

TUGboat, Volume 15 (1994), No. 2

W V i e w contains within it every standard feature
you expect to be there.

Since many readers may not be familiar with

NextStep, I include some comments at the end of

the article. W V i e w is a standard component of

NextStep. NextStep consists of a graphical user in-

terface on top of Unix (BSD 4.3). Windows can be
opened in which different tasks may be launched.

When you purchase NextStep, you get Unix and

the GUI, together with W V i e w and other pack-

ages bundled toget her.

It's possible to bring up a window in NextStep which

accepts commands in a familiar terminal mode. All

of the component programs of W V i e w may be in-

voked using familiar command line options. The

m that is the core of W V i e w is a "big" m
which contains two non-standard enhancements. If
the first line of a document file is of the form

then the vanilla command tex myf ile automati-

cally invokes the format file f 00. fmt. That is, it

is equivalent to the command line

tex &foo myfile

With this convention in place, a single w invo-

cation works for plain files, L A M files, AM-TkX
files, L 4 ~ s - m files, and so on.

A second enhancement makes it possible to in-

terrupt a T)jX run to execute another command. We
can do so by simply writing the commands to out-

put stream 18. Example: If the first part of a w
run prepares a raw index file idx . r, we can sort and

typeset it in the same pass by issuing commands like

2 An Integrated System

But the most useful way to use N e x t w is not in

the traditional command line mode but as part of

the integrated W V i e w environment. I begin by

using the Emacs editor to create myf ile. tex, say.
When finished, I save the file to disk, but I don't

exit Emacs. Since Unix is multi-tasking, I can keep

Emacs 'up' so it is easy to re-enter it to make the

inevitable fixes to my source file. If you prefer, just

enter e in response to the w error prompt, and

this 7&X turns you and the document over to the
system editor. To change the choice of editors, it is

necessary only to set an environment variable.

The File Viewer is the main NextStep window
which lists in icon form the files I am currently inter-

ested in. After making sure that myf ile . tex is one

of these files, I double click on it to launch W V i e w .

(I make sure that the first line of my file is of the

form %&f 00, but purists can ensure that the default

version of TEX invokes their favorite format.)

In a moment, a small w Command Window

opens up; this acts as the console which displays

the contents of the log file and prompts for correc-
tions when necessary. Just as soon as 'TEX ships out

the first page, the W V i e w previewer displays this

page in a new, large window. It's not necessary to

wait for the rest of the job to finish- you can begin

scrutiny of your document right away. This preview

window is so central to this implementation that it's
no wonder Tom calls it W V i e w .

3 Previewing

NextStep incorporates Display PostScript technol-

ogy, and this is fully integrated into W V z e w . So, if

your document contains references to outline fonts,

or encapsulated Postscript files, they will be fully

visible in the preview window. For me, this fea-

ture alone is worth the price of admission. (I have

been reminded, though, that A m i g a w has pos-
sessed this capability since 1990.)

You can use the mouse to scroll or drag the

preview display, and the size of the preview window

is itself easily adjusted. A single click of the mouse

zooms and unzooms the image, and you have access
to a huge range of zoom magnifications as part of

options to a Window Command.

A single click on the preview image reports the
current position of the mouse. If you click on two dif-

ferent points of the previewed document, W V i e w

will report on the real distance between these points

in units either of inches, centimeters, real points,

PostScript (big) points, or pico-light-seconds. (I
learned from this that a pico-light-second is about

17% larger than a point.) You can improve the ac-

curacy of the click by zooming the preview. I was
surprised at how quickly I came to rely on this fea-

ture. Whenever a printed element doesn't appear

quite where I intended - a frequent occurrence -

the double click gives a good idea of the magnitude

of the displacement. Having this magnitude in hand
often provides a vital clue for correcting the prob-

lem, and it's nice to be able to get this hint without

printing the document.

W V z e w does color. Courtesy of Postscript
and of the latest version of dvips (which is of course

part of the package) it's possible to include color

in your document. With a color monitor, you can

preview in color. (Otherwise, the colored regions

appear in a suitable shade of gray.)

TUGboat, Volume 15 (1994), No. 2 109

4 Printing the Document

To print the document, I simply click the Print but-

ton in the WVzew menu. Both WVzew (and

NextStep, for that matter) expect to print to a Post-

Script printer. (If your printer is not color, any col-

ored regions appear as a shade of grey on the printed

document.) You can also 'print' to fax by pressing
a 'fax' button.

5 The Integrated Product

A description of any integrated software system.

even when scrupulously accurate, may fail to con-

vey a feel for the success of the implementor in cre-

ating an integrated environment which feels right,

like an old baseball glove. I don't quite know how

such a concept could possibly be quantified, but it is

my opinion that W V i e w succeeds in this endeavor,
and succeeds admirably. I have become dependent

on T&$View's special features, and my hand has

begun to creep naturally toward the mouse at ap-

propriate points in the W V i e w cycle. It is largely
for this reason that I refrain from presenting a table

of performance statistics for WVzew. What's the

point? Normally, it's nice to know speed stats so you

know how long you have to wait before you can print

or preview. But since 7&XView1s preview begins

long before the 7QX compilation is complete, such
a consideration is irrelevant. (Subjectively, though,

N e x t w seems speedy to me.)

Bringing up NextStep and W V i e w demands

a little more in terms of CPU power and expense

than the typical PC user may be used to (see be-
low). Nevertheless, if is a critical part of your

computer operations, you might well consider mak-

ing the switch if only to have access to W V i e w .

A The NextStep Operating Environment

NextStep is a persnickety operating system. Not

just any 486 will do, but only those for whom

NextStep has been appropriately tweaked. To find
out which computers will work, you will need to call

NeXT Computer and ask for their hardware compat-

ibility guide ([800] TRY-NEXT or [800] 848-NEXT).

I am running NextStep on a Logisys computer

whose chip is a 486 running at 66 mhz. 1 have 32

meg of ram and an 820 meg hard disk. NextStep

systems don't have to be quite this powerful, but I
wanted to indulge myself. In addition, you will need

a SCSI CD-ROM drive (the operating system is dis-

tributed on a CD-ROM). My system, which includes
a Nanao 17inch SVGA monitor, costs about $5500

all told. At the time of the purchase, the Logisys
(with which I am very pleased) was the cheapest

NextStep desktop system by quite a bit. It wouldn't

surprise me if the situation has changed. In addition

to NeXT's hardware compatibility guide, you should
check the ads in the journal Nextworld (which I
can find at the larger newsstands in my home town)

for information about competitively priced systems.

(Or just wait. Computer power continues to get ever

cheaper, and Nextstep-able computers will in a year
or two surely cost a fraction of their current price.)

In addition to the hardware, you'll need to pur-

chase NextStep. The full package, including devel-

oper's version, runs about $1700, which may make

DOS users gasp, but appears to be quite competi-

tive with other versions of Unix for the PC. It is

possible to get the regular version of NextStep for
about $700. If your timing is right and special pro-

motional sales are under way, this might reduce the

price further. I purchased NextStep in the fall of

1993, at which time there was a very attractive in-

troductory offer that I was able to take advantage
of. I do not know what (if any) special offers might

still apply, but you should ask the folks at NeXT

when you request the hardware guide.

There are two major FTP sites for NextStep

software, although much of this material runs on
the now-discontinued Motorola NeXT computers.

There are at least half-a-dozen active news groups
devoted to NextStep, and the Internet community

has proven to be unfailingly courteous and helpful

the many times I bugged total strangers while set-

ting up my system.

Any discussion of NextStep, no matter how
brief, would be remiss if it did not include some

mention of Nextstep's graphics. They are stunning.

NextStep introduces and demands new =sthetic

standards for graphic user interfaces. Graphics
aside, the interface itself is far more useful than that

of the Macintosh or OS/2, and substantially more so

than Microsoft Windows. (A third-party Windows

emulator runs under NextStep so your mountains of

Windows and DOS software are still usable under

NextStep.)

It is too much to hope that this upstart oper-
ating system will make much headway against Win-

dows. I am having so much fun with it, that I can't

help rooting for it anyway.

o Alan Hoenig
17 Bay Avenue
Huntington, NY 11743 USA
a jh j jQcunyvm. cuny .edu

TUGboat, Volume 15 (1994), No. 2

Macros

Interaction tools: dia log . s t y and menus. s t y

Michael Downes

Introduction

This article describes d ia log . s t y and menus. s t y ,
which provide functions for printing messages or

menus on screen and reading users' responses. The

file d ia log . s t y contains basic message and input-

reading functions; menus. s t y takes d ia log . s t y
for its base and uses some of its functions in

defining more complex menu construction functions.

These two files are set up in the form of LATEX

documentstyle option files, but in writing them I

spent some extra effort to try to make them usable
with PLAINTEX or other common macro packages

that include PLAIN^ in their base, such as AMS-

TEX or EPLAIN.
The appendix describes grabhedr . s ty , re-

quired by d i a log . s ty , which provides two im-

portant file-handling features: (1) Functions

\ localcatcodesand\restorecatcodesthatmake

it possible for d i a log . s ty (or any file) to man-

age internal catcode changes properly regardless

of the surrounding context. And (2) a command

\inputf wh that when substituted for \input makes
it possible to grab information such as file name, ver-

sion, and date from standardized file headers in the

style promoted by Nelson Beebe-and to grab it in
the process of first inputting the file, as opposed to

inputting the file twice, or \reading the information

separately (unreliable due to system-dependent dif-

ferences in the equivalence of m ' s \input search
path and \openin search path).

These files and a few others (notably

l i s t o u t . t ex) are combined in a package1 which

should, by the time this article appears, be avail-

able on the Internet by anonymous ftp from nodes
of CTAN, the Comprehensive 'l&X Archive Network,

e.g., f t p . shsu . edu (USA), or f t p . dante. de (Eu-

rope). The file l i s t o u t . t e x is a utility for printing

out plain text files, with reasonably good handling

of overlong lines, tab characters, other nonprinting

characters, etc. It uses menus. s t y to present an

elaborate menu system for changing options (like
font size, line spacing, or how many spaces should

be printed for a tab character).

Or 'bundle', using more recently established

L A W terminology for a group of related files, since

'package' now means a LAW extension suitable for
use with \usepackage.

Here's an example from the menu system

of 1 i s t o u t . t e x to show how features from
dia log . s t y and menus. s t y can be put to use.

First, the menu that you would see if you wanted

to change the font or line spacing:
... ...

F Change font

S Change font size

L Change line spacing

Current settings: typewriter 8 / 10.0pt.

Q Quit X Exit ? Help
... ...

Your choice?

Suppose you wanted to change line spacing to 9
points, so you entered 1 and then gpt, except that

on your first attempt you accidentally mistyped 9pe

instead of 9pt. Here's what you would see on screen:

Your choice? 1

Desired line spacing [TeX units] ? 9pe

?---I donJ t understand "9pe".

Desired line spacing [TeX units] ? 9pt

* New line spacing: 9.0pt
Both lowercase 1 and capital L are acceptable

responses, and the value given for line spacing is

checked to make sure it's a valid TFJ dimension.
Before continuing, the internalized version of the

user's value is echoed on screen to confirm that the

entered value was read correctly.

Now here's how the above menu is programmed
in l i s t o u t . tex. A function \menuF is constructed

using \f menu:

\fxmenu\rnenuF{)(

F Change font

S Change font size

L Change line spacing

)I
Current settings: &\mainfont &\mainfontsize / %

&\the&\normalbaselineskip.

3

In the definition of \moptionF, \lettermenu is

a high-level function from menus. s t y that calls

\menuF (given the argument F) to print the given

menu on screen, reads a line of input from the

user, extracts the first character and forces it to

uppercase, then branches to the next menu as

determined by that character. The response of 1

causes a branch to the function \moptionFL:

TUGboat, Volume 15 (1994), No. 2

\promptmes jC%

Desired line spacing [TeX units] ?)%

\readlineCQ)\reply

If Q, X, or ? was entered, the test \xoptiontest
will return 'true'; then we should skip the dimension

checking and go directly to \optionexec, which

knows what to do with those responses:

\if\xoptiontest\reply

\else

Otherwise we check the given dimension to make

sure it's usable. If so, echo the new value as
confirmat ion.

\checkdimen\reply\dimenQ

\ifdim\dimenO>\zQ

\normalbaselineskip\dimenQ\relax

\normalbaselines

\confirmCNew line spacing:

\the\normalbaselineskip)%

\def\replyCQ>%

\fi

If \ rep ly was changed to Q during the above step,

\optionexec will pop back up to the previous

menu level (normal continuation); otherwise \ reply
retains its prior definition -e.g., 9pe - to which

\optionexec will simply say "I don't understand

that" and repeat the current prompt.

\fi

\optionexec\reply

1

For maximum portability, l i s t o u t . t e x uses

in its menus only lowest-common-denominator

ordinary printable ASCII characters in the range
32-126. Fancier menus can be obtained at a cost
of forgoing system independence, for instance by

using e m w ' s /o option to output the box-drawing

characters in the standard PC DOS character set.

Notation

Double-hat notation such as --.I is used in this

article for control characters, as in The m b o o k ,

although occasionally the alternate form 'CONTROL-

J' is used when the emphasis is away from

the character's tokenized state inside m. A

couple of abbreviations from grabhedr . s t y are

used frequently in the macro code: \xp@ =

\expandafter, and \nx@ = \noexpand. Standard

abbreviations from p l a i n . t e x such as \z@ or
\toks@ are used without special comment.

Part 1

Basic dialog functions: dia log . s t y

1.1 History

This file, d ia log .s ty , was born out of a utility

called l i s t o u t . t ex that I wrote for my personal

use. The purpose of l i s t o u t . t e x was to facili-

tate printing out plain text files-electronic mail,

program source files in various programming lan-
guages, and, foremost, TEX macro files and log files.

An important part of my programming prac-

tice is to print out a macro file on paper and read

it through, marking corrections along the way, then
use the marked copy as a script for editing the file.

(For one thing, this allows me to analyze and mark

corrections while riding the bus to work, or sitting

out in the back yard to supervise the kids.) The out-

put I normally desired was two 'pages' per sheet of
U.S. letter-size paper printed landscape, in order to

conserve paper.
Once created, l i s t o u t . t ex quickly became

my favorite means of printing out plain text
files, not to mention an indispensable tool in my

debugging toolbox: I turn on \tracingmacros and

\tracingcomrnands, then print out the resulting log

file so that I can see several hundred lines of the

log at once (by spreading out two or three pages

on my desk with 100+ lines per page); then I trace
through, cross things out, label other things, draw

arrows, and so forth.
I soon added a filename prompting loop to make

it convenient to print multiple files in a single run.
In the process of perfecting this simple prompting

routine - over two or three years - and adding the

ability to optionally specify things like number of

columns at run time, eventually I wrote so much

dialog-related macro code that it became clear this

code should be moved out of l i s t o u t . t ex into its
own module. The result was dialog. s ty .

Before getting into the macro definitions and

technical commentary, here are descriptions from

the user's perspective of the functions defined in this

file.

1.2 Message-sending functions

-1
Sends the message verbatim: category 12 for all

special characters except braces, tab characters, and

carriage returns:

Naturally, the catcode changes are effective only if

\mesj is used directly, not inside a macro argument

or definition replacement text.

112 TUGboat, Volume 15 (1994), No. 2

Itilultiple spaces in the argument of \mesj print

as multiple spaces on screen. A tab character

produces always eight spaces; 'smart' handling of

tabs is more complicated than I would care to
attempt.

Line breaks in the argument of \mesj will

produce line breaks on screen. That is, you don't

need to enter a special sequence such as --J% to
get line breaks. See the technical commentary for

\mesjsetup for details. Even though curly braces

are left with their normal catcodes: they can be

printed in a message without any problem, if they

occur in balanced pairs. If not, the message should
be sent using \xmes j instead of \mes j .

Because of its careful handling of the message

text, \mesj is extremely easy to use. The only thing
you have to worry about is having properly matched

braces. Beyond that, you simply type everything

exactly as you want it to appear on screen.

This is like \mesj but expands embedded control se-

quences instead of printing them verbatim. All spe-

cial characters have category 12 except backslash,
percent, braces, tab, return, and ampersand:

The first four have normal T)$ catcodes to make

it possible t o use most normal commands,

and comments, in the message text. --I and --M

are catcode 13 and behave as described for \mesj.
The & is a special convenience, an abbreviation for

\noexpand, to use in controlling expansion inside

the message text.
Doubled backslash \ \ in the argument will

produce a single category 12 backslash character -

thus, \\xxx can be used instead of \string\xxx

or \noexpand\xxx (notice that this works even for
outer things like \bye or \newif). Similarly \%,
\C, \) and \& produce the corresponding single
characters.

Category 12 space means that you cannot write

something like

\ i fmode h\e lse v \ f i ru l e

in the argument of \xmes j without getting a space
after the \ i fmode , \e l se , and \f i.' Since

occasionally this may be troublesome, \. is defined

inside the argument of \xmes j to be a 'control word

terminator': If the expansion of \foo is abc, then

\f oo\ . xyz produces abcxyz on screen (as opposed

' Well, actually, you could replace each space

by %(newline) to get rid of it. But that makes the
message text harder to read for the programmer.

to \foo xyz which would produce abc xyz). Thus

the above conditional could be written as

Even though the catcode changes done by \xmesj

setup have no effect if \xmesj is used inside an

argument or definition replacement text, I find

it convenient occasionally to use \xmesj in those

contexts, in order.to get other aspects of the \xmesj

setup. For instance, if you need to embed a message

that contains a percent sign inside a definition, you

can write

\def\foo{ . . .
\xmesj{ . . . t h i s i s a percent

sign: \% (sans backslash) . . .)

. . .)

To further support such uses of \xmesj, the
following changes are also done by \xmesj setup:

the backslash-space control symbol \u is made

equivalent to \space; \'-J and \^-M are defined

to produce a \newlinechar; and active tilde - will
produce a category-12 tilde.

Among other things, this setup makes it easier

to obtain newlines and multiple spaces in an

embedded message. For example, in the following
definition the message will have a line break on

screen for each backslash at the end of a line, and

the third line will be indented four spaces.

\def\bar{ . . .
\xmesj{First l i ne \

Second l ine \

\ \ \ \ Indented l ine \

Last l ine)%

... 1

The alternative of defining a separate message

function \barf00 with \f [xlmesj and calling

\barf00 inside of \bar would allow more natural

entry of the newlines and the multiple spaces, but
would be slightly more expensive in string pool and

hash table usage.

These are like \mesj, \xmesj but use \message

rather than \immediate\writel6 internally, thus if
the following operation is a \read, the user will see

the cursor on screen at the end of the last line, as

may be desired when prompting for a short reply,

rather than a t the beginning of the next line. The

character ! is preempted internally for newlinechar,
which means that it cannot actually be printed in

the message text. Use of a visible character such

as ! , rather than the normal \newlinechar - - J, is

TUGboat, Volume 15 (1994), No. 2 113

necessary for robustness because of the fact that the

\message primitive was unable to use an 'invisible'

character (outside the range 32-126) for newlines up
until version 3.1415, which some users do not

yet have (at the time of this writing- July 1994).

storemes j \f oo{(text)3

These functions are similar to \mesj, \xmesj
but store the given text in the control sequence

\f oo instead of immediately sending the message.

Standard parameter syntax can be used to

make \f oo a function with arguments, e.g. after

then you can later write

and get the current value of hsize into the middle

of the message text. Consequently also in the x-

version \storexmesj a category-12 # character can

be obtained with \#.

Defines \foobar as a function that will take the

given arguments, sow them into the message text

C . . . 3, and send the message. In the message text all

special characters are category 12 except for braces,

#, and carriage return.
If an unmatched brace or a # must be printed

in the message text \f xmes j must be used instead.

(## could be used to insert a single category-6 #

token into the message text, and would print

it without an error, but both \message and \wri te

would print it as two ## characters, even though it's

only a single token internally.)

I \f xmes j \f oobar#l#2. . . { . . . # I . . . #2. . .) I
Combination of \xmesj and \fmesj. Defines

\f oobar like \fmes j , but with full expansion of the

replacement text and with normal category codes for

backslash, percent, braces, and hash #. The control

symbols \ \ \% \{ \) \& and \. can be used as in
\xrnesj, with also \# for printing a # character of

category 12.

1.3 Reading functions

This reads a line of input from the user into

the macro \answer. (The macro name can be

anything chosen by the programmer, not just

\answer.) Before reading, all special characters

are deactivated. so that the primitive \read will

not choke if the user happens to enter something

like \newif or CONTROL-L or 3. Depending

on the operating system, certain charactersWe.g.,

CONTROL-C, CONTROL-Z, CONTROL-D, CONTROL-

H -might have special effects instead of being

entered into the replacement text of \answer,

regardless of the catcode changes. To take the most

obvious example, under most operating systems,

typing CONTROL-H (the Rubout or Backward-

Delete key) will delete the previous character from

the user's response, instead of entering an ASCII

character 8 into \answer.

There is one significant exception from the

catcode changes that are done for \ readl ine:

spaces and tabs retain their normal catcode of 10,
so that multiple spaces in an answer will be reduced

to a single space, and macros with normal space-

delimited arguments will work when applied to the

answer. (I can't think of any likely scenario where
category 12 for spaces would be useful.) Also,

the catcode of -^M is set to 9 (ignore) so that an

empty line - meaning that the user just pressed the
carriage returnlenter key - will result in an empty

\answer. If the answer is empty, the given default

string will be substituted. The default string can be

empty.

Like \ readl ine but the answer is read as executable

tokens; the usual catcodes of the 7&X special

characters remain in effect while reading the answer.
A few common outer things (\bye, \+, \newif,

--L, among others) are neutralized before the \read

is done, but the user can still cause problems

by entering some other outer control sequence or
unbalanced braces. I doubt there's any bulletproof

solution, if the tokens are to remain executable,

short of the usual last resort: reading the answer

using \ readl ine, writing it to a file, then inputting

the file.

This is like \ readl ine but it reduces the answer

to its first character. (default) is either a single

character or empty.

This is like \readchar and also uppercases the

answer.

The function \changecase redefines its second

argument, which must be a macro, to contain

the same text as before, but uppercased or
lowercased according to the first argument. Thus

\readChar{Q)\answer is equivalent to

114 TUGboat, Volume 15 (1994), No. 2

It might sometimes be desirable to force lower case
before using a file name given by the user, for

example.

1.4 Checking functions

To read in and check an answer that is supposed

to be an integer, use \readline\reply and then

apply \checkinteger to the \reply, supplying a
count register wherein \checkinteger will leave the

validated integer. If \reply does not contain a valid

integer the returned value will be -\maxdimen.
At the present time only decimal digits are

handled; some valid numbers such as "AB, ' \Q,
\number\prevgraf. or a count register name, will

not be recognized by \checkinteger. There seems
to be no bulletproof way to allow these possibilities.

Tests that hide \checkinteger under the hood,

such as a \nonnegativeinteger test, are not
provided because as often as not the number being

prompted for will have to be tested to see if it

falls inside a more specific range, such as 0-255 for

an 8-bit number or 1-31 for a date, and it seems
common sense to omit overhead if it would usually

be redundant. It's easy enough to define such a test

for yourself, if you want one.

Analog of \checkinteger for dimension values. If

\reply does not contain a valid dimension the value
returned in \tempdim will be -\maxdimen.

Only explicit dimensions with decimal digits,

optional decimal point and more decimal digits,

followed by explicit units pt cm in or whatever
are checked for; some valid TEX dimensions such

as \parindent, .3\baselineskip,or \fontdimen5
\font will not be recognized by \checkdimen.

What good is all this?

What good is all this stuff, practically speaking? -

you may ask. Well, a typical application might be

something like: At the beginning of a document,
prompt interactively to find out if the user wants to

print on A4 or U.S. letter-size paper, or change the

top or left margin. Such a query could be done like

this:

\promptxmesj{

Do you want to print on A 4 or US letter paper?

Enter u or U for US letter, %

anything else for A 4 :)

\readChar(A)\reply % default = A 4

\if U\reply \textheight=llin \textwidth=8.5in

\else \textheight=297mm \textwidth=2lOmm \fi

% Subtract space for 1-inch margins

\addtolength{\textheight){-2in)

\addtolength{\textwidth){-2in)

\promptxmes jC

Left margin setting? %
[Return = keep current value,

\the\oddsidemargin] : 3

\readline{\the\oddsidemargin)\reply

\checkdimen\reply{\dimenO)

\ifdim\dimenO>-\maxdimen

\setlength\oddsidemargin{\dimenO)%

\xmesj{OK, using new left margin of %

\the\oddsidemargin.)

\else

\xmesj{Sorry, I don't understand %

that reply: '\reply'.\

Using default value: \the\oddsidemargin.)

\fi

Although LAW'S \typeout and \typein functions

can be used for this same task, they are rather more
awkward, and checking the margin value for validity

would be quite difficult.

1.5 Preliminaries

If grabhedr.sty is not already loaded, load it

now. The \trap. input function is explained in
grabhedr .doc.

\csname trap.input\endcsname

\input grabhedr . sty \relax
\fileversiondate{dialog.sty){0.9~){6-~ul-19943%

The functions \localcatcodes and \restore-

cat codes are defined in grabhedr . sty. We use

them to save and restore catcodes of any special

characters needed in this file whose current catcodes
might not be what we want them to be. Saving and

restoring catcode of at-sign makes this file work

equally well as a LATEX documentstyle option or as

a simple input file in other contexts. The double

quote character " might be active for German and

other languages. Saving and restoring tilde ", hash

#, caret -, and left quote ' catcodes is normally

redundant but reduces the number of assumptions

we must rely on. (The following catcodes are

assumed: \ 0, C 1, 1 2, \endlinechar 5, 10, %
14, a-z A-Z 11, 0-9 . - 12.)

\localcatcodes~\Q~11)%

\-C13)\"CI2)\#C6)\-{7~\'C1231

1.6 Definitions

For deactivating characters with special catcodes
during \readline we use, instead of \dospecials,

a more bulletproof (albeit slower) combination

TUGboat, Volume 15 (1994), No. 2 115

of \otherchars, \controlchars. and \highchars

that covers all characters in the range 0-255 except

letters and digits. Handling the characters above

127 triples the overhead done for each read operation

or message definition but seems mandatory for

maximum robu~tness .~
\otherchars includes the thirty-three nonal-

phanumeric visible characters (counting space as
visible). It is intended as an executable list like

\dospecials but, as an exercise in memory con-
servation, it is constructed without the \dos. For

the usual application of changing catcodes, the list

can still be executed nicely as shown below. Also;

if we arrange to make sure that each character to-

ken gets category 12, it's not necessary to use con-

trol symbols such as \% in place of those few spe-
cial characters that would otherwise be difficult to

place inside of a definition. This avoids a problem

that would otherwise arise if we included \+ in the

list and tried to process the list with a typical def-
inition of do: \+ is 'outer' in plain l$jX and would

cause an error message when \do attempted to read

it as an argumen5 (As a matter of fact the cat-

code changes below show a different way around that

problem, but a list of category-12 character tokens
is a fun thing to have around anyway.)

First we start a group to localize \catcode changes.

Then we change all relevant catcodes to 12 except
for backslash, open brace, and close brace, which can

be handled by judicious application of \escapechar,

\ s t r i ng , \edef, and \xdef. By defining \do in

a slightly backward way, so that it doesn't take
an argument, we don't need to worry about the

presence of \+ in the list of control symbols. Notice

the absence of \ ' from the list of control symbols; it

was already catcoded to 12 in the \localcatcodes
declaration a t the beginning of this file - otherwise

it would be troublesome to make the definition of

\do bulletproof (consider the possibilities that
might have catcode 0, 5, 9, or 14).

\def\doC12 \catcodec)

\catcode'\~\do\!\do\Q\do\#\do\$\do\~\do\&

\do*\do\ (\do\) \do\-\do\-\do\=\do\ [\do\]

\do\;\do\:\do\'\do\"\do\<\do\>\do\,\do\.

would otherwise produce when applied to a control

sequence.

Space and percent are done last. Then, with almost

all the special characters now category 12, it's rather
easy to define \otherchars.

\controlchars is another list for the control
characters ASCII 0-31 and 127. The construction

of this list is similar to the construction of

\othercham. We need to turn off \endlinechar

because the catcode of ^-M is going to be changed.

The ^ ^ L inside the \gdef is not a problem (as it

might have been, due to the usual outerness of ^ ^ L)

because the catcode is changed from 13 to 12 before

that point.

And finally, the list \highchars contains characters

128-255, the ones that have the eighth bit set.

\begingroup

\def \doCl2 \cat code ' 3

\catcode'\~~80\do\~~81\do\~~82\do\~~83\do\~~84

\d0\--85\d0\^-86\d0\--87\do\^^88\do\^^89\do\--8a

\do\^^8b\do\^^8c\do\^^8d\do\^^8e\do\^^8f

\ d o \ ~ ~ 9 O \ d o \ ~ ~ 9 l \ d o \ ~ ~ 9 2 \ d o \ ~ ~ 9 3 \ d o \ ~ ~ 9 4 \ d o \ ~ ~ 9 5

\do\/\do\?\do\ll2\relax . . .

To handle backslash and braces, we define \\, \(, \do\^^fc\do\^^fd\do\^^fe\do\^^ff 12\relax

and \I to produce the corresponding category-12 %

character tokens. Setting \escapechar to -1 means \gdef\highcharsC%

that \ s t r i n g will omit the leading backslash that it -^8oX^81^^82^^83^^84^^85^^86^^87^^88%

^^89^^8a^^8b^^8~^^8d^^8e^^8f%

If you are using d i a log . s ty functions on --90--91--92--93--94--95--96~~97~~98%

a slow computer, you might want to try setting . . .
\highchars = empty to see if that helps the speed.

^^f9^^fa^^fb^^fc^^fd^^fe^^f f)

116 TUGboat, Volume 15 (1994), No. 2

The function \ ac t ive ly makes a given character

active and carries out the assignment given as

the first argument. The assignment can be

embedded inside other definitions without requiring

any special setup to produce an active character in

the replacement text. The argument should be a

control symbol, e.g. \@ or \# or \--M, rather than a

single character. (Except that + is safer than \+ in

PLAINTEX.) If the assignment is a definition (\def,

\edef, \gdef, \xdef) it is allowed to take arguments
in the normal way. Prefixes such as \global ,

\long, or \ou ter must go inside the first,a@ument
rather than before \act ively.

Usage:

One place where this function can be put to good

use is in making --M active in order to get special
action at the end of each line of input. The usual

way of going about this would be to write

which is a puzzling construction to the 'I(novice

who doesn't know what \obeylines does with

\par. The same effect could be gotten a little more
transparently with

In the definition of \ ac t ive ly we use the
unique properties of \lowercase to create an active

character with the right character code, overlapping

with a \begingroup \endgroup structure that

localizes the necessary 1c-code change.

The \mes j se tup function starts a group to localize

catcode changes. The group will be closed

eventually by a separate function that does the

actual sending or stores the message text for later

retrieval.

We want to change the catcode of each charac-
ter in the three lists \otherchars, \controlchars,

and \highchars to 12. After giving \do a recur-

sive definition, we apply it to each of the three lists,

adding a suitable element at the end of the list to

make the recursion stop there. This allows leaving

out the \do tokens from the character lists, with-
out incurring the cost of an if test at each recursion

step.

\def\do##1{\catcode'##l\count@ \do)%

The abbreviation \xp@ = \expandafter is from

grabhedr . s ty .

\xp@\do\otherchars{a11 \@gobbletwo)%

\xp@\do\controlchars{all \@gobbletwo)%

\xp@\do\highchars~alI \@gobbletwo)%

\actively\edef\^^I{ \space\space\space

\space\space\space\space)%

The convenient treatment of newlines in the

argument of \mesj (every line break produces a

line break on screen) is achieved by making the
- -M character active and defining it to produce a

category-12 --J character. Although for \mesj it

would have sufficed to make --M category 12 and
locally set \newlinechar = --M while sending the

message, it turns out to be useful for other functions

to have the - - M character active, so that it can

be remapped to an arbitrary function for handling
new lines (e.g., perhaps adding extra spaces at the

beginning of each line). And if \mesj treats --M

the same, we can arrange for it to share the setup
routines needed for the other functions.

In \sendmesj we go to a little extra trouble to

make sure -'M produces a newline character, no

matter what the value of \newlinechar might be

in the surrounding environment. The impending

\endgroup will restore \newlinechar to its previous

value. One reason for using --J (instead of, say,
--M directly) is to allow e.g. \mesj{xxx~~Jxxxx)

to be written inside a definition, as is sometimes

convenient. This would be difficult with --M instead
of '-J because of catcodes.

\def\sendmesj(\newlinecharC\^^J%

\actively\def\^-M{^-J}%

\immediate\write\sixtQQnC\mesjtext)\endgroup)

Given the support functions defined above, the

definition of \mes j is easy: Use \mes j setup to clear

all special catcodes, then set up \sendmesj to be
triggered by the next assignment, then read the

following balanced-braces group into \mes j t ex t . As

soon as the definition is completed, TEX will execute

\sendmesj, which will send the text and close the

group that was started in \mes jsetup to localize the

catcode changes.

\def\mesj(\mesjsetup \afterassignment\sendmesj

\def \mesjtext)

The \sendprompt function is just like \sendmesj

except that it uses \message instead of \wri te , as
might be desired when prompting for user input,

so that the on-screen cursor stays on the same

TUGboat. Volume 15 (1994), No. 2

line as the prompt instead of hopping down to the

beginning of the next line. In order for newlines to

work with \message we must use a visible character

instead of ^-J. When everyone has version

3.1415 or later this will no longer be true. The choice

of ! might be construed (if you wish) as editorial

comment that ! should not be shouted at the user

in a prompt.

This function is like \mesj but uses \sendprompt

instead of \sendmes j .

Arg #1 of \storemesj is the control sequence under

which the message text is to be stored.

\def \storemesj#l{\mesjsetup

\catcode1\#=6 % to allow arguments if needed

While \storemesj\f oo(. . .) is more or less

the same as \def\foo{. . .) with special cat-

code changes, \fmes j \f oo{ . . .) corresponds to

\def \f ooC\mesj{. . .)), that is, after \fmesj\foo

the function \foo can be executed directly to send

the message. Thus \storemes j is typically used for

storing pieces of messages, while \fmes j is used for

storing entire messages.

To read the parameter text #2, we use the

peculiar #C feature of w to read everything up

to the opening brace.

\catcode1\#=6 % restore to normal

The parameter text #2 must be stored in a token

register rather than a macro to avoid problems with

characters. The \long prefix is just to admit

the (unlikely) possibility of using \fmesj to define

something such as an error message saying 'You

can't use #1 here' where one of the possibilities for

#I is \string\par.

Define \@tempa to put together the first two

arguments and [pseudo]argument #3 and make the

definition of #I.

The abbreviation \nx@ = \noexpand is froni

grabhedr. sty.

\nxC\sendmes j1%

3%

\Qtempa

\endgroup % Turn off the \mesjsetup catcodes

1%
\afterassignment\Qtempa

\toks2=1

\ m e s j setup is like \mes j setup except it prepares

to allow control sequence tokens and normal

comments in the message text. For w n i c i a n s '

convenience certain other features are thrown in.

Here, unlike the setup for \xreadline, I don't

bother to remove the outerness of \bye, \newif,

etc., because I presume the arguments of \mesj,

\f xmes j, \storemes j, \f menu, etc. are more

likely to be written by a m n i c i a n than by an

average end user, whereas \xreadline is designed

to handle arbitrary input from arbitrary users.

\def \xmes j setup{\mesj setup

Throw in pseudo braces just in case we are inside an

\halign with \ \ let equal to \cr at the time when

\xmesjsetup is called. (As might happen in AMS-

TEX.1

\iff alse{\f i

\catcode'\\=O \catcode1\%=14

Define \% \\ \C \) \& to produce the corresponding

single characters, category 12.

\begingroup \lccode'\O=L\\\lccodel\l=l\~%

\lccode'\2='\}\lccode'\3='\%%

\lowercase{\endgroup \def \\{O}\def \{{I)"/.

\def \1{2)\def \%C311%

\iff alse)\f i

\edef\&C\string &3%

Let & = \noexpand for expansion control inside the

argument text; let active ^-M = \relax so that

newliries will remain inert during the expansion.

\actively\let\&=\noexpand

\actively\let\--M=\relax

Define \ . to be a no-op. for terminating a control

word when it is followed by letters and no space is

wanted.

\def \ . 0%

Support for use of \xmesj inside a definition

replacement text or macro argument: control-space

\u = \space, tilde - prints as itself, \--M (i.e.. a

lone backslash at the end of a line) will produce a
newline. also \--J, while finally \par = blank line

translates to two newlines.

\def\ {)\edefa{\string "1%

118 TUGboat, Volume 15 (1994), No. 2

Define \^^M to produce an active ^-M character,

which (we hope) will be suitably defined to produce

a riewline or whatever.

\begingroup \lccode'\-='\^^M%

\lowercaseC\endgroup \def\̂ M̂Ce))%

\let\^-J\^^M \def\par{\"̂ M\̂ M̂)%

>

\xmesj uses \xmesjsetup and \edef.

\def\xmesjC\xmesjsetup \afterassignment\sendmesj

\edef \mes jtext)

\promptxmes j is analogous to \promptmes j , but
with expansion.

\def\promptxmesjC\xmesjsetup

\afterassignment\sendprompt \edef\mesjtext)

And \storexmes j is like \storemes j, with expan-

sion. Since we allow arguments for the function be-

ing defined, we also must define \# to produce a sin-

gle category-12 # character so that there will be a

way to print # in the message text.

\def \storexmes j#l#2#C\xmes jsetup

\catcodeC\#=6 % to allow arguments if needed

\edef\#C\string##)%

\afterassignment\endgroup

\xdef#l#2)

And \f xmes j is the expansive analog of \f mes j .

\def\fxmesj#l#2#C\xmesjsetup

\catcodeC\#=6 % restore to normal

\edef\#C\string##)%

\toks@(\long\xdef#l#2)%

\def\@tempaC%

\edef\QtempaC%

\the\toks@C\begingroup

\def\nxQ\nxO\nxO\mesjtext~\the\toks\tw@)%

\nx@\nx@\nx@\sendmesj))%

\@ternpa % execute the constructed xdef

\endgroup % restore normal catcodes

1%
\afterassignment\Qtempa

\toks\twQ=)

1.7 Reading functions

The \readline function gets one line of input from

the user. Arguments are: #1 default to be used if the

user response is empty (i.e., if the user just pressed

the returnlenter key), #2 macro to receive the input.

\def\readline#l#2C%

\begingroup \count@ 12 %

\def\do##lC\catcode'##l\count@ \do)%

\xp@\do\othercharsCall \@gobbletwo)%

\xp@\do\controlchars~all \@gobbletwo)%

\xpQ\do\highcharsCall \@gobbletwo)j6

Make spaces and tabs normal instead of category 12.

\catcode'\ =10 \catcode'\"^I=lO %

\catcodef\^^M=9 % ignore

Reset endline char to normal, just in case.

\endlinechar'\^^M

We go to a little trouble to avoid \gdef-ing #2,

in order to prevent save stack buildup if the user

of \readline unknowingly carries on doing local

redefinitions of #2 after the initial read.

\read\m@ne to#2%

\edef #2C\def \nx@#2C#23)%

\xpQ\endgroup #2%

\ifx\@empty#2\def#2C#l)\fi

>

\xreadline is like \readline except that it

leaves almost all catcodes unchanged so that the

return value is executable tokens instead of strictly

character tokens of category 11 or 12.

\def\xreadline#1#2{%

\begingroup

Render some outer control sequences innocuous.

\xp@\let\csname newrnuskip\endcsname\relax

\xp@\let\csname newtoks\endcsname\relax

\xp@\let\csname newbox\endcsname\relax

\xp@\let\csname newinsert\endcsname\relax

\xp@\let\csname +\endcsname\relax

\actively\let\^^L\relax

\catcode'\^-M=9 % ignore

\endlinecharC\^^M% reset to normal

\read\m@ne to#2%

\toks@\xp@C#2)%

\edef\@tempaC\def\nxQ#2C\the\toksQ))%

\xp@\endgroup \@ternpa

\ifx\@ernpty#2\def#2C#l)\fi

>

\readchar reduces the user response to a single

character.

If the user's response and the default response are

both empty, we need something after #1 to keep

\@car from running away, so we add an empty pair

of braces.

TUGboat, Volume 15 (1994), No. 2 119

\readchar reduces the user response to a single

uppercase character. (This is useful to simplify

testing the response later with \ i f .)

\def\readChar#l#2(%

\readline(#l)#2%

\changecase\uppercase#2%

Reduce #2 to its first character, or the first character

of #I , if #2 is empty. The extra braces {I are to

prevent a runaway argument error from \@car if #2

and #I are both empty.

\xdef#2{\xpQ\@car #2#1{)\Qnil)%

>

The function \changecase uppercases or lowercases

the replacement text of its second argument, which

must be a macro. The first argument should be

\uppercase or \lowercase.

\def\changecase#l#2{\@casetoks\xpQ(#2)%

\edef#2(#l{\def\nxQ#2C\the\QcasetoksW#2~

We allocate a token register just for the use of

\changecase because it might be used at a low

level internally where we don't want to interfere with

other uses of the scratch token registers 0-9.

\newtoks\@casetoks

A common task in reading user input is to

verify, when an answer of a certain kind was

requested, that the response has indeed the desired

form-for example, if a nonnegative integer is

required for subsequent processing, it behooves us

to verify that we have a nonnegative integer in

hand before doing anything that might lead to

inconvenient error messages. However, it's not easy

to decide how best to handle such verification. One

possibility might be to have a function

to do all the work of going out and fetching a

number from the user and leaving it in the macro

\f 00. Another possibility would be to read the

response using \ readl ine and then apply a separate

function that can be used in combination with \ i f ,

for example

For maximum flexibility, a slightly lower-level

approach is chosen here. The target syntax is

where \tempcount will be set to -\maxdimen if

\ rep ly does not contain a valid integer. (Negative

integers are allowed, as long as they are greater

than -\maxdimen.) Then the function that calls

\checkinteger is free to make additional checks

on the range of the reply and give error messages
tailored to the circumstances. And the handling

of an empty \ reply can be arbitrarily customized,

something that would tend to be inconvenient for

the first method mentioned.

The first and second approaches can be built

on top of the third if desired, e.g. (for the second

approach)

The curious TT\f i . . . \ifnum construction is from

w h a x 1989, no. 20 and no. 38 (a suggestion

of D. E. Knuth in reply to a query by S. von

Bechtolsheim) .

Argument #2 of \checkinteger must be a count

register; #I is expected to be a macro holding zero

or more arbitrary characters of category 11 or 12.

To validate a number, the function \ scanin i t must

first scan away leading + or - signs (keeping track in

\scansign@), then look at the first token after that:

if it's a digit, fine, scan that digit and any succeeding

digits into the given count register (\scanresul t@),

ending with \endscan to get rid of any following

garbage tokens that might just possibly show up.
Typical usage includes initializing \scansign@

to empty, as in the definition of \checkinteger.

Assumption: \ reply is either empty or contains

only category 11 or 12 characters (which it will if you

used \readline!). If a separate check is done earlier

to trap the case where \ reply is empty, for example,

by using a nonempty default for \ readl ine, then

the x before \endscan is superfluous.

Arg #I = next character from the string being

tested. The test whether #I is a decimal digit is
similar in spirit to the test \ i f !# I ! to see if an

argument is empty (The m b o o k , Appendix D,
p. 376).

\def\scanint#l{%

\ifodd 0#ll %% is #1 a decimal digit?

%% If so read all digits into \scanresult@

%% with sign prefix

\def\@tempa{\afterassignment\endscan

120 TUGboat, Volume 15 (1994), No. 2

\scanresultQ=\scansignQ#1)%

\else

\if -#l\relax

Here we flipflop the sign; watch closely.

\edef\scansignQ{%

\ifx\Qempty\scansignQ -\fi)%

\def\QtempaC\scanint)%

\else

A plus sign can just be ignored.

\scandimen is similar to \scanint but has to

call some auxiliary functions to scan the various

subcomponents of a dimension (leading digits,

decimal point, fractional part, and units, in addition

to the sign). The minimum requirements of w ' s

syntax for dimensions are a digit or decimal point

@ the units; all the other components are optional @ (The w b o o k l Exercise 10.3, p. 58).

When scanning for the digits of a fractional

part, we can't throw away leading zeros; therefore

we don't read the fractional part into a count

register as we did for the digits before the decimal

point: instead we read the digits one by one and

store them in \dimentoks.

The function that calls \scandimen should ini-

tialize \scansign@ to \@empty, \dimenf i r s t p a r t

to \z@, \dimentoks to empty C), and \dimentrue@

to \@empty.

Test values: Opt, 1 . l i n , -2cm, .3mm, 0.4dd.

5. cc, .10000000009pc, \hsize, em.

The following test resolves to true if #1 is either

a period or a comma (both recognized by as
decimal point characters).

\else

\if -#I% then flipflop the sign

\edef\scansignOC%

\ifx\Qempty\scansign@ -\fi)%

\def\OtempaC\scandimen)%

\else

\if +#I% then ignore it

\def\Qtempa{\scandimen)%

\else % not a valid dimen

\def\QtempaC%

Scan for an optional decimal point

If the decimal point is absent, we need to put back

@ and rescarr it to see if it is the first letter of the

units.

Scan for the fractional part: digits after the decimal

point.

If # I is a digit, add it to \dimentoks.

Otherwise rescan #I , presumably the first letter of

the units.

\def\scanunitsa#l\endscan(%

Check for t r u e qualifier.

The peculiar nature of \lowercase is evident

here as we are able to apply it to only the

test part of the conditional without running into

brace-matching problems. (Compare the braces in
this example to something like \message{\if f a l s e

A)\else B)\f i.)

TUGboat. Volume 15 (1994)) No. 2

\Qtempa#ltrue\end\Qtempa

1%

No true was found:

Scan for the name of the units and complete the
assignment of the scanned value to \scanresult@.

Notice that, because of the way \scanunitsb picks

up #1 and #2 as macro arguments, p t is allowed as

a variation of pt. Eliminating this permissiveness
doesn't seem worth the speed penalty that would

be incurred in \scanunitsb.

The method for detecting a valid units string

is to define the scratch function \@ternpa to apply
'QX'S parameter-matching abilities to a special

string that will yield a boolean value of true if

and only if the given string is a valid unit.

This extraordinary ploy should only be attempted
by experienced l$J programmers possessed of the

profoundest understanding of the language.
. . . Ha ha! Just kidding. Actually you simply

have to realize that \lowercase and \uppercase are

rather odd, then experiment to see what you can get
away with.

Force lowercase just in case the units were entered

with uppercase letters (accepted by TEX, so we had

better accept uppercase also).

Call \endscan to gobble garbage tokens, if any.

Argument #2 must be a dimen register; #1 is

expected to be a macro holding zero or more
arbitrary characters of category 11 or 12.

\def\checkdimen#1#2{%

\let\scansignQ\Qempty \def\scanresultQ{#2)%

\let\dimentrueQ\Qempty

\dimenfirstpart\zQ \dimentoks{)%

\xpQ\scandimen#lxx\endscan

l

Finish up.

Part 2

Menu functions: menus. sty

This file requires grabhedr . sty and dialog. sty. If

grabhedr . sty is not already loaded, load it now and
call \f ileversiondate, since it's too late to apply

\inputfwh to this file. See the documentation of

\trap.input in grabhedr.doc.

2.1 Function descriptions

\fmenu\foobarC

(preliminary text)

(m e n u lines)

(following text)

Defines \foobar as a function that puts the
preliminary text, the menu lines (list of choices),

and the after text on screen. Normal usage:

\f oobar % print the menu on screen

\readline{)\reply % read the answer

(See the description of \readline in dialog. doc.)

In the various text parts all special characters have

category 12 except for braces, as with \mes j . Note

the recommended placement of the braces: no
closing brace falls at the end of a line, except the

very last one. Because of the special catcodes in

effect when reading the final three arguments, a --M
or % between arguments would be read as an active
character or category-12 character respectively,

122 TUGboat, Volume 15 (1994), No. 2

ignored. But actually, after some

I managed to make it

possible to write just about anything (except brace

characters) between the arguments and have it be

ignored, so the recommended style is not mandatory.

The first and last newline of each argument are

stripped off anyway in order to produce consistent
clean connections with \menupref ix etc.; see below.

Menu functions created by \fmenu are allowed

optionally to have arguments, like functions created

with \fmesj (from dialog. sty), so that pieces of
text can be inserted at the time of use. This makes it

possible for several similar menus to share the same

menu function if there are only minor variations
between them.

\menupref ix , \menusuf f ix
\imenuA, \imenuB

The text \menuprefix will be added at the

beginning of each menu; \menusuf f ix will be added
at the end. The text \imenuA and \imenuB will

be added between the first and second, respectively
second and third parts of the menu; their default

values produce a blank line on screen. (But

\imenuA will be omitted if the first part is empty,

and \imenuB will be omitted if the last part
is empty.) To change any of these texts, use

\storemes j or \storexmesj. For example:

\storemesj\menuprefixC********* MENU **********)

Furthermore, the function \menuprompt is called at

the very end of the menu, so that for example a

standard prompt such as Enter a number: could

be applied at the end of all menus, if desired. To
change \menuprompt, use \ f mes j or \f xmes j .

\menuline, \endmenuline

\menutop1 ine , \menubot line

Each line in the middle argument of \fmenu

(the list of choices) is embedded in a statement

\menuline. . . \endmenuline. The default defini-

tion of \menuline is to add two spaces at the
beginning and a newline at the end. Lines

in the top or bottom part of the menu are
embedded in \menutopline . . . \endmenuline or

\menubotline . . . \endmenuline respectively. (No-

tice that all three share the same ending delimiter;

if different actions are wanted at the end of a top

or bottom line as opposed to a middle menu line,

they must be obtained by defining \menutopline
or \menubotline to read the entire line as an argu-

ment and perform the desired processing.)

An enclosing box for a menu can be obtained by

defining \menuline and its relatives appropriately

and using \f menu (see below).

\fxmenu\foobar{

(preliminary text)

> {
(menu lines)

3C
(following text)

Similar to \fmenu but with full expansion in each
part of the text, as with \xmesj.

To get an enclosing box for a menu, write \ . at
the end of each menu line (to protect the preceding

spaces from W ' s propensity to remove character 32

at the end of a line, regardless of its catcode), and
then make sure that \menuline and \endmenuline

put in the appropriate box-drawing characters on

either side. 1.e.:

\fxrnenu\foobarC

First line

Second line

3C

Third line

. . .
3C

Last line

3

With the /o option of e m w , you can use
the box-drawing characters in the standard PC

DOS character set. A more detailed example in

menus. doc is omitted here for the sake of brevity.

\menu\Alph\foobar#l~

(preliminary text)

>{

(menu lines)

1 C
(following text)

\menu and \nxmenu are like \fmenu, \fxmenu

except that they automatically number each line

of the middle part of the menu. (This allows

menu choices to be added or deleted without tedious

renumbering.) The first argument indicates the type
of numbers to be used: \alph, \Alph, \arabic,

\roman, \Roman (following L A W) . These are not

yet implemented.

The function \menunumber (taking one argu-

ment) is applied to each automatically generated

number. The default value is to add brackets and a

space after:

TUGboat, Volume 15 (1994), No. 2 123

but by redefining \menunumber you can add paren-

theses or extra spaces or what have you around each
number. Internally a line of an autonumbered menu

is stored as

\menuline\menunumber{53Text text . . .\endmenuline

This is a companion function for \readchar and

the menu functions: it checks to see if the answer
is equal to any one of the characters ? Q X, and if

so executes \moption? or \mopt ionQ or \mopt ionX

respectively, otherwise executes

where C means the character that was read and

\curmenu is a string identifying the current location

in the menu system. (\optionexec pushes and pops
\curmenu when going between menus, to keep it up

to date.)
Thus the major work involved in making a

menu system is to define the menu screens using
\f menu, \f menu: and then define corresponding

functions \moptionXXX that display one of the menu

screens, read a menu choice, and call \optionexec

to branch to the next action.

Like \optionexec, but gets the next menu from a
file instead of from main memory, if applicable. This

is not yet implemented. The technical complications

involved in managing the menu files are many - for

example: How do you prevent the usual file name

message of from intruding on your carefully

designed menu screens, if \input is used to read

the next menu file? Alternatively if you try to use

\read to read the next menu file, how do you deal
with catcode changes?

This is an abbreviation for

It calls the menu function associated with the menu

name MN, reads a single uppercase letter into \reply,

and then calls \optionexec to branch to the case

selected by the reply.

The function \xoptiontest returns a boolean
value; it is designed for use with \readline

or \xreadline, to trap the special responses

? Q q X x before executing some conditional code.
It returns true if and only if the replacement text

of \answer is a single character matching one of

those listed. This is used when you are prompting

for a response that can be an arbitrary string of

characters, but you want to allow the user still to get

help or quit with the same one-character responses

that are recognized in other situations.

2.2 Definitions

We start by using the \localcatcodes function

from grabhedr .sty to save current catcodes and

set new catcodes for certain significant characters,
as explained (at more length) in dialog. sty.

\localcatcodesC\OC11>%

\-C13>\"C12)\#C63\-C73\~C12>\$~33\: C1233

\menupref ix is a string added at the beginning of

each menu to pretty it up a little (or uglify it a little,

depending on your taste). The length of the default

string is 70 characters, not counting the two newline

characters. By using \storemesj we get embedded
newlines corresponding to the ones seen here. [That

is, except for the extra line break (where the newline

character is commented out), needed to make this
fit in TUGboat7s column width.]

The default value for \menusuff ix is the same as

for \menupref ix.

\let\menusuffix=\menuprefix

The default for \inmenuA and \inmenuB is a single

newline, which will produce a blank line on screen

because they will occur after an \endmenuline,

which also contains a newline.

The default value for \menuline is two spaces. This

means that each line in the middle section of a menu

defined by \fmenu or \f m e n u will be indented two

spaces.

By default, no spaces are added at the beginning of

a line in the top or bottom section of a menu:

\def\menutopline{)

\def\menubotline{)

\endmenuline is just a newline.

124 TUGboat, Volume 15 (1994), No. 2

This definition of \menunumber adds square brackets

and a following space around each item number.

This definition of \menuprompt is suitable for the

purposes of listout. tex but will probably need to

be no-op'd or changed for other applications.

\def\menuprompt€\promptmesj€Your choice? 3)

Each of the three pieces of a menu gets its own token
register.

The 'arguments' of \fmenu are #I menu name, #2

optional argument specifiers, #3 preliminary text,

#4 list of menu choices, #5 following text. But at
first we read only the first two because we want

to change some catcodes before reading the others.

The auxiliary function \fmenub is shared with
\f menu.

Because of the catcode changes done by

\mes j setup, newlines, spaces, or percent signs

between the three final arguments will not be
ignored. To get around this, we use the peculiar

#(feature of w, in intermediate scratch functions
called \@ternpa, to read and discard anything that

may occur between one closing brace and the next

opening brace. Token register assignments are used

to read the arguments proper.

\def\fmenu#1#2#{\mesjsetup

\catcode'\#=6 % for parameters

\toksO{\f xmenub€\gdef){\begingroupl{)#l(#2))%

\def\Qtempa##l##{%

\def\Qtempa####l####€%

\def\Qtempa{\the\toksQ)%

Before proceeding to define \f xmenub, we must
deal with a subproblem. What we will have to

work with is three pieces of text in the token

registers \menuf irstpart , \menuchoices, and

\menulastpart, containing active -^M characters

to mark line breaks, including possibly but not

necessarily --M a t the beginning and at the end of

each piece. What we would like to do, for each piece,

is to remove the first --M, if there is one, and the last
one, if there is one. The function \stripcontrolMs

does this.
The technical details behind \stripcontrolMs

found in menus. doc are skipped here for the sake of

brevity, as they are unlikely to be interesting except

to real ?$X exegetes.

The argument of \stripcontrolMs is a token

register. The text of the token register will be

stripped of a leading and trailing --M if either or
both are present, and the remainder text will be left

in the token register.

\begingroup \lccodei\-=I\--M

\lowercase€%

\gdef\stripcontrolMs#1C\expandafter\stripM

\expandafter$\the#l$"$$\stripM#ll

3% end lowercase

\lowercase{%

\gdef\addmenulines#1#2#3{%

Add #2 at the beginning and #3 at the end of

every line of token register #1.

\def "##1"##2{%

#l\expandafterC\the#l#2##1#3)%

\ifx\end##2\expandafter\Qgobbletwo\fi"##23%

\edef\@tempa€\nxQ"\the#l\nxQQ3#1€l%

\Qtempa\end)

1% end lowercase
\endgroup % restore lccode of "

The function \fxmenub is the one that does

most of the hard work for \fmenu and \fmenu.
Argument #4 is the name of the menu, #5 is the

argument specifiers (maybe empty). Arguments
#1#2#3 are assignment type, extra setup, and

expansion control; specifically, these arguments are

\gdef \begingroup \empty for \fmenu or \xdef
\xmes j setup and an extra \noexpand for \f menu.

That this function actually works should

probably be regarded as a miracle rather than a
result of my programming effort^.^

\stripcontrolMs\menuchoices

\addmenulines\menuchoices\menuline\endmenuline

\actively\let\--M\relax % needed for \xdef

Define #4. Expansion control is rather tricky

because of the possibility of parameter mark-

ers inside \menuf irstpart. \menuchoices or

\menulastpart.

If \menufirstpart is empty, we don't add the

separator material \inmenuA.

\edef\@tempa{\the\menufirstpart)%

* Let's see, three miracles is a prerequisite for

sainthood in the Catholic church-only two more
needed for Don Knuth to be a candidate . . .

TUGboat. Volume 15 (1994). No. 2

If \menulastpart is enlpty. we don't add the

separator material \inrnenuB

Set up the definition st,atement that will create the

new menu. #2 = begingroup or \xmesjsetup.

Temporarily \relaxify \menuline etc. in order

t,o prevent their preniature expansion if \xdef is

applied.

\let\menutopline\relax \let\menuline\relax

\let\menubotline\relax \let\endmenuline\relax

\let\menunumber\relax

\@ternpa % finally, execute the \gdef or \xdef

\endgroup % matches \mes j setup done by \f m e n u

1% end \fxmenub

Expanding analog of \f menu.

\errmessage{Not yet implemented: \string#l})

These t,wo functions aren't inlplernerited yet.

2.3 Menu traversal functions

For reliable travel up and down the nieriu tree. we

neeti to push and pop the value of \curmenu as we

go along. Aillong other things. \curmenu is used to

repeat the current menu after a help message.

\let\curmenu\Qempty

Start of a stack elenlent.

\let\estart\relax

End of a stack element. ',

\def\popoptions{%

\edef\Qtempa{\the\optionstack)%

\ifx\Qempty\Qtempa

\errmessage{Can't pop empty stack

(\string\optionstack)}%

\else

\def\estart##l\eend##2\Qnil{%

\global\optionstack{##2~%

\let\estart\relax##l)%

\the\optionstack\Qnil

\f i

}

Tlie X option is a total exit from the menu maze, as

compared to \moptionQ. which returns you to the

previous menu level.

\fmesj\moptionX{Exiting . . .)

The sole reason for using \fxmesj rather than

\fmesj here is to use % to comment out the initial

newline, as the line break was needed only for

convenient printing of this docunientation within a

narrow column width.

\fxmesj\badoptionmesj#l{%

?---I don't understand "#I". 1

126 TUGboat, Volume 15 (1994), No. 2

The function \optionexec takes one argument,

which it uses together with \curmenu to determine

the next action. The argument is expected to be

a macro containing a single letter, the most recent

menu choice received from the user.

Common options such as ?, Q, or X that

may occur at any level of the menu system are

handled specially, to cut down on the number

of control sequence names needed for a csname

implementation of the menus.

Because special characters, including backslash, are

deactivated by \readchar, we can apply \csname

without fearing problems from responses such as

\relax.

We save up the next action in \@ternpa and execute

it last, to get tail recursion.

Really big menu systems could get around

TEX memory limits by storing individual menus

or groups of menus in separate files and using

\optionf ileexec in place of \optionexec to

retrieve the menu text from disk storage instead of

from main memory. However there are a number

of technical complications and I probably won't get

around to working on them in the near future.

The function \xoptiontest must return true if

and only if the macro #1 consists entirely of

one of the one-letter responses ? Q q X x that

correspond to special menu actions. The rather

cautious implementation with \aftergroup avoids

rescanning the contents of #I. just in case it contains

anything that 's \outer.

\ endgroup

>
Default help message, can be redefined if necessary.

The extra newlines commented out with % are here

only for convenient printing within a narrow column

width.

\fxmesj\menuhelpmesj(&\menuprefix%

A response of Q will usually send you back to %

the previous menu.

A response of X will get you entirely out of %

the menu system.

&\menusuf f ix%

Press the <Return> key (Enter) to continue:

}

\moptionhelp is the branch that will be taken if the

user enters a question mark in response to a menu.

The function \specialhelp can be used to provide a

one-time alternate help message tailored to a specifc

response given by the user. It defines the first

argument (the macro containing the response) to

contain ?, then redefines \menuhelpmes j to use the

message text given in arg #2.

\def\specialhelp#l#2{%

\let\specialhelpreply=#l\def#l{?)\begingroup

\def\menuhelpmesj{\let#l\specialhelpreply

\promptxmesjC#2\

Press <return> to continue:)\endgroup)%

1

Restore any catcodes changed locally, and

depart.

TUGboat, Volume 15 (1994), No. 2

Appendix

Miscellaneous support functions:

grabhedr . s t y

This file defines a function \inputfwh to be used

instead of \input, to allow 7$J to grab information

from standardized file headers in the form proposed
by Nelson Beebe during his term as president of the

TEX Users Group. Usage:

Functions \localcatcodes and \restorecatcodes

for managing catcode changes are also defined
herein, as well as a handful of utility func-

tions, mostly from 1atex. tex: \@empty, \@gobble,
\@gobbletwo, \a f te r f i, \f i l evers iondate ,

\ t r a p . input .

The use of \inputf wh, \f i leversiondate,

and \ t r ap . input as illustrated in \dialog. s t y is

cumbersome kludgery that in fact should be handled

instead by appropriate functionality built into the
format file. But alas, none of the major formats yet

have anything along these lines. (It would also help

if rn made the current input file name accessible,
like \inputlineno.)

By enclosing this entire file in a group,

saving and restoring catcodes 'by hand' is rendered

unnecessary. This is perhaps the best way to locally

change catcodes, better than the \ localcatcodes
function defined below. But it tends to be

inconvenient for the TEX programmer: every time

you add something you have to remember to make

it global; if you're like me, you end up making every
change twice, with an abortive test run of TFJ in

between, in which you discover that a certain control

sequence is undefined because you didn't assign it

globally.

Inside this group, enforce normal catcodes. All

definitions must be global in order to persist beyond

the \endgroup.

\catcode96 12 % left quote

\catcode'\= 12

\catcodef\{=l \catcodeC\)=2 \catcode1\#=6

\catcode1\$=3 \catcode'\-=13 \catcode'\-=7

\catcode'\-=8 \catcode'\--M=5 \catcode1\"=12

Make @ a letter for use in 'private' control sequences.

A.l Preliminaries

For \@empty, \@gobble, . . . we use the L A W names
so that if grabhedr . s t y is used with L A W we won't

waste hash table and string pool space.

Empty macro, for \ i f x tests or initialization of

variables.

\gdef \@empty{)

Functions for gobbling unwanted tokens.

The function \@car, though not really needed by

grabhedr . s ty , is needed by the principal customers

of grabhedr . s t y (e.g., d ia log . s t y) .

\long\gdef \Qcar#l#2\Qnil{#l)

To define \@@input as in L A W we want to let

it equal to the primitive \input. But if a LATEX
format is being used we don't want to execute that

assignment because by now \ input has changed its

meaning. And if some other format is being used

it behooves us to check, before defining \@@input,

whether \input still has its primitive meaning.

Otherwise there's a good chance \inputfwh will fail

to work properly.

\ifx\UndEFiNed\QQinput % LaTeX not loaded.

This code shows a fairly easy way to check whether

the meaning of a primitive control sequence is still

the original meaning.

\edef\O{\meaning\input)\edef\l{\string\input)%

\if x\O\l%

\global\let\QQinput\input

\else

\errhelp{%

Grabhedr.sty needs to know the name of the

\input primitive in order to define \inputfwh

properly. You might want to try to patch up the

problem by letting \input = \primitiveinput

before inputting grabhedr.sty.)

\errmessage{%

Non-primitive \noexpand\input detected)%

\fi

\fi

Scratch token register.

\global\toksdef\toksQ=O

Sonja Maus's function for throwing code over the
\f i ("An Expansion Power Lemma", TUGboat vol.

12, no. 2, June 1991). (Except that she called this

function \bef oref i .)

\long\gdef\afterfi#l\fi{\fi#l)

128 TUGboat. Volume 15 (1994). No. 2

We will be using \noexpand a lot; this abbreviation

improves the readability of the code.

\global\let\nxQ\noexpand

Another convenient abbreviation.

\global\let\xpQ\expandafter

A.2 Reading standard file headers

The function \inputfwh ('input file with header')

inputs the given file, checking first to see if it starts

with a standardized file header; if so, the filename.

version and date are scanned for and stored in a

control sequence.

For maxinium robustness, we strive to rely on

the fewest possible assumptions about what the file

that is about to be input might contain.

Assumption 1: Percent character % has category

14. I.e., if the first line of the file to be input starts

with %, it is OK to throw away that line.

The function \f ileversiondate is not only a useful

support function for \inputfwh, it can also be used

by itself a t the beginning of a file to set file name,

version, and date correctly even if the file is input by

some means other than \inputf wh - assuming that

the arguments of the \f ileversiondate command

are kept properly up to date.

And now apply \f ileversiondate to this file.

\fileversiondate{grabhedr.styl{O.9g){6-Jul-1994)

Currently (July 1994) f ilehdr . el by default adds a

string of equal signs (with an initial comment prefix)

a t the very top of a file header. This string must be

scanned away first before we can start looking for

the real information of the file header.

Throw in sorne dummy values of version and date

a t the end so that all we require from a file header

is that the filename field rriust be present. The

version and date fields can be present or absent.

in any order. but the corresponding variables

\f ileversion and \f iledate will not get set

properly unless the order is: filename. [. . . ,] version,

[. . . :] date.

\long\gdef\Qxscanfileheader#l{%

\Qyscanf ileheader#lO version = " ? ? I 1 ,

date = ' I??", \Qyscanf ileheader)

This function assumes that filename. version, and

date of a file are listed in that order (but not

necessarily adjacent). It's possible for the version

and date to be missing, or out of order, but in the

latter case wrong values may be passed on to the

\f ileversiondate call. Trying to handle different

orderings would be desirable but I haven't yet been

struck by a suitable flash of insight on how to do

it without grubby, time-consuming picking apart of

the entire file header.

\long\gdef\Byscanfileheader

#1 filename = "#2 " ,#3 version = "#4" 7 I 0

#5 date = "#6",#7\Qyscanfileheader{%

This function has to look at the first line of the file

to see if it has the expected form for the first line of

a file header.

Double quote and equals sign need to be category

12 in order for the parameter matching of

\Qxscanf ileheader to work, and space needs its

normal catcode of 10.

\catcode'\ =10 \catcodei\==12 \catcode'\"=l2
\xdef \Qheaderstart{%

\xpQ\@scanfileheader
\Qpercentchar\Qpercentchar\Qpercentchar\space
- D

\else
L

.................................. 1
\message{(* Missing file header? *))%

\afterfi\endgroup

The purpose of this function is just to scan up to \f il

the opening brace that marks the beginning of the \endgroup

file header body. Everything before that is ignored,
An auxiliary function.

not needed for our present purposes.
\gdef\QxinputfwhC%

\gdef\@scanfileheader#lQt2#C\mxscanfileheaderl
\ifx\next\Qreadfirstheaderline

TUGboat, Volume 15 (1994), No. 2 129

Sanitize a few characters. Otherwise an unmatched

brace or other special character might cause a
problem in the process of reading the first line as

a macro argument.

\catcodei\%=12 \catcode'\{=12 \catcodef\)=12

\catcodei\\=12 \catcodef\--L=12

\catcode1\"=12

% Unique terminator token for the first line.

\catcode'\--M=3\relax

\else \endgroup\fi

)

Auxiliary function, carries out the necessary
\f u t u r e l e t .

Strategy for (almost) bulletproof reading of the first
line of the input file is like this: Give the percent sign

a special catcode, then use \ f u t u r e l e t to freeze

the catcode of the first token in the input file. If

the first token is not a percent character, then fine,
just close the group wherein the percent character

had its special catcode, and proceed with normal

input; the first token will have its proper catcode

because we did not change anything except the

percent character. Otherwise, we still proceed with

'normal' input execution, but by making % active

and defining it suitably, we can carry out further

tests to see if the first file line has the expected form

(three percent signs plus lots of equal signs).

A.3 Managing catcode changes

A survey of other methods for saving and restoring

catcodes would be more work than I have time for

at the moment. The method given here is the best

one I know (other methods use up one extra control

sequence name per file, or don't robustly handle
multiple levels of file nesting).

The \ l o c a l c a t c o d e s function changes catcodes

according to the character/catcode pairs given in

its argument, saving the previous catcode values

of those characters on a stack so that they can be
retrieved later with \ r e s to reca tcodes . Example:

to change the catcode of \@ to 11 (letter) and
the catcode of " to 13 (active). In PLAINT@

you'd better b e careful to use + instead of \+ in

the argument of \ loca lca tcodes because of the

outerness of \+.

The way this function works is by using token

registers 0 and 4 to accumulate catcode assignment

statements: in \toksO we put the statements

necessary to restore catcodes to their previous

values, while in \ toks 4 we put the statements

necessary to set catcodes to their new values.

Finished processing the list; Take the accumulated

contents of \ toks@ and add them as a new element

a t the top of the catcode stack. Adding the (3
makes the new element easily poppable.

Add a catcode-restore statement at the beginning of

\ toks@.

Add a catcode-setting statement at the end of

\ toks4.

Initialize the stack with an empty element; otherwise

popping the next-to-last element would wrongly

remove braces from the last element. But as

a matter of fact this init is just for show since

\ l o c a l c a t codes is careful to add an empty element

whenever necessary.

The function \ r e s to reca tcodes has to pop the

stack and execute the popped code.

\begingroup

\ifx\Qempty\Qcatcodestack

\errmessage{Can't pop catcodes;

\nxQ\Qcatcodestack = empty)%

130 TUGboat, Volume 15 (1994), No. 2

\else

\def\do##l##2\do(%

\gdef\Qcatcodestack(##2)%

Notice the placement of #1 after the \endgroup, so

that the catcode assignments are local assignments.

\endgroup##l)%

\xpQ\do\Qcatcodestack\do

\f i

)

A.4 Trapping redundant input statements

The utility listout. tex calls menus. sty, which

calls dialog.sty, and all three of these files

start by loading grabhedr. sty in order to take

advantage of its functions \fileversiondate,

\localcatcodes, and \inputf wh. But conse-

quently, when listout .tex is used there will be

two redundant attempts to load grabhedr . sty. The
straightforward way to avoid the redundant input

attempts would be to surround them with an \ifx

test:

This method has a few drawbacks, however:
(1) the conditional remains open throughout the

processing of everything in grabhedr. sty and the

\f ileversiondate statement, which makes any
\else or \fi mismatch problems harder to debug;

(2) if \undefined becomes accidentally defined the
\ifx test will fail; (3) choosing the right control

sequence to test against \undefined requires a little

care.
In a situation where we know that the file to be

input has had \f ileversiondate applied to it, if it

was already input, then we have a failsafe control

sequence that we can test to find out whether the
file has already been input -the name of the file.

Assuming a standard form for the input statement

(one that will work with either plain W or LAW,

and makes as few assumptions as possible), we can
write a function that will trap input statements and

execute them only if the given file has not yet been

loaded:

is undefined, which means that it has not had

\f ileversiondate applied to it). The canonical

form that I consider to be the best is \input (full

file name),\relax. Having the \relax means that

the input statement will not try to expand beyond

the end of the line if \endlinechar is catcoded

to 9 (ignore), as is done rather frequently now

by progressive W programmers. The \relax

would ordinarily render the space after the file name

unnecessary, but I prefer leaving the space in to
avoid interfering with redefinitions of \input to take

a space-delimited argument that are occasionally

done to achieve other special effects (see, for

example, "Organizing a large collection of stylefiles",
by Angelika Binding, Cahiers GUTenberg, numkro

10-11, septembre 1991, p. 175.) LAW'S argument

form \input(. . . I cannot, unfortunately, be part
of the canonical form if PLAINW compatibility is

required.

End the group that encloses this entire file, and

then call \endinput.

o Michael Downes
49 Weeks Street
North Smithfield, RI 02895

U.S.A
mjdhath. ams . org

The function \trap.input scans for an input
statement in canonical form and executes it if and

only if the file has not yet been input (more precisely,

if the c-bntrol sequence consisting of the file name

