TUGBOAT

The Communications of the TEX Users Group

Volume 15, Number 3, September 1994

1994 Annual Meeting Proceedings

TEX Users Group

Memberships and Subscriptions

TUGhboat (ISSN 0896-3207) is published quarterly
by the TEX Users Group, Balboa Building, Room
307, 735 State Street, Santa Barbara, CA 93101,
US.A.

1994 dues for individual members are as follows:

s Ordinary members: $60

» Students: $30
Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat
and TEX and TUG NEWS for the year in which
membership begins or is renewed. Individual mem-
bership is open only to named individuals, and
carries with it such rights and responsibilities as
voting in the annual election. A membership form
is provided on page 777.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: North America $60 a year; all other countries,
ordinary delivery $60, air mail delivery $80.

Second-class postage paid at Santa Barbara,
CA, and additional mailing offices. Postmaster:
Send address changes to TUGboat, TEX Users
Group, P.O. Box 869, Santa Barbara, CA 93102-
0869, U.S.A.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office.

TUGboat (© Copyright 1994, TEX Users Group

Permission is granted to make and distribute verbatim
copies of this publication or of individual items from this
publication provided the copyright notice and this permission
notice are preserved on all copies.

Permission is granted to copy and distribute modified
versions of this publication or of individual items from
this publication under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute transla-
tions of this publication or of individual items from this
publication into another ianguage, under the above condi-
tions for modified versions, except that this permission notice
may be included in translations approved by the TEX Users
Group instead of in the original English.

Some individual authors may wish to retain traditional
copyright rights to their own articles. Such articles can be
identified by the presence of a copyright notice thereon.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana’
Christina Thiele, Prestdent*
Michel Goossens™®, Vice President

- George Greenwade™, Treasurer

Peter Flynn*, Secretary
Barbara Beeton
Johannes Braams, Special Director for NTG
Mimi Burbank
Jackie Damrau
Luzia Dietsche
Michael Doob
Michael Ferguson
Bernard Gaulle, Special Director for GUTenberg
Yannis Haralambous
Dag Langmyhr, Special Director for
the Nordic countries
Nico Poppelier
Jon Radel
Sebastian Rahtz
Tom Rokicki
Chris Rowley, Special Director for UKTEXUG
Raymond Goucher, Founding Executive Director’
Hermann Zapf, Wizard of Fonts!

*member of executive committee
T honorary

Addresses
All correspondence,
payments, etc.

TEX Users Group Fax
P. 0. Box 869 805-963-8358

Santa Barbara,
CA 93102-0869 USA

Telephone
805-963-1338

Electronic Mail

Parcel post, (Internet)
delivery services: General correspondence:
TEX Users Group TUGC@tug. org

Submissions to TUGboat:
TUGboat@Math. AMS.org

Balboa Building

Room 307

735 State Street

Santa Barbara, CA 93101
USA

TEX is a trademark of the American Mathematical
Society.

1994 Annual Meeting Proceedings

TEX Users Group
Fifteenth Annual Meeting
University of California, Santa Barbara, July 31-August 4, 1994

UGBOAT

COMMUNICATIONS OF THE TgX USERS GROUP

TUGBoAT EDITOR BARBARA BEETON
ProceeDINGS EDITORS MICHEL (GOOSSENS
SEBASTIAN RAHTZ

VOLUME 15, NUMBER 3 . SEPTEMBER 1994
SANTA BARBARA . CALIFORNIA . US.A.

Editorial and Production Notes

These Proceedings were prepared with TgX on vari-
ous Unix workstations at CERN in Geneva. PostScript
files for a Linotronic typesetter at 1270 dpi resolution
were generated with Tom Rokicki’'s dvips program.
From these files Philip Taylor produced the bromides
on the Linotronic of the Computing Centre of the Uni-
versity of London. The color pages were completely
done in the United States.

The present Proceedings are typeset in the Lu-
cida Bright typeface designed by Bigelow & Holmes.
For IATEX the Tucbr package (coming with IATEX2¢ in
the PSNFSS system) for defining the fonts was used
and a scaling factor of .94 has been applied to make
the pages come out at an information density close
to that of Computer Modern at 10pt. The complete
set of fonts used is LucidaBright for text, LucidaSans
for sans serif, LucidaTypewriter for teletype, and Lu-
cidaNewMath for the maths.

The authors sent their source files electronically
via electronic mail or deposited them with ftp on
a CERN machine. Most referees were also able to
use ftp to obtain a PostScript copy of the paper they
had to review, and I got their comments, if practi-
cal, via email, which made communication relatively
straightforward and fast. I would like to thank the
authors for their collaboration in keeping (mostly)
to the original production schedule. I also want to
express my gratitude to the various referees, who
kindly agreed to review the paper assigned to them.
Iam convinced that their comments and suggestions
for improvements or clarifications have made the pa-
pers clearer and more informative.

Eight of the contributed papers were in plain
TgX while the others used IATEX. All files associated
to a given paper reside in a separate subdirectory
in our tug94/papers directory, and each of the pa-
pers is typeset as a separate job. A makefile re-
siding in our tug94/papers/tug94 directory takes
care that each paper is picked up from its directory
and is processed with the right parameters. Informa-
tion about the page numbers for the given job is writ-
ten to the aux file using the \AtEndDocument com-
mand for I4TEX and by redefining the \endarticle
command for plain TgX. A sed script then collects
this information and writes it into a master file. This
master file is read in a subsequent run by using the
\AtBeginDocument command for IAIgX and by re-
defining the \article command for plain TgX.

All IATEX files were run in native IAIEX2¢ mode
(if they were not already coded in IATEX2g—about
half of the ISTEX papers were—it was in most cases
sufficient to replace \begin{documentstyle} by
\begin{documentclass}). At CERN we run TgX ver-
sion 3.1415, based on Karl Berry's web2c-6.1 di-
rectory structure. This system could be used for
most papers without problems, but Haralambous’ Q

166

tug94 top directory

fonts formats inputs mf papers

tug94 baragar ... yannisT

Figure 1: The directory structure for
preparing the TUG94 Proceedings

(yannis0), and Phil Taylor’'s N-yS paper, needed the
TeX--X4T extensions, which have not yet been ported
to that latest version of web2c. Therefore we had
to build two special formats (one for IAIEX2¢, and
one for plain) with the TgX--X4T mods and the older
TEX3.141/web2c-d. The fonts used in Haralambous’s
Tigwah paper needed 60 instead of the standard 50
fontdimens, so we also had to recompile METAFONT.

When the dvi-files were translated into PostScript
with dvips, METARFONT would generate the font
bitmap pk files on the fly, as they were needed, with
the desired mode_def. In total 334 supplementary
METAFONT source files were received for running
the various papers in the Proceedings.

Although most pictures were available as Encap-
sulated PostScript files, for two articles (the one by
Sofka, and the BM2FONT paper by Sowa) they could
not be printed. Therefore we pasted originals ob-
tained from the respective authors into the relevant
places in the text.

Acknowledgements

These Proceedings would never have been ready in
time were it not for the help of Sebastian Rahtz dur-
ing the final stages of the production cycle. Build-
ing upon his experience gained last year when edit-
ing the TUG93 Proceedings, he developed a vastly im-
proved production system for the generation of this
vear’s Proceedings. Together we translated the old
TUGboat styles into IATEX 2¢ classes, and used these
for all IATEX runs. With the help of Oren Patashnik
and Joachim Schrod we also developed a first ver-
sion of a Chicago-like TUGboat BIBTEX bibliography
style and introduced the corresponding necessary
changes into the class files.

I also want to thank Barbara Beeton, Mimi Bur-
bank, Pierre MacKay, and Christina Thiele who, to-
gether, have reread the preprint versions of all pa-
pers. They have pointed out several remaining typos
and provided me and the authors with many useful
comments and suggestions for improvement. Last
but not least [want to acknowledge the competence
and dedication of Phil Taylor (RHBNC, University of
London) during the final production stage of going
to film.

Michel Goossens

Innovation

The 15th Annual TgX Users Group Meeting, Santa Barbara, USA

Abstract
TUG'94 was organized by:
Chairperson: Patricia Monohon
Bursary: Bernard Gaulle
Culture and Events: Janet Sullivan
Courses: John Berlin
Proceedings: Michel Goossens
Programme: Malcolm Clark & Sebastian Rahtz

TUGly Telegraph

Acknowledgements and Thanks

The organizers would like to publicly acknowledge
the contributions made by several individuals, by
TgX Local User Groups, or by companies to the Bur-
sary and Social Funds, or who offered free copies of
books or software to the participants. In particular
we would like to thank DANTE e.V., GUTenberg, UK-
TUG, and TUG, as well as Addison-Wesley, O'Reilly &
Associates, and Prime Time Freeware.

We would also like to mention the vendors:
Addison-Wesley, Blue Sky Research, Kinch Computer
Co., Micro Programs, Inc., Quixote Digital Typogra-
phy, Springer Verlag, and Y&Y, who by their continu-
ing support contribute to the success of the Annual
TUG Meetings.

Special thanks go to Katherine Butterfield, Suki
Bhurgi, and Wendy McKay for helping with staffing
the on-campus TUG office.

Conference Programme

Sunday July 31st

Keynote

Lucida and TgX: lessons of logic and history:
Charles Bigelow

Publishing, languages, literature and fonts

Real life book production—lessons learned from
The KIEX Companion:

Frank Mittelbach and Michel Goossens
Typesetting the holy Bible in Hebrew, with TgX:
Yannis Haralambous

Adaptive character generation and spatial
expressiveness: Michael Cohen

Hunsnuatl: Yannis Haralambous

Automatic conversion of METAFONT fonts to
Typel PostScript:
Basil Malyshev, presented by Alan Hoenig

John Berlin & Malcolm Clark

Monday August 1st

Keynote

Looking back at, and forward from, IATEX:
Leslie Lamport

Colour and IKTEX
The (Pre)History of Color in Rokicki’s dvips:
James Hafner

Advanced ‘special’ support in a dvi driver:
Tom Rokicki

Colour separation and PostScript: Angus Duggan

Simple colour design and IATEX: Sebastian Rahtz
and Michel Goossens

Printing colour pictures: Friedhelm Sowa
Color book production using TgX: Michael Sofka

Inside PSTricks: Timothy van Zandt and Denis
Girou, presented by Sebastian Rahtz

A KIEX style file generator: Jon Stenerson

Document classes and packages in I&IEX 2¢:
Johannes Braams

PostScript font support in I&TEX2¢: Alan Jeffrey

Tuesday August 2nd

TeX Tools

BisTEX 1.0: Oren Patashnik
A typesetter’s toolkit: Pierre MacKay

Symbolic Computation for Electronic Publishing:
Michael P. Barnett and Kevin R. Perry

Concurrent Use of Interactive TgX Previewer with

an Emacs-type Editor:

Minato Kawaguti and Norio Kitajima

An Indic TgX preprocessor — Sinhalese TEX:

Yannis Haralambous

Pascal pretty-printing: an example of “preprocessing
within TgX”": Jean-luc Doumont

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 167

The 15th Annual TgX Users Group Meeting, Santa Barbara, USA

Wednesday August 3rd

Futures

Towards Interactivity for TgX: Joachim Schrod

The Floating World: Chris Rowley and Frank
Mittelbach

Sophisticated page layout with TgX: Don Hosek
Progress in the Omega project: john Plaice
Object-Oriented Programming, Descriptive Markup,
and TgX: Arthur Ogawa

An Object-Oriented Programming System in TgX:
William Erik Baxter

A World Wide Web interface to CTAN: Norm Walsh
First applications of Q: Adobe Poetica, Arabic,
Greek, Khmer:

Yannis Haralambous and John Plaice

&-TEX & Ng'S: progress so far, and an invitation
to discussion: Philip Taylor, Jifi Zlatuska, Peter
Breitenlohner and Friedhelm Sowa

Thursday August 4th
Publishing and design

TgX innovations by the Louis-Jean Printing House:
Maurice Laugier and Yannis Haralambous

Design by template in a production macro
package: Michael Downes

Less is More: Restricting TgX's Scope Enables
Complex Page Layouts: Alan Hoenig

Documents, Compuscripts, Programs and Macros:
Jonathan Fine, presented by Malcolm Clark
Integrated system for encyclopaedia typesetting
based on TgX: Marko Grobelnik, Dunja Mladenic,
Darko Zupani¢ and Borut Znidar

An Example of a Special Purpose Input Language
to IATEX: Henry Baragar and Gail E. Harris

Colour Pages These are in a separate section at the
back of these proceedings. They are referenced
in the articles with the tag “Color Example”.

168 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

Author page index

Henry Baragar:
Michael P. Barnett:
William Baxter:
Charles Bigelow:
Johannes Braams:
Michael Cohen:
Jean-luc Doumont:
Michael Downes:
Angus Duggan:
Jonathan Fine:
Denis Girou:
Michel Goossens:
Marko Grobelnik:
James Lee Hafner:

Yannis Haralambous:

Gail E. Harris:
Alan Hoenig:
Don Hosek:

Alan Jeffrey:
Minato Kawaguti:
Norio Kitajima:
Maurice Laugier:
Basil K. Malyshev:
Pierre A. MacKay:
Frank Mittelbach:
Dunja Mladenic¢:
Arthur Ogawa:
Oren Patashnik:
Kevin R. Perry:
John Plaice:
Sebastian Rahtz:
Tomas Rokicki:
Chris Rowley:
Joachim Schrod:
Michael D. Sofka:
Friedhelmm Sowa:
Jon Stenerson:
Philip Taylor:
Timothy Van Zandt:
Norman Walsh:
Borut Znidar:
Darko Zupanic:

388
285
331
169
255
192
302
360
213
381
239
170, 218
386
201
174, 199, 301, 344, 359
388
369
319
263
293
293
359
200
274
170, 318
386
325
269
285
320, 344
218
205
318
309
228
223
247
353
239
339
386
386

Lucida and TgX: lessons of logic and history

Charles Bigelow

Bigelow & Holmes, P.0. Box 1299, Menlo Park, CA 94026
bigelow@cs.stanford.edu

Abstract

The development of Lucida fonts for TgX included many lessons, some being
simply the idiosyncracies of Don Knuth’s self-taught opinions about typography,
and others being important aspects of mathematical and scientific composition
that are unknown to typographers. Another aspect of this talk is how typeface
designs are conceived, created, developed, evolved, etc., which involves reference
to Times and Computer Modern.

A paper similar in content was published elsewhere.!

1 C. Bigelow and K. Holmes. The Design of a Unicode Font. Proceedings of RIDT'94. Electronic Publishing,
Origination, Dissemination and Design, 6(3), pages 289-306, 1993.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 169

Real life book production—Ilessons learned from The IATEX Companion

Michel Goossens
CERN, CN Division, CH1211 Geneva 23, Switzerland
michel.goossens@cern.ch

Frank Mittelbach

Zedernweg 62, D55128 Mainz, Germany
Mittelbach@mzdmza.zdv.Uni-Mainz.de

Abstract

Some aspects of the production of The IATEX Companion are described.

Deciding to write a book

Text processing support staff at CERN, as, without
doubt, in many other research institutes, universi-
ties or companies, had followed Leslie Lamport’s ad-
vice in the IATEX Reference manual (Lamport 1985),
and developed a Local Guide, which describes how
IATEX can be used on CERN'’s various computer plat-
forms, explains which interesting style files are avail-
able, and provides a set of examples and pointers
to further information. Alexander Samarin and one
of the authors (Michel) had long planned to expand
the material in that guide, to make it more generally
available.

When Frank visited CERN in April 1992 to give
a presentation on the IATEX3 project, we talked to
him about our idea. We outlined vaguely what we
wanted to write, and Frank found the idea “interest-
ing”. After he got back home he proposed to talk to
Peter Gordon of Addison-Wesley, to see whether they
would be interested. They were, and at that point, all
three of us decided that it would be a good idea to
collaborate.

Defining contents and time scale

At the end of June 1992 Michel had a first meeting
with Frank in Mainz, where they wrote a detailed
table of contents, down to the section level, which
contained in most cases an extended outline, with an
estimated number of pages.

Work by each of the authors, as assigned in the
plan discussed in Mainz, continued over the summer,
so that by the time of the Prague EuroTgX Conference
in September 1992 we already had a nice 300 page
preprint, which we discussed in great detail during
various meetings in the Golden City. We also met
with Peter Gordon, our editor at Addison-Wesley, and
finalized aspects of the contract we had been dis-
cussing previously. The final date for delivery of the
compuscript was tentatively set for April 1st 1993, in
order to having a chance of getting the book printed

for the TUG Conference in Aston (Birmingham, UK)
in the sumimer.

Further work on the book during the autumn
and the winter was essentially carried out by Frank
and Michel, since Alexander went back to Russia at
the end of October 1992, and when he finally re-
turned to Geneva in March 1993, he took up a job
with ISO, and had very little time left to spend on the
book.

Getting feedback

The text, as it was at the end of 1992, was sent to sev-
eral of our colleagues and friends in the IATgX world,
and they kindly spent part of their Christmas hol-
idays reading the first complete draft of the book.
At the same time Addison-Wesley had some chapters
read by a few of their reviewers.

It is extremely important and helpful to have
feedback at an early stage, not only to find possi-
ble mistakes, but also to receive comments and sug-
gestions from other people, who can often shed an
interesting new light on points which are taken for
granted, or point out grey areas in style and expla-
nation.

Design specification

In the meantime Frank was hard at work trying to
translate the page specifications (for headings, fig-
ures, captions, running titles, etc.) as given by the
Addison-Wesley designer into values of TgX glue,
rules, boxes, and penalties. It was not always evident
how to translate the fixed-space approach of the clas-
sical design specs into TgX's page-layout paradigm:;
$0 on various occasions “clarifications” had to be ob-
tained.

Coding conventions

It was soon realized that it is extremely important
to have a common way to generically mark up com-
mands, environments, counters, packages, or any

170 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

Real life book production—iessons learned from The IATIgX Companion

other global distinctive document element. This not
only ensures a homogeneous presentation through-
out the book, but also allows one to change presen-
tation form without modifying the input text; one
merely has to change the definition of the generic
command (a few examples are shown in table 1). As
a supplementary benefit one can decide to globally
(and automatically) enter certain of the marked-up
entities in the index.

Setting up communication channels

In order to make communication between the pro-
duction people in the Boston area and ourselves eas-
ier, it was decided to bring in the expertise of a pro-
duction bureau, Superscript, with its competent man-
ager Marsha Finley, and her colleague Anne Knight.
Another decision was to have the complete text re-
viewed by a professional copy-editor.

Around Easter 1993 we thus started to copy
PostScript files with ftp (quite a new procedure to all
the production people involved, who were, at best,
used to transporting 3.5 inch diskettes between their
Macs or IBM PCs and the printing bureau). These files
were then retrieved on the Sun in the Reading of-
fice of Addison-Wesley, printed locally, and picked
up by Marsha, who took the pages to the copy-editor.
The latter returned the edited copy to Marsha, several
copies were made, and Frank and Michel both got a
copy via Federal Express. The changes were then in-
troduced into the text, by either Frank or Michel, and,
whenever we had a problem, we would solve it via e-
mail with Marsha.

And then came IATEX2¢

While this iterative process was getting well under
way, an unexpected event happened. Frank and
Leslie Lamport, who was visiting Mainz in the spring
of 1993, decided to consolidate IATEX into a new ver-
sion, ISTEX 2 ¢, which would bring together the various
dialects and formats floating around on the various
networks and archives, and include the New Font Se-
lection Scheme (NFSS) by default. It would also in-
clude a few limited extensions and propose a better
style writer interface.

This very good news for the IATEX community,
however, meant for us that we were now describ-
ing and using an evolving software system. After
the copy-editing stage, in several tens of places non-
trivial changes had to be introduced in the text,
new paragraphs written, and complete new sections
added in some parts. Moreover, the Companion was
typeset with the alpha release of the continuously-
changing version of IATEX 2 ¢, thus giving us some sur-
prises from time to time (of which one or two even
ended up in the first printing of the book).

Getting ready to print

By the end of the summer we had included all the
comments of the copy-editor into the compuscript,
and done most of the updates for ISTEX2¢. We then
went on to the proofreading stage, where, again with
Marsha Finley acting as liaison, a proofreader reread
all pages after “final typesetting”, pointing out re-
maining typos or errors in cross-references.

Tuning IATEX and hand work

While we were preparing the final run, we had to
tune the IATEX parameters extensively, in particular
to allow for the huge number of floats we had to deal
with, but also for finding suitable glue settings and
penalties. There was also some hand tuning needed.

Table 2 shows the amount of hand-formatting
we found necessary to produce the final copy of the
book.

To flag all visual formatting clearly (so that it
could easily be identified and removed in case the
text needed changing), we never used the standard
IATEX commands directly. Instead we defined our
own set of commands, often simply by saying, e.g.,
\newcommand{\finalpagebreak}{\pagebreak}.

The table divides the commands used into three
groups. The first deals with changes to the length of
the page: \finallongpage and \finalshortpage
run a page long or short, respectively, by one
\baselineskip. The command \finalforcedpage
enlarges a given page and is therefore always fol-
lowed by an explicit page break in the source. The
second group contains the commands for “correct-
ing” IATEX's decision about when to start a new page,
and the final group contains a single command for
adding or subtracting tiny bits of vertical space to
improve the visual appearance.

The average number of corrections made with
commands from the first group is slightly over 20%,
or one out of five double spreads, since we applied
such a change always to pairs of pages. If you look at
the chapters with a large percentage of corrections,
you will find that they contain either very large in-
line examples or large tables that should stay within
their respective sections.

Hard page breaks were inserted, on average, ev-
ery tenth page, often in conjunction with a command
from the first group. In most cases this was used to
decrease the number of lines printed on the page.

Most uses of \finalfixedskip can be classified
as “correcting shortcomings in the implementation
of the design.” With an average of about 16% this
may seem high. But in fact such micro adjustments
usually come in pairs, so this corresponds to approx-
imately one correction every 12 pages.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 171

Michel Goossens and Frank Mittelbach

Preparing the index

As already mentioned above, most of the important
document elements were entered into the index in an
automatic way by using generic mark-up to tag them.
But that is not enough to have a good index, and
indeed, we went over each page and asked ourselves
which keywords should be entered into the index so
as to direct the reader to the information on that
page. In fact quite a few readers’ comments that
we received after the first printing had to do with
suggestions for adding additional keywords into the
index.

Production problems

Since we were working in different locations (Geneva
and Mainz) on different workstations (Digital and
Hewlett-Packard) and with mostly non-identical ver-
sions of IKTEX (Frank was “improving” ISIEX2¢ con-
tinuously, whereas Michel was using a “frozen” ver-
sion that got updated every now and then), small dif-
ferences could appear in line and page breaks, lead-
ing on many occasions to a state of mini-panic, which
had to be relieved by an exchange of one or more ur-
gent e-mail messages, often sent well after midnight,
when the other members of our families had already
long gone to bed.

The first printing

After a final IATEX run of our complete 560-page book,
late on December 1st, Michel was able to copy the the
resulting PostScript file, 9.5 Mbytes in size, in 26 self-
contained pieces, by ftp from the CERN computer
to Reading. This was necessary since the PostScript
files had to be transferred on 1.44 Mbyte PC diskettes
between the Sun at Addison-Wesley and the Varityper
4300P 1200 PostScript printer of the service bureau,
where the camera-ready pages were produced.

Taking a break, or so we thought

So, we could spend a nice 1993 Christmas holiday,
hoping that everything would go all right, and, fair
enough, we received the first printed copy of our
book just after the New Year. Soon our first readers
started to send us comments and suggestions, and to
point out problems of various kinds (printing, typos,
unclear explanations).

In March Addison-Wesley informed us that we
had to prepare an updated version of the book for
a second printing at the beginning of May. We thus
started to introduce the suggested corrections and
improvements into the text, finally ending up with
over 160 pages that we wanted to reprint (many of
them containing only tiny changes, but also, owing to
knock-on effects, sometimes several pages in a row

had to be reproduced). We also took advantage of
readers’ comments to redo the complete index.

Conclusion

We hope we have been able to convey in this short
article some of the excitement, fun and frustration
people experience when trying to write a book.

We are well aware of the fact that those of you
who have been involved in the production of books
or large documents have come across several of
these problems before. We nevertheless hope that
by telling our “story” some of the lessons we learnt
will be useful to some of you.

References

Goossens, Michel, Frank Mittelbach, and Alexander
Samarin. The IATEX Companion. Reading Mass.:
Addison-Wesley, 1994.

Lamport, Leslie. IATEX—A Document Preparation
System—User’s Guide and Reference Manual
Reading Mass.: Addison-Wesley, 1986.

Acknowledgements

We would like to thank Geeti Granger and Gareth
Suggett for their helpful comments and suggestions.

172 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Amnual Meeting

Real life book production—lessons learned from The IATEX Companion

IATEX command (control sequence) ‘\stop’ should be input as \Lcs{stop} to produce the text and the
reference, as \xLcs{stop} to produce only the reference and as \nxLcs{stop} to only typeset the command
sequence in the text.

\newcommand{\Lcs}[1] {\mbox{\normalfont\ttfamily\bs#1}\xLcs{#1}}
\newcommand{\xLcs}[1]{\index{#1@{\ttfamily\protect\idxbs#1}}}
\newcommand{\nxLcs}[1]{\mbox{\normalfont\ttfamily\bs#1}}

\Lmcs makes a main index entry for places where one defines or really talks about a command.

\newcommand{\Lmcs}[1] {\mbox{\normalfont\ttfamily\bs#1}\xLmcs{#1}}
\newcommand{\xLmcs}[1]{\index{"#1@{\ttfamily\protect\idxbs"#1}|idxbf}}
The \Lcsextra command is for producing a subentry for a command name.
\newcommand{\Lcsextra}[1]{\mbox{\normalfont\ttfamily\bs#1}\xLcsextra{#1}}
\newcommand{\xLcsextra}[2]{\index{#1@{\ttfamily\protect\idxbs#1}'#2}}

\newcommand{\Lmcsextra}[1] {\mbox{\normalfont\ttfamily\bs#1}\xLmcsextra{#1}}
\newcommand{\xLmcsextra} [2]{\index{#1@{\ttfamily\protect\idxbs#1}!#2]idxbf}}

For flagging a range of pages covered by a definition, we use the “rangel” (start of range), and “ranger” (end
of range) construct.

\newcommand{\xLcsextrarangel} 2] {\index{"#1@{\ttfamily\protect\idxbs"#1}'#2|(}}
\newcommand{\xLcsextraranger}[2]{\index{"#1@{\ttfamily\protect\idxbs"#1}!#2{)}}

Table 1: Examples of generic tags used to reference command sequences

Chapter 2 3 4 5 6 7 8 9 10 11 12 13 14 Al
Number of pages 36 36 18 40 16 58 44 16 36 36 26 50 18 36
\finallongpage 0 3 1 0 3 10 4 2 3 0 7 . 4
\finalshortpage 0 5 4 4 0 10 0 0 8 0 2
\finalforcedpage 1 0 0 2 2 0 1 0 0 1 0 1 0 0
Page length change 1 8 5 6 5 12 15 2 3 9 10 10 7 6
Average per page .03 22 29 .15 33 .08 .34 .13 .08 .25 38 2 .39 a7
\finalpagebreak 4 5 4 3 12 1 0 6 5
\finalnewpage 0 1 0 0 0 0 0 0 0 0 1 0

Page break change 4 6 2 4 3 7 12 1 0 6 4 6 6
Average per page A1 .17 11 1 .19 12 27 .06 o .17 .15 .12 17 17
\finalfixedskip 4 3 4 11 0 8 2 2 0 14 6 10 7 3

Average per page 11 .08 .22 .28 0 .14 .05 .13 0 .39 .23 2 38 .08

Sum 9 17 11 21 8§ 27 29 5 3 29 20 26 17 15
Average per page .25 47 .61 .53 S5 47 66 31 .08 .81 .77 .52 94 42

Table 2: Manual work—some numbers (from Goossens, Mittelbach and Samarin (1994))

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 173

Typesetting the Holy Bible in Hebrew, with TgX

Yannis Haralambous

Centre d’Etudes et de Recherche sur le Traitement Automatique des Langues
Institut National des Langues et Civilisations Orientales, Paris.

Private address: 187, rue Nationale, 59800 Lille, France.
Yannis.Haralambous@univ-T1illel.fr

Abstract

This paper presents Tigwah, a typesetting system for Biblical Hebrew, that uses
the combined efforts of TgX, METAFONT and GNU Flex. The author describes its
use and its features, discusses issues relevant to the design of fonts and placement
of floating diacritics, and gives a list of rare cases and typographical curiosa which
can be found in the Bible. The paper concludes with an example of Hebrew Biblical
text (the beginning of the book of Genesis) typeset by Tigwah .

Introduction

The Tigwah system uses the possibilities of TgX,
METAFONT and GNU Flex to typeset Biblical Hebrew.
This is not a simple task: (a) special fonts had to
be created, described in the section ‘Fonts for type-
setting the Holy Bible in Hebrew’ on page 177; (b)
several levels of diacritics are required; they have
to be entered in a reasonable way (see ‘Vowels’ on
page 176, and ‘Masoretic accents and other symbols’
on page 176), and placed correctly under or over
the characters (see ‘An algorithm for placing floating
diacritics’ on page 179). The Bible being the most de-
manding Hebrew text (from the typographical point
of view), Tigwah can trivially be used to typeset any
other Hebrew text, classical or modern; in addition
to Tiberian vowels, Babylonian and Palestinian vow-
els are also included in the font, as are special char-
acters for Yiddish.

This paper is divided into three parts: the first
one, more pragmatic, describes the requirements and
use of the Tigwah system,; the second one discusses
the design of the fonts and the algorithm of floating
diacritics placement; finally, the third part gives a list
of rare cases and typographical curiosa found in the
Hebrew Bible, and the way to produce them through
Tigwah.

But first, for the reader not familiar with the
Hebrew language, a short introduction to the Hebrew
system of diacritization.

Diacritization. In Hebrew, as in other Semitic lan-
guages, only consonants and long vowels are writ-
ten as letters: the reading process includes a perma-
nent “guessing” of words out of the available data—
the consonants and long vowels, as well as the gram-
matical, syntactic and semantic context.! To prevent
misunderstandings, in cases where the short vowels

Ltr t rd ths t s wht I mn — try to read this to see
what I mean.

174

cannot be guessed out of the context (for example in
names or foreign words), or in cases where the text is
extremely important and should by no means be al-
tered (the case of holy texts, like the Bible), short vow-
els have been added, in the form of diacritics. This
is the first level of diacritization; it can be applied to
any text; at school, children first learn vowelized He-
brew.

A second degree of diacritization is the use of
cantillation marks or Masoretic marks or neumes.?
This method of diacritization applies only to the He-
brew Bible.

Finally, a third degree of diacritization and
markup (less important in volume than the two
previous ones) consists of using editorial marks for
scholarly editions (locations where text is missing,
diverging sources, etc.). For this purpose, mainly
two signs are used: the circellus (a small circle)
and the asterisk. Also a dot is sometimes placed
over each letter of a word—it is called punctum
extraordinarium.

2 Onereads in Levine (1988, pp. 36-37): “...unlike
Psalmodic technique which reserves its motifs for a
single syllable toward the phrase-end, Biblical chant
assigns a motif to each word. It does this with signs
called neumes (te’amim in Hebrew). ...The root of
“neume” in Hebrew, ta’am has several meanings:
‘taste’; ‘accent’; ‘sense’. Neumes impart taste (into-
nation) to Scripture through melody, accent through
placement (above or below the stressed syllable),
and sense (rhetoric) by their ability to create a pause
or to run words together. In addition to these func-
tions, neumes provide a means of memorizing the
intonation, accentuation, and rhetoric of the hand-
written scrolls read publicly, for only consonants ap-
pear on the scrolls. Vowels and punctuation—as well
as neumes—appear only in printed editions of the
Hebrew Bible.”

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

It follows that printed Hebrew Biblical text can
globally be subdivided into four strata:

4. Editorial marks
3. Cantillation marks
2. Vowels, semi-vowels and sewa
1. Text

The placement of diacritics falls into the following
groups:

1. inside the letter: the dages or mappiq dot;

2. over the letter: vowels (holem in the Tiberian
system of vowelization, and all Palestinian and
Babylonian vowels), spirantization (rafe), can-
tillation marks (zageph, rebia, geres, garSayim,
etc.), editorial marks (circellus, asterisk, punc-
tum extraordinarium);

3. under the letter: vowels (hireq, sere, segol, etc.),
semi-vowels (hateph-patah, etc.), absence of
vowel (Sewa), cantillation marks (sillug, atnah,
etc.);

4. before the letter (on its right): prepositive can-
tillation marks (dehi, yetib, etc.);

5. after the letter (on its left); postpositive cantil-
lation marks (segolta, sinnor, etc.).

All strata of diacritics can be combined. It has
always been a typesetter’s nightmare (or delight, de-
pending on the case) to produce fully diacriticized
Hebrew text: sometimes the combinations of dia-
critics get even wider than the character that carries
them; in these cases, diacritics will float under (or
over) the immediately following letter, according to
rules given in the section ‘An algorithm for placing
floating diacritics’ on page 179. These actions can
eventually change the appearance of the whole word.
In that section we give an analytic approach of float-
ing diacritic placement, and the corresponding algo-
rithm used by Tigwah's TgX macros.

The reader can find more information on the
grammar of Biblical Hebrew in Lettinga (1980); for an
introduction to the modern edition of the Bible BHS
(Biblia Hebraica Stuttgartensia), see Wonneberger
(1990).

Using Tigwah

Requirements. To typeset in Biblical Hebrew using
Tigwah, one needs a decent TgX system,® a relatively
powerful machine (being able to run BigIgX) and the

3 In this context, by ‘decent TgX system’ we mean a
TgX implementation featuring Peter Breitenlohner’s
TEX--XgT as well as a METAFONT implementation
with user-configurable parameters (the internal pa-
rameter max_font_dimen of METAFONT has to take
a value of at least 53, to be able to generate Tigwah
fonts).

Typesetting the Holy Bible in Hebrew, with TgX

Tigwah package,* consisting of a preprocessor writ-
ten in GNU Flex, fonts written in METAFONT, and TEX
macros. The preprocessor being written entirely in
GNU Flex (without using any system-dependent sub-
routines), can be compiled in a straightforward man-
ner on any platform having a GNU Flex executable and
an ANSI C (preferably gcc) compiler.

Once Tigwah has been installed, typesetting is
done in two steps: an input file is prepared using the
syntax described below; the preprocessor then reads
this file, and produces a IATgX2¢ (or plain TgX) file
which can then be run through TgX in the usual way.3

Preparing the input file. If you wish to write your file
in IATEX 2¢, you have to include the line

\usepackage{tiqwah}
in the preamble. Plain TgX users will write
\input tigwamac.tex

at the beginning. However, the author recommends
the use of KTEX2¢, because of its powerful font se-
lection scheme.

A Tigwah input file contains text, TEX/IATEX
macros, and preprocessor directives. The latter
concern only Hebrew script. To type Hebrew text
you need to enter Hebrew mode; this is done by the
preprocessor directive <H>. To leave Hebrew mode,
enter the directive </H>. For Yiddish, the directives
are <Y> and </Y>. The directives <H> and <Y>
are the only ones recognized by the preprocessor
outside Hebrew/Yiddish mode.

Once you are inside Hebrew/Yiddish mode, you

type Hebrew text in Latin transcription, from left
to right. No special indication needs to be given to
TeX about font or writing direction switching—this is
done automatically. The following sections describe
the transcription you have to use as well as all other
features of the preprocessor.
Letters. The Hebrew transcription of letters (conso-
nants and long vowels) is given in Table 2 of the ap-
pendix (page 187); the Yiddish one will be given to-
gether with all other features of the Yiddish part of
Tigwah, in a forthcoming paper, dedicated entirely
to this language.

Here is a simple example of code producing non-
vowelized Hebrew text:

4 Tigwah will be included in ScholarTgX; it is part
of the long awaited version 1 of the latter, together
with new Greek, Arabic, Estrangello, Serto, Chaldean,
Coptic and Akkadian cuneiform fonts.

5 An adaptation of the Tigwah system to Q (the
TX extension prepared by John Plaice and the au-
thor) is under preparation; it will allow typesetting
in Biblical Hebrew, without a preprocessor.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 175

Yannis Haralambous

<H>ym hm*Tx hw*’ hm*qwm hn*mw*k b*ywtr
b* ‘wlm</H> will produce

D33 NN T OPRT M IR .

Some notes concerning the transcription of let-
ters of Table 2: there is no distinction between me-
dial and final forms; these are automatically applied
by TgX. The asterisk * transcribes the dages, map-
piq or Sureq dot.® The broken lamed 9 is used au-
tomatically whenever no upper diacritic is present;’
this feature can be turned off by the command line
option -nobroken of the preprocessor. The charac-
ter N is a ligature of the letters aleph and lamed; a
variant form of it is K. This ligature is not used in
the Bible, and hence is not applied automatically by
the preprocessor: it has to be explicitly requested by
the code ’ /1 (instead of ’1 which will produce the
normal 5K).

In the same table, the reader will also encounter

the symbol ¢; it is called “nun invers” and is used in
Nu 10:35-36 and Ps 107. The “broken waw” ¥ is used
in Nu 25:12. See the section ‘Inverted and broken
letters’ for more details,
Vowels. Hebrew vowels and their transcriptions are
displayed in Tables C and D (p. 188). Table 3 dis-
plays the three systems of vowelization available:
Tiberian (the most frequent one), Palestinian and
Babylonian. Tiberian vowels are used by default. To
switch to Palestinian or Babylonian, one uses the di-
rectives <PALESTINIAN> and <BABYLONIAN>. The di-
rective for Tiberian is <TIBERIAN>. The same text
can be typeset in any one of the three systems just by
adding/removing one of these directives; here is an
example of the same text, written in the three vowel
systems:

TOREN B 50N B aS
TR i 5 0 &5
9AReER o7 90570 B K

Most vowels can be entered in two different
ways: either by a “phonetic” one- (or two-) letter
code (a for patah, A for games, etc.) or by a three-
letter code in uppercase form, surrounded by < and >
(<PAT> for patah, <QAM> for games, etc.). Both meth-
ods are equivalent and can be arbitrarily mixed.

Vowels are entered after letters, except in the
case of the patah furtivum, where the code <PTF> has
to be entered before x, h*, or * (1M, 7 and ¥ are the only
letters which can take a patah furtivum®). The rafe
accent can be found in table 5.

6 Following advice by Philippe Cassuto, we will
attempt to differentiate the dages and the Sureg
applied to the letter waw, in the next version of Tig-
wah.

7 With one exception: the holem.

8 The combination “letter ‘ayin with patah
furtivum” is not displayed in the table because
it is graphically indistinguishable from the normal

Below is the same example of simple Hebrew
text with its transcription, this time vowelized:

<H>yAm ham*ETax hw*’ ham*AgwAom han*Amw*k"

b*"ywAoter b*A‘wAolAm</H>

will produce

DD NP 0T DPRI NI NI DY
Masoretic accents and other symbols Tables E
and F (p. 189, 190) display Masoretic cantillation
marks and miscellaneous symbols: the Sephardic
varika, and punctuation marks maqqgeph, setuma,
petuha, soph pasuq. Two styles of Masoretic
accents are provided: oldstyle (as found in
BHK® and Holzhausen Bible (1889), Lowe and
Brydone Bible (1948)) and modern (as in BHS®).
The distinction is made at the TgX level, by macros
(\modernmasoretic and \oldstylemasoretic),
which can be used inside or outside Hebrew mode;
the default style is oldstyle. Table 6 shows the
glyphs of modern Masoretic accents. The same
remark as in the previous section, concerning
alternative input of codes, applies in this case also.

Masoretic accents are entered after the letter to
which they belong; they can be placed before or after
vowels belonging to the same letter—their order is
not important. Prepositive accents are placed before
the first letter of the word. Postpositive accents, such
as pasta, placed inside a word, will be typeset between
letters.

Finally, Table 7 (page 190) displays a collection
of typographical curiosa: symbols used in various
contexts and for various purposes. The single and
double primes ' and ” are used for numerals and ab-
breviations. The upper two dots diacritical mark is
also used for numerals: it indicates thousands. The
asterisk * is used both as an editorial mark (like the
circellus, but apparently with slightly different mean-
ing), and as a replacement character for missing let-
ters (see the section ‘Missing letters’ on page 183).
The zero-like symbol 0 is used to indicate a miss-
ing word in Jdc 20:13 (Holzhausen Bible (1889), Lowe
and Brydone Bible (1948) only). The isolated dages
is used to indicate a missing letter with dages, in Jes
54:16 (BHS only). The “tetragrammaton” +» is a sym-
bol for the name of God; it can be obtained by the
directives <YYY> or <TETRAGRAMMATON>. The dotted
circle < is used in textbooks as a basis for diacritics.
Other preprocessor directives. A few directives do
not produce glyphs, and hence are not included in
the tables:

‘ayin with patah. This can be changed if there is a
demand for differentiation of the two patah types.
9 Throughout this paper, BHS will be the Biblia
Hebraica Stuttgartensia BHS (1987), and BHK the
Biblia Hebraica BHK (1925), edited by Rudolf Kittel.

176 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

1. <NIL> placed after a letter will prevent the final
form to be applied to it. For example, for nu-
merals or stand-alone letters which have to be
in medial form:
<H>k<NIL> k</H> will produce 7 2.

2. <EOW> placed after a letter will force it to be in fi-
nal form, even if other letters follow. For exam-
ple, in Jes 9:6 one reads .‘riﬁp?; this word has
been entered as
<H>1"ma<EOW>r"b*e<AZL>h</H>). See the sec-
tion ‘Letters not obeying rules of contextual
analysis’ on page 182 for more details.

3. <EMPTY> will produce an invisible character
of normal width. It can be used as a basis for
stand-alone diacritics in the case of missing
words (see ‘Missing words’ on page 183).

4. <SMALL> and <BIG> will produce small and big
letters, see section ‘Bigger and smaller letters’
on page 181 for more details; they act only on
one letter at a time.

More features may be added to the preprocessor if
necessary.

Running the preprocessor. Once you have prepared
the input file, for example genesis.inp, you run the
preprocessor by writing

tigwah options < genesis.inp > genesis.tex
where options can be the following:

1. -h displays a few lines describing the command
line options;

2. -p produces plain TgX instead of IATEX output
(typesetting with Tigwah in plain TgX is not rec-
ommended);

3. -1 followed by a number, indicates the maxi-
mum line length of code produced by the pre-
processor; default is 80. This applies only to
commands inside Hebrew/Yiddish mode, the
remainder of the file is not modified,;

4. -nobroken disables the automatic broken
lamed insertion. With this option,
<H>w"T<SIL>"Ao=yATla<RBM>d"t*iy</H> will
produce ‘m‘g_%ﬁ‘&bj Jes 23:4; without it, you
would get "79 =85, It should be noted that
the holem vowel fits on the broken lamed: a
special “broken-lamed-with-holem” glyph is
provided in the font (5);

5. -d produces debugging output sent to the
stderr stream, for those who want to modify
the code of the preprocessor.

Running TEX/TATEX. As usual, TgX has to be TX--XgT,
otherwise you will get an error message about the
unknown commands \beginR and \endR.

If you are using IAIEX2¢, you have to include
the line \usepackage{tigwah} in the preamble; if
you are using plain TEX (not recommended), write
\input tigwamac.tex instead.

Typesetting the Holy Bible in Hebrew, with TgX

We have completed the description of the pre-
processor’s use and features. Now we will turn our-
selves to issues concerning the design of fonts and
the placement of floating diacritics.

Fonts for typesetting the Holy Bible in
Hebrew

Designing fonts for Biblical typesetting is quite a
challenge: on the one hand, one has to face centuries
of tradition, and the inevitable comparison with mas-
terpieces of typography; on the other hand, unlike
Western typography, there is no room for innova-
tion: modern Hebrew typefaces are widely used in
Israel and elsewhere, but certainly not for Biblical
text! Working under such tight restrictions can be
compared to composing fugues or painting Byzan-
tine icons: there are very strict rules to struggle with,
and you can’t avoid being hooked by the master-
pieces others have done and which fatally are out of
reach. ..

Fortunately, digital font creation does not al-
ways need to be original and innovative (although at
the end it always will have new features, since the
phototypesetting machines are fundamentally differ-
ent from the traditional presses). After all, we are in
the age of reproduction. ..

The author started with the idea in mind to re-
produce as faithfully as possible the most heauti-
ful Hebrew font he could find. There seems to be a
consensus among a large group of scholars that one
of the most beautiful Hebrew types ever done was
the one of the Biblia Hebraica, edited by Kittel and
printed in Germany in the early twenties. Unfortu-
nately the molds were lost in the bombing of Leipzig,
so only printed copies of that book could be studied
by the author to get the necessary information for
reproducing the font.

6 points 11 points 36 points

Figure 1: The letter) at point sizes 6, 11, 36

Doing this, and studying other books as well,
such as a Haggadah by Saul Raskin (Raskin 1941),
printed in New York in 1941, and old Talmudic books

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 177

Yannis Haralambous

printed in Vienna in the late xixth century, the au-
thor realized that Hebrew fonts have a fascinating
feature: there is a remarkable deviation between dif-
ferent point sizes (in TeXnical terms: they have a high
degree of metaness). While for Latin typefaces the
changes between small and large point sizes affect
mostly the width of strokes, in Hebrew, letter shapes
often change considerably. And what’s even more
unusual: changes that occur when going from small
sizes to the normal size often occur the other way
around when going from normal to large size: for
example, one can see, in Fig. 1, the letter gimel at 6,
11, and 36 points (magnified so that they all have the
same physical size). While the right tail of the let-
ter moves more to the right when going from 6 to 11
points, it retracts again when going from 11 to 36,
and almost becomes vertical.

Here is a (possible) explanation for this
behaviour: the reasons for metaness in the
small-to-normal range are different than those in
the normal-to-large range. In the former case, the
problem to solve is legibility. As a matter of fact,
many Hebrew letters look quite similar in normal
size: compare samekh and final mem, or kaph and
bet, at 11 (or higher) points in the Table of Appendix
A. Their distinctive features are so discrete that
they could well disappear if the normal size was
reduced linearly; a well-drawn small point Hebrew
font has to bring these distinctive features to the
foreground. Compare these letters again at 6 points:
kaph and final mem are round while samekh and bet
remain quadratic. On the other hand, when going
from normal to large, one follows purely esthetic
criteria: elegance is the main goal. In this context,
Hebrew letters follow “Bodoni-like” esthetics: they
have very important fat strokes and very fine thin
ones. Hebrew letters use —even more than Latin
letters— the effect of contrast between fat and thin
strokes.

Being hooked by the beauty of this script the au-
thor decided not only to produce a most decent He-
brew font, but also to cover the whole range of opti-
cal METAmorphoses of the types. On table 1 of the
appendix (page 186), the reader can see the first re-
sults of this adventure; they are by no means final!
The author hopes to be able to improve these char-
acters to meet the level of the Hebrew typographical
tradition.

Technical details. Drawing a font with such a high
degree of metaness is a process not far from morph-
ing, a technique used more and more in video and
cinema.!’ Nevertheless there is an important differ-
ence between METAFONT “morphing” and the usual

10 Morphing is the continuous interpolation be-
tween two pictures; it has been used in special ef-
fects, for example to show faces being transformed
into other faces.

morphing we see in movies. To morph two images,
we are not changing the grayscale (or color) weight of
each pixel, but the coordinates of Bézier curve con-
trol points. Interpolation becomes very uncertain,
since it is by no means trivial that the set of interpo-
lated Bézier curves will still produce a decent char-
acter shape.

The solution to this problem is to detect “ten-
dencies” in the letter shape metaness and to be
guided by these while morphing: for example, the
lower left stroke of the letter aleph has the tendency
of protruding to the left when point sizes become
small. This has to be taken into account for all paths
of this stroke, so that the transformation is homoge-
neous. The best way to do this is to determine “cen-
ters of gravity” which will move during the transfor-
mation; then it suffices to define all the important
control points of the stroke with respect to a center
of gravity: in this way the movement of the latter will
produce an homogenecus move (and hence, transfor-
mation) of the whole stroke.

Animportant precaution is to limit the metaness
of certain quantities to a certain range of point sizes.
For example, the width of fat strokes can vary ar-
bitrarily (after all, it is directly related to the letter
point size), but other characteristics should not “vary
too much”; in other words, they should remain stable
outside of a certain point size range. That is the case,
for example, of the “hanging left stroke” of letter fi-
nal pe, in small point sizes; this stroke extrudes al-
ready to the left at point size 8; for point sizes lower
than 8, the amount of extrusion remains stable, oth-
erwise the character shape would be deformed; same
phenomenon for the height of the intersection point
of the vertical and the oblique stroke of letter final
sade: after point size 24 the intersection height re-
mains stable, since at this point size it has reached
an extremal point. The idea of this paragraph could
be stated as: “morphing should be applied only for
interpolations inside the regular range; for extrapo-
lations, the usual metaness (stroke widths, etc.) is
applied.”

One of the most important parts of many He-
brew letters is the “flame” (or “crown”). Figure 2
shows the different METAFONT reference points and
paths used for the definition of a standard META-
FONT “flame”-subroutine.

Rashi. Besides the “quadratic” Hebrew font, which
is shown in table 1 of the Appendix, the author has
also developped a Rashi font. This type was used in
Synagogue books for comments on the Biblical text.
Synagogal books, which are often masterpieces of ty-
pography, combine several point sizes of Rashi and
quadratic in various page setups. On the other hand,
Rashi is not used in scholarly editions. Rashi is not
diacriticized (neither vowels, nor cantillation marks);

178 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

Typesetting the Holy Bible in Hebrew, with TgX

$.51

$.4r=$.31-5.6

Figure 2: The METAFONT description of the character part “flame”

nevertheless, the author has included vowels, semi-
vowels and Sewa in the Rashi font, just in case some-
body wants to break that rule...

The Rashi font has only the usual metaness (op-
tical scaling through variation of stroke width). Here
are the characters of point size 10, in their real phys-
ical size, compared with the quadratic font at the
same size:

Rashi: DEIPJIGDLOPONTIRDIND723D
Quadratic: W PPXRBYDRERSOTSEANTIIZN

In a forthcoming article, the author will give exam-
ples taken from Synagogal books with comments in
Rashi.

N

Figure 3: Upper and lower symmetry axes for
Hebrew characters

An algorithm for placing floating diacritics. Aftera
close study of the typesetting of diacriticized text in
the Hebrew Bibles, and numerous discussions with
Johannes de Moor, the author was led to the follow-
ing considerations:

1. We divide the set of diacritics into two cate-
gories: primary and secondary. Primary dia-
critics are vowels, semi-vowels and Sewa (stra-
tum 2); all others are secondary ones (strata 3-
4). Secondary diacritics are always appended to
the left of primary diacritics belonging to the
same letter.

2. Every consonant has an upper and a lower
symmetry axis, on which diacritics are
centered: these are not necessarily identified
with the symmetry axis of the character’s
box: for example, the lower symmetry axis of
character " is going through the middle of the
vertical stroke, and not through the middle
of the imaginary character box (as its upper
symimetry axis).

In Fig. 3, the reader can see the choice of
upper and lower symmetry axes for each char-
acter, as well as the “forbidden zones”, which
should be avoided by diacritics!?.

3. Suppose that:
» we have a letter L followed by letter L’;

11 The reader will notice two letters he in Fig. 3,
with different lower symmetry axes: the second one
shows the axis used for the patah furtivum. The
same process is applied to the letter het.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 179

Yannis Haralambous

o letter L carries a primary diacritic P and
a secondary diacritic S, both under it, S
being necessarily appended to the left of P;

o the lower symmetry axis of letter L is A
and the one of L’ is A'.

Then we have three possible choices, in the fol-
lowing order of preference:

(a) Pis centered on A (see Fig. 4, 1);

(b) the group of diacritics SP is centered on A
as a whole (see fig. 4, 2);

(c) the group of diacritics SP is centered on A
as a whole, furthermore a kern is added be-
tween L’ and L (see fig. 4, 3) so that dia-
critic S does not overlap on L’ or its dia-
critics.

Once these choices as well as their order of pref-
erence have been determined, the algorithm for plac-
ing diacritics under (or over) a word is the following:

for (letters of the word starting from the left)
{
try choice (a)
if ((a) not successful) §
try choice (b)
if ((b) not successful) {
apply choice (c)
!
}
€0 to next letter

}

where the criterium of “success” is the fact that the
diacritics of the current letter do not overlap with the
following letter (if this letter has a descender part)
or its diacritics, or its lower symmetry axis. Here is
an example of such a situation. The reader can see a
few (imaginary) words illustrating the three choices
described above:!?

125 (2) 332 (1)
£33 (4) 133 (3)

l.. A ..Q
In case (1), we have three letters bet, the medial one
having a primary diacritic segol and a secondary dia-
critic atnah. On the left side there is no diacritic, and
the lower symmetry axis of the left bet is far enough
from the atnah of the medial letter to allow place-
ment of the diacritics according to choice 1: the segol
is centered under the letter, and the atnah concate-
nated to it.

In case (2), instead of bet we have placed a za-
vin at the end of the word. There is no diacritic un-
der that letter, but its lower symmetry axis is much

12 These words are displayed in a magnified 8-
point font, so that diacritics are larger, relative
to characters, and the three choices become more
obvious.

closer to the medial bet than it was in case (1), so that
now, the diacritics of the medial letter, placed as be-
fore, would inevitably touch the symmetry axis of the
zayin. TgX automatically switches to choice 2, and
checks that, without additional kerning, the diacrit-
ics remain indeed inside the authorized area.

In case (3), we add a diacritic segol to the letter
zayin. Choice 2 is not valid anymore, and TgX auto-
matically kerns letters zayin and the bet so that the
atnah is at a safe distance from the segol to the left
of it. This is choice 3, and it always works, because
there are no limits set on TgX’s operation of kerning.

Word (4) has been included to show TgX’s reac-
tion in front of a punctuation mark: (a) TgX does not
float the diacritic under the punctuation mark as in
case (1), and (b) it does not switch either for choice 2,
like in (2). The reason is that both operations (a) and
(b) are reserved for letters which are considered as
part of a whole (the word); the punctuation mark be-
longing to a different entity must be placed indepen-
dently, and should not participate in the algorithm of
floating diacritic placement. As the reader can see in
(4), TgX kerns between the punctuation mark and the
letter until the atnah is clearly not under it anymore.

NOTES:

1. Certain characters have descenders: P
R ¢ or ascenders: 'J; these parts of characters
are considered “forbidden zones”—no diacritic
should overlap or even touch them (forbidden
zones are visible on fig. 3 as shaded areas).

2. The algorithm only concerns diacritics that are
centered over or under the character with re-
spect to the symmetry axes shown in Fig. 3; un-
centered diacritics (like the holem) obtain fixed
positions before applying the algorithm. The re-
gion they occupy becomes a forbidden zone, just
like letter descenders or ascenders.!3

3. If there are both upper and lower diacritics, the
algorithm has to be applied twice, once for each
case. Choices are independent, but a possible
kerning due to application of choice 3 to one of
the two parts could modify the choice applied
to the other part.

4, If there is already a kern between two letters, it
must be taken into account before applying the
algorithm.

5. While inside a line, TgX is typesetting by count-
ing blank space with respect to character boxes
(and not diacritic boxes), at the beginning of
a line the maximum between the width of dia-
critic box and the width of character box must

13 An exception to this rule is the letter Y (waw with
holem magnum), where the right dot is sufficiently
below the standard diacritic height for additional
diacritics to be placed as if the dot was not there.

180 TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting

Typesetting the Holy Bible in Hebrew, with TgX

Letter Letter Letter Letter Letter Letter
L L L L L L
1Lower 1Lower 1Lower 'Lower 1Lower Lower
1symmetry 1symmet rsymmetry 1symmet 1symmetr 1symmety
1axis Jaxis raxis 1axis yaxis 5 jaxis
Secondary Prin;ary : Secondary : Primary : Secondary : Primary
diacritic | diac}itic : diacritic | !diacritic : diacritic | | diacritic
¥ i 1 1 1
Choice 1 Choice 2 Choice 3

Figure 4: Three possible choices of diacritics positioning, in order of preference.

be taken into account (so that diacritics do not
protrude over the beginning of a line).

Rare cases and typographical curiosa

It is forbidden—and has always been forbidden—to
change the text of the Hebrew Bible. The Masorets
and other Bible commentors have proposed some
modifications to the text, which had to be made ap-
parent without changing the text itself. For this rea-
son, many (typo-)graphical tricks have been used to
indicate potential modifications of the text. These
may differ from one Bible edition to the other (al-
though they seem to be quite stable between rabbini-
cal editions), and may not appear in modern study
editions of the Bible, like the BHS. Here is a list of
such curiosa, after a short search by the author,'# as
well as the way to achieve them with Tigwah.

Bigger and smaller letters. These are letters bigger
or smaller than ordinary text. They can appear at any
location inside a word. They are vertically justified at
the upper bar of Hebrew letters (and not at the base-
line), so that big letters are protruding downwards
only, and small letters are “hanging”. The eventual
dages dot belongs to the point size of the letter it-
self (bigger or smaller than ordinary text), while the
eventual diacritics are typeset in the same size as or-
dinary text. In the case of big letters, lower diacrit-
ics are lowered so that they keep the same distance
to the letter as in the case of ordinary letters; in the
case of small letters they are not raised, and remain
at their default position.

Here are all possible occurrences the author
could detect:

n*g;ixj; Gn 1:1,
DRT273 Gn 2:4,
mN223) Gn 23:2,

14 The author would be grateful for any help or
suggestions on completing this list.

NEP Gn 27:46,
ETDEHDW Gn 30:42,

F131y57 Gn 34:31,

DMWY Gn 50:23,

"¥Y Ex 347,

"N Ex 34:14,

XM L 1,

H'IPVJ Lv 6:2,

I15-SY Ly 11:42 [big wawl,
MBI Ly 13:33,

N379TY Nu 14:17 [big yod],
SR ... PRY Dt 64,
D™ Dt 9:24,

DS Dt 29:28,

FYTSM D 32:6,

125 Jos 14:11,

VY Jes 56:1,

Y Jer 14:2,

D3 Na 1:4,

N’Wﬁ Ps 24:4 [small wawj,
733N Ps 80:16,

‘52’& Prv 1:1 [small final nuni,
757 Prv 16:28,

O Prv 28:17,

257 | 37 Prv 30:15,

¥ Hi 736,

WASW Hi 9:34,
PB-*39-S¥ Hi 16:14 (small final sadel,
R Hi 33:9,

TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting

181

Yannis Haralambous

=¥ Cant 1:1,

’J{? Ru 3:13,

RY3 Thr 1:12,

W3 Thr 2:9,

2% Qoh 7:1,

ﬂ‘b Qoh 12:13,
Wﬂﬁ Est 1:6,
8’?,;1?277@ Est 9:7,
\m?'f}@j@ Est 9:9,
NI Est 9:9 [big waw and small zayin,
2RI Est 9:29,
“’Bﬁbw: Da 6:20,
BN 1Ch 11,

To produce big and small letters, one uses the
preprocessor directives <BIG> and <SMALL> respec-
tively. These affect only the first letter following
them, e.g., to obtain R7EPY 2 Da 6:20, one writes

<H>b*1 S"<SMALL>par"<YBIG>p*ArA<TIP> < /H>.

Raised letters. At three locations in the Bible, the
“author encountered raised ‘ayin letters, and at one
location, a raised nun. Contrary to small letters as
described in the previous section, these are typeset
in the regular point size. The diacritics remain under
the normal baseline except in the case of a patah
diacritic, which was raised as wel], in BHS and BHK.

Here are all occurrences of raised ‘ayin the au-
thor could find:

ﬂy"b [in Holzhausen Bible (1889), Lowe and Bry-
done Bible (1948)] or

=¥ [in BHS and BHK] Ps 80:14,
oV 1i 38: 13,
o¥uim Hi 38:15.

The ralsed nun was encountered in

2712 Jdc 18:30.

Both raised letters are regular characters of the
Tigwah font. The raised ‘ayin can be produced by the
input code ‘/ (‘/a in the case of raised ‘ayin with
patah). The raised nun with patah can be obtained
by the input code n//a (n followed by a single slash
n/ produces the inverted nun, see section ‘Inverted
and broken letters’).

Letters aleph, resh and ‘ayin with dage$ dot. The
author has found three locations in the Hebrew Bible,
where the letter aleph takes a dages dot: in BHS the
dots are placed in the lower part of the letter; in BHK
they are ignored; while in Holzhausen Bible (1889),
Lowe and Brydone Bible (1948) they are placed in
the upper or in the lower part of the letter. Here
are these occurrences, as they appear in Holzhausen
Bible (1889), Lowe and Brydone Bible (1948):

WI" Gn 43:26,
W2 Ly 23:17,

2™ Esr 8:18.

At a single location in the Bible the author found
the letter ‘ayin with dages: D‘ibﬁ: 1S 5:12. This
letter appears in Holzhausen Bible (1889), Lowe and
Brydone Bible (1948) but not in BHS. In BHK a large
dot is placed over the character.

Finally, the letter resh with dages occurs in N™\3
Prv 14:10.

To produce these letters with Tigwah, use codes
** 7/ r*and ‘* as shown in table 2 of the appendix.

Letters not obeying rules of contextual analysis.
In some cases a letter does not appear in final form
as it should, and conversely a letter inside a word
is written in final form (for example to indicate a
contraction of two words). Here are two cases the

author has detected: -‘Ifﬁﬂﬁ Jes 9:6, with a final

mem inside the word, and T ¥07 | 312 Hi 38:1, where
the nun of the first word is not in final form.

To impose a final form one uses the preproces-
sor directive <EOW> (EOW stands for “end of word”),
after the letter: <H>1"ma<EOW>r"b*e<AZL>h</H> to
obtain the example above. To avoid a final form
one uses the directive <NIL>, after the letter as well:
<H>mi<MER><NIL></H> for the example. More tech-
nically, in the first case, the preprocessor considers
it is at the end of a word and treats the two parts
of the word as distinct—but concatenated—words; in
the second case an invisible character of zero width
makes it think it is not at the end of the word.

Letters with more than one vowel. Again because
of contractions or other grammatical phenomena, a
letter can carry more than one vowel. Here is an ex-
ample: ﬁWNJ Ez 9:11, where the letter kaph carries
both a Sewa and a holem. Input of such letters is
straightforward.

Isolated dages. The author encountered an isolated,
vowelized dages in BHS:]I Jes 54:16.

To obtain this character with Tigwah, use
the directive <DAGESH>. The invisible box of this
character is sufficiently wide to carry vowels and/or
other diacritics. It is treated as any other letter,
so you have to use the directive <EOW> (see the
section ‘Other preprocessor directives’ on page 176)
to obtain our unique example (otherwise the letter
nun will not be final). Here is its Tigwah code:
<H>h1n<EOW><DAGESH>e <MEH></H>.

Unusual letters. In Nu 10:35-36 as well as in Ps 107,
one encounters the horizontally inverted letter nun
{. In the critical apparatus of BHK one can read “3
invers: [editio Bombergiana Jacobi ben Chajjim anni
1524/25] ¥0¢3 et @IAUNNMD”. Both in BHS and BHK
the types used for this character are not very satis-
factory, while in Holzhausen Bible (1889), Lowe and

182 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

Brydone Bible (1948) a type of the same quality as the
ordinary nunis used.

This character is obtained by the code n/. It
seems that other inverted characters may exist (an in-
verted lamed seems to be hidden in the Bible text...).
They will be added to the Tigwah system, whenever
necessary.

In Nu 25:12, there is a “broken” waw with right
holem, in the word QY 5?&’ This character is obtained
by the code w/Ao.

Finally, there is a variant form of the letter gqoph,
in Ex 32:25, D'I"bp: and in Nu 25:12,

D"T Br1=SY. This letter is mentioned in the Masorah
qof joined and without taggim” (see Yeivin 1980,
§46) it can be obtained by the code q/.

Missing letters. The treatment of missing letters is
typical of the work and restrictions of Masorets: they
were not allowed to add letters that were missing,
so while vowelizing the consonants they did so also
for the missing letters, and by that action made their
existence apparent.!>

In the Holzhausen Bible (1889), and Lowe and
Brydone Bible (1948), an asterisk is used to denote
a missing letter. This asterisk is vowelized just like
any ordinary letter. In BHS and BHK different meth-
ods are used: in some cases, empty space is left; in
other cases no empty space is left and the diacritics
of the missing character are just squeezed between
those of (not missing) letters (a phenomenon occur-
ing also in Holzhausen Bible (1889), Lowe and Bry-
done Bible (1948); for example in the word D‘)Wﬁ‘ Ps
137:6 where a hireq is squeezed between the lamed
and the final mem).

Here are the missing letters detected by the au-
thor, as printed in Holzhausen Bible (1889) and in
Lowe and Brydone Bible (1948):

TORY” 25 16:23,

*'5:7 25 18:20,
Wyanm 2s 22:8,

.....

1;;1:& 1R 7:20,
=BT 1R 9:18,
758" 1R 15:18,
*S3 1R 20:41,
7813 2R 5:25,

T3S 2R 9:15,

TP 2R 11:20,
980D 2R 15:25,
72" Jes 3215,
DD Jes 55:13,

15 The reader can compare this with the glasses or
gloves worn by the invisible man in H. G. Wells’s
homonymous novel.

Typesetting the Holy Bible in Hebrew, with TgX

PN Jer 10:13,

D Jer 17:19,
PN Jer 18:23,
N2 Jer 40:3,
YY) Ez 18:20,
HD'W"\PT Ez 25:9,
m::wﬁ* Ez 42:9,
D'N27'3 Ez 46:19,
WJW‘* Prv 4:16,
'1‘3'1‘* Prv 23:25,
¥ Hi 2:7,

SR Ru 3:13,

oY= 33 Thr 1:18,
RS* Thr 2:2,

]‘R* Thr 5:3,
]W\JD"TW Da 2:9,

" Da 2:43.

In Tigwah one writes <AST> to obtain the letter-
like asterisk (warning, the ASCII asterisk * is used
only for the dages, mappig and Sureq dot!). If one
prefers to leave an empty space, one can use the di-
rective <EMPTY>. Unlike <NIL>, this one produces
an invisible character with non-zero width; it can
be vowelized just like any character. Finally, <NIL>
can be used if we want to squeeze the diacritics of
the missing character between the existing charac-
ters/diacritics.

Here is an example: <H>b"<AST>ag*iyd</H>
will give the (imaginary) word T*3*3; by replacing
<AST> by <EMPTY> in the code, one would get % _3
and finally, by using <NIL> instead of <AST> or
<EMPTY>, the result would be ""32.

Missing words. To indicate the location of missing
words, all combinations of the preceding techniques
are used. In BHK and BHS, empty vowelized charac-
ters are used; in Holzhausen Bible (1889), Lowe and
Brydone Bible (1948), a single asterisk, in the mid-
dle of the diacritics of the missing word is used. In
a single case, a digit zero is used instead of asterisk.
Here are the missing words detected by the author,
as printed in Holzhausen Bible (1889), Lowe and Bry-
done Bible (1948):

L0, Jdc 20:13,

.. 25 8:3,

.t 2R19:3L,

2R 19:37,

* Jer 31:37,

* Jer 50:29,
" Ru 3:6,

* Ru 3:17.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 183

Yannis Haralambous

To obtain the digit zero in Tigwah, use the di-
rective <ZERQ>. For the remaining examples, the di-
rectives explained in the section ‘Missing letters’ on
page 183 are used in a straightforward manner.

Conclusion

As hinted by its name (Tigwah means “hope” in He-
brew), the author has made this system hoping that
it will lead to arevival of Biblical Hebrew typography.
Its three main axes (fonts, typesetting, user inter-
face) are based on three powerful programming lan-
guages: METAFONT for font creation, TgX for type-
setting, and GNU Flex for preprocessing. The open-
ness and flexibility of these languages guarantees the
platform independence and consistency of the Tig-
wah system.

The author would like to express his gratitude
to Prof. Johannes de Moor of the Theologische Uni-
versiteit van de Gereformeerde Kerken (Kampen) for
his constant and friendly guidance and support. Also
he would like to thank Jean Kahn (Paris) for his help
in the hunt for rare cases and typographical curiosa,
and Alan Hoenig (New York), Daniel Navia (Paris) and
Reinhard Wonneberger (Mainz) for their warm re-
sponse and friendly advice. Last, but not least, many
thanks to those who have fetched the preprint of
this paper on the net and have generously provided
suggestions and corrections: Abe Stone (Princeton),
Aaron Naiman (Maryland), Scott Smith (MIT), Malki
Cymbalista (Weizmann Institute, Israel).

References

BHK. 2'2¥12Y 2823 771 Biblia Hebraica, edidit Rud.
Kittel, Professor Lipsiensis (Editio altera emenda-
tior stereotypica). Stuttgart, 1925.

BHS. 2'2'N2Y 2'R°23 7N Biblia Hebraica Stuttgarten-
sia. Stuttgart, 1987.

Holzhausen Bible. 2'2%02Y 2823 /TN, Vienna, 1889.

Lettinga, J.P. Grammaire de I'hébreu biblique. E.J.
Brill, Leiden, 1980.

Levine, J.A. Synagogue Song in America. White Cliffs
Media Company, Crown Point, Indiana, 1988.
Lowe and Brydone Bible. 2°202Y 22 M.

London, 1948.

Raskin, S. Haggadah, oD S® 7M. Academy Photo
Offset Inc., New York, 1941.

Wonneberger, R. Understanding BHS. A Manual for
the Users of Biblia Hebraica Stuttgartensia. Ed-
itrice Pontificio Instituto Biblico, Roma, 1990.

Yeivin, I. Introduction to the Tiberian Masorah. Schol-
ars Press, Missoula, Montana, 1980.

184 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

Typesetting the Holy Bible in Hebrew, with TgX

6pt 8pt 9pt 10pt 11pt 12pt 17pt 24pt 36pt

NNNNNNNNN

2223233233 23

» R U R U (s = G R

2 S A e e e A A B
17

)

R A A

1)
7ol
naonon RN

!

R 2 o [o [da N (a T ¢ [ca I 0

2222222 2 2

| S I I
| IS I I

aRal~

DD DQDQQ

—Ja
— i Q
— U Q

—.Ja s Q
e Q
—ar Q
s Q

6-36 (part A)

Table 1: Hebrew characters in point sizes

edings of the 1994 Annual Meeting 185

TUGboat, Volume 15 (1994), No. 3 —Proce

Yannis Haralambous

6pt 8pt 9pt 10pt 1lpt 12pt 17pt 24pt 36pt

h I T e R e e .

OP0ODDDDDDD

y Yy
B D B

oy
DB
g B e B B B B B

yyyuy
BDDE

3 3 ¥ ¥ X X X XX

rrrrrrrrr

PPPPPPPPP

i N e M e e e e B

By w vy

L..7
L.
L.
L.
L.r
L.
L.

L.
L.~

6-36 (Part B)

int sizes

in po

Table 1: Hebrew characters

edings of the 1994 Annual Meeting

TUGboat, Volume 15 (1994), No. 3 — Proce

186

Typesetting the Holy Bible in Hebrew, with TgX

| 4
\S
‘s

S |
i |

o |

2l b
—1
U
- N
]
P4
o
g
T

9
s
—
Vi
~
s
-
€
€
yins |

%
s
| v
|
= |
i |

tl b4
—4
uJ
Ij
IRD4
o
J

DX 2R n
S5 KN 8Ty

Table 2: Hebrew letters and their input codes

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 187

Yannis Haralambous

[Name || Hireq | Sere | Segol | Patah | Qames | Holem [Qibbus |

PN PN N L7y RN N N
. . \ / \ ! \ ! \ J \ ! \ ! \ !
leerlan ~_ 7 N_7 N_ 7 N_7 N_ 7 N_7 N_ 7
. .o o = T .
. _ i -
VRN VA VR PR /T VR VR
.. \ ! \ ! \ ! 1 1 \ ! 1 1 \ !
Palestinian N_~ N N~ ~_~ N N N
. e . > ~< 1
//\\ //\\ /’\\ //\\ /’\\ //\\ //\\
\ ! \ ! {] \ 1 \ ! { 1 { 1
Babylonjan N_ 7 ~N_ 7 N_ 7 N_ 7 N _ 7 N_7 N_ 7
Input 1 e E a A o u
Alt. input || <HIR> | <SER> | <SGL> | <PAT> | <QAM> | <HOL> <QIB>

Table 3: Hebrew vowels (Tiberian, Palestinian & Babylonian) and their input codes

Hateph- Patah Mater
Sewa | Patah | Segol | Qames furtivum lectionis
//\\ //\\ /’\\ /’\\ \
\] \ I \ ! ' I i l l . I j N
N _ 7 N _ 7 N _ 7 N _ s
: = T - -
! Ha HE HA +X +h wAO Ao

<SWA> | <HPA> | <HSE> | <HQA> | <PTF>x | <PTF>h* | w<RHO> | ’<RHO>

/ \ / AN / A 4 \ 4 \ / \
\ ! \ li i / i ! { ! \ /

b v D
<UHE> | <USH> | <USA> <LHE> <LSH> <L.SA>

Table 4: Special Hebrew vowels, special characters and their input codes

188 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

Typesetting the Holy Bible in Hebrew, with TgX

Mereka
Sillug Atnah Tiphha Mereka Munah | Mehupak kepula Darga
/’\\ /’\\ /’\\ //\\ /’\\ //\\ //\\ //\\
\ 1 \ ! \ J { ! i 1 i 1 \ 1 \]
T A < 7 a < v =
<SIL> <ATN> <TIP> <MER> <MUN> <MEH> <MEK> <DAR>
Xsil Xatn Xtip Xmer Xmun Xmeh Xmek Xdar
Zageph Rebia Pazer
Galgal parvum | magnum | magnum Geres GarSayim Pazer magnum
Y * r lza 4 ae
/,\\ //\\ //\\ //\\ //\\ //\\ /’\\ /’\\
\ i 1 i t ! \ ! 1 ! \ ! \ ! 1 1
5 _ _ _ - _ _ _
<GAL> <ZQP> <ZQM> <RBM> <GER> <GAR> <PAZ> <PZM>
Xgal Xzqp Xzgm Xrbm Xger Xgar Xpaz Xpzm
‘Ole
Azla weyored Tluy Salselet | Sinnorit | Circellus Tebir Rafe
Y < | I 4 (8 0]] -
//\\ /,\\ //\\ //\\ /’\\ //\\ //\\ /’\\
\ 1 i i \ ! \ ! \ i i i i 1 1 !
_ _ _ _ - _ 5 _
<AZL> <OLE> <ILL> <SHP> <SIN> <CIR> <TEB> <RAF>
Xazl Xole Xitl Xshp Xsin Xcir Xteb Xraf
Punctum Postpositivi
extraordi- Lineola Sinnor, Telisa
narium Varika | Circellus | (paseq) Segolta Zarga Pasta parvum
“ o (oM N Q
/’\\ //\\ //\\ /’\\ //\\ //\\ /’\\ /’\\
\ ! \ ! i I { ! \ 1 \ ! \ ! \ 1
<PUN> <VAR> <PCR> <LIN> <SEG> <ZAR> <PAS> <TLP>
Xpun Xvar Xpcr X1in Xseg Xzar Xpas Xtlp
Praepositivi
Rebia TeliSa Soph
mugrash Dehi Yetib magnum | Setuma Petuha Maqqgeph pasuq
r o
/’\\ /’\\ /’\\ //\\ - ’
\ i \ } \ ! i)
N _ 7 N /\- N /< N _ 7 D 5 ’
<REM> <DEH> <YET> <TLM> <SET> <PET> =
Xrem Xdeh Xyet Xtm Xset Xpet

Table 5: Oldstyle Hebrew masoretic accents and their input codes

TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting 189

Yannis Haralambous

Mereka
Atnah | Tiphha | Mereka | kepula | Darga | Galgal Gere$ GarSayim
Ve 7”7
/’\\ //\\ //\\ /’\\ //\\ /’\\ //\\ //\\
\ ! \ ! i 1 \ 1 \ 1 i ! i ! { 1
A < 7 » s v - -
<ATN> | <TIP> <MER> <MEK> <DAR> | <GAL> <GER> <GAR>
Xatn Xtip Xmer Xmek Xdar Xgal Xger Xgar
Postpositivi Praepositivi
Sinnor, Rebia
Pazer | Azla | Sinnorit | Tebir Zarqa | PaSta | mugrash Dehi
[\] it} N 7
//\\ /’\\ //\\ //\\ //\\ //\\ /"\ //\\
\ ! i i ! 1 {] \ 1 \ 1 {] \]
- - - v - - - TN
<PAZ> | <AZL> <SIN> <TEB> <ZAR> | <PAS> <REM> <DEH>
Xpaz Xaztl Xsin Xteb Xzar Xpas Xrem Xdeh

Table 6: Modern Hebrew masoretic accents and their input codes

, ,, 7/ - N\ * / - AY O / - \

\ 1 \ 1 * \ 1
! It <MIL> | <AST> | <ASA> | <ZERO> | <DAGESH> | <XXX>
Xmil Xast Xasa Xzer Xdag XxxX

Table 7: Miscellaneous symbols and their input codes

190 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

Typesetting the Holy Bible in Hebrew, with TgX

TONT2

GENESIS
Caput L. 8

PR SPTINT TN DU DR DVTON K72 PR3
oFSR M) oEn LetSy M Y Y AT
$TRTITY TW T DION KT 1T B0y PR
T PR OISR ST 2173 TRTTIN TTOR X
NP D) oF RS | oy RPN cTenT TR
: 2N TP P27 2 AP0

O T3 57T T DT TIN3 3P T OTION N
SR DR D SN PR Tty vy ol
27T PRTS Sun W DT PR PR nmmn
Of TR 2T DY YRR DTN RO
B P/

TN DpROR DR Nnm 2T N OVION N
P TS | DNOR RPN 7T YR AN
RN 127D DTN KT DY NP DT MpRD
¥ oy e 2y R pT sehn ooy

ol
wAT

.....

2T s30T DS KT RS BT W
: S oY s

Figure 5: The book of Genesis, as printed in an 1889 Viennese Bible

TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting 191

Adaptive character generation and spatial expressiveness

Michael Cohen
Human Interface Lab, University of Aizu 965-80, Japan
mcohen@u-aizu.ac.jp

Abstract

Zebrackets is a system of meta-METAFONTS to generate semi-custom striated
parenthetical delimiters on demand. Contextualized by a pseudo-environment in
IATEX, and invoked by an aliased pre-compiler, Zebrackets are nearly seamlessly
invokable in a variety of modes, manually or automatically generated marked
matching pairs of background, foreground, or hybrid delimiters, according to
a unique index or depth in the expression stack, in ‘demux,” unary, or binary
encodings of nested associativity. Implemented as an active filter that re-presents
textual information graphically, adaptive character generation can reflect an
arbitrarily wide context, increasing the information density of textual presentation
by reconsidering text as pictures and expanding the range of written spatial

expression.

Adaptive Character Generation:
Zebrackets

Zebrackets TCohen 927 TCohen 93} takes a small-
scale approach to hierarchical representation, focus-
ing on in-line representation of nested associativ-
ity, extending parentheses (also known as “lunulae”
fLennard 912), and square brackets (a.k.a. “crotch-
ets”), by systematically striating them according to
an index reflecting their context.

Functionality. Table 1 crosses three of the dimen-
sions currently supported by Zebrackets, using a LISP
function (which performs a generalized “inclusive
or”) as a scaffolding.

index is the semantic value of the pattern being su-
perimposed on the delimiters:

unique generates a unique, incremental index
for each pair of delimiters

depth calculates the depth of the delimited ex-
pression in an evaluation stack, useful for
visualizing expression complexity

encoding scheme refers to the way that the index is
represented visually:

demux named after a demultiplexer, or data
selector, which selects one of # lines us-
ing lg, |n| selectors, puts a ‘slider’ on
the delimiter. Such a mode is useful
for establishing spatial references, as in
{topjémiddle}(bottom).

unary creates a simple tally, a column of tick
marks

binary encodes the index or depth as a binary
pattern, the most compact of these repre-
sentations

192

The demux encoding mode always has ex-
actly one band or stripe, but the unary and
binary encodings have variable numbers, and
use an index origin of zero to preserve back-
wards compatibility. Since the striations are
adaptively chosen, the complexity of the delim-
ited expression determines the spacing of the
streaks. Without NFss, the maximum number of
stripes for a self-contained face is 1g, ?¥§= 7.
Otherwise, for overly rich expressions that ex-
ceed visual acuity, Zebrackets can be limited to a
fixed striation depth, wrapping around (repeat-
ing) the indexing scheme if the delimiters ex-
haust the range of uniquely encodable values, as
seen in the unique x {demuxjunary} sextants.

type controls the style of the striations superim-
posed on pairs of delimiters:

background bands drop out segments from
the delimiters

foreground explicitly put in black ticks, which
are more legible if less inconspicuous

hybrid combines these two styles, dropping
out bands at all the possible slot locations,
and then striping the actual index

Eventually perhaps, greyscale striations (not
vet implemented) might interpolate between
these approaches, causing the ticks to disap-
pear at normal reading speed, but be visible
when doing a detailed search.

Foreground Zebrackets only work well with
thinner faces, and background Zebrackets only
with bolder faces. Figure 1 exercises Zebrack-
ets through an obstacle course of less common
fonts, showing some of the legibility problems,
even with figure/ground modes chosen to flat-
ter the filigrees.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

Adaptive character generation and spatial expressiveness

. index
encoding type unique | depth
(DEFUN ANY (LST) (DEFUN ANY {LST)
b d {COND {{NULL LST) NIL) {COND ({NULL LST) NIL)
ackgroun ((CAR LST) T) {{CAR LST) T}
(T {(ANY {CDRLST))))) {T (ANY (CDRLST)))))
{DEFUN ANY €LST) (DEFUN ANY (LST)
demux foreground {COND €(NULL LST) NIL) {COND €(NULL LST) NIL)
((CARLST) T) €((CAR LST) T)
(T (ANY €CDRLST))))) €T (ANY (CDRLST))})))
{DEFUN ANY 7LST: {DEFUN ANY {LST}
. £COND £ £NULL LST* NIL? £COND £{NULL LST3 NIL}
hybrid {{CAR LST} T £{CAR LST} T}
{T {ANY £CDR LST' {T {ANY {CDR LST}}} } }
(DEFUN ANY (LST) (DEFUN ANY {LST)
back d ({COND {{NULL LST} NIL} {COND {{NULL LST} NIL)
ackgroun {{CAR LST} T} {{CAR LST} T)
{T (ANY (CDR LST)):)) {T {ANY {CDRLST}}J))
(DEFUN ANY (LST) (DEFUN ANY (LST)
unary foreground {COND €€NULL LSTJ NILJ (COND €€NULL LSTY NIL)
E{CAR LST} T} €€CAR LST) T)
£T (ANY (CDRLST))I J) {T €ANY €CDR LST}3)))
{DEFUN ANY ZLST {DEFUN ANY {LST}
. YCOND ¥#NULL LST¥ NIL?® {COND f#NULL LST} NIL}
hybrid £€CAR LSTY T} £€CAR LST} T}
T {ANY {CDRLST ¥ Y : €T €ANY £CDRLSTI¥Y) }
(DEFUN ANY (LST) (DEFUN ANY {(LST)
back {COND {{NULL LST) NIL} (COND {{NULL LST} NIL)
ackground {{CAR LST} T} {{CAR LST} T}
{T (ANY (CDRLST})})) {T {ANY (CDRLST)}}))
(DEFUN ANY (LST) (DEFUN ANY (LST)
binary foreground {COND C{NULL LST) NILY (COND €¢NULL LSTJ¥ NIL)
(€CAR LST) T) {{CAR LST} T)
£T (ANY (CDRLST))})) (T €ANY (CDRLST)))))
{DEFUN ANY {LST} {DEFUN ANY {LST}
. £COND ¥{NULL LST} NIL} {COND {£NULL LST} NIL}
hybrid €{CAR LST? T} {€CAR LSTY T2
€T {ANY {CDR LST}}J} } } {T €ANY {CDRLST}}} } }

Table 1. index:{unique, depth} x encoding:{demux, unary, binary} x type:background, foreground,
hybrid} (10 pt. cmtcsc Zebrackets, selected to match size and font {small caps] of text)

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

193

Michael Cohen

ACTIVE INGREDIENT: Hydramethylnon {tetrahydro-5, 5-dimethyi-
2(1H)-pyrimidinone(3-{4-{trifluoromethyl}phenyl}-1-{2-[4-(trifluoro-

methyl) phenyllethenyl}-2-propenylidenejhydrazone]

ACTIVE INGREDIENT: Hydramethyinon {tetrahydro-5, 5-dimethyl-
2{1H }-pyrimidinone{3-[4-{trifluoromethyliphenyll-1-{2-{4-{trifluoro-

methyl} phenyljethenyl}-2-propenylidene}hydrazone}

ACTIVE INGREDIENT: Hydramethylnon {tetrahydro-5, 5-dimethyl-
2{1H }-pyrimidinone{3-I4-itrifluoromethyliphenyl}-1-{2-{4-{trifluoro-

methyl} phenyljethenyl)-2-propenylidene}hydrazone}

ACTIVE INGREDIENT: Hydramethyinon {tetrahydro-5, s-dimethyl-
2(1H)-pyrimidinone(3-{4-(trinuorometnytjpnenyi}-1-{2-{4-(trinuoro-

maethyt) phenyijethenyly-2-propenylidenejiydrazonel

Figure 1: Application of Zebrackets to a chemical formula (sans serif bold extended with background,
sans serif with hybrid, sans serif demibold condensed with hybrid, “funny face” [negative inclination] with

foreground)

Implementation. The implementation of Zebrack-
ets comprises two aspects: a filter to generate per-
muted invocations of the underlying delimiters,
and the delimiter glyphs themselves. The filter
is composed of (an ad hoc collection of) csh and
sh shell scripts and C and per1 iWall & Schwartz
91} programs. The two-pass filter parses se-
lected text, invoked explicitly with editor utilities
like Emacs’ shell-command-on-region command
fStallman 883, or implicitly as a precompiler. In
the latter case, sections of the document set off
by the I&TEX fLamport 863 pseudo-environment
\begin{zebrackets}{<parameters...>}

\end{zebrackets}

are replaced by zebracket invocations. This pseudo-
environment is interpreted by a precompiler, like
a macro processor, that replaces vanilla delimiters
with zebracketed, and emits METAFONT £Knuth 863
source that will be invoked at image time.

The first pass parses the expression using a
stack, establishes the maximum number of stripe
slots needed, and generates the necessary META-
FONT files. For the unique index mode, the max-
imum number of striations is the number of bits
needed to represent its highest index, which is equal
to [lg, |delimiter pairs|]. Using the context estab-
lished by the first pass, the second pass replaces each
delimiter with IATEX code invoking its respective ze-
bracketed version by effectively traversing the under-
lying tree. As seen in Figure 1, different styles of de-
limiters (like rounded parentheses and square brack-
ets) are handled separately, and the respective stria-
tion slots are spaced out evenly along the height of
the delimiter.

For example, invoking the aliased precom-
piler/compiler on a document containing the con-
tents of Figure 2 runs the zebrackets filter on

“a * (b + ©))” (with arguments that mean “au-
tomatically generate (uniquely) indexed foreground-
striated binary-encoded 10pt. delimiters using cmr
base parameters”), determines that only one poten-
tial striation is needed, encodes the indices as bi-
nary patterns, replaces the source text with that in
Figure 3,! and generates the zpfbcmr10.mf source,?
as well as the appropriate . tfm and . pk files, which
together yield “(a * {b + c})” at preview (TeXview
fRokicki 93] via TeXMenu fSchlangmann 92} on
NextStep) or printing (dvips fRokicki 923) time.

By having indirected the glyphs one extra level,
Zebrackets implements a meta-METAFONT. Dynamic
fonts {Knuth 887 fAndré & Borghi 89 fAndré &
Ostromoukhov 891 employ what is sometimes called
“dynamic programming,” which is basically lazy eval-
uation of a potentially sparse domain. Although
each Zebrackets character is essentially determined
at edit-time, and the actual specification involves
human-specified ranges for zebracketing, because of
the communication between document and METRA-
FONT, character generation is context-sensitive and
adaptive, since the automatic specification can be
conceptually lumped together with the compilation
(via Tatex) and imaging.

Currently the size of the delimiters and the
name of the Computer Modern model font are

1 Idempotency of font declarations is finessed by
the \ifundefined condition {Knuth 843, pages 40,
308.

2 The syntax of METAFONT terminates a token
upon encountering a digit, sc no numbers can be
used directly as part of a font name. Therefore, the
number of striations is mapped to an alpha character
(‘a’=>0 stripes, ‘b’=>1 stripe, ...), which becomes,
after ‘z’ [for Zebrackets], ‘b’ or ‘p’ [for parentheses, or
brackets], and ‘b’, ‘f’, or ‘h’ [for back- or foreground,
or hybrid], the fourth character in the font name.

194 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

Adaptive character generation and spatial expressiveness

\documentstyle[zebrackets]{article}
\begin{document}

\begin{zebrackets}{f,—l,—1,b1nary,10,cmr}
(a* (b +)
\end{zebrackets}

\end{document}

Figure 2: Sample (I&TEX pseudo-environment) input

\documentstyle[zebrackets]{article}
\begin{document}

'\ifundeﬁ' ned{zpfbcmr}\newfont{\zpfbcmr}{zpfbcmri10}\fi
{\zpfbcmr\symbo1{0}}a * {\zpfbcmr\symbo1{1}}b + c{\zpfbcmr\symbol1{3}}{\zpfbcmr\symbol{2}}

\end{document}

Figure 3: Sample (Zebrackets filter) output

explicitly passed as parameters to the pseudo-
environment. A more elegant approach would be
to code the Zebrackets filter directly as a bona fide
IKIEX environment, which could determine delim-
iter size and font at compile time (writing infor-
mation to an .aux file and using something like
“\immediate\writel8”to escape to the operating
system to create and invoke mf files). Zebrackets’
implementation as a precompiler insulates the char-
acters from useful positional and contextual infor-
mation, like page position and current font and size.
Otherwise, Zebrackets is compatible with (perhaps
redundant) IATgX dimensions, as overstated by Fig-
ure 4.

The Zebrackets filters slow down document
compilation considerably. However, since they are
usually image-level compatible, a document may be
previewed quickly in a Zebrackets-less mode, while
the cycle-intensive Zebracketsrun in the background,
eventually seamlessly strobing into the previewer
without any layout change or page motion.

Spatial Expressiveness

The notion of a fixed alphabet font is inherently lim-
ited, even one extended into a family by techniques
like weighting, italicization, emboldening, and lo-
cal contextual tools like ligature and kerning. Com-
puters offer the potential of “chameleon fonts,” al-
tered, depending on their context, to heighten leg-
ibility (readability, balance, or proportion) or evoke
emotions that complement, reinforce, or amplify the
words and ideas.

~N—
ho—lN
4
o
A——o—d’_‘

&AXB

Figure 4: Celebration of nesting hyperbole: Round
and rectangular tagged Zebrackets reinforcing in-
terleaved (to the limits of TgX's semantic nesting
stack size) tagged over- and underbraces, framing,
over- and underlining, emboldening, italicization,
case, natural operator precedence, and canonical
left—right reading order

Zebrackets is a focused realization of adaptive
character generation, useful in certain contexts, but
ultimately less important than its conceptual ambi-
tions. The logical extension of typography is arbitrar-
ily tuned characters, calculated globally and gener-
ated uniquely. Adaptive character generation is the
destiny of electronic publishing, glyphs adjusted in
arbitrarily subtle ways to carry information and fit
space.

Zebrackets and Multiple Master Typefaces. Read-
ing publications like Baseline and Emigre, one might
think that the only computer-driven typographic in-
novations are on the Macintosh, using tools like
Fontographer. This imbalance is perhaps because
the formalization of a meta-language (and its corol-
lary meta*-languages) is less accessible to artists
than graphical techniques.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 195

Michael Cohen

The notion of a meta-font language can be
likened to Adobe Multiple Master Typeface £Adobe
927 {Spiekermann & Ginger 93 with an arbitrary
number of axes, or dimensions, each correspond-
ing to a parameter. (Selection of a base font can be
thought of as setting lower level parameters.) Usu-
ally the glyph space is thought of as continuous, and
the arguments, or components of the index vector,
are floating point.

Zebrackets' integral characterization of the text
yields a quantized specification of a font; real num-
bers would allow for continuous variation (within, of
course, the resolution of finite precision encoding),
expanding even further the ability to custom-tailor a
font for a context. Such variety might manifest as ar-
bitrarily soft typefaces, perhaps employing greyscale
or dynamic effects, or tuned by the reader, to match
visual acuity.

Quantification of dimensionality. Visual languages
combine textual and graphical elements. Spatial ex-
pressiveness is achieved not only via effects like Ze-
brackets, but any kind of systematic control of doc-
ument presentation—explicit parameters like mar-
gins, but also implicit global characteristics, like con-
sistency or contrast of typographic features.

Words have different expressive qualities than
pictures, but treating text as pictures, interpolating
between 1D textual streams and 2D graphical rep-
resentations, enables some of the best qualities of
both. Table 2 attempts to align this spatial expres-
siveness with computer languages and communica-
tion modalities, suggesting that typeset documents
have a dimensionality somewhere between 1 and 2.3

It is amusing to try to estimate the value of this
non-integral dimension. We can assume that a doc-
ument composed entirely of (captionless) pictures
is fully 2-dimensional, and a document stripped of
graphical cues, denuded AscIl, to be entirely one-
dimensional, and that the interpolation between is
(linearly) proportional to the fraction of the respec-
tive components, as shown in Figure 5.

Using an information theoretic assumption that
a metric of a vector is proportional to its length, and
that languages are Huffman encoded, so that clichéd
expressions are terse, then the most expressive will
be the longest, and a heuristic for spatial expressive-
ness is simply to compare the magnitude of a graph-

3 Of course time must be considered another di-
mension, or design axis. Temporal techniques, like
Emacs’ flashing pairs of parentheses, will become
important in ways difficult for us to imagine now,
and cinematographic techniques will start to infil-
trate books (as in World-Wide Web). Perhaps rotating
colors through letters, or gently inflating/deflating
them, will make them easier to read. And, of course,
(hyperlinked) video is inherently temporal.

ical file with that of the underlying text:
|graphics| — |text] 1
|graphics|
where |text] is the length of the text substrate,
|graphics| is the length of the graphical file (which
includes all the text), and S is the dimension of
spatial expressiveness. In particular, the character
counts of the PostScript (.ps) file and the detexed
KTEX (. tex) and bibliography (. bb1) files can be used
to characterize the relative weights of the respec-
tive componentis. Using this formula, a simple shell
script, shown in Figure 6, calculates the dimension of
this document to be about 1.94. This value is inflated
by including the font encoding in the ps file, but such
a dilation is an expected consequence of sharpening
the granularity of the document rendering. A (per-
haps not undesirable) consequence of such a defini-
tion is that dimension varies with output resolution.
In contrast, we would expect the spatial ex-
pressiveness of a graphically-challenged document,
detexed source embraced by a minimalist compil-
ing context to be closer to unity. As seen in Ta-
ble 3, and corresponding with this intuition, small
documents are mostly graphical, with dimensional-
ity near 2, but as their textual component length-
ens, they become more vector-like, with dimension
closer to 1. The same text, but zebracketed, yields,
as expected, higher values of spatial expressiveness,
except for the lowest character counts, where the
heuristic manifests artifacts of detex idiosyncrasies.
Anyway, the test files used to generate these metrics
are more than a little artificial, because empty lines
are needed to prevent TgX’s paragraph buffer from
overflowing, and Zebrackets wrap-around restriction
currently makes it impossible to generate even a con-
trived document in which every character is unique.
The usefulness of such a metric is bounded by
the validity of its model; particularly suspect is the
assumption of equivalence of graphical information,
yielding artifacts of an over-simplified characteriza-
tion. It seems intuitive that the information in text
scales according to length (“A = B” has roughly half as
much information as “A =B = C”), but does, for exam-
ple, a PostScript (macroscopic) moveto carry, on the
average, the same amount of information as a same-
length fraction of a {microscopic) font encoding in a
document prelude? Only arguably, in a relaxed, in-
formal sense of “spatial expressiveness.” The data
must be regarded as preliminary, and further analy-
sis is indicated.

S.':

Paradigm shift: the end of fonts. As adaptive char-
acter generation becomes increasingly intricate, com-
pressed encodings become less relevant (since each
font is disposable), and the distance between the
bitmap and the next least abstract representation

196 TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting

Adaptive character generation and spatial expressiveness

spatial expressiveness computer communication
(dimensionality) language modality
1 ASCII
JIS, EUC {Lunde 93] email
Unicode
Rich Text Format (rtf) typewriting
TeX/IATEX/METAFONT typesetting
+ Zebrackets
device independent (dvi) handwriting
2 PostScript (ps) drawing & photography
texture maps
painting
Renderman (rib)
3 sculpture

Table 2: Correspondence of dimension with hierarchy of languages and media as richness of expression

1

dimensionality slider

2

2D partition:

graphical layout, typography, ...

1D partition:
textual substrate

Figure 5: Partitioning of document into graphical and textual components: the fraction of a document’s

graphical content determines its dimensionality

grows. Fonts as we know them will become single-
tons, eclipsed by transformations and geometric ma-
nipulations. - Document manipulation will be orga-
nized as filters—not only conventional idioms like
emboldening, underlining, size and color contexts,
but also legibility sliders, path-following and space-
filling constraints, visual overtones, and temporal
effects. Not only will characters be morphed, but
characteristics will be crossed and composed. Such
promiscuous intermingling of these filters, danc-
ing to graphical rhythms that reverberate through
the document, will legitimize an intermarriage be-
tween perspectives and multiple inheritance of eclec-
tic legacies.

An example of such local manifestation of global
context, inspired by the notion of a cross-reference
as a back-traversable hyperlink, can be seen in this
paper’s references section, whose (superimposed
demux-style) zebracketed keys indicate the pages of
all the respective citations. An extension to Zebrack-
ets (the intricacies of which deserve another paper)
automatically uses . aux, .bb1, and .1idx files to stri-
ate the bibliographic tags for back-references, each
of the delimiter slots representing a page of the doc-
ument. (The body of a paper, excluding the bibliog-
raphy, can be at most seven pages long, since only up
to seven striations are currently encoded by Zebrack-
ets.) The left delimiter points to the \cites and the
right indicates the \nocites. Notice, for instance,
that £Knuth 863 gets two explicit citations (one of
which is here) and one invisible one.

Conclusion. The handwritten “publishing” of pre-
Gutenberg scribes was arbitrarily subtle, with its at-
tendant human caprice (and mistakes). Printing can
be thought of as having rigidified this information
transmission. The research described here loosens
some of that determinism, not by randomizing the
presented information, but by softening the digitized
boundaries, thereby expanding the range of expres-
sion. Contextual fonts like Zebrackets indicate evolv-
ing modes of written representation, algorithmic de-
scriptions driving adaptive displays, as style catches
up to technology.

References

£Adobe 923 Adobe. Adobe Type 1 Font Format:
Multiple Master Extensions. Technical report,
Adobe Systems, February 1992.

fAndré & Borghi 897 J. André and B. Borghi. Dy-
namic fonts. In J. André and R. Hersh, editors,
Proc. Int. Conf. on Raster Imaging and Digital
Typography, pages 198-203, Lausanne, Switzer-
land, October 1989. Cambridge University Press.
ISBN 0-521-37490-1.

fAndré & Ostromoukhov 89} J. André and V. Os-
tromoukhov. Punk: de METAFONT a PostScript.
Cahiers GUTenberg, 4:123-28, 1989.

fCohen 921 M. Cohen. Blush and Zebrackets:
Two Schemes for Typographical Representa-
tion of Nested Associativity. Visible Language,
26(3+4):436-449, Summer/Autumn 1992.

TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting 197

Michael Cohen

#1/bin/sh

INPUTFILENAME=‘basename $1 .tex®

GRAPHICS=‘dvips -o "!cat" $INPUTFILENAME.dvi | wc -c‘

TEXT=‘cat $INPUTFILENAME.tex S$INPUTFILENAME.bbl | detex | wc -c‘
echo ‘echo 3 k $GRAPHICS $TEXT - $GRAPHICS / 1 + p | dc’

Figure 6: Shell script to estimate spatial expressiveness (dimensionality) of a compiled I4TgX document

target without Zebrackets with Zebrackets

characters | pages | TEXT | GRAPHICS S TEXT | GRAPHICS S
1 1 14 4073 | 1.996 49 4090 | 1.988
10 1 41 4193 | 1.990 76 6427 | 1.988
100 3 311 6001 | 1.948 346 30194 | 1.988
1000 23 3011 21009 | 1.856 3046 84223 | 1.963
10000 228 30011 154907 | 1.806 30046 226971 | 1.867
100000 | 2273 | 300011 1501805 | 1.800 | 300046 1661796 | 1.819

Table 3: Quantification of spatial expressiveness: stripped down and striped up

TCohen 932 M. Cohen. Zebracketss a Pseudo-
dynamic Contextually Adaptive Font. TUG-
boat: Communications of the TgX Users Group,
14(2):118-122, July 1993. 1SBN 0896-3207.

fKnuth 84} D. E. Knuth. The TgXbook. Addison-
Wesley, 1984. 1SBN 0-201-13448-9.

fKnuth 863 D. E. Knuth. The METAFONTbook.
Addison-Wesley, 1986. 1SBN 0-201-13444-6.

fKnuth 881 D. E. Knuth. A punk meta-font. TUG-
boat: Communications of the TEX Users Group,
9(2):152-168, August 1988. 1SeN 0896-3207.

fLamport 863 L. Lamport. ATEX: A Document Prepa-
ration System. Addison-Wesley, 1986. 1SBN 0-201-
15790-X.

TLennard 917 J. Lennard. But I Digress: Parentheses
in English Printed Verse. Oxford University Press,
1991. 1SBN 0-19-811247-5.

iLunde 931 K. Lunde. Understanding Japanese
Information Processing. O’Reilly & Associates,
1993. 1sBN 1-56592-043-0.

TLupton & Miller 903 E.Lupton and J. A. Miller. Type
writing. Emigre, (15):i-viii, 1990.

fRokicki 923 T. G. Rokicki. dvips 5.491, 1992.

fRokicki 927 T. Rokicki. NeXTTeX 3.141, 1993.

fRokicki 93] T. Rokicki. TeXview 3.0, 1993.

fSchlangmann 927 H. Schlangmann. TeXmenu,
1992. 4.1.

ISpiekermann & Ginger 93] E. Spiekermann and
E. Ginger. Stop Stealing Sheep & find out how type
works. Adobe Press, 1993. ISBN 0-672-48543-5.

fStallman 883 R. M. Stallman. GNU Emacs Manual.
Free Software Foundation, 1988.

fwall & Schwartz 91} L. Wall and R. L. Schwartz.
Programming perl. O'Reilly & Associates, Inc.,
1991. 1SBN 0-937175-64-1.

198 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

Humbsnl

Yannis Haralambous

Centre d’Etudes et de Recherche sur le Traitement Automatique des Langues
Institut National des Langues et Civilisations Orientales, Paris.

Private address: 187, rue Nationale, 59800 Lille, France.
Yannis.Haralambous@univ-1illel. fr

Abstract

The goal of Humssist iS 10 Humanize IAIEX. It is a concept, a document markup
syntax and a package of programs, macros and fonts. The concept of Humanast is
the use of word processors as “rich” TiX input devices. The user shall input, edit
and store a document in the most friendly and natural manner (in other words,
without a single IXTEX command), and be provided with syntactically correct and
platform-independent IATEX output. The docurment input, markup and editing is
done using any word processor with RTF output and TrueType (or PostScript)
screen display possibilities (for example Word and WordPerfect for Mac, Windows,
NeXT, X-Window etc.). Humanis? will convert the RTF output into IATEX code.

Paper withdrawn by the author.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 199

Problems of the conversion of METAFONT fonts to PostScript Type 1

Basil K. Malyshev

Institute for High Energy Physics, IHEP, OMVT, Moscow Region, RU-142284 Protvino, Russia
malyshev@mx.ihep.su

Abstract

The paper describes problems pertaining to the automatic conversion of METR-
FONT fonts into the PostScript Type 1 font format. Several methods of conversion
are discussed. A short description of the Paradissa Fonts Collection is presented.
It contains Computer Modern fonts (used in (IA)TgX) in ATM compatible Post-

Script Type 1 format. The use of the collection and the problems related to it are
discussed.

This paper will be published in the next issue of TUGboat.

200 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

The (Pre)History of Color in Rokicki’s dvips

James Lee Hafner

IBM Research Division, Almaden Research Center, K53/802, 650 Harry Road, San Jose, CA 95120-6099, USA

hafner@almaden.ibm.com

Abstract

In this paper I give an abbreviated history of the current scheme for using color
with Rokicki's dvips program up to the end of 1993. The real story begins in
early 1990, when a local user asked if I could add to the fledgling FoilTEX project
support for color to take advantage of our new color printers. This started a major
effort, in collaboration with Tom Rokicki, to find an efficient and simple method

for specifying color in TEX documents.

Introduction

The \special command enables you to make
use of special equipment that might be avail-
able to you, e.g., for printing books in glorious
TgXnicolor.

D. E. Knuth

As the quote above indicates, the grand wizard him-
self expected that color could (would?) be incorpo-
rated into TgX. He expected that this would be done
through the use of \special commands to the dvi
driver. In spite of this, not much was done with color
for many years. Even SLITEX, where color is very de-
sirable, was written to handle color in a rather cum-
bersome way.

In this paper, I will describe the efforts that went
into the design and development of the current color
support in Tom Rokicki’s dvips program. I consider
this the prehistory of true color support because only
some of the real color issues were addressed (and
many of these were done via simple hacks). Before
we go into dvips’s method, let me set the stage.

The availability of color PostScript printers cre-
ated a need for a better method to handle color. In
stepped a number of people, including Leslie Lam-
port who wrote color.sty and Timothy Van Zandt
who wrote PStricks. These all use literal PostScript
commands passed to the dvi driver and then to the
output PostScript file to create color effects. Unfor-
tunately, there are problems with the use of literal
PostScript. Namely, since each page is generally a
self-contained graphics object, color effects on one
page would not readily pass over to the next. Fur-
thermore, effects at the end of a current page might
trickle into the footnotes or page footer. This forces
the use of these color utilities to be limited to very
small parts of documents, e.g., single boxes. On the
positive side, most dvi-to-PostScript drivers handle
these kinds of literal PostScript \specials, so usabil-
ity/portability was not an issue.

My character enters the story in early 1990,
when alocal user asked if I could add to the fledgling
FoilTgX project support for color to take advantage of

our new color printers. (At the time, I was not aware
of the two packages mentioned above.) Using dvi2ps
and dvialw, I massaged some primitive color sup-
port into these programs but certain obstacles came
immediately to light. For example, in dvialw, large
characters and all rules are placed immediately on
the first pass of the page, and then the graphics en-
vironment is set up for the main characters. This is
efficient for memory use but not for consistent color.
If one tries to set a large square root sign in color, the
opening check mark is fine but the long rule above
the enclosed formula will always be black. Similar
splits of colors occur for large brackets. '

Finally, I came across Rokicki’s dvips and deter-
mined that this is very well suited for color. Some of
the reasons for this are stated below. This started a
collaboration with Tom about how one could achieve
the desired effects. In the next section I discuss the
relevant issues. Later I talk about the first real at-
tempts at getting at the problem. Finally, we describe
the current system in some detail and discuss some
of the limitations.

The Issues

There were a number of issues that we had to deal
with at three different levels of the process. At the
TgX-level (i.e., for the user macros) we wanted them
to work across formats so that they could be used
in FoilTEX as well as Plain TgX and IATgX, for exam-
ple. We had two somewhat conflicting requirements
at this level as well. We wanted to allow the naive
user to specify colors without having to know a spe-
cific color model (do you know what RGB=(1,.5,.2)
will look like? do you even know what RGB stands for
or the notation (1,.5,.2)7). At the same time we
wanted enough functionality in the underlying sys-
tem to let sophisticated color experts use a broad
range of color models and effects. Furthermore, the
macros should lend themselves to the kind of effects
one would expect with regards to TgX’s grouping. For
example, it should be possible to nest colors with the
expected results.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 201

James Lee Hafner

Equally important from our point of view,
the macros should be device-independent. In par-
ticular, they should not be written so that only
PostScript printers could handle them. This means
that the \special keywords should not invoke lit-
eral PostScript, but be generic. The transformation
from these generic keywords to the device language
(e.g., PostScript) should be handled by the driver it-
self. As far as I know, at present only dvips and
TeXview on a NeXT handle these \specials. Hope-
fully, in the next era in this history (see Rokicki’s arti-
cle in these proceedings), more drivers will be added
to this list.

Furthermore, nesting information should not
get lost at each new page or other structural break,
nor should the order of the pages matter when pro-
cessing. This of course requires careful handling at
the driver level. It must track this nesting informa-
tion and be able to restore state for any specific page.
Structural breaks include but are not limited to mar-
gin paragraphs, footnotes, headers and footers.

On the other hand, it is important to note when
dealing with color that different rendering devices
(even if they are POSTSCRIPT devices) can produce
dramatically different perceptual colors on the same
input. For example, on a Tektronix wax printer, green
is dark and rich whereas on an X-display the same
color is much lighter and even phosphorescent. Ide-
ally the driver should be able to customize itself for
this discrepancy, at least on named colors.

Dvips’s prescanning processes and its ability to
modify its behavior for different printers were ideally
suited to these ends. (Besides, it is well written code
and so easy to dive into to add modifications.)

There is one issue that we did not address. That
is the issue of “floats”. By floats, we mean anything
that appears in some place other than at the current
point where TgX encounters it. This includes the ob-
vious floats like figures and tables as well as the more
subtle issue of footnotes (particularly long footnotes
that might get split across pages) and saved boxes.
The problem here is that color attributes at the time
the float is processed may conflict with color at-
tributes at the time the float is placed in the docu-
ment. For example, a float that is encountered when
text is blue and background is yellow may float to a
page that has a yellow background. There are two
possible approaches to this, namely, the float picks
up the attributes on the page on which it is set or it
takes its attributes (and the surrounding attributes)
with it to the float page. In this case, the float may
have a boxed background that differs from the main
page on which it is set. As should be obvious, this
problem is very subtle and it is not clear what ap-
proach is the best to take. Some local grouping a la
the current scheme may provide a partial solution to
the problem using the first approach, though we have
not experimented with it at all.

A First Pass

In the first attempts at addressing this problem of
color, we ignored the device-independence of the
\special keywords and attempted to find a solu-
tion that required very minimal (if any) changes to
the original dvips code.

We used literal PostScript strings in \special
macros. There were two kinds of macros. Ones that
just set the color state, and another that tried for
nesting. This saved the current color state on the
PostScript stack, set the color and at the end of the
grouping, restored the color state from the stack. For
example,

\def\textRed{%
% set color to Red
\special{ps:1 0 O setrgbcolor}}

% save current color
\def\Red#1{\special{ps: currentrgbcoior}
% set color and typeset #1

\textRed #1
% restore old color
\special{ps: setrgbcolor}}

To help with changes across page boundaries,
we made a small modification to the bop (BeginOf-
Page), eop (EndOfPage), and start in the header
files. Basically, eop saved the current color, bop re-
stored the color and start initialized the color on
the PostScript operand stack. Tom suggested that we
do this on a separate color stack, an idea we never
implemented because we soon abandoned this ap-
proach. We realized that this method was inherently
flawed because it was too much tied to PostScript and
it only worked if the document was processed front
to back with all pages printed. We thought about
storing more of the color stack information in the
PostScript itself, but this still suffered from a num-
ber of limitations, not the least of which is the first
one mentioned above.

The Current Scheme

After realizing that any attempt to do this work in
the PostScript code was either doomed or too costly
in terms of PostScript resources, we determined that
it would be best to have dvips track everything inter-
nally, primarily during the prescan and then when a
color is changed (either by starting a new color region
or closing one), simply output a “set color” command
in PostScript.
Below are the basic features of this scheme.

The \special Keywords. All color \specials be-
gin with the keyword color (with one exception).
The “parameters” to this keyword and their desired
effects are described below:

ColorName
Declare the current color to be the specified
color. Furthermore, drop all current color stack

202 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

history, and tell the driver to set the new color
state to ColorName (see the section on Header
Files).

Model Parameters
Same effect on the color stack history as above.
The new color state will have model determined
by Model, e.g., rgb, cmyk, cie, lab, etc., and
parameters Parameters in that model.

push ColorName
Append or save the current color to the color
stack, set the new color to ColorName.

push Model Parameters
Same as above but build the new color state
from the model and parameters.

pop
Take previous color off the color stack and tell
the driver to use this for the new color state
(used for closing of group).

There is one additional color special keyword.
This is background. It is used with either the options
ColorName or Model Parameters to tell the driver to
set the background color of the current page and
subsequent pages.

Some things to note about this system. First, it
is completely generic, with no reliance on PostScript.
Second, it assumes that some color names are known
to the driver or are defined in the output file. For ex-
ample, in PostScript, dvips could predefine Red to
bel 0 0 setrgbcoloror0 1 1 0 setcmykcolor.
{(In fact it uses the latter.) The user might also be able
to use the drivers’ literal strings mechanism to pre-
define their own color names. Third, there are two
types of color settings. The first is just a “set color
and forget the stack.” The other “push”es the current
color on the stack, sets a new color, and (presumably
at the end of a group) “pop”s the last pushed color off
the stack to restore. This is the basic nesting mecha-
nism. It is limited only by the resources dvips uses.
Fourth, the parsing of the flags is in a hierarchical
order. First comes the color keyword to indicate a
color special. Next is either a known color name or
a color model. After the color model are the param-
eters for the chosen color. This is in slight contrast
to PostScript itself which is more stack oriented and
expects the parameters first. We feit that if the driver
didn’t understand a particular model it should recog-
nize this in the order it parses the \special string.

This functionality of being able to specify the
model and parameters allows sophisticated color
users a simple option to get special effects.

Header Files. As mentioned above, we assume that
a certain set of color names is already known ei-
ther to the driver internally or is passed to the out-
put file for the printer interpreter. In dvips this
is done in the second manner via the color.pro
header file. This is prepended automatically to the
output stream as soon as any color special is en-
countered. In this file, two things are defined. First,

The (Pre)History of Color in Rokicki's dvips

the PostScript command setcmykcolor is defined
in terms of setrgbcolor in order that the output
can be processed by some old PostScript interpreters,
i.e., ones that do not recognize this function. More
precisely, this is done only if the current interpreter
requires a definition for this function. Other color
models could also be defined here if necessary. Sec-
ond, the predefined color names are defined in terms
of the CMYK (Cyan, Magenta, Yellow, Black) color
model. The reasons for this choice are that most
color printers use this physical model of printing.
This is a subtractive color space as opposed to the
additive color (RGB — Red, Green, Blue) of most dis-
plays. Another reason is that I had a good template
for matching color names to parameters in the CMYK
color space for a particular printer.

These colors are only conditionally defined in
color.pro. If they are known by the userdict, then
no new definition is added. The reason for this is that
a particular device might need to have different pa-
rameters set. Dvips’s configuration file mechanism
can then easily be used to customize the color param-
eters for a particular device by inclusion of a special
device header file.

I emphasize at this point the distinction between
physical device and output data stream. The latter is
PostScript or HPGL or PCL or some such. The former
is the actual physical device. These devices can vary
widely even under the same data stream. An analogy
is the difference between a write-white or a write-
black printer and the need for finely tuned bitmap
fonts for each. They may both be PostScript printers,
but they print differently. The driver should be able
to compensate for the physical characteristics of a
given device, if at all possible.

The Color Macros. The color macros, defined in
the style file colordvi.sty, come in basically two
flavors. One kind sets a new color by issuing a
\special{color ColorName} or \special{color
Model Parameters}. The second is a combination of
pushes, sets and pops for nested local colors. Fur-
thermore, there are user definable colors of both
types, where the user declares the color model and
the parameters. Finally, there is a \background
macro for setting the background color. For exam-
ple, the revised version of the \textRed and \Red
macros defined above are:

% set color to Red
\def\textRed{\special{color Red}}
% save current color and set Red
\def\Red#1{\special{color push Red}
% typeset #1 and restore old color
#1 \special{color pop}}

These are described in more detail in Hafner
(1992) as well as in the documentation for dvips and
for FoilTEX. Note, that these macros are completely
device independent, hence the name of the style file.
The macros are all in plain TgX form, so that they can

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 203

James Lee Hafner

be used in any format or macro package. In other
words, they are not IATEX specific.

As for the color names, we used most of the
names from the Crayola crayon box of 64 colors with
a couple of additions and some deletions. Additions
were the named Pantone colors not already included
(e.g., RubineRed) and a couple of other well-rendered
colors which we named ourselves (e.g., RoyalBlue).
Deletions were mostly for colors that did not render
well on our printers. In particular, the new fluores-
cent colors were eliminated. We chose these color
names over, say, the X11 colors for a couple of rea-
sons. First, we originally tried the X11 colors but they
suffered from bad rendering on all devices tested.
They just did not match their names (at least to me
on my display or printer). Second, we could match
the crayon names to the Pantone tables for a par-
ticular printer, and so give an approximate Pantone
match to the color names as well as a good set of pa-
rameters. This information could (should?) be used
at printer setup time to fine tune the parameters
of the predefined colors to nearly match a Pantone
(via special header files as mentioned above). In this
way, output devices can be approximately calibrated
to produce similar and expected results. The color
names were also very descriptive of the actual color
and very familiar to (at least) the North American
TgXies. So, naive users have some idea of what to ex-
pect from certain color macros.

Tracking the Color Stack. The color stack or history
is tracked by dvips in an internal structure. During
the prescan which always goes from front to back on
the dvi file, the color stack is tracked and a snap-
shot is taken at the beginning of every page. Dur-
ing the output pass, regardless of what pages are
being processed, the driver knows the state of the
stack at the beginning of every page. First one out-
puts both the background color (if necessary) and the
top color on the color stack (i.e., the current color
active at the beginning of the page) for the page be-
ing processed. Then color pushes just augment the
color stack. Color pops just drop colors off the stack.
Skipped pages are handled in the same way. This
tracking keeps everything consistent from page to
page.

The Remaining Issues. We have discussed almost
every issue that was raised in the beginning. These
included the simplicity of the macros themselves so
they can work with any format, can be used by naive
users with simple and generally recognizable names
(Crayola crayons), still fully support arbitrary color
models (if the driver can handle them), and their in-
dependence of the particular output data stream. We
also discussed, in our implementation in dvips, how
nesting and crossing of page boundaries are handled
in a clean way. Furthermore, the implementation also
can be easily customized for device-dependent dif-
ferences, even within the same data stream.

The only remaining issue is how other struc-
tural problems, like margin paragraphs, headers and
footers, itemize tags, floats and the like deal with
color changes. Other than floats, these can be han-
dled with simple redesign of the basic macros that
deal with these page layout areas. Namely, they sim-
ply need to protect themselves with some local color
macros. Unfortunately, most formats were written
before this issue of color came up, so certain prob-
lems can arise. As far as I know, FoilTgX is the only
format that has the color macros integrated into it.
For example, the header and footer macros have their
regions wrapped in a local color command that de-
faults to the root color of the document. So, for ex-
ample, if the root color is blue, and there is some
green text that gets split across page boundaries,
then the text will resume green at the beginning of
the next page and furthermore, the footer of the cur-
rent page and header of the the next page will still be
set in blue.

The mechanism described here is basically a
hack to deal with these problems. A more structural
approach at the driver level will be described by Tom
Rokicki. At the user level, there is now some color
support (e.g., \normalcolor and the color package
by David Carlisle) in the new version of IA[gX that is
designed to help deal with some of these problems
in the context of existing drivers. It should be noted
that the user interface in the color package is very
different from the one we have presented.

Concluding Remarks

The story doesn’t end here, of course. We don’t claim
to have solved all the problems (there are still many)
nor to have provided the functionality that a profes-
sional publisher might want (refer to the paper by
Michael Sofka on that point). The next era in the story
is for Tom Rokicki to write (see his paper in this pro-
ceedings). Hopefully, Rokicki’'s new developments
will provide a basis for a very powerful mechanism
for setting color and one that can be easily integrated
into plain TgX and the next generations of IATEX (and
other formats).

Acknowledgements

We thank Tom Rokicki for his comments on this pa-
per as well as for his acceptance of support for color
in dvips and his continued interest in the subject.
Thanks also to Sebastian Rahtz for the invitation to
participate in this session.

References

Hafner, James L., “FoilTgX, a IATEX-like system for
typesetting foils”, TUGboat, 13 (3), pages 347-
356, 1992.

204 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

Driver Support for Color in TgX: Proposal and Implementation

Tomas Gerhard Rokicki
Hewlett-Packard Laboratories

1501 Page Mill Road

Palo Alto, CA 94303

Internet: rokicki@cs.stanford.edu

Abstract

The advent of inexpensive medium-resolution color printing devices is creating
an increasing demand for flexible and powerful color support in TgX. In this
paper we discuss a new implementation of color support and propose an initial
standard for color and color-like specials. We first discuss the difficulties that
are presented to the driver writer in supporting color, and other features, by
presenting a number of hard examples. Second, we present an implementation
of a driver that provides a solution to many of the problems discussed. Best
of all, this solution includes modular C code that is easily integrated into other
drivers, automatically translating the higher-level special commands into existing

low-level special commands.

Introduction

This paper has two parts: a collection of difficulties,
and a proposed partial solution. The collection
of difficulties is by far the easier part to write
and to read; it is always easier to criticize than
to originate. Nonetheless, it includes some subtle
conclusions. The proposed solution does not come
near to solving all of the problems raised in the
first section, but it attempts to solve at least one,
as one step towards a more general solution for the
remaining ones.

Our perspective is that of a dvi driver writer.
We care not for the user; let the macro programmers
provide a convenient interface. Rather, we attempt
to provide the primitive functionality from which
specific effects can be accomplished.

For driver writers, on the other hand, we have
untold sympathy. We will even do much of the
work for them, by providing a set of C routines that
implement the new functionality.

In order to understand why each problem is
difficult, and what conclusions we can draw from
each problem, we need to understand the limitations
of TgX and of the various device drivers. While there
is only one TgX, there are many different types of
device drivers, each with its own requirements and
capabilities. We can divide the drivers into four
categories according to their style of operation.

The first kind is a driver that scans the entire
dvi file (or at least up to the last required page)
before generating any output. This prescan phase
usually determines what fonts and what characters

from each font need to be downloaded. This type
of driver is typically necessary for laser printers.

The second type of driver does not perform this
prescan phase, usually because the output device
does not support downioaded fonts; this is typically
the case for dot-matrix printers or FAX machines.
This type of driver must render the entire page
before shipping even the first row of pixels; it too
buffers information, but at the page level instead of
the document level.

Both of these types of drivers typically process
the pages in the order they are given in the dvi
file. A previewer, our third type of driver, does
no such thing; instead, the pages are processed in
some random order, and quick access to each page
is desired.

The fourth and last type of driver we recognize
is the driver that generates a dvi file as output.
These include programs that do pagination tricks,
like dvidvi and dviselect, and programs that
expand virtual fonts, like dvicopy, and even the
dvicolorsep program that does color separation.

Because TgX does not support color directly,
we conclude that any such support must come
through specials. Thus, the task of the device
driver writer is two-fold: to recognize and parse the
specials that direct his rendering, and to perform
the rendering appropriately. This paper is primarily
concerned with the first task. Color rendering and
imaging is incredibly complex, so other than a few
minor points, we shall not yet concern ourselves
with these issues. Instead, we adopt the current

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 205

Tomas Gerhard Rokicki

solution, as described in Dr. Hafner’s paper in these
proceedings.

Part One: The Problems

Now we are ready to present some sample difficul-
ties and draw some conclusions from each.

Colored text and rules. Our first example is the
most basic; we want to specify that some text or
rules in our document be red. Because TgX does not
allow us to attach color information directly to text
or rules, this must be implemented as a change of
state for our abstract rendering engine. Since we are
using specials to implement colors, this change of
state must occur at the point in the dvi file that the
special is emitted. Therefore, specials that indicate
state changes must be used to implement colors.

Even at this early stage, problems arise. It is
not always obvious to the user where a special will
be emitted. In general, it occurs in the same place
in the linear stream of text that the user types,
but occasionally this is not the case. Consider, for
example, KIEX 2.09's 1ist environment. Placing a
~ special immediately after an \item command causes
the special to occur in the dvi file before the bullet,
coloring the bullet; this is not the intuitive result.
(Technically, this happens because the special does
not cause a switch to horizontal mode and is thus
simply attached to the current vertical list; the
bullet is inserted at the head of each paragraph,
which starts with the switch to horizontal mode.)
On the other hand, this can be considered simply
a side-effect of the way the list environment is
implemented; adding a \leavevmode command
before the special command works around this
difficulty. KIpX2¢ solves this particular problem
using color nesting, but similar problems can arise
in other situations and with other macro packages.

If the state change occurs at the point at which
the special occurs, then how shall we define the
range of the color command? One alternative
is to define the range to be that sequence of dvi
commands enclosed between two specials. A second
is to define it to be until the end of the enclosing
TgX box. A third is to define it to be until the end
of the enclosing TiX group. A fourth is to use some
combination of these.

Unfortunately, the box solution fails in a num-
ber of ways. First, there is no real notion of boxes
at the dvi level. Indeed, this can make it difficult
to color a paragraph red—that paragraph might be
split across several pages, and thus several boxes,
with no overall enclosing box.

The first solution subsumes the third. Groups
are not visible at the dvi level, but TiX’s aftergroup
command can be used to make specific groups
visible. Therefore, the range of color commands
must be from special to special.

Nested colors. The next question is whether to nest
colors. In other words, should we be able to color a
word red, without having to figure out and restore
the color of the enclosing paragraph? Somehow it
seems more consistent with TgX to allow nesting of
colors, and in many situations, nesting colors solves
some important problems. For instance, nesting is
used in the previous version of color support in
dvips and in the current version of KIEX2¢ to allow
headlines to work correctly. Certainly it is not hard
to implement. Thus, we should allow the nesting of
colors.

Should the driver be responsible for maintain-
ing the color stack, or should the TgX macros?
Either is easily implemented, and since the color
stack should never nest deeply, the resources con-
sumed by either should be negligible. If we use
TiX, we can always make the current color available
to the user of the macro package, provided that
we standardize on some representation. On the
other hand, we might not want to require that the
color stack be provided by the macro package—and
implementing a color stack is easy enough that we
might as well provide one at the dvi driver level.
Providing one at the driver level does not require
the TEX macros to use it. In any case, backwards
compatibility with the current color implementation
requires a color stack. The driver should implement
color stacking, and some macro packages might also
maintain the color stack for their own purposes.

Should we also include a command to set the
current color, independent of state changes? If
we are using a set of simple macros that just set
the color and ignore the stacking capability of the
driver, this might cause the stack to get increasingly
deep. And just issuing a pop stack command before
each color command fails with the first color. Since
it is a pretty easy feature to provide, we might as
well. The driver should implement non-stacked color
changing.

Colored text split across pages. Now imagine the
word “example,” in red, split across two pages. At
the dvi level, the “begin red” special will occur near
the end of one page, and the “end red” special will
occur near the beginning of the next. Thus, dvi
drivers must maintain the color stack information
across pages.

206 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

Driver Support for Color in TgX: Proposal and Implementation

In the context of page reversal, page selection,
and random page access, this requires that the dvi
driver store the contents of the color stack for each
page it might need to revisit, and set up the output
device state appropriately. This is not hard to
implement once the requirement is understood.

Page break in colored region with black headline.
There is a danger that a color region split across
pages might also cause some headlines or footers
to become contaminated with color. There is
nothing in the dvi file indicating that some text is
a headline or footline, so a straightforward nested
color implementation will have this problem. The
only real solution to this is to have the output
routine put that information in the dvi file. Similar
problems arise with footnotes, figures, and marginal
notes. The TgX output routine must indicate the
origin of text in order for the color to be maintained
correctly.

Alternatively, the output routine can simply
reset the color to black in regions such as headlines,
footlines, marginal note, and floats; this is the
solution currently adopted in KIEX 2¢.

Split footnote with colored regions. It might be
desired to color headlines or marginal notes. Indeed,
footnotes might have colored regions that are split
across pages. A single page break might split
both a pagebody colored region and a footnote
colored region. Therefore, the driver should actually
maintain separate and independent color contexts,
each with its own color stack, and the output routine
should issue the necessary commands to switch
among them.

In the case of marginal notes, it may not be
clear what the enclosing color context is. A marginal
note might occur inside of a float or inside of a
normal pagebody paragraph. Therefore, the driver
should maintain a stack of color contexts.

Such contexts make it easy to do things like
color all headers red; simply invoke the header
context, push or set the color red, and then return
to the previous context.

It is not clear how many different sources of
text there might be, so the color stacks should be
dynamically allocated by name inside the driver.

Footnotes within a colored region. Floats pose
an interesting problem. If an entire section of a
document is colored, should the included footnotes
be colored as well? What happens if the floats move
into the next section? As a logical consequence of
the color context idea, they should (by default) not
be colored, since they are from a different stream

of text. On the other hand, to provide just this
functionality if it is desired, it is easy to provide a
global context that is always used for attributes not
set in the current context. This global context will
provide functionality backwards compatible with
the current FoilTgX color model, and it will allow
setting the color of entire regions of a document. On
the other hand, it will not allow floats or footnotes
that have portions on pages after the end of the
color region to have the appropriate color; the color
contexts must be used to obtain that effect. A
special “global” color context should be used as a
default for parameters not set in the current context.

To summarize, all stack push and pop com-
mands affect the context on the top of the context
stack; this is the current context. Colors (and other
items) are always searched for first in the current
context and then, if not found, in the global context.

An alternative, and perhaps preferable, im-
plementation is to search in the current context,
and then in the next context on the context stack,
etc. This may be more natural, but it undoes the
“defaulting” that we currently get if we set the
pagebody to red and draw a marginal note. We be-
lieve this defaulting is more important, so we have
implemented evaluation to only search the current
and the global context, rather than all of the ones
on the context stack.

Everything we have described so far is easy to
implement. At the beginning of each page, we have
a particular stack of contexts, which we save away
in case we ever need to render that page again. In
order to generate that data structure for a particular
page, we must scan the dvi file from the front to
that page. In other words, in the presence of color,
it is no longer possible to read the dvi postamble
and skip backwards on the previous page pointers
in order to quickly find a page. On the other hand,
the processing required to skip pages is negligible.
In order to properly render any page, all previous
pages must be scanned.

Because it is trivial to write out specials to set
the stacks to any desired state, page reversal is also
implementable. Indeed, it is easy to eliminate the
stacks altogether using a dvi to dvi translator, thus
allowing the use of simpler drivers, or translating
the specials to a form recognized by a particular
driver. The only trick is to use a syntax that allows
the dvi to dvi program to easily distinguish those
specials it must manipulate from those that it must
leave alone.

Changebars. The color mechanism we have de-
scribed will also help with tasks other than color.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 207

Tomas Gerhard Rokicki

For instance, changebars are also complicated by
the asynchronous nature of TgX’s output routine.
Defining changebar on and changebar off to be
color-type commands gives us the full nesting and
state saving capabilities we used for color. Indeed,
we can use the context switching commands to give
us a vertical reference position, and define some
changebar parameter to give a horizontal offset
from that position, allowing dual-column change-
bars. This solves the problem of having changebars
span inappropriate figures and not span appropriate
ones.

The current implementation does not yet sup-
port changebars, but the author feels that the
changes should be straightforward. Indeed, as with
color, it is possible for a dvi to dvi program to
convert a dvi file that specifies changebars into one
that uses explicit rules. Color and color context
specials are appropriate for tasks other than color.

Colored backgrounds. Another use of color, espe-
cially for slides, is in setting the current background
color. Instead of modifying characters and rules
between specials, this affects the entire page back-
ground before anything is drawn. There is no
reason not to allow this to nest just like other color
commands do, even though the primitives are at a
different level. Thus, we must be able to specify the
background color.

Colored background with headline on first page.
Because of the way specials are sent out, headline
text is emitted before any specials attached to the
page contents. Thus, if the first page has a headline,
that headline will occur in the dvi file before any
page content such as specials. Therefore, the page
global attribute values in effect at the beginning of
a page, or before the first character or rule in the
dvi file, might not be what is intended.

To solve this problem, we define that the
page globals in effect at the end of the page are
what define the values for the page background,
orientation, or other page globals. This has two
effects. The simple one is that page globals must be
syntactically distinguishable from non-page-global
color information. Indeed, this last requirement also
allows us to distinguish a page-global rotation from
a local rotation. Page globals must be syntactically
different from local attributes.

A more important effect is that either pages
must be fully prescanned before rendering can
begin, or the driver must be prepared to restart the
rendering of a page if a page global is encountered
with different values from those currently in effect.
" Currently, many drivers prescan anyway. For those

that do not, they cannot send out the first row of
pixels until the entire page has been scanned anyway
(a character at the top of the page might be the last
character rendered in the dvi file), so rerendering
when necessary is not terribly inconvenient. Thus,
to support page globals, pages must be prescanned
or possibly rerendered.

Paper size specification. One important page global
is the specification of the paper size. Indeed, the
lack of a standard for this information makes the
driver’s job much more difficult; knowing the job is
intended for A4 paper can allow the driver to either
request the appropriate paper, or shift or scale the
page to fit. Certainly paper size is a typesetting-level
and not a print-level option. Paper size should be
specified as a .page global on the first page. The
desired paper size should be specified in the dvi file.

Imposition of pages with colored backgrounds
or varying paper sizes. One function of dvi to
dvi programs is page imposition—where pages are
laid out in a specific order and orientation so that
the folded signatures contain them in the proper
order. When pages are imposed, the semantics
of the page global options such as paper size and
background color change slightly; this is simply
a complexity that must be dealt with by the dvi
to dvi program. It is possible to approximate
some of these combinations using the appropriate
dvi commands; for instance, page background
commands can be converted into commands to
draw a large background rule in the appropriate
color.

Envelope/media selection. Page globals, such as
paper size, might change in a particular job. For
instance, many modern printers include an envelope
tray; it would be convenient to have a media-
selection page global that would allow a standard
letter style to properly print the envelope, or select
a sheet of letterhead for the first page of a long
letter. Drivers should support different paper sizes
within a single document.

Coloring the backgrounds of boxes. Occasionally
a user might want to color the background of a
particular TgX box. There are several problems with
this. The first is that the box information simply is
not available at the dvi level. The second is that
the box dimensions tightly enclose the contents;
does the user really intend to have the italic “f”
protruding from the colored region? Finally, this is
something that is easy to do at the TgX macro level
by simply drawing a rule of the appropriate size

208 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

Driver Support for Color in TgX: Proposal and Implementation

and color before setting the box. Many things still
should be implemented at the TgX level.

Colored table backgrounds. One of the more com-
mon uses of color is to decorate the backgrounds
of tables—each column gets a distinct shade or
color. This is quite difficult to implement, although
Timothy Van Zandt has had success with his col-
ortab.sty. The primary difficulty is obtaining
the column dimensions—height and width—before
rendering the text of the columns. Many common
requirements still defy easy solution.

Included graphics and other objects. It should also
be possible to include graphics and do other ren-
dering with specials, in the way they were intended.
The main requirement is that these types of specials
be syntactically different from the color specials, so
that dvi to dvi programs know which specials to
manipulate and which to leave alone.

As an aside, it is important that the mechanism
for including graphics respect the dvi magnification
and any rotation and scaling commands, so that
imposition and scaling work correctly. In addition,
it would be convenient to be able to easily calculate
the size of the enclosing rectangle from just the
special arguments so that, if nothing else, an outline
can be drawn. The dvi magnification should be
respected in scaling graphics, and some standard for
sizing/scaling included objects should be defined.

And while we are off the topic, there is no
excuse for not rendering PostScript graphics and
fonts with previewers and non-PostScript drivers.
The fine freely-available programs GhostScript and
ps2pk do all the hard work of rendering for virtually
any platform; a few dozen or hundred lines of
interface code is usually all that is necessary for a
fail-safe interface. If you can’t fully use PostScript in
your TgX environment, it is time to complain.

White on black. It is not necessary to wait for a
color device to support color. Even black and white
printers should support the two colors black and
white, including being able to render white text on
a black background. This is useful in itself and
for color separations. Even black and white devices
need “color” support.

Dithered text. When approximating gray text on the
screen or to a low-resolution printer using dither
patterns, the resulting image is often impossible to
read. This is because the dither pattern sacrifices
the high resolution needed to render characters for
the ability to approximate gray levels.

In professional printing, spot colors, rather
than four-color separations, are used to render

small text and other single-color highlights. It is
important to be able to specify what colors are
intended to be spot colors. We need a standard for
specifying and using spot colors.

For previewing or rendering on low-resolution
printers, it is often useful to disable dithering for
small fonts in order to end up with something that
is readable.

Fountains. Another comment request is fountains.
These are smooth graduations of color over an
area. For instance, many slides are rendered with
a background that is deep blue at the bottom and
lighter blue at the top. A rainbow can also be
considered a fountain. Fountains are normally
approximated by drawing hundreds or thousands
of narrow rules, each of a color midway between
its neighbors. Whatever color model is chosen for
TiX, it would be extremely nice to be able to render
fountains.

There are many more examples, including clip-
ping paths, character fountains, chokes, spreads,
and the complexities of color vision, color render-
ing, and color models, that we will not address
here.

Part Two: Some Solutions

This second part proposes a solution and imple-
mentation for some of the problems listed above.
This implementation is used in both dvips and
dvidvi, and the code is freely available to be used
in any manner whatsoever.

First we will discuss a categorization of specials.
Next, we will define a syntax, and finally, we will
describe some keywords and what they mean.

Before we delve into the technical details, let
us dispose of one objection: why not just introduce
a little language for specials? In essence, that is
essentially what we are doing; some might ask why
not give it variables, types, and conirol flow as
well. Of course, TgX is already a language; any
processing that can be done at the special level
is probably better and more portably done using
TgX. Also, we would rather people spend their
time learning a more practical language, such as
PostScript. Indeed, some may consider what we are
proposing as already unnecessarily complex—and
they may be right.

With even a very simple language, implement-
ing things such as change bars, colored table back-
grounds, and much more would be straightforward.

We are not ready vet to define such a language,
but we see it as an extension of what we propose
here.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 209

Tomas Gerhard Rokicki

Syntax and parsing. Specials are case-sensitive.
Words are defined as sequences of characters de-
limited by any of tabs, spaces, commas, equal signs,
or open or close parentheses. If one of the delimit-
ing characters is an equals sign, then the word on
the left of the equals sign is associated with the
word on the right.

The first word of the special is the keyword. The
remainder of the special are its optional arguments.

If a double quote occurs, everything up until the
next double quote is considered a single argument.

If a left quote occurs, the following argument
is treated as a string without the left quote. If such
an argument is opened as a file name, the argument
is treated as a command to be executed, and the
output from that command is read as the input
from the file.

The types of words are string, number, and
dimension. Strings or keywords are sequences
of numbers, digits, or any character other than
delimiters. Numbers consist of an optional negative
sign followed by a sequence of digits, optional
decimal point and additional sequence of digits.
Dimensions are numbers, followed by an optional
true, followed by one of in, pt, bp, dd, cm, or mm.
They are interpreted exactly as in TgX.

Categories of specials. We divide specials into
five categories: context switches, foreground state
changes, background state changes, document glob-
als, and objects.

1. Context switches push and pop contexts onto
the context stack by name. If the context
named does not exist, it is created. The default
context at startup is global.

context <push/pop> <name>

2. Foreground state changes set, push, or pop a
foreground state item, such as a color.

attribute <push/pop/set> <name>
[<value>]*

3. Background state changes set, push, or pop a
background state item, such as a background
color or paper type.

attribute <push/pop/set> page
<name> [<value>]*

4. Document globals set some resource require-
ment or provide some other information. These
specials must always occur somewhere on the
first page.

attribute <push/pop/set> document
<name> [<value>]*

5. Objects are everything else, including snippets
of PostScript code and included graphics.

psfile=foo.ps 11x=72 11y=72
urx=452 ury=930 rwi=500

With the above syntax, it is easy to syntactically
identify the type of a special without needing to
understand the specific instances.

Interpretation. We have introduced the idea of a
dvi color context that can be saved and restored
in a non-nested fashion. We allocate contexts
dynamically as they are encountered; a macro
package might define one for each of footnotes,
pagebody, figures, headers, marginal notes, and
global. The output routine will then issue the
appropriate ‘switch context’ commands at each
point.

context push header
<header stuff>
context pop

context push pagebody
<pagebody>

context push figure
<figure>

context pop

<more pagebody>
context push margin-note
<margin note>

context pop

<more pagebody>
context pop

Default values for attributes are more trouble-
some. Consider a document that, on page ten,
sets a specific special attribute woomp to the value
there-it-is, and this value remains set for the rest
of the document. If this document is reversed, the
set would then occur at the beginning of the new
document—but something must be done to undo
the special at the place where page ten now occurs.

The solution is straightforward. If a context
stack does not have an entry for a particular
attribute when a set occurs, the set is interpreted
as a push; otherwise, the set is interpreted as a pop
followed by a push. Thus, for a flat sequence of
sets, the first will allocate an entry on the context
stack for the attribute, and all others will modify
that attribute. If it becomes necessary to reset an
attribute to its default value, a pop will suffice.

The following implementation effectively flat-
tens all contexts into a simple sequence of set
attributes and pops. Pops are only issued to reset

210 TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting

Driver Support for Color in TgX: Proposal and Implementation

attributes to their defaults; there are no correspond-
ing pushes except the implicit ones introduced by
the sets.

Thus, with the provided C code, it is trivial to
integrate color contexts into an existing driver.

Implementation. Implementing these specials is ‘

straightforward. The key idea is that we need to
maintain the stack states for each page and restore
them appropriately. In addition, an implementation
can choose between always prescanning the first
time a page is encountered, either on a page
or document basis, or possibly re-rendering the
page if it should turn out to be necessary. Our
implementation supports both possibilities.

Essentially, the code provided flattens all con-
text specials and attribute settings to a simple
sequence of attribute sets and pops. All page spe-
cials are moved to the very beginning of a page,
and all document specials are moved to the very
beginning of a document. The dvidvi program pro-
vided does this from the provided dvi file; for all
other drivers, this special translation and movement
happens dynamically.

When a new dvi file is started, the driver is
responsible for calling initcontexts() to initialize
the various data structures. At the beginning and
end of each page, the driver should call bopcon-
texts() and eopcontexts(). These need not come
in matched pairs; if page rendering is interrupted
for any reason (such as the user selecting the next
page before rendering is completed) the driver must
not call eopcontexts() but should instead simply
call bopcontexts() for the next page.

The exception to this, of course, is that each
page must be fully scanned at least once, and
eopcontexts() called, before any subsequent page
can be rendered.

The driver must provide the subroutine dospe-
cial () that is responsible for parsing and under-
standing specials in the normal manner. Typically
this already exists in almost all drivers. But rather
than calling this subroutine every time a special
is encountered, the driver should instead call the
supplied routine contextspecial(). This subrou-
tine will check if the special is one of the context
specials described here, and if so, translate it to the
appropriate flat specials, calling dospecial() for
each one. If the special is not a context special, then
the driver’s dospecial () routine is invoked.

If the special was a page special or a document
special, and this is the first time this page has been
encountered, contextspecial() will return the
special value RERENDER indicating that the driver

should consider rerendering the page from the
beginning after performing (finishing) a prescan.
If the driver has not yet rendered any characters
or rules, or if the driver is scanning rather than
rendering, this return code can be ignored.

To identify pages, the driver should also pro-
vide a routine called dviloc() that returns a long
value indicating the byte position in the dvi file.

The call to bopcontexts() at the beginning
of a page may cause the driver's dospecial ()
routine to be invoked many times, once for every
outstanding page attribute and local attribute.

To handle document global specials, the entire
first page must always be fully prescanned.

The way the code works is as follows. At
the beginning of each page that has not been
previously encountered, the full stack contents of
each context are saved and associated with the dvi
file location for that page. If the page has been
encountered, then the stack contents are restored,
issuing any necessary set attribute specials for
current attributes in the global context. In addition,
any page attribute values are set. The context stack
is set to hold just the global context.

When a push context special is encountered,
the context associated with that name is found. If
none exists, one is allocated. If the context stack has
more than just the global context, then the attribute
values from the context on top of the context stack
are hidden. In any case, the attribute values for the
context being pushed are made visible.

Attribute values are hidden by searching for the
same attribute in the global context. If one exists,
then its value is emitted with a flat set attribute
special. Otherwise, the value is reset with a pop
attribute special.

Attribute values are made visible by simply
executing a flat set attribute special for each value.

When a pop context special is encountered,
the context stack is checked to make sure it has
at least two entries. If not, an error routine is
called. Otherwise, the top context is popped, and
all attribute values in that context are hidden. If
the resulting context stack has more than just one
context, then the attributes in that context are made
visible.

When an attribute push special is encountered,
then the attribute name and value pair are added
to the current context, and the new value is made
visible.

When an attribute set special is encountered,
if the context on top of the context stack has such
an attribute, than that attribute is changed and the
new value made visible. Otherwise, the set attribute

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 211

Tomas Gerhard Rokicki

special is treated precisely as though it were a push
attribute special.

When an attribute pop special is encountered,
the context on top of the context stack is searched
for that attribute. If the context has no such
attribute, an error is reported. Otherwise, the
attribute is hidden, and the attribute/value pair is
popped from the context. If the same attribute
exists in the current context (further down on the
stack), then that attribute value is made visible.

Note that attributes do not need to nest “cor-
rectly”; the following sequence is legal:

attribute push color red

<text>

attribute push changebar on
<text>

attribute pop color
<text>

attribute pop changebar

In addition, pushing and popping contexts
simply makes them visible and hidden; it does not
affect their values. Thus, assuming that the global
context is on the context stack, after the following
sequence, the color in the global context will be
green:

attribute push color red
context push header
context push global
attribute set color green
context pop

context pop

Backwards compatibility. For backwards compati-
bility, existing dvips specials are fully supported.
Most specials fall into the object category and
are automatically passed through to dospecial().
These specials include those for EPSF inclusion and
literal PostScript code.

The existing color macros are trivially sup-
ported by translation. The existing color macros
never change contexts (they always use the implicit
global context), so the semantics are unchanged
with one exception. The explicit color set macro
is now legal even when there are colors on the
color stack; only the topmost entry on the stack is
affected.

The four specials header, papersize, land-
scape, and ! are document global specials and are
translated as such. The next release of dvips will
also allow papersize and Tandscape specials to
apply on a page basis.

The code implementing these color specials,
along with documentation describing how to use

the code, is available in both dvips and dvidvi on
labrea.stanford.edu.

Future work. We plan to continue the development
of special capabilities using this form of interface.
In particular, we hope to add support for colored
box backgrounds, changebars, and similar things
through a simple language. As we or others
enhance the released code, any drivers that use this
will automatically get the new capabilities. And, the
dvidvi program will provide full support for these
specials for those drivers that don’t use the code.

Acknowledgments. The ideas in this paper are pri-
marily derived from discussions with James Hafner,
David Carlisle, Leslie Lamport, Frank Mittelbach,
Sebastian Rahtz, and Tim Van Zandt. The confusion
and complexity is attributable to me. I can only
hope that this code will evolve quickly and stabilize
into a useful and powerful base for using color in

TEX.

212 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

DVISep — A colour separator for DVI files

Angus Duggan

Harlequin Ltd., Barrington Hall, Barrington, Cambridge CB2 SRG, United Kingdom

angus@harlequin.co.uk

Abstract

This paper describes a simple colour separator for DVI files written by the author,
and explores the implementation and limitations of such a colour separator. The
colour separator recognises the colour support \special commands used by
dvips. It produces multiple DVI files as output from a single input file, each
containing a single separation from the input colour.

Introduction

DVISep is a simple colour separation program for
DVI files. It reads a single DVI file, outputting
separation files for each process colour and spot
colour found in the input file. DVISep recognises
the colour \special commands used by Tomas Ro-
kicki’s dvips driver, but is not limited to use with
dvips. DVISep is part of the second release of the
author’s DVIUtils package of DVI manipulation pro-
grams.

Colour printing presses and printers normally
use four process colours (cyan, magenta, yellow and
black) printed on top of each other to create the il-
lusion of many colours. Cyan ink absorbs red light,
reflecting only blue and green. Magenta ink absorbs
green light, reflecting red and blue, and yellow ink
absorbs blue light, reflecting red and green. Black is
also used as a process colour because the cyan, ma-
genta, and yellow inks do not have perfect absorb-
tion, and a combination of solid cyan, magenta and
yellow usually looks a muddy brown colour instead
of truly black.

Colour separation is the process of splitting the
image into appropriate proportions of the process
colours for the colours desired. DVISep generates
separate files for each of the process colours, con-
taining only the parts of the image with the appro-
priate colours in them.

In addition to process colours, printed pages
may use spot colours. Spot colours are used in sev-
eral circumstances; when there are only a couple of
colours in a document, it may be cheaper to print it
with spot colours rather process colours; special inks
(e.g. textured, metallic, neon colours or luminescent
colour) are required sometimes; and sometimes it is
necessary to provide an exact colour match, for in-
stance in a paint or ink catalogue.

Having decided which colours to use, there are
still different ways of combining those colours on the
page. Each object on the page may knockout or over-
print other objects. Knockouts cause blank areas to
appear on other separations; this may be useful when

an ink should not be combined with other ink on the
page; for instance, a spot colour should probably not
be printed on top of a process colour background.

Figures 1 and 2 illustrate the difference between
overprinting and knockout. If knockouts are set, the
shapes drawn last erase the corresponding areas of
shapes drawn before them; if overprinting is used,
the colours of previously drawn shapes are combined
with the latterly drawn shapes.

Using DVISep

The simplest use of DVISep takes an input filename:
dvisep file.dvi

This generates the output files Black.dvi,
Cyan.dvi, Magenta.dvi, Yellow.dvi, and spot.dvi
for each spot colour used in the input file!.

The \special commands currently recognised
by DVISep are a subset of those defined by Tomas
Rokicki’s dvips driver. The \special commands
start with either color or background, followed by
a colour specification. The colour specification may
be either a colour name, for example Maroon, or the
name of a colour space (rgb, hsb, cmyk, or gray) fol-
lowed by an appropriate number of numeric parame-
ters (3 for rgb and hsb, 4 for cmyk, or 1 for gray). The
numeric parameters are all within the range 0-1, indi-
cating the intensity of each colour component. Note
that for additive colour spaces (gray, rgb, and hsb)
zero values of the parameters indicate that no light
should be reflected from the page (i.e., the page is
marked black), whereas for subtractive colour spaces
(cmyk) zero values indicate that no light should be ab-
sorbed by the page (Le., the page is left white). The

1 On systems with restricted filename length the
spot colour names are reduced using a heuristic
rule which attempts to create a recognisable name.
DVISep does not overwrite other files of the same
name unless explicitly told to, so other files which
accidentally match the reduced spot colour name
will be preserved.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 213

Angus Duggan

Yellow

Figure 1: Colour separation with knockout

double guote form of colour specification supported
by dvips is not supported by DVISep.

A second form of \special command sup-
ported is color push followed by a colour specifica-
tion; this saves the current colour and sets the curent
colour to the new colour. The command color pop
sets the current colour to the colour last saved with
a color push command

Colours specified by a colour space and param-
eters are converted to CMYK process colours before
use. There is an option to DVISep which affects
this conversion process. The -u flag turns on un-
dercolour removal and black generation. RGB and
HSB colours are initially converted to CMY colours.
Undercolour removal removes an equal amount of
each of the CMY components, and black generation
adds that amount to the black component, yielding
a CMYX colour.

Colours specified by names are looked up in
a colour definition table; DVISep reads a default
colour definition file when it initialises, which tells it
the name, colour space, and parameters for named
colours. Spot colours are also defined by the colour
specification files. The format of these colour spec-
ification files is very simple — each line begins with
a colour name, followed by either a colour space
and numeric parameters, or the keyword spot and
a single numeric parameter for spot colours. Spot

Yellow

Figure 2: Colour separation with overprinting

colours may also have one of the optional keywords
overprint or knockout at the end of the line. Com-
ment lines in the colour specification file are indi-
cated by ‘# as the first non-blank character on the
line. Extra colour specification files can be loaded
by passing the -c file option to DVISep. If a colour
name in an extra colour specification file matches an
existing name, the specification in the extra file is
used. More than one extra colour specification files
can be loaded by using several instances of the -c
option.

The -o and -k options to DVISep indicate whe-
ther it is to overprint or knockout process colours;
knockouts for process colours are the default. Whe-
ther spot colours overprint or knockout is deter-
mined by the colour specification file; they will nor-
mally knockout unless the colour specification con-
tains the overprint keyword.

How DVISep works

Upon starting, DVISep reads a default colour specifi-
cation file, and then processes its arguments, which
may result in it reading more colour specification
files. Colours specified in RGB or HSB space are trans-
formed into CMY space when they are used, and then
into CMYK through undercolour removal and black
generation. The transformation from RGB and HSB

214 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

to CMY is very simplistic; the algorithms in Foley,
van Dam, Feiner and Hughes (Foley et al.1990) are
used. If undercolour removal and black generation
are turned on, the amount of black generated will be
equal to the minimum value of the other colour com-
ponents.

In general, colour transformation is more com-
plicated than this; the representable range of colours
on devices differs, depending on the printing process
and inks used. The same colour values will produce
noticeably different results not only on different de-
vices, but also on different calibrations of the same
device type and on different printing surfaces. This
problem is beyond the scope of DVISep —a colour
matching system is required to solve these problems.

DVISep makes several passes over the input DVI
file. The first pass is used to build up a structure
containing information about the pages in the file.
The start and end of each page is noted, and lists
of the spot colours and fonts used are generated.
DVISep then makes one pass over the input file for
each process colour and spot colour, to write out
the separation files. On each output pass, the ini-
tial colour is set to black, and a colour stack is main-
tained by noting the color push and color pop
special commands. As each page is scanned, DVISep
looks for colour changing \specials and commands
that mark the page (characters and rules). The ac-
tion taken for page-marking commands depends on
whether the current colour is a process colour or
a spot colour, and whether the colour is overprint-
ing or knocking out other colours. The name of the
separation files is generated from the process and
spot colour names. DVISep avoids writing out pages
which do not contain any ink.

Process colour handling. When page-marking com-
mands are found during process-colour separating,
the current colour is examined to see if it is a process
colour. If the current colour is a process colour with
anon-zero component of the separation colour being
generated, a colour support \special command will
be issued which sets the colour to a shade of gray cor-
responding to the amount of the component present.
For example, if the CMYK colour (0.87 0.68 0.32 0) is
specified in the input file, a command to set the gray
level to 0.13 will be issued for the cyan separation (re-
member that the gray parameters are inverted with
respect to CMYK parameters), a command for a gray
level of 0.32 will be issued for the magenta separa-
tion, and a command for a gray level of 0.68 will be is-
sued for the yellow separation. The colour command
will only be issued before the first page-marking com-
mand after each colour change.

If the current colour is a process colour with
a zero component of the separation colour, or a
spot colour, then DVISep needs to decide whether to
knockout existing objects on the page. If the knock-

DVISep — A colour separator for DVI files

out flag is set for process colours, or the spot colour
was specified with the knockout keyword {(or no ex-
tra keyword at all), then a command is issued to set
the current colour to white, and the page-marking
commands are written to the separation file. Knock-
outs done in this way will only work if the imag-
ing model of the output device is a paint-and-stencil
model like PostScript?, where white areas painted
over black areas erase them. If this imaging model
is not assumed, knockouts have to be done by de-
termining the difference of the shapes of the ob-
jects printed in the separation colour and the objects
which are knocked out. The results of this process
can not be represented in DVI format without gener-
ating custom fonts for the output resolution.

If the knockout flag for process colours is not
set, or a spot colour is specified with the overwrite
flag, then the page-marking commands up to the next
change of colour are ignored. This allows different
separations to have page-marking commands at the
same position on the page, causing the inks to over-
print and combine when printed. The page marking
commands cannot be completely thrown away, how-
ever, because character and rule setting commands
may move the current horizontal position. If charac-
ters are being ignored, DVISep reads and caches the
TFM (TgX font metric) file for the current font, moving
the current position right by the width of the charac-
ter.

Spot colour handling. Spot colour separations are
handled in a similar way to process colours, except
that only one component is considered when decid-
ing if the colour should be printed, knocked out, or
ignored. The numeric parameter to the colour spec-
ification of a spot colour is a tint value, which in-
dicates how much of the colourant should be ap-
plied, and hence the gray level for the following page-
marking commands.

Background handling. The background colour com-
mand needs some special handling in DVISep. The
last background command issued on each page is the
one which takes effect (this is Rokicki’s definition of
the background special command), so this informa-
tion must be stored in the page information during
the initial scan. The background colour is treated
much like other colours; if it is a process colour, then
appropriate background commands will be set for
each separation file, depending upon the amount of
the separation component in the background colour.
If the background colour is a spot colour, then the
background command will only appear in the spot
colour separation file.

2 PostScript is a trademark of Adobe Systems
Incorporated

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 215

Angus Duggan

Using DVISep

DVISep normally takes a single input DVI file, and
produces a DVI file for each process and spot colour
used in a document. There are several other options
which control DVISep’s behaviour.

The -¢, -k, -0, and -u flags have already been
mentioned; the first flag names additional colour
specification files to read, the next two flags indicate
whether DVISep is to knockout or overprint process
colours, and the last flag indicates whether to ap-
ply undercolour removal and black generation to RGB
and HSB colours when converting to CMYK.

The -s colour and -p options are often used
together; -s selects a single separation to output,
and -p causes this separation to be written to stan-
dard output. This allows separations to be filtered
through other programs from within scripts, without
having to know the filename that DVISep would cre-
ate for the separation colour.

Normally DVISep will not overwrite existing
files; the -f option forces it to do so.

The usual DVIUtils options of -v for version in-
formation and -q for quiet running also apply.

Using DVISep with dvips. DVISep can be used with
any device driver which supports Rokicki’s colour
\special commands. Input CMYK, RGB, and HSB
colours (and named colours which are specified in
these colour spaces) are converted to explicit gray
scale commands.

It is important that drivers should know which
separation is being output, so that halftone screens
can be generated at the correct angles. There is no
standard method of communicating this information
to the driver; DVISep issues a new \special com-
mand to indicate the separation. This special com-
mand has the keyword separation followed by the
separation name.

If the output of DVISep is being output through
dvips, header files should be used to set up the sep-
aration screen angles. Process colour screens are tra-
ditionally at 15° for cyan, 75° for magenta, 0° for yel-
low, and 45° for black. The eye is very good at picking
out vertical and horizontal features, which is why the
least noticeable colour (yellow) has the angle nearest
to orthogonal.

A header file that sets the screen angle to 15°
without changing the screen frequency or spot func-
tion3 might be defined as:

%!
%%DocumentProcessColors: Cyan
currentscreen exch pop 15 exch setscreen

3 Some high-end PostScript RIPs can be configured
to ignore user settings of frequency and spot func-
tions, because the user’s settings are not always ap-
propriate to the final output device.

The double quote form of colour specification
is not supported by DVISep, because its parameter
(an arbitrary PostScript string) does not give easily
usable information about what colour is required.

DVISep supports an extended form of colour
\special command, which allows spot colours to
be specified from within TgX. This command takes
the form spot plate tint, indicating the separation
plate on which the colour is to appear, and its in-
tensity. This colour command is not directly com-
patible with dvips; if the document is to be pro-
cessed by dvips before separating (e.g., for preview-
ing) then spot colours should be specified by named
colours, with a process colour approximation to the
spot colour in the color.pro header file.

Limitations

DVISep has some limitations, which need to be borne
in mind when using it. One of these limitations
has been mentioned already; knockouts assume that
printing in white can erase areas already printed in
other colours. This limitation may be a problem for
output drivers for a lot of devices, but fortunately not
for PostScript drivers.

A more serious limitation from the user’s point
of view is that DVISep does not currently handle
PostScript inclusions at all. There are reasons for this -
omission;

1. The \special commands used to insert Post-
Script code are output driver dependent.

2. The PostScript inclusion may reset the current
colour. To a certain extent, this problem can
be alleviated by putting the inclusion into each
separation and redefining the colour-setting op-
erators or transfer functions to set the colour
to white for colours which should not appear
on the current separation. This is not a total
solution, because the inclusion can still access
the original colour operators (and many applica-
tions produce PostScript which does this), and
because overprinting cannot be done with inclu-
sions.

Both of these problems are insurmountable in
the general case; there is no way of hiding the origi-
nal colour operators completely, because the dictio-
nary in which they reside is read-only, and itself is
impossible to hide. The second problem is insur-
mountable because PostScript does not have the con-
cept of transparency, except in the limited case of
image masks. Sampled images may contain a mix
of colours, and there is no facility for making some
of the image pixels overwrite existing objects on the
page, and making others leave the existing page un-
touched.

DVISep does not yet provide registration marks
for aligning pre-separated plates, or taglines for iden-
tifying separations. I hope to add these soon.

216 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

DVISep does not attempt to trap the separations
at all (trapping is used to reduce registration errors,
by enlarging or reducing areas painted on different
separations so that they have a very small overlap).

Conclusions

Colour separation is not necessary for many print-
ers, especially desktop printers, which use their own
colour rendering techniques to print continuous tone
data. Separation is necessary when going to press
with higher resolution work. Separating the DVI file
is quite easy, but some assumptions have to be made
about the imaging model which will be used. If film
or plates are being produced, separating the DVI file
may save time and effort, by removing the empty
pages from the separation files before printing.

The second release of the DVIUtils programs (in-
cluding DVISep) will be available for anonymous FTP.

References

Foley, James D, Andries van Dam, Steven K. Feiner,
and John F Hughes. Computer Graphics, Princi-
ples and Practice. Addison-Wesley, Reading, MA,
USA, second edition, 1990.

DVISep — A colour separator for DVI files

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 217

Simple colour design, and colour in IATEX2¢

Sebastian Rahtz

Archaeolnformatica, 12 Cygnet Street, York Y02 1AG, United Kingdom

sebastian.rahtz@cl.cam.ac.uk

Michel Goossens
CERN, CN Division, CH1211 Geneva 23, Switzerland
michel.goossens@cern.ch

Abstract

This article reviews some basic principles underlying the use of colour. We start
by a review of the functional use of colour, explaining how it can help to focus
attention, explain relationships, guide the viewer/reader through the presented
information so that its contents is easier to absorb and appreciate. Some common
rules for optimizing communication using colour elements in documents are
discussed. We then explain the colour support in IATgX 2¢ and give some examples.

Introduction

When considering the use of colour in a document,
we should think about it as a tool, not a gadget to
merely make the page look “pretty”. The painter
Eugéne Delacroix wrote

“La couleur est par excellence la partie de
Part qui détient le don magique. Alors que
le sujet, la forme, la ligne s’adressent d’abord
a la pensée, la couleur n’a aucun sens pour
I'intelligence, mais elle a tous les pouvoirs sur
la sensibilité, elle remue des sentiments.”

This sentence summarizes perfectly the role
that colour plays in the construction of the visual im-
age. By choosing the right colour, the typographer
can add an affective value to the message, thus help-
ing it to be understood more clearly.

The world of colour

The Greek philosopher Aristotle had already, in the
4th century B.C., studied the mixing of colours by
letting daylight shine through glasses of different
colours. But it was only in the 17th century, thanks
to experiments with glass prisms by Sir Isaac New-
ton, that the spectral theory of light was discovered,
thus ending a period of almost 2200 years in which
colours were ordered on a straight line from the light-
est to the darkest colour, starting with white and
ending with black. Newton ordered the colours on
a closed circular ring, a representation still in use
today!.

! Gerritsen (1988) gives an overview of the theory
of colour from antiquity to the present. He reviews
several models that have been proposed over the
years in order to classify colours. He shows that

Light can be decomposed into three “primary”
components, from which one can build all possible
colours. On a cathode ray tube, these colours are red,
green and blue, and one of the more popular colour
models is therefore called the RGB model. The print-
ing industry does not use these primary colours, but
rather their complements: cyan, magenta and yel-
low. This is because inks “subtract” their supplemen-
tary colours from the white light which falls on the
surface, e.g., cyan ink absorbs the red component of
white light, and thus, in terms of the additive pri-
maries, cyan is white minus red, i.e., blue plus green.
Similarly, magenta absorbs the green component and
corresponds to red plus blue, while yellow, which ab-
sorbs blue, is red plus green. In fact, for practical
purposes in the printing industry a process called
“undercolour removal” takes places. In this proce-
dure a fourth “colour”, black, is added to the printing
process, with an intensity equal to the equal amount
of cyan, magenta and yellow present in the sample.
This way one creates a darker black than is possible
by mixing the three coloured inks. This colour model
is called the CMYK model, where the final “K” stands
for the black component. Color Example 1 gives a
simplified view of the relation between the RGB and
CMYK models.

Colour harmony

Harmonies are arrangements of colour that are pleas-
ing to the eye. Scores of books giving the opinions of
experts have been written on colour harmony, and
the conclusions of many of these works are often

choosing a suitable model depends clearly on the
application area, e.g., mixing properties, human
perception, hue values, gray levels.

218 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

contradictory. Reasons to explain this are not hard
to find (Judd and Wyszecki 1963):

(a) Colour harmony is a matter of emotional re-
sponse, likes and dislikes, and even the same
person can change her/his mind over time,
since old combinations can become boring,
while frequent exposure to some new combi-
nation can make us appreciate it.

(b) Colour harmony depends on the absolute size
of the areas covered by the colours as well as
on the design and the colours themselves. For
instance, a nice looking mosaic pattern can look
completely unattractive when viewed magnified
by a factor of ten.

(c) Colour harmony depends on the relative sizes
of the areas as well as on their colours.

(d) Colour harmony depends on the shape of the
elements as well as on their colours.

(e) Colour harmony depends on the meaning or in-
terpretation of the design as well as on their
colours. It is important to note that colour har-
mony for a portrait painter is quite a different
subject from colour harmony in abstract design
or typography.

Therefore one can only try and formulate a few
principles for the construction of colour harmonies.

(a) Colour harmony results from the juxtaposition
of colours selected to an orderly plan that can
be recognized and emotionally appreciated.

(b) When comparing two similar sequences of co-
lour, the observer will choose the one most fa-
miliar as the most harmonious.

(c) Groups of colours that appear to have a com-
mon aspect or quality are considered to be har-
monious.

(d) Colours are perceived as harmonious only if the
combination of colours has a plan of selection
which is unambiguously recognizable.

Experimentally it has been observed that the eye
prefers combinations where primary colours are in
equilibrium with their complementary colours, and
that our perception of a colour changes in relation
to the environment in which it is embedded. Color
Example 3 shows effects of saturation or absorption
of the three primary colours with respect to white
(leftmost column) or black (second column) and with
respect to its complementary colour (third column)
or a gray tone of the primary colour itself (rightmost
column).

Constructing colour harmonies

To explain his theory of colours Itten, in his book
The Art of Colour (Itten 1974), uses a model based
on a harmonic colour circle subdivided into twelve
equal parts (see Color Example 2). It contains the

Simple colour design, and colour in IKIEX2¢

three primary colours yellow, red, and blue, 120°
apart. Their complementary colours, purple, green,
and orange, also called the secondary colours, are po-
sitioned diametrically opposite their respective pri-
maries. The circle contains six more colours, inter-
mediate between each primary and its adjacent sec-
ondaries. The harmonic colour circle is only a sim-
plification. Indeed, all possible colours can be rep-
resented on the surface of a sphere, which has the
harmonic colours at its equator, white at the north
pole, and black at the south pole. Thus moving from
the equator towards the south, respectively north
pole yields darker, respectively lighter variants of
a given colour. This also means that to each point
on the colour sphere, there exists a diametrically
opposed point with complementary characteristics,
e.g., to light greenish blue one opposes dark orange
red. Century long artistic experience has shown that
a few simple basic rules allow artists to construct ef-
fective colour harmonies in their works. Following
Itten, we shall discuss a few of them below.

Two-colour harmonic combinations. Complemen-
tary colours, lying at diametrically opposite points of
the colour circle (sphere) define 2-colour harmonies,
like the 2-tuples (red, greeny), (blue, orange), plus an
almost infinite amount constructed using possible
combinations on the sphere.

Three-colour harmonic combinations. When inside
the colour circle one constructs an equilateral trian-
gle, the colours at each edge form a 3-colour har-
mony. The most fundamental 3-tuple (yellow, red,
blue) is well know in all forms of art, publishing, and
the world of publicity, for its effectiveness, since it
can be used in a wide variety of patterns, layouts,
and in all kinds of light and dark combinations. The
secondary colour 3-tuple (purple, green, orange) has
also a strong character, and is often used. Other 3-
tuples are also possible. One can also construct other
3-tuples by replacing the equilateral triangle by an
isosceles one, or by working on the colour sphere
and combining light and dark variants. As a special
case, one can put one edge of the triangle at the white
point (north pole), and create the harmony (white,
dark greenish blue, dark orange red), or on the black
point (south pole), yielding the harmony (black, light
greenish blue, light orange red).

Four-colour harmonic combinations. One can con-
struct a 4-colour harmony by taking the colours ly-
ing on the edges of a square, e.g., the 4-tuple (yellow,
orange-red, purple, greenish biue). It is also possible
to use a rectangle, combining two pairs of comple-
mentary colours.

Higher order harmonies (like six-colour) are
equally easy to obtain using similar geometric mod-
els, by using the harmonic circle or the colour sphere.
Note, however, that each combination has its own

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 219

Sebastian Rahtz and Michel Goossens

character, and set of basic laws, and only a long ex-
perience will show which of the various sets of har-
monies is most efficient for a given application.

Colour and readability

The readability of a message or sign is closely linked
to how our visual system processes the information
presented to it. Factors which influence the visibility
of colours are:

(a) intensity: pure colours of the spectrum have the
highest intensity;
(b) contrast: between the different colours;

(c) purity: pure colours are more visible than
graded variants, where white is added, making
them fainter, or black, making them darker.

Color Example 4 shows some of the most effec-
tive colour contrasts, which can be used for max-
imum readability or visibility, e.g., on slides, road
signs, or publicity leaflets.

Colour in the printing industry

A detailed discussion of problems encountered when
producing books in colour with TgX can be found in
Michael Sofka’s article in these proceedings. In this
section, we merely present a short overview.

As already mentioned, the printing industry
mostly uses the CMYK model to describe the colours
on a page. Goossens and Rahtz (1994b, page 7) con-
tains an example with the five Olympic rings and a
multi-colour ellipse. It is shown how applying suc-
cessively the coloured inks gives the picture its final
colour. One starts with the cyan ink (top left), then
applies the magenta (top right), yellow (bottom left),
and finally the black inks (bottom right), to obtain
the picture in full colour. The process is shown with
the four separate stages, and the cumulative effect.

For high quality typeset output, the use of
PostScript is now almost universal, and level 2 of the
PostScript language offers full support for colour.
In fact it not merely supports the RGB and CMYK
models, but also the HSB (Hue Saturation Brightness),
CIE (Commission Internationale de I'Eclairage stan-
dard) plus various special colour spaces; in indus-
try and arts the Munsell and Pantone, and more re-
cently the Focoltone and Trumatch systems, have
become common for colour matching. The details of
these, and algorithms for converting between colour
models, are exhaustively discussed in Adobe Systems
(1991, pp.176-199). Very useful discussions of us-
ing colour in PostScript are given in Kunkel (1990)
and McGilton and Campione (1992), and our discus-
sion is based largely on what we have learnt from
these three books, and Reid (1986). It should be
noted that full Level 2 PostScript provides a num-
ber of important new commands which considerably
ease preparation of colour separations (see section

‘Simple colour separation using dvips’ on page 222
below).

Using colours with IATEX2¢

With the release of IATEX 2¢, colour macros are now
a standard supported package (together with graph-
ics file inclusion, rotation, and scaling). These are,
of course, dependent on the abilities of the driver
in use, as all colour is done using \special com-
mands. Hafner and Rokicki’s colordvi package (see
Hafner, this volume) was the first to try and address
some of the complexities of colour support — TgX
does not have internal support for colour attributes
of text, and TgX ‘grouping’ across pages, floats, foot-
notes etc will not always yield the expected results.
IATEX 2¢ has extended support to cope with most sit-
uations, and it is hoped that more driver support will
make this even better. Tomas Rokicki’s paper in this
volume discusses the problems in more detail. The
IATEX 2¢ colour package builds on the experience of
colordvi, bothin terms of the \special commands
themselves (allowing for an extensible set of colour
models), and in the macros.

One of the important features inherited from
colordvi is the use of a layer of colour ‘names’
above the actual specification given to the printer;
Hafner worked out a set of 68 CMYK colours which
correspond to a common set of Crayola crayons,
and these are predefined in the header files used by
dvips, and the user calls them by name, allowing
for tuning of the header files for a particular printer.
New colours desired by the user can, of course, be de-
fined using CMYK, RGB or other colour models, but
in our examples we will use the Crayola names.

The I&IEX2¢ colour support offers a variety of
facilities for:

¢ colouring text;

e colouring box backgrounds;
» setting the page colour;

¢ defining new colour names

We will look at the interface, and then consider
some uses for them.

The new IATEX 2 commands There are two types of
text colour commands, which correspond to the nor-
mal font-changing macros. The first one is a com-
mand:

[\textcolor{colourname}{text} |

This takes an argument enclosed in brackets and
writes it in the selected colour. This should be used
for local or nested colour changes, since it restores
the original colour state when it is completed, e.g.,

This will be in black

\textcolor{Blue}{This text will be blue}
and this reverts to black

220 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

The second type of colour command is of the form:

| \color{colourname} |

This colour command takes only one argument and
simply sets a new colour at this point. No previous
colour information is saved, e.g.,

\color{Red} Al1 the following text
will be red.

\color{Black} Set the text colour
to black again.

The command does however respect normal TgX
grouping; if we write
We start in black, but now
{\color{red} all text
is in red, {\color{green} but this
should be in green} and this
should be back in red.}
And we finish in black

we will see?

We start in black, but now all text is in red, but this
should be in green and this should be back in red.
And we finish in black

The background of a normal LR TgX box can also be
coloured:

[\colorbox{colourname}{text} |

This takes the same argument forms as \textcolor,
but the colour specifies the background colour of the
box. There is also an extended form:

i \fcolorbox{colourname} { colourname} }

This has an extra colourname argument, and puts a
frame of the first colour around a box with a back-
ground specified by the second colour.

The normal \fboxsep and \fboxrule com-
mands vary the line width, and offset of the frame
from the text, as the examples in Color Example 5
show.

Defining new colours. The colour names ‘white’,
‘black’, ‘red’, ‘green’, ‘blue’, ‘cyan’, ‘magenta’ and ‘yel-
low’ are predefined by all driver files. New colour
names can be defined with:

| \definecolor{name}{model}{spec} |

where spec is usualiy a list of comma-separated num-
bers needed by the model. Typically, drivers can cope
with the models gray, rgb and cmyk (although the
system is extensible), allowing, e.g.:

\definecolor{lightgrey}{gray}{.25}
\definecolor{cornflowerblue}{rgb}{.4,.6,.93}
\definecolor{GreenYellow}{cmyk}{.15,0,.69,0}

2 The small examples of colour like this will be set
using gray scales in this paper.

Simple colour design, and colour in ITEX?2¢

If you know that the driver has predefined
colour models, you can access these directly. Thus
dvips has a header file of CMYK colours configurable
for different devices (as discussed above), and sup-
ports the exira named model. We can access these
colours in the normal way:

\definecolor{Strawb}{named}{WildStrawberry}
It is also possible to use the \textcolor and
\color macros with an explicit colour model and

specifications, to avoid the overhead of defining new
colors and using up TEX macro space:

\color [model] { specification}
\textcolor[model] {specification} { text}

This enables us to gray-out text like Expandafter by
typing \textcolor[gray]{0.5}{Expandafter}.

Examples of colour in document design. The sim-
ple text colouring described in the preceding section
is moderately easy to implement and use. Color Ex-
ample 6 shows how a simple formal specification can
be enhanced with coloured keywords. Shading the
background of boxes is also a common requirement,
a simple example to emphasize some text might be:
. The grey-scale simulation of colour as
printed here is also not ineffective. For more sophis-
ticated use, the PSTricks package by Timothy van
Zandt offers a more flexible set of commands (see
the article by Denis Girou in the Cahiers GUTenberg
Girou (1994) for a full discussion, and many exam-
ples, of PSTricks); the colour support in IKTEX2¢
is compatible with PSTricks, so the same colour
names and definitions can be used. The gradient
colour fill in the background of Color Example 8 is
an example of more complicated use.

A common requirement is to combine coloured
text and shaded areas in a tabular format. This is
surprisingly difficult to program in IKIgX, and cannot
be undertaken lightly; however, another package by
Van Zandt, coTortab, takes care of almost all needs,
utilizing the IATEX2¢ colour primitives. The full set
of macros and syntax is described in the documen-
tation (it works in plain TgX, with IATgX’s “tabular” ta-
bles, and in Carlisle’s “longtable” documents). Color
Example 7 shows the results, with a real table taken
from a travel brochure (the code is given in Goossens
and Rahtz 1994b). This example shows how colour
is used to highlight similar structural elements of a
table to allow reader to navigate more freely and ef-
fectively through the information. It also shows a ba-
sic principle of colour work, namely not to use more
than two or three different colours, since the codi-
fication (the meaning associated to each colour) will
be lost. In this case we have used red for the head-
ing, the alternation white/yellow to outline rows, and
cyan to draw attention to the price column. It also

TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting 221

Sebastian Rahtz and Michel Goossens

shows the efficiency of the fundamental 3-colour har-
mony, the 3-tuple (red, blue, yellow), as discussed
earlier. For an interesting discussion of the use of
colour in publishing, we recommend White (1990).

Another very common application area for co-
loured text or background is colour overhead trans-
parencies. Color Example 8 shows a typical colour
scheme for slides, using van Zandt's seminar pack-
age (see Goossens and Rahtz 1994b in Cahiers
GUTenberg for more details), including the use of
a graded colour fill for the slide frame. As well as
coloured background, frame and lettering, we have
used another colour for emphasis in the text, and
highlighted the bullet lists with yet more colour.
Most readers will probably agree that this represents
distracting overkill, and that only one emphasis tech-
nique should be used at a time.

Simple colour separation using dvips

A document containing colour material can be type-
set using ITgX and run through dvips to create a
colour PostScript document that can be previewed
on screen, or printed on a colour printer. But if one
wants to produce a “real” book using offset printing
the printer will require four versions of each page,
containing, respectively, the gray levels correspond-
ing to the proportions of Cyan, Magenta, Yellow and
Black. Colour work is usually typeset on special film,
to high tolerances, since each page is overprinted
four times, and registration must be exact. Some
typesetting systems can produce the four separa-
tions automatically, but more commonly it is done
with PostScript manipulation. A high-level profes-
sional quality requires sophisticated tools that are
beyond the scope of this paper. Nevertheless, a TeX
user can produce straightforward CMYK separations
with dvips, using an approach that requires only
PostScript Level 1 operators.

The principle of dvips separations is that each
output page is produced four times (using the -b 4
command-line switch, or b 4 in a configuration file),
and a header file which redefines the colour oper-
ators differently for each of the four pages. The
header file (distributed with dvips, maintained by Se-
bastian Rahtz, and largely derived from Kunkel 1990
and Reid 1986), uses the bop-hook handle to incre-
ment a counter at the beginning of each page, and
so check whether a C, M, Y or K page is being pro-
duced. The setcmykcolour operator is then rede-
fined to produce just one of the four colours, in grey,
and RGB colours are converted to CMYK before go-
ing through the same process. The setgray opera-
tor is only activated on the black (K’) page. A listing
of the PostScript code is given in Goossens and Rahtz
(1994b).

The output from separation can be seen (simu-
lated) in Table 1 for the earlier example of -,

Magenta
Yellow
Black Wammg!

Table 1: Separation output

where the box is set in ‘ForestGreen’, whose CMYK
value is ‘0.91 0 0.88 0.12’. Notice that the ‘M’ page
will be blank, as neither the green box nor the black
text need any magenta.

References

Adobe Systems. PostScript Language Reference Man-
ual second edition. Addison-Wesley, Reading,
MA, 1991.

Foley, James D., Andries van Dam, Steven K. Feiner,
and John F. Hughes. Computer Graphics, Princi-
Dples and Practice. Addison-Wesley, Reading, MA,
USA, second edition, 1990.

Gerritsen, Frans. Evolution in Color. Schiffer Publish-
ing Ltd, West Chester, PA, USA, 1988.

Girou, Denis. “Présentation de PSTricks”. Cahiers
GUTenberg 16, pages 21-70, 1994.

Goossens, Michel and Sebastian Rahtz. “Composi-
tion en couleur avec IAIgX”. Cahiers GUTenberg
16, pages 5-20, 1994.

Goossens, Michel and Sebastian Rahtz. “Préparer des
transparents avec Seminar”. Cahiers GUTenberg
16, pages 71-82, 1994.

See also “Colour slides with IKIgX and seminar”.
Baskerville 4 (1), pages 12-16, 1994.

Itten, Johannes. Art of Colour. Von Nostrand Rein-
hold, New York, NY, USA, 1974.

Judd, Deane B. and Giinter Wyszecki. Color in Busi-
ness, Science, and Industry. John Wiley and Sons,
New York, second edition, 1963.

Kunkel, Gerard. Graphic Design with PostScript.
Scott, Foresman and Company, 1990.

McGilton, Henry and Mary Campione. PostScript by
Example. Addison-Wesley, Reading, MA, 1992.
Reid, Glenn. PostScript Language Program Design.

Addison-Wesley, Reading, MA, 1986.

Rokicki, Tomas. DVIPS: A TgX Driver, 1994. elec-
tronic distribution with software, version 5.55.

Van Zandt, Timothy. PSTricks: PostScript macros for
Generic TgX. User’s Guide. Version 0.93, 1993.
electronic distribution with software.

Van Zandt, Timothy. seminar.sty: A ITgX style for
slides and notes. User’s Guide. Version 1.0, 1993.
electronic distribution with software.

White, Jan V. Color for the Electronic Age. Watson-
Guptil Publications, 1990.

222 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

Printing colour pictures

Friedhelm Sowa

Heinrich-Heine-University, Computing Centre, Universititsstrale 1, D 40225 Diisseldorf, Germany

sowa@convex.rz.uni-duesseldorf.de

Abstract

Printing colour pictures in a TgX document needs a driver program that is able to
exploit the capabilities of a colour device. The driver must separate the colours
of the picture into the basic colours used by the colour model supported by
the output device. This was the purpose to develop the dvidjc-drivers for the
Hewlett Packard inkjet printers and to upgrade BM2FONT to version 3.0.

The solution described in this article proposes a device independent
approach to printing coloured TgX-documents, not only on expensive PostScript

devices but also on cheap colour printers.

How it started

Good reasons. During the last few years the hard-
ware industry has supplied the market with different
kinds of colour printers. In particular ink jet print-
ers with increasing quality and decreasing prices
appeared on the market. So not surprisingly, more
and more TgX users demanded dvi driver programs,
that exploit the colour ability of these printers.

The answer to this question usually was the
recommendation to use the colour package by Jim
Hafner and Tom Rokicki and to print the formatted
document via dvips using GhostScript. This was
a good recommendation, but the supplementary
megabytes, necessary for a GhostScript installation,
could be a problem. Another problem is the quality
of the output produced by GhostScript, which is way
below what users expect of TEX output. Moreover
the procedure is rather complicated and slow.

Yet it was not only the availability of good
and cheap colour printers that brought the colour
problem into the foreground. There were also the
discussions and decisions on colour support in TgX
by the KIEX3 and N'TS groups that made it clear
that an interface will be designed similar to the
known implementation of the dvips driver.

For all these reasons it was decided to write a
driver program for the HP DeskJet family, hoping
that it could be an example for other devices. It
is even to be expected that it could be adapted to
the final design of a graphics and colour interface,
which is to be developed in the future.

An easy solution. The starting point of the project
was a driver program for a dot matrix device
and a program which could separate colours of a
picture. The driver program was dvidot, written by

Wolfgang R. Miiller, which had to be extended in a
way, that it could use the different inks of the HP
DeskJet printers, support the \special-commands
for coloured text and, the most important and
difficult point, produce mixed colours from the
primary colours cyan, magenta, yellow and black.

Colour separation could be done by BM2FONT,
so that no special interface for the driver program
had to be written. The four colour separations of
the picture had to be stored in fonts, differentiated
by their names, and then included into a document
by overprinting each other.

This plan seemed to maintain the compatibility
to dvips and the output it produces on paper, as-
suming that coloured text and pictures are handled
similarly by PostScript. At the end of this paper it
will be explained why this assumption was wrong.

Colour models

Before describing the dvidjc driver and the new
features of BM2FONT version 3.0, some remarks
have to be made on the different colour models we
have to deal with in the real electronic world. The
most important and mostly used models are based
either on the primary colours red, green and blue,
or on cyan, magenta, yellow and black.

The RGB-model. The colours red, green and blue
are used for phosphorescent surfaces to produce
mixed colours, a technique used in colour monitors.
The following diagram shows what colours result
from overlapping areas of fully saturated primary
colours.

Digitized pictures mostly use the RGB model by
storing the colour of the pixels in three bytes, each
representing the intensities of the primary colours

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 223

Friedhelm Sowa

in the range between 0 and 255, where 255 means
a full saturation of the colour. Some economical
picture formats use up to 256 colours by using a
pixel index to a palette of such colour triplets like
PCX or GIF. Others like TIFF or TIGA use 24 bits
for each pixel and can reproduce up to 16,7 million
possible colours.

blue

Figure 1: additive colour mix

The CMY-model. The primary colours cyan, ma-
genta and yellow are used for reflecting surfaces like
paper. Depending on the technique of a printer it
is more or less difficult to position spots of primary
colours on paper within a limited area to achieve a
good quality picture.

blue . rimge‘nia -

~ black

Figure 2: subtractive colour mix

The first problem is the saturation of the colour
ink, because full saturation produces colours that
are too intense. So usually a colour saturation of
about 60% is used for printing each primary colour.
The second problem is that areas of overlaying
primary colours do not produce a solid black but a
colour that looks like a mixture of dark brown and
green. So in practice black ink, which extends the
CMY-model to a CMYK-model, is used in addition
for printing colour pictures.

The effect of mixing the primary colours of the
CMY-model is demonstrated by a diagram similar
to the one above, for the case of full saturation of
cyan, magenta and yellow:

When producing the four different separations
of a colour picture, screens of different angles
should be used to avoid moiré effects. The common
angles are 0° (yellow), 15° (magenta), 45° (black) and
55° {cyan).

Colour separation with BM2FONT

The way it works. To generate colour separations
of a picture with BM2FONT, it was necessary to
extend the program with the following features:

» converting RGB-colours to the CMYK colour
model;

e correcting ink impurities;

e extracting the common black component of the
colours.

The intensities of the complementary colours
are calculated by subtracting the saturation of
red, green and blue from 255, which means full
saturation of this colour:

cyan = 255 — red
magenta = 255 — green
yellow = 255 — blue

This is done in BM2FONT3.0 for all bitmap
formats, which come with a colour palette, and for
TIFF files with RGB triplets, representing up to 224
possible colours.

Correcting the impurity of the ink used is
a very device dependent task. The process is
known as Undercolour Removal. It removes a part
of yellow intensity under magenta and partially
magenta under cyan before finding out black:

3

Cyan = cyan — rymagenta
magenta = magenta — ryyellow

BM2FONT uses 0.3 both for 7, and 7, but
further versions will read those values from the
command line, because colour printers different
from the HP DeskJet 5xxC might need other values
to get good results.

The blackness of the pixel colour is the min-
imum value of the new CMY triplet (see figure 2).
This blackness now has to be subtracted from the
calculated primary colour intensities. The last step
is not yet implemented in BM2FONT, because its
effect depends on the generated screens, whose
angles are different from those mentioned before.
As the current solution gave good results on the HP

224 TUGboat, Volume 15 {(1994), No. 3 — Proceedings of the 1994 Annual Meeting

DeskJet printers, we released this version without
implementing another routine, which still has to be
tested for different devices.

All this is done in different runs, where the
actual colour is given by the -k option on the
command line. Each run produces one picture in
the selected colour as one or more TgX fonts, which
are to be overlaid in the document. Former versions
of BM2FONT deleted the white space around the
rectangle containing the picture, whose corners are
determined by the first significant black pixel. This
feature is not useful for colour pictures, so it should
be switched off by using the -3j option.

Input for TgX. The main input for TgX and the
driver programs is created by BM2FONT in the
form of the .tfm and .pk files, while the input
files, generated in each run for the primary CMYK
colours, construct the picture in the document.
Unlike halftone pictures, where we deal with black
and white pixels on paper, we now have to tell TgX,
to write into the dvi file, which colour is to be used
when printing the single parts of the colour picture.
This is done by a \special command, similar
to the one which is defined in the colordvi-
package, created by Jim Hafner and Tom Rokicki:

\special{color push #1}##1

\special{color pop}

Here we have in #1 the colour, for example
“Apricot”, and in ##1 the text that is to be printed
in the desired colour. The dvips driver uses the
file color.pro to tell the PostScript device how to
produce this colour \Apricot:

/Apricot{0 0.32 0.52 0 setcmykcolor}

For efficiency reasons we did not implement
inside the dvidjc driver a routine to read a de-
vice specific colour description from an ASCII file.
Instead, the driver was supplied with a modified
macro file colordjc.tex/sty, knowing that this
was not the final solution. The difference is, that
instead of the name of the colour the intensities
of the primary colours cyan, magenta, yellow and
black are written into the \special literal, while
the new colour is defined as

\newColor Apricot {0 0.32 0.52 0 }

The current version 3.0 of BM2FONT provides
no special TgX code to typeset colour pictures. This
code is contained in the colordjc file. There
a macro \lToadcmykpic[#1,#2,#3,#4] is defined,
which loads the descriptions of the coloured screens
into the document. Then the complete picture is
positioned within the text by using the command

\cmykpic [picc , picm , picy, picy]

Printing colour pictures

A framed picture can be typeset by using the
\fcmykpic command. Both commands expect in
pic, the names of the pictures, which are defined by
the -f option in each of the four runs of BM2FONT.

The macros are written under the assumption,
that a transparent imaging model is used, rather
than an opaque imaging model. The opaque model
replaces within the desired area on the page any
colour, which was printed before, while the trans-
parent model overprints the already coloured area.
So it is possible to get mixed colours simply by
overlaying the four planes of the picture in order
to generate the final composite image. The original
TeX does not know anything about imaging models,
because it only expects black ink on white paper.
But using colour for typesetting text as well as
graphics requires the choice of an imaging model
with respect to driver programs. Later on this
problem will be discussed in connection with future
developments.

The complete process for creating and typeset-
ting a colour picture could look like the following,
starting with the colour separation

bm2font picture.gif -jn -fpicb -kk

bm2font picture.gif -jn -fpicc -kc

bm2font picture.gif -jn -fpicm -km

bm2font picture.gif -jn -fpicy -ky
Inside the TEX document one should add the follow-
ing commands

\loadcmykpic[picc,picm,picy,pich]

\fcmykpic[picc,picm,picy,pich]

It is important to mention that the colour
macros used for typesetting colour pictures are the
same that are used for typesetting colour text, when
they are expanded by TgX. This means for the usage
of a dvidjc driver, that we get the mixed colour
of green in areas where two overlaying components
of text in the primary colours cyan and yellow have
coloured pixels at the same position.

The dvidjc-drivers

The old dvidot driver program, developed by Wolf-
gang R. Miiller at the Computing Centre of the
Heinrich-Heine-University, had to be extended by
code to interpret the literals of the \special com-
mands, which are written into the dvi file when
using the macros of the colordjc style.

if (memcmp(comment,'color"”, 5)){
fprintf(prot, "special »%s« ignored",comment);
return;
1

parm = comment+6;

if (!memcmp(parm, "pop", 3)){

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 225

Friedhelm Sowa

parm +=4; colst-;
if (colst < 0) {
colst = 0;
fprintf(prot,” color stack underflow");

}

else {

if (Ymemcmp(parm, “push cmyk”, 9)){
parm +=10; colst++;

if (colst > smax-1) {
colst = smax-1;
fprintf(prot,”
}
}
if (sscanf(parm,”%lg%lg%lg%lg",
&cy,&ma,&ye,&b1)<4){

color stack overflow');

fprintf(prot,” color: cmyk values <%s>
incomplete ",comment);

return;

3

This code handles the most simple case, where
some text has to be printed in a given mixed
colour, which is made of CMYK intensities. Those
intensities are defined by the \newColor macro.
So the driver program knows how to handle the
operation codes, enclosed by color push cmyk
and color pop.

Colour production. Producing the desired mixed
colour by the dvidjc driver is relevant only for
printing coloured text, not for colour pictures. The
screens made by BM2FONT already have the cyan.
magenta, yellow or black pixels at those positions,
where for example a blue sky or a red nose should
be shown. Producing mixed colours for text is a
task which has to be done by the program.

This is implemented by defining a 4 times 4
grid for each primary colour, which contains in
certain positions a threshold value, that indicates
whether a pixel is to be coloured or left white. This
maskmat table is used to generate the bitmap for
the current primary colour. The colour intensity is
transformed to a value between 1 and 16, then a
mask is generated with bits turned on in positions
where the transformed intensity is less than the
threshold value. The colour bitmap is then built up
by switching on the bits which are black in both the
mask and the originally black bitmap of the page.
Color Example 11 shows the result of that process.

Different printers. The available dvidjc driver,
released in January 1994, supports the colour HP
DeskJet printers 500C and 550C and all mono-
chrome printers with PCL support. When compiling
the source it depends on a compiler definition,
specifying the printer, to be supported by the
generated program.

The monochrome version converts coloured
areas within the bitmap of a page into different
levels of grey. Colour versions distinguish between
the additional availability of black ink or the primary
colours cyan, magenta and yellow. In the latter case,
black — or better a very dark colour — is produced
by printing overlaying pixels in primary colours.

Of course good colour reproduction depends
on the printer, its resolution, the purity of the ink,
and on the kind of paper. All those factors influence
some parts of the program:

o the generation of printer control sequences;

« the allocation of memory for colour bitmaps;

« the positioning of the threshold values for
intensities of the primary colours.

The necessary code is written in the hardcopy pro-
cedure or preceded by a #ifdef DICOLOUR, DJ500C
or DJ550C. We mention this to invite everybody to
extend the dvidjc.c source to support printers
other than the HP Desk]Jet.

In the future the information about the CMYK
intensity of a defined colour like “Apricot” should
be read from a device specific file instead of getting

. that information by a \special command when

reading the dvi operation codes. So the dvi file
contains a color Apricot and the description file
specifies how the mixed colour “Apricot” is realized
on that device.

Previewing. The dvidjc driver package contains
a previewer dvivgac for MS-DOS, which supports
colour output. The driver starts in haiftone mode,
showing in the left part of the graphics screen the
first page selected in the document, while in the
right screen information about the usage of the
program is given. When pressing a cursor key a
rectangle appears on the left, showing the area of
the page, which is magnified on the right.

Color Example 12 shows the hardcopy of a
screen corresponding to the titlepage of the dvidjc
documentation.

The next step

One of the next jobs will be to make the colour
driver more generic as mentioned bhefore and to
distinguish between different imaging models. The
authors of the package can not do this on their own.
The result of further efforts will be a summary of
the work of other people with access to different
colour printers, with programming experience and
some enthusiasm for TgX.

The most important job for the future can not
be done only by hacking code. Writing a colour

226 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

driver requires a complete recommendation how to
include graphics, both monochrome and coloured,
into a TgX document. In spite of the fact that the
described method works, a standard is necessary,
because there are some problems left.

Problem with PostScript. The PostScript colour
model works under the default assumption that a
coloured region on the page is printed after the
colour in an overlapping part of another region is
removed. This knockout mode is unknown to the
HP DeskjJet printers, and was the reason why the
first attempt to check the compatibility between the
dvidjc drivers and the combination of dvips and
GhostScript was discouraging: the pictures looked
ugly, cyan text within a yellow box was not green.
But reading the PostScript manual helped.

Simulation of knockout mode can be done by
TgX, to achieve compatibility. If, for example, a
vellow coloured text is to be printed inside a cyan
box, then the text simply has to be positioned by
using the colour \White before using the yellow
colour. This was the cheapest method for the
dvidjc drivers to simulate an opaque imaging
model.

Gray in Black

This example should also make it clear that over-
print mode is not useful when using colours with
equal intensities of primary colours.

Anyway it is advisable not to mix the ink of a
region containing text and the ink of a background

area of the text. Overprinting that region would
not produce the desired colour for the text. But
what is correct for text is not necessarily correct
for pictures. Here we need mixed colours, when the
screens for the primary colours are overprinted.

A solution for that problem could be a \spe-
cial, that tells the driver to switch into overprint
mode or back into knockout mode. A probably bet-
ter way could be to design a graphics interface, that
enables driver programs to get information about
the kind of picture included. Depending on the
characteristics of the included graphic, the driver
could switch to the appropriate mode automatically.

Problem with BM2FONT. The main disadvantage
of BM2FONT is the usage of TgX fonts to include
graphics into a document. This is the reason why
the number of pictures printed in a document is
limited. When printing colour pictures, up to four
times more fonts than for a monochrome picture
are generated.

Printing colour pictures

The conversion of graphics into an easy to
handle rectangular box consisting of characters, is
an advantage compared to existing DVI drivers.
But this method makes it impossible for colour
supporting drivers to distinguish between text and
graphics. A solution by marking that part of a
page with enclosing \special commands would be
contrary to the aim of BM2FONT to print included
pictures with any device driver.

It looks like the expansion to colour support
signals the beginning of the end of BM2FONT. We
are confident that the long standing demand of a
graphics standard and the problems connected with
global colour support in TgX will lead to a solution
that is similar to the one adopted by the driver
family of the emTEX package and by dvips. External
files will contain the graphics, and the typographic -
information like metric and colour will be derived
from a description file.

Colour Pictures

Color Example 9 shows the locations of European
home pages in the World Wide Web (WWW). The pic-
ture comes from //s700.uminho.pt/europa.html.

Color Example 10 is a picture of the campus of
the University of Dortmund, Germany, while Color
Example 11 shows the same picture separated in its
four colour components cyan, magenta, yellow and
black.

Color Example 12 is a screen dump of the
dvivgac previewer in colour mode. The original
picture was scanned from page 304, The TgXbook.
Colours were added with the Xpaint program.

Bibliography

Clark, Adrian F. Practical Halftoning with TgX,
TUGboat 12 (1), pages 157-165, 1991
Hilgefort, Ulrich, Farbe aufs Papier,
c’t 4, pages 132-139, 1994.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 227

Color Book Production Using TgX

Michael D. Sofka

Publication Services, Inc., 1802 Duncan Road, Champaign, IL 61821 USA

mike@psarc.com

Abstract

When typesetting a color book the goal is to produce a separate printer plate for
each of the colors. The process of splitting the printed output into separate plates
is called color separation. There are two color separation methods commonly
used. Custom color separation selects colors from a standard pallet. A different
plate is created for each color in the book. Process color separation separates
the colors into the subtractive color components cyan, magenta and yellow, and
creates a separate black plate by a process called undercolor removal. These four
plates are used by a printing press to mix the colors on paper when the book is
printed. Color separation is a more involved process than simply assigning RGB
values to a desktop color printer. This article addresses the issues of professional
color separation, and demonstrates how TgX with a suitable dvi driver can be used
to produce quality custom and process color books.

Introduction

There has been recent interest in using color with
TgX. This is evident by macro packages such as Foil-
TeX (Hafner 1992), the discussions about color on
NTS-L (New Typesetting System List), and the new
standard color support in IAIEX 2¢ (Goossens, Mittel-
bach, and Samarin 1994). This interest was most
likely initiated by the availability of low cost desktop
color printers, and the desire to make use of these
printers! with TgX.

Foll-TEX, IAIEX color styles, and other macro
packages provide an easy way for the owners of desk-
top color-printers to use color with TgX. Their goal is
a simple method, using macros and specials, to se-
lect color output on a desktop printer. This is dif-
ferent from what is required in color book produc-
tion. When typesetting a color book the goal is to pro-
duce separate plates for each color used by the print-
ing press. An example will help to clarify this. Imag-
ine that you are typesetting a book that will have red
section headings. The final product required by the

1 There are unfortunately 3 potential uses of the
word “printer” in this article. To avoid confusion, I
will use the term desktop printer to refer to a low res-
olution device, color or otherwise, which is used to
print files. The term printer will refer to a person or
corporation that prepares printing press plates and
uses those plates to print books. Finally, imageset-
ter will be used to describe a high resolution printer
that images to photographic paper or film. An im-
agesetter is also called a typesetter, but I will use
that term for a person who sets type (electronically
or otherwise).

printer? is two sets of negative film or camera-ready
copy.3 The first set will be the “black” film, which
contains only the black text. The second set will be
the “red” film and will contain only the red section
headings. But, both sets of film will be printed on a
black and white imagesetter because it is the respon-
sibility of the printer to provide the correct color ink
to the printing press.

The process of dividing the pages into separate
printer plates is called color separation. Color sepa-
ration is a more involved process than assigning RGB
values to a desktop color-printer. The question ad-
dressed by this article is: “can color separation be
done with TgX?”, and the answer is: “yes, with an ap-
propriate dvi driver.” At Publication Services we have
been typesetting color books in TgX since 1987. In
1993 we typeset our first process color book. This
was done using a colléction of specials that provide
information about the current color, its type (process
or custom) and its marking model, or how the color
interacts with other colors placed on the paper un-
derneath it.

2The person who makes plates and runs the
printing press (see footnote 1).

3Film is clear acetate which is used to expose
plates for an offset printing press. Film is printed
with a negative image, that is transferred once to
produce a positive plate. Camera ready copy, or
CRC, is photographic film exposed by an imageset-
ter. Before transferring to a plate, a negative must
be made of CRC. Because of the loss of quality when
shooting the negative from CRC, negative film is usu-
ally requested for color books.

228 TUGDboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

This article will explain the color separation pro-
cess and describe how TgX can be used to support
electronic color separation. It will concentrate on the
PostScript color model, and the quality control steps
necessary to ensure good color reproduction. Some
of the common mistakes made by authors attempt-
ing their own color separation will be discussed, so
pay attention.

The PostScript Color Model

The PostScript page description language (Adobe
Systems 1990) has become a de facto standard in the
publishing world. For this reason I will be discussing
color separation assuming the PostScript imaging
model. The general principles, however, apply to any
color separation, and we have typeset custom color
books using Cora (Linotype 1988).

An important element of the PostScript imag-
ing model is that all marking is opaque. That is, any
mark placed on the page will completely cover (re-
move) any existing marks it overlaps. This applies
equally for solid characters and rules, and for tinted
regions. Not all imaging devices work this way, and
any attempt to color separate non-PostScript out-
put must take into account the page description lan-
guages imaging model.*

Adobe defined a series of commands for set-
ting color in PostScript. Some of these commands
are now built into level 2 PostScript, but others are
conventions defining how to interpret other com-
mands. If you are preparing PostScript files for
color separation you should familiarize yourself with
these commands and conventions. They are listed in
Adobe Systems (1989), and updated (and simplified)
in Adobe Systems (1990).

Custom versus process color separation. There are
two methods of color separation used in book pro-
duction. These will be referred to here as custom
color separation and process color separation, al-
though the terminology used by other typesetters
and by printers may vary. Custom color separation®
is the process described in the introductory exam-
ple. Each element of the book design is set in a spec-
ified color. Each of these colors is printed on a sep-
arate piece of film. The colors themselves are as-
signed based on standard color references similar to
those used to select house paints. One common ref-
erence for custom colors is the Pantone system (Pan-

4 The imagesetter language Cora, for example, as-
signs priorities to overlapping tinted regions. The fi-
nal marks are those of the region with the highest
priority. Cora also allows the specification of dif-
ferent tint and pattern values for the intersection of
regions.

5 Custom colors are often called “spot” colors in
desktop publishing and drawing programs.

Color Book Production Using TEX

tone 1991, Pantone 1991). Pantone sells standard ap-
proved color charts, and inks. A book design, for ex-
ample, may ask that Pantone 231 (alight red) be used
for all section heads. The typesetter’s task in this
case is to provide two negatives for each page, the
printers job is to prepare plates from these negatives
and select an approved Pantone 231 ink for the color
plate. If late in the typesetting process the the pub-
lisher changes the design to use Pantone 292 (light
blue) instead of Pantone 231, the printer can supply
a Pantone 292 approved ink. The typeset negatives
and the prepared plates will not have to be changed.
A small sample of Pantone colors can be found on
color plate1.33 of Foley, van Dam, Feiner, and Hughes
(1990). If you look up plate 1.33 you will note that
the actual names are obscured since the colors repro-
duced in that book are not Pantone colors.

With process color separation each color is sep-
arated into cyan, magenta, yellow, which are the sub-
tractive color components. Black is supplied by a
process called undercolor removal which removes
equal amounts of black from cyan, magenta and
yellow.5 This is done to provide a better, well reg-
istered black. (Imagine how a book would look if all
the text was composed of three layers of ink.) The
final result is referred to as CMYK color.

Process separation is a more difficult process be-
cause of the need to have correctly calibrated colors.
With custom colors the printer is responsible for sup-
plying the correct ink. With process colors, on the
other hand, the typesetter’s job is more difficult be-
cause correct color balance will depend on the qual-
ity of negatives supplied to the printer, as well as the
quality of ink provided by the printer. The final type-
set output of a process color book is four negatives.
Each negative represents one of the cyan, magenta,
vellow or black components of the book. The ink will
be mixed on the paper by the printing press. Process
color is also called four-color, and the two terms are
synonymous in this paper.

In order to provide the correct color mixture the
negatives will have screened regions corresponding
to page elements. A screen is an area of shading that
provides a percentage of the required color. For ex-
ample, an orange-red can be printed using 0% cyan,
30% yellow, 70% magenta and 0% black. The four neg-
atives must reflect these percentages. In the case of
the cyan and black negatives, the color region will be
black because no cyan or black ink is required. The
yellow film however, will have a screened area that is
approximately 30% filled, and the magenta film will
have a screened area approximately 70% filled.

6 This method of undercolor removal can flatten
colors and result in too much black on the final
print. In practice color balance must be checked and
adjusted as needed.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 229

Michael D. Sofka

In order to have accurate color output with pro-
cess colors it is necessary to calibrate your imageset-
ter to produce the correct screen percentage. Color
calibration is notoriously difficult because of the lim-
itations of color monitors, the screen patterns gen-
erated by different output devices, and the absorp-
tion properties of the paper. Each of these will be
addressed below.

Knockout versus overprint. Another important
consideration when separating colors is deciding
what happens when one color is placed under an-
other color. The two possibilities are that (1) the first
color is removed before the second color is placed.
This is called color knockout. The second possibil-
ity is that both colors print, which is referred to as
overprint. When designing a book, writing macros,
or working on a figure it is important to know which
action a color should take. For process separation
the default assumption is that the four separations
(cyan, magenta, yellow and black) set overprint. This
makes perfect sense since the goal is to mix the ink
on paper. For custom color separation, however, the
default is that custom colors knockout any element
set under them. Again, this makes sense when you
consider what a custom color represents. A custom
color is an industry standard color selected by the
designer of the book. Mixing a custom color with
any other color will change its appearance from that
of the standard.

There is an exception to the general rule that
custom colors set knockout. A duotone is a custom
color used as a process color. The effect is to mix,
for example, Pantone 292 with black to create a va-
riety of colors from pure tone Pantone 292 to pure
black. Once again, the intended effect is to mix col-
ors on the paper so the colors must set overprint. In
this case, however, the custom color is being used as
a process color, and in practice such books are pre-
pared as process color books with 0% yellow and ma-
genta components.

Recall that the PostScript model assumes knock-
out colors by default. Depending on how your files
are separated this could work for, or against you. If
the separation is done by manipulating the PostScript
color-space (see Rahtz and Goossens, these proceed-
ings) then knockout and overprint can be set via Post-
Script commands. This is the approach Adobe uses
in their Separator program. If, on the other hand,
some macro or driver manipulation is being used to
remove a color during printing (for example by shift-
ing it off the page) then a page element previously
knocked out will now print. This approach effec-
tively sets all colors to overprint. Similarly, if sep-
aration is done by simply changing the PostScript
setgray value then all colors are effectively set to
knockout.

Ink order. When preparing color separated output
it is often important to consider the order in which
colors will be applied to paper by the printing press.
There are three rules to remember: (1) black is set
last on the press, and (2) yellow is very light and
tends to get lost in darker colors, and (3) black will
effectively cover most other colors.”

Applying these rules we see that if, for example,
yellow text is being set on a solid black box the yellow
must knockout the black in order to be visible in the
final book. If black text, however, is being printed
on a solid yellow box, the black does not need to
knockout the yellow. In fact, it is preferable to have
the black overprint the yellow to avoid problems with
trap (see below).

Technical Difficulties.

The task of color separation is conceptually very sim-
ple, but in practice can be fraught with difficulties.
Most of these difficulties stem from the process of
re-integrating the separated plates. In order to print
color books the process of applying ink to paper
must be understood. Many of the problems that can
occur with this process are under the direct control
of the typesetter.

Registration. Once the separations are made it is
necessary for the printer to realign them correctly
on the paper. This process is called registration, and
it is a subtle point that is often missed by authors
preparing their first color separated book. In order.
for the printer to be able to re-align separated output
the output must include registration marks. These
are alignment marks that are printed on every page
regardless of color. By aligning the marks a correct
composite should be obtained.

Registration also refers to the quality of align-
ment in the separated output. Obviously, the regis-
tration marks should set in the same position on each
page, but less obvious is the effect that image setter
capability and film quality can have on registration.
Some imagesetters are rated for color by specifying
the repeatability of the ocutput. The repeatability is
usually specified as the difference between negatives
(in mills), and the time frame over which the repeata-
bility holds. That is, if a negative is printed on the
1st of the month, how likely is it that the registration
will be within 1/10 mill if the negative is reprinted at
the end of the month. Registration is also affected
by the weather. This is because the acetate used for
negatives will stretch or shrink slightly as the hu-
midity changes. Maintaining a constant work envi-
ronment is therefore important for good registration,

7 The press order is usually yellow, followed by
cyan, then magenta and black. If an additional
layer is being applied it may be set earlier or later
depending on the design.

230 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

(b)

Figure 1: Examples of trap. (a) Red screen over
black. (b) Red character over black requires knock-
out and character trapping code.

and some imagesetters include humidity and temper-
ature control units to maintain repeatability.

Tagline. To keep track of each color of each page the
printed negatives should all contain identifying in-
formation. This is called the tagline, and it can go a
long way towards avoiding confusion. The tagline is
less important for one-color books since most pages
will have a folio (page number). Color books, how-
ever, will have one or more colors printing without a
folio. Some pages, in fact, may be completely blank
except for the tagline and registration.®

Unless you have actually tried to keep track of
several hundred pages of negatives (in a shop that is
printing more than one book) it is difficult to appreci-
ate how important taglines are. The usual procedure
followed by printers if they receive a page without
a tagline is to return it. A tagline should include at
least the folio and color. Some identifying name or
title will help avoid confusion with other books.

Trap. Registration is only one aspect of realigning
separated plates. Since the output of TgX is speci-
fied in scaled points, and imagesetters print at 2540
dots per inch or more, a high degree of registration
is possible. But, there are cases where exact registra-
tion is not wanted. When setting elements in differ-
ent colors next to each other (elements that will sep-
arate to different plates) it is necessary to provide a
small region of overlap to prevent the white paper
from showing through. This area of overlap is called
trap. Trap is usually specified in mills, with 3 mills
being a typical value. It is not a large area of overlap,
but it is important.

An example requiring trap can be seen in fig-
ure la. The figure sets a region of Pantone 231 (red)
over a region of black. Even the most exact press

8 Blank pages are required to build the imposition.
The printer has no idea what belongs on each page
of an imposition and missing pages can cause con-
fusion, delays and errors.

Color Book Production Using TgX

alignment is likely to allow a small gap of white paper

- to show through. To prevent this, the Pantone 231

must be trapped against the black. Note that the red
square cannot just overprint the black. Instead, what
is required is that the black be knocked out, and then
the red set overprint overlapping the black by 3 mills.
The ability to set knockout and overprint make trap
possible. You could argue that if all colors set over-
print, the black frame in figure 1a can be set with
rules. Then a single red rule can be set inside the
black frame. This will not work for figure 1b, which
requires special support for trapping font characters.

Screens. Perhaps the single most important techni-
cal difficuity with color separation is screens. A
screen is a area of the paper that is not 100% filled
with ink. The term tints is often used, and you can
observe the effect of screening by using the Post-
Script setgray command. When setting a photo-
graph the screen is called a halftone. Screens are
used to create a region where color is not fully satu-
rated. This is done by setting a pattern of dots which
partially fill the region. The reason for using dots is
that desktop printers, imagesetters and presses ei-
ther place a dot, or they do not. There is no mix-
ture of, for example, cyan and white ink to diluie the
color.

While setting a screen in PostScript is simple in
principle, in practice it requires special equipment
and attention to detail. Desktop printers are inca-
pable of setting correctly screened output. This is
a limitation of their marking engines—300 or 600
dots per inch is just not enough dots to provide good
screens. In addition, the paper and toner used by a
desktop printer have too much dot-gain (see below)
to present an accurate screen.

PostScript screens are a printing device depen-
dent feature. That is, the method by which a screen
is set is not defined in the PostScript language. This
was most likely an intentional design decision since
the best method of setting a screen will depend on
the qualities of the marking engine and print me-
dia. In addition, screen generation is an active area
of research, and each imagesetter company has its
own brand of screening technology for sell. Screen
type and quality is a very important consideration
when purchasing an imagesetter—perhaps the most
important consideration when printing separations
for a process color book, because bad screens equal
bad process color.

Screen attributes and types. Different imagesetters
are sold with different screen types installed. Be-
fore discussing the types of screens available we
need to understand how a screen works. In Post-
Script the setscreen command is used to change de-
fault screen qualities. It takes three arguments: fre-
quency, angle and procedure. The frequency is how
many lines per inch are represented in the screen.

TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting 231

Michael D. Sofka

: LTS
2 o
% TS
: % f::;‘.;...'
22
2 ?‘.". 5 s
3
2 ..l %o’
e
Y, s vy
oteletalete’
2
If. .

(b)

Figure 2: Examples of the effects of frequency
and angle on screens. (a) Screens differ only in
frequency. (b) Screens differ only in angle.

For example, in figure 2a the two screens differ only
in frequency. The angle is the angle of the lines com-
posing the screen. The screens in figure 2b differ
only in angle.® Finally, the procedure defines a func-
tion to determine the order in which halftone cells
are filled to produce the desired shade of gray.

Not all combinations of frequency and angle can
be set by an imagesetter. The actual values sup-
ported vary with screen type (the procedure) and the
resolution of the marking engine. The best output
is usually obtained for only a subset of the possible
values. In addition, the printer may request a partic-
ular range of frequency for best pickup while mak-
ing the press plates since too high a frequency may
not transfer, or may result in dot-gain. The best ad-
vice to offer an author preparing color separated out-
put is to not use the setscreen command unless you
know what type of imagesetter will be used to print
the film, and only after conferring with the operator
of that imagesetter.

9 Because of PostScript device limitations the
screens of figure 2b may differ in angle and fre-
quency. The actual PostScript command requested
only that the angle be changed. This is a good exam-
ple of the device dependency of screens.

232

Most high resolution PostScript imagesetters are
capable of Rational Tangent (RT) screens. These
screens are limited to angles which have tangents
that can be represented as a ratio of two integers, and
frequencies that evenly divide the device resolution.
On imagesetters sold for color work it is common to
find Irrational Tangent (IRT) screens. As the name
implies, IRT screens can represent angles whose tan-
gent is areal. IRT screens are a minimum for process
color books, but they suffer from limitations which
result in a poor reproduction. All imagesetters sold
for four-color books have some, usually proprietary,
screen system included. The latest screens employ
stochastic methods to eliminate repetitive patterns
which result in moiré. These methods are usually
built into the PostScript interpreter instead of defin-
ing a PostScript procedure with setscreen. This is a
matter of efficiency since screen calculation can con-
sume the majority of the CPU cycles in an interpreter.
Screens in process colors. If you are typesetting a
process color book, and intend to print your own
output then you will have to buy screens. There
are many screens available, and most of them come
with a imagesetter. This is only a slight exaggera-
tion because screen type and quality are dependent
on marking engine ability. Some companies do, how-
ever, offer screen updates to existing imagesetters.
These work by changing the PostScript procedure,
and can be slow as a resuit.

The reason that screens are so important for
four-color books is that process color separation re-
quires that screen areas overprint each other. When
this is done, a variety of undesirable side-effects may
occur. The most common problem is moiré. In tradi-
tional color separation the halftone screens for each
of the colors are rotated so that the dots overlap to
form circles called rosettes (Agfa 1990, Bruno 1986).
The screen angles used are 105°, 75°, 90° and 45° for
cyan, magenta, yellow and black respectively (Agfa
1990). The rosettes formed are invisible to the un-
aided eye, and instead the illusion of color is created.
If the dots are not placed accurately, however, moiré
will result. Moiré is caused by an interference pattern
between the screens destroying the illusion of color.
Most PostScript printers (and this includes a large
number of imagesetters) are not capable of placing
dots accurately enough to avoid moiré. Even with a
color ready imagesetter, special screening methods
are required since there are just not enough pixels to
create an accurate circle at the size required. Some
of the methods used are:

e Qval, or other non-circular patterns which over-
lap to form larger rosettes.

¢ Randomized noise added to the patterns to
disturb the regular interference which causes
moiré.

TUGboeat, Volume 15 (1994), No. 3 ——Proc‘eedings of the 1994 Annual Meeting

+ Micro-dots (very small dot patterns) that are too
small to overlap into rosettes. Micro dots can
be set in a random pattern to create stochastic
screens.

« Very high resolution output. It is not unusual,
for example, to find advertisements for 5300
dot per inch imagesetters. These imagesetters
are more capable of holding a “hard” dot (an in-
dustry term for identically shaped round dots)
in screen patterns.

Each of the above has its advantages and dis-
advantages. The most common disadvantage is
that variations on screening methods can be very
slow—especially when random noise is being added.
Stochastic screens usually suffer from larger scale
patterns caused by poor randomization algorithms
or small cell size. The result is, once again, moiré.

Other technical difficulties. Moiré is not the only

problem encountered with screens. The following
list of difficulties must all be overcome in some way
by the imagesetter and printer. The compositors re-
sponsibility is to provide the best possible output
that reduces problems for the printer.

¢ Dot gain.

Dot gain is an increase in the size of a halftone
dot from the time the negative is printed by the
imagesetter until the final paper is printed by
the press (Gretag 1993). Dot gain will affect the
amount of ink transferred, from the plate to the
final paper. The factors affecting dot gain are
paper absorption, screen frequency (higher fre-
qguency = higher dot gain), and ink thickness.
You can think of dot gain as the amount of
smear that takes place on the final printed book.

e Processing Speed.

It has already been mentioned that some
screening methods take a lot of time to pro-
cess. It is not unusual for a simple switch from
IRT screens to a randomized oval screen to in-
crease processing time by 800% or more. When
the IRT screened page took 15 to 20 minutes
to print the slowdown for oval screens can be
significant.

» Screen Models and Patents.

Many screening methods have been devel-
oped by printing and imagesetter companies
and are covered by patents. These are not
necessarily software patents since the original
patent was granted when a “screen” meant a
physical piece of acetate which is laid over a
color photo when shooting negatives. The ex-
tension of the patent to software embedded in
a RIP is more natural than in many other soft-
ware patents. A company using patented meth-
ods without paying a license fee, or purchasing
equipment and programs from the imagesetter
manufacturer would be infringing.

Color Book Production Using TgX

Screens and custom colors. While screen quality is
important with custom color books it is not as criti-
cal a component as with process colors. Usually RT
screens provide output of sufficient quality. This
is because process colors do not mix (unless doing
a duotone), and both black, and custom colors are
printed with 45° screens (whose tangent is 1/1). As
a result, screens do not overlap and interfere with
each other. It is important, however, to be able to
provide screens with a dot size (frequency) that can
be photographically reproduced when making press
plates. It is also important that the screen density
match the specifications, and that the density be even
within and between the screened areas. This is usu-
ally beyond the capabilities of desktop printers, and
publishers will typically avoid screens when authors
are preparing camera ready copy.

Color calibration. When preparing and testing pro-
cess color separated negatives it is important to
maintain correct color balance. A variety of condi-
tions can affect the final appearance of your output.
The most basic is the calibration of the imagesetter.
When a 20% screen is requested the output should be
a screen that provides 20% fill of the area after print-
ing. If you are proofing the color then all proofing
devices from monitors to printers and photographic
based proofing systems must be calibrated to pro-
vide the best color fidelity they are capable of. Fi-
nal decisions about color should not be made on the
basis of desktop color printer output. Finally, the
conditions under which colors are checked must be
constant to avoid metameric color matches (Bruno
1986), or other light dependent color changes. This
may require building a color proofing room with con-
trolled lighting.

CMYK color space is based on the absorption
properties of particular inks, but ink batches can
vary from printer to printer. For this reason CIE
color-space is often suggested for internal calibra-
tion. Then standard printer samples (available from
film suppliers) can be prepared showing a match be-
tween the local color calibration and final product. If
the final color is incorrect, it can then be shown to be
a problem with the plates or printing press, and not
a problem with the negatives.

Color proofs. It is important to check color in house
before printing negatives, and to test those nega-
tives before printing the book. When labor is consid-
ered, a single page of negative film can cost $10 (US)
or more, and a page of imposed film will cost even
more. If the final printing begins without a less ex-
pensive color check (or with no color check), sched-
ules and budgets may slip, and unlucky compositors
could find themselves financially responsible for a

TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting 233

Michael D. Sofka

bad press run. Color proofs can also serve a contrac-
tual purpose.l® For example, a page may be approved
for final film based on the output of a desktop color
printer, or some other color proofing method. If this
is the case the client and typesetter must agree on
the method to be used, and they must be aware of
the limitations of the chosen method.

The only real test of color fidelity is the final
printed book. This is because the actual colors will
depend on the ink batch, paper, and press calibra-
tion. It can be expensive, however, to setup a press
run for color testing. A variety of methods are avail-
able, therefore, to check color before the press. In
general, there are two broad classes of color proof-
ing systems—those that test the PostScript files, and
those that test the negatives. Each has its place in
that it is less expensive to catch errors before print-
ing film, and before using that film to print a book.
PostScript files can be checked using a color monitor
or color desktop printer. Depending on the type of
color being used, negatives can be tested using blues
(ultraviolet sensitive paper exposed through nega-
tives), cromalin (dry power colors), photographic pa-
per exposures, or other systems. Each of these color
proofing methods has its own tradeoff in cost, time
to prepare proofs, and the quality of the proofs.

There are two reasons for color proofing. The
first is for color breaks. That is, testing that each ele-
ment is in the correct color. For custom colors this is
usually all that is required, and desktop color printer
output is often accepted as proof that the file's col-
ors are correct. Likewise, blues or visual inspection
can be used to check that custom colors were sepa-
rated correctly to the final negatives. Grayscale desk-
top printer output can also be used if each color is
printed at a different tint percentage, and separated
grayscale output can be used to check the separa-
tions. It usually requires some negotiation, however,
for clients to accept grayscale output as a color proof.

Process colors must be tested for both color
breaks, color fidelity, and moiré. This usually re-
quires that the negatives be tested using cromalin or
photographic processes. There are, however, desk-
top color proofing systems that send separated files
to a color desktop printer. These systems allow for
moiré to be checked before printing negatives, and
provide near photographic color output for check-
ing fidelity. All of these systems, however well cal-
ibrated, do not provide perfect proofs. Once again,
the only true test of final color is a press run using
the same quality materials that will be used in the
book.

0 Thank you to an anonymous reviewer for
pointing out this fine point of client typographer
interaction.

Using TgX

After considering the above the obvious question is:
“can TgX be used for professional color book produc-
tion?” The answer is yes, but it requires dvi driver
support, and the typographer should be aware of the
procedures involved in plate making and book print-
ing. First, be aware that most imagesetter manu-
facturers, and consumable suppliers will not know
about TEX so you can expect little technical support
when printing. On the other hand, most of the actual
problems with color calibration, moiré and dot gain
are common to all color separation electronic or man-
ual, with or without TgX. If you buy an imagesetter
you are also buying expertise in its use. Use your pur-
chases to leverage help. Second, many of the issues
of color fidelity and moiré apply more often to pho-
tographs than the typical TgX element. Solid color,
however, is not immune to moiré and the effect looks
very bad in printed books. In addition, the colors
used in TeX may need to match those used in figures,
and small differences in the screens and density can
produce a noticeable difference in the final product.
Finally, color books, especially process color books,
tend to have more complex designs where text and
figure elements interact with each other. A figure, for
example, may be surrounded by a color box or head-
element that must trap with the figure. So all of these
checks and balances must work with TgX as well as
with figures and photographs.

TgX provides a powerful macro language that
can make the process of managing color elements
very easy compared to the more common desktop
systems. Adding color late in a book design, for ex-
ample, can usually be accomplished with a macro
change. Changes to the selected color can likewise be
affected by changing macros. Low resolution “place-
ment only” figures can be included by using a TgX
conditional, or via driver switches. In short, we have
found that using color with TgX is not only possible,
but that TgX helps the process by virtue of being pro-
grammable.

Specials for color. Color separation in TgX requires
dvi driver support. The specials for color separation
must convey the following information:

¢ The CMYX color values;

e process versus custom color separation;
« knockout versus overprint marking;

+ foreground percentage.

The first requirement is obvious. The values of
cyan, magenta, yellow and black are basic to deter-
mining the final color for process separation, and for
proofing both process and custom colors. Process
versus custom determines the type of separation to
be used for a color, and knockout versus overprint
is for specifying what happens to colors set below a
new item. Note that black is a color, and the specials

234 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

must keep track of when black is knockout, and when
black is overprint.

Specification and interpretation of the CMYK
values, however, change with the color model. When
a process color is being set the CMYX values repre-
sent the actual percent values of cyan, magenta, yel-
low and black ink required on the paper. A change to
these values will represent a change to the final color.
For a custom color, however, the CMYK values repre-
sent an approximation to the final color to be used
by proofing devices, and it in no way affect the final
book color. Again, this is because it is the printer’s
job to supply the correct custom ink for the press.

The above is an important point that is central
to doing color separation correctly. When specify-
ing a color the goal is to provide the best possible
quality in the final printed book. But, the values of
CMYK which produce the best book color are unlikely
to produce the best desktop printer or monitor col-
ors. When printing custom colors this is of no con-
sequence, but when printing process colors it has
a number of consequences that can affect the final
product. Process color separation shifts the respon-
sibility for good color from the printer to the type-
setter. A good color special, therefore, may provide
different values of CMYK for final separation ver-
sus composite proofing. In fact, different values of
CMYK may be required for each output device that
might be used to proof the pages.

One approach to selecting the correct custom
color CMYK values is to use a standard set of color
names based on the Pantone color charts. The special
would then specify a color name which keys the cor-
rect CMYK values. A different CMYK value would be
required for each printing device. For process colors
the task is slightly more difficult since there generally
are no standard names. A local file which provided
generic names such as “light_green”, with the correct
CMYK values for each device can be used instead. Al-
ternatively, the special can store a set of CMYK val-
ues, with one value designated the “correct” value.

Some of you may think: why not use TgX to de-
fine a conditional which selects the color value. We
have done this, but the problem we encounter is that
the resulting dvi file is device dependent, and would
have to be re-TgXed with the correct flags in order
to produce correct printed output. This has resulted
in a lot of lost time and material, and we avoid such
device dependencies whenever possible. When they
cannot be avoided, a “printertype” special is used to
tell the driver which printer the dvi file is prepared
for. A mismatch in printertype aborts printing. This
is slightly inconvenient, but much less inconvenient
than printing 100 pages of incorrect output (at 1-20
dollars per page depending on output device).

The default value of knockout and overprint dif-
fer for process and custom colors. This is because

Color Book Production Using TgX

Figure 3: Back text set on a red 30% screen. Since
black prints last, and is dark, it can overprint the
screen without trap.

custom colors are defined based on standard color
charts and inks so it is undesirable to mix them on
paper with any other color. Process separations,
however, are supposed to mix on the press. This
does not mean, however, that custom colors should
always knockout and process colors should always
overprint. When trapping with a custom color, for ex-
ample, it is necessary to overprint. Likewise, it may
be more convenient to knockout a section with a pro-
cess color (which must then be separated into over-
printing CMYK values), than to typeset around the
knockout (see figure 1a). A way is needed, therefore,
to change the default behavior of a color.

Finally, the foreground percentage determines
if a color is set at 100% of its stated value, or at
some lesser percentage. A custom color may be set
at 100% value which means that the negative will
be clear where the Custom color should set. Just
as often, however, the custom color may be set at
some percentage of its value. For example, in figure 3
the black text is set over a 30% screen. The screen
is a custom color {and the black will overprint so
that trap is not necessary). When setting a custom
color at a reduced percentage a new color cannot be
used since it would then separate onto a different
negative. That is, if we are setting Pantone 231 at
30% we want both the solid 100% Pantone 231 and the
30% Pantone 231 to separate to the same negative.
We need a way, therefore, to change the foreground
value at which any rule, screen or character will set.

Process colors can also be set at a reduced per-
centage. This does not affect the separations since all
process colors will be split into CMYK components.
The changed foreground, however, will change the
resulting CMYK values, and the method used should
provide good output. Often a direct percent reduc-
tion will suffice, but special settings may be required
depending on how the proofs look. A red, for exam-
ple, may appear too pink at areduced percentage and
a new color balance may be chosen.

TUGbDoat, Volume 15 {(1994), No. 3 — Proceedings of the 1994 Annual Meeting 235

Michael D. Sofka

The specials. In the dvi driver dvips82 used at Pub-
lication Services we make use of the following spe-
cials to define and use colors. All of the specials fol-
low a simple syntax of <name> <arguments>, where
the <arguments> are <key>=<value> pairs. Stan-
dard commands which accept any TgX unit of mea-
surement are used to read dimensions from specials.
These commands convert the values into scaled
points for internal processing.

DefineColor. The DefineColor special is used to
provide an internal symbolic name for a color and
it establishes the CMYK values, model and overprint
value. It can also define a tint value to be used when
printing on a gray-scale desktop printer. The format
of the command is:

DefineColor
<name>=[color(<c>,<m>, <y>, <k>)
| pms (<pantone-name>)]
lalias(<color-name>)
[separation=[process|custom]]
[overprint=[true]false]]
[tintpercent=<%>]

<name> is the symbolic name which is used to refer
to the color from this point on. The name is set
to one of three definition types. The first provides
the cyan, magenta, yellow and black values for the
color, while the second provides a standard Pantone
name which is looked up by printer type. The last
definition defines the color as an alias of a previously
defined color. All aliases of a color will separate
together with that color, but they can have different
separation, overprint and tintpercent values.

The value of separation can be either process
or custom, with the latter being the default. The
overprint argument defines the color as either over-
print (overprint=true), or knockout (false). If
the separation is process, then overprint defaults to
true, otherwise it defaults to false.

The value of tintpercent is used for checking
color breaks on a gray-scale desktop printer. It is
not possible to see colors on a gray-scale printer, but
worse the colors may be metameric in gray. That
is, even though they are distinct colors, they appear
the same in black & white. In order to aid proofing
a tintpercent value can be specified. When print-
ing a composite to a gray-scale printer the tintper-
cent will be used for all page elements in that color.
With the alias color definitions different values of
tintpercent can be used with, for example, knock-
out versus overprint versions of the same color.
SetColor. Once a color is defined it can be used to
change the state of the current color. This is done
with the SetColor special, which is defined as:

SetColor color=<name>

where <name> is the symbolic name of a previously
defined color. All rules, characters, screens and fig-

ures from this point on will be set using the attributes
defined for <name>.

KnockOut, OverPrint and DefKnockOut. The use of
aliased colors allows the definition of knockout and
overprint versions of the same color. The knockout
and overprint values, however, can also be changed
using specials designed for that purpose. The spe-
cial KnockOut sets the global color state to knockout.
All colors, regardless of their definition, will now set
knockout. Similarly OverPrint sets the global color
state to overprint. The special DefKnockOut restores
the color state to that specified in DefineColor.
There are also versions of these specials for setting
knockout or overprint for the next single rule, char-
acter, screen or box encountered.

SetForground. The current foreground percent can
be changed with the speciak:

SetForground fg=<n>

where <n> is the desired tint value.!! The default
value is 100%, and any value between 0% (print-
ing white) and 100% (printing full color) is allowed.
Changing the foreground percent does not change
the current color. Instead, all rules and characters
are set as a <n>% screen.

Trapped and Abutted. Trapping control is supplied
by the macros:

Trapped trap=<m.n>
Abutted

where <m.n> is some dimension. When the value of
trap is non-zero, all rules, characters and screens
are set trapped by the trap amount. This is accom-
plished by first setting the element in knockout, and
then setting it a second time overprint. The over-
print is stroked by twice the trap amount. The effect
is a region of overlap between the trapped element
and anything it prints over. Abutted is the same as
“Trapped trap=0pt”, and there are also TrapNext
and TrapBox specials to trap only the next element
or box.

ScreenR, TintRule, TintChar. In addition to com-
mands to define and change color, overprint and
trapping a color book can benefit from commands to
set screened elements. This can be accomplished via
PostScript, but it is more efficient and easier to have
built-in commands. The dvips82 driver has a variety
of commands to set screened areas (with and with-
out rounded corners), circles and characters. Each
of these commands allows a trapping specification
as well as a background percentage. dvips82 places
all screens defined with these specials under all char-
acters and rules. The specials are based on the tints
and patterns commands available under Cora on an
L300 imagesetter.

11 1f T were to design the system today I would spell
foreground correctly.

236 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

Macro considerations. The macros that use these
specials are for the most part simple and straightfor-
ward. But, there are special considerations around
page boundaries. Earlier versions of dvips82 did not
keep track of the color state in effect at the beginning
of each page. If a macro restores color after, for ex-
ample, a box then the restoration of color could ap-
pear on the next page. This caused problems when
printing selected pages, or when printing to a face
up device. The macro fix was to have the output rou-
tine save and restore all order dependent states with
each page break. Later versions of dvips82 perform
a preprocessing pass on the dvi file. This allowed
optimization of font memory, and the recording of
color, foreground, overprint, and so on with each
page. Pages selected or rearranged (for example, for
imposition printing) still cause problems, however,
so that the macro approach has been maintained.

This leaves only the problem of color changes
within paragraphs. If the color changes in a para-
graph, and changes back before the end, and if a page
break occurs in the color section, then the macro
based color state will be incorrect at the top of the
page. The only TgX mechanism for handling this
would be marks. This type of design, however, is so
infrequent that we have rarely had problems of this
nature.

The separation process. There are two separation
methods supported by dvips82. The first method
creates an separator compatible PostScript file. This
is a file that follows the Adobe conventions for color
PostScript files, and which can be color separated in
a manner similar to that used by Adobe Separator.
Adobe Separator color separates a file by including
PostScript commands that redefine setcmykcolor,
A special PostScript command is used for custom
colors so that they can be distinguished from process
colors. It also allows a custom color to be converted
into a process color, and separated into its CMYK
components. At Publication Services we have written
a UNIX version of separator that works with Adobe
Iustrator and dvips82 files.

The advantage of this method is that color art
can be integrated into the PostScript file before sepa-
ration, allowing art and text to be separated together.
For this to work correctly the symbolic custom color
name defined with DefineColor must match the
Custom color names defined in figures. If the names
do not match then, as far as separator is concerned,
they represent different colors. This can be a prob-
lem when using art prepared out of house by the au-
thor or another supplier. Hence, UNIX separator (and
Adobe Separator) allow different colors to be com-
bined onto the same negative.

The second method uses the driver to do all
color separation. This was a very easy addition to
dvips82 since all pages were handled in two passes.

Color Book Production Using TgX

The first pass stores all rules, characters and other
page elements in a table, which the second pass
prints. This was originally done in order to place all
screens below text (mimicking Cora), but it also made
electronic color separation easy. If an item is in the
current color it is placed in the page table. Other-
wise, it is left out. Each element stored in the ta-
ble has an associate set of attributes including its
current color. Process color elements are printed
tinted according the the value of cyan, magenta, yel-
low or black (depending on the requested separa-
tion). Knockout is handled by setting knockout col-
ors with a foreground of 0

dvips82 also contains a color proofing mode
which places all elements on the page table, but tints
those not in the selected color. This is very helpful
for checking color breaks (confirming that each el-
ement is in the correct color). The tint value is the
tintpercent defined with the color, or 75% if no
tintpercent was specified.

The disadvantage of the driver based method is
that only color separated figures can be integrated.
As aresult the figures must be pre-separated. Future
modifications include having dvips82 run the sep-
aration program on figures. For this to work all fig-
ures must use consistent color names, which is, once
again, a problem for art prepared off-site.

Summary and Conclusions. -

Professional custom and process color separation
can be done with TgX and the right set of specials.
The specials listed above are what we use with
dvips82. They encompass some qualities that [have
not seen in other color specials such as color alias-
ing, and support for gray-scale proofing. The use of
knockout and overprint colors is needed in order to
be able to trap correctly.

There are a variety of desktop systems that sup-
port color, so one may ask why we do not use them.
The answer is that we do when they are the right tool
for the job. Very often TgX is the right tool for the
job, and TgX can easily be extended through specials
to equal and exceed the color separation abilities of
any desktop system.

Finally, I am very encouraged by the work being
done with dvips and color. By adding support for
professional color separation to dvips the task of
converting an author’s IAIgX files into professional
quality negatives will be made much easier.

References

Adobe Systems Inc. Proposal for color separation
conventions for PostScript language programs.
Technical Report 5044, December 1989.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 237

Michael D. Sofka

Adobe Systems Inc. PostScript Language Reference
Manual. Addison-Wesley, Reading, MA, second
edition, 1990.

‘Agfa Compugraphic Division. An Introduction to
Digital Color Prepress. Agfa Corporation, 200
Ballardvale Street, Wilmington, MA 01887, 1990.
Descriptions of color models, trapping, halftone
and screens.

Bruno, Michael H. Principles of Color Proofing: A
manual on the measurement and control of tone
and color reproduction. Gama Communications,
P.0O. Box 170, Salem, NH 03079, 1986.

Foley, James D., Andries van Dam, Steven K. Feiner,
and John F. Hughes. Computer Graphics: Prin-
ciples and Practice. Addison-Wesley, New York,
1990.

Goossens, Michel, Frank Mittelbach, and Alexander
Samarin. The KTgX Companion. Addison-Wesley,
New York, 1994.

Gretag Color Control. Applied Densitometry, second
edition, 1993.

Hafner, James L. Foil TgX, a I&TgX-like system for type-
setting foils. TUGboat, 13(3):347-356, October
1992,

Linotype. Linotronic 300/500 Imagesetter Interface
Manual, 1988.

Pantone, Inc. PANTONE™: Color Specifier 1000/
Coated. Pantone, Inc., 55 Knickerbocker Road,
Moonachie, NJ 07074-9988, 1991.

Pantone, Inc. PANTONE™: Color Specifier 1000/
Uncoated. Pantone, Inc., 55 Knickerbocker Road,
Moonachie, NJ 07074-9988, 1991.

238 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

Inside PSTricks

Timothy Van Zandt

Department of Economics, Princeton University, Princeton, New Jersey USA

tvz@Princeton.EDU

Denis Girou

Institut du Développement et des Ressources en Informatique Scientifique
Centre National de la Recherche Scientifique, Orsay, France

Denis.Girou@idris.fr

Abstract

The macro-commands of the PSTricks package offer impressive additional capa-
bilities to (IA)TEX users, by giving them direct access to much of the power of
PostScript, including full support for color. The purpose of this article is to outline
the implementation of a few of the features of PSTricks (version 0.94).

Introduction

When a PostScript output device and a dvi-to-ps
driver are used to print or display TgX files, TgX and
PostScript work together, as a preprocessor and a
postprocessor, respectively. The role of PostScript
may simply be to render TgX’s dvi typesetting instruc-
tions. However, the full power of PostScript can be
accessed through \special’s and through features,
such as font handling, built into the dvi-to-ps driver.

One can divide the PostScript enhancements to
TgX into roughly four categories:

1. The use of PostScript fonts.

2. The inclusion of PostScript graphics files.
3. The coloring of text and rules.

4. Everything eise.

Most TEX-PS users are familiar with the first three
categories. The PSTricks macro package, by Timothy
Van Zandt, attempts to cover the fourth category.!

The PSTricks package started as an implemen-
tation of some special features in the Seminar doc-
ument style/class, which is for making slides with
IATEX 2¢. However, it has grown into much more. Be-
low are some of its current features:

1. Graphics objects (analogous to IATEX picture
commands such as \Tine and \frame), includ-
ing lines, polygons, circles, ellipses, curves,
springs and zigzags.

2. Other drawing tools, such as a picture environ-
ment, various commands for positioning text,
and macros for grids and axes.

3. Commands for rotating, scaling and tilting text,
and 3-D projections.

4. Text framing and clipping commands.

1 PSTricks is available by anonymous ftp from
Princeton. EDU:/pub/tvz and the CTAN archives.

5. Nodes and node connection and label com-

mands, which are useful for trees, graphs, and

commutative diagrams, among other applica-

tions.

Overlays, for making slides.

Commands for typesetting text along a path.

8. Commands for stroking and filling character
outlines.

9. Plotting macros.

For information on PSTricks from the user’s
point of view, consult the PSTricks User’s Guide (Van
Zandt 1994) and the article by Denis Girou (Girou
1994) in Cahiers GUTenberg, the review of the French
TgX users’ group. The latter article is useful even to
those who do not read French, because it consists
predominantly of examples. Several of these exam-
ples appear in this paper, courtesy of Cahiers GUTen-
berg.

N o

Who can use PSTricks?

A goal of PSTricks is to be compatible with any TgX
format and any dvi-to-ps driver. Compatibility with
the various TgX formats is not difficult to achieve, be-
cause PSTricks does not deal with page layout, floats
or sectioning commands.

However, compatibility with all dvi-to-ps drivers
is an unattainable goal because some drivers do not
provide the basic \special facilities required by
PSTricks. The requirements are discussed in subse-
quent sections. All of PSTricks' features work with
the most popular driver, Rokicki’s dvips, and most
features work with most other drivers.

Two dvi-to-ps drivers that support the same
\special facility may have different methods for
invoking the facility. Therefore, PSTricks reads a
configuration file that tells PSTricks how to use the
driver’s \special’s.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 239

Timothy Van Zandt and Denis Girou

Header files

A PostScript header (prologue) file is analogous to
a TgX macro file. It comes towards the beginning
of the PostScript output, and contains definitions of
PostScript procedures that can be subsequently used
in the document.

It is always possible to add a header file to a
PostScript file with a text editor, but this is very
tedious. Most drivers support a \special or a
command-line option for giving the name of a header
file to be included in the PostScript output. For ex-
ample, the \special

\special{header=pstricks.pro}

tells dvips to include pstricks.pro.

However, a few drivers, such as Textures (up
through v1.6.2, but this may change) do not have
this feature. Therefore, PSTricks can also be used
without header files. From a single source file, one
can generate a header file, an input file for use with
headers, and an input file for use without headers.

For example, the main PSTricks source file,
pstricks.doc, contains the line:

\pst@def{Atan}<%
/atan load stopped{pop pop 0}if>
When generating the header file pstricks.pro, the
line
/Atan {/atgn load stopped{pop pop 0}if}def
is written to pstricks.pro. When generating the

input file pstricks.tex for use with pstricks.pro,
the line

\def\tx@Atan{Atan }

is written to the input file. The input file for use
without pstricks.pro contains instead the line

\def\tx@Atan{%
/atan load stopped{pop pop 0}if }

Other macros can use \tx@Atan in the PostScript
code, without having to know whether it expands to
a name of a procedure (defined in a header file) or to
the code for the procedure (when there is no header
file).

One can also use the source file directly, in which
case no header is used. This is convenient when
developing the macros, because TgX and PostScript
macros can be written together, in the same file, and
it is not necessary to make stripped input and header
files each time one is testing new code.

The use of header files in PostScript documents
reduces the size of the documents and makes the
code more readable. However, the real benefit of us-
ing header files with PSTricks is that it substantially
improves TEX's performance. It reduces memory re-
quirements because, for example, the definition of
\tx@Atan takes up less memory and, more impor-
tantly, \tx@Atan takes up less string space each time
itis used in a \special. It reduces run time because

the writing of \special strings to dvi output is very
slow. A file that makes intensive use of PSTricks can
run 3 to 4 times slower without header files!

Parameters and Lengths -

To give the user flexible control over the macros,
without having cumbersome optional arguments
whose syntax is difficult to remember, PSTricks uses
a key=value system for setting parameters.? For ex-
ample,

\pscoilfcoilarm=0.5,71inewidth=1mm,
coilwidth=0.51{]->}(5,-1)

The coilarm parameter in this example is the
length of the segments at the ends of the coil. Note
that coilarm was set to 0.5, without units. When-
ever a length is given as a parameter value or argu-
ment of a PSTricks macro, the unit is optional. If
omitted, the value of \psunit is used. In the previ-
ous example, the value of \psunit was 1cm. There-
fore, coilarm=0.5cm would have given the same re-
sult. Omitting the unit saves key strokes and makes
graphics scalable by resetting the value of \psunit.
This is why the arguments to I£TEX’s picture envi-
ronment macros do not have units. However, un-
like IATEX's picture macros, with PSTricks the unit
can be given explicitly when convenient, such as
Tinewidth=1mm in the previous example.

The implementation of this feature is simple.
\pssetlength is analogous to \LaTeX’s \setliength
command, but the unit is optional:

\def\pssetlength#1#2{%
\Tet\@psunit\psunit
\afterassignment\pstunit@off
#1=#2\@psunit}

\def\pstunit@off{%
\let\@psunit\ignorespaces\ignorespaces}

One advantage of the key=value system is that

PSTricks has control over the internal storage of val-
ues. For example, PSTricks stores most dimensions
as strings in ordinary command sequences, rather
than in dimension registers. It uses only 13 of the
scarce dimension registers, whereas, for example,
PCTEX uses over 120. When PSTricks processes the
parameter setting coilarm=0.5, it executes:

\pssetlength\pst@dimg{0.5}
\edef\psk@coilarm{\pst@number\pst@dimg}
\pst@dimg is a register. \pst@uumber\pst@dimg
expands to the value of \pst@dimg, in pt units, but

2 PSTricks has recently adopted David Carlisle’s
improved implementation of the parsing, contained
in the keyval package.

240 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

without the pt. Hence, \psk@coilarm is ready to be
inserted as PostScript code.

Color

To declare a new color, the user can type:
\newrgbcolor{royalblue}{0.25 0.41 0.88}

The color can then be used to color text and can be
used to color PSTricks graphics. For example:

\psframebox[1inewidth=2pt,framearc=.2,
Tlinecolor=royalblue,framesep=7pt]{%
\LARGE\bf It’s {\royalblue here} now!!}

It’s here now!!

The \newrgbcolor command defines \royaiblue to
switch the text color, and it saves the color speci-
fication under the identifier royalblue so that the
PostScript code for setting the color can be retrieved
by color graphics parameters.

This support for color has been part of PSTricks
since its inception. However, a problem that has
arisen is that there are now many packages avail-
able for coloring text, and the user is likely to end up
using some other color package in conjunction with
PSTricks. But then the color names used for text can-
not be used with PSTricks graphics parameters.

It is therefore important that a dominant set of
color macros emerge in the TgX community, and that
the macros allow the PostScript code for the declared
colors to be accessible, in a standard way, by pack-
ages such as PSTricks. Version 0.94 of PSTricks is dis-
tributed with an independent set of color macros that
may be a prototype for such a standard color pack-
age.

Arithmetic

One of the limitations of TgX is its lack of fast,
floating-point arithmetic. It is possible to write rou-
tines for calculating, for examples, sines and cosines
using TgX's integer arithmetic, but these are notori-
ously slow. Therefore, PSTricks offloads such arith-
metic to PostScript, whenever possible.

Such offloading is not always possible because
PostScript cannot send information to TgX. If TgX
needs to know the result of some calculation, it must
do the calculation itself. For example, suppose that
one wants a macro that puts a triangle around a
TEX box, analogous to IATgX’'s \fbox command. The
macro can measure the TgX box, and pass these di-
mensions to a PostScript procedure via a \special.
PostScript can then use its trigonometric functions
to calculate the coordinates of the vertices of the tri-
angle, and then draw the triangle. However, it may
be important for TgX to know the bounding box of

Inside PSTricks

the triangle that is drawn, so that the triangle does
not overlap surrounding text. In this case, TEX must
do (slowly) the trigonometric calculations itself.

Pure graphics

A large chunk of PSTricks consists of graphics
macros, which you can think of as a fancy replace-
ment for IKEX’s picture environment. The qualifier
“pure” means that the graphics do not interact with
TgX. For example, a rectangle is “pure”, whereas a
framed box is not.

A pure graphics object scans arguments and
puts together the PostScript code ps-code for the
graphics. When the code is ready, the object con-
cludes with:

\leavemode\hbox{\pstverb{ps-code}}

\pstverb should be defined in the configuration file
to insert the code in a \special that reproduces
ps-code verbatim in the PostScript file, grouped by
PostScript’s save and restore. The graphics state
should have PostScript’s standard coordinate system
(bp units), but with the origin at TgX’s current point.
For dvips, the definition of \pstverb is:

\def\pstverb#l{\special{" #1}}

This \special is the only output generated.
Thus, within TgX, the object produces a box with
zero height, depth and width. Within PostScript, the
graphics object is grouped by save and restore, and
hence has no effect on the surrounding output.

For example, here is a polygon:

\pspolygon[Tinewidth=2pt,
linearc=.2,fillstyle=crosshatch]
(1,05(1,2)(4,0)(4,2)

\pspolygon first invokes \pst@object, which
collects (but does not processes) optional parameter
changes, and subsequently invokes \pspolygon@i:

\def\pspolygon{\pst@object{pspolygon}}
\def\pspolygon@i{%
\begin@ClosedObj
\def\pst@cp{}%)
\pst@getcoors[\pspolygon@ii}

\begin@ClosedObj (line 3) performs various oper-
ations that are common to the beginning of closed
graphics objects (as opposed to open curves), such
as processing the parameter changes and initializing

GoR W N e

TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting 241

Timothy Van Zandt and Denis Girou

the command \pst@code that is used for accumulat-
ing the PostScript code. \pst@getcoors (line 5) pro-
cesses the coordinates one at a time (\pspolygon can
have arbitrarily many coordinates), converting each
one to a PostScript coordinate and adding it to the
PostScript code in \pst@code.
Then \pst@getcoors invokes \pspolygon@ii:

s \def\pspolygon@ii{%

7 \addto@pscode{\psline@iii \tx@Polygon}¥%

8 \def\pst@linetype{1}%

9 \end@ClosedObj}

Line 7 adds the PostScript code that takes the coor-
dinates from the stack and constructs the path of
the polygon. \pst@linetype (line 8) is used by the
dashed and dotted linestyles to determine how to
adjust the dash or dot spacing to fit evenly along the
path (the method is different for open curves and
open curves with arrows). Then \end@ClosedObj
(line 9) performs various operations common to the
ending of closed graphics objects, such as adding the
PostScript code for filling and stroking the path and
invoking \pstverb.

Here is the resulting PostScript code for this ex-
ample:
tx@Dict begin STP newpath 2 SLW O setgray
[113.81097 56.90549 113.81097 0.0
28.45274 56.90549 28.45274 0.0
/r 5.69046 def
/Lineto{Arctol}def
false Polygon
gsave

45. rotate 0.8 SLW 0. setgray
gsave 90 rotate 4.0 LineFill grestore

10 4.0 LineFill
11 grestore
12 gsave 2 SLW 0 setgray 0 setlinecap stroke
13 end

Line 1 is added by \begin@ClosedObj. STP scales
the coordinate system from PostScript’s bp units to
pt units, which are easier for TgX to work with (e.g.,
\the\ps1inewidth might expand to 5.4pt, and the
pt can be stripped).

Lines 2 and 3 are the coordinates, which are
added by \pst@getcoors.

Line 4 sets the radius for the rounded corners
and line 5 defines Lineto, a procedure used by
Polygon, so that it makes rounded corners. If the
Tinearc parameter had been Opt instead, then, in-
stead of lines 4 and 5, \ps1ine@iii would have
added /Lineto{lineto}def.

Lines 7 to 11 are added by the fillstyle, and
line 12 is added by the Tinestyle, both of which are
invoked by \end@ClosedObj.

The code for the graphics objects is highly mod-
ular. For example, nearly all graphics objects invoke
the fill style to add the PostScript code for filling the
object. To define a new fill style foo for use with all

© B N e W R W N e

242

such objects, one simply has to define \psfs@foo to
add the PostScript code for filling a path.

The graphics objects can be used anywhere, and
can be part of composite macros such as for fram-
ing text. However, they are most commonly used by
the end-user to draw a picture by combining several
such objects with a common origin. For this purpose,
PSTricks provide the pspicture environment, which
is very similar to IAEX’s picture environment. In
particular, it is up to the user to specify the size of the
picture. This is an unfortunate inconvenience, but
one that is insurmountable. The PSTricks graphics
objects include curves and other complex objects of
which TgX could not calculate the bounding box, at
least not without doubling the size of PSTricks and
slowing it to a crawl. This is the main way in which
TEX's lack of graphics and floating point capabilities
hinders PSTricks.

Nodes

Drawing a line between two TgX objects requires
knowledge of the relative position of the two objects
on the page, which can be difficult to calculate. For
example, suppose one wants to draw a line connect-
ing “his” to “dog” in the following sentence:

The dog has eaten his bone.

One could calculate the relative position of these two
words, as long as their is not stretchable glue in the
sentence, but the procedure would not be applicable
to connecting other objects on a page.

With PostScript as a postprocessor, there is a
straightforward solution. By comparing the transfor-
mation matrices and current points in effect at two
points in the PostScript output, one can determine
their relative positions. This is the basic idea that lies
behind PSTricks node and node connection macros,
and is one that PSTricks adapted from Fmma Pease’s
tree-dvips.sty.

Here is how PSTricks connects the words:

\large
The \rnode{A}{dog} has eaten

\rnode{B}{his} bone.
\ncbar[angle=-90,nodesep=3pt,arm=.3]{->}{B}{A}

The dog has eaten his bone.
¢ |

\rnode{A}{dog} first measures the size of “dog”.
Then it attaches to “dog” some PostScript code that
creates a dictionary, TheNodeA, with the following
variables and procedures:

NodeMtrx The current transformation matrix.
X The x-coordinate of the center.

Y The y-coordinate of the center.
NodePos See below.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

Here is the code that appears in the PostScript output
for this example:

tx@Dict begin

1

2 gsave

3 STVCP T

4 8.33331 2.33331 18.27759
5 9.1388 3.0

6 tx@NodeDict begin

7 /TheNodeA 16 NewNode
8 InitRnode

9 end

10 end

11 grestore

12 end

This codes gets inserted with \pstVerb, which
should be defined in the configuration file to in-
clude ps-code verbatim in the PostScript output, not
grouped by (g)save and (g)restore. PostScript’s cur-
. rent point should be at TEX’s current point, but the
coordinate system can be arbitrary. For dvips, the
definition of \pstVerb is:

\def\pstVerb#1{\special{ps: #1}}

\pstVerb is used instead of \pstverb because
the latter groups the code in save and restore,
which would remove the node dictionary from
PostScript’s memory. However, PSTricks still wants
to work in pt units, and so STV scales the coordinate
system.

Line 4 contains the height, depth and width of
the dog. The next line (9.1388 3.0) gives the x and y
displacement from where the code is inserted (on the
left side of dog, at the baseline) to the center of dog.
Actually, by “center” we mean where node connec-
tions should point to. This is the center by default,
but can be some other position. For example, there
is a variant \Rnode that sets this point to be a fixed
distance above the baseline, so that a horizontal line
connecting two nodes that are aligned by their base-
lines will actually be horizontal, even if the heights
or depths of the two nodes are not equal.

NewNode, in line 7, performs various operations
common to all nodes, such as creating a dictionary
and saving the current transformation matrix. Then
InitRnode takes the dimensions (lines 4 and 5) off
the stack and defines X, Y and NodePos.

A node connection that wants to draw a line be-
tween a node named A and a node named B can go
anywhere after the nodes, as long as it ends up in
the dvi file after the nodes, and on the same page.
The node connection queries the node dictionaries
for the information needed to draw the line. In the
example above, \ncbar needs to know the coordi-
nate of the point that lies on the boundary of “his”,
at a —-90° angle from the center of node. After set-
ting Sin and Cos to the sine and cosine of 90° and
setting NodeSep to 0, the procedure NodePos in the
TheNodeA dictionary returns the coordinates of this

Inside PSTricks

point, relative to the center of the node. The connec-
tion macro can then convert this to coordinates in
the coordinate system in effect when the node con-
nection is drawn, by retrieving and using NodeMtrx,
X and Y from TheNodeA.

A node connection macro, after drawing the con-
nection, should also save a procedure for finding the
position and slope of a point on the line, so that la-
bels can be attached to node connections. This task
is similar to that of a node; it should save the co-
ordinates of the node connection and the current
transformation matrix and a procedure for extract-
ing from this information a position on the node con-
nection. Example 1 makes extensive use of labels.

There are many ways to position nodes, depend-
ing on the application. To create a diagram with ar-
rows from one object to another, one can position
the objects in a pspicture environment. For appli-
cations with more structure, one may want a more
automated way to position nodes. PSTricks does not
come with any high-level macros explicitly for com-
mutative diagrams, but it does have a psmatrix envi-
ronment for aligning nodes in an array, and this can
be used for commutative diagrams. Example 1 shows
psmatrix beings used for a graph. PSTricks also con-
tains very sophisticated tree macros.

Overlays

To make overlays with SLITEX, for example, you have
to use invisible fonts, and TgX has to typeset the slide
once for each overlay. This makes it impossible to
make overlays if a slide uses fonts other than the few
for which invisible versions are available, or if the
slide contains non-text material.

PSTricks uses a simple idea for creating over-
lays. Its operation is illustrated in Example 2. A box
from which a main slide and overlays are to be cre-
ated is saved, using the overlaybox environment.
The \psoverlay{2} command in this box simply in-
serts the code

(2) BeginOL
and similar code at the end of the current TgX group
fo revert to the main overlay. BeginOL compares
the string on the top of the stack to the PostScript
variable TheOL. If it does not match, the output is
made invisible. Otherwise, it is made visible. To print
out overlay 2,

\putoverlaybox{2}
simply has to insert

/TheOL (2) def
before a copy of the box.

Because we can insert PostScript procedures in
the box that can be redefined before each copy of

the box, TgX only has to typeset the box once, which
saves processing time and saves us from having to

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 243

Timothy Van Zandt and Denis Girou

\psmatrix
[mnode=circle,colsep=.85cm, rowsep=1cm]
% States:
[mnode=R] {\mbox{Start}}
& & [doubleline=true,name=0]1%q_0% \\
& & [name=11%q_1% \\
& [name=21%q_2% & & [name=31%q_3 \\[Opt]
[name=41%g_4% & & [name=5]1%q_5% & &
[name=6]3%q_6%
\endpsmatrix
% Transitions:
\psset{nodesep=3pt,arrows=->,arcangle=15,
labelsep=2pt, shortput=nab}
\footnotesize
\ncline[linestyle=dotted}{1,1}{0}
\nccircle{0}{.4cm}_{0}
\ncline{0}{1}_{1}
\ncline{1}{2}2{0}
\ncline{1} {3} _{1}
\ncarc{2}{431A{0}
\ncarc{4}{2}A{1}
\ncline{2}{5}r{1}
\ncline{3}{63A{0}
\ncarc{<-}{03{3}+{1}
\nccurve[angleA=140,ang1eB=210]{4}{0}A{0}
\nccurve[angleA=10,ang1eB=180]1{5}{3}A{0}
\ncarc{5}{43A{1}
\ncarc{6}{5}A{0}
\nccircle[angleA=270]1{6}{.4cm}_{1}

Example 1: An example of nodes and node connec-
tions and labels, used with the psmatrix environ-
ment. (Courtesy of Mark Livingston.)

\large
\begin{overlaybox}
$\frac{n-2}{n-3}
+ \psframebox{\psoverlay{2}
\frac{n-1}{n}}
= \frac{2(n-2) (n-L)}{n(n-3)1%
\end{overlaybox}
\psset{boxsep=6pt, framearc=.15,
Tinewidth=1.5pt}
\psframebox{\putoverlaybox{main}}
\psframebox{\putovertaybox{2}}

2n-2)(n-1)
T n(n-3)

Example 2: Overlays.

come up with a way to read the TgX input for the box
several times.

There are several ways to make output invisible
with PostScript, none of which is entirely satisfac-
tory. PSTricks’ default method is to translate every-
thing far away (e.g., over by the coffee pot) so that, ex-
cept in very unusual circumstances, all the “visible”
output ends up off the page. This is easy to undo, by
translating back.

The only problem with translation is that the
node connections and labels, which use absolute co-
ordinates, end up on the same overlay as the nodes
that are connected. Therefore, users can select an
alternate method for making material invisible: set-
ting a small clipping path off the page. The problem
with this method is that it can only be undone with
initclip, which can mess up other macros that set
the clipping path.

PSTricks does not use PostScript’s nulldevice
operator, because this cannot be undone except by
using grestore. It would thus be impossible to have
nested overlays. The PSTricks overlay macros are
used to implement overlays in the Seminar package.

Typesetting text along a path

One facility that TgX users have long desired but
have been unable to obtain is to typeset text along
a path. This is a task that also stretches the limits of
PostScript \special’s, but PSTricks contains an im-
plementation that works for several dvi-to-ps drivers.
It is illustrated in Color Example 13.

244 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

The main difficulty is that the text that goes
along the path should be typeset by TgX, not by
PSTricks, and then converted to PostScript output by
the dvi driver. For PSTricks to get this text along
the path, it has to redefine the operators that the dvi
driver uses to print the text. This requires knowledge
of the PostScript code the dvi driver uses to print
text.

In the best case, the dvi driver simply uses
PostScript’s show operator, unloaded and unbound.
PSTricks simply has to redefine show so that it takes
each character in the string and prints it along the
path. The redefined show checks the current point
and compares it with the current point at the begin-
ning of the box that is being typeset to find out the x
and y positions of the beginning of the character. The
X position is increased by half the width of the char-
acter to get the position of the middle of the charac-
ter. This is the distance along the path that the mid-
dle of the character should fall. It is straightforward,
albeit tedious, to find the coordinates and slope of
any point on a path. We translate the coordinate sys-
tem to this point on the path, and then rotate the co-
ordinate system so that the path is locally horizontal.
Then we set the current point to where the beginning
of the character should be, which means to the left
by half the character width and up or down by the
relative position of the base of the character in the
box. Then we are ready to show the character.

This method works with Rokicki’s dvips. For
other drivers, one of two problems arises:

1. show is “loaded” or “bound” in procedures de-
fined by the driver for displaying text. This
means that the procedures do not invoke the
command name show, which can be redefined
by PSTricks, but instead invoke the primitive
operation show, which cannot be altered. The
workaround for this is to remove the appropri-
ate Toad’s and bind’s from the driver’s header
file.

2. The driver uses PostScript Level 2’s large fam-
ily of primitives for showing text. The only
workaround is to redefine all these operators,
which has not been attempted. The usual dvi
drivers do not use Level 2 constructs. How-
ever, NeXTTgX’s TgXView, which is a dvi driver
based on the NeXT's Display PostScript window-
ing environment, does use Level 2 operators.
The workaround for NeXT users is to use dvips
to generate a PostScript file and then preview it
with Preview.

Stroking and filling character paths

It is also possible to stroke and fill character paths,
as illustrated in Color Example 13. The methodol-
ogy is the same as typesetting text along a path, but
it is easier because show just has to be changed to

Inside PSTricks

charpath. Nevertheless, the two problems that can
trip up PSTricks’ \pstextpath macro can also trip
up \pscharpath. Furthermore, \pscharpath only
works with PostScript outline fonts, since bitmap
fonts cannot be converted to character paths.

Charts

PSTricks has many primitives for a wide variety of
applications, but sophisticated graphics can involve
tedious programming. In such cases, a preproces-
sor can be constructed to automatically generate the
PSTricks commands. The preprocessor can gener-
ate standardized representations using only a min-
imum amount of information, but the user does not
lose flexihility because the PSTricks code can subse-
quently be tweaked as desired.

For instance, we can think of preprocessors for
automatic coloration of maps, generation of graphs
or trees, etc. For his own needs, Denis Girou has writ-
ten (in Shell and AWK) a preprocessor (pstchart.sh)
for automatic generation of pie charts, which he ex-
tended to generate other forms of business graph-
ics (line and bar graphs, 2D or 3D, stacked and un-
stacked).

Example 3 shows a data file, the unix command
line for generating the PSTricks code from the data
file, and the output. Color Example 14 shows the
output from another example, generated with the
unix command line;

pstchart.sh vbar dimx=9 3d boxit center\
figure print-percentages < file2.data

Conclusion

There is much talk about the future of TgX and about
the need to create a replacement for TgX because TgX
is, by design, just a typesetting program for posi-
tioning characters and rules. We believe that when
today’s TgX is supplemented by PostScript, through
the use of \special’s and good dvi-to-ps drivers,
many of the special effects that users clamor for can
be achieved today. PSTricks provides an example of
this.

When PSTricks is combined with the Seminar
IATEX2¢ document class for making slides, plus
PostScript fonts and macros for including graphics
files, one has a complete presentation software pack-
age, that is quite far from the usual use of TgX for
typesetting technical papers.

However, there are still some limitations that
can only be solved by changes to TgX. The most obvi-
ous one is TgX's lack of fast, floating-point arithmetic.
Although TgX can pass information to PostScript
through \special’s, it is not possible for PostScript
to pass information to TgX. This slows down many
calculations and makes it impossible to calculate the
bounding box of some graphics.

TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting 245

Timothy Van Zandt and Denis Girou

Data file:

3094 | LUU
1438 | SOL
365 | LMD
267 | LEG
248 | PPM
236 | MEF
122 | ASF
57 | DRT
33 | AMB
18 | TPR

9 | RRS

Cominand line:

tchart.sh vbar dimx=7 3d nb-values=8 \
print-percentages print-values \
grayscale=white-black data-change-colors \
title="VP users’ files" center <users.data

Output;
VP users’ files
4000 r
3200 ': —]
2400 :- -:
s -]
1600 1) o
800 -_- ._:
| |

LUU SOL LMD LEG PPM MEF ASF Othen

Fxample 3: Using the preprocessor pstchart to
generate PSTricks graphs.

References

Girou, Denis. “Présentation de PSTricks,” Cahiers
GUTenberg, No. 16, pp. 21-70, Février 1994,

Van Zandt, Timothy. “PSTricks: Documented Code.”
1994

Van Zandt, Timothy. “PSTricks: PostScript Macros for
Generic TEX — User’s Guide.” 1994.

246 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

A IATEX style file generator and editor

Jon Stenerson
TCI Software Research, Las Cruces, New Mexico
Jon_Stenerson@tcisoft.com

Abstract

This article presents a program that facilitates the creation of customized IATEX
style files. The user provides a style specification and the style editor writes
all the macros. Editing takes place in a graphical user interface composed of
windows, menus, and dialog boxes. While the editor may be used in any IATEX
environment, it is intended primarily for use with TCI Software Research’s word

processor Scientific Word.

The current style editor runs under any Windows 3.1 system. The perfor-
mance is acceptable on a 386-based machine and naturally improves on 486’s and
Pentiums. As Scientific Word is ported to other systems so will the style editor be

ported.

Introduction

The style editor is a program that facilitates the cre-
ation and modification of styles. It represents a style
as a list of generic markup tags, and thinks of a tag
as a list of parameters which determine its typeset-
ting properties. It performs the basic operations of
creating a new tag, modifying a tag's parameters, and
deleting a tag. A tag’s formatting instructions are not
explicitly displayed. That is to say you do not see
any TgX on the screen. Instead you see dialog boxes
containing icons, menus, radio buttons, check boxes,
and so forth. These prompt you to specify the style
by filling in parameters and selecting options. There
are some screen shots at the end of this article to give
an idea of the style editor’s general appearance.

Styles, generic markup tags, and
Scientific Word

A generic markup tag is a device by which an au-
thor specifies a document’s logical structure with-
out specifying its visual format. For instance, the
IATEX tag \section conveys the information that a
new section is beginning and that the tagged text is
its title. By itself this has no implications for the ap-
pearance of the section heading. It does not tell us
the heading’s font, justification, or vertical spacing.
A style file, external to the document, contains asso-
ciations between the tag names and specific typeset-
ting instructions. The style file says what tags exist
and how text marked with those tags should be type-
set. We see that the use of generic markup tags pro-
vides a certain division of labor. I write the article,
someone else writes the style, and TgX and ITgX do
the typesetting. The only style information I need as
an author is a list of tag names and instructions for
their use.

These days most word processors do not make
use of generic markup tags. The reason is that they
want to be wysIwyG (what you see is what you get).
This means that they display on the video monitor
exactly what you will get when you print the final
copy. Files produced by wysiwYG word processors
are filled with explicit typesetting instructions like
“put a 14pt Helvetica A at coordinates (100, 112).”
Compare this approach with the generic markup ap-
proach. First, the division of labor mentioned above
is lost and the author is now responsible for all type-
setting decisions. Of course this is also the main at-
traction of such systems. Second, stylistic informa-
tion is now duplicated throughout the document. If
subsection headings have to be left justified rather
than centered the author will have to track them all
down and change them one by one.

At TCI Software Research we are trying the
generic markup approach to word processing. Our
word processor, Scientific Word, is not a WYSIWYG
word processor in the usual sense. Instead it dis-
plays a document’s text plus markup. The markup
is graphical, rather than textual, in nature. Whereas
in KTgX you will see \section{Introduction}, in
Scientific Word you will see the word Introduction in
large blue letters on the video monitor. Ideally the
document’s text plus markup tags represents the en-
tire content of the document. In practice there are
some important exceptions where visual formatting
carries a lot of information. For example, in math-
ematical equations and in tables the precise posi-
tioning of text contributes enormously to its mean-
ing. Scientific Word is wysSIwyG to the extent that if
the appearance of an object carries meaning, as in
the case of an equation or table, then that object is
displayed in an approximation to its printed form.
When Scientific Word saves a document on a disk it

TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting 247

Jon Stenerson

is saved in IATgX form, and from there it can be type-
set and printed.

Being “IATEX-oriented” leaves Scientific Word
open to some of the same criticisms leveled at IATgX.
In particular, authors do not always appreciate the
division of labor I mentioned above. Some of them
need or want more control over the style and cannot
accept that someone else just hands them a style. At
TCI we receive hundreds of requests for style modifi-
cations each year. Most of them are quite straightfor-
ward but many are not. It frustrates our customers,
used to WYSIWYG systems, that some apparently triv-
ial operations are not trivial for the casual IAIgX user.
This suggests the need for another division of labor:
style designer versus style writer. Our authors do
not actually want to write styles, they want to spec-
ify styles. I was assigned the task of developing tools
to alleviate this problem. The style editor represents
the current state of that research.

For further discussion of markup tags and IAIgX
see the first couple chapters of Goossens, Mittel-
bach, and Samarin 1994. For a discussion of generic
markup in a non-IATgX environment read about SGML
(Standard Generalized Markup Language) (Bryan
1988).

The development process

Before continuing with the style editor itself I'd like
to talk a little about the process of designing and im-
plementing the editor. I was trained as an algebraic
geometer in graduate school, had previously worked
as a math professor, and this was my first profes-
sional programiming experience. The process of pro-
gramming is still novel enough to me that I feel like
writing about it.

The first part of my research was to work with
our customers in the capacity of style writer. I did
this for four months to learn TgX, to learn how to
think about style issues, and to find out what our
customers wanted in the way of style modification.
When I had enough experience to contemplate writ-
ing a program I e-mailed 500 customers and asked if
anyone was interested in the design of a style editor.
About 45 people responded and provided numerous
comments and suggestions.

Still not knowing what a style editor should look
like I decided to make a prototype, learn from my
mistakes, and then build a release version.The pro-
totype was implemented in three months between
December 1993 and February 1994. It was complete
enough to handle some realistic design issues even
though it did not have a nice user interface. [wrote
several styles with it including a style for one chapter
of the new Scientific Word User’s Guide.

In retrospect, I think that I spent the wrong
amount of time on the prototype. The last few weeks
of work on the prototype were spent getting it ready

for testers - adding minor features, fixing bugs and
writing documentation. As it turned out the testers
paid little attention to the prototype editor. It was
too primitive and too scary and I didn't get the feed-
back I'd hoped for. I either should have either gone
ahead and made a nicer and more polished interface
for the prototype, or I should have quit earlier and
started on the release version editor sooner.
1learned many things from the prototype:

o Most importantly I learned that it is possible
to develop a useful style editor. This was not
chbvious to me at first, but much of what I did
worked better than I thought it would. I am
now confident that TCI can and will develop a
style editor that allows the casual user with no
IATEX knowledge to make basic style changes,
and allows the advanced user to create any style
at all.

¢ Ilearned that alot more attention had to be paid
to the user interface. I did not spend much time
on the prototype’s user interface because I had
to first concentrate on getting the right model
for the styles and getting the right basic func-
tionality. For the style editor release version
we added another programmer, Chris Gorman,
to concentrate on getting the user interface in
shape. He is responsible for much of the slick
look and feel of the final program.

e Using the completed prototype to write some
actual styles uncovered a number of flaws in the
model I was using to represent styles.

¢ Writing the code for the prototype uncovered
a number of flaws in my programming tech-
nique. Actually, many of these flaws were un-
covered by John Mackendrick, one of our in-
house testers. I am a better programmer than
1 was six months ago. While the prototype al-
ways seemed a little flaky and buggy, the new
program seems much more robust just by virtue
of being better written.

Overall design

The style editor consists of the following compo-
nents:

1. A GUI (Graphical User Interface). This manages
interaction with the user and with the platform.
The only platform Chris and I have worked on
so far is Windows 3.1. We used Microsoft’s
Visual C++ and their MFC (Microsoft Founda-
tion Classes) application framework. My under-
standing is that MFC code is supposed to even-
tually be portable to other platforms (Apple’s
Macintosh and Unix). So when Microsoft fin-
ishes MFC on those platforms we should be able
to port the style editor.

2. A data structure called the Style. The program
actually represents the style in two different

248 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

forms: internal and external. The internal form
is a set of C++ classes suitable for editing. The
nature of these classes lies outside the scope of
this article. The external form is textual, suit-
able for interpretation as a IAIEX style and for
human perusal. I frequently lump the internal
and external data structures together into one
abstract concept that I call the style model.

3. A set of functions called the “core”. These func-
tions do the following;

(a) convert between the two style representa-
tions. In other words they read and write
style files.

(b) perform error checking. For example, be-
fore saving a style it makes sure that every
item referred to in the style has been de-
fined in the style.

(c) constructs other files needed by Scientific
Word. Besides the style file there is also a
shellfile and a screen appearance file. Each
style file has a shell file that is used as a
template whenever Scientific Word creates
a new document of that style. The screen
appearance file tells Scientific Word what
tags are in the style and determines how
they will appear on the video display.

4. A set of macro writers. These are TEX macros
that interpret the style editor output as an ac-
tual style. They accomplish this by reading the
style file and writing macros to implement the
tags described in the style. This is all done on
the fly. You will not normally see the macros
written by the macro writers. They are con-
structed in the computer’s memory and do not
assume any printed appearance without insert-
ing a \show command.

The key to the style editor is the last item so I'll
talk about it some more. The macro writers are con-
tained in a file called sebase.cls. This file is used as
the document class for any style editor style. This is
a misuse of the .c1s extension because sebase.cls
does not define any document class. Nor does it de-
fine any macros that may be used to markup a docu-
ment. Ratheritis a toolbox. The tools in sebase.cls
are used to automatically write the macros that will
be used in document markup. Eventually I will make
a format file out of sebase but for now it depends on
using the IATEX format. Style files generated by the
editor are read in with a \usepackage command.

Here is an example. In my scheme the definition
of a section tag would look something like this:
\Division{

\Name{section}

\Level{1l}
\Heading{SectionHeading}
\EnterTOC{true}

A IATEX style file generator and editor

\StartsOn{NextPage}
\SetRightMark{true}
}

This is somewhat simplified but it gives the basic idea
of what the style editor output might look like. In the
file sebase there is a macro writer called \Division
that writes a document division! macro on the ba-
sis of its parameters. In this case it writes a macro
named \section. You see parameters describing the
division’s behavior with regard to the table of con-
tents and running header and whether it must start
on a new page, but you do not see any formatting in-
structions for a heading. This is because I distinguish
between the division and its heading. There is just a
reference to a heading. The heading itself is defined
like this:
\DisplayElement{

\Name{SectionHeading}

\SkipBefore{20pt plus 4pt minus 2pt}

\SkipAfter{12pt plus 2 pt minus 1lpt}

\ParagraphType{HeadingParagraph}

\Font{MajorHeadingFont}

\Components{

Section \sectionCount .\Space{2mm}
\CurrentHeading}

}

I have around 20 macro writers. Each of these is
Tesponsible for writing a certain category of macro.
Thus I have a Division category, a Display Element
category, a List category, a Font category, and so
forth. These are discussed in more detail in the next
section.

To get a feeling for how an editing session pro-
ceeds look at the screen shots at the end of this ar-
ticle. The first shows the start-up screen. You can
see various controls for adjusting margins and page
sizes. At the top of the screen is a menu labeled Cat-
egory. The second screen shot shows the category
menu pulled down and the division category about
to be selected. You can see all of the categories. The
third screen shot shows the screen after selecting
the division category. Look at the split screen win-
dow. The left part of the window lists all the in-
stances of the category that have been defined so far.
In this case it lists all of the style’s divisions: chap-
ter, section, subsection and appendix. This list may
be added to or deleted from. The figure also shows
that “section” has been selected from the list of all
divisions. The information for the section division is
displayed in a dialog box contained in the right pane
of the split window. This dialog changes radically
depending on the category. One uses the controls
found in that pane to inspect or alter the displayed

11 started using the term “division” because I
found it awkward to continually refer to sections,
subsections, and chapters as “sections”.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 249

Jon Stenerson

parameters. When the style is saved the information
is written in a form similar to that shown above.
Parametrized macro writing is not a new idea.
For example, in the code for the IATgX format there
is a macro called \@startsection. This macro is
used to define sectioning macros. It has a number
of parameters and by specifying various values for
these parameters one defines a wide variety of sec-
tioning commands. Here is a typical definition of the
\section tag from a human authored style file:

\def\section{
\@startsection {section}{1}{\z@}
{3.5ex plus lex minus .2ex}
{2.3ex plus .2ex}{\large\bf}}

Only a dedicated person can remember what those
parameters do, or that if one is negative it has a
different meaning than if it is non-negative. On the
other hand I have noticed that many styles override
\@startsection itself, suggesting that it may not
have enough parameters! In addition to borrowing
ideas from IATEX I have found that Bechtolsheim's TgX
in Practice (Bechtolsheim 1993) is an excellent source
of ideas for parametrized macros.

The idea of macro-writing macros is also not
new. A trivial example is the \title macro found
in IATEX styles. It is defined like this:

\def\titTe#1{
\def\@title{#1}
}

It takes a parameter and uses it to write another
macro.

Victor Eijkhout’s Lollipop format (Eijkhout
1992) is an example of a complete system of macro
writing tools. 1 have not had an opportunity to use
Lollipop but from the article I suspect that it would
be possible to put a user interface on it similar to
the one used with sebase. I thank the anonymous
reviewer of this article for pointing out the existence
of Eijkhout’s work. I am a relative newcomer to TgX
and was not aware of Lollipop but it is clearly re-
lated to what I am doing. Since I don’t know Lollipop
I will quote verbatim an example from the reference
showing how a subsection heading might be created
in that system:

\DefineHeading:SubSection counter:i
whitebefore:18pt whiteafter:15pt
Pointsize:14 Style:bold
block:start SectionCounter literal:,

SubsectionCounter literal:.
fiTlupto:levelindent title
external :Contents title external:stop
Stop

You can see that this uses the idea of defining
macros by specifying parameters in the form of key-
word plus value.

250

A model for styles

Preliminaries. I think that a good piece of software
must be based on a clean and straightforward model.
In the case of the style editor this means finding
an abstract representation of a style. My initial re-
action after learning TgX and thinking about styles
for a while was that it was not possible to write a
style editor. There seemed to be so much disorga-
nized “stuff” that I had no idea where to start. Had I
started programming at this point I probably would
have picked for my model a particular style file, say
article.sty, and my program would have been an
expert at editing all of the parameters and options
found in this file. Instead I had a few “modelling”
talks with Roger Hunter (TCI's president) and Andy
Canham (development team leader). The model that
came out of those meetings was implemented in the
prototype and was subseguently modified for the re-
lease version based on that experience.

I said before that the model has two concrete
representations: one as a C++ class, the other as a
style file. The latter is probably more familiar to the
reader so we will identify the style file with the style
model. The remainder of this section talks about
style files written by the style editor. The main idea
behind style editor style files is that they contain
no algorithmic information. There are no sequences
of instructions, no branches, and no loops. They
consist only of a long list of declarative informa-
tion. Style editor style files use a very uniform syntax
for this declarative data and therefore look different
from other style files.

The style file consists of a list of declarations.
The syntax for a declaration is always the same:

\CategoryName{
\Parameterl{value 1}
\Parameter2{value 2}
...etc...

}

Every category requires a fixed number and type of
parameters. Parameters are discussed in the follow-
ing subsection, and categories in the subsection after
that.

The samples shown below are simplified. Actual
style editor files contain information related to the
operation of the style editor program. They also con-
tain multiple versions of style data related to features
described in the section on the user interface. 1 will
suppress these kinds of data in the following discus-
sion.

There is nothing proprietary about style editor
style files. Anyone can go in with an ASCII editor and
make changes to them without the style editor. For
that matter anyone can write an entire style editor
style file without using the style editor.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

Parameters. Every parameter expects a value of a
particular type. I've found the following types of pa-
rameters to be adequate:

1. A word parameter requires a string of letters (A-
Z, a-z). These are usually references to macros.

2. A text parameter requires a string of characters.
Any characters that are not among TgX’s special
characters (like braces and dollar signs) are al-
lowed.

3. A boolean parameter requires one of the two
words “true” or “false”.

4. A numeric parameter requires a signed decimal
number.

5. A dimension parameter requires a dimension in
the TgX sense of a number plus a unit. The style
editor knows all of the TgX units and can convert
between them.

6. A glue parameter requires a glue value in the
TEX sense of a natural dimension with a stretch
dimension and a shrink dimension.

7. A component list parameter requires a list of
components. Each component is either text in
the sense given above, or a control sequence
which is called a reference component in the
style editor.

Some of these were demonstrated in the previous
section’s example of a \Division: \Heading is a
word parameter, \EnterInTOC is a boolean param-
eter, and \Level is a numeric parameter. Next look
at the \DisplayElement example also in the previ-
ous section. \SkipBefore and \SkipAfter are glue
parameters and \Components is a component list pa-
rameter. The value of \Components in the example
consists of five components: two text components
“Section ” and “.”, and three reference components.

Categories. Now we'll take a look at some of the
other categories that the style editor knows about.
There are more categories than I can describe even
briefly so P’'m just going to try get across a few ideas
about how it all fits together. In particular we will not
see categories that define Lists, Table of Contents, In-
dex, Bibliography, or Math. These perform fairly spe-
cialized functions and after reading what follows you
may be able to imagine their nature.

Document Variables. These are macros that the
document uses to pass information back to the style.
A typical example is a macro to handle the docu-
ment’s title:

\DocumentVariable{
\Name{Title}
}

A document variable’s most important parame-
ter is its name. It actually has a couple more parame-
ters that have to do with Scientific Word’s handling of

A JATEX style file generator and editor

the variable. The macro writer, \DocumentVariable,
writes a macro called \SetTitle. The \SetTitle
macro is used in the document like this:

\SetTitle{My TUG paper}

This in turn defines a macro \Tit]e whose replace-
ment text is My TUG paper. Thus \SetTitle and
\Title have the same relation to each other as
\title and \@title have in I&TEX.

The style editor also knows about several built-
in macros that get information from the document.
These include \PageNum, and \CurrentHeading.
These keep track of the current page number and
the title of the most recently encountered division.

Fonts. The font category provides an interface
to NFSS. Here is a sample style file entry:

\FontNFSS{
\Name{BodyTextFont}
\Family{Serif}
\Shape{Upright}
\Series{Medium}
\Size{normalsize}

}

\FontNFSS will write a macro, \BodyTextFont,
which performs the indicated font switch. The
precise nature of the various families, shapes, se-
ries, and sizes are determined by selecting a “Font
Scheme” elsewhere in the style.

Paragraphs and Environments. The paragraph
category provides an interface to a number of TgX
parameters related to paragraph typesetting: font,
baseline-to-baseline distance, indentations and so
forth. By setting these properly you can create tags
like the \quote and \center found in IAIgX. Here is
an example:

\Paragraph{
\Name{Center}
\Font{BodyTextFont}
\ParIndent{Opt}
\LeftIndent{Opt plus 1fil}
\RightIndent{Opt plus 1fil}
\ParFi11Skip{0Opt}
\ParSkip{Opt}
\PageBreakPenalty{100}
\HyphenationPenalty{100}

}

When used in conjunction with an environment cate-
gory item this will make available in the document an
environment \begin{Center} ... \end{Center}
that typesets a prefix, such as a vertical skip, then
switches to the centering paragraph, and then has a
suffix.

In-line and display elements. An in-line ele-
ment is just a component list plus a font. It is in-
tended to typeset text which is part of a surrounding
paragraph. Here is an example:

\InlineElement{

TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting 251

Jon Stenerson

\Name{AbstractlLeadin}

\Font{SmallCapFont}

\Components{Abstract.\Space{lpc}}
}

This creates a macro, \AbstractLeadin, which type-
sets the word “Abstract” followed by a period and a
space. It uses a font called \Small1CapFont which
must be defined via the Font category. Component
lists may use the names of in-line elements so this
\AbstractlLeadin item may be reused throughout
the style.

A display element is intended to be typeset in
its own paragraph and set off from the surrounding
text. We have already seen an example of this earlier
in the section.

In-line and display elements are frequently used
in conjunction with a document variable. For exam-
ple, consider generating a macro to typeset the title
of the document. We would first declare a document
variable to hold the title

\DocumentVariable{
\Name{Title}
}

and then declare a display element that uses the doc-
ument variable

\DisplayElement{
\Name{TITLE}
\SkipBefore{Opt}
\SkipAfter{Opt}
\Paragraph{CenterHeading}
\Font{MajorHeadingFont}
\Components{\Title}

}

This produces a macro called \TITLE that typesets
the value of the variable \T1it1e with the given para-
graph and font settings. The \TITLE macro may be
used in the document but will probably be used in a
title page macro (see below).

Page Setup. This category provides an interface
to many TEX parameters involved in page style: page
size, trim size, margins, headers and footers, foot-
notes and margin notes. Most styles will need to cre-
ate only one item in the page setup category.

Exceptional Pages. An exceptional page is one
that deviates from the surrounding pages in that it
has some special formatting requirements. A typical
example is a title page. A title page has some spe-
cially typeset material and usually has special head-
ers and footers. Here is an example:

\Exception{
\Name{T1itlePage}
\VerticalMaterial{

\Space{2cm}
\TITLE
\Space{lcm}
\AUTHOR

\DATE

\Space{lcm}
}
\ContinueTextOn{ThisPage}
\SpeciallLeftHead{}
\SpecialMiddleHead{}
\SpecialRightHead{}
...etc...

}

This writes a macro called \Ti t1ePage which in turn
causes a new page to begin, typesets the vertical ma-
terial, and then allows text 1o continue on this page.
The vertical material consists of built-in macros such
as \Space or names of elements defined elsewhere in
the style such as \TITLE, \AUTHOR, and \DATE.

The user interface

The prototype editor had a simple interface. In
essence there were dialog boxes in one-to-one cor-
respondence with the macro writers and in each di-
alog box there were controls in one-to-one corre-
spondence with the macro writer’s parameters. To a
TgX programmer this interface would probably seem
pretty friendly. If you saw an edit control labeled
“Par. Skip” you'd probably have a good idea of the
sort of thing you might enter. Editing with the proto-
type was not that far removed from editing the style
file with an ASCII editor. The major step forward was
the ease with which you could move around the style.
I'm sure that all TgX programmers have had the ex-
perience of searching style files for a macro defini-
tion. The prototype style editor could find any piece
of data instantly.

Most of our customers however do not want to
fill in parameters. They do not want to know what
glue is. They do not even want to see the word “skip”
on the screen. They want to use the mouse to click
on a picture of what they want, check a few boxes
or radio buttons, and have the program do the right
thing. On the other hand I liked the prototype’s pow-
erful interface and was not willing to give it up. So
I opted for a hybrid scheme. A category item can
now have two different interfaces: a “quick screen”
in which a few simple options are presented, and a
“custom screen” which presents all the category’s pa-
rameters. The quick screen for the Paragraph cate-
gory has several sets of icons. By selecting an icon
from each set you determine certain characteristics
of the paragraph. For example, one set is labeled
“Paragraph spacing” and it contains two icons. One
icon suggests tight spacing, the other suggests loose
spacing. The custom screen by contrast has several
places where actual dimension and glue values must
be given. To prevent casual users from stumbling
into dialogs they don’t understand the program has
two modes. In the first mode many features includ-
ing all the custom screens are disabled.

252 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

As described so far the quick screen seems lim-
ited. It has two icons for paragraph spacing, but what
glue values should correspond to these two icons?
It clearly depends on the style. 1 therefore decided
to let the icons themselves be programmable. By se-
lecting an icon and pressing the F2 key you get a di-
alog box where a specific glue can be given. This
value is saved in the style file. Finally, if you can’t
get the effect you want from the quick screen, the
quick screen F2 modifications, or the custom screen,
you can tell the style editor that you want to write
this macro yourself. You will then have to do so in
another macro file.

Conclusion

The style editor as it now stands is a useful program
but there is still a lot of work to be done before it
is a complete program. What I anticipate in the near
future is that a style writer will prepare a style using
the style editor together with a little straight TgX to
fill in the gaps. The resulting style, at least those
parts that do not rely on the plain TgX additions,
can be customized by the author without any TgX
knowhow. As time goes by I will manage to get more
and more TgX into the editor’s quick screens and
there will be fewer and fewer gaps.

I have more basic functionality planned. For in-
stance, I want to include a fancy “cut and paste” fea-
ture that will facilitate moving tag definitions from
one style to another. The editor will resolve internal
naming conflicts and make sure that auxiliary defini-
tions needed for the tags being moved are moved at
the same time. Having an abstract style representa-
tion should make it possibie to move features from
style to style. This in turn will make it possible to
“change styles”. A frequent customer request is to
change a document from one style to another. If the
two styles have the same set of markup tags this is
pretty easy. If they do not this is pretty hard. If the
style editor can reliably move tags from one style to
another then this problem will be solved.

Shortly before the TUG meeting 1 received
preprints of two other papers, Baxter 1994 and
Ogawa 1994, that are found elsewhere in these pro-
ceedings. These talk are about using the object-
oriented paradigm in TgX programming and in doc-
ument markup. In some ways the style editor is also
part of this discussion on the object-oriented ap-
proach. In fact the style editor directly represents
the style as a C++ class in which each generic markup
tag acts as a “style object” that can be acted upon by
an object-oriented interface. I think that combining
a style editor of the sort I've described here with a
markup scheme such as described in the above ref-
erences would lead to quite a powerful typesetting
system.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

A IATEX style file generator and editor

References

Baxter, William Erik. “An Object-Oriented Program-
ming System in TgX.” These proceedings.

Bechtolsheim, Stephan von. TgX in Practice. Springer-
Verlag, New York, NY, USA, 1993.

Eijkhout, Victor “Just give me a lollipop (it makes my
heart go giddy-up).” TUGboat 13 (3), pages 341-
346, 1992.

Goossens, Michel, Frank Mittelbach and Alexander
Samarin. The IATEX Companion. Addison-Wesley,
Reading, MA, USA, 1994.

Mittelbach, Frank. “An extension of the IATEX theo-
rem environment.” TUGboat 10 (3), pages 416-
426, 1989.

Ogawa, Arthur. “Object-Oriented Programming, De-
scriptive Markup, and TgX.” These proceedings.

Bryan, Martin. SGML: an Author’s Guide. Addison-
Wesley, Reading, MA, USA, 1988.

253

Jon Stenerson

DefaultPageSetu

Examples of user interface screens.

254 TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting

Document Classes and Packages for IAIEX2¢

Johannes Braams

PTT Research, P.O. box 421, 2260 AK Leidschendam, The Netherlands

J.L.Braams@research.ptt.nl

Abstract

The first section of this article describes what document classes and packages
are and how they relate to IAI1:X 2.09's style files. Then the process of upgrading
existing style files for use with I&§X 2¢ is described. Finally there is an overview of
standard packages and document classes that come with the IATEX 2¢ distribution.

Introduction

This article is written for people who have written
document styles for IATEX 2.09 and want to upgrade
them for IAIEX2¢. For a description of the new fea-
tures of the user level commands, see IATEX 2¢ for au-
thors (in the file usrguide. tex in the IATEX2¢ distri-
bution). The details about the interface for class and
package writers can be found in ATgX 2¢ for class and
package writers (in the file c1sguide.tex). The way
I&TEX now deals with fonts is described in BTEX2g
font selection (in the file fntguide. tex).

What are document classes and packages?

IATEX is a document preparation system that enables
the document writer to concentrate on the contents
of his text, without bothering too much about the
formatting of it. For instance, whenever he starts a
new chapter the formatting of the chapter is defined
outside of his document. The file that contains these
formatting rules used to be called a ‘document style’.
Such a document style can have options to influence
its formatting decisions. Some of these options are
stored in separate files, ‘document style option’ files.
An example of such option files is flegn. sty which
was part of the IATEX 2.09 distribution. This option
changes one aspect of the formatting of a document
—it makes displayed equations come out flush left
instead of centered.

There are also extensions to IATgX that imple-
ment constructs that are not available in the default
system, such as array.sty. These extensions are
also known as ‘document style option’ files, although
they can often be used with many kinds of docu-
ments.

To make a better distinction possible between
these two kinds of ‘options’ new names have been
introduced for them. What used to be called a ‘doc-
ument style’ is now called a ‘document class’!. Ex-

! This also gives a possibility to distinguish be-
tween documents written for IKIEX 2.09 and docu-
ments written for IKIEX 2¢.

tensions to the functionality of IATEX are now called
‘packages’.

Options, options, options... Like the document
styles of I4T§X 2.09 document classes can have op-
tions that influence their behaviour—to select the
type size for instance. But with IKIEX2¢ it is now
also possible for packages to have options. As a con-
sequence there are now two kinds of options, ‘lo-
cal options’—which are only valid for the package or
document class they are specified for—and ‘global’
options which can influence the behaviour of both
the document class and one or more packages. As an
example of this let’s consider a document written in
German. The author chooses to use the babel pack-
age. He also wants to be able to refer to a figure ‘on
the following page’ so he uses the varioref package.
The preambile of his document might then ook like:

\documentclass{article}
\usepackage[german] {babel}
\usepackage[german]{varioref}

As you see the option ‘german’ was specified twice.
Using a ‘global option’' this preamble could be
changed to read:

\documentclass[german]{article}
\usepackage{babel}
\usepackage{varioref}

This way it is known to the document class as well
as all packages used in the document that the option
‘german’ is specified.

Command names. This new version of I£[EX comes
with a new set of commands. Those I&TEX users
who have written their own extensions to I4IEX
in the past know that in version 2.09 basically
two types of commands existed, namely “internal”
commands—with ‘@’-signs in their name—and “user
level” commands—without ‘@’-signs in their name.
IATEX2¢ has also commands that have both
upper- and lowercase letters in their name. Those
commands are part of the interface for package and

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 255

Johannes Braams

cls | A file containing a document class

clo | A file containing an external option to a
document class

sty | A file that contains (part of) a package
cfg | An optional file that is looked for at run-
time and which can contain customization
code

def | A file containing definitions that will be
read in at runtime.

Ttx | A file used when building the IKTEX2¢
format

dtx | Documented source code for .cls, .clo,
.sty, .cfg, .def, and .1tx files

fd A font definition file

fdd | Documented source code for . fd files

ins | DOCSTRIP instructions to unpack .dtx and
. fdd files

Table 1: Extensions for WX 2¢ files

class writers. They are not intended for use in docu-
ments, but they are meant to provide an ‘easy’ inter-
face to some of the internals of IATEX 2¢.

Filenames. The new version of IATEX introduces a
number of new file extensions. This makes it easy
to distinguish between files that contain a Document
Class, files that contain an external option to a Docu-
ment Class and files that contain Packages. In table 1
you can find an overview of the extensions that have
been introduced. I would suggest that you would
stick to the same set of extensions when you upgrade
your old . sty files.

Upgrading existing ‘styles’ — general
remarks

Is it a class or a package? The first thing to do when
you upgrade an existing style file for I&IgX 2¢, is to
decide whether it should become a document class
or a package. Here are a few points which might help
you to decide what to do with your . sty file.

e Was the original .sty file a documentstyle?
Then turn it into a document class.

o Was the original .sty file meant to be used
for a certain type of document? In that case
you should consider turning it into a document
class, possibly by building on top of an existing
class. An example of this is proc.sty which is
now proc.cls.

e Was it just changing some aspects of the way
IAIEX does things? In that case you would prob-
ably want to turn your . sty file into a package.

¢ Was it adding completely new functionality to
IATEX? Examples of this kind of . sty file are files
such as fancyheadings.sty and XYpic.sty.

This you most certainly will want to turn into a
package for IATEX 2¢.

Style options — packages

Trying it out unchanged. After you've decided to
produce a package file, you should first try to run a
document that uses your .sty file through IATEX 2¢
unmodified. This assumes that you have a suitable
test set that tests all functionality provided by the
.sty file. (If you haven't, now is the time to make
one!) The experience of the last months has shown
that most of the available .sty files will run with
IATEX 2¢ without any modification. Yet if it does run,
please enter a note into the file that you have checked
that it runs and resubmit it to the archives if it was
a distributed file.

Bits that might have failed. Some .sty files will
need modification before they can be used success-
fully with IATEX 2¢. Such a modification is needed for
instance when you used an internal macro from the
old font selection scheme. An example is \fivrm
which is used by some packages to get a small dot
for plotting. The obvious solution for this seems be
to include a definition such as:

\newcommand{\fivrm}
{\normalfont
\fontsize{5}{6.5pt}\selectfont}

But that involves a lot of internal processing and
may result in long processing times for your docu-
ments that use this. For this purpose the command
\DeclareFixedFont is available. It bypasses a lot of
the overhead of the font selection scheme. Using this
command the solution becomes:

\DeclareFixedFont{\fivrm}
{0T1}{cmrI{m}{n} {5}

This tells IAIgX that the command \fivrm should
select a font with 0T1 encoding, cmr family, medium
weight, normal shape and size 5 point.
Pieces of code that might need checking. If your
.sty file uses commands that used to be part of
the way IATEX used to deal with fonts than your file
will almost certainly not work. You will have to look
in IATEX2¢ font selection or The IATEX Companion
(Goossens et al. 1994) to find out the details about
what needs to be done.

Commands such as \tenrm or \twlsf have to

be replaced:
\tenrm — \fontsize{10}{12pt}\rmfamily
\twisf — \fontsize{12}{14.5pt}\sffamily

Another possibility is to use the rawfonts package,
described in JATEX 2¢ for Authors.

Also commands such as \x1pt do not exist any
longer. They also have to be replaced:
\vpt — \fontsize{5}{6.5pt}\selectfont
\xipt — \fontsize{11}{13.6pt}\selectfont

256 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

IATEX 2.09 used commands with names begin-
ning with \p for ‘protected’ commands. For exam-
ple, \LaTeX was defined to be \protect\pLaTeX,
and \plLaTeX produced the IXTEX logo. This made
\LaTeX robust, even though \pLaTeX was not. These
commands have now been reimplemented using
\DeclareRobustCommand (described in IATEX2s for
class and package writers). If your package redefined
one of the \p-commands, you should replace the re-
definition by one using \DeclareRobustCommand.

When you use internal commands from NESS ver-
sion 1 you will have to be very careful to check if ev-
erything still works as it was once intended.

Note that macros such as \rm are now defined
in class files, so their behaviour may differ for each
class. Instead you should use the lower level com-
mands such as \rmfamily in packages. When you
want to make sure that you get a certain font, inde-
pendent of the environment in which your macro is
activated, you can first call \normalfont and then
switch the various parameters of the font selection
scheme as necessary.

In some cases you may need to use the user level
commands such as \textrm. This is necessary for
instance when you define a command that may also
be used in mathmode.

Document styles — Classes

Minimal updates are necessary. When you are up-
grading a document style to a document class there
are a few things that you really have to change, or
your class will not work.

One of the things that must be done, is making
sure that your class doesn't define \@iormalsize
but \normalsize. Make sure that \renewcommand is
used to redefine \normalsize as itis already defined
in the kernel of IATEX, but to produce a warning that
it needs to be given a real definition.

Another aspect that needs to be dealt with, is
that the parameters \@maxsep, \@dhImaxsep and
\footheight no longer exist. The first two were part
of the float placement algorithm, but a change in that
algorithm made them superfluous. The parameter
\footheight was reserved in IATgX 2.09, but it was
never used.

The declarative font changing commands (\rm,
\sf etc.) are no longer defined by default. Their defi-
nitions have been moved to the class files. Make sure
that you define them or that they are not used by the
users of your class. The standard document classes
all contain definitions such as the following:

\DeclareQldFontCommand{\rm}
{\normalfont\rmfamily}{\mathrm}
This tells IATEX that when \rm is used in the text it
should switch to \normalfont and then select the ro-
man family. When \ rmis used in mathmode IATEX will
select the font that would be selected by \mathrm?.

2 See IATEX 25 font selection for more details.

Document Classes and Packages for IAIEX 2¢

Build on standard classes. When upgrading your
own document style you should consider to reimple-
ment it by building on an existing Document Class.
With the new features of IA[EX2¢ this has become
very easy. The advantage of this approach is that
you don’t have to maintain a whole lot of code that
is probably basically a copy of the code in one of
the standard document classes. (See below for a few
examples of how to build your own document class
on an existing class.) Some documentstyles written
for IATEX 2.09, such as 1tugboat, contain a command
such as \input{article.sty}. This was the only
solution in IATEX 2.09—to build a new documentstyle
upon an existing style. But, there was no way of en-
suring that the file article. sty which was found by
IATEX wasn't out of date. As you see in the examples
below, it is now possible to ensure that you use a ver-
sion of article.cls that was released after a certain
date.

Suggested updates. Apart from the essential chan-
ges to your document class, there are also a few
changes that you are encouraged to make. Most of
these changes have to do with the new possibilities
the package and class writers interface gives you.

In a [ATEX 2.09 document style an option was de-
clared by defining a command that starts with \ds@
followed by the name of the option. Later on in the
documentstyle the command \@options was called
to execute the code for the options that were sup-
plied by the user. For example, the document style
article contained the following lines of code:

\def\ds@twoside{\@twosidetrue
\@mparswitchtrue}
\def\ds@draft{\overfullrule 5\p@}

\@options

This code fragment defined two options, twoside and
draft.

The same effect can be achieved by using
IATEX 2¢ syntax, -as is shown by the following code
fragment from the document class article:

\DeclareOption{oneside}
{\@twosidefalse \@mparswitchfalse}
\DeclareOption{twoside}
{\@twosidetrue
\DeclareQption{draft}
{\setlength\overfullrule{5pt}}
\DeclareOption{final}
{\setlength\overfullrule{Opt}}

\@mparswitchtrue}

\ProcessOptions

As you can see, the intention of this code is easier to
understand.

TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting 257

Johannes Braams

1 consider it good practice, when writing pack-
ages and classes, to use the higher level IATX com-
mands as much as possible. So instead of using
\def... I recommend using one of \newcommand,
\renewcommand or \providecommand. This makes
it less likely that you inadvertently redefine a com-
mand, giving unexpected results.

When you define an environment use the com-
mands \newenvironment or \renewenvironment
instead of \def\foo{...} and \def\endfoo{...}.

If you need to set or change the value of a
{dimen) or (skip) register, use \setlength.

The advantage of this practice is that your code
is more readable and that it is less likely to break
when future versions of IA[gX are made available.

Some packages and document styles had to re-
define the \begin{document} or \end{document}
commands to achieve their goal. This is no longer
necessary. The “hooks” \AtBeginDocument and
\AtEndDocument are now available. They make it
more likely that your package will work together with
someone else’s. .

When a document class needs to pass informa-
tion to the user, you can use one of the commands
\ClassInfo, \ClassWarning,
\ClassWarningNoLine or \ClassError. A similar
set of commands exists for packages.

Be colour safe. One of the new features of IATEX2¢
is the support for coloured documents. To create a
document that contains colour you need:

+ the color package, which is part of the IKTgX 2¢
distribution;

s a driver which supports colour—dvips by
Tomas Rokicki is an example of such a driver;

o colour safe macros.

The first two points are probably obvious, the third
point needs some explanation. TgX has no knowledge
of colour, therefore the macros need to keep track
of the colour. To achieve that, various changes have
been made to the kernel of IATEX. This has been done
in such a way that the changes are ‘dormant’ when
the color package isn’t used. As an example, here is
the current definition? of the ISIgX command \sbox:

\def\sbox#1#2 {\setbox#1\hbox{%
\color@@setgroup#2\color@@endgroup}}

The extra level of grouping is activated by the color
package and is needed to keep colour changes local.
For more information about being ‘color safe’ you
should read the documentation that comes with the
color package.

If you use the IATgX commands for boxing sunch
as \mbox, \sbox, \fbox, etc. instead of the low level
commands \hbox, \vbox and \setbox, your code
will be automatically ‘colour safe’.

3 Shown here only as an illustration; the actual
implementation may change.

Upgrading existing ‘styles’—an example
tour

A minimal class. Most of the work of a class or
package is in defining new commands, or chang-
ing the appearance of documents. This is done in
the body of the class or package, using commands
such as \newcommand, \setlength and \sbox (or
\savebox).

However, there are some new commands for
helping class and package writers. These are de-
scribed in detail in IATEX2s for class and package
writers.

There are three definitions that every class must
provide. These are \normalsize, \textwidth and
\textheight. So a minimal document class file is:

\NeedsTeXFormat{LaTeX2e}
\ProvidesClass{minimal})
[1994/06/01 Minimal class]
\renewcommand{\normalsize}{%
\fontsize{10}{12}\selectfont}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{8in} : v

However, most classes will provide more than this!

Extending a class with new commands. The first ex-
ample shows how you can extend an existing class
with a few extra commands. Suppose you call your
new class extart. It could start off with the follow-
ing code:
Y= mmmmmm Identification ------------ %
\NeedsTeXFormat{LaTeX2e}[1994/06/01]
\ProvidesClass{extart}

[1994/08/01 v2.0j

Article 1like class with new commands]

This first line tells IATgX that your code was written
for IATEX 2¢, released after june first, 1994. The sec-
ond line informs IKTEX that this file provides the doc-
ument class extart, dated august 1, 1994, and with
version 2.0j.

Yom=mmmm e Option handling ----------- %
\DeclareQption*{%
\PassOptionsToClass{\CurrentOption}
{article}}

The code above instructs IKTEX to pass on every
option the user asked for to the document class
article.

\ProcessOptions
Ypmmmmmmmmm - Load other class ---------- %
\LoadClass[a4paper] {article}[1994/06/01]

The command \ProcessOptions executes the code
associated with each option the user specified. The
\LoadClass command subsequently loads the class
file. The first optional argument to \LoadClass
passes the option ad4paper to the class; the sec-
ond optional argument to \LoadClass asks for
article.cls dated june first, 1994, or later.

258 TUGboat, Volume 15 (1994), No. 3 — Proceedings of the 1994 Annual Meeting

Note that if you change your mind and load
report instead you also have to change the second
argument of \PassOptionsToClass.

o= mm === === Extra command ------------- %
\newcommand\foo{\typeout{Hello world!}}

The rest of the file contains the extra code you need
such as the definition of the command \foo.

Changing the layout produced by another class.
The first few lines of a class that modifies the layout
of an existing class would look much the same as in
the example above.

R i Identification -------~---- %
\NeedsTeXFormat{LaTexX2e}[1994/06/01]
\ProvidesClass{review}

[1994/08/01 v1.0

Article like class with changed layout]
Y= —————m Option handling ---——--~---- %
\DeclareOption*{%

\PassOptionsToClass{\CurrentOption}

{article}}

\ProcessOptions
%———mm Load other class ---------- %
\LoadClass{article}[1994/06/01]

Suppose we have to print on paper 7 inch wide and
9.875 inch tall. The text should measure 5.5 inch by
8.25 inch

B Layout of text ----------- %
\setlength{\paperwidth}{7in}
\setlength{\paperheight}{9.875in}
\setlength{\textwidth}{5.5in}
\setlength{\textheight}{8.25in}

What we have to do now is position the body of the
text in a proper place on the paper.

\setlength{\topmargin}{-.5625in}
\setlength{\oddsidemargin}{-.25in}
\setlength{\evensidemargin}{-.25in}
\setlength{\marginparwidth}{.25in}
\setlength{\headsep}{.1875in}

We could go on and modify other aspects of the de-
sign of the text, but that is beyond the scope of this
article.

Extending a class with new options. As before, we
start the document class with some identification.

Yo mm e Identification -------~-~---- %
\NeedsTeXFormat{LaTeX2e}[1994/06/01]
\ProvidesClass{optart}

[1994/08/01 v1.0

Article 1ike class with extra options]

Suppose you want to be able to print a document in
9pt type, or when you want to be loud, print it in 14pt
type. You know that the standard IKIEX classes con-
tain the command

\input{s