pantone 292 (light
blue) instead of Pantone 231, the printer can supply
a Pantone 292 approved ink. The typeset negatives
and the prepared plates d l not have to be changed.
A small sample of Pantone colors can be found on
color plate 1.33 of Foley, vanDam, Feiner, and Hughes
(1990). If you look up plate 1.33 you d note that
the actual names are obscured since the colors repro-
duced in that book are not Pantone colors.

With process color separation each color is sep-
arated into cyan, magenta, yellow, which are the sub-
tractive color components. Black is supplied by a
process called undercolor removal which removes
equal amounts of black from cyan, magenta and
yel10w.~ Thls is done to provide a better, well reg-
istered black. (Imagine how a book would look if all
the text was composed of three layers of ink.) The
final result is referred to as CMYK color.

Process separation is a more difficult process be-
cause of the need to have correctly cahbrated colors.
With custom colors the printer is responsible for sup-
plying the correct ink. With process colors, on the
other hand, the typesetter's job is more difficult be-
cause correct color balance wdl depend on the qual-
ity of negatives supplied to the printer, as well as the
quality of ink provided by the printer. The final type-
set output of a process color book is four negatives.
Each negative represents one of the cyan, magenta,
yellow or black components of the book. The ink will
be mixed on the paper by the printing press. Process
color is also called four-color, and the two terms are
synonymous in this paper.

In order to provide the correct color mixture the
negatives will have screened regions corresponding
to page elements. A screen is an area of shachng that
provides a percentage of the required color. For ex-
ample, an orange-red can be printed using 0% cyan,
30% yellow, 70% magenta and 0% black. The four neg-
atives must reflect these percentages. In the case of
the cyan and black negatives, the color region will be
black because no cyan or black mk is required. The
yellow film however, will have a screened area that is
approximately 30% filled, and the magenta film wrll
have a screened area approximately 70% filled.

This method of undercolor removal can flatten
colors and result in too much black on the final
print. In practice color balance must be checked and
adjusted as needed.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Michael D. Sofia

In order to have accurate color output with pro-
cess colors it is necessary to calibrate your imageset-
ter to produce the correct screen percentage. Color
calibration is notoriously chfficult because of the lim-
itations of color monitors, the screen patterns gen-
erated by different output devices, and the absorp-
tion properties of the paper. Each of these will be
addressed below.

Knockout versus overprint. Another important
consideration when separating colors is deciding
what happens when one color is placed under an-
other color. The two possibilities are that (1) the first
color is removed before the second color is placed.
This is called color knockout. The second possibil-
ity is that both colors print, which is referred to as
overprint. When designing a book, writing macros,
or worlung on a figure it is important to know which
action a color should take. For process separation
the default assumption is that the four separations
(cyan, magenta, yellow and black) set overprint. Ths
makes perfect sense since the goal is to mix the ink
on paper. For custom color separation, however, the
default is that custom colors knockout any element
set under them. Again, this makes sense when you
consider what a custom color represents. A custom
color is an industry standard color selected by the
designer of the book. Mixing a custom color with
any other color d l change its appearance from that
of the standard.

There is an exception to the general rule that
custom colors set knockout. A duotone is a custom
color used as a process color. The effect is to mix,
for example, Pantone 292 with black to create a va-
riety of colors from pure tone Pantone 292 to pure
black. Once again, the intended effect is to mix col-
ors on the paper so the colors must set overprint. In
this case, however, the custom color is being used as
a process color, and in practice such books are pre-
pared as process color books with 0% yellow and ma-
genta components.

Recall that the Postscript model assumes knock-
out colors by default. Dependmg on how your files
are separated this could work for, or against you. If
the separation is done by manipulating the Postscript
color-space (see Rahtz and Goossens, these proceed-
ings) then knockout and overprint can be set via Post-
Script commands. Ths is the approach Adobe uses
in their Separator program. If, on the other hand,
some macro or driver manipulation is being used to
remove a color during printing (for example by shift-
ing it off the page) then a page element previously
knocked out will now print. Ths approach effec-
tively sets all colors to overprint. Similarly, if sep-
aration is done by simply changing the Postscript
setgray value then all colors are effectively set to
knockout.

Ink order. When preparing color separated output
it is often important to consider the order in whch
colors will be applied to paper by the printing press.
There are three rules to remember: (1) black is set
last on the press, and (2) yellow is very light and
tends to get lost in darker colors, and (3) black d l
effectively cover most other c01ors.~

Applying these rules we see that if, for example,
yellow text is being set on a solid black box the yellow
must knockout the black in order to be visible in the
final book. If black text, however, is being printed
on a solid yellow box, the black does not need to
knockout the yellow. In fact, it is preferable to have
the black overprint the yellow to avoid problems with
trap (see below).

Technical Difficulties.

The task of color separation is conceptually very sim-
ple, but in practice can be fraught with difficulties.
Most of these difficulties stem from the process of
re-integrating the separated plates. In order to print
color books the process of applying ink to paper
must be understood. Many of the problems that can
occur with this process are under the direct control
of the typesetter. . .

Registration. Once the separations are made it is
necessary for the printer to realign them correctly
on the paper. This process is called registration, and
it is a subtle point that is often missed by authors
preparing their first color separated book. In order
for the printer to be able to re-align separated output
the output must include registration marks. These
are alignment marks that are printed on every page
regardless of color. By aligning the marks a correct
composite should be obtained.

Registration also refers to the quality of align-
ment in the separated output. Obviously, the regis-
tration marks should set in the same position on each
page, but less obvious is the effect that image setter
capability and film quality can have on registration.
Some imagesetters are rated for color by specifying
the repeatability of the output. The repeatabhty is
usually specified as the difference between negatives
(in mills), and the time frame over which the repeata-
bility holds. That is, if a negative is printed on the
1st of the month, how likely is it that the registration
wdl be w i t h 1 / 10 mill if the negative is reprinted at
the end of the month. Registration is also affected
by the weather. This is because the acetate used for
negatives will stretch or shrink slightly as the hu-
midity changes. Maintaining a constant work envi-
ronment is therefore important for good registration,

The press order is usually yellow, followed by
cyan, then magenta and black. If an additional
layer is being applied it may be set earlier or later
depending on the design.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Color Book Production Using TEX

black frame. ~ h s k i l l not work for figure lb, whch
requires special support for trapping font characters.

Figure 1: Examples of trap. (a) Red screen over Screens. Perhaps the single most important techni-

black. (b) Red character over black requires knock- cal difficulty with color separation is screens. A

out and character trapping code. screen is a area of the paper that is not 100% filled
with ink. The term tints is often used, and you can
observe the effect of screening by using the Post-

and some imagesetters include humidity and temper- Script setgray command. When setting a photo-
ature control units to maintain repeatability. graph the screen is called a halftone. Screens are

Tagline. To keep track of each color of each page the
printed negatives should all contain identifying in-
formation. Thls is called the tagline, and it can go a
long way towards avoiding confusion. The taghne is
less important for one-color books since most pages
will have a folio (page number). Color books, how-
ever, will have one or more colors printing without a
folio. Some pages, in fact, may be completely blank
except for the tagline and registration8

Unless you have actually tried to keep track of
several hundred pages of negatives (in a shop that is
printing more than one book) it is difficult to appreci-
ate how important taglines are. The usual procedure
followed by printers if they receive a page without
a tagline is to return it. A tagline should include at
least the folio and color. Some identifying name or
title will help avoid confusion with other books.

Trap. Registration is only one aspect of realigning
separated plates. Since the output of TEX is speci-
fied in scaled points, and imagesetters print at 2540
dots per inch or more, a high degree of registration
is possible. But, there are cases where exact registra-
tion is not wanted. When setting elements in differ-
ent colors next to each other (elements that will sep-
arate to different plates) it is necessary to provide a
small region of overlap to prevent the whte paper
from showing through. Ths area of overlap is called
trap. Trap is usually specified in d s , with 3 4 1 s
being a typical value. It is not a large area of overlap,
but it is important.

An example requiring trap can be seen in fig-
ure la. The figure sets a region of Pantone 231 (red)
over a region of black. Even the most exact press

Blank pages are required to build the imposition.
The printer has no idea what belongs on each page
of an imposition and missing pages can cause con-
fusion, delays and errors.

used to create a region where color is not fully satu-
rated. Ths is done by setting a pattern of dots whch
partially fill the region. The reason for using dots is
that desktop printers, imagesetters and presses ei-
ther place a dot, or they do not. There is no mix-
ture of, for example, cyan and white ink to dilute the
color.

W e setting a screen in Postscript is simple in
principle, in practice it requires special equipment
and attention to detail. Desktop printers are inca-
pable of setting correctly screened output. Ths is
a limitation of their marking engines-300 or 600
dots per inch is just not enough dots to provide good
screens. In addition, the paper and toner used by a
desktop printer have too much dot-gain (see below)
to present an accurate screen.

Postscript screens are a printing device depen-
dent feature. That is, the method by whch a screen
is set is not defined in the Postscript language. This
was most likely an intentional design decision since
the best method of setting a screen wdl depend on
the qualities of the marking engine and print me-
dia. In addition, screen generation is an active area
of research, and each imagesetter company has its
own brand of screening technology for sell. Screen
type and quality is a very important consideration
when purchasing an imagesetter-perhaps the most
important consideration when printing separations
for a process color book, because bad screens equal
bad process color.
Screen attributes and types. Different imagesetters
are sold with different screen types installed. Be-
fore discussing the types of screens avadable we
need to understand how a screen works. In Post-
Script the setscreen command is used to change de-
fault screen qualities. It takes three arguments: fre-
quency, angle and procedure. The frequency is how
many h e s per inch are represented in the screen.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 231

Michael D. Sofka

Figure 2: Examples of the effects of frequency
and angle on screens. (a) Screens differ only in
frequency. (b) Screens differ only in angle.

For example, in figure 2a the two screens differ only
in frequency. The angle is the angle of the lines com-
posing the screen. The screens in figure 2b differ
only in angle.g Finally, the procedure defines a func-
tion to determine the order in which halftone cells
are filled to produce the desired shade of gray.

Not all combinations of frequency and angle can
be set by an imagesetter. The actual values sup-
ported vary with screen type (the procedure) and the
resolution of the marking engine. The best output
is usually obtained for only a subset of the possible
values. In addition, the printer may request a partic-
ular range of frequency for best pickup whde mak-
ing the press plates since too high a frequency may
not transfer, or may result in dot-gain. The best ad-
vice to offer an author preparing color separated out-
put is to not use the setscreen commandunless you
know what type of imagesetter ulll be used to print
the film, and only after conferring with the operator
of that imagesetter.

Because of PostScript device limitations the
screens of figure 2b may differ in angle and fre-
quency. The actual PostScript command requested
only that the angle be changed. This is a good exam-
ple of the device dependency of screens.

Most h g h resolution PostScript imagesetters are
capable of Rational Tangent (RT) screens. These
screens are limited to angles which have tangents
that can be represented as a ratio of two integers, and
frequencies that evenly divide the device resolution.
On imagesetters sold for color work it is common to
find Irrational Tangent (IRT) screens. As the name
implies, IRT screens can represent angles whose tan-
gent is a real. IRT screens are a minimum for process
color books, but they suffer from limitations which
result in a poor reproduction. All imagesetters sold
for four-color books have some, usually proprietary,
screen system included. The latest screens employ
stochastic methods to eliminate repetitive patterns
which result in moire. These methods are usually
built into the PostScript interpreter instead of defin-
ing a PostScript procedure with setscreen. This is a
matter of efficiency since screen calculation can con-
sume the majority of the CPU cycles in an interpreter.
Screens in process colors. If you are typesetting a
process color book, and intend to print your own
output then you will have to buy screens. There
are many screens available, and most of them come
with a imagesetter. T h s is only a slight exaggera-
tion because screen type and quality are dependent
on marking engine ability. Some companies do, how-
ever, offer screen updates to existing imagesetters.
These work by changing the Postscript procedure,
and can be slow as a result.

The reason that screens are so important for
four-color books is that process color separation re-
quires that screen areas bverprint each dther. When
this is done, a variety of undesirable side-effects may
occur. The most common problem is moire. In tradi-
tional color separation the halftone screens for each
of the colors are rotated so that the dots overlap to
form circles called rosettes (Agfa 1990, Bruno 1986).
The screen angles used are 10S0, 7S0, 90" and 45" for
cyan, magenta, yellow and black respectively (Agfa
1990). The rosettes formed are invisible to the un-
aided eye, and instead the illusion of color is created.
If the dots are not placed accurately, however, moire
will result. Moire is caused by an interference pattern
between the screens destroying the illusion of color.
Most PostScript printers (and this includes a large
number of imagesetters) are not capable of placing
dots accurately enough to avoid moire. Even with a
color ready imagesetter, special screening methods
are required since there are just not enough pixels to
create an accurate circle at the size required. Some
of the methods used are:

Oval, or other non-circular patterns which over-
lap to form larger rosettes.

Randomized noise added to the patterns to
disturb the regular interference which causes
moire.

232 TUGboat, Volume 15 (1994), No. 3 - Proceedings of the 1994 Annual Meeting

Color Book Production Using TEX

Micro-dots (very small dot patterns) that are too
small to overlap into rosettes. Micro dots can
be set in a random pattern to create stochastic
screens.
Very high resolution output. It is not unusual,
for example, to find advertisements for 5300
dot per inch imagesetters. These irnagesetters
are more capable of holding a "hard" dot (an in-
dustry term for identically shaped round dots)
in screen patterns.

Each of the above has its advantages and dis-
advantages. The most common disadvantage is
that variations on screening methods can be very
slow-especially when random noise is being added.
Stochastic screens usually suffer from larger scale
patterns caused by poor randomization algorithms
or small cell size. The result is, once again, moire.

Other technical difficulties. Moire is not the only
problem encountered with screens. The following
list of difficulties must all be overcome in some way
by the imagesetter and printer. The compositors re-
sponsibility is to provide the best possible output
that reduces problems for the printer.

Dot gain.
Dot gain is an increase in the size of a halftone

dot from the time the negative is printed by the
imagesetter until the final paper is printed by
the press (Gretag 1993). Dot gain will affect the
amount of ink transferred, from the plate to the
final paper. The factors affecting dot gain are
paper absorption, screen frequency (higher fre-
quency = higher dot gain), and ink thickness.
You can think of dot gain as the amount of
smear that takes place on the final printed book.
Processing Speed.

It has already been mentioned that some
screening methods take a lot of time to pro-
cess. It is not unusual for a simple switch from
IRT screens to a randomized oval screen to in-
crease processing time by 800% or more. When
the IRT screened page took 15 to 20 minutes
to print the slowdown for oval screens can be
significant.
Screen Models and Patents.

Many screening methods have been devel-
oped by printing and imagesetter companies
and are covered by patents. These are not
necessarily software patents since the original
patent was granted when a "screen" meant a
physical piece of acetate which is laid over a
color photo when shooting negatives. The ex-
tension of the patent to software embedded in
a RIP i s more natural than in many other soft-
ware patents. A company using patented meth-
ods without paying a license fee, or purchasing
equipment and programs from the imagesetter
manufacturer would be mfringing.

Screens and custom colors. Whde screen quality is
important with custom color books it is not as criti-
cal a component as with process colors. Usually RT
screens provide output of sufficient quality. This
is because process colors do not mix (unless doing
a duotone), and both black, and custom colors are
printed with 45" screens (whose tangent is 1/11. As
a result, screens do not overlap and interfere with
each other. It is important, however, to be able to
provide screens with a dot size (frequency) that can
be photographically reproduced when makmg press
plates. It is also important that the screen density
match the specifications, and that the density be even
within and between the screened areas. T h s is usu-
ally beyond the capabilities of desktop printers, and
publishers will typically avoid screens when authors
are preparing camera ready copy.

Color calibration. When preparing and testing pro-
cess color separated negatives it is important to
maintain correct color balance. A variety of condi-
tions can affect the final appearance of your output.
The most basic is the calibration of the imagesetter.
When a 20% screen is requested the output should be
a screen that provides 20% fill of the area after print-
ing. If you are proofing the color then all proofing
devices from monitors to printers and photographc
based proofing systems must be calibrated to pro-
vide the best color fidelity they are capable of. Fi-
nal decisions about color should not be made on the
basis of desktop color printer output. Finally, the
conditions under wbch colors are checked must be
constant to avoid metameric color matches (Bruno
1986), or other light dependent color changes. This
may require building a color proofing room with con-
trolled lighting.

CMYK color space is based on the absorption
properties of particular mks, but ink batches can
vary from printer to printer. For thls reason CIE
color-space is often suggested for internal calibra-
tion. Then standard printer samples (available from
film suppliers) can be prepared showing a match be-
tween the local color calibration and final product. If
the final color is incorrect, it can then be shown to be
a problem with the plates or printing press, and not
a problem with the negatives.

Color proofs. It is important to check color in house
before printing negatives, and to test those nega-
tives before printing the book. When labor is consid-
ered, a single page of negative film can cost $10 (US)
or more, and a page of imposed film will cost even
more. If the final printing begins without a less ex-
pensive color check (or with no color check), sched-
ules and budgets may slip, and unlucky compositors
could find themselves financially responsible for a

TUGboat, Volume 1 5 (1 994), No. 3 -Proceedings of the 1994 Annual Meeting

Michael D. Sofka

bad press run. Color proofs can also serve a contrac- Using TEX
tual purpose.1° For example, a page may be approved
for final film based on the output of a desktop color
printer, or some other color proofing method. If t k s
is the case the client and typesetter must agree on
the method to be used, and they must be aware of
the limitations of the chosen method.

The only real test of color fidelity is the final
printed book. This is because the actual colors will
depend on the ink batch, paper, and press cahbra-
tion. It can be expensive, however, to setup a press
run for color testing. A variety of methods are avail-
able, therefore, to check color before the press. In
general, there are two broad classes of color proof-
ing systems-those that test the Postscript files, and
those that test the negatives. Each has its place in
that it is less expensive to catch errors before print-
ing film, and before using that film to print a book.
Postscript files can be checked using a color monitor
or color desktop printer. Depending on the type of
color being used, negatives can be tested using blues
(ultraviolet sensitive paper exposed through nega-
tives), cromalin (dry power colors), photographic pa-
per exposures, or other systems. Each of these color
proofing methods has its own tradeoff in cost, time
to prepare proofs, and the quality of the proofs.

There are two reasons for color proofing. The
first is for color breaks. That is, testing that each ele-
ment is in the correct color. For custom colors this is
usually all that is required, and desktop color printer
output is often accepted as proof that the file's col-
ors are correct. Likewise, blues or visual inspection
can be used to check that custom colors were sepa-
rated correctly to the final negatives. Grayscale desk-
top printer output can also be used if each color is
printed at a different tint percentage, and separated
grayscale output can be used to check the separa-
tions. It usually requires some negotiation, however,
for clients to accept grayscale output as a color proof.

Process colors must be tested for both color
breaks, color fidelity, and moire. This usually re-
quires that the negatives be tested using cromalin or
photographc processes. There are, however, desk-
top color proofing systems that send separated files
to a color desktop printer. These systems allow for
moire to be checked before printing negatives, and
provide near photograpkc color output for check-
ing fidelity. All of these systems, however well cal-
ibrated, do not provide perfect proofs. Once again,
the only true test of final color is a press run using
the same quality materials that will be used in the
book.

lo Thank you to an anonymous reviewer for
pointing out this fine point of client typographer
interaction.

After considering the above the obvious question is:
"can TEX be used for professional color book produc-
tion?" The answer is yes, but it requires dvi driver
support, and the typographer should be aware of the
procedures involved in plate makmg and book print-
ing. First, be aware that most imagesetter manu-
facturers, and consumable suppliers urlll not know
about TEX so you can expect little t e c h c a l support
when printing. On the other hand, most of the actual
problems with color calibration, moire and dot gain
are common to all color separation electronic or man-
ual, with or without TEX. If you buy an imagesetter
you are also buying expertise in its use. Use your pur-
chases to leverage help. Second, many of the issues
of color fidelity and moire apply more often to pho-
tographs than the typical TEX element. Solid color,
however, is not immune to moire and the effect looks
very bad in printed books. In addition, the colors
used in TEX may need to match those used in figures,
and small dfferences in the screens and density can
produce a noticeable difference in the final product.
Finally, color books, especially process color books,
tend to have more complex designs where text and
figure elements interact with each other. A figure, for
example, may be surrounded by a color box or head-
element that must trap with the figure. So all of these
checks and balances must work with TEX as well as
with figures and photographs.

TEX provides a powerful macro language that
can make the process of managing color elements
very easy compared to the more common desktop
systems. Adding color late in a book design, for ex-
ample, can usually be accomplished with a macro
change. Changes to the selected color can likewise be
affected by changing macros. Low resolution "place-
ment only" figures can be included by using a TEX
conditional, or via driver switches. In short, we have
found that using color with TEX is not only possible,
but that TEX helps the process by virtue of being pro-
grammable.

Specials for color. Color separation in TEX requires
dvi driver support. The specials for color separation
must convey the following mformation:

The CMYK color values;

process versus custom color separation;

knockout versus overprint marking;

foreground percentage.

The frrst requirement is obvious. The values of
cyan, magenta, yellow and black are basic to deter-
mining the final color for process separation, and for
proofing both process and custom colors. Process
versus custom determines the type of separation to
be used for a color, and knockout versus overprint
is for specifying what happens to colors set below a
new item. Note that black is a color, and the specials

WGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Color Book Production Using TEX

must keep track of when black is knockout, and when
black is overprint.

Specification and interpretation of the CMYK
values, however, change with the color model. When
a process color is being set the CMYK values repre-
sent the actual percent values of cyan, magenta, yel-
low and black ink required on the paper. A change to
these values will represent a change to the final color.
For a custom color, however, the CMYK values repre-
sent an approximation to the final color to be used
by proofmg devices, and it in no way affect the final
book color. Again, this is because it is the printer's
job to supply the correct custom ink for the press.

The above is an important point that is central
to doing color separation correctly. When specify-
ing a color the goal is to provide the best possible
quality in the final printed book. But, the values of
CMYK whch produce the best book color are unlikely
to produce the best desktop printer or monitor col-
ors. When printing custom colors t h s is of no con-
sequence, but when printing process colors it has
a number of consequences that can affect the final
product. Process color separation shfts the respon-
sibility for good color from the printer to the type-
setter. A good color special, therefore, may provide
different values of CMYK for final separation ver-
sus composite proofing. In fact, different values of
CMYK may be required for each output device that
might be used to proof the pages.

One approach to selecting the correct custom
color CMYK values is to use a standard set of color
names based on the Pantone color charts. The special
would then specify a color name whch keys the cor-
rect CMYK values. A different CMYK value would be
required for each printing device. For process colors
the task is slightly more difficult since there generally
are no standard names. A local file whlch provided
generic names such as "light-green", with the correct
CMYK values for each device can be used instead. Al-
ternatively, the special can store a set of CMYK val-
ues, with one value designated the "correct" value.

Some of you may thmk: why not use TEX to de-
fine a conditional whch selects the color value. We
have done ths , but the problem we encounter is that
the resulting dvi file is device dependent, and would
have to be re-T~xed with the correct flags in order
to produce correct printed output. This has resulted
in a lot of lost time and material, and we avoid such
device dependencies whenever possible. When they
cannot be avoided, a "printertype" special is used to
tell the driver whch printer the dvi file is prepared
for. A mismatch in printertype aborts printing. Thls
is slightly inconvenient, but much less inconvenient
than printing 100 pages of incorrect output (at 1-20
dollars per page depending on output device).

The default value of knockout and overprint dif-
fer for process and custom colors. This is because

Figure 3: Back text set on a red 30% screen. Since
black prints last, and is dark, it can overprint the
screen without trap.

custom colors are defined based on standard color
charts and inks so it is undesirable to mix them on
paper with any other color. Process separations,
however, are supposed to mix on the press. Ths
does not mean, however, that custom colors should
always knockout and process colors should always
overprint. When trapping with a custom color, for ex-
ample, it is necessary to overprint. Lkewise, it may
be more convenient to knockout a section with a pro-
cess color (which must then be separated into over-
printing CMYK values), than to typeset around the
knockout (see figure la). A way is needed, therefore,
to change the default behavior of a color.

Finally, the foreground percentage determines
if a color is set at 100% of its stated value, or at
some lesser percentage. A custom color may be set
at 100% value which means that the negative will
be clear where the Custom color should set. Just
as often, however, the custom color may be set at
some percentage of its value. For example, in figure 3
the black text is set over a 30% screen. The screen
is a custom color (and the black will overprint so
that trap is not necessary). When setting a custom
color at a reduced percentage a new color cannot be
used since it would then separate onto a different
negative. That is, if we are setting Pantone 231 at
30% we want both the solid 100% Pantone 231 and the
30% Pantone 231 to separate to the same negative.
We need a way, therefore, to change the foreground
value at which any rule, screen or character will set.

Process colors can also be set at a reduced per-
centage. This does not affect the separations since all
process colors will be split into CMYK components.
The changed foreground, however, will change the
resulting CMYK values, and the method used should
provide good output. Often a direct percent reduc-
tion will suffice, but special settings may be required
depending on how the proofs look. A red, for exam-
ple, may appear too pink at a reduced percentage and
a new color balance may be chosen.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Michael D. Sofka

The specials. In the dvi driver dvi ps82 used at Pub-
lication Services we make use of the following spe-
cials to define and use colors. All of the specials fol-
low a simple syntax of <name> <arguments>, where
the <arguments> are <key>=<value> pairs. Stan-
dard commands whch accept any TEX unit of mea-
surement are used to read dimensions from specials.
These commands convert the values into scaled
points for internal processing.
DefineColor. The Defi neCol o r special is used to
provide an internal symbolic name for a color and
it establishes the CMYK values, model and overprint
value. It can also define a tint value to be used when
printing on a gray-scale desktop printer. The format
of the command is:

Defi neCol o r
<name>=[color(<c>,<m>,<y>,<k>)

Ipms(<pantone-name>)]
lalias(<color-name>)

[separation=[process 1 custom] 1
[overprint=[true 1 fa1 s e l l
[ti ntpercent=<%>l

<name> is the symbolic name whch is used to refer
to the color from this point on. The name is set
to one of three definition types. The first provides
the cyan, magenta, yellow and black values for the
color, while the second provides a standard Pantone
name which is looked up by printer type. The last
definition defines the color as an alias of a previously
defined color. All aliases of a color will separate
together with that color, but they can have different
separation, overprint and tintpercent values.

The value of separat ion can be either process
or custom, with the latter being the default. The
overp r i n t argument defines the color as either over-
print (overpri nt=true), or knockout (fa1 se). If
the separation is process, then overprint defaults to
t rue , otherwise it defaults to fa1 se.

The value of t i n tpe rcen t is used for checking
color breaks on a gray-scale desktop printer. It is
not possible to see colors on a gray-scale printer, but
worse the colors may be metameric in gray. That
is, even though they are distinct colors, they appear
the same in black & whlte. In order to aid proofing
a ti ntpe rcent value can be specified. When print-
ing a composite to a gray-scale printer the tintper-
cent will be used for all page elements in that color.
With the a1 i a s color defirvtions different values of
t i ntpercent can be used with, for example, knock-
out versus overprint versions of the same color.
Setcolor. Once a color is defined it can be used to
change the state of the current color. Thls is done
with the SetCol o r special, which is defined as:

SetCol o r co l orename>

where <name> is the symbolic name of a previously
defined color. All rules, characters, screens and fig-

ures from this point o n d l be set using the attributes
defined for <name>.
KnockOut, Overmint and DefKnockOut. The use of
aliased colors allows the definition of knockout and
overprint versions of the same color. The knockout
and overprint values, however, can also be changed
using specials designed for that purpose. The spe-
cial Knockout sets the global color state to knockout.
All colors, regardless of their definition, will now set
knockout. Similarly Over Pri n t sets the global color
state to overprint. The special DefKnockOut restores
the color state to that specified in DefineColor.
There are also versions of these specials for setting
knockout or overprint for the next single rule, char-
acter, screen or box encountered.
SetForground. The current foreground percent can
be changed with the special:

Set Forground fg=<n>

where i n > is the desired tint value.ll The default
value is loo%, and any value between 0% (print-
ing white) and 100% (printing full color) is allowed.
Changing the foreground percent does not change
the current color. Instead, all rules and characters
are set as a <n>% screen.
Trapped and Abutted. Trapping control is supplied
by the macros:

Trapped trap=<m.n>
Abutted

where <m. n> is some dimension. When the value of
t r a p is non-zero, all rules, characters and screens
are set trapped by the trap amount. This is accom-
plished by h s t setting the element in knockout, and
then setting it a second time overprint. The over-
print is stroked by twice the trap amount. The effect
is a region of overlap between the trapped element
and anythng it prints over. Abutted is the same as
"Trapped t rap=Optm, and there are also TrapNext
and TrapBox specials to trap only the next element
or box.
ScreenR, TintRule, Tintchar. In addition to com-
mands to define and change color, overprint and
trapping a color book can benefit from commands to
set screened elements. This can be accomplished via
Postscript, but it is more efficient and easier to have
bult-in commands. The dvi ps82 driver has a variety
of commands to set screened areas (with and with-
out rounded corners), circles and characters. Each
of these commands allows a trapping specification
as well as a background percentage. dvi ps82 places
all screens defined with these specials under all char-
acters and rules. The specials are based on the tints
and patterns commands available under Cora on an
L300 imagesetter.

l1 If I were to design the system today I would spell
foreground correctly.

236 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Color Book Production Using TEX

Macro considerations. The macros that use these
specials are for the most part simple and straightfor-
ward. But, there are special considerations around
page boundaries. Earlier versions of d v i ps82 did not
keep track of the color state in effect at the beginning
of each page. If a macro restores color after, for ex-
ample, a box then the restoration of color could ap-
pear on the next page. This caused problems when
printing selected pages, or when printing to a face
up device. The macro fix was to have the output rou-
tine save and restore all order dependent states with
each page break. Later versions of dv i ps82 perform
a preprocessing pass on the dvi file. This allowed
optimization of font memory, and the recording of
color, foreground, overprint, and so on with each
page. Pages selected or rearranged (for example, for
imposition printing) still cause problems, however,
so that the macro approach has been maintained.

This leaves only the problem of color changes
within paragraphs. If the color changes in a para-
graph, and changes back before the end, and if a page
break occurs in the color section, then the macro
based color state will be incorrect at the top of the

page. The only TEX mechanism for handling this
would be marks. T h s type of design, however, is so
infrequent that we have rarely had problems of t h s
nature.

The separation process. There are two separation
methods supported by dv i ps82. The first method
creates an separator compatible PostScript file. This
is a file that follows the Adobe conventions for color
PostScript files, and which can be color separated in
a manner similar to that used by Adobe Separator.
Adobe Separator color separates a file by including
PostScript commands that redefine setcmykcolor.
A special PostScript command is used for custom
colors so that they can be distinguished from process
colors. It also allows a custom color to be converted
into a process color, and separated into its CMYK
components. At Publication Services we have written
a UNIX version of separator that works with Adobe
Illustrator and dv i ps82 files.

The advantage of this method is that color art
can be integrated into the PostScript file before sepa-
ration, allowing art and text to be separated together.
For this to work correctly the symbolic custom color
name defined with Definecolor must match the
Custom color names defined in figures. If the names
do not match then, as far as separator is concerned,
they represent different colors. T h s can be a prob-
lem when using art prepared out of house by the au-
thor or another supplier. Hence, UNIX separator (and
Adobe Separator) allow different colors to be com-
bined onto the same negative.

The second method uses the driver to do all
color separation. This was a very easy addition to
dv i ps82 since all pages were handled in two passes.

The first pass stores all rules, characters and other
page elements in a table, which the second pass
prints. This was originally done in order to place all
screens below text (mimicking Cora), but it also made
electronic color separation easy. If an item is in the
current color it is placed in the page table. Other-
wise, it is left out. Each element stored in the ta-
ble has an associate set of attributes includmg its
current color. Process color elements are printed
tinted according the the value of cyan, magenta, yel-
low or black (depending on the requested separa-
tion). Knockout is handled by setting knockout col-
ors with a foreground of 0

dvips82 also contains a color proofing mode
whch places all elements on the page table, but tints
those not in the selected color. This is very helpful
for checking color breaks (confirming that each el-
ement is in the correct color). The tint value is the
ti ntpercent defined with the color, or 75% if no
t i ntpercent was specified.

The disadvantage of the driver based method is
that only color separated figures can be integrated.
As a result the figures must be pre-separated. Future
modifications include having d v i ps82 run the sep-
aration program on figures. For this to work all fig-
ures must use consistent color names, which is, once
again, a problem for art prepared off-site.

Summary and Conclusions.

Professional custom and process color separation
can be done with TEX and the right set of specials.
The specials listed above are what we use with
dv i ps82. They encompass some qualities that I have
not seen in other color speciais such as color alias-
ing, and support for gray-scale proofing. The use of
knockout and overprint colors is needed in order to
be able to trap correctly.

There are a variety of desktop systems that sup-
port color, so one may ask why we do not use them.
The answer is that we do when they are the right tool
for the job. Very often TEX is the right tool for the
job, and TEX can easily be extended through specials
to equal and exceed the color separation abilities of
any desktop system.

Finally, I am very encouraged by the work being
done with dv i ps and color. By adding support for
professional color separation to dvips the task of
converting an author's WX files into professional
quality negatives will be made much easier.

References

Adobe Systems Inc. Proposal for color separation
conventions for PostScript language programs.
Technical Report 5044, December 1989.

TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Michael D. Sofka

Adobe Systems Inc. Postscript Language Reference
Manual. Addison-Wesley, Readmg, M A , second
edition, 1990.

Agfa Compugraplc Division. An Introduction to
Digital Color Prepress. Agfa Corporation, 200
BaUardvale Street, Wilmington, MA 01 887, 1990.
Descriptions of color models, trapping, halftone
and screens.

Bruno, Michael H. Principles of Color Proofing: A
manual on the measurement and control of tone
and color reproduction. Gama Communications,
P.O. Box 170, Salem, NH 03079, 1986.

Foley, James D., Andries van Dam, Steven K. Feiner,
and John F. Hughes. Computer Graphics: Prin-
ciples and Practice. Addison-Wesley, New York,
1990.

Goossens, Michel, Frank Mittelbach, and Alexander
Samarin. The BTEX Companion. Addison-Wesley,
New York, 1994.

Gretag Color Control. Applied Densitometry, second
edition, 1993.

Hafner, James L. FoilTEX, a LAT~x-like system for type-
setting foils. TUGboat, 13(3):347-356, October
1992.

Linotype. Linotronic 300/500 Imagesetter Interface
Manual, 1988.

Pantone, Inc. PANT ONE^: Color Specifier 1000/
Coated. Pantone, Inc., 55 Knickerbocker Road,
Moonachie, NJ 07074-9988, 1991.

Pantone, Inc. PANT ONE^^: Color Specifier 1 000/
Uncoated. Pantone, Inc., 55 Knickerbocker Road,
Moonacle, NJ 07074-9988, 1991.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Inside PSTricks

Timothy Van Zandt
Department of Economics, Princeton University, Princeton, New Jersey USA

tvz@Pri nceton. EDU

Denis Girou
Institut du Developpement et des Ressources en Informatique Scienhfique
Centre National de la Recherche Scientifique, Orsay, France
Deni s . C i rou@idri s . f r

Abstract

The macro-commands of the PSTricks package offer impressive addtional capa-
bhties to (LA)TEX users, by giving them direct access to much of the power of
PostScript, includmg full support for color. The purpose of t h s article is to outline
the implementation of a few of the features of PSTricks (version 0.94).

Introduction 5. Nodes and node connection and label com-

When a PostScript output device and a dvi-to-ps
driver are used to print or &splay TEX files, TEX and
PostScript work together, as a preprocessor and a
postprocessor, respectively. The role of PostScript
may simply be to render TEX'S dvi typesetting instruc-
tions. However, the full power of PostScript can be
accessed through \speci a1 's and through features,
such as font handling, built into the dvi-to-ps driver.

One can divide the PostScript enhancements to
TEX into roughly four categories:

1. The use of PostScript fonts.

2. The inclusion of PostScript graphcs files.

3. The coloring of text and rules.

4. Everything else.

Most TEX-PS users are familiar with the first three
categories. The PSTricks macro package, by Timothy
Van Zandt, attempts to cover the fourth category.'

The PSTricks package started as an implemen-
tation of some special features in the Seminar doc-
ument style/class, which is for malung slides with
 LATEX^^. However, it has grown into much more. Be-
low are some of its current features:

1. Graphics objects (analogous to U Q X picture
commands such as \l i ne and \frame), includ-
ing lines, polygons, circles, ellipses, curves,
springs and zigzags.

2. Other drawing tools, such as a picture environ-
ment, various commands for positioning text,
and macros for grids and axes.

3. Commands for rotating, scaling and tilting text,
and 3-D projections.

4. Text framing and clipping commands.

PSTricks is available by anonymous ftp from
Princeton. EDU : /pub/tvz and the CTAN archves.

mands, whch are useful for trees, graphs, and
commutative diagrams, among other applica-
tions.

6. Overlays, for making slides.
7. Commands for typesetting text along a path.
8. Commands for s t r o h g and filling character

outhnes.
9. Plotting macros.

For information on PSTricks from the user's
point of view, consult the PSTricks User's Guide (Van
Zandt 1994) and the article by Denis Girou (Girou
1994) in Cahiers GUTenberg, the review of the French
TEX users' group. The latter article is useful even to
those who do not read French, because it consists
predominantly of examples. Several of these exam-
ples appear in this paper, courtesy of Cahiers GUTen-
berg.

Who can use PSTricks?

A goal of PSTricks is to be compatible with any TEX
format and any dvi-to-ps driver. Compatibility with
the various TEX formats is not difficult to achieve, be-
cause PSTricks does not deal with page layout, floats
or sectioning commands.

However, compatibility with all dvi-to-ps drivers
is an unattainable goal because some drivers do not
provide the basic \speci a1 facilities required by
PSTricks. The requirements are discussed in subse-
quent sections. All of PSTricks' features work with
the most popular driver, Rokicki's dvi ps, and most
features work with most other drivers.

Two dvi-to-ps drivers that support the same
\speci a1 facility may have different methods for
invoking the facility. Therefore, PSTricks reads a
configuration file that tells PSTricks how to use the
driver's \speci a1 's.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 239

Timothy Van Zandt and Denis Girou

Header files the writing of \speci a1 strings to dvi output is very

A PostScript header (prologue) file is analogous to
a TEX macro file. It comes towards the beginning
of the PostScript output, and contains definitions of
PostScript procedures that can be subsequently used
in the document.

It is always possible to add a header file to a
PostScript file with a text editor, but this is very
tedious. Most drivers support a \special or a
command-line option for giving the name of a header
file to be included in the PostScript output. For ex-
ample, the \speci a1

\ spec ia l {header=pstr i cks. pro}

tells dvi ps to include ps t r i cks . pro.
However, a few drivers, such as Textures (up

through v1.6.2, but this may change) do not have
this feature. Therefore, PSTricks can also be used
without header files. From a single source file, one
can generate a header file, an input file for use with
headers, and an input file for use without headers.

For example, the main PSTricks source file,
p s t r i cks . doc, contains the line:

\pst@def{Atan}<%

/atan load stopped{pop pop O } i f >

When generating the header file p s t r i cks . pro, the
line

/Atan {/at& l oad stopped{pop pop O} i f }def

is written to p s t r i cks. pro. When generating the
input file p s t r i cks. t ex for use with ps t r i cks .pro,
the line

\def\tx@Atan{Atan }

is written to the input file. The input file for use
without p s t r i cks . pro contains instead the line

\def\tx@Atan{%

/a tan load stopped{pop pop O } i f }

Other macros can use \tx@Atan in the PostScript
code, without having to know whether it expands to
a name of a procedure (defined in a header file) or to
the code for the procedure (when there is no header
file).

One can also use the source file directly, in which
case no header is used. T h s is convenient when
developing the macros, because TEX and PostScript
macros can be written together, in the same file, and
it is not necessary to make stripped input and header
files each time one is testing new code.

The use of header files in PostScript documents
reduces the size of the documents and makes the
code more readable. However, the real benefit of us-
ing header files with PSTricks is that it substantially
improves TEX'S performance. It reduces memory re-
quirements because, for example, the delirution of
\tx@Atan takes up less memory and, more impor-
tantly, \tx@Atan takes up less string space each time
it is used in a \speci a1. It reduces run time because

slow. A file that makes intensive use of PSTricks can
run 3 to 4 times slower without header files!

Parameters and Lengths

To give the user flexible control over the macros,
without having cumbersome optional arguments
whose syntax is difficult to remember, PSTricks uses
a key=value system for setting parameter^.^ For ex-
ample,

\pscoi 1 [coi 1 arm=O. 5,1 i newi dth=lmm,

co i lwidth=O. 51 { 1 ->}(5, -1)

The coi 1 arm parameter in this example is the
length of the segments at the ends of the coil. Note
that coi 1 arm was set to 0.5, without units. When-
ever a length is given as a parameter value or argu-
ment of a PSTricks macro, the unit is optional. If
omitted, the value of \psuni t is used. In the previ-
ous example, the value of \psuni t was lcm. There-
fore, coi 1 arm=0 .5cm would have given the same re-
sult. Omitting the unit saves key strokes and makes
graphics scalable by resetting the value of \psuni t .
This is why the arguments to LATEX'S picture envi-
ronment macros do not have units. However, un-
like LATEX'S pi ctu r e macros, with PSTricks the unit
can be given explicitly when convenient, such as
1 i newi dth=lmm in the previous example.

The implementation of this feature is simple.
\psse t l ength is analogous to \LaTeX's \set1 ength
command, but the unit is optional:

\def \psset length#l#2{%

\l et\@psuni t \psun i t

\af terassignment\pstuni t@off

#l=#Z\@psuni t}

\def \pstuni t @ o f f {%

\l et\@psuni t\i gnorespaces\i gnorespaces}

One advantage of the key=value system is that
PSTricks has control over the internal storage of val-
ues. For example, PSTricks stores most dimensions
as strings in ordinary command sequences, rather
than in dimension registers. It uses only 13 of the
scarce dimension registers, whereas, for example,

uses over 120. When PSTricks processes the
parameter setting coi 1 arm=O. 5, it executes:

\pssetlength\pst@dimg{O.5}

\edef\psk@coilarm{\pst@number\pst@dimg}

\pst@dimg is a register. \pst@number\pst@di mg

expands to the value of \pst@dimg, in p t units, but

PSTricks has recently adopted David Carlisle's
improved implementation of the parsing, contained
in the keyval package.

240 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Inside PSTricks

without the pt . Hence, \psk@coi 1 arm is ready to be
inserted as PostScript code.

Color

To declare a new color, the user can type:

\newrgbcolor{royal blue}{O.25 0.41 0.88)

The color can then be used to color text and can be
used to color PSTricks graphics. For example:

\psframebox[linewidth=2pt,framearc=.2,

1 inecolor=royal b lue, f ramesep=7pt] {%

\LARCE\bf I t ' s {\royal blue here} now! ! }

The \newrgbcolor command defines \ r oya l b l ue to
switch the text color, and it saves the color speci-
fication under the identifier roya l b l ue so that the
PostScript code for setting the color can be retrieved
by color graphics parameters.

This support for color has been part of PSTricks
since its inception. However, a problem that has
arisen is that there are now many packages avail-
able for coloring text, and the user is likely to end up
using some other color package in conjunction with
PSTricks. But then the color names used for text can-
not be used with PSTricks graphics parameters.

It is therefore important that a dominant set of
color macros emerge in the TEX community, and that
the macros allow the PostScript code for the declared
colors to be accessible, in a standard way, by pack-
ages such as PSTricks. Version 0.94 of PSTricks is dis-
tributed with an independent set of color macros that
may be a prototype for such a standard color pack-
age.

Arithmetic

One of the limitations of TEX is its lack of fast,
floating-point arithmetic. It is possible to write rou-
tines for calculating, for examples, sines and cosines
using TEX'S integer arithmetic, but these are notori-
ously slow. Therefore, PSTricks offloads such arith-
metic to PostScript, whenever possible.

Such offloading is not always possible because
PostScript cannot send information to TEX. If TEX
needs to know the result of some calculation, it must
do the calculation itself. For example, suppose that
one wants a macro that puts a triangle around a
TEX box, analogous to LATEX'S \ fbox command. The
macro can measure the TEX box, and pass these di-
mensions to a PostScript procedure via a \ spec ia l .

PostScript can then use its trigonometric functions
to calculate the coordinates of the vertices of the tri-
angle, and then draw the triangle. However, it may
be important for TEX to know the bounding box of

the triangle that is drawn, so that the triangle does
not overlap surrounding text. In this case, TEX must
do (slowly) the trigonometric calculations itself.

Pure graphics

A large chunk of PSTricks consists of graphics
macros, which you can think of as a fancy replace-
ment for Q X ' s p i c t u r e environment. The quahfier
"pure" means that the graphics do not interact with
TEX. For example, a rectangle is "pure", whereas a
framed box is not.

A pure graphics object scans arguments and
puts together the PostScript code ps-code for the
graphics. When the code is ready, the object con-
cludes with:

\l eavemode\hbox{\pstverb{ps-code}}

\ps tverb should be defined in the configuration file
to insert the code in a \ spec ia l that reproduces
ps-code verbatim in the PostScript file, grouped by
Postscript's save and res to re . The graphcs state
should have Postscript's standard coordinate system
(bp units), but with the origin at TEX'S current point.
For d v i ps, the definition of \ps tve rb is:

\def\pstverb#l{\special {" #1}}

T h s \ spec ia l is the only output generated.
Thus, within TEX, the object produces a box with
zero height, depth and width. Within PostScript, the
graphics object is groupedby save and res to re , and
hence has no effect on the surrounding output.

For example, here is a polygon:

\pspol ygon[l i newi dth=2pt,
l inearc=.2 , f i l l style=crosshatch]

(1,0)(1,2)(4,0)(4,2)
0

\pspol ygon first invokes \ps t@object , whlch
collects (but does not processes) optional parameter
changes, and subsequently invokes \pspol ygon@i :

I \de f \pspo lygon{ \ps t~b jec t {pspo lygon} }

2 \def\pspol ygon@i {%

3 \begi n@Cl osedOb j
4 \def\pst@cp{}%

5 \pst@getcoors [\pspol ygon@i i}

\begi n@Cl osed0b j (line 3) performs various oper-
ations that are common to the beginning of closed
graphics objects (as opposed to open curves), such
as processing the parameter changes and initializing

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Timothy Van Zandt and Denis Girou

the command \pst@code that is used for accumulat-
ing the PostScript code. \pst@getcoors (line 5) pro-
cesses the coordinates one at a time (\pspol ygon can
have arbitrarily many coordinates), converting each
one to a PostScript coordinate and adding it to the
PostScript code in \pst@code.

Then \pst@getcoors invokes \pspol ygonei i :

6 \def\pspol ygon@ii 1%
7 \addto@pscode{\psline@iii \tx@Polygon}%

8 \de f \ps t@l ine type{ l }%

9 \end@ClosedObj}

Line 7 adds the PostScript code that takes the coor-
dinates from the stack and constructs the path of
the polygon. \pst@l i netype (line 8) is used by the
dashed and dotted linestyles to determine how to
adjust the dash or dot spacing to fit evenly along the
path (the method is different for open curves and
open curves with arrows). Then \end@Cl osedOb j
(line 9) performs various operations common to the
ending of closed graphics objects, such as adding the
PostScript code for filling and stroking the path and
invoking \pstverb.

Here is the resulting PostScript code for this ex-
ample:

1 t x @ D i c t begin STP newpath 2 SLW 0 setgray

2 [113.81097 56.90549 113.81097 0.0

3 28.45274 56.90549 28.45274 0.0

4 /r 5.69046 def

s / L i neto{Arcto}def

6 f a l s e Polygon

i gsave

8 45. r o t a t e 0.8 SLW 0. setgray

9 gsave 90 r o t a t e 4.0 L i n e F i l l g res tore

lo 4 . 0 L i n e F i l l

11 gres to re

12 gsave 2 SLW 0 setgray 0 se t l i necap s t roke

1 3 end

Line 1 is added by \begi n@Cl osedOb j . STP scales
the coordinate system from Postscript's bp units to
p t units, which are easier for TEX to work with (e.g.,
\ the \ps l i newidth might expand to 5.4pt, and the
p t can be stripped).

Lines 2 and 3 are the coordinates, which are
added by \pst@getcoors.

Line 4 sets the radius for the rounded corners
and line 5 defines Lineto, a procedure used by
Polygon, so that it makes rounded corners. If the
1 i nearc parameter had been Opt instead, then, in-
stead of lines 4 and 5, \ p s l ine@i i i would have
added / L i neto{l i netoldef .

Lines 7 to 11 are added by the f i 11 sty1 e, and
line 12 is added by the 1 i nestyl e, both of which are
invoked by \end@Cl osedOb j .

The code for the graphics objects is hghly mod-
ular. For example, nearly all graphcs objects invoke
the fill style to add the PostScript code for filling the
object. To define a new fill style foo for use with all

such objects, one simply has to define \psfs@foo to
add the PostScript code for filling a path.

The graphics objects can be used anywhere, and
can be part of composite macros such as for fram-
ing text. However, they are most commonly used by
the end-user to draw a picture by combining several
such objects with a common origin. For this purpose,
PSTricks provide the ps pi c tu re environment, which
is very similar to LATEX'S p ic ture environment. In
particular, it is up to the user to specify the size of the
picture. This is an unfortunate inconvenience, but
one that is insurmountable. The PSTricks graphcs
objects include curves and other complex objects of
which TEX could not calculate the boundmg box, at
least not without doubling the size of PSTricks and
slowing it to a crawl. T h s is the main way in which
TEX'S lack of graphics and floating point capabilities
hinders PSTricks.

Nodes

Drawing a line between two TEX objects requires
knowledge of the relative position of the two objects
on the page, whch can be difficult to calculate. For
example, suppose one wants to draw a line connect-
ing "his" to "dog" in the following sentence:

The dog has eaten h s bone.
One could calculate the relative position of these two
words, as long as their is not stretchable glue in the
sentence, but the procedure would not be applicable
to connecting other objects on a page.

With PostScript as a postprocessor, there is a
straightforward solution. By comparing the transfor-
mation matrices and current points in effect at two
points in the PostScript output, one can determine
their relative positions. T h s is the basic idea that lies
behind PSTricks node and node connection macros,
and is one that PSTricks adapted from Emma Pease's
t ree-dvips.s ty.

Here is how PSTricks connects the words:

\ la rge

The \rnode{A}{dog} has eaten

\rnode{B}{hi s} bone.

\ncbar[angle=-90,nodesep=3pt,arm=.3]{->}{B}{A}

The dog has eaten his bone.
u

\rnode{A}{dog} first measures the size of "dog".
Then it attaches to "dog" some PostScript code that
creates a dictionary, TheNodeA, with the following
variables and procedures:

NodeMt rx The current transformation matrix.
X The x-coordmate of the center.
Y The y-coordinate of the center.
NodePos See below.

242 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Inside PSTricks

Here is the code that appears in the Postscript output
for this example:

I tx@Di c t begin
2 gsave
3 STV CP T

4 8.33331 2.33331 18.27759

s 9.1388 3.0
6 tx@NodeDi ct begin
7 /TheNodeA 16 NewNode
8 I n i tRnode
9 end

10 end
11 grestore
1 2 end

Ths codes gets inserted with \pstVerb, whch
should be defined in the configuration file to in-
clude ps-code verbatim in the PostScript output, not
grouped by (g)save and (g)restore. Postscript's cur-
rent point should be at TEX'S current point, but the
coordinate system can be arbitrary. For dvi ps, the
defmtion of \pstVerb is:

\def\pstVerb#l{\speci a1 {ps : #I}}

\pstVerb is used instead of \pstverb because
the latter groups the code in save and restore,
which would remove the node dictionary from
Postscript's memory. However, PSTricks still wants
to work in p t units, and so STV scales the coordmate
system.

Line 4 contains the height, depth and width of
the dog. The next line (9.1388 3.0) gives the x and y
displacement from where the code is inserted (on the
left side of dog, at the baseline) to the center of dog.
Actually, by "center" we mean where node connec-
tions should point to. Ths is the center by default,
but can be some other position. For example, there
is a variant \Rnode that sets this point to be a fixed
distance above the baseline. so that a horizontal line
connecting two nodes that &e aligned by their base-
lines will actually be horizontal, even if the heights
or depths of the two nodes are not equal.

NewNode, in line 7, performs various operations
common to all nodes, such as creating a dictionary
and saving the current transformation matrix. Then
I n i tRnode takes the dimensions (lines 4 and 5) off
the stack and defines X, Y and NodePos.

A node connection that wants to draw a h e be-
tween a node named A and a node named B can go
anywhere after the nodes, as long as it ends up in
the dvi file after the nodes, and on the same page.
The node connection queries the node dictionaries
for the information needed to draw the h e . In the
example above, \ncbar needs to know the coordi-
nate of the point that lies on the boundary of "his",
at a -90" angle from the center of node. After set-
ting Sin and Cos to the sine and cosine of 90" and
setting NodeSep to 0, the procedure NodePos in the
TheNodeA dictionary returns the coordinates of this

point, relative to the center of the node. The connec-
tion macro can then convert this to coordinates in
the coordinate system in effect when the node con-
nection is drawn, by retrieving and using NodeMt rx,
X and Y from TheNodeA.

A node connection macro, after drawing the con-
nection, should also save a procedure for finding the
position and slope of a point on the line, so that la-
bels can be attached to node connections. This task
is similar to that of a node; it should save the co-
ordinates of the node connection and the current
transformation matrix and a procedure for extract-
ing from this information a position on the node con-
nection. Example 1 makes extensive use of labels.

There are many ways to position nodes, depend-
ing on the application. To create a diagram with ar-
rows from one object to another, one can position
the objects in a pspi cture environment. For appli-
cations with more structure, one may want a more
automated way to position nodes. PSTricks does not
come with any high-level macros explicitly for com-
mutative diagrams, but it does have a psmat ri x envi-
ronment for aligning nodes in an array, and t h s can
be used for commutative diagrams. Example 1 shows
psmat ri x beings used for a graph. PSTricks also con-
tains very sophisticated tree macros.

Overlays

To make overlays with SLIT@, for example, you have
to use invisible fonts, and TEX has to typeset the slide
once for each overlay. This makes it impossible to
make overlays if a slide uses fonts other than the few
for which invisible versions are avdable, or if the
slide contains non-text material.

PSTricks uses a simple idea for creating over-
lays. Its operation is illustrated in Example 2. A box
from which a main slide and overlays are to be cre-
ated is saved, using the overlaybox environment.
The \psoverl ayC2) command in this box simply in-
serts the code

(2) BeginOL

and sirmlar code at the end of the current TEX group
to revert to the main overlay. Begi nOL compares
the string on the top of the stack to the PostScript
variable TheOL. If it does not match, the output is
made invisible. Otherwise, it is made visible. To print
out overlay 2,

simply has to insert

/TheOL (2) def

before a copy of the box.
Because we can insert PostScript procedures in

the box that can be redefined before each copy of
the box, TEX only has to typeset the box once, whlch
saves processing time and saves us from having to

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 243

Timothy Van Zandt and Denis Girou

\psmatri x

[mnode=circle,colsep=.85cm,rowsep=lcm]

% States:

[mnode=R] {\mbox{Start}}

& & [doubl e l i ne=true, name=O] $4-O$ \\
& & [name=l] $q-l$ \\
& [name=2] $q-216 & & [name=3] $q-38 \\[Opt]

[name=4]$q-48 & & [name=5]$q-5$ & &

[name=6] $q-68

\end~smat r i x

% Trans i t i ons :

\psset{nodesep=3pt,arrows=->,arcangle=15,

labelsep=2pt,shortput=nab}

\ foo tnotes ize

\ncl i ne [l i nestyle=dotted] {I, 1}{0}

\ncci r c l e{O}{. 4cm)-{O}

\nc l i ne{O}{l)-(1)

\nc l i ne{1}{2}A{O}

\nc l i ne{1}{3}-{I}

\ncarc{<-}{0}{3}~{1)

\nccurve[angleA=140,angleB=210]{4}{0}~{0}

\nccurve[angleA=lO,angleB=180]{5}{3}~{0}

\ncarc{5}{4}A{l}

\ncarc{6}{5}A{O}

\ncci r c l e [angl eA=270] { G I { . 4cm)-{I}

\ l a rge

\begi n {over l aybox}

$\frac{n-2}{n-3)

+ \psframebox{\psoverlay{2}

\ f rac{n-1}{n}}

= \ frac{2(n-2) (n-l)}{n(n-3)}$

\end{overl aybox}

\psset{boxsep=6pt,framearc=.15,

1 i newidth=l . 5pt)

\ps f ramebox{\putoverl aybox{mai n}}

\psframebox{\putoverlaybox{2}}

Example 2: Overlays.

come up with a way to read the TEX input for the box
several times.

There are several ways to make output invisible
with Postscript, none of which is entirely satisfac-
tory. PSTricks' default method is to translate every-
thing far away (e.g., over by the coffee pot) so that, ex-
cept in very unusual circumstances, all the "visible"
output ends up off the page. T h s is easy to undo, by
translating back.

The only problem with translation is that the
node connections and labels, which use absolute co-
ordinates, end up on the same overlay as the nodes
that are connected. Therefore, users can select an
alternate method for making material invisible: set-
ting a small clipping path off the page. The problem
with this method is that it can only be undone with
i n i t c l i p, which can mess up other macros that set
the clipping path.

PSTricks does not use Postscript's nu1 1 device
operator, because this cannot be undone except by
using gres tore . It would thus be impossible to have
nested overlays. The PSTricks overlay macros are
used to implement overlays in the Seminar package.

Typesetting text along a path

One facility that TEX users have long desired but
have been unable to obtain is to typeset text along

An nodes and a path. This is a task that also stretches the limits of
tions and labels, used with the psmat r i x environ- postscript ispeci 9s, but p ~ ~ ~ i ~ k ~ contains an im-
ment. (Courtesy of Mark Livingston.) plementation that works for several dvi-to-ps drivers.

It is illustrated in Color Example 13.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Inside PSTricks

The main difficulty is that the text that goes charpath. Nevertheless, the two problems that can
along the path should be typeset by TEX, not by trip up PSTricks' \pstextpath macro can also trip
PSTricks, and then converted to PostScript output by up \pscharpath. Furthermore, \pscharpath only
the dvi driver. For PSTricks to get this text along works with PostScript outline fonts, since bitmap
the path, it has to redefine the operators that the dvi fonts cannot be converted to character paths.
driver uses to print the text. This requires knowledge
of the PostScript code the dvi driver uses to print Charts
text.

In the best case, the dvi driver simply uses
Postscript's show operator, unloaded and unbound.
PSTricks simply has to redefine show so that it takes
each character in the string and prints it along the
path. The redefined show checks the current point
and compares it with the current point at the begin-
ning of the box that is being typeset to find out the x
and y positions of the beginning of the character. The
x position is increased by half the width of the char-
acter to get the position of the middle of the charac-
ter. This is the distance along the path that the mid-
dle of the character should fall. It is straightforward,
albeit tedious, to find the coordinates and slope of
any point on a path. We translate the coordinate sys-
tem to this point on the path, and then rotate the co-
ordinate system so that the path is locally horizontal.
Then we set the current point to where the beginning
of the character should be, which means to the left
by half the character width and up or down by the
relative position of the base of the character in the
box. Then we are ready to show the character.

This method works with Rokicki's dvi ps. For
other drivers, one of two problems arises:

1. show is "loaded" or "bound" in procedures de-
fined by the driver for displaying text. This
means that the procedures do not invoke the
command name show, which can be redefined
by PSTricks, but instead invoke the primitive
operation show, which cannot be altered. The
workaround for t h s is to remove the appropri-
ate 1 oad's and bind's from the driver's header
file.

2. The driver uses PostScript Level 2's large fam-
ily of primitives for showing text. The only
workaround is to redefine all these operators,
which has not been attempted. The usual dvi
drivers do not use Level 2 constructs. How-
ever, NexTTEX'S T'XView, which is a dvi driver
based on the NeXT's Display PostScript window-
ing environment, does use Level 2 operators.
The workaround for NeXT users is to use dvi ps
to generate a PostScript file and then preview it
with Preview.

Stroking and filling character paths

It is also possible to stroke and fill character paths,
as illustrated in Color Example 13. The methodol-
ogy is the same as typesetting text along a path, but
it is easier because show just has to be changed to

PSTricks has many primitives for a wide variety of
applications, but sophisticated graphics can involve
tedious programming. In such cases, a preproces-
sor can be constructed to automatically generate the
PSTricks commands. The preprocessor can gener-
ate standardized representations using only a min-
imum amount of information, but the user does not
lose flexibility because the PSTricks code can subse-
quently be tweaked as desired.

For instance, we can thmk of preprocessors for
automatic coloration of maps, generation of graphs
or trees, etc. For hls own needs, Denis Girou has writ-
ten (in Shell and AWK) a preprocessor (ps tchar t . sh)
for automatic generation of pie charts, which he ex-
tended to generate other forms of business graph-
ics (line and bar graphs, 2D or 3D, stacked and un-
stacked).

Example 3 shows a data file, the unix command
line for generating the PSTricks code from the data
file, and the output. Color Example 14 shows the
output from another example, generated with the
unix command line:

pstchar t .sh vbar dimx=9 3d b o x i t center \

f i g u r e pr int-percentages < f i l e 2 .data

Conclusion

There is much talk about the future of TEX and about
the need to create a replacement for TEX because TEX
is, by design, just a typesetting program for posi-
tioning characters and rules. We believe that when
today's TEX is supplemented by PostScript, through
the use of \special 's and good dvi-to-ps drivers,
many of the special effects that users clamor for can
be acheved today. PSTricks provides an example of
thls.

When PSTricks is combined with the Seminar
LATEXZ~ document class for malung slides, plus
PostScript fonts and macros for including graphics
files, one has a complete presentation software pack-
age, that is quite far from the usual use of TEX for
typesetting technical papers.

However, there are still some limitations that
can only be solved by changes to TEX. The most obvi-
ous one is TEX'S lack of fast, floating-point arithmetic.
Although TEX can pass lnformation to Postscript
through \speci a1 's, it is not possible for PostScript
to pass lnformation to TEX. T h s slows down many
calculations and makes it impossible to calculate the
bounding box of some graphics.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Timothy Van Zandt and Denis Girou

Data file:

3094 1 LUU

1438 1 SOL

365 1 LMD

267 1 LEG

248 1 PPM
236 1 MEF

122 1 ASF

57) DRT

33 1 AM0

18 1 TPR

9 1 RRS

Command line:

t c h a r t . s h vbar dimx=7 3d nb-values-8 \
p r i nt-percentages p r i n t - v a l ues \
grayscale=white-black data-change-colors \
ti tl e="VP users' f i l e s " center <users .data

Output:

VP users' files

267 248 236

LUU SOL LMD LEG PPM MEF ASF k

Example 3: Using the preprocessor pstchar t to
generate PSTricks graphs.

References

Girou, Denis. "PrCsentation de PSTricks," Cahiers
GUTenberg, No. 16, pp. 21-70, Ftvrier 1994.

Van Zandt, Timothy. "PSTricks: Documented Code."
1994

Van Zandt, Timothy. "PSTricks: Postscript Macros for
Generic T@ - User's Guide." 1994.

TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

A LATEX style file generator and editor

Jon Stenerson
TCI Software Research, Las Cruces, New Mexico
Ion-Stenerson@tci s o f t . corn

Abstract

Ths article presents a program that facilitates the creation of customized LATEX
style files. The user provides a style specification and the style editor writes
all the macros. Editing takes place in a graphical user interface composed of
windows, menus, and dialog boxes. While the editor may be used in any LATEX
environment, it is intended primarily for use with TCI Software Research's word
processor Scientific Word.

The current style editor runs under any Windows 3.1 system. The perfor-
mance is acceptable on a 386-based machme and naturally improves on 486's and
Pentiums. As Scientific Word is ported to other systems so will the style editor be
ported.

Introduction These days most word processors do not make

The style editor is a program that facilitates the cre-
ation and modification of styles. It represents a style
as a list of generic markup tags, and thnks of a tag
as a list of parameters whch determine its typeset-
ting properties. It performs the basic operations of
creating a new tag, modifying a tag's parameters, and
deleting a tag. A tag's formatting instructions are not
explicitly displayed. That is to say you do not see
any TEX on the screen. Instead you see dialog boxes
containing icons, menus, radio buttons, check boxes,
and so forth. These prompt you to specify the style
by filling in parameters and selecting options. There
are some screen shots at the end of this article to give
an idea of the style editor's general appearance.

Styles, generic markup tags, and
Scientific Word

A generic markup tag is a device by which an au-
thor specifies a document's logical structure with-
out specifying its visual format. For instance, the
LATEX tag \ sec t ion conveys the information that a
new section is beginning and that the tagged text is
its title. By itself this has no implications for the ap-
pearance of the section heading. It does not tell us
the heading's font, justification, or vertical spacing.
A sfyle file, external to the document, contains asso-
ciations between the tag names and specific typeset-
ting instructions. The style file says what tags exist
and how text marked with those tags should be type-
set. We see that the use of generic markup tags pro-
vides a certain division of labor. I write the article,
someone else writes the style, and TEX and LATEX do
the typesetting. The only style information I need as
an author is a list of tag names and instructions for
their use.

use of generic markup tags.-~he reason is that they
want to be WYSIWYG (what you see is what you get).
Thls means that they display on the video monitor
exactly what you will get when you print the final
copy. Files produced by WYSIWYG word processors
are filled with explicit typesetting instructions like
"put a 14pt Helvetica A at coordinates (100, 112)."
Compare this approach with the generic markup ap-
proach. First, the division of labor mentioned above
is lost and the author is now responsible for all type-
setting decisions. Of course this is also the main at-
traction of such systems. Second, stylistic informa-
tion is now duplicated throughout the document. If
subsection headings have to be left justified rather
than centered the author will have to track them all
down and change them one by one.

At TCI Software Research we are trying the
generic markup approach to word processing. Our
word processor, Scientific Word, is not a WYSIWYG

word processor in the usual sense. Instead it dis-
plays a document's text plus markup. The markup
is graphical, rather than textual, in nature. Whereas
in IPQX you wdl see \ s e c t i o n ~ I n t r o d u c t i o n } , in
Scientific Word you will see the word Introduction in
large blue letters on the video monitor. Ideally the
document's text plus markup tags represents the en-
tire content of the document. In practice there are
some important exceptions where visual formatting
carries a lot of information. For example, in math-
ematical equations and in tables the precise posi-
tioning of text contributes enormously to its mean-
ing. Scientific Word is WYSIWYG to the extent that if
the appearance of an object carries meaning, as in
the case of an equation or table, then that object is
displayed in an approximation to its printed form.
When Scientific Word saves a document on a disk it

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 247

Jon Stenerson

is saved in LATEX form, and from there it can be type-
set and printed.

Being "LATEX-oriented" leaves Scientific Word
open to some of the same criticisms leveled at LATEX.
In particular, authors do not always appreciate the
division of labor I mentioned above. Some of them
need or want more control over the style and cannot
accept that someone else just hands them a style. At
TCI we receive hundreds of requests for style mo&fi-
cations each year. Most of them are quite straightfor-
ward but many are not. It frustrates our customers,
used to WYSIWYG systems, that some apparently triv-
ial operations are not trivial for the casual LATEX user.
T h s suggests the need for another &vision of labor:
style designer versus style writer. Our authors do
not actually want to write styles, they want to spec-
ify styles. I was assigned the task of developing tools
to alleviate t h s problem. The style editor represents
the current state of that research.

For further discussion of markup tags and LATEX
see the first couple chapters of Goossens, Mittel-
bach, and Samarin 1994. For a &scussion of generic
markup in a non-mX environment read about SGML
(Standard Generahzed Markup Language) (Bryan
1988).

The development process

Before continuing with the style editor itself I'd like
to talk a little about the process of designing and im-
plementing the editor. I was trained as an algebraic
geometer in graduate school, had previously worked
as a math professor, and this was my first profes-
sional programming experience. The process of pro-
gramming is still novel enough to me that I feel like
writing about it.

The first part of my research was to work with
our customers in the capacity of style writer. I did
this for four months to learn TEX, to learn how to
thmk about style issues, and to find out what our
customers wanted in the way of style modification.
When I had enough experience to contemplate writ-
ing a program I e-mailed 500 customers and asked if
anyone was interested in the design of a style editor.
About 45 people responded and provided numerous
comments and suggestions.

Still not knowing what a style editor should look
like I decided to make a prototype, learn from my
mistakes, and then build a release version.The pro-
totype was implemented in three months between
December 1993 and February 1994. It was complete
enough to handle some realistic design issues even
though it did not have a nice user interface. I wrote
several styles with it including a style for one chapter
of the new Scientific Word User's Guide.

In retrospect, I think that I spent the wrong
amount of time on the prototype. The last few weeks
of work on the prototype were spent getting it ready

for testers - adding minor features, fixing bugs and
writing documentation. As it turned out the testers
paid little attention to the prototype e&tor. It was
too primitive and too scary and I didn't get the feed-
back I'd hoped for. I either should have either gone
ahead and made a nicer and more polished interface
for the prototype, or I should have quit earlier and
started on the release version editor sooner.

I learned many thmgs from the prototype:

Most importantly I learned that it is possible
to develop a useful style editor. This was not
obvious to me at first, but much of what I did
worked better than I thought it would. I am
now confident that TCI can and will develop a
style editor that allows the casual user with no
W X knowledge to make basic style changes,
and allows the advanced user to create any style
at all.
I learned that a lot more attention had to be paid
to the user interface. I did not spend much time
on the prototype's user interface because I had
to first concentrate on getting the right model
for the styles and getting the right basic func-
tionality. For the style editor release version
we added another programmer, Chris Gorman,
to concentrate on getting the user interface in
shape. He is responsible for much of the slick
look and feel of the final program.
Using the completed prototype to write some
actual styles uncovered a number of flaws in the
model I was using to represent styles.
Writing the code for the prototype uncovered
a number of flaws in my programming tech-
nique. Actually, many of these flaws were un-
covered by John Mackendrick, one of our in-
house testers. I am a better programmer than
I was six months ago. While the prototype al-
ways seemed a little flaky and buggy, the new
program seems much more robust just by virtue
of being better written.

Overall design

The style editor consists of the following compo-
nents:

1. A GUI (Graphical User Interface). This manages
interaction with the user and with the platform.
The only platform Chris and I have worked on
so far is Windows 3.1. We used Microsoft's
Visual C++ and their MFC (Microsoft Founda-
tion Classes) application framework. My under-
standing is that MFC code is supposed to even-
tually be portable to other platforms (Apple's
Macintosh and Unix). So when Microsoft fin-
ishes MFC on those platforms we should be able
to port the style editor.

2. A data structure called the Style. The program
actually represents the style in two different

248 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

A WX style file generator and editor

forms: internal and external. The internal form
is a set of C++ classes suitable for editing. The
nature of these classes lies outside the scope of
thls article. The external form is textual, suit-
able for interpretation as a E-QX style and for
human perusal. I frequently lump the internal
and external data structures together into one
abstract concept that I call the style model.

3. A set of functions called the "core". These func-
tions do the following;

(a) convert between the two style representa-
tions. In other words they read and write
style files.

(b) perform error checking. For example, be-
fore saving a style it makes sure that every
item referred to in the style has been de-
fined in the style.

(c) constructs other files needed by Scientific
Word. Besides the style file there is also a
shell file and a screen appearance file. Each
style file has a shell file that is used as a
template whenever Scientific Word creates
a new document of that style. The screen
appearance file tells Scientific Word what
tags are in the style and determines how
they will appear on the video display.

4. A set of macro writers. These are TEX macros
that interpret the style e&tor output as an ac-
tual style. They accomplish this by reading the
style file and writing macros to implement the
tags described in the style. Thls is all done on
the fly. You d l not normally see the macros
written by the macro writers. They are con-
structed in the computer's memory and do not
assume any printed appearance without insert-
ing a \show command.

The key to the style editor is the last item so I'll
talk about it some more. The macro writers are con-
tained in a file called sebase . c l s. This file is used as
the document class for any style editor style. This is
a misuse of the . c1 s extension because sebase. cl s
does not define any document class. Nor does it de-
fine any macros that may be used to markup a docu-
ment. Rather it is a toolbox. The tools in sebase. c l s
are used to automatically write the macros that will
be used in document markup. Eventually I will make
a format file out of sebase but for now it depends on
using the IKQX format. Style files generated by the
editor are read in with a \usepackage command.

Here is an example. In my scheme the deb t i on
of a section tag would look somethmg like this:

\D iv is ion{
\Name{secti on}
\Level {I)
\Headi ng{Secti onHeadi ng}
\EnterTOC{true}

\StartsOn{NextPage}
\SetRi ghtMark{true}

1
Ths is somewhat simplified but it gives the basic idea
of what the style editor output might look like. In the
file sebase there is a macro writer called \ D i v i s i on
that writes a document division1 macro on the ba-
sis of its parameters. In this case it writes a macro
named \ sec t i on. You see parameters describing the
division's behavior with regard to the table of con-
tents and running header and whether it must start
on a new page, but you do not see any formatting in-
structions for a heading. This is because I distinguish
between the division and its heading. There is just a
reference to a heading. The heading itself is defined
like this:

\Di sp l ayE1 ement{
\Name{SectionHeading}
\Ski pBefore{ZOpt p lus 4pt m i nus 2pt)
\Ski pAfterC12pt p lus 2 p t m i nus l p t)
\ParagraphType{HeadingParagraph}
\Font{MajorHeadi ngFont}
\Components{

Section \sec t i oncount . \Space{Zmm}
\CurrentHeadi ng}

1
I have around 20 macro writers. Each of these is

responsible for writing a certain category of macro.
Thus I have a Division category, a Display Element
category, a List category, a Font category, and so
forth. These are discussed in more d e t d in the next
section.

To get a feeling for how an editing session pro-
ceeds look at the screen shots at the end of t h s ar-
ticle. The first shows the start-up screen. You can
see various controls for adjusting margins and page
sizes. At the top of the screen is a menu labeled Cat-
egory. The second screen shot shows the category
menu pulled down and the &vision category about
to be selected. You can see all of the categories. The
thrd screen shot shows the screen after selecting
the division category. Look at the split screen win-
dow. The left part of the window lists all the in-
stances of the category that have been defined so far.
In this case it lists all of the style's divisions: chap-
ter, section, subsection and appendix. This list may
be added to or deleted from. The figure also shows
that "section" has been selected from the list of all
&visions. The information for the section division is
displayed in a dialog box contained in the right pane
of the split window. This dialog changes radically
depending on the category. One uses the controls
found in that pane to inspect or alter the displayed

1 I started using the term "division" because I
found it awkward to continually refer to sections,
subsections, and chapters as "sections".

TUGboat, Volume 1 5 (1994), No. 3 - Proceedings of the 1994 Annual Meeting

Jon Stenerson

parameters. When the style is saved the information A model for styles
is written in a form sirmlar to that shown above.

Parametrized macro writing is not a new idea.
Preliminaries. I think that a good piece of software

For example, in the code for the Bl&X format there
must be based on a clean and straightforward model.

is a macro called \@startsection. This macro is
In the case of the style editor this means findmg

used to define sectioning macros. It has a number
an abstract representation of a style. My initial re-

of parameters and by specifying various values for
action after learning TEX and thinking about styles

these parameters one defines a wide variety of sec-
for a whde was that it was not possible to write a

tioning commands. Here is a typical defmtion of the
style editor. There seemed to be so much disorga-

\section tag from a human authored style file:
nized "stuff" that I had no idea where to start. Had I
started programming at t h s point I probably would

\def\section{ have picked for my model a particular style file, say
\@startsection {section){l}{\z@) a r t i cl e . sty, and my program would have been an

(3 . Sex plus lex m i n u s .2ex} expert at e&ting all of the parameters and options
{2.3ex plus . 2ex){\l arge\bf)} found in this file. Lnstead I had a few "modelling"

Only a dedicated person can remember what those
parameters do, or that if one is negative it has a
different meaning than if it is non-negative. On the
other hand I have noticed that many styles override
\@startsection itself, suggesting that it may not
have enough parameters! In addition to borrowing
ideas from H&X I have found that Bechtolsheim's TEX
in Practice (Bechtolsheim 1993) is an excellent source
of ideas for parametrized macros.

The idea of macro-writing macros is also not
new. A trivial example is the \ t i t l e macro found
in LATEX styles. It is defined like this:

\def\ti tl e#1{
\def\@ti tle{#l}

It takes a parameter and uses it to write another
macro.

Victor Eijkhout's Lollipop format (Eijkhout
1992) is an example of a complete system of macro
writing tools. I have not had an opportunity to use
Lollipop but from the article I suspect that it would
be possible to put a user interface on it similar to
the one used with sebase. I thank the anonymous
reviewer of t h s article for pointing out the existence
of Eijkhout's work. I am a relative newcomer to TEX
and was not aware of Lollipop but it is clearly re-
lated to what I am doing. Since I don't know Lollipop
I wdl quote verbatim an example from the reference
showing how a subsection heading might be created
in that system:

\Defi neHeadi ng : SubSecti on counter : i
whi tebefore: 18pt w h i t ea f te r : 15pt
Poi nts ize: 14 Style: bold
block: s t a r t Sectioncounter 1 i tera l : ,

Subsectioncounter l i t e r a l : .
f i l l upto:level indent t i t l e

externa1:Contents t i t l e externa1:stop
Stop

You can see that this uses the idea of defining
macros by specifying parameters in the form of key-
word plus value.

talks with Roger Hunter (TCI's president) and ~ n d y
Canham (development team leader). The model that
came out of those meetings was implemented in the
prototype and was subsequently modified for the re-
lease version based on that experience.

I said before that the model has two concrete
representations: one as a C++ class, the other as a
style file. The latter is probably more farmliar to the
reader so we will identify the style file with the style
model. The remainder of this section talks about
style files written by the style editor. The main idea
behind style editor style files is that they contain
no algorithmic mformation. There are no sequences
of instructions, no branches, and no loops. They
consist only of a long list of declarative informa-
tion. Style editor style files use a very uniform syntax
for this declarative data and therefore look different
from other style files.

The style file consists of a list of declarations.
The syntax for a declaration is always the same:

\CategoryName{
\Parameterl{val ue 1)
\ParameterZ{val ue 2)
. . . e t c . . .

J

Every category requires a b e d number and type of
parameters. Parameters are discussed in the follow-
ing subsection, and categories in the subsection after
that.

The samples shown below are simplified. Actual
style editor files contain mformation related to the
operation of the style editor program. They also con-
tain multiple versions of style data related to features
described in the section on the user interface. I will
suppress these kinds of data in the following discus-
sion.

There is nothmg proprietary about style editor
style files. Anyone can go in with an ASCII editor and
make changes to them without the style editor. For
that matter anyone can write an entire style editor
style file without using the style editor.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

A WX style file generator and editor

Parameters. Every parameter expects a value of a
particular type. I've found the following types of pa-
rameters to be adequate:

1. A word parameter requires a string of letters (A-
Z, a-z). These are usually references to macros.

2. A text parameter requires a string of characters.
Any characters that are not among TEX'S special
characters (like braces and dollar signs) are al-
lowed.

3. A boolean parameter requires one of the two
words "true" or "false".

4. A numeric parameter requires a signed decimal
number.

5. A dmension parameter requires a dimension in
the TEX sense of a number plus a unit. The style
echtor knows all of the TEX units and can convert
between them.

6. A glue parameter requires a glue value in the
TEX sense of a natural dimension with a stretch
dmension and a shrink dimension.

7. A component list parameter requires a list of
components. Each component is either text in
the sense given above, or a control sequence
whch is called a reference component in the
style editor.

Some of these were demonstrated in the previous
section's example of a \Division: \Heading is a
word parameter, \EnterInTOC is a boolean param-
eter, and \Level is a numeric parameter. Next look
at the \ D i sp1ayEl ement example also in the previ-
ous section. \Ski pBefore and \Ski pAfter are glue
parameters and \Components is a component list pa-
rameter. The value of \Components in the example
consists of five components: two text components
"Section " and ".", and three reference components.

Categories. Now we'll take a look at some of the
other categories that the style editor knows about.
There are more categories than I can describe even
briefly so I'm just going to try get across a few ideas
about how it all fits together. In particular we will not
see categories that define Lists, Table of Contents, In-
dex, Bibliography, or Math. These perform fairly spe-
cialized functions and after reading what follows you
may be able to imagine their nature.

Document Variables. These are macros that the
document uses to pass dormation back to the style.
A typical example is a macro to handle the docu-
ment's title:

\DocumentVari abl e{
\Name{Ti t l e)
. . .

1
A document variable's most important parame-

ter is its name. It actually has a couple more pararne-
ters that have to do with Scientific Word's handling of

the variable. The macro writer, \DocumentVari able,
writes a macro called \SetTi t l e. The \SetTi t l e
macro is used in the document llke this:

\SetTi t l e{My TUG paper)

This in turn defines a macro \Ti t le whose replace-
ment text is My TUG paper. Thus \SetTi tl e and
\Ti t le have the same relation to each other as
\ti t 1 e and \@ti t 1 e have in LATEX.

The style editor also knows about several built-
in macros that get dormation from the document.
These include \PageNum, and \CurrentHeading.
These keep track of the current page number and
the title of the most recently encountered division.

Fonts. The font category provides an interface
to NFSS. Here is a sample style file entry:

\FontNFSS{
\Name{BodyTextFont}
\Fami 1 y{Seri f)
\Shape{Upri ght)
\Seri es{Medi um)
\Si ze{normal size)

1
\FontNFSS wdl write a macro, \BodyTextFont,
which performs the inlcated font switch. The
precise nature of the various famihes, shapes, se-
ries, and sizes are determined by selecting a "Font
Scheme" elsewhere in the style.

Paragraphs and Environments. The paragraph
category provides an interface to a number of TEX
parameters related to paragraph typesetting: font,
baseline-to-baseline distance, indentations and so
forth. By setting these properly you can create tags
like the \quote and \center found in LATEX. Here is
an example:

\Paragraph{
\Name{Center)
\Font{BodyTextFont)
\ParIndent{Opt}
\LeftIndent{Opt plus l f i l)
\RightIndent{Opt plus l f i 1)
\ParFi 11 Ski p{Opt)
\Parski p{Opt)
\PageBreakPenalty{lOO)
\Hyphenationpenal ty{lOO}

1
When used in conjunction with an environment cate-
gory item this will make available in the document an
environment \begi n{Center) . . . \end{Center)
that typesets a prefix, such as a vertical skip, then
switches to the centering paragraph, and then has a
sufflx.

In-line and display elements. An in-line ele-
ment is just a component list plus a font. It is in-
tended to typeset text whlch is part of a surrounding
paragraph. Here is an example:

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Jon Stenerson

\Name{AbstractLeadin}
\Font {Small CapFont}
\Components{Abstract.\Space{lpc}3

1
T h s creates a macro, \Abst ractLeadi n, which type-
sets the word "Abstract" followed by a period and a
space. It uses a font called \Small CapFont which
must be defined via the Font category. Component
lists may use the names of in-line elements so t h s
\AbstractLeadi n item may be reused throughout
the style.

A display element is intended to be typeset in
its own paragraph and set off from the surrounding
text. We have already seen an example of t h s earlier
in the section.

In-line and display elements are frequently used
in conjunction with a document variable. For exam-
ple, consider generating a macro to typeset the title
of the document. We would first declare a document
variable to hold the title

\DocumentVari abl e{
\Name{Ti t l e}

1
and then declare a display element that uses the doc-
ument variable

\ D i spl ayEl ement{
\Name{TITLE}
\Ski pBeforeCOpt}
\Ski pAfter{Opt}
\Paragraph{CenterHeading}
\Font{MajorHeadi ngFont}
\Components{\Ti t l e}

1
J

T h s produces a macro called \TITLE that typesets
the value of the variable \Ti t l e with the given para-
graph and font settings. The \TITLE macro may be
used in the document but will probably be used in a
title page macro (see below).

Page Setup. This category provides an interface
to many TEX parameters involved in page style: page
size, trim size, margins, headers and footers, foot-
notes and margin notes. Most styles will need to cre-
ate only one item in the page setup category.

Exceptional Pages. An exceptional page is one
that deviates from the surrounding pages in that it
has some special formatting requirements. A typical
example is a title page. A title page has some spe-
cially typeset material and usually has special head-
ers and footers. Here is an example:

\DATE
\Space{lcrn)

3
\ContinueTextOn{ThisPage)
\Speci a1 LeftHeadC)
\Speci alMi ddl eHead{}
\Special Ri ghtHead{)
. . . e t c . . .

1
This writes a macro called \Ti t l ePage whch in turn
causes a new page to begin, typesets the vertical ma-
terial, and then allows text to continue on t h s page.
The vertical material consists of built-in macros such
as \Space or names of elements defined elsewhere in
the style such as \TITLE, \AUTHOR, and \DATE.

The user interface

The prototype editor had a simple interface. In
essence there were dialog boxes in one-to-one cor-
respondence with the macro writers and in each di-
alog box there were controls in one-to-one corre-
spondence with the macro writer's parameters. To a
TEX programmer this interface would probably seem
pretty friendly. If you saw an edit control labeled
"Par. Skip" you'd probably have a good idea of the
sort of thmg you might enter. Editing with the proto-
type was not that far removed from editing the style
file with an ASCII edtor. The major step forward was
the ease with which you could move around the style.
I'm sure that all TEX programmers have had the ex-
perience of searching style files for a macro defini-
tion. The prototype style editor could find any piece
of data instantly.

Most of our customers however do not want to
fill in parameters. They do not want to know what
glue is. They do not even want to see the word "skip"
on the screen. They want to use the mouse to click
on a picture of what they want, check a few boxes
or radio buttons, and have the program do the right
thing. On the other hand I liked the prototype's pow-
erful interface and was not willing to give it up. So
I opted for a hybrid scheme. A category item can
now have two different interfaces: a "quick screen"
in which a few simple options are presented, and a
"custom screen" whch presents all the category's pa-
rameters. The quick screen for the Paragraph cate-
gory has several sets of icons. By selecting an icon
from each set you determine certain characteristics
of the paragraph. For example, one set is labeled
"Paragraph spacing" and it contains two icons. One
icon suggests tight spacing, the other suggests loose
spacing. The custom screen by contrast has several
places where actual dunension and glue values must
be given. To prevent casual users from stumbling
into dialogs they don't understand the program has
two modes. In the first mode many features includ-
ing all the custom screens are hsabled.

2 5 2 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

A &X style file generator and editor

As described so far the quick screen seems lim- References
ited. It has two icons for paragraph spacing, but what
glue values should correspond to these two icons?

Baxter, William Erik. "An Object-Oriented Program-

It clearly depends on the style. I therefore decided
ming System in TEX." These proceedings.

to let the icons themselves be programmable. By se- Bechtolsheim, Ste~hanvon. T E X ~ ~ Practice. Springer-

lecting an icon and pressing the F2 key you get a di- Verlag, New York, NY, USA, 1993.

slog box where a specific glue can be given. hi^ Eijkhout, Victor "Just give me a lollipop (it makes my

value is saved in the style file. Finally, if you can't heart go giddy-up)." TUGboat 13 (3), pages 341-

get the effect you want from the quick screen, the 346,1992.

quick screen F2 modifications, or the custom screen, Goossens, Michel, Frank Mittelbach and Alexander

you can tell the style editor that you want to write Samarin. The DTEX Companion. Addison-Wesley,

t h s macro vourself. You will then have to do so in Reading, MA, USA, 1994.

another macro file.

Conclusion

Mittelbach, Frank. "An extension of the LATEX theo-
rem environment." TUGboat 10 (3), pages 416-
426,1989.

Ogawa, Arthur. "Object-Oriented Programming, De-
The style editor as it now stands is a useful program

scriptive Markup, and TEX." These proceedings.
but there is still a lot of work to be done before it
is a complete program. What I anticipate in the near Bryan, Martin. SGML: an Author's Guide. Addison-

future is that a style writer will prepare a style using Wesley, Reading, MA, USA, 1988.

the style editor together with a little straight TEX to
fill in the gaps. The resulting style, at least those
parts that do not rely on the plain TEX additions,
can be customized by the author without any TEX
knowhow. As time goes by I will manage to get more
and more TEX into the editor's quick screens and
there will be fewer and fewer gaps.

I have more basic functionality planned. For in-
stance, I want to include a fancy "cut and paste" fea-
ture that will facilitate moving tag definitions from
one style to another. The editor will resolve internal
naming conflicts and make sure that auxiliary defini-
tions needed for the tags being moved are moved at
the same time. Having an abstract style representa-
tion should make it possible to move features from
style to style. This in turn will make it possible to
"change styles". A frequent customer request is to
change a document from one style to another. If the
two styles have the same set of markup tags this is
pretty easy. If they do not t h s is pretty hard. If the
style ed tor can reliably move tags from one style to
another then t h s problem will be solved.

Shortly before the TUG meeting I received
preprints of two other papers, Baxter 1994 and
Ogawa 1994, that are found elsewhere in these pro-
ceedings. These talk are about using the object-
oriented paradigm in TEX programming and in doc-
ument markup. In some ways the style editor is also
part of this discussion on the object-oriented ap-
proach. In fact the style editor directly represents
the style as a C++ class in which each generic markup
tag acts as a "style object" that can be acted upon by
an object-oriented interface. I thmk that combining
a style editor of the sort I've described here with a
markup scheme such as described in the above ref-
erences would lead to quite a powerful typesetting
system.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Jon Stenerson

Examples of user interface screens.

TUGboar, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Document Classes and Packages for LATEX 2

Johannes Braams
PTT Research, P.O. box 421, 2260 AK Leidschendam, The Netherlands
J.L.Braarns@research.ptt.nl

Abstract

The first section of t h s article describes what document classes and packages
are and how they relate to LATEX 2.09's style files. Then the process of upgrading
existing style files for use with LATEX^^ is described. Finally there is an overview of
standard packages and document classes that come with the mXzE distribution.

Introduction tensions to the functionality of LATEX are now called

Ths article is written for people who have written
document styles for LAT~x2.09 and want to upgrade
them for For a description of the new fea-
tures of the user level commands, see for au-
thors (in the file usrguide. tex in the LATEXZ~ distri-
bution). The details about the interface for class and
package writers can be found in J!~TEX& for class and
package writers (in the file cl sgui de . tex). The way
K&X now deals with fonts is described in LATEX&
font selection (in the file fntgui de . tex).

What are document classes and packages?

H&X is a document preparation system that enables
the document writer to concentrate on the contents
of his text, without bothering too much about the
formatting of it. For instance, whenever he starts a
new chapter the formatting of the chapter is defined
outside of his document. The file that contains these
formatting: rules used to be called a 'document style'. -
Such a document style can have options to influence
its formatting decisions. Some of these options are
stored in separate files, 'document style option' files.
An example of such option files is f l eqn . s ty whch
was part of the Ul&X 2.09 distribution. This option
changes one aspect of the formatting of a document
-it makes displayed equations come out flush left
instead of centered.

There are also extensions to LATEX that imple-
ment constructs that are not available in the default
system, such as array. sty. These extensions are
also known as 'document style option' files, although
they can often be used with many kinds of docu-
ments.

To make a better distinction possible between
these two kinds of 'options' new names have been
introduced for them. What used to be called a 'doc-
ument style' is now called a 'document class". Ex-

' This also gives a possibility to distinguish be-
tween documents written for mX2.09 and docu-
ments written for LATEX^^.

'packages'

Options, options, options.. . Like the document
styles of LAT~x2.09 document classes can have op-
tions that influence their behaviour-to select the
type size for instance. But with LATEX^^ it is now
also possible for packages to have options. As a con-
sequence there are now two kinds of options, 'lo-
cal options'-which are only valid for the package or
document class they are specified for-and 'global'
options whch can influence the behaviour of both
the document class and one or more packages. As an
example of t h s let's consider a document written in
German. The author chooses to use the babel pack-
age. He also wants to be able to refer to a figure 'on
the following page' so he uses the vari oref package.
The preamble of his document might then look like:

\documentcl a s s f a r t i cl e)
\usepackage [german] {babel)
\usepackage [german] {variorefl

As you see the option 'german' was specified twice.
Using a 'global option' t h s preamble could be
changed to read:

\documentcl ass [german] {ar t i cl e)
\usepackage{babel 1
\usepackage{varioref)

This way it is known to the document class as well
as all packages used in the document that the option
'german' is specified.

Command names. This new version of H&X comes
with a new set of commands. Those Q X users
who have written their own extensions to IPQX
in the past know that in version 2.09 basically
two types of commands existed, namely "internal"
commands-with '@'-signs in their name-and "user
level" commands-without '@'-signs in their name.

has also commands that have both
upper- and lowercase letters in their name. Those
commands are part of the interface for package and

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 255

Johannes Braams

cl s
c l o

s t y
cfg

def

I t x

dtx

A file containing a document class
A file containing an external option to a
document class
A file that contains (part of) a package
An optional file that is looked for at run-
time and which can contain customization
code
A file containing definitions that will be
read in at runtime.
A file used when building the LATEX~E
format
Documented source code for . c l s, . cl o,

1 . s ty , . cfg, . def, and . I t x files
fd I A font defmtion file

Table 1: Extensions for m x 2 E files

fdd
i n s

class writers. They are not intended for use in docu-
ments, but they are meant to provide an 'easy' inter-
face to some of the internals of LAEX~E.

Documented source code for . fd files
DOCSTRIP instructions to unpack . dtx and
. f dd files

Filenames. The new version of W X introduces a
number of new file extensions. This makes it easy
to distinguish between files that contain a Document
Class, files that contain an external option to a Docu-
ment Class and files that contain Packages. In table 1
you can find an overview of the extensions that have
been introduced. I would suggest that you would
stick to the same set of extensions when you upgrade
your old . s t y files.

Upgrading existing 'styles' - general
remarks

Is it a class or a package? The first thing to do when
you upgrade an existing style file for IK&X2€, is to
decide whether it should become a document class
or a package. Here are a few points which might help
you to decide what to do with your . s t y file.

Was the original . s t y file a documentstyle?
Then turn it into a document class.

a Was the original . s t y file meant to be used
for a certain type of document? In that case
you should consider turning it into a document
class, possibly by building on top of an existing
class. An example of this is proc . s t y which is
now proc. cl s.

a Was it just changing some aspects of the way
LATEX does t h g s ? In that case you would prob-
ably want to turn your . s t y file into a package.

Was it adding completely new functionality to
LATEX? Examples of t h s kind of . s t y file are files
such as fancyheadi ngs. s t y and XYpi c . s ty .

This you most certainly will want to turn into a
package for LATEX~E.

Style options - packages
Trying it out unchanged. After you've decided to
produce a package file, you should first try to run a
document that uses your . s t y file through LATEX&
unmodified. T h s assumes that you have a suitable
test set that tests all functionality provided by the
. s t y file. (If you haven't, now is the time to make
one!) The experience of the last months has shown
that most of the available . s t y files will run with
LATEXZE without any modification. Yet if it does run,
please enter a note into the file that you have checked
that it runs and resubmit it to the archves if it was
a distributed file.
Bits that might have failed. Some . s t y files will
need modification before they can be used success-
fully with LV$X2€. Such a modification is needed for
instance when you used an internal macro from the
old font selection scheme. An example is \fivrm
which is used by some packages to get a small dot
for plotting. The obvious solution for this seems be
to include a definition such as:

\newcommand{\fivrm}
{\normal fon t
\fontsize{5}{6.5pt}\selecrfont}

But that involves a lot of internal processing and
may result in long processing times for your docu-
ments that use thls. For this purpose the command
\Decl areFi xedFont is available. It bypasses a lot of
the overhead of the font selection scheme. Using this
command the solution becomes:

\Decl areFi xedFont{\fi vrm}

COT1}CcmrlCml{nlC53

Thls tells L Q X that the command \ f i vrm should
select a font with O T ~ encoding, cmr f a d y , medium
weight, normal shape and size 5 point.
Pieces of code that might need checking. If your
. s t y file uses commands that used to be part of
the way LATEX used to deal with fonts than your file
Mrlll almost certainly not work. You will have to look
in B T E X ~ ~ font selection or The BTEX Companion
(Goossens et al. 1994) to find out the details about
what needs to be done.

Commands such as \tenrm or \ twlsf have to
be replaced:
\tenrm - \ fonts ize{10}{12pt} \ rmfami ly
\ t w l s f - \ fonts i ze{12}{14. 5pt}\sffami 1 y
Another possibility is to use the rawfonts package,
described in L ~ T E X ~ ~ for Authors.

Also commands such as \xi p t do not exist any
longer. They also have to be replaced:
\vpt - \fontsize{5}{6.5pt}\selectfont
\ x ip t - \fontsize{ll}{13.6pt}\selectfont

TUCboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Document Classes and Packages for LAT'XZE

W~X2.09 used commands with names begin-
ning with \p for 'protected' commands. For exam-
ple, \LaTeX was defined to be \protect\pLaTeX,
and \pLaTeX produced the W&X logo. T h s made
\LaTeX robust, even though \pLaTeX was not. These
commands have now been reimplemented using
\Decl areRobustCommand (described in ,?~TEX& for
class and package writers). If your package redefined
one of the \p-commands, you should replace the re-
definition by one using \Decl areRobustCommand.

When you use internal commands from N F s s ver-
sion 1 you will have to be very careful to check if ev-
erything still works as it was once intended.

Note that macros such as \rm are now defined
in class files, so their behaviour may differ for each
class. Instead you should use the lower level com-
mands such as \rmf ami 1 y in packages. When you
want to make sure that you get a certain font, inde-
pendent of the environment in whlch your macro is
activated, you can first call \normal font and then
switch the various parameters of the font selection
scheme as necessary.

In some cases you may need to use the user level
commands such as \textrm. This is necessary for
instance when you define a command that may also
be used in mathmode.

Document styles - Classes
Minimal updates are necessary. When you are up-
grading a document style to a document class there
are a few things that you really have to change, or
your class will not work.

One of the things that must be done, is making
sure that your class doesn't define \@normal s i ze
but \normal s i ze . Make sure that \renewcommand is
used to redefine \normal s i z e as it is already defined
in the kernel of LQX, but to produce a warning that
it needs to be given a real definition.

Another aspect that needs to be dealt with, is
that the parameters \@maxsep, \@dblmaxsep and
\foothei gh t no longer exist. The first two were part
of the float placement algorithm, but a change in that
algorithm made them superfluous. The parameter
\ foothe ight was reserved in LAT~x2.09, but it was
never used.

The declarative font changing commands (\rm,
\ s f etc.) are no longer defined by default. Their defi-
nitions have been moved to the class files. Make sure
that you define them or that they are not used by the
users of your class. The standard document classes
all contain definitions such as the following:

This tells LATEX that when \rm is used in the text it
should switch to \normal f ont and then select the ro-
man family. When \rm is used in mathmode MQX will
select the font that would be selected by \mathrm2.

Build on standard classes. When upgrading your
own document style you should consider to reimple-
ment it by building on an existing Document Class.
With the new features of LATEX^^ this has become
very easy. The advantage of this approach is that
you don't have to maintain a whole lot of code that
is probably basically a copy of the code in one of
the standard document classes. (See below for a few
examples of how to build your own document class
on an existing class.) Some documentstyles written
for WX 2.09, such as 1 tugboat, contain a command
such as \i nput{arti c l e . sty}. This was the only
solution in LATEX 2.09-to build a new documentstyle
upon an existing style. But, there was no way of en-
suring that the file a r t i c l e . s t y which was found by
L Q X wasn't out of date. As you see in the examples
below, it is now possible to ensure that you use a ver-
sion of a r t i c l e . c l s that was released after a certain
date.
Suggested updates. Apart from the essential chan-
ges to your document class, there are also a few
changes that you are encouraged to make. Most of
these changes have to do with the new possibilities
the package and class writers interface gives you.

In a LATEX 2.09 document style an option was de-
clared by defining a command that starts with \ds@
followed by the name of the option. Later on in the
documentstyle the command \@opti ons was called
to execute the code for the options that were sup-
plied by the user. For example, the document style
a r t i c l e contained the following lines of code:

\def\ds@twoside{\@twosidetrue
\@mparswi tchtrue}

\def\ds@draft{\overfull ru l e 5\p@)

This code fragment defined two options, twoside and
draft.

The same effect can be achieved by using
MQX2E syntax, as is shown by the following code
fragment from the document class a r t i c l e :

. . .
\Decl areOpti on{onesi de)

{\@twosi defal s e \@mparswi tchfa l se)
\Decl areOption{twosi de}

{\@twosi detrue \@nparswi tchtrue}
\Decl areOpti on ld ra f t)

{\set length\overful l rule{5pt}}
\DeclareOption{fi nal }

{\set1 ength\overfull rul eWpt3)
. . .
\ProcessOpti ons

As you can see, the intention of this code is easier to
understand.

See LATEX^^ fonl selection for more details.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Johannes Braams

I consider it good practice, when writing pack-
ages and classes, to use the hgher level J4QX com-
mands as much as possible. So instead of using
\def. . . I recommend using one of \newcommand,
\renewcommand or \provi decommand. This makes
it less likely that you inadvertently redefine a com-
mand, giving unexpected results.

When you define an environment use the com-
mands \newenvi ronment or \renewenvi ronment
instead of \def\foo{. . . I and \def\endfoo{. . .}.

If you need to set or change the value of a
(dimen) or (skip) register, use \set1 ength.

The advantage of this practice is that your code
is more readable and that it is less likely to break
when future versions of k?&X are made available.

Some packages and document styles had to re-
define the \begin{document} or \end{document}
commands to achieve their goal. This is no longer
necessary. The "hooks" \AtBegi nDocument and
\AtEndDocument are now available. They make it
more likely that your package will work together with
someone else's.

When a document class needs to pass informa-
tion to the user, you can use one of the commands
\Cl assInfo, \Cl assWarni ng,
\C1 assWarni ngNoLi ne or \Cl assEr ror. A similar
set of commands exists for packages.
Be colour safe. One of the new features of mX2€
is the support for coloured documents. To create a
document that contains colour YOU need:

the color package, which is part of the
distribution;

a driver whlch supports colour-dvips by
Tomas Rokicki is an example of such a driver;

colour safe macros.

The first two points are probably obvious, the third
point needs some explanation. TEX has no knowledge
of colour, therefore the macros need to keep track
of the colour. To acheve that, various changes have
been made to the kernel of LQX. Thls has been done
in such a way that the changes are 'dormant' when
the color package isn't used. As an example, here is
the current definition3 of the LATEX command \sbox:

\def\sbox#l#2{\setbox#l\hbox{%
\col or@@setgroup#2\col orkWendgroup}}

The extra level of grouping is activated by the color
package and is needed to keep colour changes local.
For more information about being 'color safe' you
should read the documentation that comes with the
col or package.

If you use the M&X commands for boxing sunch
as \mbox, \sbox, \fbox, etc. instead of the low level
commands \hbox, \vbox and \setbox, your code
will be automatically 'colour safe'.

Shown here only as an illustration; the actual
implementation may change.

Upgrading existing 'styles'-an example
tour

A minimal class. Most of the work of a class or
package is in defining new commands, or chang-
ing the appearance of documents. m s is done in
the body of the class or package, using commands
such as \newcommand, \setlength and \sbox (or
\savebox).

However, there are some new commands for
helping class and package writers. These are de-
scribed in detail in LATjXZE for class and package
writers.

There are three definitions that every class must
provide. These are \normal si ze, \textwi d t h and
\texthei ght. So a minimal document class file is:

\NeedsTeXFormat{LaTeX2e}
\Provi desCl ass{mi n i ma1 }

[1994/06/01 Mini ma1 cl ass]
\renewcommand{\normaI size}{%

\fontsize{1O}{12}\selectfont}
\set1 ength{\textwidth}{6.5i n}
\set1 ength{\textheight}{8i n} 5

However, most classes will provide more than this!

Extending a class with new commands. The first ex-
ample shows how you can extend an existing class
with a few extra commands. Suppose you call your
new class extart . It could start off with the follow-
ing code:
%---- - - - - - - - - Identification - - - - - - - - - - - -%

\NeedsTeXFormat{LaTeX2e}[1994/06/01]
\Provi desClass{extart}

[1994/08/01 v2.0-j
Article l i ke c lass w i t h new commands]

This first line tells J?QX that your code was written
for H&X2€, released after june first, 1994. The sec-
ond line informs J t Q X that this file provides the doc-
ument class extar t , dated august 1, 1994, and with
version 2.0j.
%---- - - - - - - - - Option handling -----------%

\Decl areOpti on*{%
\PassOptionsToCl ass{\CurrentOpti on}

{article}}

The code above instructs l4QX to pass on every
option the user asked for to the document class
a r t i c le .

\ProcessOpti ons
%------------ Load other class ----------%

\LoadCl ass [a4paper] {a r t i cl e} [1994/06/01]

The command \Processoptions executes the code
associated with each option the user specified. The
\LoadCl ass command subsequently loads the class
file. The first optional argument to \Loadclass
passes the option a4paper to the class; the sec-
ond optional argument to \Loadclass asks for
a r t i cl e . cl s dated june first, 1994, or later.

258 TUGboat, Volume 15 (19941, No. 3 -Proceedings of the 1994 Annual Meeting

Document Classes and Packages for

Note that if you change your mind and load just after the execution of \ProcessOptions. Sup-
r epo r t instead you also have to change the second posing you don't want to print an article in 19pt type,
argument of \Passopti onsToCl ass. you can use the file name s i ze9. c l o to implement
%---- - - - - - - - - E~~ ra Command - - - - - - - - - - - - -% your design for a layout that assumes the type size is

\newcommand\foo{\ typeout~el lo wor ld ! } } 9pt. To implement a design for 14pt type you create
the file s i ze l4. c l o. . . .

The rest of the file contains the extra code you need
such as the definition of the command \foo.

Changing the layout produced by another class.
The first few lines of a class that modifies the layout
of an existing class would look much the same as in
the example above.
%---- - - - - - - - - I d e n t i f i c a t i o n - - - - - - - - - - - -%

\NeedsTeXFormat{LaTeX2e}[1994/06/01]
\Provi desCl ass{rev i ew}

[1994/08/01 v1.0
A r t i c l e l i k e c l ass w i t h changed l ayou t]

%---- - - - - - - - - Opt ion handl ing - - - - - - - - - - -%

\Decl areOpti on*{%
\PassOptionsToCl ass{\CurrentOption}

{ a r t i c l e l }
\ProcessOpti ons
%---- - - - - - - - - Load o ther c lass - - - - - - - - - -%

\LoadCl a s s { a r t i c l e} [1994/06/01]

Suppose we have to print on paper 7 inch wide and
9.875 inch tall. The text should measure 5.5 inch by
8.25 inch
oo - - - - - - - - - - - - - / Layout o f t e x t - - - - - - - - - - -%
\set length{ \paperwidth}{7 i n}
\set length{\paperheight}{g. 875i n}
\set1 ength{ \ textwi d th } {5 .5 i n}
\set length{ \ textheight} {8.25in}

What we have to do now is position the body of the
text in a proper place on the paper.

\set1 ength{\topmargi n}{- . 5625i n}
\set length{\oddsidemargin}{- . 25in)
\set1 ength{\evensi demargi n}{- . 25 i n}
\set length{\margi nparwidth}{ .25 i n}
\setlength{\headsep}{ .1875i n}

We could go on and modify other aspects of the de-
sign of the text, but that is beyond the scope of this
article.

Extending a class with new options. As before, we
start the document class with some identification.

% - - - - - - - - - - - - I d e n t i f i c a t i o n - - - - - - - - - - - -%

\NeedsTeXFormat{LaTeX2e}[1994/06/01]
\Provi desCl ass{op ta r t }

[1994/08/01 v1.0
A r t i c l e l i k e c l ass w i t h e x t r a opt ions]

Suppose you want to be able to print a document in
9pt type, or when you want to be loud, print it in 14pt
type. You know that the standard B Q X classes con-
tain the command
\i npu t { s i ze l \@p ts i ze. c l o}

Adding the options to your extended document
class is done by the following two lines of code:

All other options have to be passed on to the
a r t i c l e class.
%-- - - - - - - - - - - Option hand1 i ng - - - - - - - - - - -%

\Decl areopt ion"{%
\Passopti onsToCl ass{\CurrentOption}

{ a r t i c l e l }
\ProcessOpti ons

Load other c lass - - - - - - - - - -%

\LoadCl a s s { a r t i c l e} [1994/06/01]

A real life example. Apart from adding options to
an existing document class it is also possible to dis-
able options that are allowed by the document class
you are building upon. An example of this is the doc-
ument class 1 txdoc, used by the UTEX~ project team
for the documented source code of W X . It contains
the following lines of code:

\NeedsTeXFormat{LaTeX2e}
\Provi desC1 ass11 txdoc}

[1994/05/27 v2.0n
Standard LaTeX documentation c lass]

\Decl areOption{a5paper}%
{\el atexerr {Opt i on no t supported}%

0 1
\Decl areOpti onq{%

\Passopti onsToCl ass {\CurrentOpti on}%
{ a r t i c l e l }

The interesting bit is the line that associates the op-
tion a5paper with an error message. When someone
specifies the a5paper option to the class 1 txdoc he
will be warned that this document class does not sup-
port printing on ~5 paper.

This document class allows customization by
checking if a file 1 txdoc . c f g exists. If a file with that
name is found the user is told that the file is read in.

\ I n p u t I f F i l e E x i s t s { l txdoc .c fg }
{ \ typeout{%

~ ~ ~ t ~ t t * ~ * * ; k * t t ~ * t ~ ~ ~ i $: ; t ' c * * ; b ; t * ; * * f ~ f c * $: i k 5 : . ' * .. , A A l %

* Local con f i g f i l e 1 txdoc .c fg usedAAl%
t ; k ~ k ~ * ; b ~ ~ ~ % ~ * t ~ ~ ~ ~ * t * * $: ? ~ * ; k f : i t ~ - ~ * ? ~ $: * i k ~ r f k ? : } }

i J

Such a configuration file might contain the instruc-
tion to use ~4 paper for printing:
\Passopti onsToCl ass{a4paper}{art i c l e}

TUGboar, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Johames Braams

When the configuration file is read, the options
are processed and the a r t i c l e class is loaded.

\ProcessOpti ons
\LoadCl ass{ar t i c l e}

Then the package doc is required. This package is
needed to print documented TEX source code, whch
the document class 1 txdoc is made for.

\RequirePackage{doc}

The last line from this document class that is inter-
esting is the following:

\AtBeginDocument{\MakeShortVerb{\I}}

T h s instructs LATEX to store the command
\Makeshortverb together with its argument (\ I)
to be executed when \begi n{document} is encoun-
tered.

Informing the user
Error handling. LATEXZE contains a set of com-
mands that provide an interface for error han-
dling. There are commands to signal an error (and
prompt for corrective user input); commands to
issue a warning about something and commands
to just provide some information. In figure 1 you
can see an example of the use of the command
\PackageWarni ngNoLi ne. The result of executing
the command is also shown.

Table 2: Document classes that are part of LATEXZE

a r t i c l e

report

book

1 e t t e r

sl i des

proc
1 txdoc

1 txgui de
1 tnews

the order that they were specified in the docu-
ment. It rather processes them in the order that
they are declared in the class or package file.
When the order of processing the options is rel-
evant to your code you can use the command
\ProcessOptions*. This will make m X z E
evaluate the options in the order that they were

successor of the a r t i c l e document
style
successor of the report document
style
successor of the book document
style
successor of the 1 e t t e r document
style
successor of the sl i des document
style and S L ~ $
Successor of the proc style option
to typeset the documented
sources of LATEXZE
to typeset the LATEX^^ guides
to typeset the news letter that comes
with each release of LATEX

Compatibility with UTEX 2.09. Upwards compatibil-
specified in by the user.

ity is provided by the compatibility mode of LATEXZE. For the babel package for instance, the order

This mode was introduced to be able to run old of processing the options is significant. The last

BQX2.09 documents through LATEX^^, yielding (al- language specified in the option list will be the

most) the same result. If t h s is what you need
one the document starts off with.

to achieve, than you may be pleased to know that
the \i fecompati bi 1 i t y switch can be used to test
for compatibility mode. Using this switch, you can
develop a full blown LATEXZE Package or Document
Class out of a ItQX2.09 style file and yet still be able
to print your old documents without changing them.

Possible Pitfalls while upgrading. Some mistakes
that might be easily made and that can lead to un-
expected results:

You declare options in your package using
\Decl areOpti on but forget to call
\ProcessOptions. W X will give an error, 'un-
processed options' unless sometimes other er-
rors in the class file intervened and prevent the
system detecting t h s mistake.

The usage of either \footheight, \@maxsep
or \@dbl maxsep outside of compatibility mode
will lead to a complaint from TEX about an un-
known command sequence.

With UTEX2.09 the order in which options to
a documentstyle were specified was very sig-
nificant. A document would fail if the op-
tions were given in the wrong order. By de-
fault UTEXZE does not process the options in

Document Classes and Packages in the
b ' T ~ x 2 ~ distribution

Standard Document Classes. In table 2 an overview
is given of the document classes that are available
when you get the standard distribution of W&XZE.

Most of these will be familiar to you, they are
the successors of their W X 2.09 counterparts. Basi-
cally these document classes behave like the old doc-
ument styles. But there are a few changes:

The options openbib and twocolumn are now
internal options, the files openbi b . s t y and
twocol umn. s t y do not exist any more.

A number of new options are implemented; sup-
porting a range of paper sizes. Currently im-
plemented are a4paper, aspaper, bspaper, let-
terpaper, legal paper and executivepaper. These
options are mutually exclusive.

Another new option is the landscape option.
It switches the dimensions set by one of the ..pa-
per options. Note that this does not necessarily
mean that when you combine a4paper and land-
scape the whole width of the paper will be used
for the text. The algorithm whch computes the

260 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Document Classes and Packages for LATEX^^

\PackageWarni ngNoLi ne{babel 3
{The language 'Dutch' doesn ' t have hyphenation patterns\MessageBreak
I wi l l use the pa t te rns loaded f o r \string\language=O ins t ead .)

produces:

Package babel Warning: The language 'Dutch' doesn ' t have hyphenation pa t te rns
(babel) I wil l use the pa t t e rns loaded f o r \language=O ins tead .

Figure 1: An example of the use of the command \PackageWarni ng

\textwi dth from the \paperwi dth has an up-
per bound in order to make lines of text not too
long.

The document class 1 e t t e r now also supports
the option twoside. It does not support the op-
tion landscape.

The document class s l i d e can now be used
with LATEX, SLIT$ does not exist as a separate
format any longer.

Two column (using the option twocolumn)
slides are not supported.

While processing the document class s l i d e s
LATEX tries to load the optional file s fon t s . cfg.
T h s file can be used to customize the fonts
used for malung slides.

The former oation proc. s t y has now been
turned into a beparate document class, which
is implemented by building on a r t i c l e using
the \LoadCl a s s command. T h s class does not
allow the options a5paper, b5paper and onecol-
umn.

A few new document classes have been added
to the distribution of IQX. These are mainly meant
to be used for documents produced by the Q X 3
project team, but they can be used as an example of
how to build a new class on top of an existing class.
These classes are not yet finished and will probably
change in the future.

The document class 1 txdoc is used in the doc-
umentation of all the LATEX& source code. The
document class is built upon the a r t i c l e class
and also loads the doc package.

It defines the command \DocIncl ude which
works like the \ i ncl ude command from LATEX,
but sets t b g s up for formatting documented
source code.

The formatting of the source code can be cus-
tomized by creating the file 1 txdoc . cfg. Such a
file could for instance select your favorite paper
size. This can be done by entering the following
command in 1 txdoc . cfg:

\Passopti onsToC1 ass(a4paper)Cart-i c l e l

Selecting a5paper is not allowed; the source list-
ings wouldn't fit.

i f t hen
makei dx
showi dx
doc
shortvrb

new1 fon t
o ld l fon t
1 atexsym

exscal e

fontenc

syntonl y
t racefn t

successor of the ifthen option
successor of the makeidx option
successor of the showidx option
successor of the doc option
implements \Makeshortverb and
\Del eteShortVerb
successor of the newlfont option
successor of the oldlfont option
makes the W&X symbol fonts
available
implements scaling of the math ex-
tension font 'cmex'
supports switchng of output
encoding
successor of the syntonly option
successor of the tracefnt option

Table 3: Packages that are part of LATEX^

The document class 1 txgui de is used for the
user guides that are included in the distribution.

The document class ltnews is used for the
short newsletter that accompanies the LATEX dis-
tribution.

Packages. The packages that are contained in the
U T E X ~ ~ distribution are listed in table 3. Most of
these packages are described in The LATEX Compan-
ion.

The package i f then (which used to be the op-
tion ifthen) has been enhanced and now also defines
\newboo1 ean, \setboo1 ean and \boo1 ean{ . . . I to
provide a LATEX interface to TEX'S switches. Other new
commands are \l ength tes t and \i fodd.

The package shortvrb has only recently been
introduced. It contains the definitions of the com-
mands \Makeshortverb and \Del eteShortVerb
from the doc package. By providing this package
those commands can also be used in other docu-
ments besides L Q X source code documentation.

Related software bundles. Table 4 lists some re-
lated software bundles that are distributed sepa-
rately.

The packages in these bundles come with doc-
umentation and each of them is also described in

TCIGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 261

Johannes Braams

babel

co lor
graphics
mfnfss

psnfss

Advanced mathematical typesetting
from the American Mathematical
Society
Supports typesetting in over twenty
different languages
Provides support for colour
Inclusion of graphics files

I Typesetting with bit-map (Metafont)
I fonts

Typesetting with Type 1 (Postscript)
fonts

Table 4: Software bundles not part of w X Z E

t o o l s

at least one of the books The LATEX Companion
(Goossens et al. 1994) and LATEX: A document prepa-
ration system (Lamport 1994).

Miscellaneous packages written by
the W X 3 project team

References

Goossens, Michel, Frank Mittelbach and Alexander
Samarin. The LATEX Companion. Addison-Wesley
Publishing Company, 1994.

Lamport, Leslie. LATEX: A Document Preparation Sys-
tem. Addison-Wesley Publishing Company, sec-
ond edition, 1994.

The m X 3 Project team. LATEXZ~ for Authors. A
document provided in the BTEX~E distribution in
file usrgui de. t ex

The PQX3 Project team. BTEXZ~ for class and pack-
age writers. A document provided in the IbQX 2~
distribution in file c l sgui de. t ex

The BTiX3 Project team. B T E X ~ ~ font selection. A
document provided in the L T E X ~ ~ distribution in
file fn tgui de. t ex

TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

PostScript Fonts in IPTEXZ~

Alan Jeffrey
School of Cognitive and Computing Sciences, University of Sussex, Falmer, Brighton, BN1 9QH, UK
alanje@cogs.susx.ac.uk

Abstract

This paper describes the mXZE PostScript fonts package psnfss, and the Adobe
Times math fonts package mathptm. This paper describes some of the design
decisions made in psnfss, and gives an overview of how other fonts can be used
in a sirmlar fashion.

Introduction

Thls paper describes Sebastian Rahtz's psnfss pack-
age for using PostScript fonts in BQX. The psnfss
software has been the standard way of using Post-
Script fonts in LATEX for a number of years, and has
recently been updated for 14QXZE and the fonts gen-
erated by the author's (1994) fontinst package.

The psnfss package aims to make using Post-
Script fonts as simple as possible. Once psnfss has
been installed, users can select a package
such as times and their document wdl be set in Adobe
Times. The psnfss package comes with a standard
set of TEX font metric (tfm) files, so psnfss docu-
ments should be portable between different TEX im-
plementations.

One of the new features of psnfss is the math-
ptm package, whch allows Adobe Times to be used
as a math font as well as a text font. This only
uses standard fonts (Adobe Times, Adobe Symbol
and Computer Modern) so mathptm documents are
portable, and the resulting PostScript files can be dis-
tributed without worrying about proprietary fonts.

Together with David Carlisle and Sebastian
Rahtz's (1994) graphics and color packages, psnfss
will help to free LATEX from its popular image as only
setting academic texts in Computer Modern with
picture mode graphics.

Using psnfss

Once psnfss has been installed, it is very simple for
users to use. They just select an appropriate pack-
age, for example:

\documentcl ass{arti cle}
\usepackage{times}

Some document classes will be designed for use with
PostScript fonts, and will automatically select Post-
Script fonts without the user selecting a package. For
example, a pub l i shg house producing The Journal
of Dull Results may have their own jdullres document
class, with options for pre-prints or final copy. An
author would type:

\documentcl ass [prepri n t] {jdull res}

and would get a pre-print document set in Adobe
Times, whereas the production staff would type:

\documentcl ass [crc] {jdull res}

to get camera-ready copy set in Autologic Times.
Documents written using psnfss can be printed

with an appropriate dvi driver such as dvips, or
OZTEX. Some previewers, such as xdvi , cannot pre-
view PostScript fonts without turning the fonts into
bitmaps (using up valuable disk space). But the
PostScript can be previewed, using ghostvi ew or
pagevi ew.

PostScript math fonts

One of the common complaints about using LATEX
with PostScript fonts is that the mathematics is still
set in Computer Modern, for example as in Figure 2.
Ths 1s unfortunate, since Computer Modern is a
much lighter, wider and more cursive font than suits
Adobe Times.

Until recently, the only thing that could be done
about t h s was to use the MathTime fonts, available
from Y&Y. These are fine fonts, and can produce ex-
cellent math setting. Unfortunately, they are propri-
etary software, and so cannot be distributed as freely
as Computer Modern.

A less beautiful, but cheaper, solution is to use
the mathptm package. This provides drop-in re-
placements for Computer Modern using virtual fonts
built from Adobe Times, Symbol, Zapf Chancery, and
Computer Modern. The results can be seen in Fig-
ure 3.

The mathptm fonts are distributed free, and the
resulting PostScript documents can be made avail-
able for anonymous f t p without having to worry
about unscrupulous readers stealing the fonts from
the PostScript documents.

Roadmap

The rest of this paper describes some technical de-
tads about the implementation of psnfss, for the
T~Xnically minded.

TUGboat, Volume 15 (1994), No. 3 -Proceedmgs of the 1994 Annual Meeting

Alan Jeffrey

Suppose f E Sn and g (x) = (-l)laixa f (x) . Then g E Sn; now (c) implies that ij = D,? and

P . ~ , f ^ = P . i j = (P(D)gr , which is a bounded function, since P(D)g E L' (Rn) . This proves that

f̂ E S,. If fi --+ f in Sn , then f , --+ f in L1(Rn) . Therefore f i (t) -+ f (t) for all t E Rn. That

f -+ f̂ is a continuous mapping of Sn into Sn follows now from the closed graph theorem. Functional
Analyszs, W. Rudin, McGraw-Hill, 1973.

Figure 1: Computer Modern text with matchmg math

Suppose f E Sn and g (s) = (-l)lai xa f (x) . Then g E S,; now (c) implies that i j = ~ , f ^ and P . ~ , f ^ =

P . = (P(D)gr , which is a bounded function, since P(D)g E L'(R"). This proves that f E Sn. If fi + f

in Sn, then fi -+ f in L1 (R n) . Therefore fi (t) --+ j(t) for all t E Rn. That f 4 f̂ is a continuous mapping of
Sn into S , follows now from the closed graph theorem. Functional Analysis, W. Rudin, McGraw-Hill, 1973.

Figure 2: Adobe Times text with Computer Modern math

Suppose f E S, and g(x) = (- l)lalxa f (x) . Then g E S,; now (c) implies that = D,? and P . ~ , f = P . =

(P(D)gJ which is a bounded function, since P(D)g E L' (Rn). This proves that f E S,. If fi --+ f in S,, then
fi --+ f in L' (Rn). Therefore f,(t) -+ f (t) for all t E Rn. That f --+ f is a continuous mapping of S, into 5,
follows now from the closed graph theorem. Functional Analysis, W. Rudin, McGraw-Hill, 1973.

Figure 3: Adobe Times text with matching math

The unpacked psnfss package comes as a num-
ber of files:

Files ending with s t y are LATEX~E packages. For
example, t imes. s t y contains the times pack-
age.

Files ending with f d are LATEXZ~ font definition
files. For example, Tlptm . f d contains the font
definitions for Adobe Times. This tells LATEXZ~
that, for example, Adobe Times bold italic is
called ptmbi q.

Files ending with t f m are TEX font metric files.
For example, ptrnbi q . t f m contains the font in-
formation which TEX needs for Adobe Times
bold italic.

Files ending with v f are virtual fonts. For exam-
ple, ptmbi q . v f contains the font information
which some printers and previewers need for
Adobe Times bold italic. This tells the printer
that, for example, the character 'c' is made from
an 'acute' and an 'C'.

The s t y and f d files are used by LATEX, the t f m files
are used by TEX, and the v f files are used by printers
and previewers.

Document portability

Although the psnfss package distributes all of
the files that are used by MQX and TEX, it does
not include the files which are used by particular
printer drivers, since these change from site to site.
The psnfss package makes no requirements on the
printer driver, except that it can print with PostScript
fonts.

Virtual fonts

Although psnfss comes with virtual fonts, these are
an optional part of the package. Some printer drivers
(such as Y&Y's dvipsone) use PostScript font re-
encoding rather than virtual fonts. The advantages
of virtual fonts include:

More than one font can be combined together.
For example, many PostScript fonts contain 'ff'
ligatures in the Expert fonts, but TEX requires
ligatures to be in the same font.

Composite letters such as 'A' and 'c' can be pro-
duced. TEX requires such letters to be in a font
for the hyphenation algorithm, but most Post-
Script fonts do not contain them.

Most printer drivers and previewers can use vir-
tual fonts, so they are portable between sys-
tems.

The psnfss package is intended to make documents The advantages of Postscript font re-encoding are:

as portable as possible. To achieve this, the sty, f d Postscript font re-encoding is faster, for exarn-
and t f m files should be the same at all sites. This ple Textures previewing with virtual fonts can
means that documents using the times package will be twice as slow as with raw fonts.
print identically on different sites. Postscript font re-encoding is a standard tech-

nology supported by many other applications.

2 64 TUCboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

PostScript Fonts in LATEX^^

In order to access characters like 'A', the printer
driver has to use PostScript font re-encoding
anyway, so virtual fonts need two levels of re-
encoding rather than one.

Since there is a trade-off between virtual fonts and
PostScript font re-encoding, the psnfss package
makes no assumptions about using virtual fonts. The
vf files are available for those who want to use them,
but not all sites will want to use them.

Fzisting PostScript fonts

In the past, there have been problems with installing
psnfss on systems which have already got PostScript
fonts generated using Tom Rokicki's afm2tfm con-
verter.

The main difference between the fontinst fonts
and the afm2tfm fonts is that the fontinst fonts are
designed to be drop-in replacements for Computer
Modern, and can be used with no new macros. The
afm2tfm fonts contain some new characters (such as
'0') and some old characters (such as the accent on
'8') in different slots, so need special macros. See
Tables 2 and 3.

One of the most important features of mXzE is
that different fonts can be used without new macros,
which is one of the reasons for using the fontinst
fonts rather than the afm2tfm fonts.

In the past, there were problems using psnfss on
systems which had already got the afm2tfm fonts,
because they used the same font names. T h ~ s has
now been changed, and fontinst uses the letters 7 t
to indicate a '7-bit TEX text' font, and 0 to indicate an
'Adobe Standard' font. For example the filenames for
Adobe Times are:

encoding fontinst name a f m 2 t f m name
Adobe Standard ptmrO rptmr

7-bit TEX text ptmr7t ptmr

8-bit TEX text Ptmrq none

There should now be no clashes between the fonts
generated by afm2tfm and those generated by
fontinst.

Font naming

The psnfss fonts are named using Karl Berry's nam-
ing scheme. T h s tries to fit as many font names as
possible into the eight letters provided by some op-
erating systems. For most fonts here, the names are
given by:

One letter for the font foundry, e.g. p for Adobe.

Two letters for the font family, e.g. t m for Times
Roman, hv for Helvetica or c r for Courier.

One letter for the weight, e.g. r for regular or b
for bold.

An optional letter for the shape, e.g. i for italic,
o for oblique, or c for small caps. No letter
means 'upright'.

a One or two letters for the encoding, e.g. q for
'Cork' encoding, 0 for 'Adobe Standard' encod-
ing or 7 t for Knuth's 'TEX text' encoding.

For example:

ptmr7t is Adobe, Times Roman, regular weight,
upright shape, TEX text encoding.

phvbcq is Adobe, Helvetica, bold weight, small
caps shape, Cork encoding.

pcrroO is Adobe, Courier, regular weight,
oblique shape, Adobe Standard encoding. This
is the font Adobe call 'Courier-Oblique'.

The naming scheme is described in more detail by
Berry (1994). It is far from ideal, but does allow most
fonts to be named in a consistent fashion. Most sys-
tems require a translation from the TEX font name to
whatever the local font name is. For example, dvi ps
can be told that pcrrO is Adobe Courier with a line
in the psfonts .map file:

pcrrO Courier

OZTEX requires a line in the Default configuration
file:

= pcrrO Courier Courier Mac.enc

Textures can add new font names using the EdMet-
rics application.

The mathptrn fonts

The mathptm fonts are an interesting exercise in us-
ing the fontinst package to generate quite complex
virtual fonts.

The mathptm fonts are shown in Tables 4-7:

zptmcmr is the 'operators' font, used for oper-
ators such as \log and \ s i n. It is built from
Adobe Times roman (for most letters), Adobe
Symbol (for upper-case Greek), and Computer
Modern roman (for some symbols such as =).

zptmcmrm is the 'letters' font, used for math
italic. It is built from Adobe Times itahc (for
most letters), Computer Modern math italic (for
most symbols) and Adobe Symbol (for Greek
and \wp). The Adobe Times letters have their
sidebearings changed for mathematics.

zpzccmry is the 'symbols' font, used for math
symbols. It is built from Computer Mod-
ern symbols (for geometric symbols such as
\opl us) , Adobe Symbol (for humanist symbols
such as \nab1 a), Adobe Times (for text symbols
such as \P) and Adobe Zapf Chancery (for calli-
graphic upper-case).

zpsycmrv is the 'big symbols' font, used for
large symbols such as 'C'. It is built from Com-
puter Modern extensions (for most symbols)
and Adobe Symbol (for \ sum and \prod). The
big operators such as \bigcup are set in 9pt
rather than lOpt since these blend with the
smaller operators from Adobe Symbol.

TUGboat, Volume 15 (1994), No. 3 - Proceedings of the 1994 Annual Meeting

Alan Jeffrey

Table 1: Computer Modern Roman

Table 2: The fontinst Adobe Times roman

Table 3: The afm2tfm Adobe Times roman

Since the virtual fonts are built from commonly avail- for example ptmr0. afm for Adobe Times Roman.
able fonts, rather than specifically designed fonts They should be in a directory which can be read by
such as MathTime, there are some oddities. The TEX.
parentheses are from Computer Modern rather than Installing Latin fonts is quite simple. For exam-
Adobe Times, since they have to blend with the ex- ple, to install the Adobe Times fonts, you run TEX on
tensible parentheses from zpsycmrv; this means the fon t i n s t . s t y and say:
math parentheses are different from the text paren-
theses. Adobe Symbol has no large 'C' and 'n', so
these have to be faked by magnifying the text char-
acters, whch does not look great. Some glyphs, such
as \cop rod are missing. The 'letters' Greek is upright
rather than italic.

But despite these features, the fonts are accept-
able, and make T~Xnical typesetting with generally
available scalable fonts possible for the first time.

Installing your own Postscript fonts

The psnfss fonts were all built using the fontinst font
installation package. T h s package is written entirely
in TEX, so it can be run on any TEX installation with
enough memory. It is quite slow (about 20 minutes
for a font farmly on a Macintosh with a 33MHz 68030)
but this is acceptable since it is not run often.

Version 0.19 was described by the author (1993),
but the user interface has changed considerably since
then.

To install a new font using fontinst, you need the
Adobe Font Metrics (afm) files for the fonts. These
should be named with Karl Berry's naming scheme,

\ l a t i nfami 1 y{ptm}{}

If you have bought the Expert fonts, you can install
Adobe Times Expert and Adobe Times Old Style by
saying:

\latinfamily{ptmx){}
\ la t infami l y{ptm9}{}

Once TEX has finished, it produces:

pl files, which are text representations of t f m
files. They can be converted to tfm files with
pl t o t f (part of EdMetrics in Textures and Oz-
Tools in OZTEX).

vpl files, whch are text representations of vf
files. They can be converted to vf files with
vpl tovf (part of EdMetrics in Textures and Oz-
Tools in OZTEX).

fd files, whch are used by LATEX^^.
The Adobe Times fonts can then be used in P Q X

by saying:

\renewcommand{\rrndefault}{ptm}
\rmfami 1 y

266 TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Postscript Fonts in LATEX~E

Table 4: The mathptm 'operators' font

Table 5: The mathptm 'letters' font

Table 6: The mathptm 'symbols' font

Table 7: The mathptm 'big symbols' font

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Alan Jeffrey

If you want to write your own package similar to
times, you just create a s t y file containing these
lines.

For example, an Adobe Times Old Style package
would contain:

\Provi desPackageCti mesol d l
[1995/04/01 Times old s t y l e digi tsl

\renewcommand{\rmdefault}{ptm9)
\rmfami 1 y

It is also possible to create customized fonts (such
as the rnathptm math fonts) using fontinst, but this
is somewhat trickier, and is described in the fontinst
documentation.

If you use fontinst to install some fonts, and you
would like to distribute the results, please mail them
to me, and I'll include them in the fontinst distribu-
tion.

Ongoing work

There are a number of areas of ongoing work with
fonts and TEX.

There is a TUG working group on TEX directory
structures, whch will recommend how fonts should
be installed on any TEX system. This will make it
easier to distribute TEX software, because there will
be a standard directory structure to refer to. The
CTAN fonts/metr i cs drectory will reflect the TDS
structure.

The fonts produced by fontinst do not include
'eth' or 'thorn'because these characters are not avail-
able in Adobe Standard encoding. We are worlung
on developing a suitable replacement for Adobe Stan-
dard encoding whch will allow access to 'eth', 'thorn'
and the other missing characters.

There is a TUG/MTEX working group on math
font encodings, which will develop symbol encod-
ings which will be supported by fontinst (this work-
ing group has been rather slowed down by the pro-
duction of

Bibliography

Berry, Karl. Filenames for fonts. Available as
fontname. t ex i from CTAN, 1994.

Carlisle, David and Rahtz, Sebastian. The color and
graphics B T E X ~ ~ packages. Avadable from
CTAN, 1994.

Goossens, Michel, Frank Mittelbach and Alexander
Samarin. The IMEX Companion. Addison-Wesley,
1994.

Jeffrey, Alan. "A Postscript font installation package
written in TEX." TUGboat 14 (3), pages 285-292,
1993.

Jeffrey, Alan. The fontinst package. Available from
CTAN, 1994.

Rahtz, Sebastian. Notes on setup o f Postscript fonts
f o rBT~X2~ . Part of the psnfss package, available
from CTAN, 1994.

TUGboat, Volume 15 (1994), No. 3 --Proceedings of the 1994 Annual Meeting

Oren Patashnik
Center for Communications Research, 4320 Westerra Ct., San Diego, CA 92121, U.S.A.
opbibtex@cs.stanford.edu

Abstract

This paper discusses the hstory of BIBTEX, its current status, and the future goals
and plans for it. BIBTEX 1.0 will be the frozen version of BIBTEX, just as TEX 3
(but not as TEX 2 !) is the frozen version of TEX. Among the goals for BIBTEX 1.0
are: easier creation of nonstandard bibliography styles; easier sharing of database
files; and better support for non-English users. Among the new features will be:
a program that lets users create their own bibliography styles; support for 8-
bit input; support for multiple bibliographies within a single document; and the
capability to indicate in a bibliography entry where in the text the entry was cited.

Introduction The \bi bl i ography command does two things:

BIBTEX is the bibliography program designed origi-
nally to accompany Leslie Lamport's LATEX (it now
works with other versions of TEX, too). The first pub-
licly released version of BIBTEX, 0.98, came out in
1985. The second main release, version 0.99, came
out in 1988. The long overdue final version, 1.0, is
still under preparation. This paper discusses BIBTEX
and the plans for version 1.0. The remaining sec-
tions: explain BIBTEX for those who haven't used it;
give a brief history of BlBTEX; describe the general
goals for BIBTEX 1.0; describe some specific new fea-
tures for acheving those goals; and make some re-
quests of the TEX community that will facilitate the
release of BIBTEX 1.0.

Using BIBTEX

To use BIBTEX you put into your (LA)TEX source file
citations like

... i n t h e \TeX{}book-\cite{knuth:tex) . . .
along with two other commands:

\bi b l i ography{mybi b}
\bi bl i ographystyl e{pl a i n}

(LAITEX will typeset the citation as

. . . in the T~Xbook [231 . . .
or

. . . in the book^^ . . .
or

. . . in the T~Xbook (Knuth, 1984) . . .
depending on whch citation style you specify;
(LA)TEX'S default citation style is a number in brack-
ets. (In some citation styles-for example in the
author-date style that produces 'Knuth, 1984'-
BIBTEX helps (LA)TEX produce the citation.)

it tells (LA)TEX to put the bibliography at that spot
in your document, and it tells BIBTEX which file(s) to
use for the bibliographic database, here just the sin-
gle file mybib. bib. The \bi bl iographystyle com-
mand tells BIBTEX which bibliography style to use,
here the standard style plain.

The \ c i t e command's argument knuth: tex ,
called a cite-key, must have a matching database-key
for some entry in the bibliographic database. That
entry (in mybi b. bi b) will look like

@BOOK{knuth:tex,
author = "Donald E . Knuth",
t i t l e = "The {{\TeX)}book" ,
pub1 i sher = "Addi son-Wesl ey" ,
year = 1984,

I
The @BOOK tells BIBTEX that this is a book entry. The
knuth: t e x is the database key. And the rest of the
entry comprises four (field) = (field-value) pairs ap-
propriate for this entry type. (LA)TEX and BrBTjX might
(dependmg on the bibliography style) typeset thls as

23. Donald E. Knuth. The T~Xbook. Addison-
Wesley, 1984.

(LA)TEX determines a few things about how the
reference list is formatted- things like whether the
label 23 is followed by a period or is enclosed in
brackets, and the vertical spacing between entries.
But the BIBTEX bibliography style determines every-
t h g else- thmgs like how the entries are sorted,
whether to use a slanted or italic type style for a
book's title, whether the author's surname comes
first or last, and whether to use the author's full given
name or just initials.

To actually produce the typeset document, you
run (LA)TEX, BIBTEX, (LA)TEX, (LA)TEX. The first (LAITEX
run writes, to an . aux file, information for BIBTEX:

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Oren Patasbnik

. aux . bst .bib

. bbl .blg

Figure 1: BIBTEX'S input and output files.

which bibliography style to use, whch database
file(s) to use, and whch database entries to include.
The BIBTEX run reads all that information from the
. aux file, reads the specified database (.bib) files,
formats the reference list according to the instruc-
tions in bibliography style (. bst) file, and writes its
output onto a . bbl file. The next (LA)TEX run reads
the . bbl file and incorporates the reference list into
the document. The final (LA)TEX run gets the forward
references due to the \ c i t e commands correct. Fig-
ure 1 shows the files that BIBTEX uses (the file with
extension . bl g is BIBTEX'S log file).

That's a quick overview. The following sources
provide details about using BIBTEX. Leslie Lamport's

book (1994) explains how to use BIBT'X with
LATEX. The file btxmac. tex (1992) documents its
use with plain TEX, with or without Karl Berry's
epl ai n. t ex package (for which the btxmac macros
were originally written). The "BIBTEX~II~" docu-
ment (1988a), which is distributed along with BIBTEX
itself, contains further hmts for BIBTEX users. The
"Designing BIBTEX Styles" document (1988b), also dis-
tributed with BIBTEX, explains the postfix stack-based
language used to write BIBTEX bibliography styles.
Michel Goossens, Frank Mittelbach, and Alexan-
der Samarin's BTEX Companion (1994) summarizes
much of the information contained in the sources
above, and it describes some of the tools available for
helping with BIBTEX bibliographes. Norman Walsh's
Making TEX Work (1994) also describes such tools.

History

Brian Reid, in the late 1970's at Carnegie-Mellon Uni-
versity, wrote a document production system called
Scribe (Unllogic 1984). One of its basic tenets was
that, to the extent possible with a computer program,
writers should be allowed to concentrate on content

rather than on formatting detads. Or, as Reid so
amusingly put it1 :

Not everyone should be a typesetter.

(I thmk of LATEX as a fairly successful Scribification
of TEX-LATEX is almost as easy to use as Scribe yet
almost as powerful as TEX.)

In any case, Scribe had become popular in cer-
tain academic circles, and Leslie Lamport decided
that, to make it easy for Scribe users to convert to
W&X, he would adopt Scribe's bibliography scheme
in LATEX. But TEX macros alone were insufficient in
practice to do all the things, hke alphabetizing, a
bibliography processor needs to do; he decided in-
stead to have a separate bibliography program. That
program would manipulate the bibliographc mfor-
mation in Scribe-like database files according to the
instructions programmed in a special-purpose style
language. The postfix stack-based language he had
in mind was to be powerful enough to program many
different bibliography styles.

My own work on BIBTEX started in February 1983
as a "three-week project" (not unlike the "three-hour
tour" of the 1960's American television series G a -
g a ' s Island, in whch an afternoon's harbor cruise
became a shpwreck adventure lasting years). Over
the course of the next year and a half I implemented
Lamport's basic design, with a few enhancements.

The first worlung version of BIBTEX (0.41)
trudged forth in the summer of 1984. Lamport
wrote, and Howard Trickey modified, a bibliography
style based on Mary-Claire van Leunen's suggestions
in her Handbook for Scholars (1979). Trickey's modi-
fied version was to become btxbst . doc, which is the
template from whch BIBTEX'S four standard styles
(plain, abbrv, a1 pha, and unsrt) are generated.

The first public release of BIBTEX, in March 1985,
was version 0.98, for LATEX version 2.08. Several up-
grades, including one for LATEX 2.09, followed later
that year. Version 0.99, which added many new fea-
tures, was released in January 1988; two minor up-
grades followed the next month, but BIBTEX itself has
remained unchanged since then. The standard styles
have been unchanged since March 1988.

In 1990 Karl Berry wrote some macros, for use
in his ep1 ai n . tex package, that made BIBTEX usable
with plain (and other versions of) TEX. He and I mod-
ified the macros and released them as btxmac. tex
in August 1990, usable with or without the epl a i n
package. Several upgrades followed, the most recent
in March 1992.

The current versions are: 0 .99~ for BIBTEX itself;
0.99b for btxbst . doc (the standard styles' template
file - but version 0.99a for each of the four standard
styles); and 0.99j for btxmac. tex.

1 -while barefoot, with a pregnant pause, to a
Bell Labs Computer Science Colloquium audience
that included some t roff true believers

2 70 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Goals . btp

BIBTEX has been very stable for several years now.
Software stability is nice; it helps others bulld tools
that augment the software. Indeed many tools have
grown up around BIBTEX. But the popularity of (LA)TEX
has taken BIBTEX into unanticipated places, necessi-
tating some changes. I have five main, general goals
for BIBTEX 1.0:

1. Easier nonstandard styles: The most frequent
requests I see are for new bibliography styles.
Creating a new bibliography style generally en-
tails programming in the . bst language, which
is difficult. For BIBTEX 1.0, ordinary users, too,
must be able to create new bibliography styles
reasonably easily.

2. More international: BIBTEX has spread to the
non-English-speaking world. BIBTEX 1.0 must
address associated issues.

3. Enhanced sharing capabilities: There now ex-
ist huge . bi b-format bibliographic databases,
some avadable to users world wide. BIBTEX 1.0
needs to make the sharing of those databases
easier.

4. Better documentation: BIBTEX 1.0 documenta-
tion needs to be more extensive and easier to
find.

5. Frow: To enhance stability of the program (and
its author - that is, for both practical and per-
sonal reasons) BIBTEX needs to be frozen. As
with TEX 3.0, BIBTEX 1.0 will be upgraded for bug
fixes only.

Some of the features planned for implementing those
goals appear in the next section.

New Features

Over the last six years I have accumulated a list of
new features and probable changes for BIBTEX 1.0.
The list below is certainly not exhaustive, but it con-
tains the most important items. Each one listed has
a hlgh probability of existing in BIBTEX 1.0.

A Bibsty program: There wdl be a new scheme
for generating bibliography style (. bst) files. A
program called Bibsty will create a customized
. bst file from (i) a BIBTEX template (. btp) file -
which wdl be s d a r in spirit to (but con-
tain lots more options than) the current file
btxbst . doc -together with (ii) options that
the user specifies. BIBTEX 1.0's standard tem-
plate file, to be called btxstd. btp, wdl, among
other options, have an easily changed symbolic
name for each string that a bibliography style
outputs directly (such as 'e&torl or 'volume').
Ths Mlll make it much easier to, for example,
convert bibliography styles from one language
to another. Figure 2 shows how the new Bibsty
program wd1 fit into the scheme.

Bibsty

. aux . bst bib

bbl .blg

Figure 2: BIBTEX 1.0 input and output fdes.

Reference-list back pointers: BIBTEX 1.0 will pro-
vide the capability to indicate in a reference-list
entry where in the text that entry was cited. This
is a very useful feature that I suspect wdl be-
come widespread now that our new typesetting
technology makes it pamless.

Eight-bit input: BIBTEX 1.0 wdl support this by
adhering as closely as possible to the character-
set conventions of TEX 3.

Support for multiple bibliographies w i t h in a
single document: Many large documents con-
tain several bibliographes - a book might have
one bibliography per chapter, or a conference
proceedings might have one per paper. Several
solutions have arisen for handling such situa-
tions, but BIBTEX 1.0 wdl support multiple bibli-
ographes directly, hence those solutions won't
be necessary.

An @ALIAS command: Suppose you have a
database file that uses a different database-
key from the cite-key you prefer. For example
the database file might have the database-key
k n u t h : tex for an entry for which you've used
texbook as a cite-key. With BIBTEX 1.0 you will

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 271

be able to keep the cite-key and database-key as
is, as long as you put a command like

@ALIAS{texbook = knuth:tex}

in your database.

A @MODIFY command: With BIBTEX 1.0 you will
be able to make changes to an entry in a public
database file without having to repeat in your
own personal database file all the information
in that entry. For example, to create a second-
edition update for an entry whose first edition
is in a public database, you can put something
like

@MODIFY{l atexbook,
ed i t i on = "second",
year = 1994,

3
in your own database file, as long as the
database-key of the @MOD1 FY command matches
the database-key from the public database.

Distinguishing among identical database-keys:
If you are using two different database files that
happen to use the same database-key for differ-
ent entries, you will be able to specify which en-
try you want by using a citation of the form

\ci te{f i 1 ename : :database- key}

A . bi b-file extraction mode: BIBTEX 1.0 will have
a mode that will let you extract just the .bib-
file information you need into a much smaller
database file. For example if you are submit-
ting a paper to a journal that wants a . bi b-file
in addition to a . tex-file, but the bibliographic
database you are using for the paper is huge,
you can use the extraction mode to put just the
entries you need for the paper into a separate
.b ib file that you can then send to the journal.
A \bibtexoptions (LA)TEX command: This
command will improve communication be-
tween (LA)TEX and BIBTEX 1.0. For example,
currently BIBTEX has a compile-time constant
min-crossrefs; a \bibtexoptions command
might let a user set this from w i t h the (LA)TEX
file.

Extensions to the (LA)TEX \ c i t e command:
Many citation styles aren't handled very grace-
fully by (LA)TEX'~ current \ c i t e command.
BIBTEX 1.0 and (LA)TEX will support more flexi-
ble \ c i t e commands.

Standard-style changes: The standard styles for
BIBTEX 1.0 will have a few minor changes, such
as the addition of day, i sbn, and i ssn fields,
and a new @PERIODICAL entry type.
. bst-language changes: There will be a few mi-
nor changes to the . b s t language.
btxmac . t ex update: These macros will be up-
dated so that the user interfaces to BIBTEX 1.0
from LATEX and plain TEX are identical.

Documentation: The "BlBTEXing" (1988a) and
"Designing BIBTEX Styles" (1988b) documents
currently distributed with BIBTEX are unfortu-
nately not as widely known as they should be.
To improve the situation for BIBTEX 1.0, the doc-
umentation will be in a book. It d l be much
more thorough than the current documenta-
tion. For example it d l give a . bi b-file gram-
mar, so that those who are writing tools to ma-
nipulate the database files can make their soft-
ware more robust.

Requests

To facilitate the release of BIBTEX 1.0, I have some
requests of the TEX community.

Please don't ask me routine BIBTEX questions
via e-mail. Instead, post them to the news-
group comp. t e x t . tex; in fact your request will
get a wider distribution if you send it to the
mailing list INFO-TeX@SHSU. edu, as it will also
be posted automatically to the comp. t e x t . t e x
newsgroup. State clearly in your message ex-
actly what it is you want to know. Ask to have
responses sent to you directly (assuming you
aren't on that mailing list and don't read that
newsgroup). Usually you get useful responses.

Until BIBTEX 1.0 is finished, I will skim the
comp . t e x t . t ex newsgroup for BIBTEX-related
postings, so it suffices to post there anything
you think I should see.

Please send directly to me any suggestions for
BIBTEX 1.0 that are probably not of interest to
the rest of the TEX community, such as:

- Primitives that you think belong in the
. bs t language based on your experience
programming it.

- Things you've had to put in BIBTEX'S WEB
change file for your system that you think
belong in bi btex. web itself.

- Non-English language pitfalls that you
think BIBTEX 1.0 should avoid.

To conclude the paper: I can't say for sure when
BIBTEX 1.0 will actually appear; a beta-test version
might exist by the end of 1995. But as soon as it's
avdable it wdl be announced on comp. t e x t . tex.

Acknowledgments

I thank Nelson Beebe for his BIBTEX suggestions and
for reading an earlier draft of this paper.

References

Berry, Karl and Oren Patashnik. "btxmac. tex."
Macros to make BIBTEX work with plain TEX;
current version 0.99j, 14 March 1992.

2 72 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Goossens, Michel, Frank Mittelbach, and Alexander
Samarin. The LATEX Companion. Addison-Wesley,
1994.

Lamport, Leslie. LATEX: A Document Preparation
System. Addison-Wesley, second edition, 1994.

Patashnik, Oren. "BIBTEX~~~." General documen-
tation for BIBTEX users, contained in the file
btxdoc . tex, 8 February 1988(a).

Patashnik, Oren. "Designing BIBTEX Styles." Docu-
mentation for BIBTEX style designers, contained
in the file b txhak . tex, 8 February 1988(b).

Unilogic, Ltd., Pittsburgh. Scribe Document Produc-
tion System User Manual, fourth edition, 1984.
Chapter 1 2 and appendices E8 through El0 deal
with bibliographies.

van Leunen, Mary-Claire. A Handbook for Scholars.
Knopf, 1979.

Walsh, Norman. Making TEX Work. O'Reilly & Asso-
ciates, 103 Morris Street, Suite A, Sebastopol, CA
95472, 1994.

TCTGboar, Volume 15 (19941, No. 3 -Proceedings of the 1994 Annual Meeting

A Typesetter's Toolht

Pierre A. MacKay
Department of Classics DH-10, Department of Near Eastern Languages and Civilization (DH-20)

University of Washington, Seattle, WA 98195 U.S.A.

Internet: mackayecs . washi ngton . edu

Abstract

Over the past ten years, a variety of publications in the humanities has required
the development of special capabilities, particularly in fonts for non-English
text. A number of these are of general interest, since they involve strategies for
remapping fonts and for generating composite glyphs from an existing repertory
of simple characters. Techniques for selective compilation and remapping
of METAFONTs are described here, together with a program for generating
Postscript-style Adobe Font Metrics from Computer Modern Fonts.

Introduction

History. For the past ten years I have served as
the technical department of a typesetting effort
which produces scholarly publications for the fields
of Classics and Near Eastern Languages, with occa-
sional forays into the related social sciences. Right
from the beginning these texts have presented the
challenge of special characters, both simplex and
composite. We have used several different roman-
izations for Arabic, Persian and Turkish, and at
least three conventions for fully accented Ancient
Greek: book text, epigraphical and numismatic.
The presses we deal with will sometimes accept
the default Computer Modern, which looks very
handsome indeed when set in a well designed page,
but they often have a house style or a series style
that requires some font not available in METAFONT
coding. Special characters are still needed even in
those styles, but fortunately we have not yet had to
create any completely new glyphs for the Postscript
Type 1 fonts we rely on, only to modify existing
glyphs.

To appreciate the constraints we are under, you
have to remember that most of our work is in the
humanities, and that the humanities are the Third
World in the scholarly famdy of nations. It is an odd
correlation, but apparently a sound one, that the
most productive of humanities scholars, is probably
going to be the one with the least access to useful
technology. If you are ever curious about items of
industrial archaeology such as the original KayPro
microcomputer, search among the humanists of
your local university, and you may find a dozen
or so still in use. Humanist manuscripts are often
the result of fifteen or twenty years' effort, and

usually start out in a technology that was out of
date in the first place. In the past year we have
had to work with one text made up of extensive
quotations from Greek inscriptions, composed in
a version of RUNOFF dating from about 1965 and
modified by an unknown hand to produce Greek
on an unknown printer. The final version of the
manuscript was submitted to the editorial board in
1991. I have no idea when the unique adaptation for
epigraphical Greek was first written. At least I know
what RUNOFF is. A subsequent text arrived in 1992
composed, with passages in both Greek and Latin, in
a system named SAMNA, about which we could find
out nothing at all at the time. (The reviewer of this
paper kindly informed me that it is a mid-range PC
wordprocessor, but in our case I got the impression
that we were dealing with a mainframe program.)

The editor of a humanities series is not at
liberty to set the kind of conditions that were set for
submissions to this session of the TEX Users Group.
You do not tell a scholar who has fought through
twenty years to the completion of a monograph that
he must now retype the entire thing in a different
convention. Each monograph is a unique problem,
with unique demands for special fonts, formatting
and coding. So the first items in our toolkit are
general tools for remapping and character selection,
simple but powerful tools for any work in font
development. These tools preserve the integrity of
the basic character designs in a font, eliminate the
proliferation of dialect versions of public source
files, and make the effort of development much
simpler and faster.

We have had to explore both METAFONT and
Postscript rather intensely for some of this work,
and to do so under considerable pressure. (It is

2 74 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

A Typesetter's Toolkit

surprising how often a really complex typesetting
task arrives with the request that it be returned
as final camera-ready copy some time the previous
week.) This paper describes some of the tools we
have developed in and around the basic TEX and
METAFONT utilities. Not all the tools are written
in TEX and METAFONT coding. It is undoubtedly
possible to write a serviceable awk interpreter in TEX
macros, but when the pressure is on, the fact that
awk and sed are already to hand in any Unix system
is irresistible. Since contributors to the software
distributions of the Free Software Foundation are
malung many of these tools available even outside
the Unix realm, the mention of them is no longer to
be condemned as purely Unix Cultural Imperialism.

METAFONT Tools

Selection from existing character files. One of
our earliest METAFONT tools came out of the
need to experiment expeditiously with numerous
mode-defs for laser-printers. To do thls conscien-
tiously, you have to manipulate at least two of the
usual mode-def parameters, blacker and f i 11 i n,
and you have to do it at several resolutions, so as to
be sure that you have reached a compromise that is
reasonable over the normal range of text sizes from
seven to fourteen point, and not utterly impossible
above and below those sizes. Since blacker and
f i 11 i n interact with one another in unexpected
ways, this evaluation can become impossibly bur-
densome if an entire font must be generated for each
attempt. I chose therefore to borrow from Knuth's
test files, and produced modetest.mf, which is a
straight steal, modified very slightly so that the
characteristic use-i t / l ose-i t macros will not be
confused with Knuth's version. (An extract from
modetest. m f is given in the Appendix.)

Because the i f . . . f i construction is about
the first test applied to either TEX or METAFONT

input, discarding unwanted characters in this way
wastes very little time and races through to produce
a selective minifont in only a few seconds on a
medium-fast workstation. The process of evaluating
the results can be further accelerated with the aid of
other tools which I shall return to in another paper.
Here, I wish to explore some of the other uses of
the use-i t/l ose-i t macros. When I originally
wrote the code for a slab-serifed uppercase 'I' to
make a Computer Modern version of the font used
in Leslie Lamport's SliTEX, I took a copy of the
entire romanu .mf file, called it sromanu .mf and
introduced the modified letter into that. This was

not merely a wasteful approach, it was intrinsically
a bad one. Over the past ten years, various changes
have been made to the Computer Modern character
files, and I am virtually certain that most of the
copies of s romanu . mf across the world have not
kept up with those changes. In t h s particular
instance it could be argued that it doesn't much
matter, but there are dozens of other places where
literal copies of Knuth's Computer Modern have
been used unnecessarily, and where the probability
is very strong that they have been let go stale
whde small improvements were made to the official
release. The present UnixT~x release of s romanu . mf
is quite small, and runs no risk of missing out on
changes in the basic romanu . mf .' (For an extract
from s romanu . mf, see the Appendix.)

Silvio Levy's Greek font provides another exam-
ple very much to the point. In order to achieve the
maximum compatibility with Computer Modern for
bilingual texts, the uppercase letters of the Greek
alphabet in this font were copied from romanu .mf
and greeku. mf, given different code positions, and
collected into the file upper .mf in the original re-
lease. So far as I know, no change has been made
in upper. mf in many years, although the Computer
Modern sources have seen several small changes. A
more efficient approach than making a copy of the
character files is gri byupr . mf. (An extract is given
in the Appendix.) This generates the entire upper-
case Greek alphabet, including a lunate uppercase
sigma and a digamma, without any new character
design code being provided at all. The Computer
Modern sources are treated as read-only files, as
they ought to be, and remapped into a convenient
order in the Greek font. The mapping in evidence
here is actually for a font associated with modified
Thesaurus Linguae Graecae Beta-code, not for Silvio
Levy's original fonts, and extensive remapping and
even character substitution is done in other parts
of the font as well. But Silvio Levy's files are never
altered. They are treated as a read-only resource
throughout.

I have attempted to adapt a similar approach
to speed up the the generation of invisible fonts but
the existing pattern of i f . . . f i groupings around
such characters as lowercase g is pretty intractable.
The present approach, for which I am afraid I am
responsible in the Unix environment at least, is to
let METAFONT go through all the work of creating
the picture and then erase it, a practice that is
dismally slow on a Macintosh or a PC.

TLIGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 275

Pierre A. MacKay

Remapping an existing character set in META-

FONT. The remapping used in this example uses

the convention suggested by the Computer Modern
caps and small-caps fonts in the file csc.rnf, where

it is used to map the small caps into the lowercase

positions in the font. In instances where the first

half of a 256-character font must be remapped,
code-offset is the obvious way to do it. Greek

in a Latin-letter input convention is one of the

most obvious examples, but the trick can be used
to create a consistent Turkish input convention,

with the dotless 'i' associated with the principal,
unmodified alphabet or to respond to a Latin-letter

input convention for Cyrillic. Since it involves no

redesign, it is extremely economical, and so long
as the input file does not make unexpected use of

the characters with special catcodes in TEX, t h s
approach avoids any major alterations in the way

TEX handles normal text. In the upper end of such a
font, however, some rather more interesting thmgs

can be done. Here we are free of the constraint
against wholesale changing of catcodes, and by
malung the entire range of characters from 128 to

255 into a c t i v e characters, we can set up a broadly
flexible remapping system, which can be tailored to

each application.

Thls approach to remapping is best illustrated
again with Silvio Levy's font. Because this font was

made up before the TEX~ enhancement in ligature
coding, Levy provided an entire repertory of letters

following the medial form of sigma, and kept the

final form as the default. The more adaptable
style of ligature coding allows us to reverse this

arrangement, by using the following ligature table:

l i g t a b l e "s": "+" =: sampi, " i " kern i # ,

boundarychar =: sigmafinal ,
8 , 8 , . =: I sigmafinal , "," = : I s igmaf ina l ,
"?" = : I s igmaf ina l , ":" = : I s igmaf ina l ,
1, . 11 , =: I s igmaf ina l , "(" = : I s igmaf ina l ,
")" =: I sigmafinal , "*" =: I s igmaf ina l ,
I, , I , . = : I s igmaf ina l , "%" =:I s igmaf ina l ,
"<" =: I s igmaf ina l , ">" =: I s igmaf ina l ,
"[" = : I s igmaf ina l , "I" = : I s igmaf ina l ,
"{" =: I sigmafinal , "}" =: I s igmaf ina l ,
" I " I=: null-space;

The last element in this table is necessary be-

cause the ligature program is otherwise so effective
that it makes it nearly impossible to terminate a

word with a medial sigma, though that is often

required by classical texts.

With all the code positions freed up by the
elimination of sigma+letter pairs, it became possible

to supply the combinations of vowel with barytone
(grave) accent that were missing from the original

coding, but these had to be placed in fairly arbitrary

places in the font. I needed a way of separating the

accidents of TEX input coding from the accidents
of METAFONT character coding, but I did not want

two separate coding files which might get out of

step with each other. One mapping file had to serve

for both TEX and METAFONT.

It is not entirely easy to make a file readable

in both T# and METAFONT, but it can be done as
shown in the file ibygrk.map. (Listing in the ap-
pen&.) One significant advantage of this approach

is that it fosters the assignment of symbolic names
for all characters. The consistent use of symbolic

names for characters is one of the most significant
virtues of the Postscript system of encoding and,

dare I say it, the overuse of numeric indices such as

ASCIIUA", and oct"000" is a noticeable weakness
in even Knuth's METAFONT programming. It may,

of course, have been impossible to allocate large
enough regions of symbol storage in early versions

of METAFONT.

In the comments lines of i byg rk. mf, mention

is made of the resolution of composite characters

into digraphs and trigraphs before they are given
as text character input to TEX. Thls is perhaps on

the margins of a discussion of tools, but it has been

so grossly misunderstood when I have brought it
up in the various electronic newsletters devoted to
TEX that it needs airing here. In an environment
where complex multilingual text comes in from a

wide range of sources, using every well-known and
several extremely obscure word-processing systems,

usually after local customization, it is hardly ever

possible to arrange for final copy editing with the
original system and coding. If the editor is using
a Macintosh as an ASCII terminal over a telephone
line, it is not very helpful to know that on the

wierd, unique input system used by the author you

get an omega with rough breathing, perispomenon

accent and an iota subscript by pressing the F 1 key.
There has to be a fall-back coding available that

does not depend on customized special-purpose
hardware and software. In our case the character

just described would be produced by the sequence

w(=i which d l get through all but a few really
incompetent mail interfaces as well as through a

normal serial communications line.
In a special file of character sequences, the

defmtion
\def\w-asprperiisub{w(=l)

ensures that whatever arbitrary eight-bit character

happens to be equated with

omega-spiritusasper-perispomenon-iotasub

2 76 TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

A Typesetter's Toolkit

it will be decomposed into the sequence w(= I before
it actually reaches horizontal mode processing,
and the tfm ligature program will take care of
reconstructing it again. For the final copy-editor,
this is very important. It is sometimes impossible
to introduce an arbitrary octal character into a
word-processor text, and even when it is possible,
constant reference to a book of code pages is dreary
and time-wasting. One might insert a \char' n n n
sequence, but that would require having the font
layout accessible at all times, which is not much
of an improvement over looking at code pages.
Digraphs, trigraphs and tetragraphs provide the
same economy and efficiency that an alphabet
provides by comparison with a syllabary, and a
syllabary by comparison with an ideograph.

The objection that is always raised to digraphs
etc. is that they may do strange t h g s to hyphen-
ation. Ths belief is based on a serious misunder-
standing of the way in which hyphenation patterns
are coded. It takes only the minimum amount of
additional coding to ensure that no character in the
diacritical set may ever be split off from the preced-
ing character, and if that leaves some undesirable
hyphenations possible with a reasonable setting of
\l efthyphenmin and \righthyphenmi n, they can
be prevented by creating hyphenation patterns with
the rn boundary char. (I use a bullet here in place of
the period which is actually coded. The period is too
hard to notice.) If I want to ensure that the position
before w(=: at word end is never considered for hy-
phenation, I have only to include the pattern 8w(= I =
in the hyphenation file, and it d l be disallowed
absolutely. In actual fact, we have never had to
set enough continuous Greek to make automatic
hyphenation necessary, so I have never created such
a table.2 I have used a hyphenation table built up

I have looked with great interest at Yannis
Haralambous's rationale for hyphenation in classical
Greek, but I should like to compare the results with
the only large computer-readable resource of Greek
text in existence - the Thesaurus Linguae Graecae.
The creation of an acceptable hyphenation scheme
for a "dead" language is more problematic than it
appears on the surface. It appears that the ancient
preference was for word-break between a vowel

and any following consonant cluster, no matter
how irrational and unpronounceable that cluster
might seem. But most of our early evidence is from
inscriptions, and inscriptions may not be a very good
guide. I strongly suspect that a systematic review of
the European classical tradition, out of which almost
all standard editions have been issued, would show

from digraphs and trigraphs for Ottoman Turkish in
an extended diacritical convention based on modern
Turlush, and we have no trouble whatsoever with
unexpected wordbreaks.

Remapping through Virtual Fonts

In place of the direct manipulations of METRFONT
source suggested above, the more general approach
through Virtual Fonts may be applied even to META-
FONTS such as Computer Modern. Until recently, I
was unable to make the fonts for Ottoman Turkish in
romanized transcription avadable to my colleagues
with PCs except as precompiled PK files. The META-
FONT sources require a very large compilation that
is usually not available on PC architectures. But
since the release of virtual font dvi interpreters
for the smaller machines it is now possible to
make composite accented characters avadable with
a very small addition to the actual font library on
a small machine. The approach I use is based
on Tom Rolucki's afm2tfm. A great deal of it
can also be done with the font ins t package, but
that was just being started when I was working
on the following tools. Moreover, some of these
tools are complementary to fontinst , rather than
alternatives.

Rokicki's afm2tfm takes Adobe Font Metrics as
its inputs, so the &st requirement is to create afm
fdes for Computer M~de rn .~ According to the Red
Book the Adobe FontMatrix is based on a 1000

unit coordinate ~ys t em.~ In METAFONT terms thls
translates to 1000 dots per em. We are not tallung
about dots per inch here, but dots per em. Knuth's
designs conform to the old traditional deh t ion of
the em, or more precisely the em-square, as the
square on the body of the type. The body of the
type is measured from top to bottom, since that
ought to be the reference dimension for any stated
point size, and it includes shoulders at both top and
bottom, so that with most faces, the distance from
the top of ascenders to the bottom of descenders is

national preferences. That is to say, an English
edition, a French edition and a German edition of
Plutarch might well be recognizably different in
their hyphenation choices.

Except for very special effects, direct editing to
convert a PL file to a VPL file is not a reasonable
alternative. VPL coding is a valuable adjunct to the
creation of composites and special effects through
virtual font mapping, but the format is diffuse and
difficult to work through.

Postscript Language Reference Manual, p. 226.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 277

Pierre A. MacKay

less than the stated point size.5 We want, therefore,

to take our measurements from a font generated so
that the distance from the top of the top shoulder

to the bottom of the bottom shoulder is exactly
1000 units. For a ten point font thls translates to

7227dpi. For a five-point font it translates to a
horrendous 14454dpi. These resolutions are easily

achieved with a mode-def which I use as smode
input.

numeri c xppi ;
xppi := i n # / designsize ;
mode-param (p i xe l s-per-i nch ,

xppi * 1000);
mode-common-setup-;

The result will be an absolutely monstrous gf
file, which must then be converted to an even more

overwhelming mnemonic file by way of gftype.
Actually, it takes two runs of gftype, one with

minimal output to get the character widths from
the terminal lines, and one to get the values for

the character bounding box. In Unix command line

conventions, the command for the second run is

g f t ype -m cmr9.8030gf

to get the mnemonic lines only. We throw away
ninety percent of the output from gftype, using

only the lines that read

. . . char 82: 40<=m<=752 -22<=n<=682

which provide values that correspond with the

Adobe Font Metric Character bounding box.

Of course, t h s doesn't look very much like an
afm bounding box specification yet; the lines still

have to be converted to

C 82 ; WX 756 ; N R ; B 40 -22 752 682 ;

The conversion is achieved by an interplay of
sed and awk scripts whch are too detailed to be

explored here. The scripts provide symbolic names

for all characters in the PostScript fashion, and the
names used match PostScript character names as
closely as possible. The encoding schemes TeX-
t ex t , TeXtypewri t e r t e x t , TeXmathi t a l i c, TeX-

mathsymbol s and TeXmathextensi on are provided
for. For most coding conventions the match be-

tween Postscript Adobe Encoding and the Computer

Modern afm files is complete, but the mathematics

fonts have some characters that are unknown to
the PostScript repertory, so their names are adapted

from those in the T#book. A m of the executable

script gf 2afm produces the following messages,
whch give some idea of what is going on behmd the
scenes.

Making g f f i l e a t 1000 dots per (t rue) em
t h i s takes a wh i l e . . . \

don ' t ge t impat ien t
Running g f type on cmsy10.7227gf\

f o r character widths
running g f type on cmsy10.7227gf\

f o r character bounding boxes
Get t ing s l a n t and space values\

from cmsyl0.tfm
making cmsyl0.afm
ex t rac t i ng kerns from cmsyl0.pl
Ambiguous values (if any) i n KernData
Computer Modern Roman has these\

f o r k<-a and v<-a
I n t h i s instance i t happens not t o matter .

The cmsyl0. afm file that results is far too long
to be illustrated in its entirety but enough of it can

be printed to show both the simdarities to and a

few differences from a regular Adobe afm file.

StartFontMetr i cs [2 .O]

Comment Created by gf2afm
Comment Sc r i p t s composed by
Comment I n t e r n e t address:
Comment Creat ion Date:
FontName cmsylO
FullName Computer Modern\

Math Symbols 10 po in t
FamilyName Computer Modern
EncodingScheme TeXmathsymbols
I t a l i cAngl e -14
St re tch 0
Shrink 0
Xheight 431
Quad 1000
Extraspace 0
Numerator1 677
Numerator2 394
Numerator3 444
Denominator1 686
Denomi nator2 345
Superscr ip t1 413
Superscript2 363
Superscr ipt3 289
Subscr ip t1 150
Subscript2 247
Superscri ptdrop 386
Subscriptdrop 50
Del imi t e r l 2390
Del i m i t e r 2 1010
Axisheight 250
CapHeight 682
FontBBox -29 -960 1117 774
StartCharMetri cs 128
C 0 ; WX 778 ; N minus ; B 83 230 694 269 ;

In Computer Modern, the parentheses reach
to the lmuts of the type body, but t h s is far
from universally the case. If you depend on this
assumption when workmg with Palatino, you can C 127 ; WX 779 ; N spade ; B 55 . . . ;

C 128 ; WX 0 ; N space ; B 180 0 180 0 ;
get very strange effects.

2 78 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

A Typesetter's Toolkit

EndCharMetri cs
StartKernData
StartKernPai r s 26
KPX Amathcall ig minute 194

KPX Zmathcal l ig minute 139
EndKernPai r s
EndKernData
StartComposi t es 0
EndComposi tes
EndFontMet r i cs

At the head of t h s file I have included some di-
mensions that are absolutely unknown to PostScript
fonts. I suppose that there may be a few applica-
tions which make use of afm files and which would
break on encountering these, but such applications
are probably never going to be used with Computer
Modern fonts. It seems better therefore not to throw
any potentially useful information away. In addition
there is always the hope of teachmg by example.
Perhaps some of these values may be taken up by
the wider PostScript world if they are seen to be
useful. It should also be remembered that unlike
most PostScript fonts this has a designsize which is
very much a part of the name. Even when the metric
file is given in this PostScript derived format, cmsy9
is distinctly different from cmsyl0.

At the end of the CharMetrics list is the line

C 128 ; WX 0 ; N space ; B 180 0 180 0 ;

TEX, of course has no need for or use for space as
a font element, but the character occurs in all Post-
Script font codings, even in pi fonts, and programs
such as afm2tfm make use of the character width of
the space to establish some of the other dimensions
in the file. Leaving the character out has unfortunate
results, but there is no need to take up a useful code
position with it. (I actually remove the character
from the vpl file produced by afm2tfm, once it is no
longer needed.) TeXtext encoding requires a more
elaborate addition at the end of the CharMetrics
section.

C 128 ; WX 333 ; N space ; B 180 0 180 0 ;
C -1 ; WX 625 ; N Lslash ; B 33 0 582 682 ;
C -1 ; WX 277 ; N l s l a s h ; I3 33 0 255 693 ;

and close to the end of the Me

StartComposi t es 2
CC Ls lash 2 ; PCC l c ross 0 0 ; PCC L -41 0 ;
CC l s l a s h 2 ; PCC l c ross 0 0 ; PCC 1 0 0 ;
EndComposi tes

These characters are expressed as kern pairs
in a tfm file, but it seems best in the PostScript-
derived environment to treat them as composites.
The l c r o s s resides in code position 32, where
Adobe encoding would put the space character, and

t b s is yet another reason for moving the space
outside the normal range of Computer Modern
128-character fonts.

A full set of afm files for Computer Modern
has been made available on the CTAN archive, and
will be part of the final UnixTEX distribution when
it is released. together with the gf2afm tool itself.
What you do with them is up to you, but many of
the refinements in Alan Jeffery's fon t i n s t package
expect afm input. I continue to use the awk and
sed scripts that I had already developed when I
first learned of fon t in s t , but this is not the place
to go into those in detail. The history of one
application, however, shows how advantageous it
can be to develop accented character sets through
virtual font manipulation.

In 1987, Walter Andrews and I described the
Ottoman Text Editions Project at the Eighth Annual
Meeting of TUG. The fonts for that stage of the
project were created by a laborious effort of recod-
ing, using Knuth's accent . mf as the basis for a fde
of macro definitions, and for a full font set at 300dpi,
we found we had to have nearly a megabyte of addi-
tional storage. More seriously, the effort of keeping
up with even the minor adjustments and alterations
of Computer Modern was not lkely to be made
and, in fact, it was not made. The next stage was
to learn from Silvio Levy's systematic use of saved
pictures, and to develop a set of macros which
could draw on the character definitions in existing
Computer Modern files and assemble them into the
necessary composite character glyphs. This worked
well enough, but it required a very large version of
METAFONT to store all the saved pictures. Even
with the most careful pruning of unused pictures,
the Turkish characters could rarely be compiled on
any PC version of the program. Moreover, when
they were compiled the storage requirements were
the same as for the previous version. With the set
of tools I now have available, I create an afm file
with a full set of the composites needed for Turkish
and most of the other accented composites as well.
That leaves about ten characters that must stdl be
coded directly, but in this case I am dealing with
characters that have no parallel in any Computer
Modern file. The result is a Turlush "expert" font, to
borrow from common foundry terminology, and it
is tiny. Even the magstep4 compilation is only just
over 1600 bytes.

Except where characters are called out from the
Turlush "expertJf font, the "raw" fonts for'Turkish
are the regular Computer Modern fonts. The
virtual font t f m and vf files map out to absolutely
standard cmQ fonts from Knuth's original set. The

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 2 79

Pierre A. MacKay

space needed to accommodate OTEP Turlush fonts

has dropped from a megabyte or so to about 100
kilobytes and, more importantly, the characters in

the composite alphabet will never get out of step
with their sources.

Tools and Techniques
for Outline Fonts

Much as I admire the polished precision of Computer
Modern- and you cannot work deeply into its

details without admiring it - I am delighted by the
variety that PostScript outline fonts bring to TEX.

We have gone through quite an upheaval in the

past generation. In the years before the Lumitype
metamorphosed into the Photon, type was a pretty

democratic commodity. You had to be able to afford

the investment in cases of lead type, but if you could
do that, the foundry had no interest in limiting your

choice of sticks, frames, presses etc. Monotype and
Linotype rather sewed up the volume business with

their specific te~hnologies,~ but it was possible to

get matrices for either machine from independent
foundries. I know certainly of one Arab venture
whch speciahzed in the independent production of

matrices for the Linotype.

All that changed with the advent of cold type-
setting. Plate fonts for the Photon ran on the

Photon; filmstrips for the C/A/T typesetter, whose
characteristics are still deeply embedded in t ro f f ,

ran only on that system, and the cost of a new
design for any of these systems was near astro-

nomical. Early digital systems were no better. The

VideoComp had its own unique run-length encod-
ing which, as I know to my own personal regret,

was useless on Alphatype, APS or Compugraphic

machmes. Years ago, when I visited some of these
firms in an attempt to advertise the virtues of TEX

and METAFONT, I was told by one old hand in the

font department of Compugraphc that the actual
typesetting machine was priced with a very small

margin of profit. "We sell the machmes to create an

appetite for fonts", he said, and the necessary as-
sumption behind that scheme was that the company

had absolute monopoly control over fonts for its

machines. METAFONT and PostScript have brought

this brief period of vertical integration to an end.

Font foundries are once again independent of the

makers of typesetting machmery, and the cost of a

Ladislas Mandel, in a recent article in EPODD,
notes that the dominance of these two firms effec-
tively drove all French foundries out of the business
of cutting text fonts.

really well cut case of PostScript type has fallen to

less than what you would have paid for a couple of

isolated characters two or three decades ago.
PostScript fonts are a splen&d resource for

the TEX user, but not necessarily in the form in

whch they are supplied by the foundry. Adobe
Font Metric files have their virtues, but they convey
far less information than T s Font Metric files,

and the majority of documentation systems don't

seem to use the information anyway. The notion
of programmable ligature combinations in an afm

file is rudimentary at best, and the integration

of ligature programs with hyphenation patterns
appears to be just about unique to TEX. When 'fi'
and 'fl' are in one font and 'ff' 'ffi' and 'ffl' in an

entirely different one, there is no easily accessible

way to make TEX'S word-breaking algorithms work

at full efficiency other than to resort to virtual
fonts. Over the past few years I have resorted to

a combination of standard Unix tools together with
Rokicki's afm2tfm to set up my virtual fonts. Alan

Jeffrey offers a different method, one which does

not depend on the Unix collection of tools. It is not

possible to explore the wide range of possibihties
in this paper, but I shall conclude with the mention

of one very useful tool which was put together by a
colleague at the University of Washington.

One of the first requirements for an intelligent

remapping of a PostScript font is that you know
what is in it. This is not as straightforward as it

sounds. The upper half of a "standard" font table

is sparsely populated with characters in no easily
discernable order. (I am not yet certain whether

ths part of the encoding vector, from position 128

to 255, is part of Adobe Standard Encoding or
only positions 0-127.) That still leaves out about

a third of the characters supplied with a normal
text font and that thwd has no fured code position.

In the new class of "superfonts" there are, in fact,

more unencoded than encoded characters. The
version of Courier released to the X Consortium by

IBM is immense, and includes a great wealth of pi

characters for forms makeup. You have to plug
these into an encoding vector before they can be

used, but since they are not there already, you often

have no hint that they exist, and you have neither

their names nor their appearances to work from.

Dylan Mcnamee's showfont.ps creates a table of
the regularly encoded characters as do several other

known PostScript utilities, but it also extracts the

names of all the unencoded characters and displays

them as well. Ths program has been offered to
the Free Software Foundation for inclusion in the

appropriate package, and will be made available in

280 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

A Typesetter's Toollut

the UnixTEX distribution and in the ftp directory at
j une. cs . washi ngton . edu. Further distribution is

encouraged.

Bibliography

Adobe Systems Inc. Postscript Language Reference
Manual, 2nd Edition. Reading, Mass.: Addison-

Wesley, 1990.
Andrews, Walter and MacKay, Pierre. "The Ottoman

Texts Project." T-ques 5, pages 35-52, 1987.
Haralambous, Yannis. "Hyphenation patterns for

ancient Greek and Latin." TUGboat 13 (4), pages

457-469, 1992.
Knuth, Donald E. The Tgbook. Readmg, Mass.: Ad-

dison-Wesley, 1984.

Knuth, Donald E. The METRFONT~OO~. Reading,

Mass.: Addison-Wesley, 1986.
Mandel, La&slas. "Developing an awareness of typo-

graphic letterforms." Electronic Publishing - Orig-

ination Dissemination and Design 6 (I), pages 3-
22, Chichester: John Wiley and Sons, 1993.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Pierre A. MacKay

Appendix

The METRFONT Input File modetest.mf (Partial Listing)

% Addi t iona l characters may be selected by adding
% add i t i ona l e l s e i f l i n e s a t w i l l , bu t there has t o come
% a p o i n t o f d imin ish ing re turns .
% This f i l e can be named on the command l i n e , as i n
% cmmf modetest i n p u t cmrlO
%
s t r i n g c u r r e n t t i t l e ;
de f se lec t i ve expr t =

c u r r e n t t i t l e : = t;
i f t = "The l e t t e r K" : l e t next- = use-it-
e l s e i f t = "The l e t t e r W" : l e t next- = use-it-
e l s e i f t = "The l e t t e r o" : l e t next- = use-it-
e l se: 1 e t next- = 1 ose-i t- f i ; next- enddef ;

% Add - t o the macro names used by i f f t o avoid confusion.
de f use-it- = message c u r r e n t t i t l e ; enddef;
de f lose- i t - = l e t endchar = f i ; l e t ; = f i x - semi-

i f f a l s e : enddef;
l e t cmchar = se lec t i ve ;

The METRFONT Input File sromanu.mf (Partial Listing)

s t r i n g c u r r e n t t i t l e ;
de f exclude-I expr t =

c u r r e n t t i t l e : = t;
i f t = "The l e t t e r I" : l e t next- = l ose- i t -
e l se : l e t next- = use-it- f i ; next- enddef;

% Add - t o the macro names used by i f f t o avoid confusion.

de f use-it- = re lax ; enddef;
de f l ose - i t - = l e t endchar = f i ; l e t ; = f i x - semi-

i f f a l s e : enddef;
l e t cmchar = exclude-I;
i n p u t romanu
l e t cmchar=relax;

cmchar "The l e t t e r I";
beginchar("I",max(6u#,4u#+cap~stem#),cap~height#,0);

math-f i t(O,.Sic#); penlabels(1,2,3,4,5,6,7,8); endchar;

endinput;

The M ETR FONT Input File gribyupr.mf (Partial Listing)

def selectupper expr t =

c u r r e n t t i t l e : = t;
i f t = "The l e t t e r C" :

code-offset := Cigmalunate - ASCI1"C"; l e t next- = use-it-
e l s e i f t = "The l e t t e r Dm : l e t next- = l ose- i t -
e l s e i f t = "The l e t t e r F" :

code-offset := Digamma - ASCIIUF" ; l e t next- = use-i t-
e l s e i f t = "The l e t t e r G" : l e t next- = lose-i t-

e l s e i f t = "The l e t t e r Y" : l e t next- = l ose- i t -

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

A Typesetter's Toollut

e l s e i f t = "The l e t t e r P" :
code-offset := ASCII"RW - ASCIInP"; l e t next- = use-it-

e lse: code-offset := 0; l e t next- = use-it- f i ; next- enddef;

def recodeupper expr t =

c u r r e n t t i t l e : = t;
i f t = "Uppercase Greek X i " :

code-offset := ASCI1"C" - oct"004";
e l s e i f t = "Uppercase Greek De l ta" :

code-offset := ASCII"DW - oct"001";
e l s e i f t = "Uppercase Greek Phi" :

code-offset := ASCIIUF" - oct"010";

e l s e i f t = "Uppercase Greek Omega" :
code-offset := ASC1I"W" - oct"012";

e l s e i f t = "Uppercase Greek Psi" :
code-offset := ASCII"YV - o c t " 0 l l " ;

e lse: code-offset := 0; f i ; next- enddef;

l e t cmchar = selectupper;
i n p u t romanu
l e t cmchar = recodeupper;
i npu t greeku

% Now we res tore cmchar and code-offset t o de fau l t s .
l e t cmchar = re lax ;
code-offset := 0;

A File which can be read by both TEX and METRFONT

%
% These macros make i t poss ib le t o read *.map f i l e s as e i t h e r
% \TeX{} o r METAFONT i n p u t
%
% A we1 1-known cond i t iona l t e s t i n METAFONT;
% I t creates mismatch o f character tokens ' k ' and ' n ' i n TeX
\ i f known cmbase: % I n t e r p r e t as a

% METAFONT f i l e
l e t re-catcode=relax; l e t let-=gobble; l e t no-let=gobble;

e lse:
message "Must have cmbase loaded f o r t h i s , o r e l se some macros

from it" ;
%

% END OF METAFONT INTERPRETATION--TeX INTERPRETATION FOLLOWS
%

\ e l se % I n t e r p r e t as a TeX f i l e
\catcode'\-11% a l low underscore i n csnames as i n METAFONT
\def\re-catcode{\catcode'\=12 \catcode6\;12 \catcode'\-81%
\def\ignore-to-comment#l#2{}%

% Now a c t i v a t e a l l the characters from Ah80 t o A A f f

\count255='\A~80
\ l oop \ifnum\count255 < ' \ A A f f

\catcode\count255\active \advance\count255 by 1 \repeat
% a c t i v a t e t he \ A A f f character separately i f i t i s needed
\expandafter\ input\the\digraphs % Filename i n a \ toks r e g i s t e r
\catcodel\;O % t r e a t t he f i r s t ; (required by METAFONT) as an

% escape
\catcode6\=14 % t r e a t the = i n the METAFONT p a r t as a comment

% charac ter
\I e t \ l e t - \ l e t \l et\no-1 e t \ i gnore-to-comment

\fi

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Pierre A. MacKay

The code Lines based on this scheme look a bit bizarre, but they do the trick.

%
% This i s a ra ther spec ia l i zed vers ion o f the map f i l e ,
% developed f o r Creek only. There are c e r t a i n r e s t r i c t i o n s
% i n t h i s case, because we do no t want t o a l t e r S i l v i o Levy's
% source code--only the mappings.
% The upper l e v e l codes (AA80--AAff) are based on a vers ion o f
% Greek Keys (a word-processor package f o r Macintosh, d i s t r i b u t e d
% through the American Ph i l o l og i ca l Associat ion), bu t the mapping
% i s worked out by experience no t from any documentation, and
% l o c a l customizat ion o f t en a1 t e r s even t h i s mapping.
% Consistency i s provided by the ASCII digraphs
% and t r i g raphs t o which a l l word-processor codes are remapped
% before they are used i n TeX. These digraphs and t r i g raphs
% (even tetragraphs i n the case o f i o t a subscr ipt) are very c lose
% t o Ibycus/TLG betacode, except f o r the unfor tunate uppercasing
% o f betacode.
%
% a known se t o f word-processor Some "hidden" characters
% equivalents i s " le t - " f o r TeX Only METAFONT needs t o know
% \no-let i s used where there what i s i n t h i s column
% seems t o be no c e r t a i n mapping
%
\ l e t - AA80;oxy-tone = ASCII" '"; endash = 0;
\ l e t - AA8l;bary-tone = ASCII" '"; emdash = oct"177";
\ l e t - AA82;peri-spomenon = ASCIIv="; null-space = ASCII" "; % zero w id th
\ l e t - Ah83 ; sp-1 eni s = ASCII")" ; d i e r e s i s = oct"053"; % use p lus s ign
\ l e t - Ah84 ; sp-asper = ASCII" (" ; minute = ASCIIn&"; % prime f o r numbers
\ l e t - AA85;lenis-oxy = oct"136"; asper-glyph = ASCIIu<"; % l o c a t i o n i n

\ l e t - AA86;lenis-bary = oct"137"; len is -g l yph = ASCIIw>"; % Levy f o n t
\ l e t - AA87; 1 eni s-peri = oct"134" ; g u i l l e m o t l e f t = ASCIIM{"; % two small
\ l e t - AA88;asper-oxy = oct"207"; g u i l l e m o t r i g h t = ASCII"}"; % awks
\ l e t - AA89;asper-bary = oct"203"; i otasubscr i p t = ASCII" I " ;
\ l e t - AA8a; asper-peri = oct"100" ; boundarychar := oct"377"; % N.B. :=
\no- let \dmy;quoteleft = octU034"; quo tedb l l e f t = oct"253";
\no-let \dmy;quoteright = oct"035"; quotedbl r i g h t = oct"257" ;
\no- let \dmy;diaeroxy = oct"043"; b r a c k e t l e f t b t = oct"363";
\no- let \dmy;diaerbary = oct"044"; b racke t r i gh tb t = octW367";
%
% alpha w i t h accents
%
\ l e t - AA8b;a-oxy = oct"210"; Digamma = ASCI1"V";
\ l e t - AGc; a-bary = oct"200"; digamma = ASC1I"v";
\ l e t - AA8d ;a-peri = oct"220"; Koppa = oct"001";
\ l e t - AA8e ; a-1 en = oct"202"; koppa = oct"002";
\ l e t - AA8f;a-aspr = oct"201"; sampi = octU003";
\ l e t - AA90;a-lenoxy = oct"212"; Cigmalunate=oct"004";
\ l e t - AA9l;a-asproxy = oct"211"; c i gmal unate=ASCII"l" ;
\ l e t - Ah92 ; a-1 enbary = oct"223" ; % "I" i s a l l t h a t ' s ava i l ab le
\ l e t - A~93;a-asprbary = oct"213"; s i gmafi nal=ASCII" j " ;
\ l e t - AA94;a-lenperi = oct"222"; r-aspr = oct"373"; % GreekKeys "="!!
\ l e t - AA95;a-asprperi = octn221"; r- len = oct"374";
%
% a lpha w i t h accents and i o t a subscr ip t
%
\ l e t - AAfb; a-i sub = oct"370"; a n g l e l e f t = oct"303";

\ l e t - AA96;a-oxyi sub = octW214"; ang le r i gh t = oct"307";
\ l e t - AA97; ~ b a r y i sub =oc t "204" ; b r a c e l e f t = octW333";
\ l e t - AA98; a-per i i sub = oct"224"; b racer igh t = oct"337";

\ l e t - AA99; a-leni sub = oct"206"; dagger = oct"375";
\ l e t - AA9a;a-asprisub = oct"205"; daggerdbl = oct"376";

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Symbolic Computation for Electronic Publishng

Michael P. Barnett
Department of Computer and Information Science,
Brooklyn College of the City University of New York, Brooklyn, NY 11210

Internet: barne t te i t s . brooklyn.cuny .edu

Kevin R. Perry
Interactive Computer Graphics Laboratory,
Computer and Information Technology,
Princeton University, Princeton, NJ 08540

Internet: per ryep r i nceton. edu

Abstract

Recently, we developed and reported some novel ways to make MATHEMATICA pro-
duce derivations that contain conventionally structured narratives and formulas,
using a procedure that interprets files containing expressions, which MATHEMAT-
ICA evaluates symbolically, control information and text. Now, this work is ex-
tended to give TEX typeset output. It supports the interactive crafting of publi-
cations that contain mechanically generated formulas and diagrams, for teaching
and research, in subjects that use mathematics and other algorithmic methods. It
goes beyond the direct capabilities of the built-in Splice and TeXForm functions.

1. Introduction

Recent dramatic gains in the accessibility and power
of workstations has given symbolic computation
greatly increased exposure. Several monographs de-
scribe MATHEMATICA (Wolfram 1991) and other com-
puter algebra systems. Interactive use, with and
without "notebooks", and batch runs that produce
lengthy FORTRAN statements for numerical evalua-
tion on mainframe computers are common. A rel-
atively underutilized application is the combined
use of electronic typesetting and symbolic compu-
tation to produce research journals, monographs,
text books, reference compendia, problem books and
other documents containing mathematical formulas
that are:

the result of lengthy proofs and derivations,
burdensome to copy and check,
numerous and closely related to each other,
needed in different notations,
internally repetitive (e.g. matrices whose ele-
ments are written in a common form).

Computerized symbolic calculation of the formulas
in all these cases can save considerable time and ef-
fort that is needed, otherwise, to produce the re-
sults, type the manuscripts, and read and correct the
proofs. The need to print mathematical formulas
that were produced by primitive symbolic computa-
tions led to some of the early work on electronic type-
setting over 30 years ago (Barnett 1965) - the for-
mulas were too numerous and lengthy to derive by

hand. The present paper describes some current ac-
tivity that uses MATHEMATICA with plain TEX (Knuth
1986), W X (Lamport 1994) and A&-TEX (Spivak
1986). It builds on our autorun procedure and bi 1 o
package (Barnett 1991; Barnett 1993; Barnett 1994),
and the application of these to atomic and molec-
ular structure calculations (Barnett 1991a; Barnett
1994a), robot kinematics (Chen 1991) and other top-
ics.

To introduce some of the principles that underly
t h s work, the box below depicts a workstation screen
during a simple MATHEMATICA session. The default
prompt for input has the form " I n [n] : =". The value
that the system computes for each input statement
is displayed alongside an "Out [n] =" tag. Here, state-
ment 1 assigns a simple expression to s. Statement
2 replaces n by 1 and expands the result.

I n [l] := s = (1 + x / (x+ l))~ (n+ l>

x l + n

Out [l]= (1 + -----I
1 + x

In[,?] := s /. n -> 1 // Expand

2
X 2 x

Out[2]= 1 + -------- + -----
2 l + x

(1 + X)

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Michael P. Barnett and Kevin R. Perry

MATHEMATICA evaluates:

a / . b - > c

by substituting c for b throughout a. Also, b -> c is
called a "transformation rule", a "replacement rule"
or just a "rule". The function f of x i s written as:

f h l , xllJ f@x
These are synonymous. f is called their "head".

2. Interpreting a control file

Our typesetting work b d d s on the autorun proce-
dure (Barnett 1991), that reads a file of MATHEMATICA
statements and, in the default mode, mimics inter-
active operation. Thus, given the control file demol
consisting of the two records:

s = (1 + x/(x+l))A(n+l)

s /. n -> 1 // Expand

a continuation of the MATHEMATICA session of Sec-
tion 1 is shown in the next box. Only the autorun
statement is typed. It simulates the earlier interac-
tive action, by interpreting the control file and gener-
ating " I n " and "Out" tags that combine the sequence
numbers in the MATHEMATICA and autorun sessions.
The screen display can be recorded, e.g., as a UNIX
script file, and printed.

/ I n [3] : = autorun [demol] I

In[3.2] := s /. n -> 1 // Expand

Often, users want to see the output of the successive
symbolic evaluations, without a playback of the in-
put. autorun provides an "outputOn1 y" mode, and
lets the control file contain formatting and related
"directives" that do not get displayed, and text that
does. These are labeled by # and * symbols, as in
the file demo2, shown in the next box. It contains
two bi 1 o formatting functions. The first reverses
the reordering of the exponent - numbersLast sim-
ply moves numerical terms to the right in its target.
The second treats the target as a polynomial in x.

outputon ly

* Given

s = (1 + x/(x+l))A(n+l)

format = toThe[n+l] [numberslast]

* then the expansion, when n= l , i s

format = sortToIncreasePowersOf [x

s /. n -> 1 // Expand

Interpreting this file gives:

I n [4] := autorun[demo2]

Ci ven

x n + l
(1 + -----)

1 + x

then the expansion, when n= l , i s

2
2 x X

1 + ----- + --------

l + x 2
(1 + x)

3. Producing typeset output

A file demo2. t ex was produced from demo2 by:

autorecord [demo21

This invokes autorun in a mode that converts the
evaluated expressions to TEX. auto record then
writes the relevant portion of the screen display to
an output file, invokes LATEX or, optionally, TEX, and a
previewer. Then it prints, if requested. In the TEX file
that produced this paper, \ input demo2 imported
the TEX coded contents of the next box.

r Given

I then the expansion, when n=l , is

The "n=lv'in the second line of text is set in math
mode by putting delimiters around it in the input.

A file close to demo2. t ex can be produced from
a slightly different control file using the built-in
Spl i ce function of MATHEMATICA, which uses the
b d t - i n TeXForm function to do the TEX encoding of
individual expressions. We use the procedure toTeX,
that is part of our forTeX package, to do the encod-
ing. It provides greater flexibility and control.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Symbolic Computation for Electronic Publishing

4. Compound heads
k

Formatting the final result in demo2 involved, implic- s u m [i , j , k l C f [i I l - xf(i)
itly, the evaluation of: I= j

sortToIncreasePowersOf [x l [l + . . . I l i m i t [t -> O][h[t l I - l imh(t)
1- 0

In th s . the head itself is a function of x.

sortToIncreasePowersOf [XI
We call this a "compound head". In general:

f [u1,u2 ,... 1[21l,v2 ,... 1
denotes a function g[vl, 212,. . . I , where g is the func-
tion f [u l , u 2 , . . . I. Thus, the entire expression is a
function of ul, ~ 2 , . . . ,211, 211 . . . The principle is ex-
tended, e.g. in a [b l [c l [d l [el . Invented by Ruffini
two centuries ago (see (Ruffm 1799) and (Cajori
1919, page 81)), the notation was reinvented by Curry
(Curry et al. 1958; Hindley and Seldin 1986). We use
it extensively, for convenience both in symbolic com-
putation and when encoding to TEX. The ability of
MATHEMATICA to handle it is very important.

5. The basic toTeX conventions

autorecord hldes the TEX output of toTeX from the
user. To show it here, we display a MATHEMATICA ex-
pression s, the "leads to" symbol - and the typeset
value of toTeX [s] as, for example, in:

s in [the ta] s i n [p i + the ta] - sin0 s in(n + 0)

This example, incidentally, illustrates selective
parenthesization whch TeXForm does not provide.

For processing by toTeX, elementary expres-
sions are represented using standard MATHEMATICA
conventions, that include == between the sides of an
equation. The characters listed in (Knuth 1986, Ap-
pendix F, Tables 1-14) and many other objects are
denoted by TEX-like names that omit the backslash.
Thus:

b i 1 o has many functions that operate on these repre-
sentations in symbolic calculations, e.g. r i g h t Expand
performs the reduction:

k k- 1

Denoting MATHEMATICA evaluation by *, the action
of rightExpand is specified also by:

sum[i, j, k l [f [i l l // rightExpand
+ sum[i, j, k - l] [f [i]] + f [k]

Other b i 1 o functions perform the reductions:

and several related operations.
The compound head notation allows numerous

variations, e.g. in symbolic calculations that involve
integrals, we use expressions that include:

i n t e g r a l [xl[yl - J Y ~ X

alpha, beta, . . . - a, B , ... i n t e g r a l [{XI, x2, x~}] [Y]
a1 eph , hbar , . . . - K , R , ... -
Pm 9 "'P, . . . ?, T , ...
l eq , prec, ... - , , ... i n t e g r a l [x, u, vl[y] - J z y d x

We use function notation to represent fonts, sub-
scripts, superscripts, decorations, special bracketing i n t e g r a l [{ {XI. ul I vi), { X Z ~ u 2 7 v i } f l [Y]

and binary expressions. Thus: v1 y2

b f [A + B + C] - A + B + C
- I,, I,, Y dx1 dx2

PCsubCnl I CsupCml I Cxl - PF(x) i n t e g r a l [{{XI, ul, 2111, ..., {x, %, vnllIC~l

hat [XI, over l ine [x+y l - C,y - I,": ...I2 ydxl . . . dx,
enpr Cxl , encr Cx, y l -
cap [cup [A , B1, C1

(x)' { X 1 i neIntegral [dot, L, s][bf [V]] - A u B n C

enpr abbreviates "enclose in parentheses" and sapr - JLV.ds
prlvides parentheses that &e sized automatically.
Corresponding names with br, cr, 1 r and so forth surfaceIntegra1 [S][f] - jls f dS

provide square brackets, curly braces. < > and other 6. Operating on toTeX input
enclosing symbols. - .

We use compound heads to represent several Other names can be converted to TEX-like names by
functionals. These include: replacement rules that precede the statements which

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 287

Michael P. Barnett and Kevin R. Perry

invoke toTeX. The rules are input as directives (see
Section 9). So are targeting functions that put func-
tion heads onto specific subexpressions as in:

f [a l + g[bl + hCc1 //
i nSuccession [

toThe [f] [bf]
col 1 ect i vel yToTerms [

containingAny[g, h]][sabr]]
s bf[f[a]] + sabr[g[b] + h[c]] - f(a) + [g(b) + h(c) I

The targeting function here is read "apply the func-
tion bf to the part of the target that has the head
f , then apply the function sabr collectively to the
parts that contain either g or h." bi 1 o contains an
easily extensible set of functions that address terms,
factors, elements of a list or a vector or a matrix, co-
efficients, arguments, parts of a fraction or a rela-
tionship, patterns and explicit items.

Suppressing parentheses: toTeX converts the
brackets in an arbitrary MATHEMATrcA function to
parentheses. u n p r elides them. Thus:

f [XI , fCunprCx11, f[unprCci rcllCun~r[xl I - f(x), f x , f o x

Varying the style: Our default style for square
roots is controlled by the toTeX variable default-
SqrtStyl e. Initially it is 1, with the effect:

s q r t [l - s q r t [l - Deltan2]]

- 4 1 - m

Setting it to 2 leads to output in the style:

s q r t [l - s q r t [l - DeltaA 211
- (1 - (1 - A Z) ;) ~

The default can be changed by a simple MATHEMAT-

ICA assignment. Also, in the formation of the TEX
codes by toTeX each sqr t [x] is converted to the in-
termediate form:

s ty le [sqr t , m][x]

with m set to the value of defaultSqrtStyle that
is current. An individual square root in a formula
can be set in a different style n by changing it to
s tyl e [sq r t , n] [XI before applying toTeX. To do
this, the transformation rule

sqr t -> s ty le [sqr t , n]

is applied to the appropriate subexpression(s) by a
b i 1 o targeting function. Similar tactics are used to
style other fractional powers and fractions.
Independent options: Several feawes in the styling
of an integral can be altered independently. toTeX
begins the encoding by converting the primary head
i ntegral to the form:

s tyl e [i ntegral, a1 -> bl, a 2 -> bz, . . . I

The system initializes the option values bi that are
associated with the option names ai. The statement:

setOpti ons [i ntegral , aj -> bj, a k -> bk, . . . I

is used to change options that, for integrals, include:

di f ferent i a1 sInNumerator -defaults to no,

a1 1 owRepeatedIntegra1 - no outputs multi-
ple indefinite integrals with a single J symbol,

variableInLower -a1 1, mu1 t ip le , and none
include the variable of integration in the lower
lirnit(s) of, respectively, all defimte integrals,
only multiple defmte integrals, and in none,

variableInUpper - yes and no include and
omit the integration variable in the upper limit,

includeLimi ts -yes and no allow and pre-
clude the inclusion of limits.

Options are set analogously for other functionals.

7. b i 1 o formatting functions

Rearranging an expression: Often, the default order
of an expression imposed by MATHEMATICA does not
give the preferred form. Non-atomic objects are rep-
resented internally by nested function expressions,
for example, (a+b) (c+d) by:

Times [Pl us [a, b] , PI us [c , dl]

Formatting often involves rearranging the argument
lists of one or more such functions, and insulating
the result from automatic reordering. bi 1 o includes
a suite of sorting functions based on the action of:

{xl, . . . ,&I // partByCri t e r i a[cl, . . . ,em]

This evaluates to {sl, . . . , sm+ 1 } where:

1. for v = 1 to m, s, is the list of xi for which cl (x),
. . ., cV-1 (x) are false and c, (x) is true,

2. sm+l is the list of xi for which cl(x), . . ., cm(x)
are false.

The order of the xs in each list s, is the same as in
the original list {xl, . . . , x } .

The higher level sortByPresence[v~,w, ...I
and sortByAbsence [vl, v2,. . .I are very useful. The
v's can be explicit terminal subexpressions or inter-
melate level heads or patterns for either. Related
functions include those used in Section 2.

The b i 1 o sort functions are applied to the rele-
vant subexpressions by targeting functions. For this
kind of work, expressions containing bi 1 o sort func-
tions are much shorter, usually, than is possible with
functions that require pairwise ordering criteria.

Further rearrangement requirements include
moving the denominator of a fraction to the begin-
ning, as in $ (x + y) and preventing, say, - (a + b)
from opening up to -a - b. bi 1 o handles these.

Skeletalizing: The reduction:

(l+x) lo // Expand // showTerms[{l, 6 , -111
5

s l + a 4 terms~+252 x + <<4 terms>)+x
10

typifies the action of another suite of bi 1 o functions.
If p stand for a pointer list, then showTerms[p]

288 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Symbolic Computation for Electronic Publishing

and showFactors [p] act on Plus and Times expres-
sions, showElements [p] acts on lists, vectors, ma-
trices and tensors. showArguments [p l acts on any
function. Each s howobjects function skeletalizes the
target. By default, each shows that items are omitted
by an expression of the form:

<<n object(s)>>

This can be overridden to &splay ellipses.

Insertion o f codes: If p is a MATHEMATICA pattern
that matches one of the terms in a Plus, then apply-
ing spl i t A f t e r to t h s Plus breaks the line after the
+ or - sign that follows the term. s p l i tBefore[p]
breaks the line before the sign.

Applying a spl i t function to any non-atomic ex-
pression puts the subexpression which is matched
onto a new line. i nsertBefore [p] [c] is wrapped by
sp l i tBefore [p] , where c is a string of TEX codes.
sp l i t A f t e r is handled correspondingly. Further
toTeX wrappers will allow convenient control of in-
dention and vertical spacing. Nested targeting ex-
pressions can be used to focus on the part of the tar-
get into which codes must be inserted.

8. A simple f o rTeX application

This relates to teachmg special functions of mathe-
matical physics. The statement:

autorecord [legendreAuto]

reads the file 1 egendreAuto, shown in the next box,
and constructs the file 1 egendreAuto. tex.

* { \b f Demonstrating o r thogona l i t y . \ } We

* i n t e g r a t e t he product o f two Legendre

* polynomials o f d i f f e r e n t degree. Consider

s l = i n t e g r a l c x , -1, 1][P[2, x] P[4, x]]

* S u b s t i t u t i n g e x p l i c i t polynomials f o r

* t he BP-n(x)$ gives

begi nLe f tA l i gnedGroup["="]

s2 = s l // eval uateAndHol dSpeci a1 Functions

5.3 = s2 // releaseAndExpandAl1

endLeftAlignedGroup

* Then term by term i n t e g r a t i o n gives

begi nRunonGroup["="]

s4 = 5.3 // integrateTermByTermAndHold

s4 // a1 1 owEva1 u a t i on

endRunonCroup

statement that assigns, to the variable s l , the inte-
gral to be evaluated. The next two records provide
the next piece of text. As regards the rest of the file:

1. begi nLef tAl i gnedCroup puts the codes to be-
gin a left-aligned multi-formula display before
the next coded expression, and an = symbol at
the right. Also, it sets a switch that includes
codes to continue the &splay, when subsequent
input expressions are processed.

2. eval uateAndHo1 dSpeci a1 Functions is a short
MATHEMATICA procedure, written for this ap-
plication, that converts Legendre, Laguerre and
other special polynomials, written as P [n, XI,
L [n, x] , . . . , to explicit polynomials that are
kept separate. Here, this separation stops
MATHEMATICA multiplying the denominators.

3. endLeftAl ignedCroup writes the codes to end
a multi-formula display and resets switches.

4. re1 easeAndExpandAl1 removes the insulation
around individual parts of the target expression
and applies the built-in ExpandAll function.

Demonstrating orthogonality. We integrate
the product of two Legendre polynomials of
different degree. Consider

Substituting explicit polynomials for the
P,(x) gives

I Then term by term integration gives 1

5. begi nRunonCroup, begi nLef tAl ignedCroup,
and endRunonGroup, endLeftAl ignedCroup
produce analogous effects.

6. i ntegrateTermByTermAndHo1 d distributes in-
tegration over the Plus in the integrand, and
stops the result coalescing.

7. a1 1 owEva1 u a t i on removes the Hol d around
each term.

A large variety of worked examples to help teach
orthogonality of special functions can be generated

The statement \ i npu t 1 egendreAuto in the file that
by applying autorecord to input files that follow the

set this paper produced the contents of the box in
general style of thls prototype, use the same b i 1 o

the right hand column. By default, the outputon1 y
functions, and cycle through sets of parameters.

mode is in effect. So is the sandwiching of individ-
ual TEX coded output expressions between centering

9. Directives

delimiters. The first three records in the control file The control file directives are simply statements
begin the text. The next record is the MATHEMATICA that use raw MATHEMATICA or invoke procedures

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 289

Michael P. Barnett and Kevin R. Perry

in our b i 1 o, forTeX and related packages. Thus,
in Section2, b i 1 o sorting functions are assigned to
format - a surrogate head that is applied to each
output expression before it is encoded. The direc-
tives in Section 8 are the names of TEX functions that
put the delimiters for display math into the output,
and control several program switches.

Statements are written as directives that:

1. substitute TEX-llke names for other identifiers,

2. convert function expressions that carry indexes
as ordinary arguments into representations that
lead to sub- and superscripting,

3. change font and impose bracketing,

4. fine tune the style as described in Section 5,

5. perform substantive steps that are not typeset.

There is further flexibility. autorecord is used
in the d i sp l ayBoth mode to document the symbolic
algebra part of a mechanized derivation. It plays
back the input in typewriter font and the evaluated
expressions as displayed mathematics. Options al-
low typewriter font for both. Each input expression
can be run-on or left-aligned above the "--" symbol
and conventionally displayed result. Further styles
of alignment are provided for the outputon1 y and
outputBoth modes. Provision can be made to num-
ber the equations.

Options can be changed dynamically. Also, the
directives can be made conditional on flags that are
set at execution time, to vary the style of output from
different runs using the same control file. The con-
tent can be varied by conditional directives that make
evaluation occur silently until balancing directives
are reached, or bypass text and/or evaluation com-
pletely. T h s can be used, e.g. to produce terse and
detailed derivations from a single file, or problem
sets with and without solutions.

Four pre- and postprocessing functions, that de-
fault to I d e n t i t y , which returns the argument un-
changed, provide part of the flexibility.

1. i pc - this converts input statements into a pre-
ferred form that is recorded,

2. i v c - this converts input statements from a
variant notation into valid MATHEMATICA,

3. opc- this acts on the immediate result of
MATHEMATICA evaluation to give output of pre-
ferred appearance,

4. t pc - this operates on each block of text before
it is displayed.

These parallel, in part the built-in SPreRead, $Pre,
$Post and BPrePrint functions. autorun can doc-
ument the full extent of activity by displaying any
combination of the input as read, the restyled input,
the input t o ~'~ATHEMATICA, the Output from MATHE-
MATICA and the restyled output, alongside tags that
default to "In", "in", " IN" , "Out" and "out", respec-
tively.

10. Using graphics

MATHEMATICA has extensive graphics capabilities. It
saves graphics objects as POSTSCRIPT files. p s f i g im-
ports these to TEX documents and is very easy to use.
The "van Arkel - Ketelaar" diagram below relates to
binary compounds of the chemical elements and an
atomic property called "electronegativity" (Allen, Le-
land et al. 1993).

I

I/M/C character of I st row binaries
The letters I, M and C at the corners of the triangle
stand for ionic, metallic and covalent. We wrote a
MATHEMATICA procedure that reads a list of elements
and produces the corresponding diagram. This ex-
ample involves the algorithmic placement of text,
with provision for interactive fine tuning.

The ability to import graphics helps check sym-
bolic calculations. Computer algebra is fraught with
possible error, though this is seldom discussed. The
early stages of a symbolic calculation often produce
results that are in the literature, and there is merit to
making a comparison.

Our first efforts to check results this way
showed that, often, in hand generated formulas, a
particular subexpression is represented by a single
variable in one place but not another. Machine gen-
erated formulas tend to be more consistent. b i 1 o
was developed, in part, to target the changes that
are needed to bring the content and arrangement
of computed results into agreement with published
material.

Even when this has been done, however, the vi-
sual comparison can be tedious. For example, as
part of a longer calculation (Barnett 1994a), we re-
constructed a 33-term recurrence formula, that oc-
cupies half a page of Physical Review (Pekeris 1958).
It can be written:

1 c ~ , ~ , ~ (Z , m , n) A (1 + h , m + ~ c , n + v) = 0
(A,cI,v)ES

290 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Symbolic Computation for Wectronic Publishing

where the c's are simple algebraic expressions in
(1, m, n) , and S consists of 33 triples whose elements
are between -2 and 2. To help other workers see
that the results are in agreement, the relevant pas-
sage in Physical Review was scanned, and the im-
age dissected into about 40 pieces that contain sepa-
rate terms or, in some cases, parts of terms, using a
suite of image processing tools written locally. The
pieces were imported into a document above the re-
spective terms generated by MATHEMATICA, using an-
other utility. This has been done here for terms 1-3
and 32, 33, by conversion to POSTSCRIPT and use of
ps f i g / t ex . Scaling is varied slightly.

+ 2141 - 22+~(2rn+nf 1)IA (I - 1, m, n- 1)

+2mn[1- 22$~(21f n+l)JA(I, m-1, n-1)

2 m n [1 - 2 Z + ~ (2 1 + n + l)] A (L , m - 1 , n - 1)

This techmque can be used to publish scanned
pictures together with algorithmically constructed
graphics in many areas of work.

Setting the output of symbolic computation, us-
ing special fonts and macros for chemical formulas,
chess situations, musical scores and other iconic dis-
plays has still further potential. The use of built-up
formulas by organic and biological chemists is well
known. These, and the further needs of inorganic
and solid state chemists are discussed in (Jensen
1989). We have made a start on interfacing MATH-
EMATICA with the work reported earlier (Haas and
O'Kane 1987; Tutelaers 1992; Taupin 1992).

As a simple example of non-mathematical out-
put produced by MATHEMATICA, two very short pro-
cedures that construct a word count and encode it as
a table produced the following display from a 10-line
passage in Macbeth.

a 3 adder's 1 and 8
bake 1 bat 1 blind 1
...
trouble 2 wing 1 wool 1
worm's 1

Distribution

The bi 1 o package is in, and the f o rTeX material soon
wdl be in the anonymous ftp library at:

mondri an. p r i nceton . edu (128.112.224.14)

Acknowledgements

This work was started under support of NSF grants
NAC-25001 and ASC-8500655 and conducted in part
during MPB's sabbatical leave in the Chemistry De-
partment and Interactive Computer Graplucs Labora-
tory of Princeton University. We thank K. D. Alexan-
der, L. C. Allen, J. F. Capitani, M. Ross, A. Shulzycki,
J. S. Starnm, D. J. Thongs and P. Vince for their com-
ments and cooperation.

References

Allen, Leland C. et al. "Van Arkel - Ketelaar trian-
gles." J. Molec. Struct. 300, pages 647-655, 1993.

Barnett, Michael P. Computer Typesetting - Exper-
iments and Prospects. Cambridge, Mass.: MIT
Press, 1965.

Barnett, Michael P. "Some simple ways to construct
and to use formulas mechanically." ACM SIGSAM
Bulletin 28 (2) , pages 21-29, 1991.

Barnett, Michael P. "Summing P,(cos 9) / p (n) for
certain polynomials p (n) ." Computers Math. Ap-
plic. 21 (l o) , pages 79-86, 1991.

Barnett, Michael P. "Implicit Rule Formation in Sym-
bolic Computation." Computers Math. Applic. 26
(lo) , pages 35-50, 1993.

Barnett, Michael P. and Kevin R. Perry. "Hierarchical
Addressing in Symbolic Computation." Comput-
ers Math. Applic., in press, 1994.

Barnett, Michael P. "Symbolic calculations for the He
Schrodinger equation." to be published, 1994.

Cajori, Florian. A history of ma thema tical notation.
vol. 11, page 81, Chicago: Open Court, 1929.

Chen, Zhan-zhan. SyrnboLic calculation of inverse
kinematics of robot manipulators. M.A. Thesis,
Brooklyn College of the City University of New
York, 1991.

Curry, Halsey B. and R. Feys. Combinatory Logic
vol. 1, Amsterdam: Netherlands, North-Holland
Publishing, 1958.

Haas, Roswithwa and Kevin C. O'Kane. "Typesetting
chemical structure formulas with the text for-
matter TEX/W&X." Computers and Chemistry, 11
(4) , pages 252-271, 1987.

Hindley, J.R. and J.P. Seldin. introduction to Com-
binators and Lambda-Calculus. New York: Cam-
bridge University Press, 1986.

Jensen, William B. "Crystal coordmation formulas."
Pages 105-146 in Cohesion and structure, vol.
2, The structure of binary compounds, D. G.
Pettifor and F. R. de Boer, eds. North-Holland,
Amsterdam, 1989.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 291

Michael P. Barnett and Kevin R. Perry

Knuth, Donald E. The T~Xbook. New York: Addison-
Wesley, 1986.

Lamport, Leslie BTEX - A Document Preparation
System. 2nd edition, New York: Addison-Wesley,
1994.

Pekeris, Chaim L. "Ground state of two-electron
atoms." Phys. Rev. 112 (5), pages 1649-1658,
1958.

Ruffim, Paolo. Teoria generale delle equazioni.
Bologna, Italy, 1799.

Spivak, Michael D. The Joy of TEX. Providence, RI:
American Mathematical Society, 1986.

Taupin, Daniel. "MusicT~X: using TEX to write poly-
phonic or instrumental music." TUGboat 14 (3),
pages 203-211, 1993.

Tutelaers, Piet. "A font and style for typesetting
chess using B&X or TEX." TUGboat 13 (I), pages
85-90, 1992.

Wolfram, Stephen. Mathernatica, A System for Doing
Mathematics by Computer. 2nd edition, New
York: Addison-Wesley, 1991.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Concurrent Use of an Interactive TEX Previewer

with an Emacs-type Editor

Minato Kawaguti and Norio Kitajima
Fukui University, Department of Information Science, 9-1, Bunkyo-3, Fukui, 910 Japan
kawaguti@ilmpsl.fuis.fukui-u.ac. j p

Abstract

A new efficient method was developed for editing (LA)TEX source files. It uses the
combination of an Emacs-type editor and a special version of xdvi . Source files
may be edited whle browsing through the dv i preview screen simultaneously on
the X window screen. Whenever a position is selected by cliclung the mouse on
a page of the document on display on the screen, the corresponding location of
the particular (LA)TEX source file is shown in the editor's buffer window, ready for
inspection or for alteration. One may also compile and preview (and obviously
edit as well) any part of the entire document, typically one of its constituent files,
for efficiency's sake. Fundamental characteristics of the document, shaped by
the specification of the document style and various defimtions found mostly at
its root file, are retained even under partial compilation.

The Editor for TEX

Since it is not easy to grasp what a document
looks like by simply reading the TEX source files,
the efficiency of editing a TEX document file can
be enhanced significantly if we can edit the TEX file
in close coordination with the viewing capability of
the corresponding TEX dv i file linked dynamically
to the editor.

There can be two approaches for the realization
of this scheme. The first method leads to developing
a special editor which is capable of displaying a TEX-
processed result. The second method respects
the user's preference for a general-purpose editor,
opting for its enhancement with the efficient viewing
capability of the TEX dv i files in the X window screen.

The advantage of the former is that the designer
of the editor has ample freedom to bring in the
novel features desirable both for presenting the dv i

view on the screen and for editing the TEX source
being worked on. The VORTEX project by M. A.

Harrison's group is a notable example adopting the
first approach.

On the other hand, it may be equally advanta-
geous for many people if they could use an editor
with whch they are familiar, provided it is equipped
with an interactive dv i viewing feature. Ths paper
describes a simple scheme of the second category
targeted to those people who prefer Emacs or one
of its derivatives as their sole editor for everything,
including TEX sources.

This scheme of synchronizing an editor of the
finest breed, of Emacs-type to be specific, with
an acclaimed previewer will help improve, among
others, editing sessions for large TEX documents.
A typical document written in TEX, say a book
manuscript, may consist of many files. These

may form a tree structure through a multi-layered
\ inpu t hierarchy, based on the logical divisions.

With the traditional ehting style using the
Emacs editor, particularly when the document con-
sists of many files forming complex \ inpu t layers,
a laborious cut-and-try search to single out a file
from many is almost inevitable before locating the
given passage. In any event, the cursor in the editing
buffer window would have to be moved to all these
places more or less manually.

In contrast, our scheme eliminates most of
these time-consuming chores, and a single mouse
click is all that is needed.

Outline of the Operation

In short, the editor/previewer combination does the
following:

a. Any TEX source file or a chained cluster of them,
be it the root, a node, or a leaf of the \ inpu t

tree, can be previewed without compiling the
entire TEX tree.

b. The number of generations of \i nput files to be
included in a partial compilation for previewing
can be limited to a user-specified depth, both in
the direction of descendants and of ancestors.

TUGboar, Volume 15 (1994), No. 3 - Proceedings of the 1994 Annual Meeting 293

M. Kawaguti and N. Kitajima

In so doing, the fundamental characteristics
of the document will still be preserved and
reflected on the pages shown on the screen,

even if its root file could have been curtailed.

c. Selection of the compiler, TEX, LATEX or LATEXZ~
 LATEX^), is automatic.

d. The cursor of the Emacs-type editor jumps to
the line of the TEX source file corresponding to

the location specified by clicking the mouse on

the display screen of the previewer.

e. The editor accepts interactive commands from
the user while the previewer is active on the

display. That is, both of them coexist, and
there is no need to terminate the previewer to

regain control over the editor.

Combination of Two Tools

A straightforward way to achieve this scheme is
to select an editor and a previewer from among

the tools most frequently used. The combination
of the Emacs editor (or a close cousin) and xdvi

would surely be acceptable to the majority of users,
particularly those in the academic and scientific

communities where we find a heavy concentration

of devoted TEX users.
The present paper is based on our experience in

implementing t h s scheme for two lunds of Emacs-
type e l tors : the original Emacs editor, GNU Emacs,

and one of its derivatives, N jove.

The latter, having been the subject of develop-
ment for some years at Fukui University, is based on

Jonathan Payne's JOVE (Jonathan's Own Version of

Emacs). Amongst its many unique editing features
not found in the original JOVE or in Emacs, N jove's

T& mode is an attractive asset for editing (LA)TEX
files. Like IOVE, Njove is written entirely in the C

language.

Except for the ways the new editing commands

are added to the main body of the respective editors,

the two version are almost identical. For GNU Emacs
this portion is written in Emacs lisp.

Njove has been the primary testbed for new

ideas in t h s project because of the present authors'

famdiarity with its internal details. As such the
Njove version is, at the time of t l s writing, in a

slightly more advanced phase of development. Some

of the minor implementation details (such as the

c o h g method of inter-process communications) to
be described in what follows may reflect, therefore,

those of the N jove version. Nevertheless it is hoped

that the word Njove can be read as indicating
a generic Emacs-type editor, including GNU Emacs
itself.

To ease portability, a substantial part of the

program consists of modules that can be run as

parallel Unix processes, isolated from the editor

itself.

The Previewer

Njove permits previewing the whole or part of the
file being edited using a modified version of the

standard xdvi. (To distinguish it from the original

version, the modified version will henceforth be
referred to as xdvi+.) Njove's text buffer window

and the xdvi+ TEX viewing window are shown side

by side on the screen.
When xdvi + is activated, it displays the image

of the specified dvi file on the X window screen.

xdvi + scans the dvi file sequentially, and places

each character glyph or rule on a page one by one,
just as any dvi device driver does. Simultaneously

with drawing each page, however, xdvi + keeps track

of the locations it encounters by using \special
commands that have all a valid argument string

(parsing message) with the following format:

1 oc source-file-name source-line-number

A correspondence table is created anew for each

update of the displayed page. The table records the
correspondence between this locational information

(the x- and y-coordinates) of the document page and

that for the source file, namely the source file

name and the line number. The table can accept

a generous amount of \special commands (by

default, up to 4096 entries per page).
Each time xdvi+ detects a mouse event for the

page and identifies it as the newly implemented
xdvi instruction to locate the source file, xdvi+

searches for the closest tagged location upstream
in the document from the point the mouse click

occurred. The source file name and the line number

are identified by consulting the correspondence

table for that tag entry.
Upon notification by xdvi+ about this infor-

mation, Njove switches the &splayed content of

the editing buffer promptly to that of the (possibly
newly opened) target file, and moves its cursor (that

is, "point" in Emacs jargon) to the beginning of the

line which is most likely to contain the passage the

user specified with the mouse on the TEX preview

screen. Incidentally, the buffer is ready to accept

any editing command all the time.
The coordmation between N jove (or its "agent",

t ex j ump, to be more rigorous, as will be discussed
in a moment) and xdvi + can be outlined as follows:

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Concurrent Use of Reviewer with Editor

1. Establish a llnk between N jove and xdvi +, so
that they can communicate with each other in
real-time in a typical X-window environment.

2. Let xdvi+ pick up the positional information
where the mouse click event took place.

3. Interpret the click position and notify N j ove of:

a. the source file name, and
b. the source line number.

4. Let N j ove "find the specified file, and position
the cursor at the beginning of the designated
line.

A New Editor Command

To integrate the interactive previewing capability
of TEX'S dv i file into the editor, a new command
tex-jump was added to Njove.

When the N j ove command

Esc-x tex- j ump [option switches] [target-file]

is issued, Njove spawns a separate Unix process
t ex jump, independently of the editor. (The presence
or absence of the hyphen in the name texjump is
used to differentiate between these two closely
related but clearly distinct entities.) If the file name
is not specified, the file associated with the buffer of
the window, from which the command was issued,
is selected as the default target-file (to be described
later). Optional switches may also be specified.
These are identical to the ones for texjump as a

by xdvi+ ("point positioning"). At the same time,
the successive parsing message line is appended to
a special buffer "texjump".

Positioning on the Screen

Whenever the left button of the mouse is clicked
while holding down the control key of the keyboard
at the same time, xdvi + determines the correspond-
ing current location in the source file, and transmits
it to texjump. Njove, receiving this information
from texjump through pty, selects the relevant
buffer and advances the point to the beginning of
the requested line.

Users user can pick any location at any time
asynchronously until they quit xdvi+ with the q

command.
When the command tex- j ump is issued, N j ove

switches to the active state of "error parsing". Then
Njove is ready to accept parsing commands from
the keyboard. They are next-error (C-x C-n) and
previous-error (C-x C-p), respectively, which step
the point in the buffer texjump either one parsing
message line downward or upward, followed by a
new point positioning. (In the case of GNU Emacs,

next-error iskey-bound to C-x ',while previous-

e r r o r is missing.) This active status persists even
after xdvi + is terminated through its quit command.
Issuing C-x C-c finally lets N j ove exit from its error
parsing status.

shell-executable command.
The standard 1/0 of texjump is connected to

The Tree Structure of TEX Source Files

Njove via a pair of ptys, and its output stream is
eventually sent to and stored in the newly created
N j ove buffer named "texjump".

t ex j ump in turn spawns xdvi +. They commu-
nicate with each other through a Unix pipe. For each
mouse click in the preview screen, xdvi + sends back
to t e x j ump the locational information of the source
file through the Unix pipe. texjump thereupon
outputs a grep-like message (parsing message line)
to the standard error stream, which Njove accepts
through its pty.

Until t e x j ump is eventually terminated, N j ove

intercepts all the input streams to its various
buffers scrutinizing a stream destined to the buffer
texjump. If a parsing message for t ex j ump is found,
N j ove subsequently lets its newly added function
ParseErrorOneLine() parse that single line, and
displays the pertinent buffer (or opens a new file if it
is not yet assigned to any of the existing buffers) in
an appropriate working window, and lets its cursor
(point) move to the beginning of the line specified

A typical TEX document may be composed of mul-
tiple TEX source files forming a tree structure by
means of the \ input feature. Let its root file be
root. tex.

A new tool, text ree, analyzes the tree struc-
ture of the document by tracing recursively the
existence of \ input or \ inc lude commands. tex-

t r e e expects a single argument in the command
line, the root of the document tree.

% tex t ree root. t ex

tex t ree generates a file, Tex-Input-Tree by
default, which indicates the mutual input depen-
dency relationship of the document in a format
akm to what the Unix make command under-
stands. Therefore, as a byproduct, the created
file, Tex-Input-Tree, may also be used to write the
dependency rule of a Makefile for all sorts of (LAITEX
compilation in general.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

M. Kawaguti and N. Kitajima

Derivation of the Source Position from
the DVI File

Since the TEX compiler does not leave any trace of
the locational information about the original TEX
source files in the dvi file, ordmary dvi device
drivers have no way of correlating an arbitrarily
chosen point on a processed page of the document
with the specific file among a number of TEX source
files forming that document, and the wordlline
position within that file in particular.

Therefore some means of forwarding the loca-
tional mformation to the device driver has to be
incorporated. There are two alternatives:

The most straightforward scheme would be to
modify the (LA)TEX compilers such that they either

include the locational information of the source
files within the dvi file they generate, or
generate an additional auxiliary file which con-
tains the mformation about the location in the
document pages of the items found at the
beginning of all the source lines.

One could envisage introducing a parallel to the
optional switch -g found in the C compiler, used to
add extra lnformation for source level debugging.
While there is no doubt as to the technical feasibility
of this scheme, and obviously it is the most rational
and robust of the two alternatives, in real life the
modification had better be incorporated into the
official circulating version of all the compilers by
their original authors, lest the introduction of yet
other variants go astray from the spirit of unification
of (E)TEX.

Although we would very much like to have this
feature in future releases of the (LA)TEX compilers,
we wd1 look for another alternative that offers
a practical solution for the time being. This
approach uses the (E)TEX compilers as-is, without
any modification. It generates copies of the source
files, and additional information (a "positional tag")
is inserted into these files automatically prior to the
(E)TEX compilation. The positional tag is inserted
at every "landmark location" of the source files,
say at every location where a new paragraph begins
("paragraph mode"). Or it could as well be at
the beginning of each non-empty source line ("line
mode").

The applicable positional tags must never dis-
tort the original content of the document. Two
TEX commands, \wl og and \special, satisfy this
criterion.

One can insert a \speci a1 command with its
message text consisting of:

a unique ID code (default: loc) to distinguish
t h s particular usage of the \speci a1 command
from others;
the source file name;
the source line number.

Thls is the scheme adopted in tex j ump.
By comparison, one could insert a \wl og com-

mand, instead of \special, as the positional tag.
The preprocessor (that is, the equivalent of tex j ump)
would then generate the message text for \wl og as
an ASCII string indicating the location as the line
number of the source file at the point it inserts the
\wl og command. With the help of a simple program
that would analyze the log file written by the the
(E)TEX compiler, the page boundaries of the printed
document could be identified in the source files.

The advantage, if any, of using \wl og would be
that neither the (LAITEX compilers nor the previewer
need to be altered, offering the user a much wider
selection of previewers. This benefit would, how-
ever, be offset in most cases by the drawbacks, in
comparison with using \speci a1 :

The editor can control the previewer page, but
not vice versa, because the unmodified version
of the previewer cannot communicate back to
the editor.
The positioning resolution one can expect can-
not go beyond the page of the document
displayed on the previewer screen.

Line Mode versus Paragraph Mode

texjump accepts two options to select the way
\s peci a1 commands are inserted, namely line
mode and paragraph mode. When line mode is
chosen, a mouse click in the previewer window can
locate the source position within the range of a line
or so. In paragraph mode, however, we deal with
a scope no finer than the size of the paragraphs
involved. The main motivation for paragraph mode
comes from the need to make tex j ump much more
robust if line mode fails for reasons discussed
below.

Line mode. In t h s mode \special is inserted
at the beginning of each non-empty line without
otherwise altering the original context of each line.
Since the original line number assigned to each line
remains vahd after the insertion, the dvi driver
can identify the correct line number in the original
source files, even though it extracts the data from a
single file, namely the dvi file created by comphg
the modified copy files containing the scattered
\speci a1 commands.

296 TUGboat, Volume 15 (1994), No. 3 - Proceedmgs of the 1994 Annual Meeting

Concurrent Use of Previewer with Editor

Paragraph mode. In this mode \speci a1 is inserted
exclusively at the beginning of the first line of each
"paragraph. t ex j ump recognizes a cluster of one or
more empty lines as the paragraph delimiter. (Note
that the definition of a paragraph is different from
that of TEX or Emacs.)

Problems Associated with Tag Insertion

Even though a \special command supposedly
causes no appreciable side effect other than merely
forwarhng a character string to the dvi driver as a
communicative message, it does not mean we can
insert it indiscriminately in any arbitrary position
of the given source file.

As a typical example, consider the case of a TEX
macro whlch expects one or more arguments, and
there occurs a line break in the source file just in
front of one of its arguments. One cannot insert the
\speci a1 blindly at the beginning of the following
line which starts with the expected argument.

For instance, within a \ha1 i gn construct, the
line with \noal ign rejects \special . If the con-
struct's final line begins with its outermost closing
brace (11, \speci a1 is not permitted.

A more obvious example is LATEX'S verbatim
environment, or its TEX equivalent. Insertion of a
\speci a1 in the lines belonging to t h s environment
does alter the content of the compiled document
because there \speci a1 is nothing more than a plain
character string. Needless to say, xdvi+ does not
identify the "argument" as positional information.

Therefore texjump has to know about lines
where \speci a1 insertion should be avoided. This
means that t e x j ump must be able to, ideally speak-
ing, analyze the syntactical structures.

Realization of a full scope syntax analysis
would be equivalent to almost fabricating a new
(LA)TEX compiler. This kind of duplicated effort
would not be justifiable, because the modification
of the compilers mentioned before is clearly the
rational way to do it. The current version of t ex j ump
analyzes, therefore, the syntactical structure of the
source fdes only superficially.

If the (LA)TEX compiler complains about a syn-
tactic error that originated from the insertion of
the \ spec ia l , the user may either switch to para-
graph mode, which is more robust than line mode,
or modify slightly the original source file, as will
be discussed below, by adding some directives to
texjump in the form of comment lines for the TEX
compiler.

Where to Attach the Positional Tags

Since (LA)TEX refuses to accept the insertion of a posi-
tional tag at certain places, we have to discern these
syntactically inappropriate circumstances. The cur-
rent version of texjump interprets the syntactical
structure superficially. Therefore it recognizes only
the most obvious cases.

Tags are not attached to the beginning of the
following lines:

1. a blank line, or a comment line;
2. within a verbatim environment;
3. from the line beginning with \def till the

following blank line;
4. a line which begins with), \noal i gn, \omit,

\mu1 t i span;
5 . the line following a non-blank line ending with

%;

6. the preamble and postamble part of each file,
if any;

7. lines for which explicit instructions tell t ex j ump
not to attach a tag;

8. each non-first line of each paragraph when in
paragraph mode.

Otherwise the positional tag is attached to the very
beginning of each line.

Manual Control of the Tag Insertion

t e x j ump's algorithm for inserting positional tags
works reasonably well for relatively simple TEX
documents. For documents of a complex nature,
however, one can only expect it to be marginally
smart.

When t e x jump stumbles into a pitfall, partic-
ularly in line mode, some texjump directives can
rescue it. Inserted manually in the source file by the
user, they let t ex j ump avoid potential hazardous
spots in the file.

Each directive is a TEX comment line with a
predefined format. It consists of a line beginning
with three % characters followed by a symbol.

%%%< Enter paragraph mode.
o o o A Exitparagraphmode.
0 0 0 A ! Skip tagging the ensuing single line.

%%%- Skip tagging until the next blank line.

File Inclusion

texjump lets the user specify the range of fdes to
be included through three parameters:

1. the filename under consideration (target-file);

2. the number of generations, in the \ input tree,
corresponding to:

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 297

M. Kawaguti and N. Kitajima

a. its ancestors from there upstream tans);
b. its descendants from there downstream

(des).

The default is ans = 0 and des = co; that is, the

target-file and all of the files it includes in a cascade

downstream.

t e x j ump first looks for the file Tex-Input-Tree

in the current working du-ectory, and obtains from

it the tree path which reaches the root file from

target-file. If Tex-Input-Tree is missing, target-file
is assumed to be the root file.

As for ancestors, inclusion is limited to only

those files directly on that path. No siblings of the

target-file or of its ancestors are included. If ans
is smaller than the generation number to the root

file, some of the files closer to the root, including
the root itself, wdl be out of range for the file

inclusion scope. t e x j ump inspects the content of

each of these files, and if any of them contains the
preamble and/or postamble, these portions (not the

entire file) are all extracted for inclusion despite the

scope rule.
The file inclusion rule for the descendants is

much simpler. If des is specified as the option

parameter to the texjump command, up to des
generations of direct descendants of target-file are

included. Otherwise, all of its descendants are
included.

t e x j ump suppresses the file inclusion simply
by altering the string \ input or \i nc l ude to

\par \v ru le w id th 2em he ight l e x
\qquad{\tt \s t r ing\ input} \quad

in the same line, which generates a line like

\i nput input-file-name
on the preview screen, thus malung it clear that the

\ input command line is there.

Preambles and Postambles

texjump assumes that each file consists of three
parts:

1. an (optional) preamble;
2. the main body;

3. an (optional) postamble.

The preamble, if any, is an arbitrary number of
lines at the beginning of the file bounded by two

h e s with the unique signatures:

%**begi nni ng-of-header

and
o A * C 'end-of-header

Likewise the postamble might be at the end of the

file, bounded similarly by the lines:
0 1 ~ X--begi nn i ng-of-tai 1 er

and
%**end-of-tai 1 e r .
The root file is exceptional in that both explicit

and implicit definitions of both the preamble and

postamble are permitted. For those files which do

not have the above-mentioned signature line for

preamble initiation, if the line \begin{document}

is encountered within the first 100 lines then the

region from the first line to this implicit preamble

terminator line is treated as the preamble. The same
is true with the postamble. The implicit postamble

in most cases is from a line which contains

\end{document}

\bye
or

\end

till the very end of the file.

texjump inserts positional tags neither in the

preamble nor in the postamble. Therefore any TEX
codes, critical for the document but irrelevant for

positioning, should be placed inside these regions.

TEX macro defmtions, variable parameters setting,
or inclusion of system files are typical examples.

It should be noted that both preambles and

postambles of all the files involved in the TEX tree

are always included, irrespective of the scope rule.

Source Recompilation

Since texjump keeps showing the very same dv i

file, and therefore the recent modifications are not

reflected on the viewing screen, updating the screen

may become desirable after some modification of

the source fdes. Talung into account the time (J.~)TEX
takes to compile, however, it may hamper efficient

editing work if we let texjump decide to initiate

automatically the recompilation of the latest source
files over and over again even at sporadic intervals.

Therefore, unless the user instructs xdvi + to do so

explicitly, recompilation does not take place.
Sending a C character to the xdvi+ window

signals it to perform a recompilation. xdvi+

conveys to texjump the acceptance of the user's
request and waits for the renewed dv i file. When

available, it redraws the screen using the new d v i

file.

Intermediate Files

Since our scheme modifies the content of the

(LA)TEX source files, we must work on the copied
files. Therefore texjump first creates a new (tem-
porary) working directory with the user-specified

path-name. It then reproduces there the entire

298 TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Concurrent Use of Previewer with Edtor

duectory structure of all the files involved, taking
into account the file inclusion rule.

texjump identifies the "local root" for those
files which fall outside of the clusters stem-
ming from the original current working directory.
t e x j ump assigns to each of them a subdirectory in
the above-mentioned working drectory and gives it
an arbitrary name. t e x j ump keeps the entire record
of the file mapping between original and copy.

In this manner, the intermediate files are ef-
fectively hidden from the user, thus creating the
impression that one is dealing directly with the orig-
inal files. In reality, what the previewer is showing
on the screen, and giving the positional information
for, corresponds to the copied files, whde what the
editor is showing in its window are the genuine
original files.

In order to take t h s hiding process a step
further, even the (LA)TEX compiler is manipulated
by t e x j ump on purpose. When the (E)TEX compiler
detects an error in a source file, the user usually calls
for the editor by responding with an "e" character.
The compiler then transfers control to the user-
specified editor. It instructs the editor to open
the temporary file, because thls is where it found
the error. t ex j ump, however, swaps the shell's
environmental variable BTEXEDIT temporarily with
a fake editor, t e x j ump-ed, just before (LA)TEX starts
compilation of the tagged files. Therefore it is
t e x j ump-ed which receives information about the
file (path-name) and the line number. Its sole
role is to identify the original source file from the
received information, and then to call in the real
editor the user had requested, acting as if (LAITEX
had performed that job.

In order to enforce integrity we minimize the
possib&ty of confusing the original and the copies
by deleting the temporary subdirectory created by
texjump each time xdvi+ is relinquished after
previewing.

Option Switches

The Unix shell can execute tex j ump as a stand-alone
process. It expects a (LA)TEX source file name, and
optional switches may also be specified.

% t e x j ump [-opt [nurn] [, . . .] 1 target-file
If target-file does not specify a filename extension,
t e x j ump assumes it to be . tex.

Valid option switches -opt are:
-h Displays the entire list of switch options.

-p Instructs texjump to treat all files in
paragraph mode.

-n nurn Lets the (B)TEX compiler repeat the
compilation nurn times (default is I).

-t nurn Start from the ancestor nurn genera-
tions upstream in the input tree. nurn = l specifies
that the parent immediately above the source file
(target-file) should be included (default is 0, i.e., no
ancestor is included).

-b nurn Include the \ input files down to
nurn generations of descendants. nurn = 1 means
only the "cmd" files, included directly through an
\i nput command in the source file (target-file), are
to be included.

Generation of xdvi+

The source files for xdvi+, the extended version
of xdvi, are generated through applying a patch to
version 17 of xdvi . It modifies five files, Imakefi 1 e,

dvi-draw. c, t p i c . c, xdvi . c, and xdvi . h, and
adds a new module, jump . c.

i make generates a Makefi 1 e, which takes care
of the entire process of creating xdvi+. Note that
xdvi + preserves all features of the original xdvi.

Customization

Users can specify some of the critical parameters
controlling t ex jump. They are described in a con-
figuration file, whose default name is . t ex j umpcfg

(this can be altered at installation time). texjump

looks for t h s file successively in the current direc-
tory, then in the user's home directory, and finally
it uses the parameters in the system default file. It
specifies to t e x j ump the choice of:

1. the temporary worlung directory to be created
(and removed subsequently);

2. the previewer;
3. the name of the \ input tree file generated by

t e x t ree;

4. the (LA)TEX compiler;
5. the signatures signaling the end of the preamble

part;
6. the signatures signaling the beginning of the

postamble part.

An example of the default . texjumpcfg pa-
rameters is shown below:

Parameter Default

TEXINPUTS . : /import/TeX/i nputs//\

: /i mport/TeX/l i b//

WORKDIR texjump-workdi r

XDVI xdvi +
XDVI-OPTION -S 3

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

M. Kawaguti and N. Kitajima

TREE

TAG

TEX

LATEX

LATEX2 E

FOILTEX

BOH

EOH

BOT

EOT

BOT-TEX

EOH-LATEX

BOT-LATEX

BEGIN-PARMODE

END-PAR-MODE

EXCLUDE-NEXT

EXCLUDE-BLOCK

SEL-TEX

SEL-LATEX

TeLInput-Tree

1oc ${FILE} ${LINE}

/import/TeX/bi n/tex

/import/TeX/bi n / l atex

/import/TeX/bi n / l atex2e

/import/TeX/bi n / f o i 1 t e x

%**begi nni ng-of-header

%**end-of-header

%**begi nni ng-of-tai 1 e r

%**end-of-tai 1 e r

\bye
\end

\begi n{document}

\end{document}
0 0 0 &A<
0 0 0 /oX/o>

%%% !

%%%-

%**pl a i n-tex
%**tex

\ input ep1 a i n

\documentstyle{foi ls}
0 I.. X - - f o i 1 tex

%** latex

\documentsty1 e
o 4 *.. " latex2e

\documentcl ass

Conclusions

(E)TEX source files can be edited using an Emacs-

type editor, say GNU Emacs. By clicking the mouse
on an arbitrary page of the xdvi preview screen, the

cursor (point) moves directly to the interesting spot
in the Emacs window, that is displayed next to the

xdvi window.

Two prototype versions, for Njove and GNU

Emacs, are currently operational on workstations

running the 4.3BSD and SunOS operating systems.

Porting the software to other Unix platforms is

expected t o be straightforward. t e x j ump assumes
that the presence of the standard GNU development

environment on the target machme. The program,
written in the C language, can be compiled with GNU

gcc.

The program will be available through anony-
mous ftp a t i 1nwsl . fu is . fuku i -u .ac. j p in the

directories t e x j ump, xdvi + and t e x t ree under
/pub/tex/.

Njove is a bilingual editor, whch supports
both English (using the single-byte ASCII character

code set) and Japanese (using the two-byte Japanese

character code set). It can be found in the &ectory
/pub/edi t o r / n jove at the same ftp site.

Acknowledgments

The authors thank Takayuki Kato for his contri-

bution in making t ex j ump worthy of real-world

applications through improving its functionalities.
Jun-ich Takagi wrote the first rudimentary interface

module for GNU Emacs using Emacs lisp.

Bibliography

Harrison, Michael A., "News from the VORTEX Project",

TUGboatlO(l), pages 11-14, 1989.

Cooper, Eric, Robert Scheifler, and Mark Eichin,

"xdvi" on-line manual, June, 1993.
Payne, Jonathan, JOVE Manual for UNlX Users, 1986.

Kawaguti, Minato, "Dynamic Filling with an Emacs

Type Editor", Ptroc. jus 1 0th Anniversary Intern.
UNIXSyrnp., Japan UNIX Soc., pages 49-58, 1992.

300 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Indica, an Indic preprocessor for TEX

A Sinhalese TEX System

Yannis Haralambous
Centre d'Etudes et de Recherche sur le Traitement Automatique des Langues
Institut National des Langues et Civilisations Orientales, Paris.

Private address: 187, rue Nationale, 59800 Lille, France.
Yanni s .Haralarnbous@univ-1 i l l e l . f r

Abstract

In this paper a two-fold project is described: the first part is a generalized
preprocessor for Indic scripts (scripts of languages currently spoken in India-
except Urdu-, Sanskrit andTibetan), with several kinds of input (W X commands,
7-bit ASCII, CSX, IS0 ~ O ~ ~ ~ / U N I C O D E) and TEX output. This utility is written in
standard Flex (the GNU version of Lex), and hence can be painlessly compiled on
any platform. The same input methods are used for all Indic languages, so that
the user does not need to memorize different conventions and commands for each
one of them. Moreover, the switch from one language to another can be done by
use of user-defineable preprocessor directives.

The second part is a complete TEX typesetting system for Smhalese. The
design of the fonts is described, and METAFONT-related features, such as
metaness and optical correction, are &scussed.

At the end of the paper, the reader can find tables showing the different input
methods for the four Indic scripts currently implemented in Indica: Devanagari,
Tamil, Malayalam, Sinhalese. The author hopes to complete the implementation
of Indic languages into Indica soon; the results will appear in a forthcoming paper.

This paper will be published in the next issue of TUGboat.

TUGboat, Volume 1 5 (1994), No. 3 --Proceedings of the 1994 Annual Meeting

Pascal pretty-printing:

an example of "preprocessing w i t h TEX"

Jean-luc Doumont
JL Consulting, Watertorenlaan 28, B-1930 Zaventem, Belgium
j . doumont@i eee. org

Abstract

Pretty-printing a piece of Pascal code with TEX is often done via an external

preprocessor. Actually, the job can be done entirely in TEX; this paper introduces

PPP, a Pascal pretty-printer environment that allows you to typeset Pascal code
by simply typing \Pascal {Pascal code) \endpascal. The same approach of
"preprocessing w i t h TEX" - namely two-token tail-recursion around a \FIND-like

macro - can be applied easily and successfully to numerous other situations.

Introduction This solution is portable (it can run wherever TEX

A pretty-printed piece of computer code is a st&-
ing example of how the typeset form can reveal the

contents of a document. Because the contents are
rigorously structured, an equally rigorous typeset
form helps the reader understand the logic behind

the code, recognize constructs that are similar,

and differentiate those that are not. Not surpris-
ingly, many programming environments nowadays
provide programmers with a pretty-printed repre-

sentation of the code they are working on. In the
typesetting world, TEX seems an obvious candidate

for a pretty-printing environment, thanks to its
programming capabilities and its focus on logical -

rather than visual - design.

The current standard for typesetting Pascal
code with TEX seems to be TGRIND, a preprocessor
running under UNIX. Useful as it may be, TGRIND

also has limitations. While it can recognize reserved

words, it does little to reflect logical content with
indentation. In fact, it indents by replacing spaces in

the original file by fixed \ h s k i p's. Of course, it can

be used on the result produced by an ASCII-oriented
pretty-printer, which generates the right number of

spaces according to logical contents.

Alternatives to TGRIND are either to develop
a dedicated preprocessor - a computer program

that takes a piece of Pascal code as input and
produces a TEX source He as output-or to do

the equivalent of the preprocessing work within
TEX. The first solution is likely to be faster, hence
more convenient for long listings, but requires an

intermehate step and is less portable. The second,

by contrast, is rather slow, but also quite convenient:
pieces of Pascal code can be inserted (\input) as is
in a TEX document, or written directly within TEX.

m s) , requires no intermediate step (it does its j i b
whenever the document is typeset), and, like other

sets of macros, can be fine-tuned or customized to
personal preferences while maintaining good logical

design.
This article describes briefly the main features

and underlying principles of PPP, a Pascal pretty-

printing environment that was developed for type-
setting (short) pieces of Pascal code in engineering

textbooks. It then discusses how to use the same

principles of "preprocessing withn TEX" to quickly
build other sets of macros that gobble up characters

and replace them with other tokens, to be further

processed by TEX. The complete PPP macro package
will soon be found on the CTAN archives.

Of course, there are other ways of tackling the
issue, with either a broader or a narrower scope.
Structured software documentation at large can ben-
efit from the literate programming approach and
corresponding tools, with TEX or fiT~X as a format-
ter - a discussion beyond the scope of this paper.
Occasional short pieces of code, on the other hand,
can also be typeset verbatim or with a few ad hoc
macros, for example a simple tabbing environment,
as shown by Don Knuth (1984, page 234). For
additional references, see also the compilation work
of Piet van Oostrum (1991).

Main features of macros

Basic use. PPP works transparently; you do not need
to know much to run it. After \i nputing the macros

in your source, all you do is write

\Pascal
(Pascal code)
\endpascal

302 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Pascal pretty-printing

in p la in . t ex or

\begi n{Pascal }
(Pascal code)
\end{Pascal }

in LATEX, where (Pascal code) can be an \ input

command.

The PPP package then pretty-prints the corre-

sponding Pascal code; by default, it

typesets reserved words in boldface;

indents the structure according to syntax (iden-
tifying such constructs as begin . . . end and if
. . . then.. . else . . .;);
typesets string literals in monospaced (\tt)
font;

considers comments to be TEX code and type-

sets them accordingly.

The Appendix illustrates these features.

Customization. PPP is de&cated to Pascal. Though

you can use the same underlying principles (see next

section) in other contexts, you cannot easily modify

PPP to pretty-print very different programming lan-
guages. There is, however, room for customizing
the pretty-printing, and this at several levels.

At a high level, you can use the token reg-

isters \everypascal, \ everys t r i ng, as well as

\everycomment to add formatting commands to be
applied, respectively, to the entire Pascal code, to

the Pascal string literals, and to the Pascal com-
ments. If you want your whole Pascal code to be in

nine-point roman, for example, you can say

\everypascal {\ninerm
\basel i neski p=lOpt(etc.) }

If you would rather use '(' and ')' instead of '[' and

' I ' as TEX grouping delirniters in Pascal comments,

YOU can say
Comments. Recognizing comments as TEX code is \everycomment{\catcode'\(=l \catcode'\)=2}
particularly powerful: side by side with a rather

Similarly, if you wish to reproduce the comments
strict typeset design for the program itself, com-

verbatim rather than consider them as TEX code,
ments can be typeset with all of T@'s flexibility and

you can say
power. Besides for adding explanatory comments

\everycomment{\verbatimcomments}
to the program, t h s possibility can be used to
fine-tune the layout. Extra vertical space and page At an intermediate level, you can add reserved

breaks can be added in this way. Such comments words by d e h g a macro with the same name as

can even be made ynvisiblen, so no empty pair of the reserved word prefixed with p@. If you want

comment delimiters shows on the ~ a a e . the Pascal identifier f o o to be displayed in italics in - .,
Accessing TEX within comments suffers a no-

table exception, though. Pascal comments can be
delimited with braces, but Pascal compilers do not
match braces: the first opening brace opens the com-
ment and the first closing brace closes the comment,
irrespective of how many other opening braces are in
between. As a consequence, braces cannot be used
for delimiting TEX groups inside Pascal comments
(the result would not be legal Pascal code anymore).
Other TEX delirniters must be used; by default, PPP

uses the square brackets ' [' and '1 '.

Program fragments. PPP was taught the minimum

amount of Pascal syntax that allows it to typeset

Pascal code; it is thus not a syntax-checker. While

some syntax errors (such as a missing end) will
cause incorrect or unexpected output, some others

(such as unbalanced parentheses) will be happily

ignored.

However, the package was designed for insert-

ing illustrative pieces of code in textbooks, including
incomplete programs. PPP has facilities for handling

these, though it needs hints from the author as

to what parts are missing. These hints basically
consist in supplying -in a hidden form - the im-

portant missing elements, so PPP knows how many

groups to open and can then close them properly.

your code, you can say

\def\p@foo{{\i t fool}

before your code and PPP will do the rest.

At a low level, you can go and change anything

you want, providing you know what you are doing
and you first save PPP under a different name.

Underlying principles

The PPP environment pretty-prints the code in one

pass: it reads the tokens, recognizes reserved words

and constructs, and typesets the code accordingly,
indenting the commands according to depth of

grouping. Specifically, PPP

relies on tail-recursion to read a list of tokens:
one main command reads one or several to-

kens, processes them, then calls itself again

to read and process subsequent tokens until it

encounters a stop token;

decides what to do for each token using a mod-
ified version of Jonathan Fine's \ F I N D macro;

recognizes words as reserved by checking for
the existence of a TEX command with the

corresponding name and acts upon reserved

words by executing this command;

TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Jean-luc Doumont

typesets the code by building a nested group
structure in TEX that matches the group stmc-

ture in Pascal.

Tail-recursion. Jonathan Fine (1993) offers useful

control macros for reading and modifying a string

of tokens. Rewritten with a ' ;' instead of a '*' (to
follow the Pascal syntax for a case), hls example
for marking up vowels in boldface, a problem

introduced in Einfiihrung in T# by Norbert Schwarz

(1987), becomes:

1
\FIND # 1

\end : ;
aeiou AEIOU:{\bf#l}\markvowels;
#1: {#l}\markvowel s ;

\END

1

so that \markvowel s Audacious \end produces
"Audacious". \FIND is a variable delimiter macro

(as Fine puts it), defined as

\l ong\def\FIND #I {%
\long\def\next##l#l##2:##3;##4\END{##3}%
\next}

It extracts what is between the ':' and the ';'

immediately following the first visible instance of
#1 and discards whatever is before and whatever is

after (up to the following \END). The same idea is
used in the Dirty Tricks section of the The T m o o k

(Knuth 1984, page 375). The generic use of \F IND

is thus

\FIND (search token)
(key) (key) . . . (key) : (action) ;
(key) (key) . . . (key) : (action) ;
. . .
(key) (key) . . . (key) : (action) ;
(search token) : (default action) ;

\END

PPP brings the following three basic changes to

Fine's scheme:

first, it uses a tail-recursion scheme that reads

tokens two by two rather than one by one; this

extension makes it easier to recognize and treat

character pairs such as I > = ' , ' . . ', and I (* ' .

next, it moves the tail-recursion command (the

equivalent of \markvowels in the example
above) to the end of the macro, to avoid having

to repeat it for each entry in the \FIND list. This
move also simplifies brace worries: whatever

is specified between the ' :' and the ' ;' in the

above defht ion can now be enclosed in braces.

These protect a potential #1 in the (action)
(they make it invisible when \next scans its

argument list), but do not produce an extra

level of grouping (they are stripped off when

\next reads its argument #3).
finally, it replaces ' : ' and ' ; ' -which need to be

recognized explicitly when reading the Pascal
code-respectively by I?' and '!'-which do

not. (Other tricks are possible; see for example

Sections 4 and 6 in Fine (1993).)

To consider all pairs of tokens, the new scheme

spits out the second token before calling the re-

cursive command again, so this second token is
read as the first token of the new pair. While

thls double-token system has proved very conve-
nient in many applications I developed, it has one

inherent limitation: because the spit-out character
has been into TEX'S mouth, it has already been

tokenized (assigned a character code). If the action

corresponding to the first token read is to redefine
character codes, then the second token will not

reflect these new codes. When such a recoding is an
issue, alternative constructs using \ f u t u r e l e t can

be devised to consider pairs (i.e., to take the next

token into account in deciding what to do), but such

constructs are rather heavy.
With these changes, the tail-recursion core of

the Pascal pretty-printer looks something like this:

\l ong\def\Fi nd #1{
\long\def\next##l#l##2?##3!##4\END{##3}
\next}

\def\Pascal {\pascal \ re lax}
% \ re lax i s passed as f i r s t token
% i n case the code i s empty
% i . e . , the next token i s \endpascal

\def\pascal#l#2{\def\thepascal{\pascal}%
\Find # 1

(k e y) (k e y) . . . (key)?{(action) } !
(k e y) (key) . . . (key) ?{(action) } !
. . .
(key) (key) . . . (key) ? (action) } !
#I?{ (default action) } !

\END
\i fx\endPascal#2

\def\thepascal ## l { \ r e l ax} \ f i
\thepascal#2}

with the typesetting taking the form

\Pascal (Pascal code) \endpascal

In this two-token scheme, the end-of-sequence test

must now be done on the second token read, so

the tad recursion does not read past the end-of-
sequence token (\endpascal). The sequence is

ended by redefining \thepascal to gobble the next

token and do nothmg else.

Hrnrn . . . i t is a l itt le more complicated than

that. The \pascal macro (which is really called

\p@sc@l) must be able to recognize and act upon

304 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Pascal pretty-printing

braces, used as comment delimiters in Pascal. These The actions to perform when a reserved word
braces are recatcoded to the category other by say- has been identified depend of course on the word,
ing \catcode6\{=12 \catcode'\}=12 somewhere but are within a small set, namely
in \Pascal, so they lose their grouping power when

TEX scans Pascal code. Because the \ F I N D macro
typesetting the word as a reserved word, possi-

identifies tokens, category codes must match. In bly with space before or after;

other words, '{' and '1' must be of category 1 2 when opening a group and increasing the indentation;

\p@sc@l is defined, so we must use another pair of closing a group, thus going back to the level

characters as group delimiters for defining \p@sc@l . of indentation present when that group was
I use the square brackets ' [' and '1 '. opened; or

Accumulating words. Identifiers in Pascal are com-

posed of letters, hgits, and the underscore character
I-', but must start with a letter. Correspondingly,
PPP identifies words in the following way. It uses
an \ i fword switch to indicate whether a word is

currently constructed and an \if r e se rved switch

to indcate whether the accumulated word is a can-
didate reserved word. Starting on a situation in
which \i fword is false, it does the following:

if the token read is a letter, set \ i fword and

\ i f r e se rved to true, empty the token register

\word, and accumulate the letter in it.
if the token read is a digit, look at \i fword. If

true, accumulate the digit in the token register

\word and set \ i f r e s e r v e d to false (reserved

words contain no digit); if false, treat as a
number.

if the token read is an underscore, look at

\i fword. If true, accumulate the underscore in
the token register \word and set \i f r e se rved

to false (reserved words contain no underscore);
if false, treat as an underscore.

if the token is not a letter, a digit, or an
underscore, look at \ i fword. If true, set to
false and take care of the word so terminated.
If false, pass token to other macro for further

processing.

Recognizing reserved words. PPP recognizes re-
served words by checking words composed of let-

ters only against a list. T h s list is in reality a set of

macros, the names of whch are formed by prefwng

Pascal reserved words with 'pe'. These macros have
thus a double role:

by their existence, they identify a word as re-

served; for example, the existence of a macro

named pebegin indicates that begin is a re-
served word.

by their defimtion, they tell what to do when

the corresponding reserved word has been
identified; for example, \p@begi n takes care of

what needs to be done when the reserved word
begin is encountered.

turning flags on or off.

Because many reserved words require the same
action, the corresponding TEX macros can all be

\ l e t equal to the same generic macro. For example,

\ r @ s e r v simply typesets the last reserved word
accumulated (without extra space), so reserved

words like string or nil can be taken care of simply

by saying
\ l e t \p@st r i ng=\r@serv
\l et\p@ni l=\r@serv

Grouping and indenting. PPP manages the levels

of indentation by creating a nested group structure
that matches the structure of the program. A begin,
for example, opens a group and increments the

indentation by one unit within the group; an end
closes the group, thus returning to the level of
indentation in effect before the group was opened.

Of course, grouping is not always that simple.

All the declarations that follow a var, for example,
should be withn an indented group, but there is no

reserved word to mark the end of the group. Such
cases are treated by setting a flag to true, to indicate

that a group without terminator is open. The next

of a subset of reserved words can then close that
group before performing its own task.

Other examples of "preprocessing"

A tail-recursion engine based on a \FIND-like macro

does pretty much what one would expect a pre-
processor to do: it gobbles the characters one by

one and replaces them with other, possibly very

different tokens. This similarity is what leads me to
refer to such a scheme as "preprocessing within TEX"

(though, strictly spealung, this is a contradiction in

terms).

The one-token examples presented in Fine

(1993) are the simplest case of this preprocess-
ing: decisions are taken each time on the basis of

a single token. Such a scheme is simple, straight-

forward, and sufficient in many applications. And
when following tokens must be taken into account,

it can be extended with \ fu ture le t constructs,

though these quickly become quite heavy. For

TUGboat, Volume 15 (19941, No. 3 -Proceedings of the 1994 Annual Meeting 305

Jean-luc Doumont

example, the \markvowel s macro can be modified

in the following way to mark, say, "i before e"
combinations:

\def\spellcheck#l{%
\FIND #1

\end: ;
i : \ i e ;
#l:{#l}\spellcheck;

\END}

so that typing

{\obeyspaces
\spell check I receive a piece of pie\end}

yields "I receive a piece of pie".

The two-token example presented in this paper

is a convenient extension of the scheme. True, it
has as inherent limitation that the second parameter

is tokenized (assigned a character code) one step

earlier than it would in the one-token case. On the
other hand, the corresponding code is particularly

readable (thus easy to program and easy to main-
tain). The above example becomes, with a two-token

model,

\def\check#l#2{\def\nextcheck{\check}%
\F IND #1

i : {\FIND #2
e : {{\bf i e}\gobbl eone} ;
#2:{i};

\END} ;
#I: {#I} ;

\END

\def\gobbleone{\def\nextcheck##l%
{\check \relax}}

\def\spell check{\check \re1 ax}

where \gobbleone gobbles the next token and
replaces it with \re1 ax. The nested \FIND structure

makes it easy to see the underlying idea of "once

you know the first letter is an i, see whether the

second is a n el'. Clearly, the mechanism can be
extended t o take into account three, four, or even

more tokens at the same time, with lirmtations and
advantages similar to those in the two-token case.

Two-token tail-recursion can also be achieved
with other constructs, for example Kees van der
Laan's \ f i fo macro. In van der Laan (1993) he
underlines the importance of the separation of con-

cerns: going through the list is separated from
processing each element of the list. This elegant
programming principle is sometimes hard to achieve
in practice: in the case of string literals, for example,
\Pascal reacts to a single quote by interrupting
token-by-token progression and reading all tokens
to the next single quote -progressing and process-
ing are thus closely linked. For the "i before e"
example, the separation is clearer and the use of
the \FIND structure for processing the elements is
largely unchanged:

\def\f i fo#l#2{\check#1#2%
\i f x\of i f#2\0f i f \f i \f i f 0#2}

\def\of i f#l\of i f {\f i }

\newi f \ i fgobbl eone

\def\check#l#Z{\i f gobbl eone
\gobbl eonefal se
\else
\ F I N D #1

i:{\FIND #2
'e: {{\bf i e}\gobbleonetrue} ;
#2:{i};

\END} ;
#I: {#I} ;

\END

\fi l

I have used the two-token scheme successfully

in a variety of situations. For the same engineering

textbook format, I devised an elementary chemistry
mode, so that

\chem CH4+202oCOZ+ZHZO \endchem

yields

CH4 + 202 = C02 + 2H20,

and a unit mode, so that

\unit 6.672,59e-11 m3.kg-l\endunit

yields the IS0 representation

Actually, mentioning that the \FIND-like tail-
recursion applies to tokens is not entirely correct.
Because it reads arguments, it will also gobble up
as one object a group delimited by braces (or by
the current Tj$ delimiters), not a single token. This
case cannot happen with the \Pascal macro, for
there are no current group delimiters during tail-
recursion ('{' and '}' are given category code 12), but
it can happen in other situations. When a group is
read as argument #1 by \check, the first level of
grouping is removed, so the \FIND selection is actu-
ally performed on the first token (or group) within
the original group. Whether this characteristic is a

306 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Pascal pretty-printing

feature or a bug depends on your application. Some- It may not be the fastest piece of TEX code in the
times, it is quite useful: for the chemistry mode world (and some would doubtlessly qualify it as
above, it enables \chem C{6O}H{60}\endchem to "syntactic sugar"), but it made optimal use of my
give the correct output CsoHso, with the \FIND rec- time, by allowing me to get the job done fast and
ognizing the '6', but acting on the group 60; by well.
contrast, \chem C60H60\endchem yields the incor-

rect CsoHso, with the '0' being a subscript to an

empty subformula and hence being too far away Bibliography
from the '6'. Sometimes, however, you may prefer

Fine, Jonathan, "The \CASE and \FIND macros."
strict token-per-token processing; in the FIFO paper

mentioned above, Kees van der Laan shows a way of
TUGboat 14 (I), pages 35-39, 1993.

acting on each token by assigning it to a temporary Knuth, Donald E., The Tmook . Reading, Mass.:

variable instead of reading it as an argument. Addison-Wesley, 1984.

Laan, C.G. van der, "\FIFO and \LIFO sing the

Conclusion

Preprocessing within TEX-reading a list of tokens

(or brace-delimited groups) and replacing them with

others for TEX to process further-has unlimited
applications for TEX users and macro-writers. A

processing based on a \FIND macro (Fine, 1993) is
powerful, especially when nested and applied on

two tokens. The progression along the list can be

built in the same macro or can be separated, for
example using the \fi f o macro (van der Laan 1993).

The approach is powerful enough to handle such

tasks as pretty-printing of Pascal code fragments.
Maybe the main advantage of these prepro-

cessing schemes is that they are fast and easy to

implement. They are not reserved to large-scope ap-
plication, but can be used for one-off, ad hoc macros

as well. I once had to typeset phone numbers on

the basis of the following syntax: the code

\phone{725.83.64}

should yield 725 83 64, that is, periods must be
replaced by thin spaces and pairs of digits must be

slightly kerned (it looked better for the particular

font at that particular size). The corresponding
tail-recursion scheme is easy to implement:

\def\k@rn#l#2{\let\thek@rn=\k@rn
\FIND #1

0123456789:{#1%
\FIND #2

0123456789:{\kern-0.0833em};
#2 : {\re1 ax} ;

\END} ;
. : {\thi nspace} ;
#l: {#l} ;

\END
\i fx\end#2\def\thek@rn##l{\rel ax}\f i
\thek@rn#2}

BLUes." TUGboat 14 (I) , pages 54-60, 1993.

Laan, C. G. van der, "Syntactic sugar." TUGboat 14

(3), pages 310-318, 1993.
Oostrum, Piet van, "Program text generation with

TEX/LATEX." MAPS91.1, pages 99-105, 1991.

Schwarz, Norbert, E i n f u h n g in Tfl. Addison-Wes-
ley, Europe, 1987. Also available as Introduction

to T@. Reading, Mass.: Addison-Wesley, 1989.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Jean-luc Dournont

Appendix: example of use

(The following program may not be particularly
representative of code fragments inserted in a

textbook with the PPP package, but it has been
designed to illustrate as many features of the

\Pascal environment as possible.)

Program demo;
const pi=3.141592 ;
type date=record year: i n tege r ;
month:1..12; day:1..3l;end;
f 1 ags=packed ar ray [O . .7] o f boo1 ean ;
var MyDate:date; MyF1ags:flags;
i l , i 2 : i n t e g e r ;
last-words : s t r i ng [31] ;

f unc t i on f a c t o r i a l (n: integer) : in teger ;
begin
i f n<=l then f a c t o r i a l :=1
e lse f a c t o r i a1 :=n* fac tor i a1 (n-1) ;
end ;
(\i n v i s i b l e\vadjust [\medski p [\ i t
\langlemore code here$\rangl e$] \medski p] }

f u n c t i o n Days-in-month(theDate:date);
begin
case theDate.month o f l:Days_in_Month:=31;
2 :w i t h theDate
do (check i f leap year} begin
i f (O=(year mod 4))

then Days-i n-Month: =29 else
Days_inJonth:=28;end;
3:Days_in_Month:=31; (\ i n v i s i b l e
\vadjust[\hbox[\hskip8em\vdots]]}
12:Days_in_Month:=31;
end :

begin
last-words:='ThatMs a l l , f o l k s ' ;
end.{Et vo i l \ 'a \ th inspace! }

program demo;

const

pi = 3.141592;

type
date = record

year: integer;

month: 1..12;
day: 1..31;

end;

flags = packed array[0..7] of boolean;
var

MyDate: date;

MyFlags: flags;
i l , i2: integer;

last-words: string[3 11;

function factorial(n: integer): integer;

begin
i f n < = l t h e n

factorial := 1

else
factorial := n * factorial(n - 1);

end;

(more code here)

function Days-in-month(theDate: date);
begin

case theDate.month of
1:

Days-in-Month := 3 1;
2:

with theDate do{check if leap year}

begin

if (0 = (year mod 4)) then
Days-in-Month := 29

else
Days-in-Month := 28;

end;

3 :
Days-in-Month := 31;

12:

Days-in-Month := 3 1;

end;

begin
last-words := 'That ' ' s a1 1 , f o l ks';

end. { Et voila !}

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Towards Interactivity for TEX

Joachim Schrod
Technical University of Darmstadt, WG Systems Programming
Alexanderstrde 10, D-64283 Darmstadt, Germany
schrod@iti. inforrnatik.th-darrnstadt.de

Abstract

Much work has been done to improve the level of interactivity avdable to TEX
users. This work is categorized, and probable reasons are discussed why it is
not really widespread. A more general view of "interactivity" may also lead to
other tools. A common prerequisite for all these tools is the need to know about
TEX'S functionality. The description of TEX should be formal, since the avdable
lnformal descriptions have not given satisfactory results.

After an abstract decomposition of TEX, an approach for the formal specifica-
tion of one subsystem (the macro language) is presented. This specification may
be interpreted by a Common Lisp system. The resulting Executable TEX Language
Specification (ETLS) can be used as the kernel of a TEX macro debugger.

Variations on A Theme of this principle is done in the Grif system (Roisin and
Vatton 1994), but this is not related to TEX.

"Interactive TEX is the oldest theme on TUG meet-
The need to work with the formatted document

ings: Morris (1980, P- 12) reports that D.E. Knuth representation was and is particularly motivated by
started 'Is Opening remarks at the first TUG meeting

the error-proneness of creating TEX input. Simple er-
with it.

rors (e.g., forgetting a brace) occur very often and
[Elarly on he thought an interactive TEX would may lead to complaints in places that are far away
be useful, but finds now that T ~ X users in- from the error's source. In addition, the time lag be-
ternalize what TEX will do to such an extent tween the creation of the error and the notification
that they usually know what TEX is going to about it is too large for a smooth work flow. Direct
do about their input and so have no pressing
need to see it displayed on a screen immedi-
ately after the input is finished.

Already here a precedent is set for most future reflec-
tions on an interactive TEX: A user interface for an au-
thor is anticipated that gives feedback on the format-
ting of the document. Actually, many TEX users don't
agree with Knuth, they want to see their formatted
document displayed. With the arrival of WYSIWYG-
class desktop publishing systems, some of them even
want to get it displayed while they are editing, and
effectively to edit the formatted representation.

It is worth noting that early usage of the term
"interactive formatter" concerns mostly immehate
feedback, i. e., the ability to see the formatted repre-
sentation while the document is input (Chamberlin et
al. 1982). In the TEX domain this approach was pre-
sented first by Agostini et a1. (1985), still on an IBM
mainframe a t this time. Blue Sky Research invested
work in that direction, their product Textures is now
advertised a s an "Interactive TEX."

The most advanced approach in the connection
of TEX input with formatted output was explored by
the ~ T E X project (Chen and Harrison 1988). In prin-
ciple, it was possible to edit both the TEX source and
the formatted representation as the respective enti-
ties were linked to each other. A full implementation

manipulation (DMP) systems are environments that
couple actions with reactions of the system and pro-
vide immediate feedback (Shneiderman 1983). They
encourage one to create and change documents in
an ad-hoc manner, without the need for much pre-
planning of abstractions and structures. (One may
argue that this is a disadvantage for the task of writ-
ing; but this is not an argument I want to address in
this article.)

It is important to emphasize that two terms
mentioned above, WYSIWYG and DMP, concern com-
pletely different abstractions. A WYSIWYG system
allows one to manipulate the presentation of a doc-
ument; it concentrates on the task of creating and
changing t h s presentation, it focuses on formatting.
The term WYSIWYG is domain specific, it is tied to
software systems that do layout (in the broadest
sense, not only of documents). The category DMP
is much more general and such on a different ab-
straction level: It classifies a set of interfaces that
enables users to directly manipulate the objects they
are working with, and where immediate feedback is
given to them concerning these manipulations. DMP
interfaces are often realized by means of windows,
icons, menus, and pointing devices (e.g., mice); a
member of this subclass of DMP interfaces is also

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 309

Joachim Schrod

called a WIMP interface (Chignell and Waterworth
1991).

Since DMP interfaces have been shown to ease
learning (Svendsen 1991), some approaches to yield
interactivity for TEX document creation use separate
systems with a DMP interface for document editing.
They generate TEX input, to use the power of TEX'S
typesetting engine. These systems are pure front-
ends, it's not possible to read TEX source and edit it.
In early systems like Edimath (Andre et al. 1985) or
easyTEX (Crisanti et al. 1986) the eventual target-
the TEX language-is still visible. Newer systems
like VAX DOCUMENT (Wittbecker 1989) or Arbortext's
SGML Publisher hide t h s detail from the user. (It's
quite interesting that these systems don't use TEX
any more in the strict sense. Arbortext and Digital
have modified the program to enhance its capabili-
ties or to be able to integrate it better into the overall
environment.)

Quint et al. (1986) noted early that such sys-
tems are, in fact, not TEX specific. Something that
one can really call an interactive writer's front-end
to TEX must be able to read TEX source, to enable not
only the creation of documents but also their change.
They presented the usage of Grif in such a context,
but Grif is only able to understand a very limited
subset of TEX markup. Similarly, Arnon and Marnrak
(1991) presented the automatic generation of an edit-
ing environment for a fixed subset of plain TEX math,
by formal specification of this subset.

But there are more usages of the term "inter-
activity". It is used often to characterize TEX shells,
too. Developers recognized that the task of writing a
document is more than editing and formatting; one
has to handle bibliographies, create index, draw fig-
ures, etc. Tools are available for many of these tasks,
but their existence and the respective handling (e. g.,
syntax of the command line options) has to be re-
membered. Environments that integrate these dif-
ferent tools into one coherent representation can re-
lease the author from that cognitive burden and can
help to concentrate on the real tasks (Starks 1992).
Sometimes such environments are labeled "interac-
tive", in particular, if they have a WIMP interface. Vis-
ible interface is a better attribute for such systems as
they do not provide a new level of interactivity-they
merely make the current possibilities visible. (This
terminology is due to Tognazzini (1992).)

As o u t h e d above, the past has seen many at-
tempts to increase the interactivity level of TEX sys-
tems for authors. Nevertheless the typical TEX user
still writes the complete text with a general-purpose
editor, not using any TEX-specific editing software.
Even the low level of an immediate preview (or an
early one, i. e., concurrently to T~Xing) is not common
in use.

The question must be posed why t h s happens.
In my opinion, several reasons may be given:

Some systems are very ambitious, actually they
want to provide new publishing systems that
replace TEX. Those systems that have been
completed are proprietary and not freely dis-
tributable. Since they are not targeted to the
mass market, they do not get the initial user
base that would make them as widespread as
TEX is today. The hypothesis that innovative
non-mass systems will not be widespread with-
out being freely distributable is backed up by
HOPL-II(1993), the similarity between program-
ming and authoring environments is assumed
to exist in t h s regard.

Those systems that restrict themselves to a cer-
tain subtask (e. g., editing of a formula) are often
not prepared to communicate with other tools
from the author's workbench. The developers
often place unreasonable demands on authors
(e. g., to place each formula in a separate file).

Developers underestimate the inertia of users
to stay with their known working environment.
They are proud of their "baby", and often don't
see that the benefit from their new system does
not outweigh the costs of learning it. As an
example, most UNIX users won't accept a TEX-
specific editor that is not as powerful, flex-
ible, and comfortable as Lucid (GNU) Emacs
with AUC-TEX (Thorub 1992)-and that's hard
to beat.

Developers are unaware that there is more to in-
teractivity than the creation of structured edit-
ing systems or full-blown WYSIWYG publishmg
systems. In particular, there exist more tasks
in the production of a publication and there are
lower levels of interactivity that are probably
easier to implement.

The TEX user interface (i. e. its markup language)
is reahzed as a monolithic Pascal program to-
gether with a bunch of non-modular macros. It
is not possible to incorporate parts of it (e.g.,
a hypothetical math typesetting module) into
an interactive system. Each system rebudds its
needed abstractions anew, often incompatible
with others and only approximating TEX'S be-
havior.

Let's sort these issues out in the rest of this article.
First, I will be more specific in the d e h t i o n of "inter-
activity" and categorize different forms of it, thereby
spotlighting interfaces that I think are needed and
possible to create. Then preconditions for an easy
realization of such systems wdl be shown, and the re-
sults of prehmmary work to illustrate these precon-
ditions wdl be presented.

TUGboat, Volume 15 (1994), No. 3 - Proceedings of the 1994 Annual Meeting

Towards Interactivity for TEX

On Interactivitv In addition, one must not restrict users too

Interactivity means (1) that a user may control at run
time what the system does, and (2) that feedback
to the user's actions happens as soon as possible.
If a user may just start a program and cannot con-
trol its progress, it is called a batch program. If a
user may trigger an action at any time, even if an-
other action is still running, the software system has
an asynchronous user interface, and is regarded as
hghly interactive. Such user interfaces are usually
WIMP-style, thls is the reason why command-line ori-
ented system are considered to have a lower level of
interactivity-the user may act only at specific points
in time, when asked by the system. Interactive sys-
tems are notoriously difficult to create, Myers (1994)
has shown that this difficulty is lnherent in the prob-
lem domain.

In the TEX area, we can identify at least the fol-
lowing forms of interaction that might be supported
or enabled by software systems, to increase the level
of interactivity available to users:

Full-fledged publishng systems; with DMP,
preferably WIMP-style, user interfaces

a Structural editing facilities for specific docu-
ment parts
Program visualization for educational purposes
(e. g. training)
Support for TEX macro development

This list is ordered by the additional abstraction level
these interfaces provide and the difficulty of produc-
ing them. (Of course, the correspondence is not by
chance.)

It seems that full-fledged publishng systems are
the dream of many developers. But they tend to ne-
glect two facts of life: Such systems have to be much
better than existing ones, and their development will
not succeed in the first attempt. Systems of the size
one has to expect will never be written at once, they
have to be developed incrementally. This is the case
with all successful middle-sized software systems;
it's worth to note that TEX is not an exception to that
rule. (The current TEX is the thwd completely rewrit-
ten version, not counting TEX~, according to Knuth
(19891.1

To improve on an existing system, one has to
address at least the full production cycle. To be
concerned only with the demands of authors is not
enough any more; document designers, ehtors, su-
pervisors, e t ~ . work with documents as well. For
instance, more appropriate help for designers can
be supplied by better layout description facilities
(Briiggemann-Klein and Wood 1992). Such facilities
need better input methods as well, as designers are
usually not trained to work with formal description
methods. Myers (1991) shows convincingly that the
paradigm of programming by demonstration may
help here.

much, contrary to the belief of many software de-
velopers they are not unintelligent. That means that
the straitjacket of pure structural editors, where ev-
erything must be done via menu and mouse, is not
necessarily the right model to use. Research in pro-
gramming environments (where such straitjacket in-
terfaces did not succeed either) shows that it is pos-
sible to bmld hybrid editors that combine support
for structured editing with free-format input, provid-
ing immediate feedback by incremental compilation
(Bahlke and Snelting 1986).

Last, but not least, one should not forget to scru-
tinize persuasions we've grown fond of. For example,
the concept of markup itself might be questioned, as
shown by Raymond et al. (1993). Let's look outside
the goldfish bowls we are swimming in, and build
new ones.

If one does not have the facilities to produce
a new publishing system, one might at least create
tools that help users with specific tasks. Even on the
author's task domain, one still needs editing facilities
that fully understand arbitrary TEX math material or
tables, and provide appropriate actions on them that
are beyond the realm of a text-oriented editor.

Such tools must be able to communicate with
other tools, preferably they should provide flexible
means to adapt to hfferent protocols. It's in the re-
sponsibility of the developer to provide the user with
configurations for other tools to access this new one;
the best tool will be tossed away if its advantages are
too difficult to recognize.

In theory, tools for subtasks can also be used as
building blocks of a complete system. In practice,
t h s approach needs further study before one can
rely on it. Good starting points for the management
of such a tool integration approach are the ECMA
standards PCTE and PCTE+ (Boudie et al. 1988).

Development of subtask tools is a hazard; it may
be that one constructs a tool that will not be used
because it does not enhance productivity enough.
Therefore one should make provisions, so that the
time spent for development should not be thrown
away. The target should be a collection of modules
that may be reused for further development projects.
Ths must be taken into account very early, reusabil-
ity is a design issue and cannot be handled on the
implementation level alone (Biggerstaff and Richter
1989).

TEX is here to stay and will be used for a long
time. Even the construction of a system that is ulti-
mately better will not change this fact.l Experienced
users must not forget the Mficulties they had in

It may be argued that TEX d l be the FORTRAN
or C of document markup languages-not the best
tool available, but widely used forever.

TUGboat, Volume 15 (1994), No. 3 --Proceedings of the 1994 Annual Meeting

Joachim Schrod

learning TEX, even though they might by now have in-
ternalized how to prevent typical problems-as pre-
dicted by Donald Knuth. A topic of research might
be the creation of systems that help to explore the
functionality of TEX for novice users. For instance,
the comprehension of the way TEX works may be
made easier by program visualization (Bocker et al.
1986). A tool that visualizes the state of TEX'S type-
setting engine, allows one to trigger arbitrary actions
interactively, and gives immediate feedback on state
changes would enhance the understanding consider-
ably. Similarly, advanced TEX courses wiVbe able to
make good use of a tool that visualizes the data enti-
ties of TEX'S macro processor and allows the interac-
tive, visible, manipulation of such entities. Such vi-
suahzation tools may even be the kernel of a whole
TEX macro programming environment (Ambler and
Burnett 1989).

Let's not forget the poor souls in TEX country:
those who develop macro packages and have to work
in a development environment that seems to come
from the stone age. T h s is not necessarily meant as
a critique of Donald Knuth's program or language de-
sign, as it is reported that he did not anticipate the
usage of TEX in the form it's done today. In fact, cre-
ating macro packages is programming; programming
with a batch compiler.

But even for command-line based batch compil-
ers (e. g., classic compilers for imperative languages)
we're used to have a debugger that allows us to in-
teract with the program while it is running. Each pro-
gramming language defines an abstract machme, the
state of t h s machme can be inspected and changed
by the debugger. Execution of a program can be con-
trolled by breakpoints, single stepping, etc. The de-
bugging support available in the TEX macro inter-
preter is minimal. A first improvement would be an
interpreter for the TEX macro language without the
typesetting engine, since many errors already hap-
pen on the language semantics level.

Preconditions for Realizations

All presented aspects to increase interactivity have
one need in common: they rely on access to informa-
tion that one usually considers internal to TEX. Ac-
cess to intermediate states of the typesetting pro-
cess, values of the macro processor, etc., is crucial
to build maintainable interactive systems. Since the
production of reusable modules is also an aim, the
access should not be by ad-hoc methods or heuris-
tic inverse computations. Instead, well defined in-
terfaces are preferred. Actually, before we may de-
fine interfaces we need a precise description what
TEX "does" at all. In t h s context, precise explicitly
means formal. Informal descriptions are not an ad-
equate tool, after all we want to create a base of un-
derstanding, to be used as the underlying model and
the terminology of module interface defmtions.

The formal description must classify and cate-
gorize subsystems of TEX. It's important to take a
system point of view in such a classification. Infor-
mal specifications that describe the functionality of
TEX from a user's point of view exist-but they have
not been of much use for the construction of further
TEX tools. The target group of a formal description is
different: it is not intended to be understood (or even
read) by authors, software professionals will use it.

A System View on TEX

The classification of our formal description will be
guided by a general model of TEX: It may be con-
sidered as an abstract machine. The v. Neumann
model-processing unit, data storage, and control
unit-is suited also as a model for TEX.

Here the processing unit is the typesetter en-
gine, the parts of TEX that break paragraphs and
pages, hyphenate, do box arrangements, transform
math materials into boxes, etc.

The data storage unit is a set of registers that
can save values (glues, boxes, etc.) for later usage.
The storage and the processing unit work both with
a set of abstract classes. These classes are basic ele-
ments of a "TEX base machne" abstraction, their in-
stances are the things that are passed to the process-
ing unit to parameterize its actions. We can see them
as the primitive, assembler-level data types of the TEX
computer.

The control unit allows us to access the registers
and to trigger operations of the typesetter engine. In
TEX, this control unit is hidden beneath a macro lan-
guage. It is important to be aware of the fact that
the macro language is not identical with the control
unit, it is even not on the same semantic level. In par-
ticular, primitive types like boxes or even numbers
don't exist in the macro language. (Numbers may be
represented by token lists; i. e., the macro language
handles only representations-sequences of digits-
not number entities.) Furthermore, often the macro
language only permits us to trigger many typesetting
operations at once. These are typical signs of a high-
level language.

In terms of our demand for a system-view spec-
ification of TEX t h s is important: We don't have ac-
cess to the assembler level of the TEX computer. That
implies that this level is not described informally in
avadable documents; it must be deduced from frag-
mentary remarks in the T~Xbook and there might
even be more than one "correct" model of that level.

Eventually, we have a coarse categorization, a
decomposition of TEX that is presented in figure 1.
The typesetting engine and the storage unit are con-
sidered as a component, together with basic object
classes. This TEX base machine is the basis of the
system; in other environments such a component is
called a toolkit. It is accessible through the control

312 TUCboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Towards Interactivity for TEX

I macro language

I control unit I
r - - - - - - - 1 7 - - - - - - - 7

I typesetter I I storage unit I
I I I I

I engine I I (registers) I
L - - - - - - - 4 L - - - - - - - >

? - - - - - - - - -

I basic I

I I

I object classes I
L - - - - - - - - - L

I TEX base machine (toolkit) I
Figure 1: Subsystems of TEX

unit, the subsystem that allows the definition and
evaluation of macro language primitives.

Actually, it might be of interest to compare the
result of t h s data-driven analysis with the TEX mod-
ularization. (At least for the SAIL version a system
structure is reported by Morris (1980).) Since Knuth
used the method of structured programming, his
modularization is algorithm-driven. The data-driven
approach is preferred here since it will allow an eas-
ier isolation of subsystems.

Further work will have to analyze the subsys-
tems, to identify modules thereof. The collection of
module specifications will provide us with the formal
description of the respective subsystem. The rest of
t h s article will face only one subsystem: the macro
language. A formal definition of it is useful if we
want to export and import TEX documents into other
tools.

Basic Terminology

Before the approach used to specify the macro lan-
guage is presented, we must settle on a precise ter-
minology that is needed for this presentation. While
T~Xnicd jargon and anthropomorphic terms like
"mouth" and "stomach" might make for some light
and enjoying reading hour, I would llke to use the
dull terminology of computer science and introduce
a few definitions:

Characters are read by TEX from a file. They are
transformed to TEX-chars. With the transfor-
mation, a character disappears from the input
stream and cannot be accessed further on.

Characters are not accessible at the macro
language level.

A TEX-char is a pair (category, code). The code of
a TEX-char is the xch r code of the read charac-
ter (wlog. ASCII). The category is determined by
the catcode mapping on codes. Sequences of
TEX-chars are transformed to tokens; most of-

ten such a sequence is of length 1. If a TEX-char
is transformed, it disappears and cannot be ac-
cessed further on.

TEX-chars are not accessible at the macro lan-
guage level.

A token is a pair (type, name). A name is either an
ASCII string or a character; strings of length 1
and characters are distinguished. A token is im-
mutable, neither its type nor its name can be
changed.

Token types are not TEX-char categories, even
if they are often presented as such. The type
of a token constructed from exactly one TEX-
char is analogous to the category of this TEX-
char. But there are categories that have no cor-
responding types and there is also one type
that has no corresponding category. (This token
type is symbol, a canonical term for the entities
usually called control sequences or active char-
acters.) Since we need to distinguish these two
entities, we cannot use the same term for both
(as done, for example, in the T~Xbook).

In this document, we use the typographic con-
vention (type. name) for token types.

An action is a tuple of the form (semantic function,
param-spec list, primitive,expandable,value) . It
is a basic operation of the TEX macro language,
the computational unit a programmer may use,
the smallest syntactical unit of a program.

An action may be evaluated to trigger the re-
spective semantic function. The evaluation of
an expandable action results in a list of tokens.

An action has an associated parameters spec-
ification, the param-spec list, Each param-spec
denotes a token list that conforms to some pat-
tern. If an action is evaluated, an argument is
constructed for each param-spec, in general by
reading tokens from the input stream. These ar-
guments are passed to the primitive.

In addition, an action may yield a value. The
computation of the value may need arguments
as well, the corresponding param-spec is con-
sidered part of the value tuple element.

Users can create new actions by means of
macro definitions, the primitive tuple element
is used to distinguish builtin (aka primitive) ac-
tions and user-defined ones.

In t h s document, we use the typographic con-
vention action for actions.

A binding is a mapping token - action; every token
has an associated action. The action bound to a
token that is not of type symbol is fixed, it can-
not be changed by the programmer. The macro
language defines a set of bindings for symbol to-
kens, each token not in thls set is bound to the
action undefined.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 3 13

Joachim Schrod

These definitions allow a precise description how TEX
processes its input:

1. A token is taken from the input stream.

2. The action bound to this token is determined.

3. The arguments for the action are constructed,
as defined in the action's param-spec list. More
tokens might be read from the input stream for
this purpose.

4. The action is evaluated.

5. If the action was expandable, the result of
the evaluation is pushed on front of the input
stream. I. e., the next token taken from the in-
put stream will be the first token of the result's
list.

These steps are repeated until the action end is eval-
uated. The semantic function of this action will ter-
minate the process.

A very good, and longer, explanation of the way
TEX processes its input, may be found in a tutorial
by Eijkhout (1991). In contrast to the explanations
above, this tutorial takes a process-oriented view,
whereas my analysis is data-centered.

Formal Language Specification

The TEX macro language (TML) has neither a com-
mon syntactic structure nor a "standard semantics",
l ~ k e those found in imperative or functional program-
ming languages. The formal specification of such a
language is not to be taken as an easy task; we are
warned by Knuth (1990, p. 9):

In 1977 I began to work on a language for
computer typesetting called TEX, and you
might ask why I didn't use an attribute gram-
mar to define the semantics of TEX. Good
question. The truth is, I haven't been able to
figure out any good way to define TEX pre-
cisely, except by ehb i t i ng its lengthy imple-
mentation in Pascal. I think that the program
for TEX is as readable as any program of its
size, yet a computer program is surely an un-
satisfying way to define semantics.

Of course, one is well advised to take his statement
seriously and to be specifically cautious in applying
the attribute grammar framework. T h s difficulty is
primarily caused by the inadequacy of context free
grammars to describe the TML syntax in an elegant
way, see below. Besides attribute grammars (Knuth
19681, other methods for formal language specifica-
tion are the operational approach, axiomatic specifi-
cation, and denotational semantics.

In the operational approach (Ollongren 1974), a
transformation of language constructs to a prototyp-
ical computer model is done, i.e., the language se-
mantics are explicated by construction. That is the
earliest approach to define formal language seman-
tics, it was used in the definition of PL/I. The method

is particularly suited for languages that are to be
compiled.

Axiomatic specifications, usually used for cor-
rectness proofs of algorithms, are also applicable to
formal language defmtion; Hoare (1969) mentioned
that already in his seminal paper. Thls approach has
not been used often, due to the very complicated de-
scriptions that result. Even Hoare and Wirth (1973)
ignored hairy parts when they specified Pascal.

The denotational semantics method specifies a
language by d e h n g mappings of its syntactic con-
structs into their abstract "meaning" in an appropri-
ate mathematical model (Stoy 1977). (Typically, that
model is based on the lambda calculus.) The map-
ping is called the syntax construct's semantic func-
tion.

Since TML is not compiled, we wdl use a speci-
fication method that belongs to the denotational se-
mantics category. First, we have to identify the syn-
tactic elements of TML. The previous section ex-
plained that the computational model of TML is that
of evaluation of actions, expanding macros as a side-
effect. That implies that we can regard actions as
top-level syntactic elements, there is no element that
is created by combining several actions. Therefore
we have to supply exact syntactic definitions for each
action, supply the appropriate semantic function,
and will get a full TML definition this way.

In previous work, the TML syntax was formu-
lated partially by a context free grammar (in partic-
ular, in BNF format). Of course, the first approach
is the incomplete specification given in the summary
chapters of the T~Xbook (Knuth 1986). Later, Appelt
(1988, in German) tried to complete this grammar.
Both show the same problems:

The construction of a token may be configured
by the programmer, via the catcode mapping.
T h s is neglected in both grammars, they use
exemplary notations for tokens. Whde this is
described exactly by Knuth, Appelt somewhat
vaguely introduces the notion of a concrete ref-
erence syntax for plain TEX (actually, the SGML

term is meant) that he uses in his grammar.

A rather large set of terminal syntactic cate-
gories is described by prose (36 in Appelt's
grammar, even more in the T~Xbook). Some-
times it's even not clear why these syntactical
categories are terminal at all, e. g., a BNF rule for
(balanced text) is easy to define and not more
complicated to read than other defmtions that
are given.

The difference between tokens and actions is
not explained. Many syntactic structures don't
look at specific tokens at all, they care only for
the action that is bound to a token.

Most prominently, that happens with the
definition of actions (commands in T~Xbook

314 TIIGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Towards Interactivity for TEX

terminology) itself. If a terminal token IIke
\parshape appears in the grammar, that does
not denote the token (symbol. "parshapew)-
an arbitrary token with the bound action
parshape is meant instead.

Knuth start the presentation of h s grammar
fragments with a general explanation of this
fact. In addition, every exception-when really
a token was meant t h s time-is mentioned ex-
plicitly in the accompanying explanation. He
even introduces the notion of implicit charac-
ters only for that explanation. (An implicit char-
acter is a token with type symbol where the
bound action is an element of the set of ac-
tions bound to non-symbol tokens. By the way,
the incompleteness of Knuth's prose defimtion
clearly shows the advantage of formal defm-
tions.)

Appelt even ignores that distinction: He uses
token notations like '1' both for the description
of a token of type begin-group and of an arbi-
trary token with the bound action start-group.
If arguments for an action are constructed, they
may be either expanded or unexpanded (the to-
kens that are collected will have been expanded
or not). In fact, that is an attribute of a param-
spec.

Knuth notes only in the prose explanation
which param-spec category is used for an argu-
ment; in addition, t h s explanation is scattered
over the whole T~Xbook. Appelt doesn't note
t h s difference at all, e.g., in his grammar def
and edef have the same syntax.

These examples should also show the value of a full
formal language specification; discussions about the
"structure" of a TML construct should not be neces-
sary any more.

ETLS: The Executable TEX Language
Specification

ETLS is a denotational semantics style language spec-
ification of TML. The mathematical model to whch
actions (the TML syntactic constructs) are mapped, is
a subset of Common Lisp (CL). A set of appropriate
class definitions for object classes from the TEX base
m a c h e is used as well. The computational aspect
of the used CL subset (no continuation semantics or
other imperative-style features) is well described and
close enough to the lambda calculus to be used as a
target model even in the usual sense of denotational
semantics.

An action syntax is specified by a param-spec
description for each argument. A param-spec is a
pair (ezpanded, pattern). If a param-spec has the at-
tribute expanded, all tokens that are used to con-
struct an argument are fully expanded first. A pat-
tern is either an identifier from a fixed set, or an al-
ternative of a set of patterns, or an optional pattern.

Pattern identifiers either denote a predicate function
or an expression on token lists. The actual token list
used as the argument wdl be checked by the pre&-
cate or matched by the expression.

Patterns defined by expressions on token lists
(e. g. numbers) are specified by context free gram-
mars. Of course, the specification of these parts
must not ignore the problematic issues outlined in
the previous section: Tokens are explicated as pairs,
thereby providing a clear defmtion for grammar ter-
minals. A special notation for "arbitrary token with a
specific action bound to" is introduced. It can be ig-
nored whether the token lists for the argument shall
be expanded or unexpanded, though; this is men-
tioned already in the param-spec description.

A CLOS-style syntax is used for a full action
specification. The param-spec list is given like a
class slot list. The semantic function is the definition
body. The additional attributes (primitive, expand-
able, and the value function) are put in between, like
class attributes.

As an example, consider the specification of the
action expandafter:

(defi ne-acti on expandafter
(:expanded-args

(skip :token)
(to-expand :token))

(:primitive t
: expandabl e-acti on t

:value n i l)
"Expands the next-after-next token

in the i n p u t stream."
(cons skip (expand to-expand)))

Since this action is expandable, it has to return a List
of tokens. That list is the replacement for the token
this action was bound to and for the two argument
tokens. We create it by prepending the first argument
to the top-level expansion of the second argument. A
value element of n i 1 specifies that this action does
not have any value semantics. (E. g., it is of no use as
an argument to the action the.)

Action definitions like above may be embedded
in a Common Lisp interpreter. That way we can in-
terpret them directly and test if they have the same
semantics as in the TEX processor. But it should be
noted that these defimtions do not trigger the same
error handhg as TEX-in case of an error condition
they just signal an exception and the surrounding
system must supply appropriate handlers.

Application of ETLS

Many people regard the formal defmtion of a pro-
gramming language as an exotic goal pursued only
by ivory-towered academics. But such work is prac-
tical and can even lead to immediate results.

As an example, consider the need for a TEX
macro debugger. I. e., a tool that provides break-
points with associated actions, stepwise execution,

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Joachim Schrod

tracing of particular macros and argument gathering,
full access (read & write) to the state of the macro
processor, etc. Everybody who has developed TEX
macros at some time wdl have missed it.

The ETLS already realizes a large part of such a
debugger. Since it is embedded in a Common Lisp
system, the CL debugger can be fully applied to TEX
macro processing. (In some of the better CL systems,
even a GUI for the debugger is available.) If the result
of an operation from the TEX base machme is needed,
the ETLS limits are reached, though. But the imple-
mentation of some modules from t h s level (most
prominently, the data storage unit with the basic ob-
ject classes) allows us already to debug many typical
error-prone macros. Of course, if typesetting prob-
lems have to be checked, one needs modules that do
not yet exist.

The handling of syntax or static semantic errors
is a further point where work is to be done. In case of
an error, one is not greeted by the well-known "gen-
tle" error messages of TEX, but is confronted with the
Lisp fallback handler for a signaled exception. Then
one can issue all kinds of Lisp commands (including
the continuation of one's macro code). Of course,
a better error handling, on the semantic level of a
macro writer, can be easily imagined. (Traditional-
ists may want to have the TEX error loop available as
well.)

Conclusion

Often the wish for interactive tools for TEX is men-
tioned. T h s covers author tools that can be used
with arbitrary TEX documents, or developer tools that
help to program in TEX and to understand the way
TEX works. A precise description of TEX is a prereq-
uisite for building such tools.

I have presented an abstract decomposition of
TEX that sets an agenda for the specification of sub-
systems. In particular, one subsystem (the macro
language) was further analyzed and an approach for
its formal specification was presented. The result-
ing Executable TEX Language Specification (ETLS) is
embedded in a Common Lisp interpreter and may be
used to parse and partially interpret TEX source code.
The immediate applicability of such an executable
specification has been described as well, minimal ef-
fort is needed to enhance it to a TEX macro debugger.

Further work has to be done to add the (prefer-
ably formal) description of more subsystems. A iirst
aim would be an analysis of the respective subsys-
tems and the documentation of a modularization re-
sulting from that analysis.

In addition, the uhlity of ETLS should be ex-
plored further. The TEX debugger needs the ad&-
tion of error handlers to be of pragmatic use; a better
user interface would be valuable as well. The seman-
tic recognition of some substructures (e. g., the con-

tents of haligns and formulas) is minimal and should
be improved.

The work presented here is only a first step, but
it may be used as the starting point to enhance in-
teractivity for TEX users; though much remains to be
done.

Technical Details & Administrivia. CLISP, a freely
distributable Common Lisp implementation from the
Karlsruhe University, was used for the actual realiza-
tion of ETLS. CLISP has been ported to many plat-
forms, Unix workstations, and PC-class microcom-
puters. No other Lisp system has been used until
now.

Both systems are available by anonymous ftp
from f t p . th-darmstadt . de. You find CLISP in the
directory /pub/programmi ng/l anguages/l i sp/
c1 i sp (executables are there as well). ETLS is placed
in the directory /pub/tex/src/etl s.

Acknowledgments. CHRISTINE DETIG provided in-
valuable comments and helped to improve the doc-
ument's structure.

References

Agostini, M., Matano, V., Schaerf, M., and Vascotto,
M. "An Interactive User-Friendly TEX in VM/CMS
Environment". In (EuroT~X85 1985), pages 11 7-
132.

Ambler, Allen L. and Burnett, Margaret M. "Influence
of Visual Technology on the Evolution of Lan-
guage Environments". IEEE Computer 22(10), 9-
22, 1989.

Andre, Jacques, Grundt, Yann, and Quint, Vincent.
"Towards an Interactive Math Mode in TEX". In
(EuroT~X85 1985), pages 79-92.

Appelt, Wolfgang. TEX fur Forfgeschrittene, Anhang
"TEX-Syntax", pages 149-171. Addison Wesley,
1988.

Arnon, Dennis S. and Mamrak, Sandra A. "On the
Logical Structure of Mathematical Notation". In
Proceedings o f the TUG 12th Annual Meeting,
pages 479-484, Dedham, MA. TEX Users Group,
Providence, RI, 1991. Published as TUGboat 12(3)
and 12(4).

Bahlke, Robert and Snelting, Gregor. "The PSG Sys-
tem: From Formal Language Definitions to Inter-
active Programming Environments". ACM Trans-
actions on Programming Languages and Systems
8(4), 547-576, 1986.

Biggerstaff, Ted J. and Richter, Charles. "Reusabil-
ity Framework, Assessment, and Directions". In
Software Reusability, edited by T. Biggerstaff and
A. Perlis, volume I (Concepts and Models), pages
1-18. ACM Press, 1989.

Bocker, Heinz-Dieter, Fischer, Gerhard, and Nieper,
Helga. "The Enhancement of Understanding
through Visual Representations". In Proceedings

316 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Towards Interactivity for TEX

of CHI '86 Human Factors in Computing Systems,
pages 44-50, Boston, MA. ACM SIG on Computer
& Human Interaction, 1986.

Boudie, G., Gallo, F., Minot, R., and Thomas, I. "An
Overview of PCTE and PCTE+ll. In Proceedings
of the 3rd Software Engineering Symposium on
Practical Software Development Environments,
pages 248-257, Boston, MA. ACM SIG on Soft-
ware Engineering, 1988. Published as Software
Engineering Notes 13(5), 1988.

Briiggemann-Klein, Anne and Wood, Derick. "Elec-
tronic Style Sheets". Bericht 45, Universitat
Freiburg, Institut fiir Informatik, 1992. Also pub-
lished as technical report 350 at University of
Western Ontario, Computer Science Department.

Chamberlin, D. D., Betrand, 0 . P., Goodfellow, M. J.,
King, J. C., Slutz, D. R., Todd, S. J. P., and Wade,
B. W. "JANUS: An interactive document formatter
based on declarative tags". IBM Systems Journal
21(3), 250-271, 1982.

Chen, Pehong and Harrison, Michael A. "Multiple
Representation Document Development". IEEE
Computer 21(1), 15-31, 1988.

Chignell, Mark H. and Waterworth, John A. "WIMPS
and NERDS: An Extended View of the User Inter-
face". SIGCHI Bulletin 23(2), 15-21, 1991.

Crisanti, Ester, Formigoni, Alberto, and La Bruna,
Paco. "EasyTEX: Towards Interactive Formulae
Input for Scientific Documents Input with TEX".
In (EuroT~X86 1986), pages 55-64.

Eijkhout, Victor. "The structure of the TEX proces-
sor". TUGboat 12(2), 253-256, 1991.

EuroT~X8 5. TEX for Scientific Documentation. Pro-
ceedings of the 1st European TEX Conference,
Como, Italy. Addison Wesley, 1985.

EuroT~X86. TEX for Scientific Documentation. Pro-
ceedings of the 2nd European TEX Conference,
number 236 in Lecture Notes in Computer Sci-
ence, Strasbourg, FRA. Springer, 1986.

Hoare, C. A. R. "An Axiomatic Basis for Computer
Programming". Communications of the ACM
12(10), 576-580, 1969.

Hoare, C. A. R. and Wirth, Niklaus. "An Axiomatic
Definition of the Programming Language PAS-
CAL". Acta Informatica 2, 335-355, 1973.

HOPL2. Proceedings of the 2nd History of Program-
ming Languages Conference (HOPL-II), Cam-
bridge, MA. ACM SIG on Programming Lan-
guages, 1993. Preprint published as SIGPLAN
Notices 28(3).

Knuth, Donald E. "Semantics of Context-Free Lan-
guages". Mathematical Systems Theory2(2), 127-
145,1968.

Knuth, Donald E. The T~Xbook, volume A of Comput-
ers and Typesetting. Addson Wesley, 1986.

Knuth, Donald E. "The Errors of TEX". Software:
Practice and Experience 19(7), 607-685, 1989.

Knuth, Donald E. "The Genesis of Attribute Gram-
mars". In Attribute Grammars and Their Applica-
tions, number 461 in Lecture Notes in Computer
Science, pages 1-12, Paris, FRA. INRIA, Springer,
1990.

Morris, Robert. "Minutes of the First TUG Meeting".
TUGboat 1(1), 12-15, 1980.

Myers, Brad A. "Text Formatting by Demonstration".
In Proceedings of CHI '91 Human Factors in Com-
puting Systems, pages 25 1-256, New Orleans.
ACM SIG on Computer & Human Interaction,
1991.

Myers, Brad A. "Challenges of HCI Design and Imple-
mentation". interactions 1(1), 73-83, 1994.

Ollongren, Alexander. Definition of Programming
Languages by Interpreting Automata. Academic
Press, 1974.

Quint, Vincent, Vatton, Irene, and Bedor, Hassan.
"Grif: An Interactive Environment for TEX". In
(EuroT~X86 1986), pages 145-158.

Raymond, Darrell R., Tompa, Frank Wm., and Wood,
Derick. "Markup Reconsidered". Technical Re-
port 356, University of Western Ontario, Com-
puter Science Department, London, Canada,
1993. Submitted for publication.

Roisin, Cecile and Vatton, Irene. "Merging logical and
physical structures in documents". In Proceed-
ings of the 5th International Conference on Elec-
tronic Publishing, Document Manipulation and
Typography, pages 327-337, Darmstadt, FRG.
John Wiley, 1994.

Shneiderman, Ben. "Direct Manipulation: A Step Be-
yond Programming Languages". IEEE Computer
16(8), 57-69, 1983.

Starks, Anthony J. "Dotex-Integrating TEX into the
X Window System". In (TUG92 1992), pages 295-
303. Published as TUGboat 13(3).

Stoy, Joseph E. Denotational Semantics: The Scott-
Strachey Approach to Programming Language
Theory. MIT Press, 1977.

Svendsen, Gunnvald B. "The Influence of Interface
Style on Problem Solving". International Journal
of Man Machine Studies 35(3), 379-397, 1991.

Thorub, Kresten Krab. "GNU Emacs as a Front End
to LATEX". In (TUG92 1992), pages 304-308. Pub-
lished as TUGboat 13(3).

Tognazzini, Bruce. Tog On Interface. Addison Wes-
ley, 1992.

TUG92. Proceedings of the TEX Users Group Thir-
teenth Annual Meeting, Portland, OR. TEX Users
Group, Providence, RI, 1992. Published as TUG-
boat 13(3).

Wittbecker, Alan E. "TEX Enslaved. In Proceedings
of the TUG 10th Annual Meeting, pages 603-606,
Stanford, CA. TEX Users Group, Providence, RI,
1989. Published as TUGboat lO(4).

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

The Floating World

Frank Mittelbach
Zedernweg 62, D55 128 Mainz-Bretzenheim, Germany
Mittelbach@mzdmza.zdv.Uni-Mainz.de

Chris Rowley
The Open University, Parsifal College, Finchley Road, London NW3 7BG, Great Britain
C.A.Rowley@open.ac.uk

Abstract

Worlung for the past year on a thorough investigation of the output routine
of I@X has helped to clarify many issues whch arise in the modelling and
specification of page layout.

How well does LATEX cope with the job? How does it compare with other
software? Can it be improved significantly without a complete redesign?

Looking at the wider picture: how should the designers of future typesetting
software approach t h s aspect of their task?

Similar work will be published in the proceedings of the PoDP'94 Conference.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Sophisticated Page Layout with TEX

Don Hosek
Quixote Digital Typography, 349 Springfield, #24, Claremont, CA 91711, U.S.A.

dhosek@pi t z e r . edu

Abstract

Page make-up has always been considered one of TEX'S weak points. A big
part of thls is the difficulty of worlung with tradtional output routines for
handling special situations. The I4QX output routine is just one example of how
complicated such an approach can be and it is far from being a universal solution.
That said, I found myself, in creating my typography magazine, Serif, with the
problem of handling a fairly complicated page layout that would not be easily
addressed with a variation of the plain or LATEX output routines. This plus a bit
of curiosity about what could be done with the line-by-he technique mentioned
at the end of the infamous Appendix D led me to consider thls approach.

Thls paper will be published in a future issue of TUGboat.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Progress on the Omega Project

John Plaice
Departement d'informatique, Universite Laval, Ste-Foy, Quebec, Canada G1K 7P4

pl ai ce@i f t . ul aval . ca

Abstract

Omega (a). consists of a series of extensions to TEX that improve its multilingual
capabilities. It allows multiple input and output character sets, and will allow
any number of internal encodings. Finite state automata can be defined, using
a f l ex-like syntax, to pass from one coding to another. When these facilities are
combined with large (16-bit) virtual fonts, even scripts that require very complex
contextual analysis, such as Arabic and Khmer, can be handled elegantly.

A year ago (Plaice, 1993), a proposal was made to add
the notion of character cluster to TEX, and that in fact
this notion would be included in an extension of TEX
called Q. The fundamental idea would be that any se-
quence of letters could be clustered to form a single
entity, which could in turn be treated just like a single
character. Last year's proposal was not accompanied
with an implementation. That is no longer the case,
and so the notion of character cluster is now much
clearer. Essentially, the input stream passes through
a series of filters (as many as are needed), and all
sorts of transformations become possible; for exam-
ple, to handle different character sets, to do translit-
erations or to simplify ligature mechanisms in fonts.
In addition, TEX'S restrictions to eight-bit characters
have been eliminated.

Encodings and recodings

If we abstract ourselves from the problems associ-
ated with layout, typesetting can be perceived as a
process of converting a stream of characters into a
stream of glyphs. This process can be straightfor-
ward or very complex. Probably the simplest case
is English where, in most cases, the input encoding
and the font encoding are both ASCII; here, no con-
version whatsoever need take place. At the other
extreme, we might imagine a Latin transcription of
Arabic that is to generate highly ligatured, fully vow-
elized Arabic text; here, the transliteration must be
interpreted, the appropriate form of each consonant
selected, then the ligatures and vowels chosen - the
process is much more complex.

TEX supposes that there are two basic encodings:
the input encoding and the internal encoding, each
of which uses a maximum of eight bits. The conver-
sion from the input encoding to the internal encod-
ing takes place through an array lookup (xord). An
input character is read and converted according to
the xord array. The font encoding is the same as the
internal encoding, except of course for the fact that
several characters can combine to form ligatures.

Suppose that one works in a heterogeneous en-
vironment and that one regularly receives files using
several different encodings. In thls case, one is faced
with a problem, because the TEX conversion of in-
put to internal encoding is hard-wired into the code.
To change the input encoding, one actually has to
change TEX'S code - hardly an acceptable situation.

So how does one get around this problem? The
first possibility is to use preprocessors, which might
themselves be faulty, before actually calling TEX.
The second is to use active characters: at the top
of every file, certain characters are defined to be
macros. However, this process is unreliable, since
other macros might expect those characters to be or-
dinary letters.

Much more appropriate would be to have a
command that states that the input encoding has
changed and, on the fly, that T e switches conver-
sion process, maintaining the s&e internal coding
(if we are still in the same document, we probably
want to use the same font).

It would probably not be too much trouble to
adapt TEX so that it could quickly switch from one
one-octet character encoding to another one. How-
ever, there are now several multi-octet character sets:
JIS, Shift-JIS and EUC in Japan, GB in China and KSC in
Korea. Some of these are fixed-width, stateless 16-
bit codes, while others are variable-width codes with
state. Also, now that the base plane of ISO-10646-
1.2 (Unicode-1 .l) has been defined, we have a 16-bit
character set that can be used for most of the world's
languages. However, for reasons of compatibility,
we may often come across files in UTF format, where
up to 32 bits can be stored in a variable width (1-
6 octets) encoding, but for whch ASCII bytes remain
ASCII bytes. In other words, the conversion process
from input to internal encoding is not at all simple.

To complicate matters even further, it is not
at all clear what the internal encoding should be.
Should it be fixed, in which case the only reasonable
possibility is ISO-10646-1.2? Or should the internal

320 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Progress on the Omega Project

coding itself be variable? If the internal coding is
fured, that will mean that in most cases a conversion
from internal encoding to font encoding wdl have to
take place as well. For example, few Japanese fonts
are internally encoded according to Han Unification,
the principle behind ISO-10646-1.2. Rather, the inter-
nal encoding would be by Kuten numbers or by one
of the JIS encodings. If that is also the case for the in-
put encoding, then a double conversion, not always
simple, nor necessary, would have to take place.

To make matters even worse, one's editor may
not always have the right fonts for a particular lan-
guage. Transliteration becomes a necessity. But
transliteration is completely independent from char-
acter encodings; the same Latin transliteration for
Cyrillic can be used if one is using ISO-646 or ISO-

10646. Nor does transliteration have anything to do
with font encodings. After all, one would want to use
the same Arabic fonts, whether one is typing using a
Latin transliteration in ISO-8859-1, or straight Arabic
in ISO-8859-6 or ISO-10646.

And, to finish us off, the order of characters
in a stream of input may not correspond to the or-
der in which characters are to be put on paper or
a screen. For example, as Haralambous (1993) has
explained, many Khmer vowels are split in two: one
part is placed to the left of a consonantal cluster, and
the other part is placed to the right. He has faced sim-
ilar problems with Sinhalese (Haralarnbous 1994).

Finally, we should remember that error and log
messages must also be generated, and these may not
necessarily be in the same character set as either the
input encoding or the internal encoding.

Transliteration and contextual analysis. It seems
clear that the only viable internal encoding is the
font encoding. However, there is no reason that the
conversion from input encoding to internal encoding
should take but one step. Clearly one can always do
t h s , and in fact, if our fonts are sufficiently large,
we can always do all analysis at the ligature level in
the font. However, such a decision prevents us from
separating distinct tasks, such as - say, for Arabic -
first converting all text to ISO-10646, then transliter-
ating, then computing the appropriate form of each
letter, and only then having the font's ligature mech-
anism take over.

In fact, what we propose is to allow any number
of filters to be written, and that the output from one
filter can become the input to another fdter, much
like UNIX pipes.

!2 Translation Processes

In R, these filters are called Translation Processes
(QTPs). Each RTP is defined by the user in an . o tp
file: with a syntax reminiscent of the Flex lexical an-

alyzer generator, users can define h t e state Mealy
automata to transform character streams into other
character streams.

These user-defined translations tables are not
directly read by S2. Rather, compact representations
(. c t p files) are generated by the OTPtoCTP program.
A . c t p file is read using the R primitive \otp (see
below). Here is the syntax for a translation file:

i n : n ;
O U ~ : n;
tab1 e s : T*
s t a t e s : S*
a1 i ases : A*
expressions: E*

where n means any number. Numbers can be ei-
ther decimal numbers, WEB octal ((3'. . .) or hexa-
decimal ((3". . .) numbers, or visible ISO-646 charac-
ters enclosed between a grave accent and a single
quote (' c ').

The first (second) number specifies the number
of octets in an input (output) character (the default
for both is 1). These numbers are necessary to spec-
ify the translation processes that must take place
when converting to or from character sets that use
more than one octet per character.

Tables are regularly used in character set con-
versions, when algorithrmc approaches cannot be
simply expressed. The syntax for a table T is:

id[nl = {n,n,. . . ,n};

The RTPs, as in Flex, allow a number of states.
Each expression is only valid in a given state. The
user can specify when to change states. States are
often used for contextual analysis. The syntax for a
set S of states is:

id, id, ..., id;

Expressions are pattern-action pairs. Patterns
are written as simple regular expressions, which can
be aliased. The syntax for an alias A is:

where L is a pattern.
If only one state is used, then an expression E

consists of a pattern and an action:

L = > R * ;

where the syntax for patterns is:

L ::= n
I n-n range

I . wildcard
I LL concat.
I L{n,ml occurrences

I (L I . . . I L) choice

/ <L I . . . I L) negative choice

I {id} abbreviation;

and where the simplified syntax for actions is:

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

John Plaice

R ::= string

I n
I \ n
I \ (% -n)
I \ (* + n - n)
I #(R)
I idCRl
I RopR arithmetic;

Patterns are applied to the input stream. When
a pattern has matched the input stream, the action
to the right is executed. A string is simply put on
the output stream. The \nrefers to the n-th matched
character and the \ $ refers to the last matched char-
acter. The \ * refers to the complete matched sub-
stream, while \ (* -n) refers to all but the last n char-
acters. Table lookup is done using square brackets.
All computations must be preceded by a #.

Here is a sample translation from the Chinese
GB2312-80 encoding to ISO-10646:

i n : 1 ;
out: 2;
tab1 es: tabgb[8795] = 1 . . . } ;
expressions:
(e"oo-e"A0) => \ l ;
(@"Al-@" FF) (e"A1-@'IFF) =>

#(tabgb [(\I-@"AO>*@"64 + (\2-@"AO>l) ;
=> QWFFFF;

where we use @"FFFF as the error character. And
here is a common transliteration in Indic scripts:

{consonant}{1,6} {vowel} => \$ \(*-I);

The vowel at the end is placed before the stream of
consonants.

The complete syntax for expressions is more
complicated, as there can be several processing
states. In addition, it is possible to push values back
onto the input stack. Here is the complete syntax:

a t a t e L => R* <= R* <newstate

The state means that if the QTP is in that state then
this pattern-action pair can possibly be used. The
newstate designates the new state if this pattern-
action pair is chosen.

Here is an example from the contextual analysis
of Arabic:

<MEDIAL>{QUADRIFORM}{NOTARABIC-OR-UNI}
=> #(\ I + @"DDOO)
<= \2
<pop : >

9

When in state MEDIAL (in the middle of a word), a
letter with four possible forms is followed by a non-
Arabic letter, then the output is the quadriform let-
ter plus the value @"DDOO. The non-Arabic letter is
placed back on the input stack. Then the current
state is popped and the QTP returns to the previous
state, whatever it was.

Loading RTPs. Loading an QTP is slmilar to loading
a font. The instruction is simply:

\otp\ newname = filename

The . ctp file filename. ctp is read in and stored in
the otp lnfo memory, similar to the font info mem-
ory. A number is assigned to the control sequence
\newname, as for fonts. Thereafter, one can refer
to that RTP either through the generated number or
through the newly-defined control sequence.

Input encodings. When readmg a file from an un-
known source, using anunknown character set, some
sort of mechanism is necessary to determine what
the character set is. There are two possibilities: ei-
ther use a default character set or have some way of
quickly recognizing what the character set is.

Fortunately, most character sets contain ISO-646
as a subset. The ISO-10646-1.2 character set, in both
its 16- and 32-bit versions, retains ISO-646 as its orig-
inal 128 characters. The only widely-used character
set that does not fit this mold is IBM's EBCDIC.

We therefore provide the means for automati-
cally detecting the character set farmly. It suffices
that the user place a comment at the very begin-
ning of each file: the % character is sufficient to
distinguish each of the famdies. A file using an 8-
bit extension of ISO-646 begins with the character
code 0x2 5; a file with 16-bit characters begins with
0x00 0x2 5.l Finally, a file using the EBCDIC encod-
ing begins with Ox6C. Should there be no comment
character, then the default input encoding (ISO-646)
is assumed.

Once Q knows how to read the basic Latin let-
ters, it is possible to declare what translation the in-
put must undergo. This is done with the command
\InputTransl a t i on, e.g. \InputTransl a t i on 1
states that the entire input stream, starting imme-
diately after the newline at the end of this line, will
pass through the first QTP p ro~es s .~

It is also possible to change the character set
w i t h a file. This process is more difficult, as it is
not always clear where exactly the change is to take
place. Suppose that we pass from an 8-bit character
set to a 16-bit character set. It is important that we
know what the last 8-bit character is and what the
first sixteen-bit character is.

This question can be resolved by specifying a
particular character as being the one whch changes.

1 A file with 32-bit characters would begin with
0x00 0x00 0x00 0x25, but the current version of R
does not support 32-bit characters.

2 The syntax for the new primitives has not been
finalized. In particular, it is not clear that the explicit
numbering of filters and translation processes is
simple to manipulate. Those who wish to use R
should check the manual for the exact syntax.

322 TUGboat, Volume 15 (1 .994), No. 3 - Proceedmgs of the 1994 Annual Meeting

Progress on the Omega Project

However, to simplify matters, we assume that all in-
put translation changes take place immediately af-
ter the newline at the end of the line in which the
\ InputTransl a t i on command appears.

Transliteration.Once characters have been read,
most likely to some universal character set such as
ISO-10646, then contextual analysis can take place,
independently of the original character set. This
analysis might require several filters, each of which
is similar to the translation process undergone by
the input.

Since the number of filters that we might want
to use is arbitrarily large, there are two commands to
specify filters:

\NumberInputFil t e r s n

states that the first n input filters are active. The
output from the i-th filter becomes the input for the
i + 1-th filter, for i < n.

\ InputFi 1 t e r m i

states that the m-th input filter is the i-th RTP.
Sequences of characters with character codes 5,

10, 11 and 12 successively pass through the trans-
lation processes n translation processes. It should
be understood that the result of the last translation
process should be the font encoding itself; it is in this
encodmg that the hyphenation algorithm is applied.

Our Arabic example then looks hke this:

\o tp \ t rans = IS0646toIS010646
\o tp \ t rans l i t = TeXArabi cToUni code
\otp\fourform = Uni codeToContUni code
\otp\genoutput = ContUnicodeToTeXArabicOut
\ InputFi 1 t e r 0 \ trans1 i t
\ I npu tF i l t e r 1 \ fourform
\ InputFi 1 t e r 2 \genoutput
\NumberInputFi 1 t e r s 3

The TeXArabi cToUni code translator takes the Latin
transliteration and converts it into Arabic. As
for Uni codeToContUni code, it does the contex-
tual analysis for Arabic; that is, it takes Arabic
(in ISO-10646) and, using a private area, deter-
mines which of the four forms (isolated, initial, me-
dial or final) each consonant should take. Finally,
ContUni codeToTeXArabi cOut determines what slot
in the font corresponds to each character. Of course,
nothing prevents the font from having its own so-
phisticated ligature mechanism as well.

Output and special encodings. TEX does not just
generate . d v i files. It also generates . aux, .1 og and
many other files, whch may in turn be read by TEX
again. It is important that the output mechanism be
as general as the input mechanism. For this, we in-
troduce the analogous operations:

\OutputTransl a t i o n
\OutputFi 1 t e r
\NumberOutputFi 1 t e r s

with, of course, the appropriate arguments.
Similarly, in its .dv i files TEX can output

commands that are device-driver specific, using
\special commands. Since the arguments to
\special are themselves strings, it seems appro-
priate to also allow the following commands:

\Speci alTrans1 a t i o n
\Speci a1 F i 1 t e r
\NumberSpeci a1 F i 1 t e r s

Large fonts

TEX is limited to fonts that have a maximum of 256
characters. However, on numerous occasions, a need
has been shown for larger fonts. Obviously, for lan-
guages using ideograms, 256 characters is clearly not
sufficient. However, the same holds true for alpha-
betic scripts such as Latin, Greek and Cyrillic; for
each of these, ISO-10646-1.2 defines more than 256
pre-composed characters. However, many of these
characters are basic character-diacritic mark combi-
nations, and so the actual number of basic glyphs is
quite reduced. In fact, for each of these three alpha-
bets, a single 256-character font will suffice for the
basic glyphs.

We have therefore decided, as a first step, to of-
fer the means for large (16-bit) virtual fonts, whose
basic glyphs d l reside in 8-bit real fonts. This is
clearly only a first step, but it has the advantage of
allowing large fonts, complete with ligature mech-
anisms, without insisting that all device drivers be
rewritten.

In addition to changing TEX, we must also
change DVIcopy and VPtoVF, which respectively be-
come XDVIcopy and XVPtoXVF. The . t f m , .vp and
. v f files are replaced by . xfm, . xvp and . x v f files,
respectively. Of course, the new programs can con-
tinue to read the old files.

. xfm files. The . xfm files are sirmlar to . t f m files,
except that most quantities use 16 or 32 bits. Es-
sentially, most quantities have doubled in size. The
header consists of 13 four-octet words. To distin-
guish . t f m and . xfm files, the first four octets are al-
ways 0 (zero). The next eleven words are the values
for I f , Zh, bc, ec, nw, nh, nd, ni, nl, nk ne, and np; all of
these values must be non-negative and less than z31.

Now, each char-info value is defined as follows:
width index 16 bits
height index 8 bits
depth index 8 bits
italic index 14 bits
tag 2 bits
remainder 16 bits

Each lig-kern-command is of the form:
op byte 16 bits
skip byte 16 bits
next char 16 bits
remainder 16 bits

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

John Plaice

Finally, extensible recipes take double the room.

. xvp files. The . xvp files are simply . vp l files in
which all restrictions to 8-bit characters have been
removed. Otherwise, everything else is identical.

Minor changes. Since the changes above required
carefully examining all of the code for TEX, we took
advantage of the opportunity to remove all restric-
tions to a single octet. So, for example, more than
256 registers (of each lund) can be used. Similarly,
more than 256 fonts can be active simultaneously,

Conclusions

The tranformation of TEX into SZ was a necessary
step for the development of a typesetting tool that
could be used for most (all?) of the world's languages.
Scripts that, for various historical and political rea-
sons, retained their calligraphic tradtions, can now
be printed with ease without sacrificing on aesthet-
ics. In fact, as presented in Haralambous and Plaice
(1994), it is now possible to use calligraphic-style
fonts for Latin-alphabet languages, without any ex-
tra overhead: just change the font and the transla-
tion process, everything else is automatic.

Large fonts are defmitely useful: all the interac-
tions of characters in a font can be examined. How-
ever, it is not necessary to change all our device
drivers. A large virtual font might s t d only reference
small real fonts (unlrkely to be the case in Eastern
Asia, where all fonts are large).

Large fonts, with full interaction between the
characters, mean that one can envisage variable-
width Han characters. According to Lunde (1993),
this topic has been mentioned in several Asian coun-
tries.

Finally, I should like to state that the change
from TEX to is really quite small. Apart from the
idea of character cluster, everything is already there
in TEX. It should be considered a tribute to Donald
Knuth that so little time was required to make these
changes.

Acknowledgements

The SZ project was devised by Yannis Haralambous
and myself. It would never have gotten off the
ground if it had not been for the numerous discus-
sions that I had with Yannis. Many thanks as well for
the discussions in the T e c h c a l Working Group on
Multiple Language Coordination.

Bibliography

Haralambous, Yannis, "The Khmer script tamed by
the lion (of TEX)", TUGboat 14(3), pages 260-270,
1993.

Haralambous, Yannis, "Indic TEX preprocessor: Sin-
halese TEX", TUG94 Proceedings, 1994.

Haralambous, Yannis, and John Plaice, "First applica-
tions of SZ: Adobe Poetica, Arabic, Greek, Khmer,
Unicode", TUG94 Proceedings, 1994.

Lunde, Ken, Understanding Japanese Information
Processing, O'Reilly and Associates, Sebastopol
(CA), USA, 1993.

Pike, Rob, and Ken Thompson, tcs program,
f tp : / / research.at t .com/dis t / tcs .shar .Z,
1993.

Plaice, John, "Language-dependent ligatures", TUG-
boat 14(3), pages 271-274, 1993.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Object-Oriented Programming, Descriptive Markup, and TEX

Arthur Ogawa
TEX Consul tan ts , P.O. Box 51, Kaweah, CA 93237-0051, U.S.A.

ogawa@orion.arc.nasa.gov

Abstract

I describe a synthesis withn TEX of descriptive markup and object-oriented
programming. An underlying formatting system may use a number of different
collections of user-level markup, such as LATEX or SGML. I give an extension of
WX's markup scheme that more effectively addresses the needs of a production
environment. The implementation of such a system benefits from the use of
the model of object-oriented programming. LATEX environments can be thought
of as objects, and several environments may share functionality donated by a
common, more general object.

T h s article is a companion to William Baxter's "An Object-Oriented

Programming System in TEX."

I believe that the key to cost-effective production of
T$ documents in a commercial setting is descriptive
markup. That is, the document being processed
contains content organized by codes, the latter
describing the structure of the document, but not
directly mandating the format.

The formatting of such a document is embodied
in a separate module (usually a file of definitions of
formatting procedures) which represents the imple-
mentation of a typographc specification (typespec).
Thus, descriptive markup achieves the separation
of document instance from formatting engine.

At the same time, the key to cost-effective
generation of document formatters in TEX is found
in the paradigms of object-oriented programming
(OOP). Typographc elements are treated as objects,
with data and methods. The formatter is a collection
of code modules with well-defined boundaries and
communication pathways. The programmer can
take advantage of oop techniques such as object
encapsulation, data-hiding, and inheritance to create
robust, easy-to-maintain, powerful formatters.

For the purposes of this article, FQX and SGML

will be used as specific instances of descriptive cod-
ing schemes, but other methods that cleave to the
standards of descriptive markup are not excluded.
In particular, databases are very descriptive in na-
ture, and the processing engine described in t h s
and the next paper will process such data well.

The present article discusses issues of descrip-
tive markup and object-oriented programming as
relate to TEX and document processing. The next ar-
ticle gives implementation details of the processing
engine.

Commercial Typesetting with LATEX

Advantages of WX's Descriptive Markup. The de-
scriptive markup of LATEX bestows numerous advan-
tages on thls document processing system, malung
it the predominant TEX macro package.

TITLE -------+ 1 Pip
I

SECTION

Orgadling tbe OOP Formtier

To a n h e a usrful f M m g dIbL Cad% w -1

I))anti d b u : Mwtons. u d rppsndaga tcx
dcIpuw

I d a t pmwwc. vt W d d W;c 4c SYS1-m m
allow b b a w pms ~o be &god m&prht ly of
m b ohlr, and a h e arn porsmb So. tm m m a

1 me c u a I&W. vtae w n dspcndr an

TUGboat, Volume 15 (1 994), No. 3 - Proceedings of the 1994 Annual Meeting 325

Arthur Ogawa

Simple Syntax. LATEX'S environments and com- for such a use).

mands provide a simple system of user-level Software exists to help generate a valid LATEX
markup; there are only the environments (with document; the emacs JF&X mode and TCI's Scientific

content) and the commands (with argument). Word are two such. But neither can assert (as
Completeness. Q X ' s public styles are of suf- an SGML validator can) that the document has no

ficient richness to accommodate many of the struc- markup errors.

tures required for a typical book. Modest extensions
enable one to code fairly technical books.

Context-sensitive formatting. An enumerated

list may contain yet another list: the latter is
formatted differently than when it appears at the

topmost level. The same environment can be used

in numerous contexts, so there are fewer markup

codes for the author or typesetter to remember.
Authoring versus formatting. Even though us-

ing the same set of markup codes as the author, the
typesetter may employ a different set of formatting

procedures, allowing the author to concentrate on
content and structure while leaving the typesetter

to deal with the thorny production problems (e.g.,

float placement, line- and pagebreaks).

Limitations of LATNs Markup. Despite the afore-

mentioned advantages, LATEX has a number of prob-
lems.

Inconsistencies. Some of LATEX'S codes intro-

duce syntax beyond the environment and command
mentioned above, e.g., the \verb command.

Architecture. LATEEX'S moving arguments and
fragile commands consititute annoying pitfalls.

That the \verb command must not appear within
the argument of another command has bitten nu-

merous unwary users.

Debasement with procedural markup. When
an author inevitably conceives of new markup ele-

ments, he or she will commonly be disinclined to
simply define new environments to go with them.

Instead the author is likely to introduce them in the

document instance itself with explicit formatting

Limitations of LATEX Styles. Separating core pro-

cessing functionality from design-speclfic format-
ting procedures is embodied in LATEX'S style (. s t y)

files. It is 2 useful idea, allowing the considerable
investment in LATEX'S kernel to be amortized over a

large body of documents, but it has Limitations.
Excessive skill requirements for style writers.

Because LATEX exposes TEX'S programming language
within the style files, only someone slulled in

programming TEX can create the style file for a

new document typespec. Less daunting is the task
of customizing an existing style, but this remains

out of the reach of professional designers as a

class. This situation stands in sharp contrast
to commercial applications such as Frame Maker,

which possess what I call a designer interface.
Designer-interface software. Some progress

has been made to supply software that wdl generate

the code of a LATEX style, notably TCI's Scientific
Word. One can thmk of a fill-in-the-blank approach

that allows one to specify the values of dmensions

that parametrize a typespec. But there is currently
no method of extending an existing body of styles

to accommodate new formatting procedures and
parametrizations.

Incomplete Implementation. Much work re-
mains to be done in separating style-specific code

from kernel code: LATEXZ'S core definitions as they
now stand make numerous decisions about docu-

ment structure and formatting metrics.

Commercial Typesetting with SGML
codes.

The awkward optional argument. Even though ~ e c a u s e a Standard Generalized Markup Language

many LATEX commands and environments have a (SGML) parser can verify the validity of the markup

variant (*-form) or an optional argument (within of a document, and because SGML markup is purely

brackets [I), not all do, and those that do not are descriptive (to first order), it supplies an effective

unable to parse a * or optional argument if one does ''front-end" to a TEX-based formatter. A number of

appear in the document. hi^ increases LAT~EX'~ syn- commercial systems have implemented this idea. At

tactic complexity. Furthermore, the existing scheme the Same time, SGML is not Prey to L#TEX's h t a t i o n s .

is inadequate to accommodate much demand for ~~~~~~t~ in Classes. In an SGML system, a doc-
options, because any one command may have at ument instance belongs to a class defined by a
most one *-form and one optional argument. Document Type Defmtion (DTD), which specifies

User-interface Using T ~ x the concretes of the markup scheme, the name of
a document is problematic because only TEX can each element, or tag (in LATEX: environment), its at-
"ahdate the document--and TEX does not per fom tributes (modifiers) and their allowable values, and
well as a document validator (nor Was it intended the content model. The latter specifies

326 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Object-Oriented Programming, Descriptive Markup, and TEX

what elements may or must appear within a given Face-Independent Procedures
element, and what order they must appear in. For
example, Separating Markup from Formatting Procedures.

<!ELEMENT theorem - - A core processor is somethmg that wdl serve equally
(t i t l e , paragraph*) well as a formatter for SGML, flT~X2, LATEX^ and
> beyond. It must, in fact, be able to parse user

<!ATTLIST theorem
i d I D #REQUIRED

markup defined by some external specification,

k i nd (theorem 1 1 emma 1 corol 1 ary) #IMPLIED what we call a face. At the same time, its style files

> must not at all determine the input syntax.

defmes the "theorem" element and specifies that
it has to be given a key called "id" (llke IREX'S

\label command) and may carry an attribute,
"kind", whose value, if specified, must be either
"theorem", "lemma", or "corollary". Its content
must have an element called "title", followed by any

Here, I describe the span of user markup that
must be parsed. Each one of these markup schemes
constitutes a different face of the core processor.

Bestowing Attributes on JNEX Environments.
An extension to the flT~X2 syntax which provides
flexible SGML-like attributes is:

number of paragraphs. The DTD is thus the basis
for SGML document vahdation. \kind(Corol l a r y }

\number{Z .1 }

Elements with attributes. SGML has just one syntax \prime{)

for its descriptive markup, namely the element. \ t i t le{OOPS, A Theorem)
\ labe l {oopsl}

An element instance may specify the values of its
attributes, or may accept a default; thls allows the
value to be determined effectively by the formatter,
or by inheritance from some containing element
(discussed in more detail below). A typical instance
of an SGML element in a document might be:

i theorem ID="oopsl" k i nd=Coroll ary>
<ti tl e>OOPS, A Theorem</ti tl e>
(content o f the theorem)
</theorem>

Note that in.SGML we really may not give the title
as an attribute, because an SGML attribute can not,
for instance, contain math. The practice is rather to
put the text of the title in an element of its own.

General and consistent markup. The advantages
of such a meager syntax cannot be overstated. An
author may generate a relatively complex document
with a fairly small set of markup. At the same time,
SGML application software may assist in selecting
and inserting the codes, thereby removing the onus
of verbose markup.

The document as database. It is a common school
of thought to treat an SGML document instance
as rather a collection of structured data than a
traditional book or article. This emphasizes the
desirability of descriptive markup and the undesir-
ability of procedural markup. Such a document can
be published on numerous different media (paper,
CD-ROM) and forms (demand publishing, custom
publishmg). The value of a document coded this
way cannot be overstated.

(content of the theorem)
\end{theorem}

This notafion is such that current fiT~x2 markup
simply coincides with default values for all at-
tributes.

SGML Markup. I gave an example of an SGML

element instance above. What corresponds to a
L ~ E X sectioning command might appear as:

<section ID="sgmlmarkup">
<title>&SGML; Markup Syntax< / t i t le>
<ti tle-short>&SCML; Markup</ti t le -shor t>
<title-contents>&SGML; Markup</tit le-contents>
(content o f the section)
</section>

Here, the elements < t i t l e - s h o r t > and < t i t l e -

contents> would be optional and would specify
a short title for the running head and table of
contents respectively. The syntax &SGML; is that
of a text entity, an SGML shorthand. Interestingly
enough, in a TEX-based processor for SGML markup,
it suffices for the two characters < and & to have
catcode active (13), with all others as letter (11) or
other (12).

Markup for a Successor to J!-T@2. For flTjX3
we propose the markup scheme:

\open\theorem{
\number{Z.l)

\prime{}
\ labe l {oopsl}

3
\open\ti tl e OOPS, A Theorem\cl ose \ t i tl e
(content o f the section)

\ c l ose\theorem

The options appear in a brace-delimited argument,

TLIGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 327

Arthur Ogawa

wWe the command name is simply a token. This Object-Oriented Programming Basics.
syntax replaces fiT~X2's envh"irnments and com- Data and procedures are encapsulated into
mands alike. objects. To paraphrase a famous formula:

Note here that the implementation of the \ti -

tl e element could in principle parse its entire con-

tent into a TEX macro parameter using the tokens

\ c l o s e \ t i tl e as a d e h i t e r . The same observation
also applies to SGML syntax (with < / t i t l e > as the

delimiter), but not to LATEXZ'S syntax, where the

end of the environment contains the brace charac-
ters. This observation was evidently not lost on

the creators of A+-TEX, who tend to close out
their elements with a control sequence name, llke

\endt i t 1 e.

The Defining Word. A system that is able to
encompass the above markup syntax may be readily

extended to other syntax. More important, though,

is that all commands defined by such a system
share a single, consistent syntax. LATEX^ would

Dossess t h s attribute if all environments were
defined by means of \newenvi ronment; anyone

who has looked inside LATEX'S core macro file or its

style files knows otherwise, though.
The \newenvi ronment command of LATEX'S

style files is an instance of what we may call a
defining word, to borrow a phrase from FORTH. We

shall see later the relationship between defining
words and the OOP concept of class creation.

Benefits in production. As the next talk will

also emphasize, the mere existence of a convenient
syntax for element attributes bears importantly on

production needs. The need is so longstanding that
the TEX Users Group-supplied macros for authoring

papers submitted to this conference have a syntax

for introducing multiple options, and LATEX users
from time immemorial have resorted to their own

techniques, e.g.,

{\ma1 1
\begi n{verbatim}
Your t ex t
On these l i n e s

to reduce the typesize of an environment.

Object-Oriented Programming and TEX

In a rather happy conjunction of requirements and

resources, we are now in a position to employ the

20-year old technology of Object-Oriented Program-
ming (OOP) to advance the 16-year old TEX. Here,
I introduce certain oop concepts and show their
relationship with the current work.

Fields + Methods = Object

That is, an object is a self-contained computing
entity with its own data and procedures. For

instance, we can have a object called "enumerated
list", one of whose attributes tells whether it is

an arabic, roman, or lettered list. Other instances
of enumerated list have their own value for this

attribute, determined by the context of the object,
or specified in the instance.

The object is an instance of its class. A

class abstracts an object. In the above example
of enumerated list, all enumerated list objects are
molded on the same form, the enumerated list class.

When the formatter encounters an enumerated list

withn the document, it creates an instance of the

class (say, object number 5) :

3 list5 e= enumerated list

We can look upon a document as a collection

of elements, each being an instance of the related

class. The paragraph you are reading falls within
a section w i t h a section within a section of an

article. Three section objects exist simultaneously,

yet distinctly. Each of these sections has a title, as
a section must. The title of a section is an attribute

whlch is always defined upon its appearance within
a document; there is no (non-trivial) default value

determined by the class.
An object's fields are private. Encapsulation

refers to the practice of disallowing other objects

from directly altering a class's fields; instead, ob-
jects pass each other messages. An object may
alter one of its own fields in response to another

object's message. In a numbered list, for example,
the counter is "owned" by the list itself, not by the

list item; when the latter is instantiated, it sends a

message to the list object to increment the counter.
A derived class inherits from its base class.

In what is possibly the most powerful paradigm of

OOP, a new class of objects can be created (derived)
from an existing (base) class by the addition of new

fields and methods. The new, or child, class inherits
all the fields and methods of the generating, or

parent, class. Some of the added methods may
supersede, or override those that would otherwise

be inherited from the parent.

For instance, we may create an enumerated
list class from a basic list class by appending a

field which determines whether the list device is an
number or letter and by overriding the procedure

that formats the list device so that it uses this field

TUGboat, Volume 15 (1994), No. 3 - Proceedings of the 1994 Annual Meeting

Object-Oriented Programming, Descriptive Markup, and TEX

appropriately. All other aspects of the list format ease of modification and extension, and ease of

are determined by the parent class: comprehension.

V enumerated list e list 3 {counter + device} In descriptive markup, the OOP approach makes
particular sense because of the close correspon-

A derived 'lass may from more than
dence between element and class, and between

one parent. In a system with multiple inheritance,
element instance and object instance.

a new class can be created that inherits simulta-
The modularity of objects implies a decoupling

neously from two or more exising classes. T h s is
between them, allows the methods of one object

sometimes referred to as mix-in classes.
to be maintained, changed, and extended without

For instance' we may have created a 'lass
affecting other objects, and allows one to learn

that numbers its instances, applying this to, say,
a particular class hierarchy by first understandmg

equations and theorems, but the enumerated list
each of its elements separately, then in relation to

class mentioned above should also be a ch ld of this
each other.

numbering class. In fact, the enumerated list class
inherits from both the list class and the numbering
class. Organizing the OOP Formatter

V enumerated list e list + counting 3 {device}

The structure of the interrelated classes, in-
cluding descendents is called the class hierarchy.

The object has a context in its document.
Since the abovementioned sections are nested, each
section has a different lxerarchical position within
the document. T h s affects their respective for-
matting (intentionally so, in order to reveal the
document's structure). This nesting of elements
in the document instance is called the document
hierarchy.

Note that class hierarchy is independent of
any particular document instance, while document
hierarchy is not a priori related to the class hierar-
chy. Thus, any two enumerated list objects within
a document are instantiated identically (they are
"created equal"), regardless of where they might
appear. Likewise, withn a document, a list item
must always appear within a list, but in the class
hierarchy discussed in the next paper, the item class
is a subclass of a run-in head.

Environments, Elements, and Objects. There
seems a fairly straightforward connection between
@TEX environments and SGML elements. But where
do classes and objects fit in? We can think of a
class as an abstract environment or element, and
an object a s a specific instance thereof within a
document.

The distinction between class and object is
important, because an instance of a class within

a document is allowed to have instance options:
these must not affect the fields' values in the class
itself, which remain unaltered whle the document
is processed.

Advantages of the OOP approach. In other
venues, OOP is said to have the advantages of good
organization, robustness of code, reuse of code,

To achieve a useful factoring of the code, we want
a kernel of object extensions, with appendages
defining

the class library, whose structure depends on
that of our documents,
the formatting procedures, appropriately pa-
rametrized, whose details depend on the type-

spec,
the values of the parameters of those for-
matting procedures, also determined by the

typespec,
the element set (a list of element names), each
bound to a particular formatting procedure.
In an SGML formatter, this could be derived
automatically from the DTD or some other
resource.
the user markup (the face), implementing
LATG2's \begin and \end, the alternative \open
and \close, SGML notation, or other syntax.

The figure shows these modules in relationship to
each other. The last aspect to be applied, the face,
is seen to be truly a very small module placed on
top of the entire stack.

Modularity and Late Binding. Insofar as possible,
we would like these parts to be independent of each
other, and late changes should be permitted. So, for
instance, we should be able to switch easily between
the LATG2 markup syntax and that of SGML, say just
before the \article command starts the actual

The Face

Element Set

Formatting Procedures & Parameters

Class Hierarchy

Object Extensions

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Arthur Ogawa

document. Or, we would like to alter the name of
an element; in principle, a \chapter command by

any other name would still format a chapter opener.
Equally well, we may wish to revise the detads of

a formatting procedure or the value of one of its

parameters to reflect an alteration to the typespec.

All of these changes are incremental. In fact, we

shall be able to do all these thmgs principally
because TEX is an interpreter, not a compiler.

Maintaining the Fonnatter. There tends to be
an additional relationship, an example of whch

is indicated, in which an element, a formatting

procedure, and a class are connected. In this
case, the abstract class RunInHead is subclassed to

provide what will be known as the Item element. In
the process, a procedure Device is donated, whch

takes care of the formatting of the list device.

This vertical connection is natural and, to the
programmer, compelling. But when developing a
document formatter, the distinctions between class,

formatting procedure, and element name must
nonetheless be preserved for ease of maintenance.

Extensive Use of Defining Words. In order to
acheve the greatest of uniformity in the code, we

will use defining words exclusively to create the

class hierarchy, and to bind the user-level markup
codes to their respective procedures. When a new

class is derived from another, a defining word is
invoked. A user-level code will invoke a different

defining word to instantiate an object of a class.

Elsewhere, d e h n g words are used to allocate
counters and dimensions (as does WX's \new-

counter or Plain TEXS \newdimen), as well as other,

more complex constructs.

Bibliography

Baxter, William E. "An Object-Oriented Programming
System in TEX." These proceedings.

Lamport, Leslie. BTEX-A Document Preparation

System-User's Guide and Reference Manual. Read-

ing, Mass.: Addison-Wesley, 1985.
Goldfarb, Charles F. The SGML Handbook. Clarendon

Press, 1990.

Wang, Paul S. C++ with Object Oriented Program-
ming. Boston: PWS Publishng, 1994.

TZTGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

An Object-Oriented Programming System in TEX

William Baxter
Superscript, Box 20669, Oakland, CA 94620-0669, USA

web@superscri p t . corn

Abstract

This paper describes the implementation of an object-oriented programming sys-
tem in TEX. The system separates formatting procedures from the document
markup. It offers design programmers the benefits of object-oriented program-
ming techniques.

The inspiration for these macros comes from extensive book-production
experience with W&X.

This paper is a companion to Arthur Ogawa's "Object-Oriented Programming,
Descriptive Markup, and TEX".

The macros presented here constitute the fruit of a
struggle to produce sophisticated books in a com-
mercial environment. They run under either plain
TEX or LATEX, but owe their primary inspiration to
LATEX, especially in the separation of logical and vi-
sual design. The author hopes that future TEX-based
document production systems such as LATEX^ and
NTS will incorporate these techques and the expe-
rience they represent.

Throughout this paper we refer to book produc-
tion with W X . Many of the comments apply equally
well to other TEX-based document processing envi-
ronments.

Design and Production Perspectives

Certain problems routinely crop up during book pro-
duction with LATEX. The majority fall into two general
categories: those related to the peculiarities of a par-
ticular job and those regarding the basic capabilities
of the production system.

Peculiar documents. Strange, and sometimes even
bizarre, element variants often occur within a single
document. Without extremely thorough manuscript
analysis these surprise everybody during composi-
tion, after the schedules have been set. The author
received the following queries during production of
a single book:

1. What is the proper way to set Theorem 2.1' after
Theorem 2.1?

2. Small icons indicating the field of application
accompany certain exercise items. How do we
accommodate these variations?

3. Ths book contains step lists numbered Step 1,
Step 2, . . . , and other lists numbered Rhubarb 1,
Rhubarb 2, . . . How do we code these?

Each variation requires the ability to override the de-
fault behavior of the element in question, or to create

a new element. This is not difficult to accomplish ad
hoc. The design programmer can implement prefur
commands modifying the default behavior of a sub-
sequent command or environment, add additional
optional arguments, or create new commands and
environments. But these solutions demand irnmedi-
ate intervention by the design programmer and also
require that the user learn how to handle the special
cases.

A markup scheme in which optional attributes
accompany elements provides a simple, consistent,
and extensible mechanism to handle t h s type of pro-
duction difficulty. Instead of the standard LATEX en-
vironment markup

\begi n{theorem} [OOPS, A Theorem]
. . .
\end{theorem)

we write

\open\theorem{
\ t i tl e{OOPS, A Theorem)

1
. . .
\cl ose\theorem

Each attribute consists of a key-value pair, where the
key is a single control sequence and the value is a
group of tokens. The pair resemble a token register
assignment or a simple deb t ion .

The \open macro parses the attributes and
makes them avdable to the procedures that actu-
ally typeset the element. Thus any element instan-
tiated with \open. . . \close allows attributes. Fur-
thermore, any such element may ignore (or simply
complain about) attributes it doesn't understand.
For example, if an exercise item coded as an element
requires both application and difficulty attributes, it
can be coded like this:

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

William Baxter

\d i f f icul ty(3 .4}
I
. . .
\cl ose\i tem

Production can proceed, with the new attribute in
place but unused. At some later time the design
programmer can modify the procedures that actually
typeset the element to make use of the new attribute.

In the case of the rhubarb list, we can use an
attribute of the list element to modify the name of
the items:

Basic capabilities. Complex designs require macro
packages far more capable than those of standard
E Q X . The designs require color separation, large
numbers of typefaces, letterspacing, complicated
page layouts, backdrop screens and changebars, in-
teraction of neighboring elements, and other "inter-
esting" aspects of design. A production system must
address all of these aspects of design in order to re-
main viable in a commercial setting. And it must do
so in a cost effective manner.

In their desire to reduce the total and initial
costs of a formatting package, production houses
ask:

1. How do we use these macros with another man-
uscript that employs different markup, say,
SGML?

2. When will we be able to write our own macro
packages?

The first question has a relatively simple answer.
We define a generic markup scheme (very simdar to
\open. . .\close). Design programmers implement
their formatting procedures assuming that all doc-
uments use this markup. A separate layer of pars-
ing macros translates the markup that actually ap-
pears in the document into the generic markup. We
call the generic markup scheme the OOPS markup.
A design implemented behind the OOPS markup is
a formatter. The markup scheme that actually ap-
pears in the document is the document markup. A
set of macros that translate from a particular docu-
ment markup into OOPS markup is a face.

The OOPS markup constitutes an interface be-
tween formatter and face, whlle the face bridges the
gap between document markup and OOPS markup.
The same formatter can be used with a hfferent face,
and the same face with a different formatter. This
newfound ability to reuse a formatter code makes
TEX far more attractive to commercial typesetters.

The second question poses a far greater puzzle.
At present, implementing a complex book design in

TEX or IN$X requires too much skill for most produc-
tion houses to maintain. The macros described in
the remainder of t h s paper address t h s deficiency
through the application of object-oriented program-
ming techniques to the problem of design implemen-
tation.

The OOPS approach

Before delving too far into the actual workings of the
system we deliver the propaganda.

The object-oriented programming paradigm fits
the needs of document production extremely well.
A document element is an object, and its type is a
class. Thus a theorem element is an object of class
theorem. Deriving one element type from another
and overriding some behavior of the new element
is a subclassing operation. For example, a lettered
list class may be derived from a numbered list class.
Attributes correspond to instance variables. The use
of the t i t l e attribute in the theorem example above
demonstrates thls. The W&X notion of a document
style resembles a class library.

After defining the OOPS markup, the remainder
of this section describes a generic class library. A de-
sign programmer implements a particular document
design using this standard set of element classes,
possibly adding new classes as needed. The reader
should consider a class library as an alternative to a
UTEX'S document style or document class.

OOPS markup. The OOPS markup for this system
works somewhat like the \open and \close markup
scheme presented above. The \@i nstanti a t e com-
mand creates an element of a particular class. It
takes two arguments: the name of the class (or par-
ent class) and the list of instance attributes. The com-
mand \@anni h i 1 a t e destroys an element. It takes
the element class to destroy as its single argument.
So, reiterating the theorem example from above, the
design programmer assumes the following style of
markup:

\@i nstantiate\theorem{
\ti t l e{OOPS, A Theorem}
\number{2.1'3

1
. . .
\@anni hilate\theorem

This sample code instantiates an element of class
theorem, overriding the t i t l e and number at-
tributes. After some other processing it then de-
stroys the the theorem instance.

We pause here to provide some clues to the
reader about how TEX sees commands, elements,
classes, and attributes. A command is a control se-
quence destined for execution by TEX. In contrast,
a class, element, or attribute is a string conveniently
represented as a control sequence name. The OOPS

332 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

An Object-Oriented Programming System in TEX

system neither defines nor executes these control se-
quence names. Instead, it derives a command name
from an element : a t t r i bute or c l a ss : a t t r i bute
pair. One can think of attribute as a shorthand
for command derived from the cl ass : a t t r i bute
or el ement : a t t r i bute pair. Thus the phrase exe-
cute an attribute means execute the command derived
from an a t t r i bute:element or a t t r i bute:class
pair.

Returning to the example, the \@i nstanti a t e
command creates an element of class theorem. It
copies each attribute of the theorem class for the ex-
clusive use of this particular element and overrides
the meaning of the t i t l e and number attributes. Af-
ter instantiation the hidden control sequence corre-
sponding to the element : t i t l e attribute expands
to "OOPS, A Theorem".

Adopting the OOPS markup as the interface be-
tween formatting procedures and document pars-
ing routines is not terribly significant. But combin-
ing it with object-oriented programming techniques
results in a powerful and flexible system for creat-
ing new element classes. Inheritance plays the key
role. If one element class functions with the stan-
dard markup then new elements derived from it in-
herit this ability.

Subclassing. The @element class is the common
ancestor of all classes giving rise to document ele-
ments. Thls class supports the OOPS markup de-
scribed above. It also supports subclassing oper-
ations, allowing the design programmer to derive
from it new element classes that support OOPS
markup.

The \@class command derives one element
class from another. In the following example we de-
rive the rhubarb list from the steplist.

\@class\rhubarbl i s t \ s t ep l i st{
\name{Rhubarb}

1
The arguments to \@class are the new class name
(or chdd class), the name of the parent class, and the
list of attributes that override or supplement those
of the parent. The \@class command parses its ar-
guments, stores them in standard places, and then
executes the @cl ass attribute from the parent class.
The pseudo-code defimtion of the attribute @class
in the @el ement class is:

@element :@cl ass=
<execute parent :@preclass>
<create new class>
<execute chi 1 d : @subcl ass>

The \@new command carries out the low-level pro-
cessing for subclassing. It takes the new class
name, parent class name, and attribute list parsed
by \@class out of storage and constructs the new
class from them. Every @class attribute must exe-

cute \@new at some point, but can carry out other
processing before and after executing \@new. The
@precl ass and @subcl ass attributes are subclass-
ing hooks used, for example, to set up a default num-
bering scheme or allocate a class counter.

In the example above, \@class first clones the
s t e p l i s t class as rhubarblist. If the name at-
tribute exists in the rhubarb1 i s t class then it is al-
tered, otherwise it is added.

The \@cl ass and \@new commands actually al-
low multiple inheritance. The parent argument to
\@class may consist of one or more class names.
The @class attribute is always executed from the
head parent, the first parent in the list. With multiple
inheritance two parents may contain conflicting def-
initions of the same attribute. Attributes are passed
from parent to child on a first-come-frrst-served ba-
sis. The child inherits the meaning of an attribute
from the first parent class containing that attribute.

The defmtion of the @class attribute in most
classes is identical to that of @element because it is
inherited without overriding. But this system per-
mits overriding the @class attribute just like any
other.

The design programmer uses \@cl ass to create
a class for each element. During document process-
ing these classes are instantiated as document ele-
ments.

Instantiation. To instantiate an element the com-
mand \Qi nstanti a t e parses the OOPS markup and
squirrels away its arguments in special locations.
It then executes the @i nstanti a t e attribute from
the class (from theorem in the above example). A
pseudo-code defmtion of the @i nstanti a t e at-
tribute in the @element class is:

@element :@i nstanti a te=
<execute parent:@preinstantiate>
<create new element instance>
<execute child:@ini t i a l i z e >
<execute child:@startgroup>
<execute chi ld :@star t>

The @prei ns tan t i a t e attribute is analogous to
the @preclass attribute. It carries out process-
ing that must precede the creation of the new el-
ement. The @i n i ti a1 i ze attribute performs pro-
cessing required by the newly-created element. The
@startgroup attribute determines whether the ele-
ment is subject to TEX'S grouping mechanism. It usu-
ally expands to \begingroup, but may also be left
empty, resulting in an ungrouped element (like the
J6&X document environment). The @ s t a r t attribute
performs start processing for the particular element,
in rough correspondence to the second required ar-
gument to the LATEX command \newenvi ronment.

As with subclassing, the \@new command per-
forms the low-level instantiation function. It con-
structs the new element from the material stored

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 333

William Baxter

away by \@i nstanti ate. This brings to light one ba-
sic implementation decision: a class is simply an ob-
ject created with \@cl ass, while an element is an ob-
ject instantiated with \@instantiate.

The \@anni h i 1 a t e command parses class name
and stores it in a standard location. It then executes
the @anni h i 1 a t e attribute from the most recent in-
stantiation of that element. A pseudo-code defmtion
of @anni h i 1 a t e in the @element class is:

@element : @anni hi 1 ate=
<execute element:@end>
<execute element:@endgroup>
<destroy element i nstance>

The @end attribute corresponds to the third required
argument to the LATEX \newenvi ronment command
and carries out end processing. The @endgroup at-
tribute matches es ta r tg roup, and usually expands
to \endgroup. Like @startgroup it can also be given
an empty expansion to eliminate grouping.

The \@free command provides the low-level
mechanism for destroying an element instance, com-
plementing \@new. It operates on the element name
parsed by \@anni hi 1 a te , cleaning up the remains of
the now-defunct object. At some point eanni hi 1 a t e
must execute \@free, but other processing may pre-
cede or follow such execution.

In conclusion, the @el ement class contains the
following attributes: @cl ass, @precl ass, @subcl ass,
@instant ia te , @prei nstanti ate, @i ni t i a1 ize,
@startgroup, @sta r t , @anni hi 1 ate, @endgroup,
and @end. The \@class command derives new el-
ement classes from old. The \@instant ia te com-
mand creates a new instance of a class as a document
element, whlle \@anni h i 1 a t e destroys an element.
Both \@cl a s s and \@i ns t an t i a t e share an under-
lying mechanism.

The class library. What good is the ability to derive
one element class from another? It forms the basis
for a class library that can replace a LATEX document
style. We now describe one such class library.

This class library is founded on the @element
class described above. All classes are ultimately de-
rived from @el ement using \@cl ass to add new at-
tributes as needed. We describe block elements,
paragraphs, counting elements, listing elements, sec-
tion elements, and independent elements.

A block element contributes to the vertical con-
struction of the page. Examples include sections,
theorems, tables, figures, display equations, and
paragraphs. We interpret the common features of
block elements as attributes in the class @block.

Vertical space separates each block from its
surroundings. During book production, final page
makeup inevitably requires manual adjustment of
the space around certain blocks. Strictly speak-
ing, this violates the principle of purely descriptive
markup, but the need is inescapable. The difficulty

of properly adjusting the vertical space around I&&X
environments routinely provokes severe consterna-
tion in production managers who care about quality.

The @block class unifies the various mech-
anisms for inserting space above and below any
block element with four attributes: @abovespace,
@be1 owspace, abovespace, and be1 owspace. The
first two are for the design programmer, and consti-
tute the default space above and below the element.
The latter two are deviations added to the first two
in the obvious fashion. They are for the convenience
of the final page makeup artist.

Each block element class uses these attributes
in the appropriate manner. An ordnary block ele-
ment, such as a paragraph, may insert space above
and below using \addvspace. But a display math el-
ement would instead use \abovedi spl ayski p and
\be1 owdi spl ayski p. In either case the user is al-
ways presented with the same mechanism for ad-
justing this space: the attributes abovespace and
be1 owspace. Furthermore, a class library can in-
clude the code to handle the most common block el-
ements. Therefore the design programmer can work
exclusively with the @abovespace and @be1 owspace
attributes in the majority of cases.

A block element may also insert penalties into
a vertical list above and below its content. It car-
ries attributes @abovepenal ty, @be1 owpenal ty,
abovepenal ty, and be1 owpenal t y that serve as
penalty analogues to the above and below space at-
tributes.

Block elements often require different margins
than their surroundings. For example, a design may
call for theorems, lemmas, and proofs to indent at
each side. Furthermore, the justification may change
from block to block. Block elements carry the at-
tributes l e f t i ndent, r iqht i ndent, l e f t j u s t i f y ,
and r ight j usti fy. hel left and right indentatidn
settings measure the relative offset from the pre-
vailing margins, whereas the justification is an ab-
solute setting. Again, each block element makes ap-
propriate use of these attributes. Typically these at-
tributes contribute to the values of \ l e f t sk i p and
\ r ightski p, with the fixed portion of the glue corn-
ing from the "indent" attribute and the stretch and
shrink coming from the "justify" attribute. In t h s
way they effectively decompose these \ l e f t sk i p
and \ r i ghtski p, demonstrating that we are not tied
directly to the model that TEX provides.

Paragraphs are block elements. In the author's
class library they are ungrouped in order to avoid
placing unnecessary burdens on the underlying TEX
system, and the save stack in particular. Thls class
library also uses explicit paragraph instantiation as
the p element, in its most radical departure from

Q X . With this approach we can disable TEX'S au-
tomatic insertion of \par at every blank line. This

334 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

An Object-Oriented Programming System in TEX

permits greater liberty in the form of text in the
source file. For example, using the \open. . . \close
markup one can write

\open\p{}
This i s a paragraph.

And t h i s i s another sentence
i n the same paragraph.
\cl ose\p

Explicit paragraph markup also eliminates subtleties
that plague LATEX neophytes everywhere, for example,
the significance of a blank line following an environ-
ment.

Many elements count their own occurrences in
a document. Sections, theorems, figures, and equa-
tions are common examples. We call these count-
ing elements. These elements carry attributes that
allow them to maintain and present the count. The
author's class library accomplishes t h s by allocat-
ing count registers for such elements as part of the
@subclass attribute processing, assigning the count
register to the @count attribute in the new class.
This type of register allocation is appropriate for el-
ements, such as document sections, whose context
is not restricted (unlike an item element, which al-
ways appears within a list). Each counting element
also carries a number attribute to present the prop-
erly formatted element count in the document.

A listing element forms the context for i tern el-
ements, and an i tem never appears outside of a list.
The i tern functions somewhat like a counting ele-
ment. It employs number and @count attributes to
present its count in the document, but the count reg-
ister for the i tem element is allocated when the con-
taining list is instantiated. The count register is deal-
located when the 1 i s t element is destroyed. This dy-
namic allocation mechanism avoids placing any con-
straint (other than the number of available count reg-
isters) on the nesting depth of lists.

A section element is a counting block element.
We leave it ungrouped, in deference to TEX'S save
stack. A generic section element could be created as
follows:

\@cl ass\@secti on{\@bl ock\@counti ng} {
\@startg roup{}
\@endgroup{}
<a t t r ibu te overriding and addition>

1
The new attributes would include a @head attribute
for typesetting the section head. This could imme-
diately typeset a stand-alone head, or defer a run-in
head to the subsequent paragraph.

The format of certain elements is independent
of their immediate context. Footnotes are the classic
example, but in K&X there are others: floating envi-
ronments We figure and table, parboxes, minipage,
and paragraph cells w i t h the tabular environment.

We call these independent elements. How does an in-
dependent element separate itself from its context?

Multiple hierarchies. The \@parboxres tore com-
mand constitutes the WX mechanism for separat-
ing an element from its context in the document.
It establishes "ground state" values for a set of TEX
parameters, including \ lef tski p and \rightskip,
\par, \everypar, and so on, from which further
changes are made. The author's class library mod-
ifies t h s approach, offering the ability to created
named "blockstates" consisting of settings for all
block element parameters. Such a state may be es-
tablished at any time, such as at the beginning of an
independent element. A paragraph cell within a table
would likely use one such blockstate and a floating
figure another.

The problem of \everypar is more interest-
ing. It typically carries out processing that one el-
ement defers to another. The information must be
passed globally since the element deferring it may
be grouped. The current W&X implementation sub-
jects \everypar to horrible abuse, dramatically re-
ducing its utility. The author's class library rectifies
this with "parstates", analogous to blockstates but
global in nature. These consist of parameters that
hold information deferred to \everypar, including
any pending run-in heads, flags indcating special in-
dentation or suppression of the space above the next
paragraph block, and the llke. A parstate is an ob-
ject whose attributes contain the parameter values.
A corresponding stack tracks parstate nesting.

The definition of \everypar never changes dur-
ing document processing. It always executes the at-
tribute of its own name from the parstate object on
top of the parstate stack. This attribute refers to its
sibling attributes for any required parstate informa-
tion. Push and pop operations on the stack effect
"grouping" for parstates.

Perhaps this section should have been marked
with a dangerous bend, for it opens a Pandora's box.
The author has concluded that TEX'S save stack pro-
vides insufficient flexibility. The \everypar treat-
ment just described amounts to a separate "save
stack" for parstates. We can replace sole reliance on
TEX'S save stack with different grouping mechanisms
for different sets of parameters.

A hierarchy consists of objects and a stack to
track their nesting apart from other hierarches. Each
object, either class or instance, is part of a single hi-
erarchy. The @element herarchy contains all ele-
ment classes and instances, and the @element class
forms its root, from which all other elements are ul-
timately derived. The author has implemented four
different hierarches for the class library: @element,
@bl ockstate, @parstate, @rowstate. The last per-
tains to rows in tabular material. Rowstates make it
easy to specify different default behavior for table

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 335

William Baxter

column heads and table body entries within the same
column.

An independent element can push and pop the
parstate at its own boundaries to insure that it does
not pick up any stray material from its "parstate con-
text". Or an element can, as part of its end pro-
cessing, push the parstate to defer special treatment
of the subsequent paragraph. After performing the
necessary processing to start the paragraph, that
parstate can pop itself from the parstate stack. This
requires no cooperation from the other parstate ob-
jects on the stack, and therefore does not limit what
one can accomplish within the \everypar process-
ing.

Associating objects with hierarches has another
important function. Two or more instances of a
particular element class can appear simultaneously
within a single document, for example in a nested
enumerated list. The user would see something like
this:

\open\enumerate{}
\open\enumerate{}

\open\i tern{}
. . .
\ c l ose\ i tem

\close\enumerate
\ c l ose\enurnerate

In this example \enumerate and \i tem are the par-
ent class names. What objects should be created?
Where should the attribute values be hidden? The
\@new derives a name for the new object from its hi-
erarchy and stores the new attribute values under
this name. To match this, \@free annihilates the
most-recently-created object in the given hierarchy.
For example, with the definitions

\def\open{\@i n s t a n t i a te }
\def \c l ose{\@anni h i 1 a te }

the first invocation of \open will create an ob-
ject named @element0 and the next will create
@el ementl. Any invocation of \c lose wdl annh-
late the last such object. This convention suffices be-
cause objects within each hierarchy are well nested.

Implementing a Class Library

No single class library can anticipate the multifari-
ous requirements of book publishing. When the in-
evitable occurs, and a new design moves beyond the
capabilities of the available class libraries, the class
library writer must extend the system for the design
programmer. This section briefly describes the OOPS
facilities for writing a class library.

We call one command that defines another
a defining word. The commands \newcommand
and \newenvi ronment are &X defining words.
The \@cl ass and \@i n s t a n t i a te commands from
above are defining words in the author's class library.

A set of low-level defining words in the OOPS pack-
age form the basis for class library creation. Other
macros assist in accessing the information stored in
the attributes of classes and objects. We now present
these programming facilities.

The construction of a new class library begins
with the creation of a new hierarchy. The defmmg
word \@hi erarchy takes a hierarchy name and a list
of attributes as its two arguments. It creates the
hierarchy and a class of the same name, endowing
the class with the attributes in the second argument.
For example, the @element hierarchy described in
the last section was created as follows:

\@hi erarchy\@elernent{
\@class{%

\expandafter\@i nher i t
\next@headparent\@preclass
\g lobal \l e t \ t h i see1 ement\next@object
\@new
\expandafter\@ nher i t
\ t h i see1 ement\@subcl ass

1
\@precl ass{}
\@subclass{}
\@ins tan t ia te {%

\expandafter\@ nher i t
\next@headparent\@preinstant iate
\@new
\@current\@elernent\@i n i t i a l i z e
\@current\@element\@startgroup

\@current\@element\@start

1
\@prei n s t a n t i a te{}
\@i n i t i a1 i ze{}
\@startgroup{\begi ngroup}
\@s ta r t { }
\@anni h i 1 a te {

\@current\@el ernent\@end
\@current\@el ement\@endgroup
\@free

1
\@end{}
\@endgroup{\endgroup}

1
This creates the @element hierarchy and the base
class @element w i t h that hierarchy.

Any hierarchy is assumed to support the three
basic object manipulation commands \@class,
\@ins tan t ia te , and \@anni h i 1 ate. To t h s end,
the \@hierarchy defining word provides functional
default values for the corresponding attributes, thus
insuring that they are always defined.

The definition of the @element :@cl ass ex-
poses the control sequences \next@headparent
and \next@object as storage places for material
parsed by \@cl ass for use by \@new. The list of stor-
age locations is: \next@object for the new object

336 77JGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

An Object-Oriented Programming System in TEX

name, \next@parents for the list of parent classes,
\next@hi erarchy for the hierarchy of the new ob-
ject, and \next@opti ons for the attribute additions
and overriding. The @cl a s s demonstrates a simple
use of these data.

The \@inher i t command takes an objec t :
a t t r i b u t e pair as arguments and executes the cor-
responding command. The \ t h i see1 ement macro
is here purely for the sake of convenience. It could
be replaced with a set of \expandafter commands.

The command \@current takes as arguments
a h i e ra rchy :a t t r i bute pair and executes the in-
dicated attribute from the "current" (most recently
created) instance within the hierarchy.

Several accessories complete the class library
writer's toolkit. These allow setting the value of
an attribute as with \gdef, \xdef, or \global \l e t .
These are \ s e t @ a t t r i bute, \compi 1 e @ a t t r i bute,
and \1 e t @ a t t r i bute. For example, the following in-
vocation defines the bar attribute of the foo object:

\set@attribute\foo\bar{Call me foobar.}

The "current" analogues to these commands take
a hierarchy name in place of the object name.
They are \set@current , \compi 1 eecurrent , and
\l e tecurrent .

The \ac toneat t r ibute command looks for-
ward past a single command, constructs the control
sequence that represents an attribute, and then exe-
cutes the command. In the example below, the com-
mand \nonsense uses as a first argument the con-
trol sequence representing the bar attribute in the
foo object:

The command \expandafter@attr i bute com-
bines \expandafter with \ac ton@at t r i bute. In
the following example the \gi bbe r i s h command
could look forward to see the first level expansion of
the bar attribute in the foo object.

\expandafter@attr i bute\gi bberish\foo\bar

Of course, the "current" analogues also exist:
\acton@current, \expandafter@current.l

These few tools suffice to support the construc-
tion of class libraries to handle a huge variety of el-
ements. We still have not divulged how the informa-
tion that constitutes an object appears to TEX. The
class library writer need not know.

l The imaginative reader will note that these last
four control sequences reveal the storage mecha-
nism used for object attributes. It is considered bad
form to use such information. Moreover, doing so
can cause macros to depend on the underlying im-
plementation, and thereby break them when OOPS
support primitives are added to TEX.

Conclusions

Compatibility with Plain TEX and UTEX. This entire
OOPS package and the markup it employs is fully, but
trivially, compatible with the current plain and LATEX
macro packages. It does make use of a small number
of low-level mX macros, but these can easily be pro-
vided separately. Because the element instantiation

\open\theorem{
\title{OOPS, There It I s}

1
. . .
\cl ose\theorem

executes neither \theorem nor \endtheorem it can
safely coexist with the standard WX invocation

\begin{theorem} [OOPS, There It Is]
. . .
\end{theorem}

The standard LATEX implementation makes
\everypar particularly difficult to use. The mech-
anism of \@parboxrestore can interfere with the
@pars ta te mechanism in the author's class library.
Even the meaning of \par is not constant in LATEX.
A class library written with these constraints in
mind can work around them. Alternatively, the E Q X
macros can be redefined to avoid the interference.

Marking each paragraph as an element consti-
tutes the greatest departure from present-day W X .
It is possible to create a somewhat less capable sys-
tem allowing implicit paragraph instantiation. In the
author's opinion, hiding verbose markup behind an
authoring tool is preferable to dealing with markup
ambiguity.

Shortcomings. This system's Achilles heel is its exe-
cution speed. Comparisons with ordinary LATEX mean
little, however, since the functionality is so diver-
gent. Perhaps the ongoing PC price wars will pro-
vide inexpensive relief. A more blasphemous solu-
tion consists of adding OOPS support primitives to
TEX. The author achieved a twenty percent speed in-
crease through the addition of a single primitive to
TEX.

People familiar with standard LATEX do not al-
ways easily accept the advantage of a different
markup scheme. Document authoring tools that en-
force complete markup while hding the details be-
hmd a convenient user interface promise to remove
this obstacle. Design programmers who work with
LATEX only reluctantly change their approach to pro-
gramming. Questions like "Will this be compatible
with Q X 3 " cannot yet be answered.

Experiences in production. This new system has
seen use in book production with encouraging re-
sults. The author has used the OOPS approach to
typeset tabular material with a colored background
screen spanning the column heads, to handle bizarre

WGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 337

William Baxter

numbering schemes for theorems described above,
and also to handle cases of neighboring elements
interacting (successive definitions sharing a single
backdrop screen). The verbose markup caused some
initial concern to users, but automatic formatting of
the element was ultimately considered more irnpor-
tant.

Futures. The combination of authoring tools, de-
sign editors, and object-oriented macros constitutes
a complete, powerful, and cost-effective document
production system. Authoring tools can hide the
verbose OOPS markup, making it simple for users to
work with. Rich markup in turn allows the automa-
tion of most design element features. Design editing
tools can manipulate classes derived from a partic-
ular class library, or even create new class libraries,
thus reducing the time and skill presently required
to implement a design.

In a commercial book production setting, where
tens of thousands of pages are processed in a sin-
gle year, the prospect of a twenty percent increase
in OOPS code execution speed compels the addition
of a single primitive. Extensions supporting complex
design features are also appropriate, as are more ca-
pable class libraries. An author may not require an
extended TEX or a sophisticated class library to pro-
duce a magnum opus. Adherence to systematic de-
scriptive markup, supported by the OOPS package,
allows a production bureau to apply their more ca-
pable system to final production without destroying
an author's ability to work with the same source fdes.

Future TEX-based typesetting systems and au-
thoring tools can benefit from the techmques pre-
sented here. The advantages the OOPS approach of-
fers are too great to ignore. Everybody should enjoy
them.

TUGboar, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

A World Wide Web Interface to CTAN

Norman Walsh
O'Reilly and Associates, 90 Sherman Street, Cambridge, MA 02140, U.S.A.

norrn@ora.corn

Abstract

There are a lot of different software packages, style files, fonts, etc., in the CTAN
archves. Finding the things you need in a timely fashion can be difficult, as I
found out while writing Making TEX Work. The ability to combine descriptions of
packages with the directory listings from CTAN could help alleviate some of the
difficulty. The HyperText Markup Language (HTML) is the document structuring
language of the World Wide Web and it provides one possible means of combining
different views of the archive into a single vision. The CTAN-Web project is my
attempt to provide this vision.

Introduction familiar with it, is an extremely flexible and power-

A functioning TEX system is really a large collection
of programs that interact in subtle ways. Process-
ing even a relatively simple document like t h s one
requires several programs (TEX, a previewer, and a
printer driver at the very least), most of which read
input files or can be configured in other ways. It was
this complexity that lead me to start writing Making
TEX Work (Walsh 1994), a book I hoped would unravel
many of these intricacies (end of plug ;-).

In the process of writing Making TEX Work, I
looked at a lot of the software packages, style files,
fonts, etc., in the CTAN archives. It really made me
appreciate how much stuff the TEX user community
has made freely avdable. By my estimates there are
more than 3 1,000 files in more than 2,300 directories
in / tex-archive on f t p . shsu. edu.

My first challenge was to find the things that
I wanted to write about. This was a long process
that involved coordmating (at least mentally) the lists
of files in the upper-level CTAN directories, entries
from David Jones' TeX-i ndex, descriptions main-
tained by the CTAN archivists, my own intuitions
about what was available, and the tidbits that I had
collected over the years from Info-TeX postings. It
was occasionally tedious, but it was never really dif-
ficult (at least technically).

When the book was beginning to fall into place
and I was starting to try to track down all the loose
ends, I came to a realization: in the early days, fmd-
ing thngs had been an end as well as a means. Now,
with pressure mounting on an almost daily basis
to finish, I discovered just how hard it was to find
things on CTAN. This is not a criticism of the CTAN
archivists in any way. Without their foresight and
diligent efforts, the task could easily become impos-
sible. It's just a fact: there's a lot of stuff out there.

One tool became invaluable in my daily efforts:
ange-ftp for GNU emacs. GNU emacs, if you aren't

ful editor (it's most common on UNIX workstations,
but versions exist for MS-DOS, Windows, OS/2, VMS,
and a few other platforms). One of the editing modes
of emacs, called dired, allows you to "edit" directo-
ries (a directory listing appears in a window on the
screen). In dired mode, the editing keys let you re-
name, copy, delete, view, and edit files, among other
things. Ange-ftp is an extension for emacs that lets
you edit remote file systems via ftp in dired-mode.
This lets me load the /tex-archi ve/macros direc-
tory from f t p . shsu . edu into an emacs buffer and
view files simply by pointing to them and pressing
"v". Ange-ftp handles all of the transactions with the
ftp client in the background. Ange-ftp made gather-
ing information from README files much easier.

Inspiration

What I really wanted wasn't an easier way to browse
directories, no matter how grateful I was to have that,
but a way of combining the TeX-i ndex and other de-
scriptions with a directory listing in some coherent
way. A typical interaction with CTAN, in my experi-
ence, goes something like ths: I need a widget, that's
under the something directory. Oh! There are sev-
eral things hke that. This one looks interesting. Nope
that's not it. How about this one. Yeah, that's better.
Still, is t h s other one better? Nope. Ok, I'll try the
second one.

I fmd this sort of interaction tedious via ftp.
As it happens, I was also beginning to explore

the World Wide Web (WWW) at the same time, moti-
vated, in part, by experimentation with LATEXZHTML
and other tools that translate TEX documents into
HTML for online documentation projects. Might this
be the answer, I wondered.. .? After several days of
hacking, the first incarnation of CTAN-Web was born;
the CTAN-Web home page is shown in Color Example
16.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Norman Walsh

What is the World Wide Web?

The WWW is a vast collection of network-accessible
information. In an effort to make t h s mforma-
tion manageable, protocols have been developed for
cross-referencing the Web and software written to
browse documents in the Web. One of the most pop-
ular browsers is Mosaic, a browser from the NCSA.]
WWW documents use hypertext to make traversing
between documents transparent, allowing the user to
follow a stream of ideas without regard to where the
embodiment of the ideas exists in the Web.

Hypertext links allow you to build dynamic rela-
tionships between documents. For example, select-
ing a marked word or phrase in the current document
can &splay more information about the topic, or a
list of related topics.

Naturally, WWW documents can contain hyper-
text links to other WWW documents, but they can
also contain links to documents available through
other servers. For example, Gopher servers and
anonymous ftp servers. Documents in the WWW are
addressed by a "universal resource locator" (URL)
that identifies the site from which they are avail-
able and the protocol that should be used to re-
trieve them. The general format of a URL is proto-
col://site/pathname. For example, the URL for the
IAQX help file that I maintain is:

h t tp : / / jasper . o ra . com/texhelp/LaTeX. html

In other words, it is available via the http protocol at
jasper . o ra . com in the file /texhel p/LaTeX. html.

Once retrieved, it is up to the browser to deter-
mine how they should be displayed. In addition to
displaying HTML documents directly, many browsers
can automatically spawn external viewers to view
Postscript documents and image files in a variety of
formats.

What is HTML?

WWW documents are plain ASCII files coded in
HTML (Flynn 1994). HTML provides a convenient way
to describe documents in terms of their structure
(headings, paragraphs, lists, etc.). HTML is really a
particular instance of an SGML document. SGML is
the Standard Generalized Markup Language and it is
defined by the IS0 8879 specification.

The relationship between SGML and HTML can
be a little confusing. SGML provides a general mech-
anism for creating structured documents. HTML
documents are SGML documents that conform to
a single, fixed structure. (The HTML specification
is avadable at h t tp : / / i nfo. cern. ch/hypertext/
WWW/MarkUp/MarkUp. html.)

The figures in this paper are of the X11 version
of Mosiac.

A detaded exploration of structured documen-
tation principles is beyond the scope of this article,
however, a few words may help clarify the picture;
users famdiar with Q X are already famdiar with
structured documentation.

The key notion is that structures (characters,
words, phrases, sentences, paragraphs, lists, chap-
ters, etc.) in a document should be identified by
meaning rather than appearance. For example, here
is a sentence that you might find in an installation
guide (this sentence is coded in TEX):

Use the { \ b f cd} command t o change t o the
(\it /usr/tmp/i n s t a l l } di rectory.

The same sentence might be coded in a struc-
tured way like this:

Use the <command>cd</command> command t o
change t o the <di rectory>/usr/tmp/i ns ta l 1
</d i rectory> di rectory.

The advantage of the structured document is
that it is possible to answer questions about the con-
tent of the document. For example, you might check
to see if all of the commands that are mentioned in
the installation guide are explained in an appendix.
Since commands are explicitly identified, it is easy to
make a list of all of them. In the unstructured case, it
would be very difficult to identify all the commands
accurately.

You can achieve structured documentation in
TEX with macros, but you are never forbidden from
using lower-level commands. The advantage of us-
ing a formal structured documentation system, like
SGML, is that the document can be validated. You can
be sure that the document obeys precisely the struc-
ture that you intended. The disadvantage of a for-
mal system is that it must be translated into another
form (or processed by a specialized application) be-
fore it can be printed, but that is becoming easier. In
the case of HTML, many browsers already exist.

Since an HTML document is described in terms
of its structure and not its appearance, most HTML
documents can be effectively displayed by browsers
in non-graphical environments. There is a browser
for Emacs called W3 and a browser called Lynx for
plain text presentation, for example.

What is CTAN-Web?

CTAN-Web is a collection of WWW documents that
combines descriptions of many packages available
from CTAN with pointers to each of the files in the-
archve. At present, the descriptions come from an
early draft of my book, David Jones' TeX-i ndex, and
the OODescri pt ion files in the archives. Over time,
additional descriptions wdl be added. Figure 3 shows
the top of the / tex-archi ve/macros directory.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

A World Wide Web Interface to CTAN

The CTAN-Web also has the following features:

a s are made directly to other online refer-
ences in the Web. For example, the online help
files provided in the i nfo/html he1 p directory
are also avdable as WWW documents on the
net. This fact is exploited in the descriptions of
these files by creating a hypertext link directly
to the online help.

In addition, font samples can be displayed for
several METAFONT fonts (viewing font samples
requires a browser that understands C I F Mesh2

The CTAN-Web documents are indexed. Users
can perform online queries for material based
upon any word that appears as a filename or in
the online description of any file. Simple con-
ditional searches can also be performed (for ex-
ample, "x or y" or "x and y").

A query for "verbatim and plain" finds 5 files
and 9 dire~tories .~

Each instance of a file that appears in more than
one place in the archive is identified. For ex-
ample, any reference to the file verbatim. s t y
identifies all 7 instances of it in the archive.

Want to know whch files were modified withn
the last 12 days? Or between 1 Jan and 31 Jan
of 1993? Information about the age of each file
is maintained in a separate database, accessi-
ble via a script run by the CTAN-Web server.
This allows you to perform online queries of the
archive by age.

A "permuted index" is constructed each time
the Web is built. This allows you to quickly lo-
cate files by name.

A list of files added or modified in the last 7 or
30 days is also constructed each time the Web
is built.

A tree (hierarchical) view of the archve is also
available. The tree view provides a fast means
of "wallung" down into the lower levels of the
archve.

Reaching CTAN-Web

You can reach the CTAN-Web pages by usingthe URL:
http://jasper.ora.com/ctan.html

Behind the Scenes

For those who are curious, this section provides
a brief description of how the CTAN-Web is con-
structed. The Web is now rebullt on a daily ba-
sis using the most recent information from the
f t p . shsu . edu server.

Samples for all the METAFONT fonts will be
generated shortly.

In the Web built on 20 May 1994.

Handling the descriptions. In order to quickly lo-
cate descriptions for the various packages, I maintain
the collection of descriptions in a directory structure
that parallels the CTAN archives. Each description
file is written in a mixture of TEX and HTML (a mixture
is used so that it may one day be possible to produce
a printed version of the Web). For example, the cur-
rent description of l atex-help-html . z i p is shown
in Figure 1.

Retrieving Nes from the archives. One of the first
problems that had to be solved was how files would
be retrieved from the archves. Whde it's easy to
create a link to a file at an ftp site, in the case of
CTAN-Web that isn't sufficient because CTAN exists
at several sites. The lmk really needs to be made to
the closest ftp site.

Although I suppose it is possible to identify the
closest ftp site from the user's host id, that seemed
impractical. The following compromise was selected
instead: rather than linking files directly to an ftp
site, they are linked to a script. The document
server (httpd) provides a facility for malung links
that cause a program to be executed; the output pro-
duced by this program is then displayed as a WWW
document. By passing the name of the file requested
by the user as an argument to the script, it was pos-
sible to write a retrieval script that dynamically con-
structs a "retrieval document." The retrieval docu-
ment contains links to the requested file at each of
the CTAN hosts. It is then possible for the user to
select the closest host. An example of the retrieval
document created for README. archive-features is
shown in Figure 2.

Selecting a link Within the retrieval document
causes the browser to actually retrieve the file via
anonymous ftp from the selected site.

Documents in the Web. There are three kinds of
documents in the CTAN-Web and within each docu-
ment there are several lunds of lmks.
Directory documents. There is one directory docu-
ment in the Web for each directory in the archve.
Each directory document lists all of the files in the
directory it represents along with their associated de-
scriptions.

Directory names in each document are linked to
the corresponding directory documents. File names
are llnked to filename documents (described below)
or to the retrieval script, depending on whether the
file occurs multiple times in the archive.

The directory document for the tex-archive/
macros directory is shown in Figure 3.
Tree documents. There is one tree document in the
Web for each directory in the archive that contains
subdirectories. The tree document displays three
levels of hierarchy starting at the directory it repre-
sents.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Norman Walsh

<! -- tex-archive/i nfo/html he1 p/latex-help-htm z i p -->
An HTML version of the LaTeX help f i l e created by George Greenwade.
This i s the version provided online a t < t t> jasper .ora. com</tt>.
It i s a lso available i n VMS format (formatted ASCII),
TeXinfo format, HTML format, and as a Microsoft Windows help f i l e .
<!--ONLINE-->
< P>

The LaTeX he1 p f i 1e i s a1 so
<A HREF="ht tp : / / jasper. ora. com/texhel p/LaTeX. 1 a v a i 1 a e onli ne.
<!--/ONLINE-->

Figure 1: The description of 1 atex-he1 p- html . zi p in the Web sources.

Directory names in each document are linked to
the corresponding tree document. If a directory in
the tree does not have subdirectories, it is linked to
its directory document instead.

The tree document for the tex-archi ve/
macros directory is shown in Figure 4.
Filename documents. There is one filename docu-
ment for each file that occurs in more than one place
in the hierarchy. The filename document lists all of
the instances of the filename.

Each instance of the filename in the document
is a link to the directory document where that file
resides in the archve.

The filename document for the verbatim. s t y
file is shown in Figure 5.

Building the Web document. Early versions of
the Web document were constructed from the
FILES. byname list from the server f t p . shsu . edu.
Several Per1 scripts manipulated the listing and con-
structed the Web document.

After a few weeks, it became clear that the
FILES. byname listing was insufficient for construct-
ing the Web document because the list contains no
indication of symbolic links, for example. It is also
poorly organized for my purposes (the necessity of
making multiple passes was causing memory prob-
lems). George Greenwade lundly agreed to run a
script on the archive that extracts more information
and stores it in a form that can be translated into
the CTAN-Web document in a single pass. (This in-
formation is provided in /pub/fornorm. gz, if you're
interested).

Room for Improvement

I plan to improve CTAN-Web in a number of ways.

One of the most important improvements is get-
ting the Web off the node jasper .ora.com and
distributed amongst all the CTAN hosts.

The Internet connection from jasper to the
outside world is actually quite slow and many
users find that the performance is poor.

Assign h e d URLs to each CTAN directory. At
present, most of the URLs are assigned more-or-
less sequentially when the Web is constructed.
This means that the URL for the tex-archi ve/
macros/l atexZe/contri b directory, for exam-
ple, changes over time. This prevents people
from saving the URLs of frequently visited re-
gions of CTAN-Web. The top level directories al-
ready have h e d names.

Clean up the descriptions. Using an automatic
tool to extract the descriptions from several
sources in the archives was a fast way to get a
large number of descriptions, but the process
was not error free. A small, but significant,
number of files in the Web have incorrect de-
scriptions.

Potentially add a report-generating function
that can return an annotated list of the files that
match a particular query.

Conclusion

I'm quite pleased with the CTAN-Web. There is room
for improvement, but I already find it a faster and
more flexible way to search the archives. If only I'd
had it before I wrote the book. Ah well, there's always
the next edition.. .

References

Flynn, Peter. "How to Write HTML Files." Hyper-
text electronic document avadable using the URL
http://www.ucc.ie/info/net/htm1doc.html.
1994.

Walsh, Norman. Making TEX Work O'Reilly & Asso-
ciates, 1994.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

A World Wide Web Interface to CTAN

Figure 2: Example of a retrieval document. Figure 3: The CTAN :/macros directory.

Figure 4: The t e x -a r ch i ve/macros tree document Figure 5: The v e r b a t i m . s t y filename document

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

First applications of SZ: Greek, Arabic, Khmer, Poetica, IS0 ~ ~ ~ ~ ~ / U N I C O D E , etc.

Yannis Haralarnbous
Centre dlEtudes et de Recherche sur le Traitement Automatique des Langues
Institut National des Langues et Civihsations Orientales, Paris.
Private address: 187, rue Nationale, 59800 Lille, France.
Yanni s .Haralambous@univ-lillel. f r

John Plaice
Departement d'informatique, Universite Laval, Ste-Foy, Quebec, Canada G1K 7P4

p l a i ce@i f t . u l aval . ca

Abstract

In this paper a few applications of the current implementation of R are given.
These applications concern typesetting problems that cannot be solved by TEX
(consequently, by no other typesetting system known to the authors). They
cover a wide range, going from calligraphic script fonts (Adobe Poetica), to plain
Dutch/Portuguese/Turkish typesetting, to vowelized Arabic, fully diacriticized
scholarly Greek, or decently kerned Khmer.

For every chosen example, the particular difficulties, either typographcal or
TEXnical (or both), are explained, and a short glance to the methods used by !2
to solve the problem is given. A few problems Q cannot solve are mentioned, as
challenges for future Cl versions.

On Greek, ancient and modern (but rather
ancient than modern)

Diacritics against kerning. It is in general expected
of educated men and women to know Greek letters.
Already in college, having used 0 for angles, y for
acceleration, and n to calculate the area of a round
apple pie of given radius, we are all familiar with
these letters, just as with the Latin alphabet. But the
Greek language, in particular the ancient one, needs
more than just letters to be written. Two lunds of
diacritics are used, namely accents (acute, grave and
circumflex), and breathings (smooth and raw) which
are placed on vowels; breathings are also placed on
the consonant rho.

Every word has at most one accent1, and 99.9%
of Greek words have exactly one accent. Every word
starting with a vowel has exactly one breathing2. It
follows that writing in Greek involves much more
accentuation than any Latin-alphabet language, with
the obvious exception of Vietnamese.

How does TEX deal with Greek diacritics? If the
traditional approach of the \accent primitive had
been taken, then we would have practically no hy-

Sometimes an accent is transported from a
word to the preceding one: &vOpwn6q T L ~ instead of
&vOpwnoq, ziq, so that typographically a word has
more than one accent.

'With one exception: the letters pp are often
written $6, when inside a word: no$bG.

phenation (wbch in turn would result in disastrous
over/underfulls, since Greek can easily have long
words like cjtop~volapuyyoloy~x~), no kerning, and a
cumbersome input, involving one or two macros for
every word.

The first approach, originated by Silvio Levy
(1988), was to use TEX'S ligatures ('dumb' ones first,
'smart' ones later on) to obtain accented letters out
of combinations of codes representing breathings (>

and <), accents (' , ' and - or =) and the letters them-
selves. In this way, one writes > ' h to get 4. Thls
approach solved the problem of hyphenation and of
cumbersome input.

Nevertheless, t h s approach fails to solve the
kerning problem. Let's take the very common case
of the article zb (letter tau followed by the letter omi-
cron); in almost all fonts there is a kerning instruc-
tion between these letters, obviously because of in-
variant characteristics of their shapes. Suppose now
that omicron is accented, and that one writes t ' o to
get tau followed by omicron with grave accent. What
TEX sees is a 't' followed by a grave accent. No kern-
ing can be defined for these two characters, because
we have no idea what may follow after the grave ac-
cent (it can very well be a iota, and usually there is no
kerning between tau and iota). When the letter omi-
cron arrives, it is too late; TEX has already forgotten
that there was a tau before the grave accent.

A solution to this problem would be to write di-
acritics after vowels ("post-positive notation"). But

344 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

First applications of Q: Greek, Arabic, Khmer, Poetica, IS0 1 0 6 4 6 / ~ ~ 1 c O ~ ~ , etc.

t h s contradicts the visual characteristics of diacrit-
ics in the upper case, since these are placed on
the left of uppercase letters: "Eorp could hardly be
transliterated E>'ar. And, after all, TEX should be
able to do proper Greek typesetting, however the let-
ters and diacritics are input.

R solves this problem by using an appropriate
chain of R Translation Processes (QTPs), a notion
explained in Plaice (1994): as example, consider the
word Zap:

1. Suppose the user wishes to input hs/her text
in 7-bit ASCII; he/she will type > ' ea r , and this
is already ISO-646, so that no particular input
translation is needed. Another choice would be
to use some Greek input encoding, such as rso-
8859-7 or EAOT; then he/she may as well type
> ' Eap or >Cap (the reason for the absurd compli-
cation of being forced to type either > ' E or >t
to obtain Z, is that "modern Greek" encodings
have taken the easy way out and feature only
one accent, as if the Greek language was born
in 1982, year of the hasty and politically moti-
vated spelling reform). The first RTP will send
these codes to the appropriate 16-bit codes in
IS0 ~ O ~ ~ ~ / U N I C O D E : Oxlf14 for Z, 0 ~ 0 3 b l for a,
and 0 x 0 3 ~ 1 for p.

2. Once R knows what characters it is dealing with
(Qrs default internal encoding is precisely rso-
10646), it will hyphenate using 16-bit patterns.

3. Finally, an appropriate QTP wdl send Greek
IS0 10646 /~~1CO~E codes to a 16-bit virtual
font (see next section to find out why we
need 1 6 bits), built up from one or more 8-bit
fonts. This font contains kerning instructions,
applied in a straightforward manner, since we
are now dealing with only three codes: <Z>, <a>
and <p>. No auxiliary codes interfere anymore.

4. xdvi copy3 will de-virtualize the dvi file and re-
turn a new dvi file using only 8-bit fonts, com-
patible with every decent dvi driver.

By separating tasks, hyphenation becomes more
natural (for TEX one has to use patterns including
auxiliary codes ' , ' , = etc.). Furthermore, an addi-
tional problem has been solved en passant: the prim-
itives \1 efthyphenmi n and \righthyphenmi n apply
to characters of \catcode 12. To obtain hyphenation
between clusters involving auxiliary codes, we have
to declare these codes as 'letter-l~ke characters'. For
example, the word Eap, written as > 'ear: the codes
> and ' must be considered as letter-like (non-trivial
\I ccode) t o allow hyphenation; but this means that
for TEX, lap has 5 letters instead of 3, and hence even

In the name of this program, which is an ex-
tended version of Peter Breitenlohner's dvi copy, 'x'
stands for 'extended', not for 'X-Window'.

if we ask \lefthyphenrnin=3, we d l still get the
word hyphenated as tap!! Q solves this problem by
hyphenating after the translation has been done (in
t h s case >'e or > ' E or >i - 2).

Dactyls, spondees and 16-bit fonts. Scholarly edi-
tions of Greek texts are slightly more complicated
than plain ones4, one of the add-ons being a third
level of diacritization: syllable lengths.

One reads in Betts and Henry (1989, p. 254):
"Greek poetry was composed on an entirely differ-
ent principle from that employed in English. It was
not constructed by arranging stressed syllables in pat-
terns, nor with a system of rhymes. Greek poets em-
ployed a number of different metres, all o f which ron-
sist o f a certain fixed arrangement o f long and short
syllables". Long and short syllables are denoted by
the diacritics macron and breve. The diacritics are
placed between the letter and the regular diacritic, if
any (except in the case of uppercase letters, where
they are placed over the letter while regular diacrit-
ics are placed to its leftL5

The famous first two verses of the Odyssey
"AvGpa pot BVVEXE, Moboa nohi)rpoxov, Sc paXa xoAXbl

nh6yxOq tnei Tpoiqc iepbv nrohie8pov Enapoe

form hexameters. These consists of six feets: four
dactyls or spondees, a dactyl and a spondee or
trochee (see again Betts and Henry 1989 for more
details). One could write the text without accents or
breathngs to make the metre more apparent:
A V F ~ & poi EvvEni,, MoGoG n6AEzp6n6v, 65 &&A& n6AXZ

nXrTiyxB? End TpoSqg Zp6v nr6hiE8pijv inipoi

or one could decide to typeset all types of diacritics:
" A V G ~ & poi EvvEnE, MMoG x6hihp6~c6v, 8 5 pkh6 n6hh&

nkiiyx6t i x t Tpotqc kP$v xt6;ik8p6v XnipoE

Having paid a fortune to acquire the machme
that sits between the keyboard and the screen, one
could expect that hyphenation of text and kerning
between letters remains the same, despite the con-
stantly growing number of hacritics. Actually this
isn't possible for TEX: there are exactly 345 combi-
nations of Greek letters with accents, breathings, syl-
lable lengths and subscript iota; TEX can handle at
most 256 characters in a font. Therefore Q is neces-
sary for hyphenation of Greek text, whenever syllable
lengths are typeset.

In t l s case, things do not run as smoothly as in
the previous section: although 345 is a small number
compared to 65,536 (= 216), ISO-people decided that

4 After all, scholars have been studying Greek text
for more than 2,000 years now.

5 These additional diacritics are also used for a
different purpose: in prose, placed on letters alpha,
iota or upsilon, they indicate if they are pronounced
long or short (this time we are t a l h g about letters
and not about syllables).

TCTGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Yannis Haralambous and John Plaice

there is not room enough for all combinations of Arabic, or "The Art of separating tasks"
accents, breathgs and syllable lengths6

Whenever IS0 ~ O ~ ~ ~ / U N I C O D E comes too short
for our needs, we use the private zone. Just as in
the TV serial The Twilight Zone, in the private zone
anything can happen. In the case of Q all opera-
tions remain internal, so that we have absolute free-
dom of d e h g characters: according to the 1993-
05-01 version of so-10646-1, the private zone con-
sists of characters OxeOOO to Oxf f f d (of group 0, that
is the 16-bit part of rso-10646-l), a total of 8,190 po-
sitions.

Q wdl treat the input like in the previous sec-
tion, but letters with macron and breve diacritics will
occupy internal positions in the private zone. The
rest of the treatment will be exactly the same. As for
the transliterated input one could take A and - to de-
note macron and breve (after having changed their
catcodes so that they do not interfere with math op-
erators), or any other combination of 7-bit or 8-bit
codes.

A dream that may come true. As stated by the first
author in his Cork talk, back in 1990, h s dream
was-and still is-to draw a Greek font based on the
famous ((Grecs du Roi)) typeface by Claude Gara-
mont, graved in 1544-46 for the lung Fran~ois I. Ths
typeface was designed after a manuscript of "Ayye-
Xoc Bapy-ijx~oq, a Cretan, calligrapher and reader of
Greek at the French Court, in the beginning of the
XVI century. There are 1327 different types, most of
them ligatures of two or more letters (sometimes en-
tire words). One can read in Nationale (1990) that
"this typeface is the most precious piece o f the col-
lection [of the French National Printing House]", cer-
tainly not the least of honors! Q is the ideal plat-
form for typesetting with this font, since it would
need only an additional QTP to convert plain Greek
input into ligatures. The author hopes to have fin-
ished (or, on a more realistic basis, to have brought
to a decent level) t h s project in time for the Interna-
tional Symposium "Greek Letters, From Linear B to
Gutenberg and from G to Y", which wdl take place in
Athens in late Spring 1995, organized by the Greek
Font Society7.

Nevertheless, they included lower and upper al-
pha, iota and upsilon with macron and breve, prob-
ably for the reasons explained in the previous foot-
note. However, combining diacritics must be used
to code letters with macronbreve and additional
diacritics.

7For additional information on the Syrnpo-
sium, contact 'Ezatpeia 'EhXqvixGv TunoypacprxGv
Czoix~iwv, 'Ehhavixou 39-41, 116 35 'A0-ijva, Greece,
or Michael S. Macrakis, 24 Fieldmont Road, Belmont,
MA 02 178-2607, USA.

Plain Arabic, quick and clean and elegant. Arabic
typesetting is a beautiful compromise between West-
ern typesetting techniques (h t e number of types,
repeated ad infiniturn) and Arabic calligraphy (id -
nite number of arbitrarily complex ligatures). We can
subdivide Arabic ligatures into two categories: (a)
mandatory ones: letter connections (b + 7 - e) and
the special ligature la-alif (J + I - J) , and (b) op-
tional ones, used for esthetic reasons.

The second category of ligatures corresponds to
our good old 'fi' ,'fl' ,etc. They depend on the font
design and on the degree of artistic quality of a doc-
ument. The first author has made a thorough clas-
sification of esthetic ligatures of the Egyptian type-
case (see Haralambous 1992, reprinted in Haralam-
bous 1993~). Here is an example of the ligaturing
process of the word u, following Egyptian typo-
graphical traditions:

J ~ ; j (letters not connected);

&" (only mandatory ligatures, connecting let-
ters);

9" (esthetic ligature between the first two let-
ters);

3" (esthetic ligature between the first three let-
ters).

To produce more than 1,500 possible ligatures
of two, three or four letters, three 256-character ta-
bles were necessary. Each ligature is constructed by
superposition of small pieces. Once TEX knows which
characters to take, and from which font, it only needs
to superpose them (no moving around is necessary).
The problem is to recognize the existence of a lig-
ature and to find out which characters are needed.
This process is hghly font-dependent. A different
font-for example in Kuffic or Nastaliq style-may
have an entirely different set of ligatures, or none
at all (like the plain font, in whch the two words

d& l are written, that is widely used in com-
puter typesetting because of its readability); never-
theless, the mandatory ligatures remain strictly the
same, whatever font is used.

Up to now, there are three solutions to the prob-
lem of mandatory Arabic ligatures:

First, by K. Lagally (19921, is to use TEX macros
for detecting and applying mandatory ligatures
(we say: "to do the contextual analysis"). Ths
process is cumbersome and long. It is hlghly de-
pendent on the font encoding and the macros
used can interfere with other TEX macro pack-
ages. All in all, it is not the natural way to treat
a phenomenon whch is a low-level fundamental
characteristic of the Arabic script.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

First applications of Q: Greek, Arabic, Khmer, Poetica, IS0 ~ O ~ ~ ~ / U N I C O D E , etc.

Second, by the first author (Haralambous
1993b), is to use "smart" TEX font ligatures
(together with TEX--XgT, the bi-directional
version of TEX); t h s process is philosophically
more natural, since contextual analysis is
done behmd the scenes, on the very lowest
level, namely the one of the font itself. It does
not depend on the font encoding, since every
font may use its own set of ligatures. The
disadvantage lies in the number of ligatures
needed to accomplish the task: about 7,000!
The situation becomes tragic when one wants
to use a dozen Arabic fonts on the same page:
TEX will load 7,000 probably strictly identical
ligatures for each font. You need more than
BigTEX to do that.

Third, also by the first author (Haralambous
1993b), is to use a preprocessor. The advan-
tage is that the contextual analysis is done by
a utllity dedicated to this task, with all possi-
ble bells and whstles (for example adding vari-
able length connecting strokes, also known as
'keshideh'); it is quick and uses only a very small
amount of memory. Unfortunately there are the
classical disadvantages of having a preproces-
sor treat a document before TEX: one file may
\ i npu t another file, from any location of your
net, and there is no way to know in advance
which files will be read, and hence have to be
preprocessed; preprocessor directives can in-
terfere with TEX macros; there is no nesting be-
tween them and t h s can easily produce errors
with respect to TEX grouping operations, etc.

None of these methods can be applied for large
scale real-life Arabic production: in all cases, the Ara-
bic script is treated as a 'puzzle to solve' and, in-
evitably, TEX'S performance suffers.

We use QTPs to give a natural solution to the
problem:, consider once again the example of the
word J.d :

First, &ii is read by Q, either in Latin translit-
eration (tHml) or in rso-8859-6, or ASMO, or
Macintosh Arabic, or any decent Arabic script
input encoding.

The first QTP converts t h s input into
IS0 ~ O ~ ~ ~ / U N I C O D E codes for Arabic letters:
Ox062a ("), Ox062d ($, 0x0645 (?), 0x0644 (Jl;

IS0 ~ O ~ ~ ~ / U N I C O D E being a logical way of
codifying Arabic letters, and not a graphcal
one, there is no information on their contextual
forms (isolated, initial, mehal, final). The
second QTP sends these codes to the private
zone, where we have (internally) reserved
positions for the combinations of Arabic
characters and contextual forms. Once t h s is
done, Q knows the form of each character.

The t b d QTP simply translates these codes to
a 16-bit standard Arabic TEX font encolng (this
is a minor operation: the private zone being lo-
cated at the end of the 16-bit table, we move the
whole block near to the beginning of the table).

If the font has no esthetic ligatures, we are done:
Q will send the results of the last QTP to the
DVI file, and produce &&. On the other hand,
if there are still esthetic ligatures-as in # -
then these will be included in the font, as 'smart'
ligatures. Since the font table can have as many
as 65,536 characters, there is plenty of room for
small character parts to be ~ombined.~

What we have achieved is that the fundamental
process of contextual analysis is done by background
machmery (just like TEX hyphenates and breaks para-
graphs into lines), and that the optional esthetic re-
finements are handled exclusively by the font (in
analogy to Roman fonts having more ligatures than
typewriter ones, etc.).

Vowelized Arabic (things get harder). In plain con-
temporary Arabic, only consonants and long vowels
are written; short vowels have to be guessed by the
reader, using the context (the same consonants with
different short vowels, can be understood as a verb, a
noun, an adjective etc.). When it is essential to spec-
ify short vowels, small diacritics are added over or
under the letters. Besides short vowels, there are also
diacritics for doubling consonants, for inhcating the
absence of vowel, and for the glottal stop (like in "Oh-
oh"): counting all possible combinations, we obtain
14 signs. These diacritics can give TEX a hard time,
since they have to be coded between consonants, and
hence interfere in the contextual analysis algorithm:
for example, suppose that TEX is about to typeset let-
ter x, which is the last letter of a word, followed by a
period. Having read the period, TEX knows that the
letter has to be of final form (one of the 7,000 liga-
tures has to be <x in medial form> + <.> - <x in fi-
nal form><.>). Now suppose that the letter is imme-
diately followed by a short vowel, whch in our case
is necessarily placed between the letter xand the pe-
riod. TEX'S smart ligatures cannot go two positions
backwards; when TEX discovers the period after the
short vowel it is too late to convert the medial xinto
a final one.

Fortunately, RTPs are clever enough to be able
to calculate letter forms, whatever the diacritics sur-
rounding them (which is exactly the attitude of the

8 If these esthetic ligatures are used in several
fonts, it might be possible that we have the same
problem of overloading Q's font memory; in this
case, we can always write a fourth QTP, which would
systematically make the 'esthetic analysis' out of the
contextually analyzed codes.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Yannis Haralambous and John Plaice

human typesetter, who first typesets the letters, and
then adds the corresponding diacritics).

Nevertheless, RTPs are not perfect, and there
are problems whch cannot be solved, even by the
most judicious RTP: for example, the positioning of
diacritics. We all know that TEX (and hence also Q,

whch is no more than an humble extension of TEX)
places all elements on a page by using boxes. Unfor-
tunately, the placement of diacritics requires more
information than just the height, width, depth and
italic correction of a character; in some cases, a real
insight into the shape of the character itself and the
surrounding characters is necessary (think of liga-
tures constructed vertically out of four letters, each
one having its own diacritic).

Ths problem can easily be solved for an (esthet-
ically) non-ligatured font: counting all possible let-
ters (not to forget Farsi, Urdu, Pashto, Sindh, Kirghz,
Uigur and other languages using variants of Arabic
letters), in all possible forms one may end up with a
figure of no more than a thousand glyphs. Combin-
ing these glyphs with the 14 diacritical signs, combi-
nations would result in no more than 14,000 font po-
sitions, a figure well under the 65,536 character limit.
Since the private IS0 1 0 6 4 6 / ~ ~ 1 C o ~ ~ zone is not big
enough to handle so many characters, we would use
an additional RTP to send combinations of <contex-
tually analyzed consonant or long vowel> and <di-
acritic> to codes in the output font encoding. The
advantage of this method is that every diacritic can
be placed indvidually (assuming a minute to find the
ideal position for a diacritic is needed, the font can be
completed in four weeks of steady work), or one can
use QDTEXVPL methods to place the diacritics auto-
matically, and then make the necessary corrections.

Unfortunately the number of necessary font po-
sitions grows astronomically when we consider 2- or
3-letter ligatures, where each letter can have a dif-
ferent diacritic. One of the future challenges of the
Q project will be to analyze Arabic script characters
and find the necessary parameters to determine dia-
critic positioning, just like D.E. Knuth did for mathe-
matical typesetting. It should be noted that despite
the huge complexity of t h s task, we remain in the
strict domain of Arabic typography, which is after all
no more than a reduced and simplified version ofAra-
bic calligraphy.

Multiscript languages: "do you read Vietnamese?"
Both Westerners and Arabs had the-not so democra-
tic-habit of imposing their alphabet on nations they
conquered (either militarily, religiously, culturally or
technologically). So it happens that we can all read
Vietnamese (but not understand it) just as any Arab
can read Malay and Sindh, and not understand a
word (except perhaps for some Arabic words which
accompanied the alphabet in its journey).

In some cases, more than one script remained in
use for the same language and attempts are made to
clarify and standardize the equivalences between let-
ters of these scripts, in order to provide an efficient
transliteration algorithm.

The first author has worked on two cases involv-
ing the Arabic script: Berber and Comorian.
Berber: a language with three scripts and two writ-

ing directions. The Berber language (Berbers call it
"Tamazight") can be written in Arabic, Latin or native
("Tifinagh") script. The first author has developed,
under the guidance of Salem Chaker,g a Tifinagh font
in METAFONT. Here is a small sample of Berber text,
written in left-to-right Tifmagh:

X f l C f I - i , A - X f 0. X f CX=:O. I f C - X f il.
Il\\.IX A f XC:OX-I\i A -X X f O . I X.;0*8X
A-XII-Ef I f X. I\:IIIC.IX-AA A - X f C f 0 I
:Xl l \ \ f A C.Wf I f MI. f C - X f i l I f C f 0-1,
XX.O:I-XIX i l C f#O., AXX f ICO-I, i l C f X-
A:01, C.C. X f X " X o X f IIC +#+=-I : XX-0:I
lCll\\-.MI f W C I : I IXXf I , A =f - X - f 11.1, A
=-SI S::AC A f X:AOX-fW .++I :O X XXX-
X:l f I-EIC-01.

Follows the same text in right-to-left Tifinagh:

. l i t X - 7 t I .O:=X7tX - 0 t X - A , i . l t lCtX
X8.0;.X I - 0 t X X -A i/ l_XO:7X +A XI.NII
I O t 7 t X -A AA-XI.ICII:/I .XtltZl.IIX-A
, I _O t7+ I I i t X . 7 t . I W t l t W . I AtNIIX:
- X t 1Ci ,I.OICt XXA ,.O#t 1Ci XIX-I:O*XX
I:O-XX : I.=+#+ I C E t X o X o X t X -3.3 ,10:A
A , I - l l t -X - t= A , I tXX7 : I 7 W t IW.-//Ill[:
-XXX X 0: I$+. Wt-X0A:X +A 7A::% 13.=

.IO.IC9.lt I:X

and in Arabic script:

The encoding of these fonts is such that one can
output the same TEX input in Latin transliteration,
left-to-right Tifinagh, right-to-left Tifmagh or Arabic.

Director of the Berber Studies Department of the
National Institute of Oriental Languages of Paris

348 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

First applications of R: Greek, Arabic, Khmer, Poetica, IS0 ~ O ~ ~ ~ / U N I C O D E , etc.

All one needs to change is a macro at the beginning.
Accomplishmg this feature for Latin and Tifinagh
was more-or-less straightforward; not so for Arabic.
Unfortunately, that font has all the problems of plain
Arabic fonts: it needs more than 7,500 ligatures to
do the contextual analysis, and is overloaded: there
is no longer room to add a single character, an annoy-
ance for a language that is still under the process of
standardization.

Another source of difficulties is the fact that the
equivalences between Latin, Tifinagh and Arabic are
not immediate. Some short vowels are written in the
Latin text, but not in the Arabic and Tifinagh ones.
Moreover, double consonants are written explicitly in
Latin and Tifinagh, while they are written as a single
consonant with a special diacritic in Arabic. And
perhaps the most difficult problem is to make every
Berber writer feel "at home", regardless of the script
he/she uses: one should not have the impression
that one script is privileged over the others!

Finally, the last problem (not a minor one when
it comes to real-life production) is that we need a spe-
cial Arabic font for Berber, because of the different
input transliteration: for example, while in plain Ara-
bic transliteration we use 'v' for 3 and 'sh' for &,
in Berber we are forced to use 'g' for the former and
'c' for the latter. There are two supplementary let-
ters used for Berber in Arabic script: and j; these
letters are also used in Sindhi and Pashto, 'so that
the glyphs are already covered by the general Arabic
TEX system; but in Berber, they have to be transliter-
ated as 'j' and 'z', because of the equivalences with
the Latin al~habet . This forces us to use a different
transliteration scheme than the one for plain Arabic,
and hence-because of TEX'S inability to clearly sepa-
rate input and output encoding-to use a differently
encoded TEX output font. Imagine you are typeset-
ting a book in both Berber and Arabic; you will need
two graphically identical fonts for every style, point
size, weight and font f a y , each one with more than
7,000 ligatures. And we are just talking of (estheti-
cally) non-ligatured fonts!

Q solves this problem by using the same out-
put fonts for Berber and plain Arabic. We just need
to replace the first QTP of the translation chain:
the one that converts raw input into IS0 10646/
UNICODE codes. Berber linguists can feel free to in-
vent/introduce new characters or diacritics; as long
as they are included in the IS0 ~ O ~ ~ ~ / U N I C O D E table
we wdl simply have to make a slight change to the
first QTP (and if these signs are not yet in IS0 10646/
UNICODE we will use the private zone).

Comorian: African Latin versus Arabic. A similar
situation has occurred in the small islands of the Co-
mores, between Madagascar and the African conti-
nent. Both the Latin alphabet (with a few additions
taken from African languages) and the Arabic one are

used. Because of the many sounds that must be dis-
tinguished, one has to use diacritics together with
Arabic letters. These diacritics look llke Arabic dia-
critics (for practical reasons) but are not used in the
same way; in fact, they are part of the letters, just llke
the dots are part of plain Arabic letters.

Once again, the situation can easily be handled
by an QTP. Whde it is still not clear what should be
proposed for insertion into IS0 ~ O ~ ~ ~ / U N I C O D E (this
proposal, made by Ahmed-Chamanga, a member of
the Institute of Oriental Languages in Paris, is now
circulating from Ministries to Educational and Reli-
gious Institutions, and is being tested on natives of
all educational levels), Comorians can already use
R for typesetting, and upgrade the transliteration
scheme on the fly.

Khmer

As pointed out in Haralambous (1993a), the Khmer
script uses clusters of consonants, subscript conso-
nants, vowels and diacritics. Inside a cluster, these
parts have to be moved around by TEX to be posi-
tioned correctly. It follows that TEX must use \kern
instructions between individual parts of a cluster.
Because of these, there is no kerning anymore: sup-
pose that characters 2 and PC need to be kerned; and
suppose that the consonant 2 is (logically) followed
by the subscript consonant n, whch is (graphically)

placed under t h s letter: !PC. For TEX, 2 is not irnme-

diately followed by PC anymore, and so no kerning
between these letters will be applied; nevertheless,
graphically they still are adjacent, and hence need
eventually to be kerned.

Q uses the sledgehammer solution to solve this
problem: we define a 'big' (virtual) Khmer font, con-
taining all currently known clusters. As already men-
tioned in Haralambous (1993a), approximately 4,000
codes would be sufficient for this purpose. And of
course one could always use the traditional T~Xmeth-
ods to form exceptional clusters, not contained in
that font.

As in Arabic, we deal with Khmer's complexity
by separating tasks. A first QTP will send the input
method the use has chosen, to IS0 ~ O ~ ~ ~ / U N I C O D E
Khmer codes (actually there aren't any IS0 10646/
UNICODE Khmer codes yet, but the first author has
submitted a Khmer encoding proposal to the appro-
priate IS0 committees, and expects that soon some
step will be taken in that direction-for the moment
we will use once again the private zone). A sec-
ond QTP will analyze these codes contextually and
will send groups of them to the appropriate cluster
codes. The separation of tasks is essential for allow-
ing multiple input methods, without redefining each
time the contextual analysis-which is after all a ba-
sic characteritics of the Khmer writing system. R will

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 349

Yannis Haralambous and John Plaice

send the result of the second QTP to the dv i file, us-
ing kerning information stored in the (virtual) font.
Finally, xdvi copy will de-virtualize the dv i file and
create a new file using exclusively characters from
the original 8-bit Khmer font, described in Haralam-
bous (1993a).

Adobe Poetica

Poetica is a chancery script font, designed by Robert
Slimbach and released by Adobe Systems Inc. Stating
Adobe's promotional material, "The Poetica typeface
is modeled on chancery handwriting scripts developed
during the Italian Renaissance. Elegant and straight-
forward, chancery writing is recognizable as the basis
for italic typefaces and as the foundation of modern
calligraphy. Robert Slimbach has captured the vital-
ity and grace of this writing style in Poetica. Char-
acteristic of the chancery hand is the common use of
flourished letterforms, ligatures and variant charac-
ters to embellish an otherwise formal script. To cap-
ture the variety of form and richness of this hand,
Slimbach has created alternate alphabets and charac-
ter sets in his virtuoso Poetica design, which includes
a diverse collection o f these letterforms."

Technically, the Poetica package consists of 21
Postscript fonts: Chancery I-IV, Expert, Small Caps,
Small Caps Alternate, Lowercase Alternates I-II, Low-
ercase Beginnings I-II, Lowercase Endings I-II, Liga-
tures, Swash Caps I-IV, Initial Swash Caps, Amper-
sands, Ornaments. The ones of particular interest
for us are Alternate, Beginnings, Endings and Liga-
tures, since characters from these can be chosen au-
tomatically by R. The user just types plain text, pos-
sibly using a symbol to indicate degrees of alterna-
tion. An QTP converts the input into characters of
a (virtual) 16-bit font, including the characters of all
Poetica components. Using several QTPs and chang-
ing them on the fly will allow the user to choose the
number of ligatures he/she will obtain in the output.
It will also allow us to go farther than Adobe, and de-
fine kerning pairs between characters from different
Poetica components.

See Fig. 1 for a sample of text typeset in Poetica.

IS0 UNICODE and beyond

It is certainly not a trivial task to fit together char-
acters from different scripts and to obtain an opti-
cally homogeneous result. Often the esthetics inher-
ent to different writing systems do not allow suffi-
cient manipulation to make them 'look allke'; it is not
even trivial if t h s should be tried in the first place:
suppose you take Hebrew and Armenian, and mod-
ify the letter shapes until they resemble one another
sufficiently, to our Western eyes. It is not clear if
Armenian would still look like Armenian, or Hebrew
like Hebrew; furthermore one should not neglect the

psychological effects of switching between scripts
(and all other changes the switch of scripts implies:
language, culture, state of mind, idiosyncracy, back-
ground): the more the scripts differ, the easier this
transition can be made.

The only safe thing we can do with types from
different origins is to balance stroke widths so that
the global gray density of the page is homogeneous
(no "holes" inside the text, whenever we change
scripts).

These remarks concern primarily scripts that
have significantly Mferent esthetics. There is one
case, though, where one can apply all possible means
of uniforrnization, and letters can be immediately
recognized as belonging to the same font family:
the LGCAI group (LGCAI stands for "Latin, Greek,
West/East Cyrillic, African, Vietnamese and IPA").
Very few types cover the entire group: Computer
Modern is one of them (not precisely the most beau-
tiful), Unicode Lucida another (a nice Latin font but
rather a failure in lowercase Greek); there are Times
fonts for all members of this group, but there is no
guarantee that they belong to the same Times style,
similarly for Helvetica and Courier. Other adapta-
tions have been tried as well and it is to be ex-
pected that the success (?) of Windows NT will lead
other foundries into "extending" their typefaces to
the whole group lo.

Fortunately, TEX/Q users can already now type-
set in the whole LGCAI range, in Computer Modern1'
(by eventually adding a few characters and correcting
some others). The 16-bit font tables of Q allow:

1. hyphenation patterns using arbitrary characters
of the group;

2. the possibility of avoiding frequent font
changes, for example when switchng from
Turkish to Welsh, to Vietnamese, to Ukrainian,
to Hawsa;

3. potential kerning between all characters.

But Q can go even beyond that: one can
include different styles in the same (virtual) font;
looking at the IS0 ~ O ~ ~ ~ / U N I C O D E table, one sees
that LGCAI characters, together with all possible
style-dependent dingbats and punctuation, fit in 6

lo As a native African pointed out to the first au-
thor, this Mrlll also mean that Africans will find them-
selves in the sad and paradoxical situation of hav-
ing (a) fonts for their languages, (b) computers, since
Western universities send all their old equipment to
the Third World, but (c) no electricity for running
them and using the fonts.. .

l 1 Definitely, sooner or later some institution or
company will take the highly praisable initiative of
sponsoring the development o f other METRFONT

typefaces; the authors would like to encourage this
idea.

350 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

First applications of R: Greek, Arabic, Khmer, Poetica, IS0 ~ O ~ ~ ~ / U N I C O D E , etc.

Figure 1: Sample of the Poetica typeface.

rows (1,536 characters). This means, that-at least
theoretically-a virtual R font can contain up to 42
(!) style variations12 of the whole LGCAI group,
for example Italic, Bold, Small Caps, Sans Serif,
Typewriter and all possible combinations [a total of
24 = (Roman or Italic) x (normal or bold) x (plain or
small caps13) x (Serif or Sans Serif or Typewriter)].
Defining kerning pairs between all different styles
will avoid the use and misuse of \/ (italic correction)
and give a better appearance to mixed-style text.

It Mlll be quite an experience to make such a
font, since many African and IPA characters have no
uppercase or italic or small caps style defined yet;
see Jijrg Knappen's paper on African fonts (Knappen
1993) for the description of a few problematic exam-
ples and the solutions he proposes.

Dutch, Portuguese, Turkish: the easy way

These three languages (and maybe others?) have
at least one thing in common: they need fonts
with a slightly different ligature table than the
one in the Cork encoding. Dutch typesetting uses
the notorious 'ij' ligature (think of the names of
people very well known to us: Dijkstra, Eijkhout,
van Dijk, or the name of the town Nijmegen or the
lake IJselmeer); this ligature appears in the Cork
encoding (as well as in IS0 ~ O ~ ~ ~ / U N I C O D E) , but
until now there was no user-transparent means of

l2 The authors would like to emphasize the fact
that it is by no means necessary to produce all styles
out of the same METAFONT code, as is done for
Computer Modern. As a matter of fact the font
we are talking about can very well be a mixture of
Times, Helvetica, Courier; the advantage of having
them inside the same structure is that we can define
kerning pairs between characters of different styles.

l3 The figure is actually less than 18, since only
lowercase small caps are needed.. .

obtaining it. In R you just need to place the macro
\ inputtrans1 at ionldutchi j) into the expansion
of the Dutch-switching macro; according to R syntax
(described in Plaice 1994) this RTP can be written
as simply as

i n : 1
out : 2
expressions:
'I"3' => @"0132;
' i " j l => @"0133;

=> \l;

where @"0132 and @"0133 are characters 'IJ' and 'ij'
in IS0 ~ O ~ ~ ~ / U N I C O D E .

' f ' + 'i' or ' f ' + 'l"'

Portuguese and Turkish typesetting do not use
ligatures 'fi',. . . 'ffl' (in Turkish there is an obvious rea-
son for doing thls: the Turkish alphabet uses both
letters 'i' and 'i', and hence it would be impossible
to know if 'fi' stands for 'f + 'i' or 'f + '1'). This is a
major problem for TEX, since the only solution that
would retain a natural input would be to use new
fonts; and defining a complete new set of fonts (ei-
ther virtual or real), just to avoid 5 ligatures, is more
trouble than benefit. R solves that problem easily; of
course, it is not possible to 'disable' a ligature, since
the latter arrives at the very last step, namely inside
the font. It follows that we must cheat in some way;
the natural way is to place an invisible character be-
tween ' f ' and 'i'; in IS0 ~ O ~ ~ ~ / U N I C O D E there is pre-
cisely such a character, namely Ox2OOb (ZERO WIDTH
SPACE); this operation could be done by an RTP line
of the type ' f 9 ' i ' => "f" @"2OOb "in for each
ligature. This character would then be sent to the
Cork table's 'compound mark' character, which was
defined for that very reason.

A still better way to do this would be to define
a second ' f ' in the output font table, which would
not form a ligature with 'f', 'i', or '1'. This would give
the font the possibility of applying a kern between

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 351

Yannis Haralambous and John Plaice

the two letters, and counterbalance the effect of the
missing ligature (after all, if a font is designed to
use a ligature between ' f ' and 'i', a non-ligatured 'fi'
pair would look rather strange and could need some
correction).

Other applications: Ars Longa, Vita Brevis

In this paper we have chosen only a few applica-
tions of a , out of personal and highly subjective cri-
teria. Almost every script/language can take advan-
tage in one or another way of the possibilities of in-
ternal translation processes and 16-bit tables. For
example, the first author presents in this same con-
ference his pre-processor Indica, for Indic languages
(languages of the Indian subcontinent (except Urdu),
Tibetan and Sanskrit). Indica will be rewritten as a set
of l2TPs; in this way we will eliminate all problems of
preprocessing TEX code.

All in all, the development o f 16-bit typesetting
will be a fascinating challenge in the next decade,
and TEX/Q can play an important rde, because of
its academic support, openness, portability, and non-
commercial spirit.

References

Betts, G. and A. Henry. Teach yourselfAncient Greek.
Hodder and Stoughton, Kent, 1989.

Haralambous, Y. "Typesetting the Holy Qur'Fm with
TEX". In Proceedings o f the 2nd International
Conference on Multilingual Computing-Arabic
and Latin script (Durham). 1992.

Haralambous, Y. "The Khmer Script tamed by the
Lion (of TEX)". In Proceedings of the 14th TEX
Users Groups Annual Meeting (Aston, Birming-
ham). 1993a.

Haralambous, Y. "Nouveaux systemes arabes TEX
du domaine public". In Comptes-Rendus de la
Conference <(TEX et l'ecriture arabe w (Pans).
1993b.

Haralambous, Y. "Typesetting the Holy Qur'an with
TEX". In Comptes-Rendus de la Conference <(TEX
et l'ecriture arabe N (Paris). 1993c.

Knappen, J . "Fonts for Africa". TUGboat 14 (2), 104-
106,1993.

Lagally, K. "ArabTEX". In Proceedings of the 7th
European TEX Conference (Prague). 1992.

Levy, S. "Using Greek Fonts with TEX". TUGboat 9 (I),
20-24, 1988.

Imprimerie Nationale. Les caracteres de l'lmprimerie
Nationale. Imprimerie Nationale, ~ d t i o n s , Paris,
France, 1990.

Plaice, J. "Progress in the Q Project". Presented at
the 15 th TUG Annual Conference, Santa Barbara,
1994, and published in these Proceedings.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

E-TEX and NIS : A Status Report

PMip Taylor,
Technical Director, N f S project
The Computer Centre, RHBNC

University of London, U.K.

P.Taylor@Vax.Rhbnc.Ac.Uk

Abstract

The N T S project was created under the zgis of D m during a meeting held
at Hamburg in 1992; its brief was to investigate the possibility of perpetuating

all that is best in T@ whilst being free from the constraints which TEX'S author,

Prof. Knuth, has placed on its evolution. The group is now investigating both
conservative and radical evolutionary paths for TEX-derived typesetting systems,

these being respectively E-TEX (extended TEX) and N T S (a New Typesetting

System). The group is also concerned that whilst TEX itself is completely stable

and uniform across all platforms, the adjuncts whch accompany it vary from
implementation to implementation and from site to site, and has therefore

proposed that a 'canonical TEX kit' be specified, which once adopted could safely

be assumed to form a part of every TEX installation. Work is now well advanced
on the E-TEX project, whilst the group are concurrently involved in identifying

the key components of a complete portable TEX system and in investigating

sources of funding which will allow the N T S project to become a reality.

Background to whch I had agreed, and therefore with effect -

from the 1993 Chemnitz meeting of DANTE the orig-
The N T S project first saw the light of day at the

inal NTs group was stood and a new group
Hamburg meeting of DANTE during 1992; prior to

formed.
t h s meeting, Joachm Larnmarsch had sent e-mail
messages askmg those interested in the future of

TEX to register their interest with h m , and invita-

tions to attend the DANTE meeting were sent to

those who had registered their interest. At the meet-

ing, Joachlm proposed the formation of a work-
ing group, under the technical direction of Rainer
Schopf and with membershp drawn from DANTE

and UK-TUG, whose brief would encompass inves-

tigating, and possibly implementing, a successor or

successors t o TEX: that is, typesetting systems which

would embody all that was best in TEX whilst being
free from the constraints whch had been placed on

the evolution of TEX itself. These constraints had

been imposed when Knuth announced that his work

on TEX was complete, and that he now desired it
to remain unchanged, apart from any essential bug

fmes, in perpetuity.
Because of Rainer's very heavy commitments

on other projects (and in particular on the L#TEX~

project), not a lot was accomplished during the
first year, and at the meeting of DANTE one year

later Rainer announced that he was standing down

as technical director; he and Joachim had already
asked if I would be prepared to undertake that r6le,

The Group Meets

The initial membership of the re-formed group was

just Rainer, Joachim and myself, and the first task

was to identify others who would be willing to de-
vote quite considerable amounts of time to ensuring
the success of the N T S project. In the end Peter

Breitenlohner, Boguskaw Jackowski, Mariusz Olko,
Bernd Raichle, Marek Ryi-ko, Joachirn Schrod, Fried-

helm Sowa and Chris Thompson were identified as

likely candidates and invited to an inaugural meet-
ing to be held in Kaiserslautern. (Barbara Beeton

was also invited to join the group, but indicated in
her acceptance that she would prefer to be a 'corre-

sponding member', participating by e-mad but not in

person.) Not all of those invited could attend, and

the inaugural meeting was eventually attended by

Peter B., Mariusz O., Bernd R., Joachim L., Joachm S.,
Friedhelm S. and myself, with Marion Neubauer act-

ing as minutes secretary. The meeting was opened

by Joachim L., who explained how N T S had come

into existence, and the discussion was then opened
for suggestions from those present.

TLIGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Philip Taylor

Joachim S. was the first to speak, and he pre-
sented some quite radical ideas which he had clearly

spent considerable time in preparing. The essence

of his proposal was that TEX per se was no longer ca-

pable of evolution: quite apart from the constraints
placed on its evolution by DEK, the complexity of

the code and the interdependencies whch existed

within it militated against any further significant

development; indeed, it was Joachim's contention
that even Don no longer found it easy to modify

the source of TEX, and that if any real evolution

was to be achieved, the first task would involve
a complete re-implementation. Joachm proposed

that this be accomplished in two stages: (1) a re-
implementation in a modern rapid-prototyping sys-
tem such as CLOS ('Common Lisp Object System'),

and (2) a further re-implementation in a modern ef-

ficient mainstream language such as 'C++'. Both
of these re-implementations would be tackled using

literate programming techniques.

Joachm explained the rationale behind the two-
phase approach: in the first phase, the primary ob-

jective would be to identify the true modular nature

of the TEX typesetting system, and to factor out into
separate modules each of the fundamental compo-

nents. This would allow, in the future, any com-

ponent of the typesetting system to be replaced by
an experimental version, with minimal impact on
the design and interaction of the other modules;

through this mechanism, alternatives to the current

TEX algorithms could be evaluated and tested. For
the initial implementation, however, this flexibility

would not be fully exploited; instead, the system

would simply be a fundamental re-implementation
of TEX using modern object-oriented techniques,

within whch the modular nature of TEX would be
properly represented. Although not expected to be

efficient, this re-implementation would provide full

TEX functionality, and once working the next step
would be to demonstrate the functional equivalence

of the re-implementation and TEX; this would be ac-

complished by means of the standard 'Trip' test for
TEX, together with as much additional testing as was

felt necessary to demonstrate that it was indeed a
true 'TEX'.~

Once a faithful re-implementation of TEX
had been achieved using the prototyping system,

the second phase would involve a further re-
implementation, this time using a widely avadable

language such as 'C++'. The modular structure

The group are aware, of course, that only the pres-

ence of bugs can be demonstrated by testing, never
their absence.. .

identified during the prototyping phase would be

accurately mirrored in the 'production' phase, and

each module would be functionally equivalent in

both systems. Again a rigorous programme of test-
ing would be required to demonstrate that the pro-

duction system was also a true 'TEX'; once this
was accomplished, the production system would
be made available to TEX implementors world-wide,

with a request that they attempt a port to the op-
erating system(s) which they supported. Obviously

the group would need to be responsive to problem
reports from the implementors, and the ported im-
plementations themselves would need to be tested

for complete compliance with the TEX standard, but
once these steps were accomplished, the project

would be ready to move on to the next phase, which

would be to release the re-implementation in its pro-
duction form to the TEX world.

If all of t h s could be achieved within a rea-

sonable timescale (measured in months rather than

years), it was hoped that the TEX world could be
encouraged to standardise on the re-implemented

production TEX rather than TEX per se; for this to
be accomplished, the re-implemented system would

need to be at least as efficient as present TEX irn-

plementations, and equally bug-free. But if these
criteria could be met, and if 're-implemented TEX'

achieved the universal acceptance which was hoped
for, then the group could turn its attention to the

next and most exciting phase, which would be to

start work on Nfi itself, using the prototyping sys-
tem to evaluate alternative typesetting paradigms

and algorithms, and subsequently re-implementing

the most successful of these and incorporating them
into the production system.

Needless to say, the group were impressed by
Joachim's proposal: clearly thought out, and quite

radical in its approach, it would require considerable

resources to be brought to fruition, yet the end re-
sults would almost certainly justify the means. How-

ever, the practical aspects could not be ignored, and

the group agreed that without adequate financial
baclung they lacked the resources necessary to ac-

complish even phase-1, let alone subsequent phases.

A small group of competent programmers, working
full time for two to four months, would probably be

needed to accomplish the first re-implementation,

and perhaps only slightly fewer resources would be

needed to accomplish phase-2. Bearing this caveat
in mind, it was decided to put Joachim's plan on ice

while seeking fundmg wkch would allow its com-
mencement, and to identify fall-back plans which

could be accomplished w i t h the present resources
of the group.

3 54 TUGboat, Volume 15 (1994), No. 3 - Proceedings of the 1994 Annual Meeting

E-TEX and N i S

Two basic ideas were proposed: (1) despite
Joachim's warning that TEX in its present form was

essentially incapable of significant further develop-

ment, Peter Breitenlohner felt that his experience in
implementing TEX-XgT and TEX--XgT would allow him

to make further changes to TEX within the frame-

work of its present implementation; a number of

good ideas had been proposed on the NTS-L list for

incremental improvements to TEX, and both Peter

and Bernd had ideas of their own which they would
like to see implemented. (2) Marek and Bogusiaw

had proposed during a conversation at Aston that

before the N T S project sought to extend TEX in any
way, it would be a very good idea to ensure that

TEX'S present capabilities were capable of being ex-

ploited to the full; in particular, they felt that TEX
was frequently under-exploited because the addi-

tional software which was sometimes necessary to
fully exploit TEX was not universally available. They

therefore proposed that the group specify a mini-

mum TEX kit which should be available at every site;

once this was known to be universally avdable, TEX
documents could be written to assume the existence

of this kit, rather than simply assuming at most TEX

+ LATEX + the 75 Computer Modern fonts, which as-

sumption tended to form the basis for portability at
the moment.

Both of these proposals were well received: it
was agreed that Peter Breitenlohner should take pri-

mary responsibility for extending TEX in its present

form, whilst Marek and Boguslaw would be asked

if they were prepared to oversee specification of
'the canonical TEX kit' (it will be remembered that

M&B were not present at the meeting, and there-

fore no assumptions could be made about their in-
volvement in the project). All members of the group

would be invited to contribute to all three projects,
and members were also asked to investigate possi-

ble locations where a small team of programmers

could work on NIS . Such a location would clearly

need good Internet connectivity (particularly as it
was envisaged that not all members of the N i S pro-

gramming team would necessarily work in the same

place), and for reasons of economy it was consid-
ered desirable to site them at locations where their

day-to-day expenses would not be too great.

Finally i t was agreed that the membership of

the group could be usefully enhanced by inviting

some eminent members of currently unrepresented
groups to participate.

The Interregnum

There then followed a period of several months dur-
ing which members of the group returned to their

normal place(s) of work; communication between

members of the group was conducted by e - m d , and

a report of the inaugural meeting published to en-

courage outside participation. Invitations to join the
Nj+S project were extended to the nominated na-

tional representatives (sadly, not all had the cour-

tesy to reply), and Bernd and Peter attempted to fo-

cus discussion on the NTS-L list by proposing some
concrete ideas for 'extended TEX' (which was by now

referred to simply as e-TEX, following the nomencla-

ture separately proposed by Frank Mittelbach and
myself in our TUGboat papers on the future of TEX.

During this interval, Joachm Schrod tendered
his resignation from the group; all were sad to
see hun depart, particularly since his proposals for

N T S still formed a central element of the group's
plans, but the group respected his decision and since

then he has pursued his own independent research
into literate programming, typesetting systems, and

the many other fields which are of interest to hun
professionally. Jiii ZlatuSka was nominated by the

Czech TEX User Group (%TUG) to represent them on

N I S , and Klaus Lagally and Richard Palais accepted

an invitation to join, the latter electing to follow Bar-
bara's example and be a 'corresponding member'.

The Second Meeting

In February of 1994, DANTE held a further meeting,
this time at Miinster in Westfalische, and for a third

time the N T S group were invited to be DANTE'S

guests; on this occasion none of the Polish delegates
were able to be present, but Jifi represented the

Czechs and Volker Schaa very kindly stepped into

the breach to act as minutes secretary, Marion be-
ing unable to attend. Others present at the meeting

included Peter Breitenlohner, Joachim Lammarsch,

Bernd Raichle, Rainer Schijpf, Friedhelm Sowa and
myself.

The group had made some promising contacts

concerning possible funding for the project, but

nothmg definite had been agreed and commercial
confidentiality regrettably dictates that no further

detail can be recorded here. Following a very useful

contact made at SOFSEM '93 (the Czech and Slovak
annual computer science conference), some discus-

sion had taken place concerning the possible use of

TCJGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Phdip Taylor

a semi-automatic system for reverse-engineering E-TEX: Some Specific Proposals
TEX, but again nothng had been agreed at the time of
the meeting. Marek and Boguslaw had been unable

to offer a cornrnittment to leading the 'canonical TEX

project', and no further progress had been made in

that area, despite (or perhaps because of) a counter-
proposal by TUG who had somewhat belatedly de-

cided to undertake an almost identical scheme.
By far the most promising news was that Peter

Breitenlohner had made enormous progress in the

implementation of E-TEX, and indeed had a prelimi-
nary version already working. In view of this, and in

view of the fact that the membership of the group

had undergone some very significant changes, it was
decided to adopt a slightly more formal structure

within the group: Joachm Larnmarsch would con-
tinue to take overall financial and political responsi-

bility, whilst I would continue as T e c h c a l Director;
Peter Breitenlohner would head the E-TEX sub-group,

backed up by Bernd Raichle, whlst JZi ZlatuSka

would head the N f S sub-group, again backed up by
Bernd; Rainer Schopf would take responsibility for

the 'canonical TEX kit' project, backed up by Fried-

helm Sowa, and in addition Friedhelm would con-

tinue to act as treasurer. No formal responsibilities
were laid on members who were not present at the

meeting, although it was hoped that Mariusz Olko
would continue to look after the multi-lingual areas

of both E-TEX and N f S by liaising with the TWG-

MLC.

As progress on the 'canonical TEX lut' project

had been almost non-existent, the group felt it
worthwhile to devote some time to attempting to

identify the elements of a TEX system which were
truly fundamental. Rather interestingly, members

seemed to hold stronger (and sometimes more diver-

gent) views on this subject than on almost anything
proposed for either E-TEX or N f S ! The net result

was that only the most basic elements were agreed,
and considerable further work will be needed in this

area in conjunction not only with TUG but also with

the entire TEX community.
Much of the discussion which took place during

the NG meeting at Miinster concerned specific de-

tails of proposals for E-TEX, and whdst these formed
the basis for progress, later discussions (both in

less formal meetings at Miinster and subsequently

via e-mail) caused considerable revision of the ideas

which emerged; what follows is therefore a synthe-

sis of ideas whch were h s t mooted at the N f S

meeting in Miinster, together with ideas which were

mooted later, either in less formal meetings or via
e-mail.

Perhaps the most important of the proposed ex-
tensions is the mechanism by which the extensions

themselves are activated, either individually or as

a group; an absolutely fundamental requirement is

that E-TEX be capable of processing all existing TEX
documents in a manner identical to T#. The type-

set results must be identical to those produced by
TEX, as must all 'reasonable' side effects (for exam-

ple, information written to ancillary files). Thus it

is intended that there be no possible reason for the
non-adoption of E-TEX as a replacement for TEX. The

mechanism by which divergent behaviour is enabled
will be under user control: a user may elect to use

E-TEX in a totally compatible manner, or may elect to

use only that set of extensions which do not compro-
mise the semantics of TEX, or may elect to use one

or more of the most radical extensions (e.g. TEX--X2T,
the left-right/right-left extension for non-European

languages) which by their very nature require a fun-

damental modification to the behaviour of the type-

setting system.
Once such a mechanism is in place, users (or

more precisely user documents) will need to be able

to investigate their environment; since user-X may

habitually use extension-A, yet may send his/her
document in source form to user-Y who habitually

disables extension-A, a document must be able to
check which extensions are available, and to either

adopt a fall-back position if a preferred extension is
not available, or to issue an error message and abort
tidily (a user document may, of course, attempt to

enable an extension which it needs, but the result
may be 'not available within this environment'). A

mechanism for environmental enquiries is therefore

proposed.

Other proposals for E-TEX include: (a) improved
control over tracing (TEX can be very verbose, and in-

terpreting the trace output is distinctly non-trivial);

(b)an additional class of maths delimiters (middle,
as well as left and right); (c)improved access to the

current interaction mode (to allow code to ascertain
as well as change the current mode of interaction);

(d) improved mechanisms for checking the existence

of a control sequence without necessarily creating

such a sequence; (e) improved avoidance of internal
integer overflow; (f) an alternative ligature/kerning
implementation; (g) extensions to the set of valid

p rehes for macro definitions, such as \protect (to

inhibit subsequent undesired expansion) and \ b i nd
(to render a definition independent of the environ-

ment within which it is expanded); (h) support for

colour.

356 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

E-TEX and NIS

placement, and conformance to the grid, all appear

The complete re-implementation of TEX ('NTS') is a
far more ambitious project, the success of whch is
crucially dependent on obtaining adequate funding.
The proposals which follow should therefore be re-
garded as being p reh ina ry ideas, rather than ab-
solute decisions which have been cast in stone. Any
ideas whch the Tj$ community in general would like
to contribute to the project wdl be very gratefully re-
ceived!

In phase-1, a rapid prototyping language such
as CLOS ('Common Lisp Object System') or PROLOG
will be used to develop a primary re-implementation,
w i t h whlch it wdl be possible to experiment with
various possible internal modular representations of
the present TEX typesetting engine; these alternative
representations will be evaluated to attempt to de-
termine an 'ideal' model of the TEX engine, w i t h
which the various functional elements are as inde-
pendent as possible. The purpose of this analysis
is to allow each of these functional elements to be
enhanced or replaced at will, with minimal effect
on the other modules; such flexibility is demonstra-
bly lacking in the present TEX implementation, and
is the primary reason for proposing a complete re-
implementation. Once an ideal representation has
been found, the work will progress to the second
phase, although the work invested in developing the
first phase will not be wasted: there are many rea-
sons why the phase-l implementation will continue
to be both needed and useful.

Firstly, prototyping languages based on term
data structures, used in conjunction with a disci-
plined programming style free from the exploitation
of side-effects, allow the generation of code which
would provide a specification of TEX independent of
the procedural Pascal source code, and potentially
amenable to the use of automated transformation
techniques; such code could also be partially inter-
preted or meta-interpreted. This would produce an
environment withm which the development of en-
hancements is much facilitated, reachng beyond the
particular structure of the code of the program.

Secondly, for some of these prototyping lan-
guages at least, rather powerful enhancements have
been developed, in particular the employment of
constraint solving in constraint logic programming
languages. This could allow certain parts of the
typesetting task to be formulated as a set of con-
straints to b e fulfdled, within whch constraints an
optimal solution must be found. Certain classes of
problem, particularly those occurring in connection
with chapter layout optimisation, float/insertion

to require a search of the space state and the em-
ployment of backtracking w i t h certain parts of the
typeset text.

Thu-dly, the lund of test-bed implementation
proposed for phase-1 should provide a suitable ba-
sis for the independent exploration of possible en-
hanced designs and/or implementations, incluchng
alternative attempts to provide solutions based on
different approaches and paradigms, and also in-
cluding investigations into the trade-offs involved
when selecting from a set of mutually incompatible
features.

In phase-2, the modular structure which has
been identified in phase-1 will be once again
re-implemented, this time in a widely avdable
compiled language such as C++. This re-
implementation is aimed entirely at efficiency: the
test-bed whch is developed during phase-1 is fully
expected to be unacceptably inefficient as a produc-
tion typesetting system, and the flexibility which will
characterise it is unlikely to be of any use in a pro-
duction environment. Thus in phase-2 attention will
be paid to the efficiency of the algorithms used, and
particular attention will be paid to ensuring that
the resulting system is able to run efficiently on a
very wide range of hardware and software platforms.
WMst E-TEX is expected to run on the same range of
hardware and software as the present TEX system
(i.e., everything from an AT-class PC to a Cyber or
Cray mainframe), it is accepted that NTS may have
slightly reduced availability: none the less, the min-
imum configuration on which NTS will be expected
to run efficiently is an 80386-class PC (or the equiva-
lent in other archtectures); eve ry thg above should
pose no problems.

Both the phase-1 and phase-2 implementations,
in their initial release, will be purely and simply
re-implementations of TEX (or, more llkely, of E-

TEX, since it is hoped that by the time phase-l is
complete, E-TEX will have gained widespread adop-
tion amongst the TEX community; the intellectual
effort invested in extending and enhancing TEX to
create E-TEX wdl therefore not be wasted). These re-
implementations will be rigorously tested to ensure
that they behave identically to (E-)TEX in all circum-
stances, and only once this testing is complete will
they be offered to the community at large.

Once the project has reached this stage, and the
phase-2 re-implementation has been made available
to, and used by, a significant proportion of the ex-
isting TEX user community (and any other interested
parties), the real research work wdl commence: US-

ing the phase-1 re-implementation (the 'test bed', as

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 357

Philip Taylor

it is generally termed), work will commence on inves-

tigating alternatives to the existing TjX paradigms.
For example, one of the frequent criticisms levelled

against TjX is that its command line oriented user

interface seems unbelievably anachronistic to those

whose experience of computers is almost entirely
limited to graphcal user interfaces (GUIs); whilst

various implementors (and most notably Blue Sky

Research, with their 'Lightning TjXtures' implemen-

tation) have endeavoured to conceal this interface
beneath a more graphical front-end, all of these at-

tempts have been restricted to one particular hard-
ware and software platform. A primary longer-term

objective of the N T S project would therefore be to

provide an integral graphcal interface to nljS in an
entirely portable manner; t h s interface would not

be layered on top of the existing command line in-

terface, but would operate at the same herarchical
level, thereby allowing the more GUI-oriented to use

N T S in their preferred manner with no loss of ef-

ficiency (the existing command line interface would
not necessarily disappear: the group are well aware

that one reason for the widespread adoption of TEX

may well lie in the appeal of its more traditional
interface to large numbers of people who pre-date

the GUI era, as well as in the re-creatability and re-

producibility of documents which are represented
as human-readable text rather than as ephemeral
mouse movements on a screen).

There are many other areas in which TEX is

felt to be deficient by a significant group of well-
informed users; various papers have been published

in TUGboat in which some of these deficiencies have
been discussed. It is therefore proposed that NTS

would attempt to rectify as many of these deficien-
cies as possible by providing some or all of the fol-

lowing features: (a) the ability to typeset material
on a grid; (b)the ability to flow text around reg-

ular (and irregular) insertions; (c) the treatment of
'the spread' (two facing pages) as the basic unit of

makeup; (d) the treatment of the chapter (in book-
like material) as the minimum unit over whch page

optimisation should be performed; (e)provision of

pattern recognition w i t h the paragraph-building
algorithm, which could enable both the avoidance

of 'rivers' (accidental contiguous regions of regular
white space spanning several lines) and also (at a

less graphcal level) the avoidance of subtly differ-

ent hyphenations on consecutive lines; (f) improved

interaction between the line- and page-breaking al-
gorithms, t o permit co-optimisation; (g) an improved

model of lines w i t h a paragraph, to enable lan-
guages w h c h make regular use of diacritical marks

to be set on a tighter leading (interline spacing) with-

out increasing the risk of conflict between superior
and inferior diacritics; (h) intrinsic support for hang-

ing punctuation (whereby leading and trailing punc-

tuation on a line are allowed to hang out into the

margin); Wimproved interaction between the page

makeup module and the paragraph building mod-
ule, to allow the shape of a paragraph to be influ-

enced by its final position on the page; Cj)greater

awareness withm the typesetting engine of the shape
of a glyph (character), whch could allow spacing

to be better optirnised; (k)improved parameterisa-

tion of fonts; (1)improved access to the ligature
and kerning information from withm the typeset-

ting system. There are many other areas, primar-
ily concerned with rather technical aspects of TjX-

the-language and TEX-the-typesetting-system, whch

have also been convincingly argued are less than per-
fect, and which it is intended will be addressed by

N T S .

The long-term objective of N f S is therefore to

make maximum use of the test bed to investigate

and evaluate possible approaches to overcoming the

various perceived deficiencies of TEX, and to incre-
mentally produce an ever-better typesetting system,

capable of taking maximum advantage of current
technology. This typesetting system will undoubt-
edly become ever less TjX-like, yet the group believe
that there are so many good ideas enshrined in TEX

that the day when N T S owes nothmg to TEX lies

several decades in the future.

The author would like to express his sincere thanks
to Peter Breitenlohner and JitiZlatuSka for their most

helpful comments on the first draft o f this article, and

to Michel Goossens for his willingness to allow late
and unrefereed submission of the copy; any errors

remaining are, of course, entirely the responsibility

of the author.

358 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

TEX innovations at the Louis-Jean printing house
1

Maurice Laugier
General Director of ILJ, Imprimerie Louis-Jean, B.P. 87, 05003 Gap Cedex, France
loui jeanacicg. grenet .fr

Yannis Haralarnbous
Centre $Etudes et de Recherche sur le Traitement Automatique des Langues
Institut National des Langues et Civilisations Orientales, Paris.
Private address: 187, rue Nationale, 59800 Lille, France.
Yannis .Haralambous@univ-lillel.f r

Abstract

In this paper we will present several TEX innovations, conceived, or currently under
development, at ILJ (the Louis-Jean printing house). ILJ was founded in 1804, at
Gap (Southern French Alps) and employs 130 people. Due to its specialization
in typesetting and printing of scientific books, ILJ has been using TEX since the
late eighties. Currently about 30% of ILJ's book production is done with TEX. New
developments in the TEX area sponsorized or financed by ILJ are described in this
paper.

This paper will be published in the next issue of TUGboat.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Design by Template in a Production Macro Package

Michael Downes
American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904 USA

rnjd@math.ams.org

Abstract

The American Mathematical Society has been involved in the development of TEX
from the beginning and began using it for journal production ten years ago; we
now produce nearly all of our publications (a couple of dozen journals and book
series) with TEX, using AMS-developed macro packages. One of the goals set for
a major overhaul of the primary in-house macro package, begun in 1992, was
to make revisions to the visual design of a given publication easier. In the new
version of the macro package the design specifications for a particular document
element (such as an article title) are not embedded in TEX code, but are entered into
an element specs template that is comparatively easy to read and modify, and that
corresponds more directly to traditional book design specs (e.g., vertical spacing
is expected to be given in base-to-base terms).

Introduction tween the author and the comuositor, who were not

Some of the terms used herein have a specialized
meaning in the publishing industry; two that should
be mentioned in particular are composition, mean-
ing the general process of composing characters into
words, paragraphs, and pages (hstorically done by
setting lead characters in type frames, nowadays
done with software), and design, meaning the visual
style and physical layout of a book or other publi-
cation, including choice of fonts, dimensions of the
type block, and arrangement of document elements.
Publishers employ freelance or in-house publication
designers (more commonly known as book designers)
to analyze authors' manuscripts and devise appro-
priate designs.

The transition of the publishmg industry in the
last few decades to worlung with electronic docu-
ments was impelled initially by the desire for more
efficient production of traditional printed forms. It
has become clear by now, however, that the elec-
tronic document should be the primary goal of au-
thors and publishers; and moreover, that documents
in information-rich formats such as SGML are many
times more valuable than documents limited to a sin-
gle medium and visual format. The challenge now for
compositors is to make composition software that
enables the composition process to be driven more
directly by an electronic document, when the con-
tent and structure of the document are adequately
marked. Given a visual design in suitable form, the
typesetting operations to be applied can in principle
be deduced from the information present in the doc-
ument. If software can do this task, it will render
unnecessary some of the expensive rote work tradi-
tionally done by human copyeditors when marking
up manuscripts with instructions for the composi-

expected to understand each other's language. And
the book designer may be thought of as the linguist
who wrote the bilingual dictionary used by the copy-
editor in doing the interpreting.

Book designers use a hgh-level, rather infor-
mal language that has evolved over the last few cen-
turies together with printing technology and meth-
ods. By 'informal' I mean that traditional book de-
sign specifications aren't sufficiently detailed and
well-structured to be directly interpreted by typeset-
ting software, even after doing the obvious stream-
lining of vocabulary and syntax. In the past the
work of translating book designs into suitable type-
setting operations was done by skdled compositors
who brought to the translation process a great deal
of enriching knowledge and craftsmanship. In recent
years, the computerization of typesetting has shifted
more and more of that knowledge and craftsmanship
into typesetting software.

But the state of the TEX world today is that
not enough of the knowledge and craftsmanship has
been transferred to the software. There is a wide
gap between the customary design specs that pub-
lishers pay designers for, and the actual application
of a design to the pure information content of a docu-
ment by a TEX macro package. Outside the sphere of
TEX, this gap is usually closed by idiosyncratic style-
sheet capabilities of commercial publishing software
ranging from word-processors to hgh-end publish-
ing systems. The internal format used for holding
style information, the internal typesetting operations
used to apply the style information, and the under-
lying analysis of document design are proprietary
information, and I imagine that not too many soft-
ware companies are rushing to make theirs public.

tor. The copyeditor served as a sort of interpreter be-

360 TUGboat, Volume 1 5 (1994), No. 3 - Proceedings of the 1994 Annual Meeting

Design by Template in a Production Macro Package

The language used in FOSIS' is the only major, pub-
licly accessible attempt I know of to formalize visual
document design into a standard language suitable
for automated typesetting. And as it is, FOSIs only
deal with abstract specifications; you still have to
make your typesetting software understand the el-
ements of a FOSI and do the right thmg with them.
An extended discussion of using TEX and FOSIs to-
gether appeared not long ago in TUGboat (Dobrowol-
ski 1991).

In the TEX world the gap between design and
actual typesetting is usually bridged only by the
brow-sweat of a skilled T~Xnician. Consider these
design specifications for an article abstract:

AB: Abstract. Body text 8/10 Times Roman jus-
tified x 27 picas, indented 1 1/2 picas, para in-
dent lem. Heading "Abstract" and period set 8/10
Times Roman bold, flush left x 27 picas, followed
by N space, run in body text. 18 points base-to-
base above and below.

As written in typical TEX macro code, the AB
element described above might look roughly like this:

\de f \abs t rac t { \par

\ i f d i m \ l as tsk i p<\medski pamount

\removelastski p \medski p

\f i
\begingroup \pa r i ndent lem

\ l e f t s k i p = l . 5pc \ r i g h t s k i p = \ l e f t s k i p

\ t ypes i ze {8 } { lO } \ j us t i f y

\noindent { \ b f Abstract.\enspace}}

\def \endabstract{ \par \endgroup

\i f d im \ l a s t s k i p<\medski pamount

\remove1 as tsk i p \medski p

\fi 1
In Q X you could avail yourself of the l i s t

environment to simplify the task. But it remains
clearly a TEX macro writing task, needing to be done
by someone farmliar with TEX.

Given that the limits of book design are scarcely
less wide than the limits of human visual imagina-
tion, it's unlikely that custom programming d l ever
disappear from the picture; unprecedented demands
will always require new solutions. Nevertheless, the
majority of scientific and academic publications have
scholarly communication rather than visual design
innovation a s their raison d16tre, and hence are char-
acterized by relatively sober designs with many rou-
tine aspects suitable for automation. Most typeset-
ting software doesn't do as much as users would like
to make the routine aspects easy to deal with:

The frequent need for new or differently for-
matted entities presents a serious problem. It

FOSI: Formatted Output Specification Instance.
Part of the U.S. Department of Defense CALS initia-
tive, see Mil. Std. MIL-M-28001B.

is typical, that either there are too many lirni-
tations on the lund of formatting that can be
prescribed, or else the formatting prescrip-
tions are very difficult to write and compre-
hend. - Bo Stig Hansen (1990)

TUGboat articles about the Lollipop macro package
by Victor Eijkhout (1992), and the ZZTEX macro pack-
age by Paul Anagnostopoulos (1992), show some-
thing of what is possible with TEX.

The design-to-typesetting gap needs to be
bridged from two directions: from the designer end,
by a careful analysis of document design, leading to
a formalized (to the extent possible!) language for
prescribing design elements and rules, independent
of any particular typesetting s ~ f t w a r e ; ~ and from
the TEX end, by more powerful and flexible macros
that match up with the design analysis (along the
lines of WX's \@star t sec t ion and \@hangfrom).
If these two pieces are done well, then the process of
transferring a document design from the designer's
mind to the typesetting software can be made very
easy.

In this paper I discuss some methods being
employed to bridge the design-to-typesetting gap
in a large TEX macro package, developed over the
past two years for use at the American Mathematical
Society as the in-house, production-oriented version
of the publicly available AMS-TEX package. As
the new package has no established name (we've
been just calling it 'the new production system') I
suppose I'd better define a name of convenience
for use hereinafter. Let's call it DBT: design-by-
template system. Although there's more to it than
the visual design-related features, that should serve
well enough.

The goals of DBT, as compared to its predeces-
sor, include:

1. improvements in document markup to enrich
and regularize the information content of docu-
ments passing through the AMS production sys-
tem;

2. more sophisticated formatting routines to solve
fundamental TEX typesetting problems;

3. change management;

4. a 'fill-in-the-blank' system for specifying the vi-
sual design of a given publication through sim-
ple variable assignments rather than through
TEX macro programming.

As an example of the second item, the page-
breaking routines in the new macro package auto-
matically allow a page to run half a line long or short
to accommodate the deviation from the text grid that
occurs more often than not in pages containing many

2 Here I echo the call for a 'front end programming
language for style design' of Victor Eijkhout and
Andries Lenstra (Eijkhout and Lenstra 1991).

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Michael Downes

\thm{9) The elegance of a mathematical
result i s equal to the quotient of power Theorem 9. The elegance of a mathematical result is

and length: $E = P/L$.\endthm equal to the quotient of power and length: E = PIL.

Figure la: Document source text for a theorem.
Figure lb: Output of the given theorem.

[THMldescri p t i on : {theorem}

[THM] types i ze: { l o }
[THM] 1 i nespaci ng : (12)

[THM] f o n t : {it}

[THM] wordspaci ng : {\normal wordspaci nge)

[THM] case : {\normal case@}

[THM] j u s t i f i c a t i o n : {%

\ f u l l j u s t i f i cat ion@{\colwidth}}

[THM]paragraphshape:{\indented@(18pt}}

[THM]breakbefore:{\badbreak@{l}}

[THM]spacebefore:{%

1.5\1 i nespaci ng plus. 25\l i nespaci ng}

[THM]breakafter:{\goodbreak@{l}}
[THM]arrangement:{R head * . {\enskip} body *}

% Subcomponent 'THM head':

[THM head] f o n t : { b f }

Figure 2: Representative specs (pretending no de-
faults or inheritance) for a theorem element.

math formulas. We have also gone through some
rather extensive experiments with nonzero mathsur-
round.

The focus of this paper is on the fourth item:
How to make the process of creating and changing
publication designs easier. It seems best to begin
with an example, to serve as a point of reference for
later discussion. Figure 2 exhibits a representative
set of DBT specs for a theorem element. In practice
many of the style variables would be given default
values (such as 'mherit from context') by omitting the
corresponding lines.

For comparison Figure 1 shows a portion of a
document file and the output that would be produced
given the specs in Figure 2. The main point is that
the document file has only information content, not
visual formatting instructions, and all the formatting
specified in Figure 2 is applied automatically by the
software.

Style variables. Here are descriptions of the style
variables currently recognized by DBT for major text
elements. It should be fairly obvious that t h s is not a
universally sufficient set; rather, it is a set that seems
to be more or less sufficient for the relatively modest

plementation hasn't caught up yet; thus tend-
ing to disappear later when the implementation
does catch up)

typesize Self-explanatory
linespacing Self-explanatory
typeface Typeface name such as Garamond or

Palatino
font One of: rm, bf, it, sc, bit, . . . ; for simplicity each

style/weight/width combination is addressed
by a single distinct name.

wordspacing name of a function that sets all rele-
vant parameters

case upper, lower, normal
justification full, raggedright, raggedleft, centered,

paragraphshape indented, hangindented, . . .
interparspace extra amount, usually 0
breakbefore bad break or good break; the TEX range

0-10000 is collapsed to 0-10
spacebefore base-to-base
actionbefore inner hook
arrangement how subcomponents are combined
actionafter inner ending hook
breakafter cf breakbefore
spaceafter cf spacebefore
otherafter catch-all ending hook

The set of variables is extensible in the sense
that a new variable can be freely added for any
element, and the assignment will be stored in proper
form with the other specs for the element; it's just
that you would also have to add some internal
TEX processing to do the right thmg with the new
variable, in order for it to have any effect.

In addition to the above variables that are ap-
plied for elements within the text stream, there are a
number of global variables that address page layout
and other aspects. These are simply handled as TEX
integer or dimension variables. Some examples:

\typebl ockwi dth \l i nesperpage
\typeblockheight \trimwidth
\runheadspace \trirnhei ght
\runheadhei ght \headmargi n
\textwi d t h \guttermargi n
\textheight \dropfol i odepth

design needs of most AMS journals and books.
Features and Limitations of DBT

description mandatory; used in printing documen-
tation Concentration of visual design information in a sin-

placement floating or nonfloating gle location. All the visual design and layout as-

otherbefore catch-all hook (historically this has pects of a given publication are kept in a single file

been used for malung things work where the im-

362 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Design by Template in a Production Macro Package

with an extension of . pds (publication design spec-
ifications). Ths file is editable ASCII text, hke TEX
documents, with the same advantages and disadvan-
tages. An added interface layer with menus, context-
sensitive help, and tsk-tsk sound effects for bad de-
sign decisions would be nice but we haven't done
anything of that sort yet.

Minimized redundancy. Publications with similar
designs can share all the style variable settings that
coincide by putting them in a common file to be 'in-
herited' via TEX \input statements. This is irnpor-
tant for AMS use because we have several designs
that differ only in a few aspects. If each design were
kept as a separate full copy, maintenance would be
more difficult.

Separation of visual style concerns from informa-
tion transfer. A large part of some FOSIs that I've
seen is taken up with specifying how certain mforma-
tion should be moved around (such as running heads
or table-of-contents information). In DBT such infor-
mation transfer is kept separate from visual style
specs. In a . pds file there is nothing to say what in-
formation should go into the running head; only 'if
such-and-such information happens to turn up, here
is how to format it'.

Style template. The style of a given element is al-
most entirely specified in the element 'style tem-
plate'-nothing more than a list of assignment
statements for style variables - and is applied by a
generic element-printing function. Little remains to
be done by TEX macro writing.

A small number of generic element-printing func-
tions. Essentially four generic element-printing
functions are required-one for major elements
(slices of the vertical text column), one for floating
elements, one for displayed equations, and one for
minor elements (distinct logical entities w i t h para-
graph text).

Predefined functions for subordinate typesetting
tasks. Some of the variables in the element style
templates are intended to take on function values:
justification (ragged right, ragged center, full jus-
tification, etc.), paragraph shape (indented, non-
indented, hang-indented, etc.), word spacing (de-
fault, 'french', loose). The idea is that a new function
should be created whenever existing functions fail to
provide the desired style in a form that can be easily
called in an element template.

Compact notation for subcomponent handling.
The 'arrangement' variable in the element style tem-
plate is a special variable whose value is a description
of the subcomponents (optional or mandatory) that
an element may have, and how they should be com-
bined. The notation is effective for concisely describ-

ing what is to happen when optional subcomponents
are absent.

For the THM element in Figure 2, the arrange-
ment is

R head * . {\enskip} body *
Each arrangement has seven parts. The first part
is the arrangement name. R in t h s case is short-
hand for 'run-in'; there are also H for horizontal
and V for vertical. Less common arrangements have
fully spelled out names. The second and sixth parts
are the names of the subcomponents that are to be
combined - here, head and body. The fourth and
fifth parts are in-between material, loosely speaking
punctuation and space, respectively. If one of the
two components in an arrangement is optional,
and absent in a particular instance, the in-between
material is omitted.

Arrangements can be combined recursively. The
third and seventh parts of an arrangement are slots
for fitting in subordinate arrangements. A subor-
dinate arrangement is enclosed in braces so that it
can be read as a single macro argument by various
arrangement-scanning functions. For example, sup-
pose that we wished to allow an optional note com-
ponent in the THM head, like the [note] option of
WX's theorem environments. The arrangement for
THM would be expanded by replacing the * after
head with a second-level arrangement:

R head {H mainhead * - {\ } note *}
. {\enskip} body *

A hyphen for part four or five means 'null', in t h s
case 'no in-between punctuation'.

Thus an arrangement is a sort of binary tree
of subcomponents. Although restricting to binary
combinations requires thinking up more component
names than might otherwise be the case (viz the in-
troduction of 'mainhead' above), higher-order com-
binations are unable to handle an optional middle
component without ambiguity. Consider rewriting
the above example as a three-way combination:

head R - {\ } note H . {\enskip} body

If the note is omitted, it's not clear whch pieces of
the in-between material should be used between the
head and the body. Simple strategies such as 'use
the first set of in-between material and ignore the
second' (or vice versa) proved to be unreliable when
I tried them with a range of real examples.

One current limitation of the arrangement no-
tation has to do with list-like arrangements, where
an element consists of an indeterminate number of
identical subcomponents. An example might be a list
of author names and addresses. Such arrangements
are sufficiently binary in nature to have no ambiguity
problems, but I'm not sure how to extend the current
notation to handle them.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Michael Downes

Arbitrary number of subcomponents for elements.
Elements can be broken down as far as necessary to
yield the desired level of independent control over
fonts and other aspects of style for each component.
A typical THM arrangement is slightly more elaborate
than the one in the example given earlier, treating
the word 'Theorem' and the number as separate
components. The most complex element I've had to
deal with so far consisted of four arrangements eight
components.

By suitable combination of simpler arrange-
ments, the design for a given element can become an
arbitrarily complex two-dimensional structure.

Inheritance. If one element has nearly the same
style as another, there is a way in a DBT template
to specify that the element is 'based on' the other,
and reset only the style variables that have differing
values.

Variable clustering. Instead of having separate
entries in the element specs template for every
variable provided by TEX, and every variable added
by the macro package, some of the entries reflect
clusters of related variables. To get ragged-right you
need just one line:

[XX] j u s t i f i c a t i o n : {\raggedright{3Opc}}

instead of many lines:

[XXI hsi ze: {30pc}
[XXlleftskip:{Opt}
[XXlrightskip:{Opt plus3em)
[XX]parfillskip:{Opt p l u s l f i l }
[XXlexhyphenpenal t y : {3000}
CXXl hyphenpenal t y : {9000}
[XXI pre to l erance : {ZOO}
[XX] to1 erance: {400)

I've vacillated about leaving \hsize as a separate
parameter, perhaps under a different name. The
reasons for folding it into the justification parameter
are: (a) this corresponds well to the way justification
is specified in traditional book designs; and (b) there
is a check in the internal processing of the generic
element-printing functions to see if a new value for
justification is the same as the previous value; if so,
the resetting operation can be slupped. If \hsize
were a separate parameter, the check would have to
test two variables instead of one to decide whether
the skipping can be done.

Some aspects of style templates remain T~Xnical.
Although the syntax of element style templates has
been intentionally deT~Xified, towards the goal of
making them accessible to nonT~Xnicians, the ex-
ample in Figure 2 exhibits some backslashes, curly
braces, and (gasp) even @ characters. The main rea-
son for this was convenience during the development
phase. Further improvements to the syntax would
not be that difficult but have not yet reached hlgh
enough priority.

There were two reasons for allowing private
control sequences: first, it leaves open the door to
enter arbitrary TEX code in the value of a variable
(though in our experience so far this has not been
needed as much as I expected); and second, it
avoids name clashes for things hke \goodbreak and
\uppercase that seemed natural for certain values.

Another significant practical constraint was
parsability. Currently all design specs are parsed and
assimilated at run-time. Though it may not be ob-
vious at first sight, behnd the syntax shown in Fig-
ure 2 lie many rejected variations that would have
made it much more difficult to write the routines that
scan component names and variable values. For ex-
ample, use of anything other than curly braces to de-
limit variable values would lead to various problems:
if end-of-line is used to mark the end of the value,
then multiline values become difficult to deal with; if
parentheses are used as delimiters, then it becomes
difficult to use parentheses in a variable's value; and
SO on.

Printing out written specs from the . pds file. The
organized structure of element arrangements allows
them to be traversed by a suitable function in order
to print out a transcription (which comes closer
than you might expect to traditional specs written
by a human designer). Vertical spacing values are
not only entered in base-to-base form, but also
stored that way, so printing out the values does not
require backward conversion. The application of the
specified vertical spacing is highly accurate by virtue
of complicated internal code, which is beyond the
scope of this paper.

Black-box math. Math style is dealt with in a
more-or-less black-box manner: Here is a whole
math setup, take it or leave it. As a matter of
fact, the knowledge necessary for high-quality math
typesetting has traditionally resided more in the
hands of compositors than in the hands of book
designers, so the current sketchy treatment of math
style in . pds files is wholly typical. Although it would
be good to open up math style for easy access, the
necessary work hasn't been attempted yet. Note that
the variables needed to control math style are almost
completely different from the variables needed for
normal text elements.

Memory hogging. Compared to other macro pack-
ages DBT is a memory hog, easily going over 64K in
TEX'S main memory category before even starting the
first page, not to mention loadmg any hefty exten-
sion modules like a table package. And this is after
moving error message and help message texts out
of macro storage onto disk. In general I followed
the phdosophy of the authors of the X window sys-
tem: Write the software the way you think it ought
to be done, ignoring the fact that available computer

3 64 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Design by Template in a Production Macro Package

resources are strained to support it, and hope that copy of a document, you would probably want the
the resources will catch up by the time the software section head spacing to change proportionally. This
reaches maturity. Some further routine optimiza- won't happen if the spacing value was fully evaluated
tions can still be done but it would be premature to at the time of first assignment. Compare the well-
do them now.3 known distinction in computer science between pass-

Slowness. And it runs slowly, because it's trying
to be so clever and do eve ry thg the right way,
rather than the expedient way. For example, the
reason that . pds files are scanned at run-time rather
than precompiled, is that this puts a part of the
maintenance burden where it ought to be - on the
computer, rather than on the persons who set up
design specs; an extra compilation step would make
development and testing more onerous. Rumors that
we would get a super-fast new machine on which
to run in-house TEX production have not yet been
substantiated by putting it in our hands. At the
moment, running on a not-too-shabby two-year-old
Unix workstation (circa 20 Specmarks, 30 MIPS), a
typical book run of around 300 pages may take
more than two hours, as opposed to thirty minutes
or so with the macro package that preceded DBT.

(That includes some non-TEX overhead such as dvi ps
processing, and with the workstation simultaneously
sewing other processes.)

Various Complications

In this section I want to describe some of the tech-
nical complications and problems that have crossed
my path. A few of them are TEX-specific, whlle others
are relevant for any system that seeks to automate
the application of document designs.

(1) Intent: Style variable values should be care-
fully specified to reflect the designer's intent, as
much as possible, rather than the results of that in-
tent. For example, suppose that the designer cal-
culates the point values for space around a section
head to make the head occupy exactly two lines of
space at 12pt linespacing, setting the spacebefore
and spaceaf te r variables to 21pt and 15pt respec-
tively. If the linespacing subsequently changes to
13pt, the values of spacebefore and spaceaf te r
need to be updated by hand, whereas if they had been
set to 1 . 7 5 \ 1 i nespaci ng and 1 .25 \1 i nespaci ng
then the change from 12pt to 13pt could automat-
ically propagate as desired.

(2) when to evaluate: It's not always desirable
to fully evaluate the value of a variable at the time
of assignment. Immediate full evaluation makes it
impossible for a dependent variable to keep in sync
with another variable as it changes. For example, if
the space above a section head is specified in relation
to linespacing, and the normal linespacing value is
overridden later to produce a double-spaced proof

"Premature optimization is the root of all evil."
Donald Knuth, t e x . web (version 3.14, 1991, 5986).

ing function arguments by value or by reference.
(3) Inheritance: When specifying the style of

two similar elements, the one with a more complex
subcomponent structure should be based on the one
with a simpler structure, rather than vice versa. This
is almost self-evident but I once had to set up four
or five unnumbered footnote-type elements, and in
my first attempt I thoughtlessly spec'd the normal
numbered footnote first and based the unnumbered
elements on that, before realizing it ought to be done
the other way around.

(4) Inheritance: The question of immediate ver-
sus delayed evaluation for individual style variables
applies also to collections of variables, when a major
element is specified to be based on another. If the
similarity of style is coincidental rather than due to
a logical relationship between the two elements, then
immediate evaluation would probably be desired.

(5) Documents that are nominally supposed to
have the same documentstyle, in practice often don't.
For a book series, the primary design for the series is
typically subject to &or mddificaiions in individual
volumes. For example, in one volume the style of the
footnote marks was changed because they too closely
resembled some elements of the math formulas in
the volume.

Similarly certain kinds of style variations are
routinely permitted between different articles w i t h
a journal issue. In an article where a bullet is used
as a math symbol, it would probably be a good idea to
override a standard list style that marks unnumbered
list items with bullets.

Different authors prefer dfferent numbering
schemes, and because the numbering scheme of a
document is closely bound up with the logical struc-
ture of the document, we routinely allow style for
theorem heads and section heads to vary (w i t h cer-
tain standard limits) to better suit the numbering
scheme, rather than rigidly enforce a single nurnber-
ing scheme. Here are three of the most common vari-
ations in theorem numbering:

Theorem 1.1. Normal.

1.2. Theorem. Swapped numbers.

1.3. Numbers only.

Numbers are typically swapped to the front when
there are many numbered elements and different
element types share the same numbering sequence.
The font and intervening space then change for
design reasons. All of the variations can be produced
from identical markup by style override statements
at the beginning of the document.

TUGboar, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Michael Downes

(6) In fact, different articles in a journal fre-
quently differ not only in style aspects but in the very
elements that they contain. In a recent example, an
article contained two different h d s of proofs in-
stead of the normal one h d : proofs given in full,
and brief sketches that left the detiuls to be filled in
by the reader. The two kinds were marked by two
chfferent QED symbols.

As anticipating all possible elements and forbid-
ding unknown elements are equally impractical, the
solution seems to be to make it easy to declare a new
element and its associated style, and put those decla-
rations into the individual document where needed.

(7) Arrangements in DBT are applied only to
subcomponents within a single element. But docu-
ments may also contain sequences of major elements
where some of the elements themselves are optional,
which leads to the same sort of potential ambiguities
as with subcomponent arrangements. Suppose the
opening of an article consists of title, author, dedi-
cation, key words, subject classification, abstract, ta-
ble of contents, and finally, main text. And suppose
that the dedication. kev words, abstract and table of , ,

contents are optional. It gets t o be rather tricky to
specify the vertical spacing to be used in all possible
combinations. In DBT this is handled mainly by appli-
cation of a single vertical spacing rule: when adding
a major element to the page, compare the space af-
ter the preceding element and the space before the
new element and use whchever is larger. Practically
speaking this seems to suffice most of the time, if
care is takenin choosing where the various space val-
ues are specified (e.g., for a given set of space values
it may work out better to leave the spaceaf te r vari-
able for the author element at zero and rely only on
the spacebefore values of all the components that
could possibly follow after the author). There is a
rudimentary mechanism in DBT for specifying inter-
element space depending on the type of the two ele-
ments, but it hasn't been needed much.

(8) Communication between information-hand-
ling and design-handling functions: In DBT a TEX
command such as \thm is used in a document to col-
lect the contents of a theorem. \thm sends this data
to a generic element-printing function that takes the
given pieces of information and feeds them into the
declared arrangement for theorem elements. Thus
the definition of \thm is interdependent with the ar-
rangement. Ideally the definition of \thm could be
derived in some semi-automatic way from the ar-
rangement structure but there are many complica-
tions, so a t present DBT doesn't attempt to be too
clever; someone has to explicitly define all the com-
ponents that \thm should look for, and the docu-
ment syntax to expect. There are high-level syntax-
related functions that make this task fairly easy, but
the person doing the defining has to actually look at

the declared arrangement when setting up the paral-
lel structure in the \ t h m command, rather than hav-
ing any of the transfer done automatically.

(9) Information content for the components of
an element can be provided either explicitly in the
document or by giving a default value in the element
template. For example, a proof head will normally be
given a default value of 'Proof' in t h s manner:

[PRF] arrangement : C%
R head * . {\enskip} body *I

[PRF] head : {Proof}

In DBT there is a mechanism for optional substitution
of alternate text for such a component, for selected
instances of the parent element in a document. This
is needed occasionally to get an alternative proof
head such as 'Sketch of the Proof'.

It's not clear whether default information con-
tent specifications like t h s should be lumped to-
gether with style specifications. Is the material con-
tent or style? I would say content, but then con-
sider the following ways of marlung the beginning of
a proof:

1. 'Proof' heading:

. . . preceding text.
Proof. Text of the proof

2. Dingbat:

. . . preceding text.
7 Text of the proof.. . .

3. Inline horizontal rule:

. . .preceding text.
- Text of the proof.. . .

4. Full-measure rule and whitespace:

. . . preceding text.

Text of the proof . .
5 . White space only:

. . .preceding text.

Text of the proof
At what point does the material that marks the
beginning of the proof stop being content and start
being style?

(10) In math formulas font changes are mathe-
matically significant. Suppose that an author uses
bold and non-bold versions of O (Greek Theta) in a
paper for different mathematical entities. Consider
what happens in a bold section head:

4. Let's talk about O

The reader can't tell which version of O was intended.
In more complicated examples serious garbling of
the formula's meaning can occur. To prevent such
garbling the AMS policy is to never vary the fonts in
a math formula for purely stylistic reasons. (As a
tangential benefit, this prevents practical problems
with availability of bold or sans serif math symbols.)

3 66 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Design by Template in a Production Macro Package

(1 1) In traditional composition, certain minor
points of style cut across the logical structure of the
text and are therefore hard to handle by automated
typesetting. For example, if the declared font for a
theorem head is bold, then the logical thing to do
for all in-between material within the theorem head,
such as punctuation, would be to use bold. But it may
be that one subcomponent w i t h a theorem head
(e.g. the number in the swapped-numbers example
above) is not to be printed in bold. The result would
be a bold period after a nonbold number, which tends
to look bad:

(14) 'Above display short space'. There is a
mechanism built into TEX for automatically reducing
the vertical space around a displayed equation if the
horizontal distance from the end of the preceding
text line is large enough.

Here we are testing a short Contrasting to this test of the

skip. notshort skip.
BI - - -

A C - U A = B + ----
Note the space below. E

Note the space below.

How should this design requirement be specified in

1.2. Theorem. Swapped numbers. a style template?
(1 5) Side-by-side figures: Proper specification of

(Look closely at the periods.) A bold period also looks the surrounding space is a little tricky,
odd following a math formula at the end of a run-in First try: put all the avadable space between the
section head, since math formulas are not printed in G-.,.no

11gUlc>.
bold in accordance with the AMS policy mentioned I I

above. To prevent such distracting oddities, most
manuals of composition style say that punctuation
should take on the weight (and sometimes slant, if
applicable) of the preceding text. The DBT system
takes care of ths, but not without effort."

There is also the question, should the period
be considered in-between material, or an interior
part of the precedmg component? I tend to believe
treating it as in-between material is better, but the
weight mismatch problem is one example of the
complications lurking behind that approach.

(12) It's unclear how best to specify vertical
spacing around displayed equations. Specifying it in
base-to-base terms leaves open, for many equations,
a question 'The base of what??'. And the reasonably
satisfactory answer 'the base of the hghest and
lowest full-size entities in the equation, disregarding
delirmters' is rather difficult to implement. Not
to mention the fact that egregiously large sub or
superscripts can still make a mockery of the intended
spacing. The alternative of specifying the space
around equations as visual space to the topmost and
bottom-most points of the equation doesn't always
work perfectly either. The mechanism budt into TEX
is a sort of composite method that uses base-to-base
spacing until the equation contents get too tall, then
switch to visual spacing. Although thls works pretty
well, it often results in a discrepancy of two or three
points in the spacing above and below equations on
the same page.

(13) In the presence of running heads, accurate
calculation of type block height and text block height
is not easy. Doing it properly requires knowing the
alphabet height of the fonts used for the running
head and the main text. Then placing the main text
and the running head properly within the defined
heights requires some careful work.

% numeric code for the most recently used font
is recorded in \spacefactor for later reference.

Second try: Divide the avadable space into four
parts, put two parts in the middle, and one on each
side.

But when the figures are close to half of the
available width, the results can be poor:

Thad try: Specify a minimum space between the
figures, then divide up the space remaining into four
equally distributed parts.

Second
figure

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Michael Downes

(16) QED symbol placement: The end of a
mathematical proof is frequently marked by the
letters 'Q.E.D.' or some sort of dingbat, as an aid
to the reader. As the QED symbol is consistently
applied to all proofs in a document, it seems best
to treat it as an aspect of the proof style and
add it automatically, rather than requiring it to
be included in the content portion of the proof.
To avoid wasting vertical space, the QED symbol
is usually fitted into the bottom right corner of
the last paragraph. But then if the proof ends
with a displayed equation, or anything other than
a plain paragraph, the formatting of the last text
in the proof will probably be fmshed before the
\endproof command kicks into action; retrofitting
the QED symbol into the preceding text becomes a
real problem.

(17) Omitting redundant punctuation: e.g., a
period after a run-in section head that ends with
a question mark; compare the omission of the
sentence-ending period when a sentence ends with
etc. (This is a problem in documents where sentences
are marked up with \sentence . . . \endsentence.)

(18) Running two different elements together.
If a numbered list falls at the very beginning of
a headed element such as a proof, it is common
practice to run the first list item in on the same line
as the proof head (saves vertical space, thus tends
to savhpaper = cost = final cost to the reader). But
the rule for deciding when to allow such running in
is difficult to express in a way that can be automated.

(19) How to evaluate: For some style variables
it is occasionally desirable to give a value in terms of
other variables. But evaluation in TEX is problematic
for any arithmetic expression more complicated than
a factor multiplying a register. You cannot write

[THMllinespacing: {\curr typesize + 2pt)

The TEX way of writing such an assignment is

\l i nespaci ng = \curr typesize
\advance\l i nespaci ng 2pt

This can't easily be jammed into the value slot of a
template entry. It would be possible to apply some
sort of arithmetic processing when reading the value
of a variable, but designing a syntax suitable for TEX
would not be particularly easy.

(20) Case changing. TEX'S \uppercase or
\lowercase cannot be applied indscriminately
to an element component if the component might
contain (for example) a math formula. Also, in AMS
editorial practice the uppercase form of McLeod is
McLEOD, not MCLEOD. For related TjXIIical reasons,
case changes in DBT cannot be applied to a composite
component, only to 'atomic' components.

It would be better if case changes were combined
with font changes - in other words, if uppercasing
were done by switching to an uppercase font instead
of by applying \uppercase. This would automati-

cally avoid problems with embedded math formulas,
for example. But the implementation details would
be a bit thorny. You can make a virtual font that sub-
stitutes capital letters for the lowercase letters, but it
seems sort of silly to create a separate font to access
characters that already exist in the current font; so
perhaps some sort of output encoding change would
be better. But TEX 3.x doesn't provide that capability.

Conclusion

Most of the analysis in DBT for breaking down style
specifications into suitable variables is straightfor-
ward. A few aspects, however - notably the 'arrange-
ment' concept - have little precedent that I know of
and have not had sufficient testing and analysis to
raise their status beyond 'experimental'. The imple-
mentation in TEX of DBT approaches or surpasses
some of the current typical limits on TEX memory re-
sources and processing speed. Nonetheless, the sys-
tem is currently in use in-house at the AMS and is do-
ing a pretty good job of delivering the desired easy
maintenance of our publication designs. The possi-
bility of wider release at some point is not out of the
question, but the amount of work necessary to pol-
ish it up for such release (including some optimiza-
tion to decrease the strain on TEX memory capacities)
would be rather large.

References

Anagnostopoulos, Paul. "ZZTEX: A macro package
for books." 7UGboat 13 (4), pages 497-504,
1992.

Bringhurst, Robert. Elements of Typographic Style.
Hartley & Marks, Point Roberts, Washington,
USA, 1992.

Brown, P.J. "Using logical objects to control hy-
pertext appearance." Electronic Publishing-
Origination, Dissemination and Design 4 (21,
pages 109-118, 1991.

Dobrowolslu, Andrew. "Typesetting SGML docu-
ments using TEX." 7UGboat 12 (3), pages 409-
414, 1991.

Eijkhout, Victor. "Just give me a Lollipop (It
makes my heart go giddy-up)." TUGboat 13
(3), pages 341-346, 1992.

Eijkhout, Victor and Andries Lenstra. "The document
style designer as a separate entity." TUGboat 12
(I), pages 31-34, 1991.

Hansen, Bo Stig. "A function-based formatting
model." E1ectrom.c Publishing - Origination,
Dissemination and Design 3 (I), pages 3-28,
1990.

Livengood, William P. The Maple Press Company
Style Book. Maple Press Co., York, Pennsylvania,
USA, 1931.

368 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Less is More: Complex Page Layouts and Shapes with TEX

Alan Hoenig
John Jay College/CUNY, 17 Bay Avenue, Huntington, NY 11743, USA

ajhjj@cunyvm.cuny.edu

Abstract

This presentation discusses by means of several examples the ability of TEX to
generate complex page layouts in a special case of text. In this special case of
restricted text, no tall characters or stretchable vertical glue is allowed and all
lines are assumed to have the same height and depth. To anyone accustomed
to TEX'S generality, this may seem overwhelmingly restrictive, but probably 99%
of all typesetting-letters, novels, non-technical material, etc.-conforms to this
model. Examples I'll discuss include line numbering of text, changebars, flowing
text entirely around a special shape, and fine control over inter-column cutouts
(a la The New Yorker magazine). I'll also how to include material which does not
conform to this model (such as section heads, display material, and so on), so this
model is more flexible than it appears.

Introduction top publisher above. Specifically, restricted text con-

An imaginary conversation between the author and
a 'conventional' desktop publisher inspired this ar-
ticle. The discussion involves the ability to typeset
fancy column shapes. Consider:

DTPuB: My software can create fancy column shapes.
I can 'synchronize' the shapes so that pairs of
columns can perfectly enclose an odd-shaped
figure.

Au: Sounds impressive. But how do you account for
displayed equations, tall characters, stretchable
white space, and other items that might louse
up the alignment of the lines on the right to
the lines on the left? And what happens if the
column break leads to a lonely widow or club
line at the top or bottom of a column?

DTPuB: What are you tallung about? I only set mate-
rial so that each line is exactly the same height
as any other. As far as math goes, why would
it appear in this lund of context? I don't care
about 'lonely' lines because horizontal align-
ment of lines across columns takes precedence.
And what the heck's stretchable glue?

Designers of macro packages bend over back-
wards to make their macros as general purpose as
possible, but there are still typographic effects that
remain difficult if not outright impossible in the gen-
eral case. This mini-conversation made me realize
that complete generality may not be a virtue, at least
not 100% of the time. I decided to imagine that my
typesetting was restricted to the same universe as
that of the desktop publisher to see if giving up some
flexibility led to the ability to do new things with TEX.

In what follows, I shall use the term 'restricted
text' to refer to text conforming to that of the desk-

sists only of prose such that the total height of each
line-the sum of the depth and height-does not
exceed some certain amount. Tall characters and
stretchable vertical glue make no appearance in this
text, and nor does a reluctance to leave widows and
club lines dangling fore or aft of a column. Although
this is quite restrictive, much (if not most) printed
matter does conform to this model. Furthermore, it
turns out that section heads, extended quotations,
and so on-elements which do not conform to t h s re-
stricted model-can be incorporated into a restricted
document, so restricted text is not quite so restrictive
after all.

I will present some examples whereby complex
and unusual page layouts can be done with TEX pro-
viding that the text conforms to the restrictions we
mentioned above. Using this model, I am cautiously
optimistic that that anything any other desktop pub-
lishing program can do, TEX can also.

To no one's surprise, several of the crucial ideas
have been lifted from work done by Don Knuth. Sev-
eral additional ideas are identical or sirmlar to ones
discussed by David Salomon in his ongoing series of
tutorials on the \output routine which can be found
in TUGboat.

Purpose of This Presentation

It is not my purpose here to present a finished set
of macros to accomplish the tasks I will discuss.
Rather, I hope to suggest a philosophy-that reining
in TEX can sometimes be beneficial-and to present
examples showing some advantages of this thinking.
Readers may decide for themselves whether the ben-
efits really do outweigh the disadvantages.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Alan Hoenig

Nevertheless, readers who agree with the author
that it sometimes pays to restrict certain of TEX'S abil-
ities may wish to recreate these effects. The exam-
ples of the first portion of the paper can be integrated
into personal style files using the macro snippets that
appear. The final example (magazine layout) is a dif-
ferent matter, and here the author has an additional
agenda. I seek feedback that the user interface-the
way that macro names and macro arguments have
been organized-is reasonable. After incorporating
comments, I hope to make these macros available
shortly thereafter.

A New Output Routine

It seemed likely to me that TEX would have to be
re-configured a bit to make dealing with restricted
text easier. A new output routine, suggested by Don
Knuth (Knuth 1987) in another context, seemed to
fit the bill. The height of a strut, \ s t r u t h t , is usu-
ally the maximum height of a line of text in the re-
stricted text under discussion. If we set the \vsi ze
of the document to be \ s t r u t h t , then TEX'S output
routine will obligingly slice up the text into line-sized
morsels. It will be up to this restructured \output
routine to collect these lines, stack them together,
and actually ship out a page only when the line count
equals the capacity of a single page.

Of course, as TEX passes each line to the collect-
ing area, perhaps using code in the output routine
something like

\ i fnum\l i neno i \l i nesperpage
\global \setbox\part i a1 page=

\vbox{\unvbox\parti a1 page \box2553
\ e l se . . .
it's possible to include a macro to do somethng spe-
cial to each line, much as the token list \everypar
can at the start of each paragraph. (In this way, we
can mimic the structure of an \every1 i ne token list,
somethmg that features high on many people's TEX
wish list. Mimic is the key word, for source file to-
kens have long been processed by TEX.) That is, the
above \output fragment should better look like

\ i f num\l i neno < \ l i nesperpage
\ s e t box\parti a1 page=\vbox{
\unvbox\parti a1 page\processl i ne}

\ e l se . . .
Let's pause to consider some of the ways we can ex-
ploit \process1 i ne (wbch can be thought of as a
mock-\eve ryl i ne).

Numbering lines of text.Numbering lines in an
\obey1 i n e s environment has always been straight-
forward. Now it's simple enough for regular text, at
least in our restricted case. Simply invoke d e h t i o n s
like

\newcount\l i nesdone
\newi f \ i f d i v i s i bl ebyfive

\newcount\scr
\def\ModFi ve{% Is \l i nesdone d iv by 5?

\global \di vi s i b1 ebyfivefal s e
\scr=\l i nesdone \di vi de\scr by 5
\mu1 t i p 1 y\scr by-5
\advance\scr by\linesdone
\i fnum\scr=O
\gl obal\divi si blebyfivetrue \ f i }

\def\processline{%

\global \advance\l i nesdone by 1
\ModFive \i fd iv i s i bl ebyfive

\hbox{\l 1 ap{%
\ol ds ty l e\ the\ l i nesdone\ }\box2553

\el se\box2 5 5 \ f i }

which will print line numbers every five lines across
paragraph and page boundaries. Figure 1 displays an
example of typography showing line numbering.

Change bars. Most change bar styles use Postscript.
Here's one way that we can implement it indepen-
dently of PostScript.

Even with our restrictions in effect, t h s problem
highlights an important set of problems. Because of
TEX'S asynchronous mode of processing, output oc-
curs at very different times then when the source
file is chewed by TEX'S mouth. So a \changebar
macro has to contain instructions to the output rou-
tine which \process1 i ne will then execute.

Of the several methods avadable for t h s com-
munication, I chose the following. The command
\changebar inserts a strut whose depth is ever so
slightly greater than the normal depth of a line. The
depth is so slight that no reader wdl ever be able to
see it, but it is great enough so that TEX can perceive
it. The slight amount we use is two scaled points;
we recall that one printer's point contains 6 4 ~ scaled
points.

If we code \changebar to act like a font change,
so that a group must enclose the change'd text, then
a simplified coding might look as follows. First, we
d e h e deep struts.

\newbox\varstrutbox \newdimen\lostrutdp
\def\varstrut{\relax
\ i fmmode\copy\varstrutbox\else
\unhcopy\varstrutbox\fi }

\def\l ostrut#l{%
\gl obal \ lostrutdp=\strutdp
\global \advance\l os t ru tdp by#l sp
\global \setbox\varstrutbox=
\hbox{\vrul e widthopt he igh t \ s t ru th t

depth\l ostrutdp}\varst rut}

And now, here is TEX code for \changebar. The
\ a f t e rg roup hack ensures that the increase to the
height of a h e happens after the \changebar group
has been concluded. The output routine will check
the depth of the line. A surplus depth of two scaled
points signals the beginning of a change bar, and a
surplus of three scaled points signals its end.

3 70 TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Less is More: Complex Page Layouts and Shapes with TEX

H E W MELVILLE MOBFDICK CHAPTER I

head. True, they rather order me about some, and make me jump

from spar to spar, like a grasshopper in a May meadow. And at

first, this sort of thing is unpleasant enough. It touches one's sense

of honor, particularly if you come of an old established family in

115 the land, the van Rensselaers, or Randolphs, or Hardicanutes. And

more than all, ifjust previous to putting your hand into the tar-

pot, you have been lording it as a country schoolmaster, making the

tallest boys stand in awe of you. The transition is a keen one, I as-

sure you, from the schoolmaster to a sailor, and requires a strong

120 decoction of Seneca and the Stoics to enable you to grin and bear

it. But even this wears off in time.

What of it, if some old hunks of a sea-captain orders me to

get a broom and sweep down the decks? What does that indignity

amount to, weighed, I mean, in the scales of the New Testament?

125 DO you think the archangel Gabriel thinks anything the less of me,

because I promptly and respectfully obey that old hunks in that par-

ticular instance? Who aint a slave? Tell me that. Well, then, how-

ever the old sea-captains may order me about-however they may

thump and punch me about, I have the satisfaction of knowing that

130 it is all right; that everybody else is one way or other served in much

the same way-either in a physical or metaphysical point of view,

that is; and so the universal thump is passed round, and all hands

should rub each other's shoulder-blades, and be content.

Again, I always go to sea as a sailor, because they make a point

135 of paying me for my trouble, whereas they never pay passengers

a single penny that I ever heard of. On the contrary, passengers

themselves must pay. And there is all the difference in the world be-

tween paying and being paid. The act ofpaying is perhaps the most

uncomfortable infliction that the two orchard thieves entailed upon

140 us. But being paid,-what will compare with it? The urbane activ-

ity with which a man receives money is really marvellous, consider-

ing that we so earnestly believe money to be the root of all earthly

ills, and that on no account can a monied man enter heaven. Ah!

how cheerfully we consign ourselves to perdition!

145 Finally, I always go to sea as a sailor, because of the wholesome

exercise and pure air of the forecastle deck. For as in this world,

head winds are far more prevalent than winds from astern (that is,

Figure 1: Typography similar to John Baskerville's 1 75 7 edition of the Bucolics and Georgics o f Virgil. This
sample is set in Monotype Baskerville.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Alan Hoenig

\def\changebar{\aftergroup\endchangebar
\ l os t ru t2 }

\def\endchangebar{\l os t ru t31

The \processl ine macro must examine the
depth of the current line and take action accordingly.
It's the responsibility of a macro to add the actual
changebar segment to \box2 5 5 which contains a sin-
gle line of text.

\def\addchangebar{\hbox{\llap{\vrule
width4pt he igh t \ s t ru th t
depth\strutdp\quad}%

\box2 5 5))

Our routine will examine the register \Del taDP
which stores the surplus depth and sets flags as ap-
propriate. We will also assume that the last line of
the changebar group needs a changebar segment,
and therefore another switch \i ffl ushi ng is neces-
sary for that purpose. (Without this switch, the last
typeset line of changed text would appear without
the changebar segment.)

\newi f \ i fchangi ng \newi f\i f f l ushi ng
\def\processl ine{%
\i fnum\Del taDP=2

\global \changi ngt rue \f i
\i fnum\Del taDP=3

\global \changi ng fa l se
\ g l o b a l \ f l ushingtrue \f i

\i fchangi ng \addchangebar \e lse
\i f f l ushi ng \addchangebar
\ g l o b a l \ f l ushingfa lse

\e l se\box2 5 5
\fi\fi}

The \output routine needs a hook to check on
surplus depth. Macro \ i d e n t i t y simply typesets
\box255 without doing anything to it.

\def\checkl i ne{%
\d i menO=\dp2 5 5
\advance\dimenO by- \st rutdp
\Del taDP=\di men0
\i fnum\Del taDP=l
\g lobal \l et\processl i ne=\i dent i t y \f i

1

We reserve a surplus depth of 1 as a signal to return
to normal, standard typesetting. A redefined \bye
command will automatically cancel out any special
effects.

\outer \def \bye{\ f i n i sh
\ v f i 11 \supere ject\end}

\ d e f \ f i n i sh{\endgraf
\l eavevmode\l o s t r u t l \endgraf}

Source marked up similar to

. . . end, {\changebar f o r . . .

. . . i s wrong}. I t fo l lows t h a t . . .
generated the changebars (and the text) displayed in
figure 2.

Section heads; escaping the restrictions. A section
head is an example of a document component that
would escape the restrictions we have imposed upon
ourselves. This is a good time to explore ways to
include these elements in our document.

The previous example suggests ways that sig-
nals to the output routine can allow us to b d d up
the partial page out of non-restricted components.
These components should have a total height equal
to a whole number of single line heights.

Let us suppose that we want to leave a total ver-
tical separation of two lines between the sections. In
this white space we insert the section head, whch
should be 12-point bold type. Furthermore, we want
to leave a little extra space between the section head
and the following line, and we don't want to print the
section head unless there is room for at least one ad-
ditional line following the section head. It would ap-
pear to be straightforward to write a \ sec t i on macro
to create a \vbox to create the vertically spaced head-
ing and to send a signal to \output which can deter-
mine whether there is room enough for the heading
and act accordingly.

But a problem could arise. What if there were
several headings to be very close to one another in
the document? In that case, because TEX'S mouth of-
ten gets ahead of the processing done by \output,
new contents of a \sectbox would over-write pre-
vious contents before TEX would have typeset them.
We can be sure, though, that \output will process
these special boxes in the order in which they appear
in the document, and so we adopt a subtler strategy.
We will use a single special \vbox to hold these in-
sertions, and we will take care to add new boxes to it
from the bottom. Whenever \output needs to take a
special box for typesetting, we will take off the top of
this box. This special \i nsertbox acts like a "first in
first out" (FIFO) queue containing insertions. In this
way, we can be sure that no headings get lost in the
asynchronous maze whlch is TEX.

Incidentally, we can use this method to include
displayed equations, tables, extended quotations,
and other non-restricted text in the body of a 're-
stricted' document, so that our restricted document
is not so restricted after all. (Note that the term 'in-
sertion' that I've used refers to text that does not con-
form to a restricted format but which I wish to in-
clude. It is quite different in spirit and scope from
the usual TEX insertion whose eventual appearance
on the page is unpredictable.)

\def\sect ion#1{\setbox\sectbox=
\vbox to2\basel i neski p{%
\vss \ l e f t 1 i ne{ \s t ru t \b igb f #I}%
\vsk i p lp t \ h ru l e heightopt}%
\g lobal \setbox\ i nsertbox=
\vbox{\unvbox\insertbox
\goodbreak \box\sectbox}%

372 TUGboat, Volume 15 (1994), No. 3 - Proceedings of the 1994 Annual Meeting

Less is More: Complex Page Layouts and Shapes with TEX

1 -Typography may be defined as the art of rightly disposing printing material in accordance with spe-

cific purpose; of so arranging the letters, distributing the space and controlling the type as to aid to the maximum the reader's

comprehension of the text. Typography is the efficient means to an essentially utilitarian and only accidentaly aesthetic end,

fet:eftiep.RefftEefvif&bte&M&Tkefe4rw-ef*&wkidtr*& I the & & e m k g betwk aaket 8c & ir izmg for enjoyment of patterns is rarely the reader's chief aim.

Therefore, any disposition of printing material which, whatever the intention, has the effect of coming between author and

reader is wrong. It follows that in the printing of books meant to be read there is little room for 'bright' typography. Even

dullness and monotony in the typesetting are far less vicious to a reader than typographical eccentricity or pleasantry. Cun-

ning of this sort is desirable, even essential in the typography of propaganda, whether for commerce, politics, or religion,

I
because in such printing only the freshest survive inattention. k bte & ef beehi lfeRt & ef

~ ~ ~ ~ m ~ r e ~ w k i d t i f i t k f f e s f ~ ~ ~
T l t e h & € h e ~ e f * w f e t . + ~ a r - e w f i f f F ~ € h e d -

ef**d~v&&*f3f~&Itl&~fet:*dte*
if wedcmg- But the typography of books, apart from the category of narrowly limited editions, requires an obedience to

convention which is almost absolute-and with reason.

The laws governing the typography of books intended for general circulation are based first upon the essential nature

of alphabetical writing, and secondly upon the traditions, explicit, or implicit prevailing in the society for which the printer

is working.While a universal character or typography applicable to all books produced in a given national area is practicable,

to impose a universal detailed formula upon all books printed in roman types is not. National tradition expresses itself in

1 the varying separation of the book into pehwxme prelims, chapters, etc., no less than in the design of the type. But at

least there are physical rules of linear composition which are obeyed by all printers who know their job.

Figure 2: Text decorated with changebars. Strike outs indicate the revised material. (This text is set in Adobe
Garamond.)

% build \sectbox from bottom \loop \copy\emptyl i ne
\s ignal % message t o output routine \advance\scr by-1 \ifnurn\scr>O

3 \repeat
\def\s ignal {\l i ne{\hss\l ostrut2}% \global \setbox\sectbox=

\endgrafl \vbox{\box255

A box called \sectbox holds the current heading. \goodbreak\unvbox\sectbox~%

Back in the output routine, we use a definition \af tergroup\signal

like this for \process1 i ne. \ f i \global\scr=O }

\def\processl i ne(\ifnum\scr=2
\wri t e sec t ion \ e l s e
\hbox{\strut\box2553\fi 3

Here, \ scr is a scratch counter which will hold the
excess depth of the most recent \box2 5 5. Any value
of \ s c r other than zero is a signal to be acted upon
in some way. Macro \wri t e s e c t i on is actually re-
sponsible for printing the section head or saving it
for the top of the next page.

\def\wri tesec t ion(%
% \box255 has a deep s t ru t - -d iscard i t .

\setbox\nul 1 box=\box2 5 5
\setbox2 55=

\vspl i t \sectbox t o 2\basel i neski p
%% see is t h e r e room?

\global\scr=\l i nesperpage
\global\advance\scr by-\l i neno
\ifnum\scr>3 % t he re i s room

\box2 5 5 \global \advance\l i neno by 1
\ e l s e %

% s p i t o u t empty l i n e s , go t o next page
\global \l i neno=\l i nesperpage

Complex Page Shapes

Setting \vsi ze to \basel i neski p is a simple but
powerful tool, but we need more help to have exten-
sive control over the appearance of the page. TEX'S
basic \parshape command is useful for single para-
graphs but appears to be useless in case a shape
should extend across paragraph boundaries. We can
extend \parshape but to do so, we need to recall
some useful facts: at the conclusion of each para-
graph, the register \prevgraf has been increased by
the number of lines in the paragraph; TEX uses the
value of \prevgraf at the start of a paragraph as
the index into the list of line dimensions which ac-
company any \parshape; and all paragraph shaping
commands-\parshape and \hangafter-are reset
to their standard values. Extending this paragraph
shaping capability involves making TEX ignore this
usual resetting procedure.

The following lines provide a \pageshape com-
mand, whose syntax mirrors that of \parshape.

\newcount\totallines

TUGboat, Volume 15 (1994), No. 3 -proceedings of the 1994 Annual Meeting

Alan Hoenig

T YPOGRAPHY may be defined as the art of rightly disposing printing material in accordance with specific purpose;

of so arranging the letters, distributing the space and controlling the type as to aid to the maximum the reader's compre-

hension of the text. Typography is the efficient means to an essentially utilitarian & only accidentaly aesthetic end, for enjoy-

ment of patterns is rarely the reader's chief aim. Therefore, any disposition of printing material which, whatever the intention,

has the effect of com- , , ing of books meant to

ness and monotony in the typesetting are far less vicious to a reader than typographical eccentricity or pleasantry. Cun-

ning of this sort is desirable, even essential in the typography of propaganda, whether for commerce, politics, or reli-

gion, because in such printing only the freshest survive inattention. But the typography of books, apart from the cat-

egory of narrowly limited editions, requires an obedience to convention which is almost absolute-and with reason. §
The laws governing the typography of books intended for general circulation are based first upon the essential nature

of alphabetical writing, and secondly upon the traditions, explicit, or implicit prevailing in the society for which the

printer is working. While a universal character or tyupography applicable to all books produced in a given national

area is practicable, to impose a universal detailed formula upon all books printed in roman types is not. National tra-

dition expresses itself in the varying separation of the book into prelims, chapters, etc.,no less than in the design of the

type. But at least there are physical rules of linear composition which are obeyed by all printers who know their job.

ing between author &

reader is wrong. It fol-

abcdefghijklm ABCDEFGHIJKLMNOPQRSTUVWXYZ nopqrstuuwxy~

Figure 3: Hermann Zapf designed this page before 1954. It originally appeared in hls Manuale Typograph-
icum. Zapf's original specimen appeared in some flavor of Baskerville; this is set in Monotype Baskerville.

lows that in the print- pography. Even dull-

FIRST PRINCIPLES OF TYPOGRAPHY STANLEY MORISON

\def\pageshape{\afterassignment
\dopageshape \scr }

\def\dopageshape{%
\ifnum\scr=O\def\par(\endgraf}
\e l se\def\par{{\endgraf

\g lobal \ t o t a l 1 i nes=\prevgraf}}%
\f i
\everypar={\prevgraf=\totall i nes}%

\parshape \scr 1
The \afterassignment hack in \pageshape allows
us to obtain the numeric value for \pageshape.
In case it is zero, standard paragraph shaping
is invoked. Interesting things occur otherwise.
We use \ t o t a l 1 i nes to remember the final value
of \prevgraf, and then use \everypar to set
\prevgraf as each paragraph commences.

\par has been redefined to end the paragraph,
but to do so within a group (which is why the

be read there is little

room for 'bright' ty-

Guide in about 1987. I am grateful to her for having
made this letter available to me.)

An immediate application is toward the creation
of windows withln paragraphs. How so? Suppose we
wanted text with a window like this:

We simply use \pageshape to create text which looks
as follows.

\ t o t a l 1 i nes equation needs a \global prefuc).
What is the purpose of this additional level of group- (The dashed lines emphasize the the position of the

ing? As the paragraph concludes, TEX restores the interline glue.) Then, macros in \output have to be

standard value for \parshape. But this restoration Smart enough to backspace up (via a like

occurs within a group-which means that the for- \vski P-\basel i neski p) after adding the left side

mer value prevails when the group is efited. This of the window to the partial page but before adding

former value is precisely the \parshape specified the right side.

within the "\pageshape1' command. It's as if we in- Figure 3 shows how I used TEX to typeset a page

eluded a \parshape specification within \eve rypar. originally typeset by Hermann Zapf some years ago.

(As far as the current author knows, this method This can be generalized form

was first elucidated by the author of TEX and c0-u- of arbitrary shape; see, for example, (Hoe@ 1992)

nicated in a private letter to Elizabeth Barnhart of W and (Hoenig

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Less is More: Complex Page Layouts and Shapes with TEX

Figure 4: A simple symmetric straddle between two
columns.

Magazine layout. My last example was inspired by
layouts of magazines like The New Yorker and Sci-
entific American. These layouts are deceptively sim-
ple. Both magazines fit into our model of restricted
text. Both magazines employ a multiple-column for-
mat, but both also depend on sophisticated meth-
ods of leaving space for figures, author biographies,
ads, cute drawings, and the like. Part of a two-
column spread for The New Yorker, for example,
might schematically appear as in figure 4. Can we
get TEX to do it, and, if yes, using a reasonable set of
mark-up conventions? Based on my investigations,
we can be optimistic that such macros are possible.

It has proven possible to design macros with
a reasonable interface. Before the text begins, all
such commands are sandwiched between two com-
mands, \ l ayout and \endl ayout. The layout com-
mands recognize two lunds of layout 'events', namely
slupping lines and straddles, whch are spaces strad-
dling an intercolumn boundary and requiring inden-
tations in the columns which must match across
columns. Miscellaneous other commands can be in-
cluded, such as \nextcol umn or \nextpage, which
make the task of anchoring the layout to the page,
easier.

How may we specify a layout event? All such
events have a vertical extent-how many lines are
they supposed to last. In addition, for straddles, we
need to specify a horizontal extent plus information
as to how to position the straddle to the left or right
of the column boundary. Finally, TEX needs to know
how far down from the top of the page (or up from
the bottom of the page) to begin the slup or straddle.

Commands controlling layout. Here follows a brief
glossary of the major layout commands that I have
(SO far) been able to implement. All of the commands
controlling layout events occur in two varieties. The
first specifies that the beginning of the event (strad-
dle or skip) should occur so many lines down from
the first line of the page; these have . . . FromTop in
their names. The second says that the bottom of the

Figure 5: A small gap in a short page containing
three columns. --- --- - - - - ---
Figure 6: A straddle across one column in a page
containing three columns.

event begins so many lines up from the bottom of the
page and have . . . FromBottom in their names.

\ n tells the macros how many columns to set the
text in. No attempt is made to balance columns
on the last page (although such a capability
could be added); we assume that editors need
to know by how much an article exceeds or falls
short of its allotted space.

\St raddl eFromTop#l#2#3 creates a straddle sim-
ilar to that of figure 4. Here, # 1 is the to-
tal width of the straddle, #2 is total height of
the straddle in lines, and #3 is the number of
lines from the top of the page at which point
the straddle begins. The straddle of figure 4
could have been specified with a command like
\St raddl eFromTop{6pc}{4}{2}.

\St raddl eFromBottom#l#2#3 Here, parameter #3
is the number of lines of the bottom of the in-
dent from the bottom of the page. Using thls
command, the straddle of figure 4 would be
\StraddleFromBottom{6pc}{4}{3}.

\AStraddl eFromBottom#l#2#3#4 This command
yields an asymmetric straddle. Here, #4 is the
length of the left portion of the indent. There is
also an \ASt raddl eFromTop command.

\SkipFromTop#l#2 wdl slap #1 lines (leave a ver-
tical gap of that many lines) starting #2 lines
from the top. There is a companion command
\Ski pFromBottom#l#2 where the second pa-
rameter #2 specifies the number of lines below
the bottom of the gap.

The vertical gap in figure 5 comes from ei-
ther of the commands \Ski pFromTop{2}{2} or
\Ski pFromBottom{2}{1}.

\Straddl esFromTop#l#2#3#4 This and the follow-
ing commands control layout events that span

%boar, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 3 75

Alan Hoenig

several columns. Here, parameter # 1 is the
total width of cutout; #2 should be the num-
ber of full columns straddled; #3 is the ver-
tical height in lines; and #4 is the number of
lines from the top of the page. Figure 6 dis-
plays a straddle across a single column; either
of \StraddlesFromTop{l.3\C}{1}{2}{2} or
\StraddlesFromBottom{1.3\C}{1}{2}Cl}
(where \colwd is some hypothetical register
containing the width of a column) could have
generated it.

\SpanCol umnsFromTop#l#2#3 requests TEX to cre-
ate a vertical gap, but a gap which spans sev-
eral columns horizontally. Here, # 1 is the num-
ber of columns spanned, #2 is the number of
vertical lines to be skipped, and #3 is the num-
ber of lines from the top of the page at which
to begin the span. A companion command,
\SpanCol umns FromBottom also exists in case it
is easier to relate gaps to the page bottom. It
also requires three parameters, the thlrd one be-
ing the number of lines from the page bottom.

\TwoEyesFromTop#l#2#3 generates the peculiar
formation shown in figure 9. The three parame-
ters refer to the total length of the eye, the verti-
cal duration of the eye in lines, and the number
of lines down from the page. Its companion is
\TwoEyesFromBottom}.

\nextcol umn and \nextpage tells the macros to re-
sume its line counting on the next column or
page. If several columns are set plain with no
layout events, then several \nextcolumn com-
mands will need to follow each other in the
\ layout section of the document.

In addition to these high level commands, there
are three others which lurk behnd the scenes:
\AtLeftFromBottom, \AtRightFromBottom, and
\LeftRightFromBottom (plus their Top compan-
ions). These control indentations at the sides of a col-
umn. These together with the \Ski pFrom. . . com-
mands combine to produce all the commands listed
above.

Other weird shapes. Although I have described sev-
eral kinds of layout cutouts, all are combinations of
two kinds of basic shapes-a command to create a
vertical gap in a single column, and two commands
to create either a left or right indentation in a col-
umn. Careful study of the macros shows how to com-
bine these to create a larger palette of layout com-
mands. However, commands can be 'stacked'. That
is, it is possible to create odd cutouts by combining
several commands together. For example, an asyrn-
metric straddle lasting for a single line is the result
of a command like

\AStraddleFromTop{lOpc}{l}%
{\scratch}{\di meno}

where \dimen0 contains the amount of the left in-
dent and \scratch is a scratch count register. This
was the basic component that produced the layout
of figure 7.

An example. Figures 8 through 10 show the first few
pages of Moby-Dick which have been formatted with
these macros. This is offered as an example of the
use of these macros, not as an example of good ty-
pography. Even with absurd values of \to1 erance
and\hyphenpenal t y (9600 and -100) and withnine-
point type, it is difficult for TEX to generate accept-
able line breaks. Furthermore, no claim is made that
the placement of column cutouts is in any way pleas-
ing.

In general, cutouts are specified starting at the
top of a column and proceeding downward. Proceed
to the next column on the right when this column
is finished. Use \nextcol umn and \nextpage com-
mands to get to the next column or page. After the
last layout element has been specified, conclude with
\endl ayout. The following lines provide one way to
generate the pages shown in figures 8 through 10.

\layout
\SpanColumnsFromTop{2}{4}{0}
\StraddleFromBottom{16~{4}{16}
\nextcol umn
\nextcol umn
\Ski pFromBottom{\bi oht}{O}
\nextpage %%

\TwoEyesFromTop{4.5pc}C7}{5}
\TwoEyesFromBottom{4.5pc}{7}{5}
\nextpage %%
\StraddleFromTop{\colwd}{4}{5}
\Straddl esFromBottom{%

2\colwdl{llC4}{5}
\nextcol umn
\StraddleFromBottom{%

\colwd}{4}{13}
\endl ayout

Limitations and bugs. No error checking to speak
of has been built in to these macros. If you specify
incorrect or contradictory layout parameters, you get
unpredictable output rather than error messages.

There is no good way to currently place logos or
other typeset snippets in the gaps created by these
layout commands. A rudimentary facility does exist,
but it is not robust enough to report on at present.

References

Hoenig, Alan, "TEX does windows-conclusion,"
TUGboat, 8(2), pages 212-216, July 1987.

Hoenig, Alan, "When TEX and METAFONT work
together," Proceedings of the 7th European TEX
Conference, Prague (September 14-1 8, 1992).

Knuth, Donald E., "Saturday morning problem-
conclusion," TUGboat, 8(2), page 2 11, July 1987.

3 76 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Less is More: Complex Page Layouts and Shapes with TEX

Mooby-Dick Chapter I:

him. Go visit the Prairies in June, when for

scores on scores of miles you wade knee-deep

among Tiger-lilies-what is the one charm

wanting?-Water -there is not a drop of wa-

ter there! Were Niagara but a cataract of

sand, would you travel your thousand miles

to see it? Why did the poor poet of Ten-

nessee, upon suddenly receiving two handfuls

of silver, deliberate whether to buy him a coat,

which he sadly needed, or invest

his money in a pedestrian trip to

Rockaway Beach? Why is almost ev-

ery robust healthy boy with a robust

healthy soul in him, at some time or

other crazy to go to sea? Why upon your

first voyage as a passenger, did you yourself

feel such a mystical vibration, when first told

that you and your ship were now out ofsight of

land? Why did the old Persians hold the sea

holy? Why did the Greeks give it a separate

deity, and own brother ofJove? Surely all

this is not without meaning. And still

deeper the meaning of that story of

Narcissus, who because he could not

grasp the tormenting, mild image

he saw in the fountain, plunged

into it and was drowned. But that

same image, we ourselves see in all

rivers and oceans. It is the image of

the ungraspable phantom of life; and

this is the key to it all.

Now, when I say that I am in the habit of

going to sea whenever I begin to grow hazy

about the eyes, and begin to be over conscious

of my lungs, I do not mean to have it inferred

that I ever go to sea as a passenger. For to go as

a passenger you must needs have a purse, and

a purse is but a rag unless you have something

in it. Besides, passengers get sea-sick-grow

quarrelsome-don't sleep of nights-do not

enjoy themselves much, as a general thing;-

no, I never go as a passenger; nor, though I

am something of a salt, do I ever go to sea as

a Commodore, or a Captain, or a Cook. I

abandon the glory and distinction of such of-

fices to those who like them. For my part, I

abominate all honorable respectable toils, tri-

als, and tribulations of every kind whatsoever.

It is quite as much as 1 can do to take care of

myself, without taking care of ships, barques,

Loomings Page 2

brigs, schooners, and what not. And as for go-

ing as cook,- though I confess there is con-

siderable glory in that, a cook being a sort of

officer on ship-board--yet, somehow, I never

fancied broiling fowls;-though once broiled,

judiciously buttered, and judgmatically salted

and peppered, there is no one who will speak

more respectfully, not to say reverentially, of a

broiled fowl than I will. It is out of the idol-

atrous dotings of the old Egyptians upon

broiled ibis and roasted river horse, that

you see the mummies of those creatures

in their huge bake-houses the pyra-

mids.

No, when I go to sea, I go as

a simple sailor, right before the

mast, plumb down into the fore-

castle, aloft there to the royal

mast-head. True, they rather

order me about some, and make

me jump from spar to spar, like a

grasshopper in a May meadow. And

at first, this sort of thing is unpleasant

enough. It touches one's sense of honor,

~articularly if you come of an old estab-

lished family in the land, the van Rens-

selaers, or Randolphs, or Hardicanutes.

And more than all, if just previous to

putting your hand into the tar-pot,

you have been lording it as a coun-

try schoolmaster, making the tallest

boys stand in awe of you. The

transition is a keen one, I assure

you, from the schoolmaster to a sailor, and re-

quires a strong decoction of Seneca and the

Stoics to enable you to grin and bear it. But

even this wears off in time.

What of it, if some old hunks of a sea-

captain orders me to get a broom and sweep

down the decks? What does that indignity

amount to, weighed, I mean, in the scales

of the New Testament? Do you think the

archangel Gabriel thinks anything the less of

me, because I promptly and respectfully obey

that old hunks in that particular instance?

Who aint a slave? Tell me that. Well, then,

however the old sea-captains may order me

about-however they may thump and punch

me about, I have the satisfaction of knowing

that it is all right; that everybody else is one

Figure 7: An odd inter-column cutout (text face is Monotype Baskerville).

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Alan Hoenig

Chup ter I

LOOMINGS

Call me Ishmael. Some years to1 and ball. With a philosophical

ag-never mind how long precise- flourish Cato throws himself upon

ly-having little or no money in his sword; I quietly take to the

my purse, and nothing particular ship. There is nothing surprising

to interest me on shore, 1 thought in this. If they but knew it, almost

I would sail about a little and see all men in their degree, some time

the watery part of the world. or other, cherish very nearly

It is a way I have of driv- 8 the same feelings towards the

ing off the spleen, and regu- ocean with me. There now is

lating the circulation. When- your insular city of the Man-

ever I find myself growing grim hattoes, belted round by wharves

about the mouth; whenever it is as Indian isles by coral reefi-

a damp, drizzly November in my commerce surrounds it with her

soul; whenever I find myself in- surf.

voluntarily pausing before coffin Right and left, the streets take

warehouses, and bringing up the you waterward. Its extreme down-

rear of every funeral I meet; and town is the battery, where that no-

especially whenever my hypos get ble mole is washed by waves, and

such an upper hand of me, that it cooled by breezes, which a few

requires a strong moral principle hours previous were out of sight of

to prevent me from deliberately land. Look at the crowds ofwater-

stepping into the street, and me- gazers there.

thodically knocking people's hats Circumambulate the city of a

off-then, I account it high time dreamy Sabbath afternoon. Go

to get to sea as soon as I can. from Corlears Hook to Coenties

This is my substitute for pis- Slip, and from thence, by White-

hall northward. What do you

see?-Posted like silent sentinels

all around the town, stand thou-

sands upon thousands of mortal

men fixed in ocean reveries. Some

leaning against the spiles; some

seated upon the pier-heads; some

looking over the bulwarks of ships

from China; some high aloft in the

rigging, as if striving to get a still

better seaward peep. But these are

all landsmen; of week days pent up

in lath and plaster-tied to coun-

ters, nailed to benches, clinched to

desks. How then is this? Are the

green fields gone? What do they

here?

HERMAN M E L V I L L E (~ ~ ~ ~ - I ~ ~ ~) was

born in New York City, the descen-

dant of English and Dutch families. He

won fame for many of his novels, but

Mob-Dick (1851), his greatest novel,

has overshadowed almost all of them.

His popularity began to decline after

1851, and he died in 1891 (in New

York City) in total obscurity. This cen-

tury saw a favorable revaluation of his

work, and he is generally regarded now

to be an outstanding writer of the sea

and a master of realistic narrative and

rhythmical prose.

Figure 8: An example of the use of column cutouts. The type is Monotype Columbus.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Less is More: Complex Page Layouts and Shapes with TEX

But look! here come more

crowds, pacing straight for the wa-

ter, and seemingly bound for a

dive. Strange! Nothing will con-

tent them but the extremest limit

of the land; loitering

under the shady lee of

yonder warehouses will

not suffice. No. They

must get just as nigh

the water as they possi-

bly can without falling

in. And there they stand-miles

of them-leagues. Inlanders all,

they come from lanes and alleys,

streets and avenues,-north, east,

south, and west. Yet here they

all unite. Tell me, does the mag-

netic virtue of the nee-

dles of the compasses

of all those ships attract

them thither?

Once more. Say, you

are in the country; in

some high land of lakes.

Take almost any path you please,

and ten to one it carries you down

in a dale, and leaves you there by

a pool in the stream. There is ma-

gic in it. Let the most absent-

minded of men be plunged in his

deepest reveries-stand that man

on his legs, set his feet a-going,

and he will infallibly lead you

to water, if water there be in all

that region. Should you

ever be athirst in the

great American desert,

try this experiment, if

your caravan happen to

be supplied with a meta-

physical professor. Yes,

as every one knows, meditation

and water are wedded for ever.

But here is an artist. He de-

sires to paint you the dreami-

est, shadiest, quietest, most en-

chanting bit of romantic land-

scape in all the valley of

the Saco. What is the

chief element he em-

ploys? There stand his

trees, each with a hol-

low trunk, as if a her-

mit and a crucifix were

within; and here sleeps his meadow,

and there sleep his cattle; and up

from yonder cottage goes a sleepy

smoke. Deep into distant wood-

lands winds a mazy way, reach-

ing to overlapping spurs of moun-

tains bathed in their hill-side blue.

But though the picture lies thus

tranced, and though this pine-

tree shakes down its sighs like

leaves upon this shep-

herd's head, yet all were

vain, unless the shep-

herd's eye were fixed

upon the magic stream

before him. Go visit the

Prairies in June, when

for scores on scores of miles you

wade knee-deep among tiger li-

lies-what is the one charm want-

ing?-Water-there is not a drop

of water there! Were Niagara but a

cataract of sand, would you travel

your thousand miles to

see it? Why did the

poor poet of Tennessee,

upon suddenly receiv-

ing two handfuls of sil-

ver, deliberate whether

to buy him a coat, which

he sadly needed, or invest his

money in a pedestrian trip to Rock-

away Beach? Why is almost every

robust healthy boy with a robust

healthy soul in him, at some time

Figure 9: An example (continued) of the use of column cutouts.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Alan Hoenig

or other crazy to go to sea? Why

upon your first voyage as a pas-

senger, did you yourself feel such

a mystical vibration, when first

told that you and your ship were

now out of sight of

land? Why did the

old Persians hold

the sea holy? Why

did the Greeks give it a separate

deity, and own brother of Jove?

Surely all this is not without mean-

ing. And still deeper the meaning

of that story of Narcissus, who be-

cause he could not grasp the tor-

menting, mild image he saw in the

fountain, plunged into it and was

drowned. But that same image,

we ourselves see in all rivers and

oceans. It is the image of the un-

graspable phantom of life; and this

is the key to it all.

Now, when I say

that I am in the

habit of going to

sea whenever I begin to grow hazy

about the eyes, and begin to be

over conscious of my lungs, I do

not mean to have it inferred that

I ever go t o sea as a passenger.

For to go as a passenger you must able glory in that, a cook being a

needs have a purse, and a purse is sort of officer on ship-board-yet,

but a rag unless you have some- somehow, I never fancied broiling

thing in it. Besides, passengers get fowls;-though once broiled, ju-

sea-sick-grow quarrelsome--don't diciously buttered, and judgmat-

sleep of nights- ically salted and peppered, there

do not enjoy them- is no one who will speak more

selves much, as a respectfully, not to say reveren-

general thing;-no, tially, of a broiled fowl than 1

I never go as a passenger; nor, will. It is out of the idola-

though I am something of a salt, trous dotings of the old Egyptians

do I ever go to sea as a Com- upon broiled ibis and roasted river

modore, or a Captain, or a Cook. I horse, that you see the mummies

abandon the glory of those creatures

and distinction of in their huge bake-

such offices to those houses the pyramids.

who like them. For No, when I go to

my part, I abominate all honor- sea, I go as a simple sailor, right

able respectable toils, trials, and before the mast, plumb down into

tribulations of every kind what- the forecastle, aloft there to the

soever. It is quite as much as royal mast-head. True, they rather

order me about some,

and make me jump

from spar to spar,

like a grasshopper

I can do to take care of myself, in a May meadow, And at first,

without taking care of ships, bar- this sort of thing is unpleasant

ques, brigs, schooners, and what enough. It touches one's sense

not. And as for going as cook,- of honor, particularly if you come

though I confess there is consider- of an old established family in

Figure 10: An example (concluded) of the use of column cutouts.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Documents, Compuscrip ts, Programs, and Macros

Jonathan Fine
203 Coldharns Lane, Cambridge, CB1 3HY England

l.Fine@pmms.cam.ac.uk

Abstract

Certain aspects of the history and nature of the TEX typesetting program
are described. This leads to a discussion of strategies for possible future

developments. For clarity, the key terms document, compuscript, program and
macro are defined.

The main argument is that improved macro packages and .dv i file
processors will solve many problems, and that a rigorous syntax for input

compuscripts should be developed and used. Such a strategy will allow a

different and superior typesetting engine, should such arise, to be used in the
place of TEX. It will also allow the same compuscript to be used for other,

non-typesetting, purposes.

The Beginning reduces the decisions and labor involved in writing

Much has changed since the creation of TEX by

Donald Knuth in the years around 1980. Many

millions now use computers for document prepara-
tion and production, and these computers are many

times more powerful than those so used in 1980.
Laser printers are now cheap and commonplace.

Postscript has become a widely avdable standard
for driving phototypesetters. The occupation of
specialists has become a widespread daily activity.

Much indeed has changed.

TEX is one typesetting system among dozens if
not hundreds, counting not only DTP packages but
also the various word processors available. Here are

some of Tg's particular characteristics

extremely reliable and bug-free
available on almost all machnes

available at no or low cost

constant unchanging behaviour

portable ASCII input
high quality output

mathematical setting capabilities

programmability via macros

which leave it without rival for use by the scientific
scholarly community, and elsewhere.

TEX has limitations. If it &d not, it could not be.

Hegel wrote, 'that one who will do something great
must learn to limit oneself'. It was wise of Knuth,

not to create a text editor for use with TEX. Nor

did he create general indexing or cross-referencing
tools. Nor a spell-checker. All but the most basic

functions are omitted, to be supplied by macros and
parameter values. This gives a great flexibility, and

the program. Knuth supplies a basic collection of
'plain' macros. But even that most basic part of

computer typesetting, persuading an output device
to emit a typeset page, this vital part of the system

lies outside the limited system for whch Knuth

himself took responsibility.
Indeed, thls abdication of responsibility is a

master stroke. The output devices are numerous,
diverse, and more are yet to come. Therefore,

typesetting is brought to a stop with the production

of the . dvi file, which is a rigorously specified
description of the location of every character and
rule on the page. Each implementation is then
responsible for transforming this . dv i file to meet

the requirements of the various output devices.

Because there is a rigorous standard for . dvi files,
t h s separation of duties is a pleasant cooperation.

Moreover, the same . dv i standard and processors

can now be used by other typesetting systems, new

and yet to be.
Knuth did not write editor, indexer, or output

device driver. Nor did he write more than a
few thousand lines of macros. He did write TEX

the program (and METAFONT, and the Computer
Modern fonts). To support this activity he also
wrote the WEB system for documentation or literate

programming. The skillful use of this tool has

contributed greatly, I believe, to the h g h quahty
and thus durability of TEX. This lesson needs must

be well learnt and comprehended by those who seek

to provide an improved replacement.
I thmk it very important to understand just

what it is we have with TEX. Richard Palais (1992)

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 381

Jonathan Fine

gives another, balanced, discussion of the nature of

TEX, with which I am in broad agreement. Frank Mit-
telbach (1990) carefully investigates and describes
some of the typesetting limitations of TEX. Philip

Taylor (1992) exaggerates the deficiencies of TEX. In
particular, of his list (pages 438 - 440) of 10 claimed

limitations, at least 5 (namely 1, 3, 4, 5 and 6)
are quite possible with TEX as it is today. The

same applies (see Jonathan Fine (to appear)) to his

goal (page 441) of a multiwindowed interactive &s-
play. There is a difference, it is important to note,
between interacting with a visual or graphic repre-

sentation of a document (so far as I know Scientific
Word is the only TEX-compatible system that allows

this) and having immediate preview of the result

of changes to the underlying ASCII representation
(as provided by Textures for smaller documents).

Philip Taylor (1992a) seems to have no relevance to

our discussion.

Stability

It is 5 years since Knuth (1989) released version 3
of TEX, and 4 years since his announcement (Knuth

1990)
My work on developing TEX, METAFONT,

and Computer Modern has come to an end.

I wdl make no further changes except to
correct extremely serious bugs.

which triggered a continuing debate on how, or
whether, a successor to TEX should be provided. But

much and more can be done with TEX as it is. Knuth

wrote (loc. cit.)
Of course I do not claim to have found the
best solution to every problem. I simply
claim that it is a great advantage to have a

fixed point as a building block. Improved
macro packages can be added on the input

side; improved device drivers can be added

on the output side.
and it is to these possibilities that we will now turn.

The purpose of a macro package is to transform

an input document, written according to some rigor-

ous or Informal syntax, into a sequence of primitive
typesetting commands, and thus, via the funda-

mental operations of line breaking, hyphenation,
ligatures, boxes and glue, table formation and so

forth have TEX the program produce typeset pages

in the form of a .dvi file, and perhaps also some

auxiliary text files. However, TEX does not contain a
word-processor or text editor, and so offers little or

no help in the composition of the input document.

Many benefits result from having a rigorously
defined syntax for input documents, and so many

problems disappear. Such rigor allows the same

document to be processed in different ways for
different purposes, such as editing, typesetting,

spell-checking, on-line documentation, hypertext,

or, if a program source file, compilation. Although
this is not a new idea (see Charles Goldfarb (1990),

pages 7-8)
Markup should describe a document's

structure and other attributes rather than

specify processing to be performed on
it, as descriptive markup need be done

only once and will suffice for all future

processing.
Markup should be rigorous so that

the techniques avdable for processing
rigorously-defined objects hke programs

and data bases can be used for processing

documents as well.
none of the existing TEX macro packages is able to

so typeset such a rigorously marked-up document.

Moreover, the usual response to an error in mark-
up is to have TEX the program generate an error
message or worse, not generate an error. T h s

behaviour is not a failing of TEX the program.

Rather, it is a opportunity for improvement on the

input side. The author has such work in progress.
It is worth noting that Knuth's WEB system

made such a dual use (typesetting and compilation)
of a single input file. This he did by writing two

preprocessing programs (WEAVE and TANGLE) that

convert a WEB input file into TEX and Pascal input
files. For future reference note that although TEX
source files are portable to any machine which

has TEX installed, WEB files require the additional
programs WEAVE and TANGLE to be also present.

On the output side, much can be done with

. dvi files, provided suitable programs are available.

By means of \specials , the device driver can

be instructed to insert change bars, rotate tables,
greyscale or color fonts, and so forth. All t h s is

possible now, with TEX as it is, provided suitable

programs are avdable.
It should be well understood that support for

color, rotated tables, and other such goodies is not a

matter of changing or 'improving' TEX the program.
Rather, it requires matchmg facilities in the macro

package used and in the . dvi file processor. TEX
the program has no more involvement with the

printing process that the moveable type typesetter
of old, whose labor is blind to the color of the

mk, or texture of the paper, used for the printing.
Of course, the typographer or designer cares, or

should, about these things.

382 TUGboat, Volume 15 (1994), No. 3 - Proceedings of the 1994 Annual Meeting

Documents, Compuscripts, Programs, and Macros

There are other possibilities. Words to be
indexed can be tagged using \specials (or even
the whole word placed w i t h the \special) and
then extracted from the . dvi file. There are several
advantages to this method. Firstly, it avoids the
problems due to the asynchronous nature of the
output routine, and also due to the expansion of
macros during the \write command. Secondly, it
allows the indexing software to extract adational
information from the . dvi file, such as the location
on the page (either by h e or by physical location).
Thdly, this last data may be useful for hypertext
applications. One can even cut-and-paste among
. dvi files (see Asher 1992, von Bechtolsheim 1989,
and Spivak et al. 1989). All this is possible so long
as the TEX macros are properly set up, and so long
as the . dvi file processing programs are avdable.

It is worth noting here that the work of the DVI

driver standards committee (Reid and Hosek 1989,
and Schrod 1991) seems to support my contention,
that much remains to be done, to get the best out
of what is already available to us. Lavagnino (1991),
and Vesilo and Dunn (1993) discuss examples of
how some applications require that much more than
printed pages be produced. These problems can
be solved by means of a suitable combination of
macros and . dvi file processing programs.

Growth

This then is the background against which our use
of TEX develops, and into which any successor will
be introduced. TEX can still reach the highest typo-
graphical standards. But it seems that it is precisely
in those areas, such as input file preparation and
post-processing of the output file, which lay outside
the limits that enabled Knuth's achievement, that
the TEX system is deficient.

In particular, the lack of a front end for
document preparation, that exploits the computing
and graphical display capabhties that so many
users now have available (and so few when TEX was
first written) is a major obstacle to more widespread
acceptance.

Elsewhere (Fine, to appear) I have indicated how
TEX as it is today (and wdl be, major bugs aside,
for the rest of time) can be used as the typesetting
engine for such a visual document preparation
system. However, any such wdl require programs
that are specific to the architecture and capabilities
of the host machine.

Much more can be done with TEX than is
commonly realised. It is a powerful typesetting
engine that can be turned to many purposes. Except

for particular typographic functions (see Mittelbach
1990), such as detection and hence control of
rivers of white space in paragraphs, most or all
of its perceived limitations can be overcome by
a judicious combination of improved macros and
awhary programs. I have much work in progress
(and less completed than I would like to admit) on
improving macros.

The difficulty with auxiliary programs is that
they are not automatically portable in the same
manner as TEX the program is, and that they tend to
become numerous and subject to change, much like
macro packages.

A singular virtue of TEX, as vital to its success as
the ground upon which we walk, and as commonly
appreciated, is that it provides a programming
environment, available and identical in operation on
all machines. Thls is the TEX macro language. It
is the basis for the portability of TEX documents.
Moreover, transfer of such programs is no more
than transfer, of ASCII files.

Imagine now that we have a similar foundation
for the writing of .dvi file processors. All manner
of problems would go away, or at least be mitigated.
There are about 10 standards for using \speci a1 s
to access Postscript. The lack of a macro language
gives an unwanted rigidity to the . dvi file proces-
sors, and so each standard is (or is not) hard-coded
into each particular . dvi program.

Many indexing and hypertext problems can be
resolved by post-processing the . dvi file, but not
in a portable manner unless the . dvi processing -
program is simdarly portable. Elsewhere (Fine, to
appear) I have indicated how a visual front end to
TEX can be assembled out of a suitable combination
of a previewer (which is itself a . dvi file processor),
a . dvi file editor, and TEX as it is but running a

I

suitable and rather special macro package. Y
- --

For such to be flexible, its outer form must be
controlled by macros or the like. For such to be
portable, the supporting programs must be both
portable and ported.

Definitions

In order that my conclusions be stated as precisely
as is possible, I will make some definitions.

By a document I will mean a physical graphical
and perhaps substantial object containing text in
various fonts, and perhaps other items such as
symbols and photographs. Examples of a document
are a book, a magazine or journal, a preprint, and
a restaurant menu. These are substantial items, in
the sense of their being made out of stuff. The

TUGboat, Volume 15 (1994), No. 3 -Proceedmgs of the 1994 Annual Meeting 383

Jonathan Fine

quality of the ink and paper, and the impression of

the one on the other, are subtle aesthetic qualities
of the document, in no sense determined by the

typesetting process.
However, I will also regard an image on the

screen of a computer to be a document, although of

the insubstantial or un-stuffy kind. Such documents

allow a different range of interactions with the

reader, usually called the user, than the printed

page. Indeed, in external form many computer
programs are documents in this broad sense.

By a compuscript, or script for short, I mean

a h t e sequence of symbolic or numerically coded

characters, such as ASCII, satisfying a formal or
informal syntax. It may also contain references to
external entities, which may be other documents, or

to non-document elements such as photographs or
illustrations. It is sometimes convenient to break
a script down into complements, which are either
mark-up or text. The syntax is then a system of
rules which relate the mark-up to the text. Examples
of compuscripts are TEX and LATEX document source

files (these have an informal syntax), and SGML and

program source files (which have a rigorous syntax).
By a program I mean an executable binary file.

Program files cannot be read as a comprehensible

sequence of characters. They contain machine in-
structions that are specific to the host machme on

which the program is to be run. Properly written,
programs will run as quickly as any software can

to perform their given function, but to change a
program is usually a slow and sometimes labori-

ous process. Knuth wrote TEX the program and

METRFONT the program. More exactly, he wrote
documents which were then transformed via a com-
piler and other tools (literate programming) into

versions of TEX the program, one for each machine

archtecture. He also wrote the 'plain' macros for

TEX, and the Computer Modern source files for
METAFONT.

We can now say what macros are. A collection

of macros is a compuscript whch controls or influ-

ences the operation of a program. This definition
includes both the configuration or option files that

many programs use to store system data and user
preferences, but also the macro files used by TEX

and METAFONT, or any other code written to be ex-

ecuted by an interpreting program. The distinction

between a program and macros is not always clear-
cut. For example, many microprocessors contain
microcode which is called upon to perform various

functions. Emulation is often achieved by expand-
ing machine code for one processor into sequences

of machne instructions for another. If not present,

it is common to emulate machne instructions to a
mathematics coprocessor.

The US photographer Ansell Adams compared

the negative to the score for a piece of music, and the
print to the performance. Adams is famed for his

marvellous atmospheric photographs of Yosernite

National Park. Developing h s photographic anal-

ogy (is it a rule that every article should have one

bad pun?), the compuscript is the negative for the
production of a document, the program the futed

darkroom equipment, while the macros are the con-
sumeable papers and chemicals and also the skill,

habits, standards and creativity of the darkroom

operator. Incidentally, many negatives require spe-
cial human activity related to their content such as

'dodging' and 'burning' (this means giving more or
less exposure to different parts of the negative) in

order that they come out at their best.

Note added in Proof

There are several articles also in these proceedings

that bear upon the topics discussed here. Rokicki
expresses the idea of a programmable . d v i file

processor, although as an implementor his focus is

more on what is immediately possible or practical.
I should have realised for myself the important

'color' motive, whose difficulties in the production

setting are well expressed by Sofka. Laugier and
Haralambous describe Philippe Spozio's interactive
and visual . d v i file editor, and also Franck Spozio's

TEX to SGML translation tools. These programs go

some way to resolving, for documents marked up
in the traditional plain TEX or LATEX manner, various

real world problems, which are among the motives
for the point of view I adopt in my article.

The deficiencies of T@ are once again exagger-

ated by Taylor. It is possible, for example, to typeset
material on a grid, to flow text around insertions, to

treat the two-page spread or even the chapter as the
region over whch page make-up and optirnisation

are performed, all this is possible with today's TEX,

by writing admittedly tricky macros. The goal of
Schrod is to provide a formal model of TEX the pro-

gram (particularly its macro facilities) with which a

user can interact, whereas my goal is to have formal

syntax for compuscripts that can be understood by
TEX (given suitable macros) and by the user alike.

Finally, the papers of Baxter, Ogawa, and

Downes discuss progress and problems in the

typesetting of structured documents-again, us-
ing traditional TEX macro tools. It is my contention
that the macro development and performance dif-

ficulties that they face can be greatly eased by

3 84 TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Documents, Compuscripts, Programs, and Macros

the introduction of powerful development tools,

amongst whlch will be sophisticated macros that

will combine compuscript parsing macros with style
sheet values to give rise to the document production

macros.

Conclusions

It should now be clear that Knuth is responsible

for only one part of the TEX typesetting system,
although that part is its mighty heart or engine. It

is my opinion that, good though they are, there is
considerable room for improvement in those parts

of the TEX system that Knuth did not provide, viz.
macros and . dv i file processors.

Perhaps in the next 20 years, someone will
write a worthy successor to TEX. This would be, like

TEX itself, a great achievement. To supplant TEX, it

will need to be substantially better. I would expect
such a system to continue to use more-or-less if

not exactly the same .dvi file format as TEX. It

would be nice if both TEX and its successor shared at
least one syntax for the compuscripts that are to be

processed into documents. This will surely require

that both operate to a syntax that is as rigorous as
that for the . dv i files. Work on defining such a
syntax and creating suitable TEX macros to process

such documents can begin today, without knowing
what the future may bring, but all the same helping

to bring it about.

To hope for compatibility at the level of macros
or format files is probably too much, and likely to be

self-defeating. Fortunately, many though formats

are, they are, or at least should be, few in relation
to documents.

TEX as it is today can be used as the engine

of an interactive and visual typesetting system. I
encourage all those who want to write programs to

join with me in turning this possibility into a reality.

A valuable first step, with independent benefits and
merits of its own, would be to write a 'universal'
. dv i Me processor that is controlled by macros,

just as TEX is a universal typesetting engine.

If all is done properly, and to rigorous stan-

dards for both input and output, then it will be a
simple matter to replace TEX the program by the new

and much improved engine, when and if it arrives.

Indeed, part of the whole strategy is to provide a

clear r6le and interface for the typesetting engine.

Donald Knuth has not written much on succes-
sors to TEX. It is thus our responsibility to read

carefully what he has written. I close by repeating
his advice quoted earlier

Of course I do not claim to have found the

best solution to every problem. I simply
claim that it is a great advantage to have a

fixed point as a budding block. Improved

macro packages can be added on the input
side; improved device drivers can be added

on the output side.

Bibliography

Asher, Graham. "Inside Type & Set", TUGboat, 13

(I), pages 13 - 22, 1992.

Bechtolsheim, Stephan von. "A . dvi file processing

program", TUGboat, 10 (3), pages 329 - 322, 1989.

Clark, Malcolm. "NEXTEX: A personal view", TUG-

boat, 14 (4), pages 374 - 380, 1993.

Fine, Jonathan. "Editing . dvi files, or visual TEX,

TUGboat, (to appear)
Goldfarb, Charles. The SGML Handbook, Oxford

University Press, 1990

Knuth, Donald E. "The new versions of TEX and

METAFONT", TUGboat, 10 (3), pages 325 - 328,

1989.

Knuth, Donald E. "The Errors of TEY, TUGboat, 10

(4), pages 529 - 531, 1989.

Knuth, Donald E. "The future of TEX and META-

FONT", TUGboat, 11 (4), page 489, 1990.

Lavagnino, John. "Simultaneous electronic and pa-

per publication", TUGboat, 12 (3), pages 401 - 405,

1991.

Mittelbach, Frank. "E-TEX: Guidelines for future TEX",

TUGboat, 11 (3), pages 337-345, 1990.

Palais, Richard. "Moving a fixed point", TUGboat, 13
(4), pages 425 - 432, 1992.

Reid, Tom and Don Hosek. "Report from the D V I

driver standards committee", TUGboat, 10 (2),

pages 188- 191, 1989.

Schrod, Joachim. "Report on the D V I Driver Stan-

dard", TUGboat, 12 (2), pages 232 - 233, 1991.

Spivak, Michael, Micheal Ballantyne, and Yoke Lee.

"HI-TEX cutting & pasting", TUGboat, 10 (21, pages

164 - 165, 1989.

Taylor, Philip. "The future of TEX", TUGboat, 13 (41,

pages 426 - 442, 1992.

Taylor, Philip. "NTS: the future of TEX?", TUGboat,
14 (3), pages 177- 182, 1992.

Vesilo, R.A. and Dunn, A. "A multimedia docu-

ment system based on TEX and DVI documents",

TUGboat, 14 (I), pages 12 - 19, 1993.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Integrated system for encyclopaedia typesetting based on TEX

Marko Grobelnik, Dunja Mladenit , Da rko Zupanif , Borut inidar
Artificial Intelligence Laboratory, J. Stefan Institute, Ljubljana, Slovenia.
name.secondname@ijs.si

Abstract

The paper presents a system used for several already published dictionaries,
lexicons and encyclopaedias. The system is based on a TEX macro package
accompanied by many special purpose utilities for e&tor (person dealing with
contents and form) support.

Introduction Because of the successful start. we were asked

Editing and typesetting of different kinds of ency-
clopaedic books (encyclopaedias, dictionaries, lexi-
cons) is a hlghly specialized endeavour compared
with the typesetting and editing of ordinary texts.
First of all, these kinds of books are produced as rela-
tively high budget projects in commercial companies.
Many people are involved in such projects, which typ-
ically have well established working procedures al-
ready. Next, these lunds of texts are never really fin-
ished. Book releases are always only better prepared
stages of contents which continue to develop (e.g.
language in dictionaries). From a t e c h c a l point of
view it is important to mention the huge amount of
text in such books and simultaneous amearance of *

several national languages along with all their pecu-
liarities.

To build a successful system one should con-
sider all the aforementioned properties of such book
making. In the following few sections we d l briefly
describe the history of our involvement in organis-
ing and executing encyclopaedic book projects, ac-
tual solutions, the pros and cons of our work and
some prospects for the future.

History

Our involvement in encyclopaedic book typesetting
started rather accidentally few years ago. The Slove-
nian publishing house Cankarjeva zaloiba was in the
process of editing and publishing the book titled The
Encyclopaedia of the Slovenian language dealing with
all possible aspects (grammatical, historical, linguis-
tic, . . .) of the Slovenian language. The attempt with
the classical way to publish the book in a printing
house appeared to be very inappropriate and expen-
sive, because of the large quantity of very technical
text, with many major revision changes. The publish-
ing house tried to use a standard interactive desk-
top publishing package to accomplish the job. The
attempt failed again. After that, we decided to do it
with TEX, which led to successful completition of the
project. We made, of course, some mistakes, but this
proved a useful experience for further work.

to build a general system for editing and typesetting
the encyclopaedic type of books. Firstly, we adapted
ourselves to the already established organisation of
work in the publishmg house, changing it slightly
in the direction of the automatisation of all possi-
ble phases of work. The first project on which we
developed our system, was the composition of sev-
eral smaller dictionaries. After that we got the job to
techcal ly organise the work for the biggest Slove-
nian general lexicon Sova (in English Owl), where
we finally developed the technology and the system.
Currently, we are involved in several minor and ma-
jor projects, the biggest being The Encyclopaedia of
Slovenia (12 books + index).

Solutions

Because of the existing practice in the Slovenian pub-
lishmg houses, the system was prepared for IBM-PC,
although all components are portable. The use of the
system is text-editor independent, however, we sug-
gest the use of open and flexible integrated environ-
ments (e.g. TEX-Shell, Emacs, Borland-IDE, . . .).

For the purpose of the common text input, a
language called LEX was defined. The language is
primarily entry-oriented with special elements like
pictures, capitals, phonetic support, entry qualify-
ing and many commands for semantic structuring of
text. Characters used for LEX constructs are indepen-
dent of the natural character set. The whole text cor-
pus of a book is written in LEX format.

The following is an entry written in LEX format
from The English-Slovene Modern Dictionary:

<entry: 1 x>
<head : act ion> <i pa: " a e ~ s ~ >

de janje ; delovanje, proces; t o iba ;
<p: to be k i l l ed i n -> pas t i v boju;
<p: t o put i n t o -> sp ro i i t i , pognati ;
<p:to take -> ukrepat i ;
<p:out of -> pokvarjen, i z l o t e n ;
<p: soc ia l -> druibena akci j a
<end>

386 TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Integrated system for encyclopaedia typesetting based on TEX

For the printout, the text in LEX is processed in
three passes. First, the text in LEX is converted to
the TEX format with a separate utility program which
also performs several consistency controls. Next, TEX
needs two passes. In the first pass correct picture
positions and column lengths are determined. The
second TEX pass builds final layout. The whole 3-pass
process for 400 kbytes of text takes approximately 2
minutes on an IBM-PC i486/66 computer.

Besides typesetting, additional software was de-
veloped for editorial support which works on text
in LEX format. This includes dictionary inversion,
multi-author support (e.g. one published book had
40 authors), sorting support, etc.

Pros and Cons

Advantages of our system are:

Working with the system and LEX format is ex-
tremely simple. For most of the books pre-
pared with our system, only three people were
involved: author(s), editor and typist.

There is no need to change text editor habits.
The only demand for the text editor used, is
ability to export ASCII files.

The cycle time between the corrections in the
text and the printout of the finallayout is in the
range of minutes.

Additional editorial support is provided with
text-manipulation utilities.

The system is designed to support multilingual
texts (dictionaries).

The system is easily extended.

The system runs on any platform with TEX. Min-
imal platform is IBM-PC i386 with DOS.

The system was tested on several real ency-
clopaedic books, some of them very extensive
and complex.

Disadvantages are the following:

The system is not WYSIWYG (is this really a dis-
advantage?).

When preparing the text for the final printout
two things must be done manually: unresolved
hyphens (narrow columns) and picture reposi-
tioning (to achieve an artistic look).

Conclusions and Future prospects

We have presented a system for editing and type-
setting of encyclopaedic type of books. The system
is based on TEX with ad&tional utilities for editorial
support. All components are hidden w i t h an inte-
grated environment. For the purpose of text input,
we have defined a language called LEX, which allows
us full control across the text corpus for checking
and other text manipulation operations.

Our plans for the near future are to make a
complete commercial product for dealing with ency-
clopaedic type of books along with all necessary in-
teractive typesetting features.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

An Example of a Special Purpose Input Language to W X

Henry Baragar
Instantiated Software Inc., 20 Woodmount Crescent, Nepean, Ontario, K2E 5R1 Canada.
henry@instantiated.on.ca

Gail E. Harris
RES Policy Research Inc., 6th Floor, 100 Sparks Street, Ottawa, Ontario, KIP 5B7 Canada.
ak753@freenet.carleton.ca

Abstract

A special purpose language for documenting knowledge bases demonstrates
how l 4 Q X can be augmented to add expressiveness for specific situations. The
language, called T@A, enables expert system analysts to mark up groups of rules
into tables in a way which reflect the logical structure of the knowledge base. The
T@A style options generate LATEX tables for use by expert system programmers and
the equivalent English text typeset in a subsection for use by domain experts. This
paper presents the syntax and implementation of this special purpose language.
Despite the complex output requirements, the TEX implementation has proven to
be very flexible and remarkably short.

Introduction a discussion of future directions and some recom-
mendations for others wishing to implement special

If I have seen further than other men,
purpose languages, and in particular special purpose

it is because I have stood on the shoulders o f
input languages to LATEX.

the giants.
-Isaac Newton

The logical treatment of documents is one of WX's
most important features. A benefit of this approach
is that the source files for most W&X documents are
usually almost as readable as the final output. As is
true with any general purpose tool, there are cases
that are not easily expressed in the input language of
the tool. In this case, a special purpose language (or
"little language"), as advocated by Jon Bentley (1990,
page 83), can be of great benefit. A well-designed "lit-
tle language" - in which the special case can be eas-
ily expressed - follows more closely the philosophy
of J4@X than does the contortion of IPQX commands
to achieve a desired result.

T h s paper presents a special purpose language
for documenting knowledge bases which has a much
more natural syntax than pure @QX for marking up
the rules of a knowledge base. It has been used suc-
cessfully to typeset the system documentation for
the knowledge base portion of an application on a
project where the documentation tool of choice for
the rest of the system was Microsoft Word. We be-
gin by describing problems with documenting knowl-
edge bases. Then we present the "little language"
that was designed specially for documenting knowl-
edge bases, and show how it was implemented in TEX,
yielding a special purpose input language to R X .
This is followed by some observations on the suit-
ability and success of the solution. We conclude with

The Challenge

The problem of documenting knowledge bases was
encountered on a project where an existing knowl-
edge base with no external documentation had to
be maintained and expanded. The first step in the
project was to document, or reverse engineer, the
knowledge base. This in itself is a challenge because
expert system analysts are still struggling to find
effective methods to document knowledge bases.
Some methods, such as KADS1, are too high level and
do not document individual rules. Other lower level
methods are usually tools tied to specific products-
products not being used on this project. This project
required a tool for documenting knowledge bases at
the rule level, but not tied to a speclfic product.

The challenge, to the expert system analyst, in
documenting the rules of a knowledge base is in the
need to present the documentation to two audiences.
The first audience, the expert system programmer,
uses the documentation to program the rules in the
knowledge base. The second audience, the system
owner or domain expert, uses the documentation to
verify the correctness of the rules in the knowledge

Although "KADS" was an acronym at one time
(Knowledge Acquisition and Documentation Sys-
tem), it has changed and it is now considered a
proper name in itself.

*
388 TUGboa t, Volume 15 (1 994), No. 3 - Proceedings of the 1994 Annual Meeting

A Special Purpose Input Language

Goldilocks' Rules
Conditions I Conclusion

Figure 1: The tabular form for the expert system
programmer.

Goldilocks' Rules

These are the rules that model Goldilocks'

decision process.

If the temperature is less than the rnin-
imum acceptable temperature then the

porridge is too cold.

If the temperature is greater than the

maximum acceptable temperature then
the porridge is too hot.

If the minimum acceptable temperature

is less than or equal to the temperature

and the temperature is less than or equal

to the maximum acceptable temperature

then the porridge is just right.

Figure 2: The English form for the domain expert.

base. The tabular presentation of Figure 1, preferred
by the expert system programmer, is usually incom-
prehensible to the domain expert, who prefers En-
glish sentences and paragraphs, as in Figure 2. The
challenge of accurately presenting both sets of docu-
mentation is often so great that the domain expert is
often given inadequate summaries of the rules or is
left to struggle with just the tabular representation
of the rules. This often leads to a loss of confidence
in the Expert System, as had happened on the project
in question.

The challenge of presenting two sets of docu-
mentation would be considerably simplified if they
could both be generated from the same source. This
is not possible in Microsoft Word, the tool specified
for documentation in this particular project. Consid-
ering the differences between the tabular form and
the English language form illustrated in Figures 1
and 2, it was not even clear this would be possible in

WX. Nor was it clear that a LATEX source file would
be easily readable and maintainable. Thus, the chal-
lenge was to find a mechanism to document the rules
of the knowledge base in a single source file, where
the structure of the rules is visually apparent to the
expert system analyst and where the documentation
sets are appropriate to their intended audience.

The New Input Language

The best way to ensure that the structure of the rules
is visually apparent in a source file documenting a
knowledge base is to develop a new syntax for mark-
ing up rules that has a clean visual presentation. In
t h s section, we present a special purpose language,
or "little language" a la Jon Bentley (page 83), that has
a syntax with the desired properties. We leave the
details of implementing the language until the next
section.

The syntax of the new input language - called
TEX Expert System Language (T@A)~ -is very simple
and has only five commands. These commands can
be divided into three groups: definitions, groups of
rules, and other commands. A clean visual presenta-
tion of the source file has been achieved by defining
a syntactic structure for these commands whch al-
lows an ASCII text source file to be modeled after the
layout of the tabular representation to be presented
to the expert system programmer; this reflects the
common backgrounds of the expert system analyst
and the expert system programmer.

Definitions. A variable in a knowledge base is docu-
mented by giving an English language phrase that de-
fines the variable. T@A allows variable names from
the knowledge base to be used directly in the T@A
source file. The knowledge base variable is left un-
changed when it is presented to the expert system
programmer, whereas it is mapped to the English
Language phrase when it is presented to the domain
expert. A T@A definition, whch has the following
syntax:

[tvar- I ,KB-var, 1 ,English description-]

is used to specify the mapping of the knowledge base
variable to its English Language description. An ex-
ample of a definition is:

[tvar-IJ,I,the,temperature-]

which defines the knowledge base variable T as the
phrase "the temperature". That is, a reference to the
knowledge base variable T in a T@A rule is repre-
sented by the string "T" in the tabular form presented
to the expert system programmer, whereas it is rep-
resented by the string "the temperature" in the En-
glish form presented to the domain expert.

2 The language was developed for the Travel Ex-
pert System (TES) project, whch also explains why
all the commands begin with a "t".

TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Henry Baragar and Gail E. Harris

Groups of rules. The rules of a knowledge base
are usually documented as groups of related rules.
For the expert system programmer this means that
a group of related rules is presented as a table,
whereas the group is presented as a subsection to
the domain expert. A group of rules begins with:

Ctgroup, I -Group Name, I ,n,l
where Group Name is a label for the group and n is
the maximum number of conditions, excluding the
conclusion, in the rules in this group. In the tabular
form presented to the expert system programmer, n
is one less than the number of columns in the table.

A group of rules ends with:

where Group Name should be the same as at the
beginning of the group.

Occasionally, it may be desirable to visually sep-
arate subgroups of rules within a large group of
rules. This is accomplished with the:

[tgroup, l ,Group Name, I ,-,I
command, which inserts a horizontal line (\hl i ne)
into the table. Currently, it does nothing in the En-
glish form presented to the domain expert.

A rule in T@A has the following syntax:

[t r u l e, 1 ,condl, 1 ,cond2, 1 -. . . - 1 ,concl,]

where condl, cond2, . . . , are the n conditions of the
rule and concl is the conclusion of the rule.

Each condition - as well as the conclusion - is
a relation that has one of the following forms:

lhs-rel-rhs

rel-rhs-

rhs-,-

where lhs and rhs are T+A variables, and re1 is a
relation operator. In the tabular form, each condi-
tion and the conclusion is put in its own column.
With suitable groupings of rules and arrangements
of relations within columns, an expert system pro-
grammer can easily check that all possible combina-
tions of relations have a known conclusion and that
no two rules conflict with one another. The English
form given to the domain expert, on the other hand,
has every variable, relation, and implicit conjunction
spelled out in full.

As an example, consider the rules already pre-
sented in Figure 1 and Figure 2, which would appear
in the T@A source file as:

[tgroup I Goldilocks' / 3]

[t r u l e I T < min I I too-cold - -]

[t r u l e / - I T > max I too-hot - -]

[t r u l e I min <= T / T <= max I jus t -r ight - -1
[tgroup I Goldilocks' I e I

Note that this code fragment lacks the variable
definitions and the command to add the extra de-
scriptive text found in the figures. Also note that
a quirk in the implementation requires that leading

empty conditions must have a single "-" character,
as in the too-hot rule above.

Other commands. There are two commands in T@A
for adding annotations to the rules. The first, which
has the following syntax:

[t t e x t , 1 ,text,]

provides a mechanism for adding arbitrary explana-
tory text into both the tabular and the English forms.
The second, which has the following syntax:

provides a mechanism for adding extra text, for re-
marks, only to the tabular form used by the expert
system programmer. There has yet to be a require-
ment to add text to the English form used by the do-
main expert which is not also required by the expert
system programmer.

Other syntax. There is little requirement for addi-
tional syntax in T@A. Syntax was added to T@A to
treat all text between the ";" character and the end
of a line as source file comments. The " % character
was rejected for introducing comments because per-
centages are used frequently in the knowledge base
on this project. All other considerations for adding
syntax have been rejected because of the extra effort
that would be required to explain them.

The Implementation

Now that the syntax of T@A has been defined, the
implementation details can be discussed. Two ap-
proaches to implementation were considered: either,
build a preprocessor, or implement T@A directly in
(LA)TEX. At first, it seemed that the preprocessor ap-
proach would be easier to implement. This had the
advantage that the output could be switched to Mi-
crosoft Word code if and when a definition of the
file format for Microsoft Word could be found. How-
ever, good string manipulation tools, such as per1
and awk, needed to implement the preprocessor were
not readily available for the target environment (Mi-
crosoft DOS). Thus, the approach to implement T@A
directly in (LA)TEX was selected.

T@A is implemented in TEX as three style op-
tions. The first, t e s l a . s ty , has the definitions of
the T@A commands described above as well as all the
other definitions common to both output forms. The
other two files are eng-forrn.sty, which contains
code specific to the English form, and tab-form. s t y
which contains code specific to the tabular form.
Thls section begins by describing how to use these
style files. Then it defines the implementation of
T@A in detail as coded in the style files.

The structure of T@A documents. T@A docu-
ments are composed of three main files and one or
more rule files. The main files are usually named
mai n-eng . tex, rnai n-tab. tex and rnai n . tex. The

390 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

A Special Purpose Input Language

first two of these files, which are used to select the
form, simply contain:

\documentsty1 e [t es la , form] { a r t i c l e}
\i nput{mai n}

where the form is either eng-form or tab- fo rm, de-
pending on whether it is in the file main-eng. t e x
or mai n - tab . t e x , respectively. As can be seen from
this code, these files input the file main. t ex , which
is the real T@A document.

To input a rule file into the main T@i file, the
following command is used:

\i npu t ru l e f i 1 elrule-file}

where rule-file is the name of a file containing TflA
code. T h s command is defined as:

\newcommand{\i n p u t r u l e f i 1 e} [I] {%

\changecatcodes\input{#l}}

in t e s l a . s t y .
The \changecatcodes command changes the

categories of the digits, arithmetic and relation op-
erators, and a few other characters to category 11,
the same category as the alphabetic characters.
This allows these characters to be used in T@A
variable names and enables a broad range of vari-
able names, including operators and numbers! The
\changecatcodes command also changes the cate-
gory of the ";" character to category 14 to make it
the comment character, whch is the " % character in
(LA)TEX. Finally, \changecatcodes changes the cat-
egory of the "[" character to category 0 to make it
an escape character, the same category as the "\"
character in (LA)TEX. This allows the commands of
TE~LA, such as [t v a r , to be implemented directly as
TEX commands.

The [t v a r command. The [t v a r command, like all
the T@A commands, makes use of TEX'S pattern-
matching capability to implement T@A syntax. It is
defined in t e s l a. s t y as:

\gdef\tvar,I,#lU'1-#2,]{%

\expandafter\gdef\csname #l\endcsname

C\xformC#l l {#2>~}

There are two things to note in this definition:

1. The command has been defined as \ t v a r even
though it is used as [t v a r . The reason is that
the category of the "[" character has not yet
been set to category 0 (the same category as "\")
as it will be when a rule file is read.

2. The spaces in the \gdef \ tvar - l _#l- 1-#2-1
are important. The implementation of T@A re-
lies on the fact that TEX compresses all strings
of white space to a single ",", which means that
the arguments to [t v a r can be spaced out to
improve the readability of the rule files. Al-
though this may not be important for [t v a r

commands, it is important for [t r u l e.

The [t v a r command relies on the \ x f o r m com-
mand, which is defined differently in eng-form. s t y
than it is in t ab - fo rm. s t y , to do its work. All of the
T@A commands use the same mechanism, where a
command beginning with "\xV is called to implement
the real behavior, to acbeve different behaviors de-
pending on whether the English form or the tabular
form is to be presented. The desired behavior for
[t v a r is that a T@A variable is defined as the defi-
nition supplied by the user in the English form and
as itself in the tabular form. This is accomplished by
defining \ x fo rm as:

\gdef\xform#l#2{#2}

in eng-form. s t y , and as:

\gdef\xform#l#2{#1}

in t ab - fo rm. s t y . Thus, for the T$A variable T from
our Goldilocks example, we now have \T which ex-
pands to "the temperature" in the English form and
to "T" in the tabular form.

The [t g r o u p command. The \ t g r o u p command is
really several commands and it looks at its second
argument to determine whch command to run. It is
defined in t e s l a . s t y as:

\gdef\tgrou~, l,#l, l,#2-1 C%
\ i f 1#2 \xbegin{xone}{l}{2}{.466}{#l}\fi
\ i f 2#2 \xbegin{xtwo}{2}{3}{.300}{#l}\fi
\ i f 3#2 \xbegin{xthree}{3}{4}{.216}{#l}\fi
\i f 4#2 \xbegi n{xfour}(4}{5}{ . 166}{#l)\ f i
\ i f 5#2 \xbegi n {x f ive} {5} (6} { . 133} {# l } \ f i
\ i f 6#2 \xbegi n {xs i x}{6}{7}{. 1095} {# l } \ f i
\ i f -#2 \xsep\ f i
\ i f e#2 \xend\f i

1
where \ xbeg i n, \xsep and \xend are defined differ-
ently, depending on the form.

The definition for \ xbeg i n in eng-form. s t y is
to define [t r u l e to be the command specified by
the first argument and to introduce a new subsection
using the fifth argument. It is implemented as:

\gdef\xbegin#1#2#3#4#5{%

\gdef\trule{\csname #l\endcsname}
\ sub~ec t i on>~{#S Rules)}

The second, third and fourth arguments to \xbegi n

are ignored in eng-form. s t y .
The definition for \ xbeg i n in t a b - f o r m . s t y is

much longer (10 lines) and is not presented here.
Like the definition in eng-form. s t y , the definition
of \ xbeg in in t ab - fo rm. s t y defines [t r u l e to be
the command specified by the first argument. Then
it introduces.the code necessary to set up a tabu1 a r

environment where the number of columns is spec-
ified by the third argument and where each column
is typeset as a parbox whose width is specified by
the fourth argument3 multiplied by the text width

3 The values of the fourth argument were deter-
mined by experimentation.

TUGboar, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 391

Henry Baragar and Gail E. Harris

(\ tex twidth) . The second argument always has a
value of one less than the third argument and is re-
quired in order to avoid having to do arithmetic in
TEX. It is used to specify the number of columns to
be spanned by the "Conditions" heading. The fifth
argument is used in the title of the table. Finally, the
\xbegi n makes some minor adjustments to the tab-
ular environment to improve the visual presentation
of the tables.

The \xsep command is defined to do nothng
in eng-form. s t y and to insert a horizontal line -
using \ h l i ne -in tab-form. s ty .

Sidar ly , the \xend command is defined as
nothing in eng-form. sty, and as

in tab- form. s ty .

The [t r u l e command. As was seen in the discus-
sion on [t g roup, the [t r u l e command is defined in
\xbegi n to be one of \xone through \ x s i x. These
commands are all very similar with \xtwo, for e x m -
ple, being defined in t e s l a . s t y as:

\gdef\xtwo,l-#l(,#21,#3]@

\i f-#l,\xpre,\xone, 1 3 2 1 ,#3]%
\else\xif{#l},\xand{#2}\xthen{#3}

\f i

1

Note the lack of spaces between each argument and
the " I "or "1" character that follows the argument
(". . . ,#I1 ,#2 1 ,#3]. . . ") which preserves a space at
the end of the argument and which will be used as a
delimiter when the argument itself is parsed.

The \xtwo code says that if the first condition
has been set to the character "-", then this is like
a one-rule condition: do something specific to the
form (\xpre) and call \xone. Note that \ x th ree will
call \xtwo and \ x f our will call \xthree, etc. The
\xpre does nothing in the English form but is re-
quired in the tabular form to insert a "&" character
to skip the first column. Otherwise, if the first argu-
ment is not the "-" character, then build up the rule
using \ x i f, \xand and \xthen.

In the English form:

produces the expected result of:

If #1 and #2 then #3.

except when #2 is empty, in whch case the and-
clause is elided. This is implemented as:

\gdef\x i f#l{ \par { \bf I f } \ x re l #1}
\gdef\xand#l{\ifx#l\empty

\else{\bf and} \ x re l #1
\ f i

1
\gdef\xthen#l{{\bf then} \xre l # I . }

in eng-form. s ty .
In the tabular form:

produces the expected result of putting the if-clause
into the first column, the and-clause (if there is one)
into the second column, and the then-clause into the
third column. This is implemented in t a b - f orm . s t y
as:

\gdef\xi f#l{\RS\xrel # I }
\gdef\xand#l{& \RS\ifx#l\empty

\el se\xrel # 1
\f i

1
\gdef\xthen#l{& \PBS\RS\xrel #1 \\}
\gdef\RS{\raggedright\sloppy\hspace{Opt}}

where \PBS is the \PreserveBackslash command
as described in Goossens et al. (1994, page 108). The
command \ x r e l is discussed below.

The \ x r e l command forms the heart of the T@A
style. It takes three arguments: Ihs, rel and rhs, as de-
scribed above in the description of the T@A [t r u l e
command. Each argument must end in a space; this
is why the spaces were left in by the \xone through
\ x s i x commands. If the th rd argument, or the sec-
ond and th rd arguments, is the character "-", then
these arguments are elided. This is necessary to pre-
vent extra space being inserted, particularly in the
English form and especially just before a period. The
\ x r e l command is implemented as:

\gdef\xrel,#1,#2-#3,{%
\if-#3\if-#2\xvar{#l}%

\else\xvar{#l},\xvar{#2}%
\f i

in t e s l a. s ty . Once again, the spaces between \xvar
commands are important, t h s time to put spaces
between the text expansions of Ihs, re1 and rhs in the
English form.

Finally, the \xvar command simply expands the
T@A variable passed to it from \ x r e l . If the variable
is undefined, then the variable name is used, typeset
in italics. It is implemented as:

\gdef\xvar#l{\expandafter

\ifx\csname #l\endcsname\relax{\it # I }%
\else \csname #l\endcsname
\f i

1
in t e s l a. s ty . Note that the different representa-
tions for the different forms have already been en-
coded in the variable by the [t v a r command.

The [t t e x t command. The [t t e x t command is de-
fined in t e s l a . s t y as:

\gdef\ttext,(,#l,]{\xtext{#l}}

where \ x t e x t is defined as \par{\em #1} in the En-
glish form, and as

392 TUGboat, Volume 15 (19941, No. 3 -Proceedings of the 1994 Annual Meeting

A Special Purpose Input Language

\gdef \x tex t# l {%

\multicolumn{\numcols}{~p{.9\textwidth}~}

{\em # l } \ \ \ h l i n e

1
in tabular form. Note that \numcol s was defined by
the [tgroup command.

The [trem command. The definition of the [trem
command is analogous to the definition of [t t e x t .
However, \xrem is defined as nothing in the English
form and as \xtext{\sc #I) in the tabular form.

Pre-defined variables. Since the relationship and
arithmetic operators are treated like normal T@A
variables, it is trivial to predefine many of the these
operators in t e s l a . s ty . For example,

\gdef\<{\xform{$<$}{is l ess than}}

predefines the < relation.

Observations

We hope that our paper has shown the TEX implemen-
tation of the T@A language is elegant and remarkably
compact. The t e s l a . s t y file is only 102 lines (of un-
documented TEX code), the tab-form. s t y is 32 lines
and the eng-form . s t y is 18 lines. The implementa-
tion in TEX was less difficult than anticipated. It is
also shorter than the anticipated preprocessor solu-
tion, yet is at least as robust and flexible. It also has
the benefit of handling the inclusion, with some re-
strictions, of W&X code into the rules.

Comparison with "pure" UTEX. The improvement in
the visual presentation of the source code of T@A
compared with "pure" W&X is strilung. Consider our
Goldilocks example as it might be written in LATEX:

\begin{tgroup}{Goldi l ocks ' }

\ trule{\T\LT\mi n}{ }{\ tooCol d l

\ t r u l e { }{\T\GT\max}{\tooHot}

\ t r u 1 e(\mi n\LE\T}{\T\LE\max}{\justRi ght}

\end{tgroup}

where the content of the document is obscured by
too many "\", "{" and "}" characters.

The dictionary. At one point in the project, there
was a great rush to produce a dictionary of the knowl-
edge base variables. It was a simple matter to search
the source files for all lines with [tvar , sort this list,
and process it with a simple style that implements
the [tva r command as an item in a description list -
all in less than half an hour. This activity revealed
several duplicate variable definitions that might not
otherwise have been caught, and forms a counter-
part to the implementation of [tvar whch typesets,
in italics, undefined variables as their variable name.
This reinforces the advantages of separating the log-
ical structure of a document from the details of type-
setting.

Conclusions

I have stood on the shoulders o f
Jon Bentley and Donald Knuth.

-Henry Baragar

The T@A language has met its original goals.
The structure of the rules is visually apparent in a
T@A source file and it has been used successfully
for a knowledge base with more than 270 rules us-
ing over 250 variables. The two forms of output have
been well received by their intended audiences. Sur-
prisingly, some of the expert system programmers
have found the English form has helped them to un-
derstand the context of the rules that they were read-
ing in the tabular form, a context that is sometimes
lost in the brevity of using only variable names.

Spurred by the success of the implementation
of T@A, we would like to enhance the functionality
of the language. First, we would like to expand the
[tgroup command to express relationships between
the tables, which then could be graphed and included
in the documentation. Second, we would like to en-
hance the [t r u l e command to generate code for a
particular Expert System shell, whch would signifi-
cantly reduce the consistency problems between the
documentation and the code. This capability could
be extended to multiple Expert System shells.

This example of a special purpose input lan-
guage to JkQX illustrates the utility of application-
speclfic mark-up languages and the suitability of us-
ing TEX for the implementation. We hope t h s exam-
ple will encourage others to consider creating "lit-
tle languages" in TEX in those cases where the logi-
cal structure of their documents is lost in the type-
setting commands in their source files. We certainly
have found the benefits have been extraordinary and
the difficulties surprisingly minor.

Acknowledgements

We would like to thank Christina Thiele who was the
one to finally convince us to write this paper and was
kind enough to preview it for us. Also, we would llke
to thank Christine Detig who reviewed the paper and
provided helpful comments.

Bibliography

Bentley, Jon, More Programming Pearls: Confessions
of a Coder, Reading Mass.: Addison-Wesley,
1990.

Goossens, Michel, Frank Mittelbach, and Alexander
Samarin, The LATEX Companion, Reading Mass.:
Addison-Wesley, 1994.

Knuth, Donald, The T~Xbook, Reading Mass.: Addi-
son-Wesley, 1989.

Lamport, Leslie, LATEX: A Document Preparation Sys-
tem, Reading Mass.: Addison-Wesley, 1986.

TUGboat, Volume 15 (1994), No. 3-Proceedings of the 1994 Annual Meeting 393

Henry Baragar and Gail E. Harris

Appendix

The tesla.sty file.

\set length{ \parsk ip} { \basel i neski p}

\set length{ \par indent} {Opt}

3 94 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

A Special Purpose Input Language

\newcommand{\i nput r u l e f i 1 e} [I] {%
\changecatcodes
\i npu t {# l }

1

I
\changecatcodes
\gdef\<{\xform{$<$}{ is l e s s than}}
\gdef \>{ \x form{$>$}{ i s g rea te r than}}
\gdef\ !={\xform{\neq}{ is n o t equal t o } }
\gdef\=={\xform{$=$}{i s equal t o } }
\gdef\<={\xform{$\ leq$]{ i s l e s s than o r equal t o } }
\gdef\>={\xform{\geq}{ i s g rea te r than o r equal t o } }

\gdef\:={\xform{$\l e f t a r r ow$ } { i s assigned})
\gdef\+{\xform{$+$}{added t o } }
\gdef\+={\xform{$+$$=$}{is incremented by}}
\gdef\decrement{\xform{$-$$=$}{is decremented by}}
\gdef\minus{\xform{$-$}{less))
\gdef\+~{\xform{$*$}{mul t i p l i ed by}}
\gdef\memberOf { \x form{$\ i n $ } { i s one o f } }

\gdef\notMemberOf{\xform{$\not\in$}{is no t one o f } }
\gdef \ i snot{\xform{\neg}{not}}

1

The eng-form. s t y file.

\gdef \x form #1#2{#23

\gdef\xbegin#1#2#3#4#5{
\gdef\ t rule{\csname #l\endcsnarne}
\ subsec t i onq{#5 Rules}

1
\gdef\xsepC}
\gdef\xend{}

TUGboat, Volume 1 5 (1994), No. 3 -Proceedings o f the 1994 Annual Meeting

Henry Baragar and Gail E. Harris

\ gde f \ x i f # l { \ pa r { \ b f I f } \ x r e l #1}
\gdef\xand#l{\ifx#l\empty\else{\bf and} \ x r e l # 1 \ f i }
\gdef \x then#l { { \b f then} \ x r e l # I . }

The tab-form. s t y file.

\gdef\xform#l#2{#1}

\gdef\xbegin#1#2#3#4#5{
\gdef\ t rule{\csname #l\endcsname}
\gdef\numcol s{#3}
\par\begi n{tabular}{+:{#3}{ 1 p{#4 \ tex tw id th } } 1 }
\ h l i ne
\mu1 t i co lumn{#3} { l c l}{\rule{Opt}{2.8ex}\large\bf #5 Rules}\\
\ h l i ne
\mu1 ti c o l umn{#2}{ 1 c l}{\rule(0pt}{2.8ex}\large Cond i t ions }

& \ l a r g e Conclu\-sion \\
\ h l i ne\hl i ne

1
\gdef\xsep{\hl i ne}
\gdef\xend{\hl ine\end{tabular}}

\gde f \x tex t# l { \mu l ti c o l umn{\numcol s } { 1 p{ .9 \ tex tw i d t h } 1 }{\em # I } \ \
\ h l i ne}

\gdef \xrem#l{ \x text { \sc # I } }

%see LaTeX Companion, page 132 (f o r \hspace{Opt})
\gdef\RS{\raggedright\sloppy\hspace{Opt}}

%see LaTeX Companion, page 108
\gdef\PreserveBackslash#l{\let\temp=\\#l\let\\=\temp}
\l et\PBS=\PreserveBacksl ash

TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Appendix

Color figures

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Yellow lobsen~.e of blire~

'h
Green

\ I
Re, @

Magenta

/
(absence of gret

Blue

greenish

yellow

greenish yellow ,:; orange yellow

purple

Color Example 1: The RGB and CMYK Color Example 2: Colour harmonies and the
colour models chromatic circle

Color Example 3: Facets of colour harmony for the primary process colours

red

TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Colour figures

Black

Yellow

+

Green

White

Black

White

White a Blue

+
Blue

Yellow

White

Red

Blue

White

White

Black

Green

Yellow

White 0 Red

Yellow + Red

White

Orange

Yellow 0 Blue

White

Green

Orange

White

Orange

Yellow

Color Example 4: Effectiw ,e colour contrasts for maxin mum visibility and redability

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

\fboxsep=12pt
known : P NAME

birthday : NAME -- DATE

known = dombirthday
witerebirthday = 13.2.55

Color Example 5: Examples of colored Color Example 6: Z schema using colour
and framed boxes in UTEX~~ to mark keywords

Color Example 7: A coloured table

Sebastian Rahtz

Color Example 8: Colour slide with colour list

TUGboat, Volume 15 (1994), No. 3 -Proceedmgs of the 1994 Annual Meeting

Colour figures

Color Example 9: WWW Map of European Home Pages

Color Example 10: Campus at the University of Dortmund

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Cyan magenta

yellow black

Color Example 11: Colour separations of previous colour figure

Color Example 12: Colour preview with dvi vgac

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Colour figures

Evolution of revenues

Color Example 13: Typesetting text on a path, Color Example 14: A bar graph made with
filling character outlines, and using a TEX box pstchar t .

as a fill pattern.

Unemployment rate in 1974 and 1981 in France

1974 1981

Source INSEE V V

1% 2.5% 4% 5.5% 10% 12.5%

Color Example 15: Coloration of maps.

-. TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Color Example 16: The CTAN-Web home page.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

TUGboat, Volume 15 (1994), No. 3

Susan DeMeritt

IDA/CCR La Jolla

San Diego, California, USA

sueQccrwest.org

Participants at the
15th Annual

TUG Meeting
July 31-August 4,1994

Santa Barbara, California

Peter Breitenlohner

Max-Planck-Institut fur Physik

Munchen, Germany

Christine Detig

Technical University Darmstadt

Darmstadt , Germany

detigQiti.infomatik.th-damstadt.de

Tan Bui
Concordia University Computing

Montreal, Quebec, Canada

ilfc326Qvax2.concordia.ca

Luzia Dietsche
DANTE e.V

Heidelberg, Germany

secretaryQdante.de

Mary R Burbank

SCRI / Florida State University

Tallahassee, Florida, USA

mimiQscri.fsu.edu
:a

Katherine Butterfield

Center for EUV Astrophysics

University of California a t Berkeley

Berkeley, California, USA

Shelley-Lee Ames
University of Manitoba

Winnipeg, Manitoba, Canada

shelleyQcmstex.maths.umanitoba.(
Michael Doob

University of Manitoba

Winnipeg, Manitoba, Canada

mdoobQcc.umanitoba.ca

Harumi Ase

Tokyo, Japan

aseQcicso.co.jp

Henry Baragar

Instantiated Software Inc

Nepean, Ontario, Canada

henryQinstantiated.on.ca

Jean-Luc Doumont
JL Consulting

Zaventem, Belgium

j.doumontQieee.org

David Carlisle

Manchester University

Manchester, England

carlisleQcs.man.ac.uk Michael Barnett

Brooklyn College of the City of

New York

Princeton, New Jersey, USA

Michael Downes

American Mathematical Society

Providence, Rhode Island, USA

mjdQmath. ams . org

Lance Carnes

Personal Inc

Mill Valley, California, USA

ptiQcrl.com William Baxter

Superscript

Oakland, California, USA

webQsuperscript.com

Ken Dreyhaupt
Springer-Verlag

New York, New York, USA

kendaspringer-ny.com

Leslie Chaplin

SFA Inc

Waldorf, Maryland, USA

chaplinQorion.nrl.navy.mil Nelson H F Beebe
University of Utah

Salt Lake City, Utah, USA

beebeQmath .utah. edu

Angus Duggan
Harlequin Ltd

Barrington, Cambridge, England

angusQharlequin.co.uk

Ampon Chumpia

Raj Burana

Bangkok, Thailand

Barbara Beeton

American Mathematical Society

Providence, Rhode Island, USA

bnbQmath.ams.org

Laura Falk

University of Michigan

Ann Arbor, Michigan, USA

lauraf@eecs.umich.edu

Malcolm Clark
University of Warwick

Coventry, England

m.clarkQwarwick.ac.uk

Arrigo Benedetti
University of Bologna

Modena, Italy

arrigoQcube.systemy.org

Michael Ferguson

INRS Telecommunications

University of Quebec

Verdun, Quebec, Canada

mikeQinrs-telecom.uquebec.ca

David Cobb

SAIC/OSTI

Oak Ridge, Tennessee, US

Michael Cohen

University of Aizu

Aizu, Japan

mcohenQu-aizu.ac.jp

John Berlin

Users Group

Santa Barbara, California, USA

j ohnQtug . org

Barbara Ficker

Northern Arizona University

Flagstaff, Arizona, USA
Arvin C Conrad
Menil Foundation

Houston, Texas, USA

Arvind Borde

Long Island University

Cambridge, Massachusetts,

bordeQbnlcl6.bnl.gov

Peter Flynn
University College

Cork, Ireland

pflynnQcuria.ucc.ie

USA

Jackie Damrau
Fluor Daniel

Red Oak, Texas, USA

damrauQamber.unm.edu

Harriet Borton
Rensselaer Polytechnic Institution

Troy, New York, USA

bortonhQrpi.edu

Jim Fox
University of Washington

Seattle, Washington, USA

jrnbrownQuci.edu
Donald DeLand

Integre Technical Publishing

Albuquerque, New Mexico, USA

delandQsc.unm.edu

Johannes Braams

Zoetermeer, T h e Netherlands

j . l .braamsQresearch.ptt .nl

Yukitoshi Fujimura

Addison-Wesley Publishers

Tokyo, Japan

gbfool74Qniftyserve.or.jp

TUGboat, Volume 15 (1994), No. 3

Bernard Gaulle

CNRS-IDRIS

Orsay Cedex, France

gau l l eQidr i s . f r

Blenda Horn

Y&Y Inc

Concord, Massachusetts, USA

Maurice Laugier

Imprimerie Louis-Jean

GAP Cedex, France

1ouiseanQcicg.grenet.fr Don Hosek
Quixote Digital Typography

Claremont, California, USA

dhosekQquixote.com

Laurie Gennari Jacques Legrand

JL International Publishing

Bassillac, France

Stanford Linear Accelerator Center

Stanford, California, USA

gennariQslac.stanford.edu
Charles Hurley
Elsevier Science Inc

New York, New York, USA

c.hurleyQpanix.com

Pierre A MacKay

University of Washington

Seattle, WA, USA

mackayQcs.washington.edu

Michel Goossens
CERN

Genkve, Switzerland

goossensQcern.ch
Calvin Jackson

California Institute of Technology

Sherman Oaks, California, USA

calvinQcsvax.caltech.edu

Basil K Malyshev

ma1yshevQdesert.ihep.s~ Peter Gordon
Addison-Wesley Publishing Co

One Jacob Way

Reading, Massachusetts, USA

Robert McGaffey
Martin Marietta Energy Systems

Oak Ridge, Tennessee, USA

rwmQornl.gov

Alan Jeffrey

COGS

University of Sussex

Brighton, England

George D Greenwade
Sam Houston State University

Huntsville, Texas, USA

bed-gdgQshsu.edu

Wendy McKay

Mathematical Sciences Research

Institute

Berkeley, California, USA

mckwendy@msri.org

James Hafner

IBM Research

Almaden Research Center

San Jose, California, USA

hafner(0almaden.ibm.com

Jennifer E Jeffries

US Naval Observatory

Washington, DC, USA

jeffriesQspica.usno.navy.mil Lothar Meyer-Lerbs
Bremen, Germany

TeXSatzQzfn.uni-breman.de Judy Johnson
E T P Services

2906 NE Glisan Street

Portland, Oregon, USA

Hisato Hamano
Impress Corporation

Tokyo, Japan

hisatohQimpress.co.jp

Frank Mittelbach

Mainz Bretzenheim, Germany

mitte1bachQmzdmza.zdv.uni-mainz.de
David M Jones

MIT Laboratory for CS

Cambridge, Massachusetts, USA

dmjonesQtheory.lcs.mit.edu

Patricia A Monohon

T&$ Users Group

Santa Barbara, California, USA

monohonQtug.org

Genevra Hanke

Addison-Wesley Publishing Co.

Reading, Massachusetts, USA

nevhQaw.com
Michele Jouhet

CERN

GenBve, Switzerland

Andre Montpetit
UniversitB de Montreal

MontrBal, QuBbec, Canada

montpetiQcrm.umontreal.ca

Yannis Haralambous
Lille, France

yannisauniv- l i l le l . f r

Robert L Harris
Micro Programs, Inc.

Syosset, New York, USA

Joe Kaiping

Wolfram Research Inc

Champaign, Illinois, USA

kaipingQwri.com

Norman Naugle

Texas A&M University

College Station, Texas, USA

normanQmath. tamu. edu Michael Hitchcock
E T P Service

Portland, Oregon, USA

mikeQetp.com

Minato Kawaguti

Fukui University

Fukui, Japan

kawagutiQilmps.fuis.fukui-u.ac

Darlene O'Rourke
San Francisco, California, USA

1oyolaQcrl. com
. j p

John O'Rourke

San Francisco, California, USA

loyola@crl.com

Michael Hockaday
TSI Graphics

Effingham, IL, USA
Joachim Lammarsch

DANTE e.V.

Heidelberg, Germany

presidentQdante.de
Alan Hoenig

John Jay College/CUNY

Huntington, New York, USA

a j h j jQcunyum. cuny. edu

Arthur Ogawa

Consultants
Kaweah, California, USA

ogawaQteleport . com

Leslie Lamport
Digital Equipment Corp

Palo Alto, California, USA

lamportQsrc.aec.com
Anita Z Hoover
University of Delaware

Newark, Delaware, USA

anitaQzebra.cns.udel.edu

Oren Patashnik

Institute for Defense Analyses

Center for Communications Research

San Diego, California, USA

opbibtex(0cs.stanford.edu

Dan Latterner

American Mathematical Society

Mathematical Reviews

Ann Arbor, Michigan, USA

dclOmath.ams.org

Berthold KP Horn
Y&Y Inc

Concord, Massachusetts, USA

TUGboat, Volume 15 (1994), No. 3

Geraldine Pecht Maureen Schupsky
Princeton University Annals of Mathematics

Princeton, New Jersey, USA Princeton University

Lee F Thompson

University of Wisconsin

Madison, Wisconsin, USA

gerree@math.princeton.edu Princeton, New Jersey, USA
annals@math.princeton.edu

John Plaice

Andy Trinh

Beckman Instruments

Brea, California, USA Universitb Lava1

Ste-Foy, QuBbec, Canada

pla iceQif t .u lava1.ca

Caroline Skurat
Addison-Wesley Publishing Co

Reading, Massachusetts, USA
Norman Walsh

O'Reilly and Asociates, Inc

Cambridge, Massachusetts, USA

normQora.com

Cheryl Ponchin

Institute for Defense Analyses

Princeton, New Jersey, USA

cherylQccr-p.ida.org

Barry Smith

Blue Sky Research

Portland, Oregon, USA Tao Wang

Personal w Inc

Mill Valley, California, USA

ptiQcrl.com

Richard Quint

Ventura College

Lowell Smith

Salt Lake City, Utah, USA

Ventura, California, USA
Michael Sofka

Sebastian Rahtz

ArchaeoInformatica

York, England

spqrQftp.tex.ac.uk

Publication Services Inc

Albert, New York, USA

Alan Wet more

US Army Research Lab

White Sands Missile Range,

New Mexico, USA

awetmoreQarl.mil
Friedhelm Sowa

Heinrich-Heine-University

Diisseldorf, Germany

texQmail.rz.uni-duesseldorf.de

David F Richards

University of Illinois

Urbana, Illinois, USA

Bill White

TSI Graphics

Effingham, Illinois, USA df rQuiui . edu
Wiestaw Stajszczyk

ECRC GmbH

Miinchen, Germany
Tom Rokicki
Stanford, California, USA

Yusof Yaacob

Universiti Teknologi Malaysia

Johor Darul Ta'zim, Malaysia

Chris Rowley Dave Steiner

Rutgers University

Piscataway, New Jersey, USA

steinerQcs.rutgers.edu

Ralph Youngen

American Mathematical Society

Providence, Rhode Island. USA

reyQmath.ams.org

Open University

London, England

carowleyQopen.ae.uk

Jifi ZlatuSka
Masaryk University

Brno, Czech Republic

Andrea Salati
Pubblicita Italia SAS

Modena, Italy
andrea.salati@galactica.it

Jon Stenerson

TCI Software Research

Las Cruces, New Mexico, USA

jon~stenersonQtcisoft.com

Borut ~nidar
Josef Stefan Institute

Kranj , Slovenia

boru t . zn ida rQi j s . s i

David Salomon Janet Sullivan
California State University w Users Group

Northridge, California, USA Santa Barbara, California, USA

Volker RW Schaa
janetotug . org

Gesellschaft fiir Schwerionfor

Nat. Lab

Muhltal, Germany
v.r.w.schaaQgsi.de

Philip Taylor

RHBNC / University of London

Egham, Surrey, England

p.taylorQvax.rhbnc.ac.uk

Darko Zupanik
Josef Stefan Institute

Kranj, Slovenia

darko.zupanicQijs.si

Joachim Schrod Christina Thiele
Technische Universitat Darmstadt Carleton Production Centre

Darmstadt, Germany Nepean, Ontario, Canada

schrod@iti.informatik.th-darmstadt.de cthieleQccs.carleton.ca

408 TUGboat, Volume 15 (1994), No. 3

Calendar

Sep 26 - 30 E u r o m '94, Sobieszewo, Poland.

For information,

contact Wlodek Bzyl

(EuroTeXOHalina . Univ . Gda . PI).
(See announcement, TUG boat 15,
no. 1, p. 69.)

Oct 6 DANTE m-Stammtisch at the

Universitat Bremen, Germany. For
information, contact Martin Schroder

(MSODream. HB . North. de; telephone
04211628813). First Thursday, 18:30,

Universitat Bremen MZH, 4th floor,

across from the elevator.

Oct 13 DANTE m-Stammtisch,

Wuppertal, Germany. For

information, contact Andreas Schrell
(Andreas. SchrellOFernUni-Hagen. de,

telephone (0202) 666889). Second

Thursday, 19:30, Gaststatte Yol,
Ernststraae 43.

Oct 17 DANTE m-Stammtisch in Bonn,

Germany. For information,

contact Herbert Framke
(Herbert-F~~~~~QSU~.MAUS.DE;

telephone 02241 400018, Mailbox

02241 390082). Third Monday,
Anno, Kolnstraae 47.

Oct 18 DANTE m-Stammtisch

in Duisburg, Germany. For

information, contact Friedhelm Sowa

(texQze8. rz . uni-duesseldorf . de;

telephone 0211/311 3913).
Third Tuesday, 19:30, at

Gatz an der KO, Konigstrafle 67.

Oct 19 UK Users' Group,

University of Warwick.

Annual General Meeting.

For information, e-mail

uktug-enquiriesQftp.tex.ac.uk

Oct 26 DANTE m-Stammtisch, Hamburg,

Germany. For information,
contact Reinhard Zierke

(zierkeainf ormatik. uni-hamburg . de;

telephone (040) 54715-295).
Last Wednesday, 18:00, at TEX's

Bar-B-Q, Grindelallee 31.

Nov 3 DANTE m-Stammtisch at the

Universitat Bremen, Germany. (For
contact information, see Oct 6.)

Nov 10 DANTE m-Stammtisch,

Wuppertal, Germany. (For contact

information, see Oct 13.)

Nov 15 DANTE m-Stammtisch in

Duisburg, Germany. (For contact

information, see Oct 18.)

Nov 17-18 NTG 1 4 ~ ~ Meeting, and short course

on I P m 2.09 + University
of Antwerpen, Belgium. For
information, contact Gerard van Nes

(vannesOecn . n l) .

Nov 21 DANTE m-Stammtisch in Bonn,

Germany. (For contact information,
see Oct 17.)

Nov 30 DANTE m-Stammtisch, Hamburg,

Germany. (For contact information,
see Oct 26.)

Dec 1 DANTE m-Stammtisch at the

Universitat Bremen, Germany. (For
contact information, see Oct 6.)

Dec 8 DANTE m-Stammtisch,

Wuppertal, Germany. (For contact

information, see Oct 13.)

Dec 19 DANTE m-Stammtisch in Bonn,

Germany. (For contact information,

see Oct 17.)

Dec 20 DANTE m-Stammtisch in

Duisburg, Germany. (For contact
information, see Oct 18.)

Dec 28 DANTE m-Stammtisch, Hamburg,

Germany. (For contact information,
see Oct 26.)

1995

Jan 5 - 8 Linguistic Society of America,

6gth Annual Meeting,
Fairmont Hotel, New Orleans.

For information, contact the

LSA office, Washington,
DC (202-834-1714,

zzlsaOgallua. gal laudet . edu).

Jan 12 DANTE m-Stammtisch at the

Universitat Bremen, Germany. (For
contact information, see Oct 6.)

Status as of 15 October 1994

TUGboat, Volume 15 (1994), No. 3

Jan 19 Journke d'information sur
la Diffusion des Documents

Electroniques de a HTML,

WWW, et Acrobat, Nanterre,
France. For information, e-mail

tresorerie.gutenbergQens.fr.

Jan 19 Portable Documents: Acrobat,
SGML & m, Joint meeting of the

UK Q$ Users' Group and BCS

Electronic Publishing Specialist

Group, The Bridewell Theatre,
London, UK. For information,

contact Malcolm Clark

(m. clarkQwarwick. ac . uk).

TUG Courses, Santa Barbara, California

Jan 30- Intensive

Feb 3

Feb 6 - 10 Beginning/Intermediate QX

Feb 13 - 17 Advanced T@ and Macro Writing

Feb 28 - w - T a g u n g DANTE '95, University

Mar 3 of Giekn, Germany. For

information, contact Giinter

Partosch ((0641) 702 2170,
dante95Qhrz .mi-g iessen . de).

A P ~ UK rn Users' Group, location

to be announced. Topic: Maths is

what rn does best of all.
For information, e-mail

uktug-enquiriesQftp.tex.ac.uk

Jun 1 - 2 GUTenberg '95, "Graphique, rn et

Postscript", La Grande Motte,
France. For information, call

(33-1) 30-87-06-25, or e-mail
treasorerie.gutenberg@ens.fr or

aroQlirmm. f r .

Jun 1 - 2 IWHD '95: International Workshop

on Hypermedia Design, Montpellier,

France. For information, contact

the conference secretariat,
Corine Zicler, LIRMM, Montpellier

((33) 6741 8503, ziclerQlirmm. f r) .

Jul 24-28 TUG 1 6 ~ ~ Annual Meeting:
Real World W, St. Petersburg

Beach, Florida. For information,
send e-mail to tug95Qscri. f su. edu.

(For a preliminary announcement,

see TUGboat 15, no. 2, p. 160.)

For additional information on the events listed

above, contact the TUG office (805-963-1338, fax:

805-963-8358, e-mail: tugotug . org) unless other-
wise noted.

Announcements

The Donald E. Knuth Scholarship:
1994 Scholar and 1995 Announcement

At the 15th Annual Meeting of TUG, Shelley-Lee
Ames was honored as the 1994 Donald E. Knuth

Scholarship winner. Shelley works at the University
of Manitoba for the Canadian Mathematical Soci-

ety (SociBtk mathkmatique du Canada) where she

prepares, formats and proofs all papers published
by the society in their Journal and Bulletin.

Announcement of the 1995 competition

One Knuth Scholarship will be available for award
in 1995. The competition will be open to all

users holding support positions that are secretarial,
clerical or editorial in nature. It is therefore not

intended for those with a substantial training in
technical, scientific or mathematical subjects and,

in particular, it is not open to anyone holding, or
studying for, a degree with a major or concentration

in these areas.
The award will consist of an expense-paid trip

to the 1995 TUG Annual Meeting at St. Petersburg,
Florida, and to the Scholar's choice from the short

courses offered in conjunction with that meeting;

and TUG membership for 1995, if the Scholar is
not a TUG member, or for 1996, if the Scholar is

already a TUG member. A cap of $2000 has been

set for the award; however, this does not include

the meeting or course registration fee, which will be
waived.

To enter the competition, applicants should

submit to the Scholarship Committee, by the dead-
line specified below, the input file and final 7&X
output of a project that displays originality, knowl-

edge of Q$, and good m n i q u e .
The project as submitted should be compact in

size. If it involves a large document or a large num-

ber of documents then only a representative part

should be submitted, together with a description of

410 TUGboat, Volume 15 (1994), No. 3

the whole project. For example, from a book just

one or two chapters would be appropriate.

The project may make use of a macro package,

either a public one such as or one that has
been developed locally; such a macro package should

be identified clearly. Such features as sophisticated
use of math mode, of macros that require more

than "filling in the blanks", or creation and use

of new macros will be taken as illustrations of the
applicant's knowledge.

All macros created by the candidate should be

well documented with clear descriptions of how they

should be used and an indication of how they work
internally.

All associated style files, macro-package files,
etc., should be supplied, or a clear indication given

of any widely available ones used (including version
numbers, dates, etc.) ; clear information should be

provided concerning the version of 'l&X used and

about any other software (e.g. particular printer
drivers) required. Any nonstandard fonts should be

identified and provided in the form of . tfm and . pk

files suitable for use on a 300dpi laser printer.

While the quality of the typographic design
will not be an important criterion of the judges,

candidates are advised to ensure that their printed

output adheres to sound typographic standards; the
reasons for any unusual typographic features should

be clearly explained.

All files and documents comprising the project
must be submitted on paper; the input files should

be provided in electronic form as well. Suitable elec-
tronic media are IBM PC-compatible or Macintosh

diskettes, or a file sent by electronic mail.
A brochure with additional information is avail-

able from the TUG office. To obtain a copy, or

to request instructions on e-mail submission, write
to the address at the end of this announcement, or

send a message by e-mail to tug0tug. org with the

subject "Knuth Scholarship request" .

Along with the project, each applicant should
submit a letter stating the following:

1. affirmation that he/she will be available to

attend the 1995 TUG Annual Meeting;

2. affirmation of willingness to participate on the
committee to select the next Scholar.

Each applicant should also submit a curriculum
vitae summarizing relevant personal information,
including:

1. statement of job title, with a brief description

of duties and responsibilities;

attended, manuals studied, personal instruction
from experienced w users, etc.;

3. description of 'l&X resources and support used
by the candidate in the preparation of the

project.

Neither the project nor the curriculum vitae should
contain the applicant's name or identify the ap-

plicant. These materials will be reviewed by the

committee without knowledge of applicants' iden-
tities. If, despite these precautions, a candidate

is identifiable to any judge, then that judge will

be required to make this fact known to the others
and to the TUG board members responsible for the
conduct of the judging.

The covering letter, curriculum vitae, and all

macro documentation that is part of the project
input should be in English. (English is not required

for the output of the project.) However, if English

is not the applicant's native language, that will not

influence the decision of the committee.
Selection of the Scholarship recipient will be

based on the project submitted.

Schedule

The following schedule will apply (all dates are in

1995):
7 April Deadline for receipt of

submissions

21 April-2 June Judging period

9 June Notification of winner

24-28 July 1995 Annual Meeting,

St. Petersburg, Florida
The 1995 Scholarship Committee consists of

Chris Rowley, Open University, UK (Chair);
David Salomon, California State University,

Northridge, USA;

Shelly-Lee Ames, University of Manitoba,
Canada.

Where to write

All applications should be submitted to the Com-
mittee in care of the TUG office:

T)$ Users Group

Attn: Knuth Scholarship Competition
P. 0 . Box 869

Santa Barbara, CA 93102 USA

e-mail: tugQtug . org

Nico Poppelier

Liaison to the Donald E. Knuth
Scholarship Committee

2. description of general post-secondary school

education, l$$ education, identifying courses

TUGboat, Volume 15 (1994), No. 3

Institutional
Members

The Aerospace Corporation,
El Segundo, California

Air Force Institute of Technology,
Wright-Patterson AFB, Ohio

American Mathematical Society,
Providence, Rhode Island

ArborText, Inc.,
Ann Arbor, Michigan

Brookhaven National Laboratory,
Upton, New York

Brown University,
Providence, Rhode Island

California Institute of Technology,
Pasadena, California

Carleton University,
Ottawa, Ontario, Canada

Centre Inter-Rkgional de

Calcul ~ l e c t r o n i ~ u e , CNRS,
Orsay, France

CERN, Geneva, Switzerland

College Militaire Royal de Saint
Jean, St. Jean, Quebec, Canada

College of William & Mary,
Department of Computer Science,
Williamsburg, Virginia

Communications
Security Establishment,
Department of National Defence,
Ottawa, Ontario, Canada

Cornell University,
Mathematics Department,
Ithaca, New York

CSTUG, Praha, Czech Republic

Elsevier Science Publishers B .V.,
Amsterdam, The Netherlands

Escuela Superior de
Ingenieres Industriales,
Sevilla, Spain

European Southern Observatory,
Garching bei Munchen, Germany

Fermi National Accelerator
Laboratory, Batavia, Illinois

Florida State University,
Supercomputer Computations
Research, Tallahassee, Florida

GKSS, Forschungszentrum
Geesthacht GmbH,
Geesthacht, Germany

Grinnell College,
Computer Services,
Grinnell, Iowa

Hong Kong University of
Science and Technology,
Department of Computer Science,
Hong Kong

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Communications Research
Division, Princeton, New Jersey

Iowa State University,
Ames, Iowa

Los Alamos National Laboratory,
University of California,
Los Alamos, New Mexico

Macrosoft, Warsaw, Poland

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Mathematical Reviews,
American Mathematical Society,
Ann Arbor, Michigan

Max Planck Institut
fiir Mathematik,
Bonn, Germany

New York University,
Academic Computing Facility,
New York, New York

Nippon Telegraph &
Telephone Corporation,
Basic Research Laboratories,
Tokyo, Japan

Personal m, Incorporated,
Mill Valley, California

Princeton University,
Princeton, New Jersey

Rogaland University,
Stavanger, Norway

Rutgers University,
Computing Services,
Piscataway, New Jersey

Space Telescope Science Institute,
Baltimore, Maryland

Springer-Verlag,
Heidelberg, Germany

Springer-Verlag New York, Inc.,
New York, New York

Stanford Linear Accelerator
Center (SLAC) ,
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Texas A & M University,
Department of Computer Science,
College Station, Texas

United States Naval
Postgraduate School,
Monterey, California

Universitat Augsburg,
Augsburg, Germany

University of California, Berkeley,
Space Astrophysics Group,
Berkeley, California

University of California, Irvine,
Information & Computer Science,
Irvine, California

University of Canterbury,
Christchurch, New Zealand

University College,
Cork, Ireland

University of Delaware,
Newark, Delaware

University of Groningen,
Groningen, The Netherlands

University of Heidelberg,
Computing Center,
Hezdelberg, Germany

University of Illinois at Chicago,
Computer Center,
Chicago, Illinois

Universitat Koblenz-Landau,
Koblenz, Germany

University of Manitoba,
Winnipeg, Manitoba

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

University of Salford,
Salford, England

TUGboat, Volume 15 (1994), No. 3

University of South Carolina, University of Texas a t Austin, Vrije Universiteit,

Department of Mathematics, Austin, Texas Amsterdam, The Netherlands

Columbia, South Carolina
Universita degli Studi d i Trento, Wolters Kluwer ,

University of Southern California, Trento, Italy Dordrecht, The Netherlands

Information Sciences Institute, Uppsala University,

Marina del Rey, Calijornia
Uppsala, Sweden . .

University of Stockholm,
Villanova University,

Department of Mathematics,
Villanova, Pennsylvania

Stockholm, Sweden

Yale University,

Department of Computer Science,

New Haven, Connecticut

TEX Consulting & Production Services

North America

Abrahams, Pau l

214 River Road, Deerfield, MA

01342; (413) 774-5500

Composition and typesetting of

high-quality books and technical

documents. Complete production

services using any PostScript fonts.

Assistance with book design and copy.

I am a computer consultant with a

computer science education.

American Mathematical Society

P. 0 . Box 6248, Providence, RI

02940; (401) 455-4060

Typesetting from DVI files on an

Autologic APS Micro-5 or an Agfa

Compugraphic 9600 (Postscript).

Times Roman and Computer Modern

fonts. Composition services for

mathematical and technical books and

journal production.

Anagnostopoulos, Paul C.

433 Rutland Street, Carlisle, MA

01741; (508) 371-2316

Composition and typesetting of

high-quality books and technical

documents. Production using

Computer Modern or any available

Postscript fonts. Assistance with

book design. I am a computer

consultant with a Computer Science

education.

ArborText , Inc.

1000 Victors Way, Suite 400,

Ann Arbor, MI 48108;

(313) 996-3566

'QX installation and applications

support. =-related software

products.

Archetype Publishing, Inc.,

Lori McWilliam Pickert

P. 0 . Box 6567, Champaign, IL

61821; (217) 359-8178

Experienced in producing and editing

technical journals with '@X; complete

book production from manuscript

to camera-ready copy; '@X macro

writing including complete macro

packages; consulting.

T h e Bart le t t Press , Inc.,

Reder ick H. Bar t le t t

Harrison Towers, 6F, 575 Easton

Avenue, Somerset, NJ 08873;

(201) 745-9412

Vast experience: 100+ macro

packages, over 30,000 pages published

with our macros; over a decade's

experience in all facets of publishing,

both m and n o n - w ; all services

from copyediting and design to final

mechanicals.

Cowan, Dr . R a y F.
141 Del Medio Ave. #134,

Mountain View, CA 94040;

(4 15) 949-49 11

Ten Years of ljjX and Related

Software Consultzng: Books,

Documentatzon, Journals, and

Newsletters

'QX & IP'QX macropackages,

graphics; Postscript language

applications; device drivers; fonts;

systems.

Hoenig, Alan

17 Bay Avenue, Huntington, NY

11743; (516) 385-0736

typesetting services including

complete book production; macro

writing; individual and group

T)$ instruction.

Magus, Kevin W. Thompson

P. 0 . Box 390965, Mountain View

CA 94039-0965;

(800) 848-8037; (415) 940-1109;

rnagusQcup.portal.corn

I4w consulting from start to finish.

Layout design and implementation,

macro writing, training, phone

support, and publishing. Can take

LAW files and return camera

ready copy. Knowledgeable about

long document preparation and

mathematical formatting.

N A R Associates

817 Holly Drive E. Rt. 10,

Annapolis, MD 21401;

(410) 757-5724

Extensive long term experience in

'QX book publishing with major

publishers, working with authors or

publishers to turn electronic copy into

attractive books. We offer complete

free lance production services,

including design, copy editing, art

sizing and layout, typesetting and

repro production. We specialize in

engineering, science, computers,

computer graphics, aviation and

medicine.

Ogawa, Ar thur

920 Addison, Palo Alto, CA 94301;

(415) 323-9624

Experienced in book production,

macro packages, programming, and

consultation. Complete book

production from computer-readable

copy to camera-ready copy.

Pronk&Associates Inc.

1129 Leslie Street, Don Mills,

Ontario, Canada M3C 2K5;

(416) 441-3760; Fax: (416) 441-9991

Complete design and production

service. One, two and four-color

TUGboat, Volume 15 (1994), No. 3

books. Combine text, art and

photography, then output directly to

imposed film. Servicing the publishing

community for ten years.

Quixote Digital Typography,
Don Hosek

555 Guilford, Claremont,

CA 91711; (909) 621-1291;

Fax: (909) 625-1342

Complete line of w, W w , and

METAFONT services including

custom W w style files, complete

book production from manuscript to

camera-ready copy; custom font and

logo design; installation of customized

T@ environments; phone consulting

service; database applications and

more. Call for a free estimate.

Richert, Norman
1614 Loch Lake Drive, El Lago, TX
77586; (713) 326-2583

macro consulting.

mnology , Inc.,
Amy Hendrickson

57 Longwood Ave., Brookline, MA

02146; (617) 738-8029

TEX macro writing (author of

MacroQX); custom macros to meet

publisher's or designer's specifications;

instruction.

Type 2000
16 Madrona Avenue, Mill Valley,

CA 94941; (415) 388-8873;

Fax: (415) 388-8865

$2.50 per page for 2000 DPI w
camera ready output! We have a

three year history of providing high

quality and fast turnaround to dozens

of publishers, journals, authors and

consultants who use TEX. Computer

Modern, Bitstream and METAFONT
fonts available. We accept DVI files

only and output on RC paper. $2.25

per page for 100+ pages, $2.00 per

page for 500+ pages.

Outside North America

TypoQjX Ltd.
Electronical Publishing, Battyany

u. 14. Budapest, Hungary H-1015;

(036) 11152 337

Editing and typesetting technical

journals and books with TEX from

manuscript t o camera ready copy.

Macro writing, font designing, 7J$
consulting and teaching.

Information about these services
can be obtained from:

m Users Group
P. 0. Box 869

Santa Barbara, CA 93102-0869
Phone: (805) 963-1388
Fax: (805) 963-8538

Email: tug@tug . org

NEW! NEW!

Silicon Graphics Iris or Indigo DVILASER/HP3
Solaris 2.1 Motif and OPEN LOOK Preview

Complete TEX packages

Ready to use, fully documented and supported.

Also Available For: Sun-4 (SPARC), IBM RS/6000,

DECJRISC-Ultrix, HP 9000, and IBM PC's

Call us for more information on our exciting new products!

1000 Victors Way A Suite 400 A Ann Arbor, MI 48 108 A (3 13) 996-3566 A FAX (3 13) 996-3573

I
\ B YOUR ONE STOP SOURCE FOR TEX MATERIALS I

Includes L a w 2 e .
We have a complete selection of books on T)$ and document publishing, all at 10% savings.

A M i c r o w full system is $350.00 - Ask for details to upgrade your system.

TEX TOOL BOX

AmSpell Checker (FREE when ordered with M i c r o w) reg. $10

W H e l p $49.95 DEMACS Editor (FREE when ordered with M i c r o w) reg. $10 Voyager $25.00

Adobe Type-on-Call $99.00 AM-T)$ $50.00 w p i c $79.00 Capture Graphics $75.00

Micro Programs Inc., 251 Jackson Ave., Syosset, NY 11791 (516) 921-1351

USERS
GROUP

Individual Membership Application

Name

Institutional affiliation, if any

Position

Address (business or home (circle one))

City Province/State

Country Postal Code

I Telephone FAX
Complete and return this form with
payment to: Email address

TEX Users Group
Membership Department
l? 0. Box 869
Santa Barbara, CA 93102 USA

Telephone: (805) 963-1338
FAX: (805) 963-8358
Email: tugCQtug . org

I am also a member of the following other Q X organizations:

Specific applications or reasons for interest in QX:

I Please indicate the type of membership for which you are applying:

Membership is effective from Jan-
uary 1 to December 31 and includes
subscriptions to TUGboat, The Com-
munications of the EX Users Group

I

I Regular at $60 Full-time student at $30

and the TUG newsletter, and
TUG NEWS. Members who join after
January 1 will receive all issues
published that calendar year.

For more information . . .

There are two types of TUG members: regular members, who pay annual
dues of $60; and full-time student members, whose annual dues are $30.
Students must include verification of student status with their
applications.

Whether or not you join TUG now,
feel free to return this form to
request more information. Be sure
to include your name and address
in the spaces provided to the right.

Check all items you wish to receive
below:

0 Institutional membership
information

Course and meeting information

Advertising rates

17 Products/publications catalogue

17 Public domain software
catalogue

Amount enclosed for 1994 membership: $

ChecWmoney order payable to Q X Users Group enclosed
(checks in US dollars must be drawn on a US bank; checks in other
currencies are acceptable, drawn on an appropriate bank)

Bank transfer:

TEX Users Group, Account #1558-816,
Santa Barbara Bank and Trust, 20 East Carrillo Street,
Santa Barbara, CA 93101 USA

your bank

ref #

Charge to MasterCardMSA

Card # Exp. date -

Signature

USERS I
I GROUP

Complete and return this form
with payment to:

' Q X Users Group
Membership Department
l? 0. Box 869
Santa Barbara, CA 93102
USA

Membership is effective from
January 1 to December 31. Members
who join after January 1 will receive
all issues of 7'UGboat and 7&Y and
TUG NEWS published that calendar
year.

For more information . . .

Correspondence
'QX Users Group

0. Box 869
Santa Barbara, CA 93102
USA

Telephone: (805) 963-1338
FAX: (805) 963-8358
Email: tug9 tug . o rg

Whether or not you join TUG now,
feel free to return this form to
request more information.

Check all items you wish to
receive below:

[7 Course and meeting information

Advertising rates

Products/publications catalogue

[7 Public domain software
catalogue

Institutional Membership Application

Institution or Organization

Principal contact

Address

City Province/State

Country Postal Code

Daytime telephone FAX

Email address

Each Institutional Membership entitles the institution to:

designate a number of individuals to have full status as TUG
individual members;

take advantage of reduced rates for TUG meetings and courses for
all staff members;

be acknowledged in every issue of 7'UGboat published during the
membership year.

Educational institutions receive a $100 discount in the membership fee.
The three basic categories of Institutional Membership each include
a certain number of individual memberships. Additional individual
memberships may be obtained at the rates indicated. Fees are as follows:

Category Rate (educ. / non-educ.) Add'l mem.
A (includes 7 memberships) $ 540 / $ 640 $50 ea.
B (includes 1 2 memberships) $ 815 / $ 915 $50 ea.
C (includes 30 memberships) $1710 / $1810 $40 ea.

Please indicate the type of membership for which you are applying:

Category + - additional individual memberships

Amount enclosed for 1994 membership: $

Checkimoney order payable to TEX Users Group enclosed
(payment in US dollars must be drawn on a US bank; payment in
other currencies is acceptable, drawn on an appropriate bank)

Bank transfer: your bank

ref #

' Q X Users Group, Account #1558-816,
Santa Barbara Bank and Trust, 20 East Carrillo Street,
Santa Barbara, CA 93101 USA

[7 Charge to MasterCardnTTSA

Card # Exp. date -

Signature

Please attach a list of individuals whom you wish to designate as TUG

individual members. Minimally, we require names and addresses so

that TUG publications may be sent directly to these individuals, but we

would also appreciate receiving the supplemental information regarding

phone numbers, email addresses, and TEX interests as requested on the

TUG Individual Membership Application form. For this purpose, the

latter application form may be photocopied and mailed with this form.

e-MATH: Now on World Wide Web
Your Internet connection to the mathematical community

WWW access:
http://e-math.ams.org/

Telnet access:
telnet e-math.ams.org

Login and password are both e-math (lowercase)

For more information contact: eps @math.ams.org

Electronic Products
American Mathematical Society

Index of Advertisers

419 Addison-Wesley

417 American Mathematical Society

414 ArborText

Cover3 Blue Sky Research

414 Micro Programs, Inc.

417 Springer-Verlag

418 Y&Y

Bitmap-free XX for Windows

Powerful, fast, flexible T@ system for Windows

D W i n d o

DVIPSONE
Provides partial font downloading

Can use any Windows printer driver
Adobe Type Manager

Big TEX runs in Windows or DOS
Acrobat Reader

Commercial grade, fully hinted fonts
Postscript Type 1 fonts

Complete flexibility in font encoding

Mature products. Years of experience with
Windows, Postscript printers and scalable
outline fonts. We understand and know

Y&Y - the experts in scalable outline fonts for T@

Y&Y, Inc. 45 Walden St., Su~te 2F, Concord, MA 01 742 USA - (800) 742-4059 - (508) 371-3286 - (508) 371-2004 (fax)

DVlWlndo and DVIPSONE are trademarks of YLY. Inc W~ndows is a registered trademark of MlcroSoft Co Adobe Type Manager Is a reglstered trademark of Adobe Systems Inc.

Leading the way in scientific computing. Addison-Wesley.

When looking for the best in scientific computing, you've come to rely on Addison-Wesley.
Take a moment to see how we've made our list even stronger.

The LATEX Companion
Michael Goossens, Frank Mittelbach, and Alexander Samarin
This book is packed with information needed to use LATEX even
more productively. It is a true companion to Leslie Lamport's users
guide as well as a valuable complement to any LATEX introduction.
Describes the new LATEX standard.
1994 (0-201 -541 99-8) 400 pp. Softcover

LATEX: A Document Preparation System, Second Edition
Leslie Lamport
The authoritative user's guide and reference manual has been
revised to document features now available in the new standard
software release-LATEXZE. The new edition features additional styles
and functions, improved font handling, and much more.
1994 (0-201 -52983-1) 256 pp. Softcover

The Stanford GraphBase: A Platform for
Combinatorial Computing
Donald E. Knuth
This book represents the first fruits of Knuth's preparation for
Volume 4 of The Art of Computer Programming. It uses examples
to demonstrate the art of literate programming, and provides a
useful means for comparing combinatorial algorithms.
1994 (0-201 -54275-7) 600 pp. Hardcover

The CWEB System of Structured Documentation
(Version 3.0)
Donald E. Knuth and Silvio Levy
CWEB is a version of WEB for documenting C and C++ programs.
CWEB combines TEX with two of today's most widely used profes-

sional programming languages. This book is the definitive user's
guide and reference manual for the CWEB system.
1994 (0-201 -57569-8) approx. 240 pp. Softcover

Concrete Mathematics, Second Edition
Ronald L. Graham, Donald E. Knuth, and Oren Patashnick
With improvements to almost every page, the second edition of
this classic text and reference introduces the mathematics that
supports advanced computer programming.
1994 (0-201 -55802-5) 672 pp. Hardcover

Applied Mathematics@: Getting Started, Getting It Done
William T. Shaw and Jason Tigg
This book shows how Mathematicaa can be used to solve problems in
the applied sciences. Provides a wealth of practical tips and techniques.
1994 (0-201 -5421 7-X) 320 pp. Softcover

The Joy of Mathematics@'
Alan Shuchat and Fred Shultz
This software product provides easy-to-use menus for Macintosh
versions of Mathematics@. Its accompanying book is an explo-
ration of key issues and applications in Mathematics.
1994 (0-201 -591 45-6) 200 pp. Softcover + disk

Look for these titles wherever fine technical books are sold.

A
vv

Addison-Wesley Publishing Company
1-800-447-2226

TUG '95

- St . Petersburg Beach, Florida -

July 24-28, 1995
The TEX Users Group is proud to announce that the s ix teen th annual meeting

will be held a t the Tradewinds Hotel, in St. Petersburg Beach, Florida, July

24-28, 1995. We would like to extend a warm invitation to TEX users around
the world-come join us a t one of the largest and most beautiful resort beaches

in Florida, as we explore where 'I)$ is to be found and how its users are going
far beyond-or are diverging from-its initial mathematical context.

The theme of the meeting will be "Real World 'I)$" and we plan to have

demonstrations of pre- and post-processors, and the active participation of de-
velopers and vendors, in hopes that you, the user, may discover "hands-on" just

what can be done with TJ$, METRFONT, POSTSCRIPT, and other utilities!

Commercial users of 'I)$ are particularly encouraged to attend. The meeting

will feature papers of interest to publishers and Tj$ vendors, a panel discussion

addressing commercial users' needs and wants, and a gallery for displaying sam-

ples of TEX work.
There will be the usual courses associated with the meeting: Intensive Courses

in I P T J ~ X ~ ~ and TEX, Postscript, Graphics, and perhaps other topics. The meet-
ing itself will have excellent speakers, panel discussions, workshops, poster dis-

plays, Birds-of-a-Feather sessions (BoFs) and technical demonstrations.

Ge t t i ng Informat ion

A preliminary schedule will be available The TUG95 committee will be working
in February of 1995, so be sure to look with individuals who wish to share ac-

for updates in T)$ and TUG NEWS and commodations, to help defray expenses.

TUGboat, on the World Wide Web, at The Bursary Fund is also available to as-

http://www.ucc.ie/info/TeX/tug/ sist TEX users who demonstrate need. All
tug95sched.html1 as well as on the CTAN members are encouraged to consider con-
archives in tex-archive/usergrps/tug/. tributing to the fund. To obtain more in-

formation about contributing t o or apply-
Nearer the time of the conference, there ing for the Bursary Fund, please contact
will be an on-line form for registration the T U G office by email t o tugOtug.org
(tug95f orm.htm1) located on the WWW or by post to the address
cited above. T@ Users Group

P.O. Box 869
Send suggestions and requests to Santa Barbara, CA 93102-0869 USA.
tug95c0scri.fsu.edu.

Deadlines

Submission of Abstracts o January 31, 1995

Preliminary Papers Due o April 30, 1995
Preprint Deadline o June 23, 1995
Meeting Date o July 24-July 28, 1995
Camera Ready Deadline o August 25, 1995

Interactive TEX M'

WYSl WYG TEX M'

User-friendly TEX l6#

Textures l6# It's not like any other TEX s y s t e m . [']

When Apple introduced the Macintosh and its graphic interface,

we embarked on a long-term project of research toward a TjjX

system "for the rest of us," a 'I)$ system that would be humanely

interactive, and visibly responsive; an integrated m system,

designed to be radically easy for those new to m, and engineered

to be the best for expert T@ users. The research continues;

the product is Textures.

Textures is something of a Copernican revolution in TEX interface.

The paradigm shifts from the usual l&K "input-process-output-

repeat" mode, to a wider frame wherein the '&X language

describes a dynamic document that is continuously, quietly

"realized" as you write it, with no process steps whatsoever.

[ll
On the other hand, Textures

is exactly like every other

system. Its engine

is strictly standard and

up-to-date; it runs JAW,
A.S-TF)C, and all standard

'QX macros without change.

But even here it's not

ordinary, with hand-tuned

assembler code for maximum

performance, and a

transparent memory model -
that you can't fill until you

run out of disk.

P I
If you are a serious 'I)$ user

on another platform, it can

be worth getting a Mac just

to run Textures.

This change in perspective must be experienced to be fully

grasped. As you would expect, Textures is good for beginners.

You might be surprised to know that it's also good for experienced

'&X users and especially good for TEX programmers.[21 It's not

a "front-end" or an imitation, it's a full-scale live TjjX processor

that's actually easy to use.

There's much more to Textures than a new perspective on TjjX,

of course; too much to list here but we'll mention custom menus,

Computer Modern Postscript fonts, illustrations, inter-application

communication, automatic installation, genuine support,

We don't claim perfection; nor do we believe in exaggerated

marketing, odd as this may seem; and we do understand our

finite abilities to provide all that one might wish. But we also

guarantee that you will be satisfied with Textures and with the

service you receive from Blue Sky Research, or we will refund

the (very finite) price you pay.

For all Macintosh

processors and printers

minimum 2.5MB memory

and 5MB disk

Blue Sky Research

534 SW Third Avenue

Portland, Oregon 97204

USA

8006228398

5032229571

facsimile 503 222 1643

sales@bluesky.com

Volume 15, Number 3 / September 1994
1994 Annual Meeting Proceedings

166 Editorial and production notes

167 Acknowledgements and Conference Program: Innovation

Keyno te 169 Charles Bigelow / Lucida and T&X: lessons of logic and history
Publishing, Languages 170 Frank Mittelbach and Michel Goossens / Real life book production -lessons learned

Literature and Fonts from The BT&X Companion

174 Yannis Haralambous / Typesetting the holy Bible in Hebrew, with T&X

192 Michel Cohen / Adaptive character generation and spatial expressiveness

199 Yannis Haralambous / Humanist

200 Basil Malyshev / Automatic conversion of METRFONT fonts to Type1 Postscript

Colour, and I4w 201

205

213
218
223

228

239
247
255

263

James Hafner / The (prejhistory o f color in Rokicki's dvips

Tom Rokicki / Advanced 'special' support in a dvi driver
Angus Duggan / Colour separation and Postscript

Sebastian Rahtz and Michel Goossens / Simple colour design with
Friedhelm Sowa / Printing colour pictures

Michael Sofka / Color book production using T&X
Timothy van Zandt and Denis Girou / Inside PSTricks
Jon Stenerson / A Urn style file generator

Johannes Braams / Document classes and packages in

Alan Jeffrey / Postscript font support in UT&X2&

TEX Tools 269 Oren Patashnik / B I B W 1.0

274 Pierre MacKay / A typesetter's toolkit

285 Michael P. Barnett and Kevin R . Perry / Symbolic computation for electronic
publishing

293 Minato Kawaguti and Norio Kitajima / Concurrent use of interactive previewer
with an Emacs-type Editor

301 Yannis Haralambous / An Indic rn preprocessor -Sinhalese rn
302 Jean-Luc Doumont / Pascal pretty-printing: an example o f "preprocessing within T&X"

Futures 309

318
319
320

325
331

339
344

Joachim Schrod / Towards interactivity for rn
Chris Rowley and Frank Mittelbach / The Aoating world
Don Hosek / Sophisticated page layout with 7&X
John Plaice / Progress in the Omega project
Arthur Ogawa / Object-oriented programming, descriptive markup, and rn
William Erik Baxter / An object-oriented programming system in l&X
Norm Walsh / A World Wide Web interface to CTAN

Yannis Haralambous and John Plaice / First applications of fl: Adobe Poetica, Arabic,
Greek, Khmer

Philip Taylor / E-T&X & NTS: A progress report

Publishing and Design 359 Maurice Laugier and Yannis Haralambous / T&X innovations by the Louis-Jean
Printing House

360 Michael Downes / Design by template in a production macro package

369 Alan Hoenig / Less is More: Restricting T&X's scope enables complex page layouts
381 Jonathan Fine / Documents, compuscripts, programs and macros

386 Marko Grobelnik, Dunja Mladeni~, Darko Zupanis and Borut ~ n i d a r /
Integrated system for encyclopaedia typesetting based on

388 Henry Baragar and Gail E. Harris / An example of a special purpose input language to

Jw&.x
Append ix 397 Color pages

405 Participants at the Annual Meeting

N e w s & 408 Calendar
Announcements 409 1995 Knuth Scholarship

T U G Business 411 Institutional members
415 TUG membership application

Adver t isements 412 consulting and production services

417 Index of advertisers

