
An Example of a Special Purpose Input Language to W X

Henry Baragar
Instantiated Software Inc., 20 Woodmount Crescent, Nepean, Ontario, K2E 5R1 Canada.
henry@instantiated.on.ca

Gail E. Harris
RES Policy Research Inc., 6th Floor, 100 Sparks Street, Ottawa, Ontario, KIP 5B7 Canada.
ak753@freenet.carleton.ca

Abstract

A special purpose language for documenting knowledge bases demonstrates
how l 4 Q X can be augmented to add expressiveness for specific situations. The
language, called T@A, enables expert system analysts to mark up groups of rules
into tables in a way which reflect the logical structure of the knowledge base. The
T@A style options generate LATEX tables for use by expert system programmers and
the equivalent English text typeset in a subsection for use by domain experts. This
paper presents the syntax and implementation of this special purpose language.
Despite the complex output requirements, the TEX implementation has proven to
be very flexible and remarkably short.

Introduction a discussion of future directions and some recom-
mendations for others wishing to implement special

If I have seen further than other men,
purpose languages, and in particular special purpose

it is because I have stood on the shoulders o f
input languages to LATEX.

the giants.
-Isaac Newton

The logical treatment of documents is one of WX's
most important features. A benefit of this approach
is that the source files for most W&X documents are
usually almost as readable as the final output. As is
true with any general purpose tool, there are cases
that are not easily expressed in the input language of
the tool. In this case, a special purpose language (or
"little language"), as advocated by Jon Bentley (1990,
page 83), can be of great benefit. A well-designed "lit-
tle language" - in which the special case can be eas-
ily expressed - follows more closely the philosophy
of J4@X than does the contortion of IPQX commands
to achieve a desired result.

T h s paper presents a special purpose language
for documenting knowledge bases which has a much
more natural syntax than pure @QX for marking up
the rules of a knowledge base. It has been used suc-
cessfully to typeset the system documentation for
the knowledge base portion of an application on a
project where the documentation tool of choice for
the rest of the system was Microsoft Word. We be-
gin by describing problems with documenting knowl-
edge bases. Then we present the "little language"
that was designed specially for documenting knowl-
edge bases, and show how it was implemented in TEX,
yielding a special purpose input language to R X .
This is followed by some observations on the suit-
ability and success of the solution. We conclude with

The Challenge

The problem of documenting knowledge bases was
encountered on a project where an existing knowl-
edge base with no external documentation had to
be maintained and expanded. The first step in the
project was to document, or reverse engineer, the
knowledge base. This in itself is a challenge because
expert system analysts are still struggling to find
effective methods to document knowledge bases.
Some methods, such as KADS1, are too high level and
do not document individual rules. Other lower level
methods are usually tools tied to specific products-
products not being used on this project. This project
required a tool for documenting knowledge bases at
the rule level, but not tied to a speclfic product.

The challenge, to the expert system analyst, in
documenting the rules of a knowledge base is in the
need to present the documentation to two audiences.
The first audience, the expert system programmer,
uses the documentation to program the rules in the
knowledge base. The second audience, the system
owner or domain expert, uses the documentation to
verify the correctness of the rules in the knowledge

Although "KADS" was an acronym at one time
(Knowledge Acquisition and Documentation Sys-
tem), it has changed and it is now considered a
proper name in itself.

*
388 TUGboa t, Volume 15 (1 994), No. 3 - Proceedings of the 1994 Annual Meeting

A Special Purpose Input Language

Goldilocks' Rules
Conditions I Conclusion

Figure 1: The tabular form for the expert system
programmer.

Goldilocks' Rules

These are the rules that model Goldilocks'

decision process.

If the temperature is less than the rnin-
imum acceptable temperature then the

porridge is too cold.

If the temperature is greater than the

maximum acceptable temperature then

the porridge is too hot.

If the minimum acceptable temperature

is less than or equal to the temperature

and the temperature is less than or equal

to the maximum acceptable temperature

then the porridge is just right.

Figure 2: The English form for the domain expert.

base. The tabular presentation of Figure 1, preferred
by the expert system programmer, is usually incom-
prehensible to the domain expert, who prefers En-
glish sentences and paragraphs, as in Figure 2. The
challenge of accurately presenting both sets of docu-
mentation is often so great that the domain expert is
often given inadequate summaries of the rules or is
left to struggle with just the tabular representation
of the rules. This often leads to a loss of confidence
in the Expert System, as had happened on the project
in question.

The challenge of presenting two sets of docu-
mentation would be considerably simplified if they
could both be generated from the same source. This
is not possible in Microsoft Word, the tool specified
for documentation in this particular project. Consid-
ering the differences between the tabular form and
the English language form illustrated in Figures 1
and 2, it was not even clear this would be possible in

WX. Nor was it clear that a LATEX source file would
be easily readable and maintainable. Thus, the chal-
lenge was to find a mechanism to document the rules
of the knowledge base in a single source file, where
the structure of the rules is visually apparent to the
expert system analyst and where the documentation
sets are appropriate to their intended audience.

The New Input Language

The best way to ensure that the structure of the rules
is visually apparent in a source file documenting a
knowledge base is to develop a new syntax for mark-
ing up rules that has a clean visual presentation. In
t h s section, we present a special purpose language,
or "little language" a la Jon Bentley (page 83), that has
a syntax with the desired properties. We leave the
details of implementing the language until the next
section.

The syntax of the new input language - called
TEX Expert System Language (T@A)~ -is very simple
and has only five commands. These commands can
be divided into three groups: definitions, groups of
rules, and other commands. A clean visual presenta-
tion of the source file has been achieved by defining
a syntactic structure for these commands whch al-
lows an ASCII text source file to be modeled after the
layout of the tabular representation to be presented
to the expert system programmer; this reflects the
common backgrounds of the expert system analyst
and the expert system programmer.

Definitions. A variable in a knowledge base is docu-
mented by giving an English language phrase that de-
fines the variable. T@A allows variable names from
the knowledge base to be used directly in the T@A
source file. The knowledge base variable is left un-
changed when it is presented to the expert system
programmer, whereas it is mapped to the English
Language phrase when it is presented to the domain
expert. A T@A definition, whch has the following
syntax:

[tvar- I ,KB-var, 1 ,English description-]

is used to specify the mapping of the knowledge base
variable to its English Language description. An ex-
ample of a definition is:

[tvar-IJ,I,the,temperature-]

which defines the knowledge base variable T as the
phrase "the temperature". That is, a reference to the
knowledge base variable T in a T@A rule is repre-
sented by the string "T" in the tabular form presented
to the expert system programmer, whereas it is rep-
resented by the string "the temperature" in the En-
glish form presented to the domain expert.

2 The language was developed for the Travel Ex-
pert System (TES) project, whch also explains why
all the commands begin with a "t".

TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Henry Baragar and Gail E. Harris

Groups of rules. The rules of a knowledge base
are usually documented as groups of related rules.
For the expert system programmer this means that
a group of related rules is presented as a table,
whereas the group is presented as a subsection to
the domain expert. A group of rules begins with:

Ctgroup, I -Group Name, I ,n,l

where Group Name is a label for the group and n is
the maximum number of conditions, excluding the
conclusion, in the rules in this group. In the tabular
form presented to the expert system programmer, n
is one less than the number of columns in the table.

A group of rules ends with:

where Group Name should be the same as at the
beginning of the group.

Occasionally, it may be desirable to visually sep-
arate subgroups of rules within a large group of
rules. This is accomplished with the:

[tgroup, l ,Group Name, I ,-,I

command, which inserts a horizontal line (\hl i ne)
into the table. Currently, it does nothing in the En-
glish form presented to the domain expert.

A rule in T@A has the following syntax:

[t r u l e, 1 ,condl, 1 ,cond2, 1 -. . . - 1 ,concl,]

where condl, cond2, . . . , are the n conditions of the
rule and concl is the conclusion of the rule.

Each condition - as well as the conclusion - is
a relation that has one of the following forms:

lhs-rel-rhs

rel-rhs-

rhs-,-

where lhs and rhs are T+A variables, and re1 is a
relation operator. In the tabular form, each condi-
tion and the conclusion is put in its own column.
With suitable groupings of rules and arrangements
of relations within columns, an expert system pro-
grammer can easily check that all possible combina-
tions of relations have a known conclusion and that
no two rules conflict with one another. The English
form given to the domain expert, on the other hand,
has every variable, relation, and implicit conjunction
spelled out in full.

As an example, consider the rules already pre-
sented in Figure 1 and Figure 2, which would appear
in the T@A source file as:

[tgroup I Goldilocks' / 3]

[t r u l e I T < min I I too-cold - -]

[t r u l e / - I T > max I too-hot - -]

[t r u l e I min <= T / T <= max I jus t -r ight - -1
[tgroup I Goldilocks' I e I

Note that this code fragment lacks the variable
definitions and the command to add the extra de-
scriptive text found in the figures. Also note that
a quirk in the implementation requires that leading

empty conditions must have a single "-" character,
as in the too-hot rule above.

Other commands. There are two commands in T@A
for adding annotations to the rules. The first, which
has the following syntax:

[t t e x t , 1 ,text,]

provides a mechanism for adding arbitrary explana-
tory text into both the tabular and the English forms.
The second, which has the following syntax:

provides a mechanism for adding extra text, for re-
marks, only to the tabular form used by the expert
system programmer. There has yet to be a require-
ment to add text to the English form used by the do-
main expert which is not also required by the expert
system programmer.

Other syntax. There is little requirement for addi-
tional syntax in T@A. Syntax was added to T@A to
treat all text between the ";" character and the end
of a line as source file comments. The " % character
was rejected for introducing comments because per-
centages are used frequently in the knowledge base
on this project. All other considerations for adding
syntax have been rejected because of the extra effort
that would be required to explain them.

The Implementation

Now that the syntax of T@A has been defined, the
implementation details can be discussed. Two ap-
proaches to implementation were considered: either,
build a preprocessor, or implement T@A directly in
(LA)TEX. At first, it seemed that the preprocessor ap-
proach would be easier to implement. This had the
advantage that the output could be switched to Mi-
crosoft Word code if and when a definition of the
file format for Microsoft Word could be found. How-
ever, good string manipulation tools, such as per1
and awk, needed to implement the preprocessor were
not readily available for the target environment (Mi-
crosoft DOS). Thus, the approach to implement T@A
directly in (LA)TEX was selected.

T@A is implemented in TEX as three style op-
tions. The first, t e s l a . s ty , has the definitions of
the T@A commands described above as well as all the
other definitions common to both output forms. The
other two files are eng-forrn.sty, which contains
code specific to the English form, and tab-form. s t y
which contains code specific to the tabular form.
Thls section begins by describing how to use these
style files. Then it defines the implementation of
T@A in detail as coded in the style files.

The structure of T@A documents. T@A docu-
ments are composed of three main files and one or
more rule files. The main files are usually named
mai n-eng . tex, rnai n-tab. tex and rnai n . tex. The

390 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

A Special Purpose Input Language

first two of these files, which are used to select the
form, simply contain:

\documentsty1 e [t es la , form] { a r t i c l e}
\i nput{mai n}

where the form is either eng-form or tab- fo rm, de-
pending on whether it is in the file main-eng. t e x
or mai n - tab . t e x , respectively. As can be seen from
this code, these files input the file main. t ex , which
is the real T@A document.

To input a rule file into the main T@i file, the
following command is used:

\i npu t ru l e f i 1 elrule-file}

where rule-file is the name of a file containing TflA
code. T h s command is defined as:

\newcommand{\i n p u t r u l e f i 1 e} [I] {%

\changecatcodes\input{#l}}

in t e s l a . s t y .
The \changecatcodes command changes the

categories of the digits, arithmetic and relation op-
erators, and a few other characters to category 11,
the same category as the alphabetic characters.
This allows these characters to be used in T@A
variable names and enables a broad range of vari-
able names, including operators and numbers! The
\changecatcodes command also changes the cate-
gory of the ";" character to category 14 to make it
the comment character, whch is the " % character in
(LA)TEX. Finally, \changecatcodes changes the cat-
egory of the "[" character to category 0 to make it
an escape character, the same category as the "\"
character in (LA)TEX. This allows the commands of
TE~LA, such as [t v a r , to be implemented directly as
TEX commands.

The [t v a r command. The [t v a r command, like all
the T@A commands, makes use of TEX'S pattern-
matching capability to implement T@A syntax. It is
defined in t e s l a. s t y as:

\gdef\tvar,I,#lU'1-#2,]{%

\expandafter\gdef\csname #l\endcsname

C\xformC#l l {#2>~}

There are two things to note in this definition:

1. The command has been defined as \ t v a r even
though it is used as [t v a r . The reason is that
the category of the "[" character has not yet
been set to category 0 (the same category as "\")
as it will be when a rule file is read.

2. The spaces in the \gdef \ tvar - l _#l- 1-#2-1
are important. The implementation of T@A re-
lies on the fact that TEX compresses all strings
of white space to a single ",", which means that
the arguments to [t v a r can be spaced out to
improve the readability of the rule files. Al-
though this may not be important for [t v a r

commands, it is important for [t r u l e.

The [t v a r command relies on the \ x f o r m com-
mand, which is defined differently in eng-form. s t y
than it is in t ab - fo rm. s t y , to do its work. All of the
T@A commands use the same mechanism, where a
command beginning with "\xV is called to implement
the real behavior, to acbeve different behaviors de-
pending on whether the English form or the tabular
form is to be presented. The desired behavior for
[t v a r is that a T@A variable is defined as the defi-
nition supplied by the user in the English form and
as itself in the tabular form. This is accomplished by
defining \ x fo rm as:

\gdef\xform#l#2{#2}

in eng-form. s t y , and as:

\gdef\xform#l#2{#1}

in t ab - fo rm. s t y . Thus, for the T$A variable T from
our Goldilocks example, we now have \T which ex-
pands to "the temperature" in the English form and
to "T" in the tabular form.

The [t g r o u p command. The \ t g r o u p command is
really several commands and it looks at its second
argument to determine whch command to run. It is
defined in t e s l a . s t y as:

\gdef\tgrou~, l,#l, l,#2-1 C%
\ i f 1#2 \xbegin{xone}{l}{2}{.466}{#l}\fi
\ i f 2#2 \xbegin{xtwo}{2}{3}{.300}{#l}\fi
\ i f 3#2 \xbegin{xthree}{3}{4}{.216}{#l}\fi
\i f 4#2 \xbegi n{xfour}(4}{5}{ . 166}{#l)\ f i
\ i f 5#2 \xbegi n {x f ive} {5} (6} { . 133} {# l } \ f i
\ i f 6#2 \xbegi n {xs i x}{6}{7}{. 1095} {# l } \ f i
\ i f -#2 \xsep\ f i
\ i f e#2 \xend\f i

1
where \ xbeg i n, \xsep and \xend are defined differ-
ently, depending on the form.

The definition for \ xbeg i n in eng-form. s t y is
to define [t r u l e to be the command specified by
the first argument and to introduce a new subsection
using the fifth argument. It is implemented as:

\gdef\xbegin#1#2#3#4#5{%

\gdef\trule{\csname #l\endcsname}
\ sub~ec t i on>~{#S Rules)}

The second, third and fourth arguments to \xbegi n

are ignored in eng-form. s t y .
The definition for \ xbeg i n in t a b - f o r m . s t y is

much longer (10 lines) and is not presented here.
Like the definition in eng-form. s t y , the definition
of \ xbeg in in t ab - fo rm. s t y defines [t r u l e to be
the command specified by the first argument. Then
it introduces.the code necessary to set up a tabu1 a r

environment where the number of columns is spec-
ified by the third argument and where each column
is typeset as a parbox whose width is specified by
the fourth argument3 multiplied by the text width

3 The values of the fourth argument were deter-
mined by experimentation.

TUGboar, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 391

Henry Baragar and Gail E. Harris

(\ tex twidth) . The second argument always has a
value of one less than the third argument and is re-
quired in order to avoid having to do arithmetic in
TEX. It is used to specify the number of columns to
be spanned by the "Conditions" heading. The fifth
argument is used in the title of the table. Finally, the
\xbegi n makes some minor adjustments to the tab-
ular environment to improve the visual presentation
of the tables.

The \xsep command is defined to do nothng
in eng-form. s t y and to insert a horizontal line -
using \ h l i ne -in tab-form. s ty .

Sidar ly , the \xend command is defined as
nothing in eng-form. sty, and as

in tab- form. s ty .

The [t r u l e command. As was seen in the discus-
sion on [t g roup, the [t r u l e command is defined in
\xbegi n to be one of \xone through \ x s i x. These
commands are all very similar with \xtwo, for e x m -
ple, being defined in t e s l a . s t y as:

\gdef\xtwo,l-#l(,#21,#3]@

\i f-#l,\xpre,\xone, 1 3 2 1 ,#3]%
\else\xif{#l},\xand{#2}\xthen{#3}

\f i

1

Note the lack of spaces between each argument and
the " I "or "1" character that follows the argument
(". . . ,#I1 ,#2 1 ,#3]. . . ") which preserves a space at
the end of the argument and which will be used as a
delimiter when the argument itself is parsed.

The \xtwo code says that if the first condition
has been set to the character "-", then this is like
a one-rule condition: do something specific to the
form (\xpre) and call \xone. Note that \ x th ree will
call \xtwo and \ x f our will call \xthree, etc. The
\xpre does nothing in the English form but is re-
quired in the tabular form to insert a "&" character
to skip the first column. Otherwise, if the first argu-
ment is not the "-" character, then build up the rule
using \ x i f, \xand and \xthen.

In the English form:

produces the expected result of:

If #1 and #2 then #3.

except when #2 is empty, in whch case the and-
clause is elided. This is implemented as:

\gdef\x i f#l{ \par { \bf I f } \ x re l #1}
\gdef\xand#l{\ifx#l\empty

\else{\bf and} \ x re l #1
\ f i

1
\gdef\xthen#l{{\bf then} \xre l # I . }

in eng-form. s ty .
In the tabular form:

produces the expected result of putting the if-clause
into the first column, the and-clause (if there is one)
into the second column, and the then-clause into the
third column. This is implemented in t a b - f orm . s t y
as:

\gdef\xi f#l{\RS\xrel # I }
\gdef\xand#l{& \RS\ifx#l\empty

\el se\xrel # 1
\f i

1
\gdef\xthen#l{& \PBS\RS\xrel #1 \\}
\gdef\RS{\raggedright\sloppy\hspace{Opt}}

where \PBS is the \PreserveBackslash command
as described in Goossens et al. (1994, page 108). The
command \ x r e l is discussed below.

The \ x r e l command forms the heart of the T@A
style. It takes three arguments: Ihs, rel and rhs, as de-
scribed above in the description of the T@A [t r u l e
command. Each argument must end in a space; this
is why the spaces were left in by the \xone through
\ x s i x commands. If the th rd argument, or the sec-
ond and th rd arguments, is the character "-", then
these arguments are elided. This is necessary to pre-
vent extra space being inserted, particularly in the
English form and especially just before a period. The
\ x r e l command is implemented as:

\gdef\xrel,#1,#2-#3,{%
\if-#3\if-#2\xvar{#l}%

\else\xvar{#l},\xvar{#2}%
\f i

in t e s l a. s ty . Once again, the spaces between \xvar
commands are important, t h s time to put spaces
between the text expansions of Ihs, re1 and rhs in the
English form.

Finally, the \xvar command simply expands the
T@A variable passed to it from \ x r e l . If the variable
is undefined, then the variable name is used, typeset
in italics. It is implemented as:

\gdef\xvar#l{\expandafter

\ifx\csname #l\endcsname\relax{\it # I }%
\else \csname #l\endcsname
\f i

1

in t e s l a. s ty . Note that the different representa-
tions for the different forms have already been en-
coded in the variable by the [t v a r command.

The [t t e x t command. The [t t e x t command is de-
fined in t e s l a . s t y as:

\gdef\ttext,(,#l,]{\xtext{#l}}

where \ x t e x t is defined as \par{\em #1} in the En-
glish form, and as

392 TUGboat, Volume 15 (19941, No. 3 -Proceedings of the 1994 Annual Meeting

A Special Purpose Input Language

\gdef \x tex t# l {%

\multicolumn{\numcols}{~p{.9\textwidth}~}

{\em # l } \ \ \ h l i n e

1

in tabular form. Note that \numcol s was defined by
the [tgroup command.

The [trem command. The definition of the [trem
command is analogous to the definition of [t t e x t .
However, \xrem is defined as nothing in the English
form and as \xtext{\sc #I) in the tabular form.

Pre-defined variables. Since the relationship and
arithmetic operators are treated like normal T@A
variables, it is trivial to predefine many of the these
operators in t e s l a . s ty . For example,

\gdef\<{\xform{$<$}{is l ess than}}

predefines the < relation.

Observations

We hope that our paper has shown the TEX implemen-
tation of the T@A language is elegant and remarkably
compact. The t e s l a . s t y file is only 102 lines (of un-
documented TEX code), the tab-form. s t y is 32 lines
and the eng-form . s t y is 18 lines. The implementa-
tion in TEX was less difficult than anticipated. It is
also shorter than the anticipated preprocessor solu-
tion, yet is at least as robust and flexible. It also has
the benefit of handling the inclusion, with some re-
strictions, of W&X code into the rules.

Comparison with "pure" UTEX. The improvement in
the visual presentation of the source code of T@A
compared with "pure" W&X is strilung. Consider our
Goldilocks example as it might be written in LATEX:

\begin{tgroup}{Goldi l ocks ' }

\ trule{\T\LT\mi n}{ }{\ tooCol d l

\ t r u l e { }{\T\GT\max}{\tooHot}

\ t r u 1 e(\mi n\LE\T}{\T\LE\max}{\justRi ght}

\end{tgroup}

where the content of the document is obscured by
too many "\", "{" and "}" characters.

The dictionary. At one point in the project, there
was a great rush to produce a dictionary of the knowl-
edge base variables. It was a simple matter to search
the source files for all lines with [tvar , sort this list,
and process it with a simple style that implements
the [tva r command as an item in a description list -
all in less than half an hour. This activity revealed
several duplicate variable definitions that might not
otherwise have been caught, and forms a counter-
part to the implementation of [tvar whch typesets,
in italics, undefined variables as their variable name.
This reinforces the advantages of separating the log-
ical structure of a document from the details of type-
setting.

Conclusions

I have stood on the shoulders o f
Jon Bentley and Donald Knuth.

-Henry Baragar

The T@A language has met its original goals.
The structure of the rules is visually apparent in a
T@A source file and it has been used successfully
for a knowledge base with more than 270 rules us-
ing over 250 variables. The two forms of output have
been well received by their intended audiences. Sur-
prisingly, some of the expert system programmers
have found the English form has helped them to un-
derstand the context of the rules that they were read-
ing in the tabular form, a context that is sometimes
lost in the brevity of using only variable names.

Spurred by the success of the implementation
of T@A, we would like to enhance the functionality
of the language. First, we would like to expand the
[tgroup command to express relationships between
the tables, which then could be graphed and included
in the documentation. Second, we would like to en-
hance the [t r u l e command to generate code for a
particular Expert System shell, whch would signifi-
cantly reduce the consistency problems between the
documentation and the code. This capability could
be extended to multiple Expert System shells.

This example of a special purpose input lan-
guage to JkQX illustrates the utility of application-
speclfic mark-up languages and the suitability of us-
ing TEX for the implementation. We hope t h s exam-
ple will encourage others to consider creating "lit-
tle languages" in TEX in those cases where the logi-
cal structure of their documents is lost in the type-
setting commands in their source files. We certainly
have found the benefits have been extraordinary and
the difficulties surprisingly minor.

Acknowledgements

We would like to thank Christina Thiele who was the
one to finally convince us to write this paper and was
kind enough to preview it for us. Also, we would llke
to thank Christine Detig who reviewed the paper and
provided helpful comments.

Bibliography

Bentley, Jon, More Programming Pearls: Confessions
of a Coder, Reading Mass.: Addison-Wesley,
1990.

Goossens, Michel, Frank Mittelbach, and Alexander
Samarin, The LATEX Companion, Reading Mass.:
Addison-Wesley, 1994.

Knuth, Donald, The T~Xbook, Reading Mass.: Addi-
son-Wesley, 1989.

Lamport, Leslie, LATEX: A Document Preparation Sys-
tem, Reading Mass.: Addison-Wesley, 1986.

TUGboat, Volume 15 (1994), No. 3-Proceedings of the 1994 Annual Meeting 393

Henry Baragar and Gail E. Harris

Appendix

The tesla.sty file.

\set length{ \parsk ip} { \basel i neski p}

\set length{ \par indent} {Opt}

3 94 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

A Special Purpose Input Language

\newcommand{\i nput r u l e f i 1 e} [I] {%
\changecatcodes
\i npu t {# l }

1

I
\changecatcodes
\gdef\<{\xform{$<$}{ is l e s s than}}
\gdef \>{ \x form{$>$}{ i s g rea te r than}}
\gdef\ !={\xform{\neq}{ is n o t equal t o } }
\gdef\=={\xform{$=$}{i s equal t o } }
\gdef\<={\xform{$\ leq$]{ i s l e s s than o r equal t o } }
\gdef\>={\xform{\geq}{ i s g rea te r than o r equal t o } }

\gdef\:={\xform{$\l e f t a r r ow$ } { i s assigned})
\gdef\+{\xform{$+$}{added t o } }
\gdef\+={\xform{$+$$=$}{is incremented by}}
\gdef\decrement{\xform{$-$$=$}{is decremented by}}
\gdef\minus{\xform{$-$}{less))
\gdef\+~{\xform{$*$}{mul t i p l i ed by}}
\gdef\memberOf { \x form{$\ i n $ } { i s one o f } }

\gdef\notMemberOf{\xform{$\not\in$}{is no t one o f } }
\gdef \ i snot{\xform{\neg}{not}}

1

The eng-form. s t y file.

\gdef \x form #1#2{#23

\gdef\xbegin#1#2#3#4#5{
\gdef\ t rule{\csname #l\endcsnarne}
\ subsec t i onq{#5 Rules}

1
\gdef\xsepC}
\gdef\xend{}

TUGboat, Volume 1 5 (1994), No. 3 -Proceedings o f the 1994 Annual Meeting

Henry Baragar and Gail E. Harris

\ gde f \ x i f # l { \ pa r { \ b f I f } \ x r e l #1}
\gdef\xand#l{\ifx#l\empty\else{\bf and} \ x r e l # 1 \ f i }
\gdef \x then#l { { \b f then} \ x r e l # I . }

The tab-form. s t y file.

\gdef\xform#l#2{#1}

\gdef\xbegin#1#2#3#4#5{
\gdef\ t rule{\csname #l\endcsname}
\gdef\numcol s{#3}
\par\begi n{tabular}{+:{#3}{ 1 p{#4 \ tex tw id th } } 1 }
\ h l i ne
\mu1 t i co lumn{#3} { l c l}{\rule{Opt}{2.8ex}\large\bf #5 Rules}\\
\ h l i ne
\mu1 ti c o l umn{#2}{ 1 c l}{\rule(0pt}{2.8ex}\large Cond i t ions }

& \ l a r g e Conclu\-sion \\
\ h l i ne\hl i ne

1
\gdef\xsep{\hl i ne}
\gdef\xend{\hl ine\end{tabular}}

\gde f \x tex t# l { \mu l ti c o l umn{\numcol s } { 1 p{ .9 \ tex tw i d t h } 1 }{\em # I } \ \
\ h l i ne}

\gdef \xrem#l{ \x text { \sc # I } }

%see LaTeX Companion, page 132 (f o r \hspace{Opt})
\gdef\RS{\raggedright\sloppy\hspace{Opt}}

%see LaTeX Companion, page 108
\gdef\PreserveBackslash#l{\let\temp=\\#l\let\\=\temp}
\l et\PBS=\PreserveBacksl ash

TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

