
TUGboat, Volume 15 (1994), No. 1

Tutorials

Output routines: Examples and techniques

Part IV: Horizontal techniques

David Salomon

Note on notation: The logo OTR stands for

'output routine', and MVL, for 'Main Vertical List'.

Abstract. The Output Routines series started in

1990 with three articles. The first is an introduction;

the second discusses communications techniques;

the third is on insertions. The current article is the

result of research efforts for the last three years.

It discusses advanced techniques for communicating

with the OTR from horizontal mode, making it

possible to solve problems that require a detailed

knowledge of the contents of the lines of text on the

page. Logically, this article should be the third in
the series, so new readers are advised to read the

first two parts, then this part, and finally the part

on insertions.

Also, part I1 should now be called "Verti-

cal Techniques", instead of "Examples and Tech-

niques".

Introduction

Certain typesetting problems can only be handled

by the OTR. Many times, such a problem is solved

by communicating with the OTR. Ref. 1 discusses

the details and shows examples, but here is a short

recap. Certain clues (such as a small piece of glue

or kern, or a box with small dimensions) are left in

the document, normally by means of the primitive

\vadjust (Ref. 1). The OTR searches \box255 for

clues and, on finding them, modifies the document

in the desired way i n the vicinity of the clue.

Searching \box255 is done by breaking it up

into its components, and checking each to see if it is

a clue. A component can be a line of text, interline

glue, vertical kern, or anything else that can go into

a vertical list. The breakup is done by means of the

\ l a s t x x commands.

The problem with this technique is that the

clues can only be placed between lines of text, and

not inside a line. We thus say that it is possible

to communicate with the OTR from vertical mode,

but not from horizontal mode. The reason for

this is that a line of text is a box made up of

characters of text, and a character is not the same

as a box. Specifically, the \ lastbox command does

not recognize a character of text as a box. The

following tests are recommended for inexperienced

readers:

\setboxO=\hbox{ABC)

\unhboxO \setboxl=\lastbox

\showbox1

\bye

The first test above shows \box1 to be void,

and typesets 'ABC'. In contrast, the second test

shows \box1 to consist of an \hbox with the 'C',
and typesets only 'AB'. Ref. 1, p. 217 contains a

more detailed discussion of this point.

Communicating with the OTR from horizontal

mode is, however, very desirable, since many OTR

problems can easily be solved this way. Three

methods to do this have consequently been de-

veloped, and are described here, each followed by

an application to a practical problem. Note that

each method has its own limitations, and none is

completely general.

The main idea in methods 1 and 2 is to enclose

each character of text, as it is being read from the

input file, in a box. Now there are no longer any

characters, just many small boxes. When the OTR

is invoked, each line of text is a box containing

other boxes (and glue, kern and penalties) but no

characters. The \ lastbox command can now be

used to break up the line of text into its components

and search for clues. (To simplify the discussion,

we assume text without any math, rules, marks or

whatsits.)

Before discussing the details of the first two

methods, their disadvantages should be mentioned.

Since we no longer have any characters, just boxes,

we lose hyphenation, kerning and ligatures. As a

result, we normally have to use \raggedright, so

these methods can only be used in cases where a

ragged right margin, and lower typesetting quality,

are acceptable.

How can we coerce to place each character,

as it is being input, in a box? Here are the principles

of the first two methods:

Method 1. Declare every character of text

active, and define it to be itself in a box. Thus we say

'\catcode ' \a=13' followed by '\def a{\hboxCa))'

and repeat for all characters. (The simple definition

above cannot be used, because it is infinitely

recursive. See below for how it is really done.)

TUGboat, Volume 15 (1994), No. 1 29

The main disadvantage of this method is that no

macros can be embedded in the text. Something

like \abc will be interpreted as the control sequence

'\a' followed by the non-letters 'b' and 'c'.

Method 2. Use \everypar (and also redefine

\par) to collect an entire paragraph of text in

\toksO. Scan \toksO token by token and place

each non-space token in a small \hbox. Then

typeset the paragraph. This method does not have

the disadvantage of the previous one, since there

are no active characters.

Method 3 is completely different. It does

not place characters in boxes, and does not use

\ lastbox to break up a line of text. Instead it

writes \box255 on a file, item by item, then reads

it back, looking for the clues. This method is slow

and tedious, but it does not have the disadvantages

of the previous two.

Method 1

We need to declare all the letters, digits and punc-

tuations active (actually, I only did this for the

lower case letters, for the uppercase 'L', for the

three digits '123', and for '. , ;'). Each charac-

ter should now be defined as a box containing

its own character code. Turning 'a', e.g., into

an active character is done by ' \catcode'\a=l3

\def a{\hboxC\char ' \a))'. When we get to the

'b', however, the command ' \cat code ' \b=13 \def

b{\hbox{\charr\b))' fails because 'a' is no longer

a letter, so instead of \catcode, sees \c fol-

lowed by a non-letter. The solution is to use ' \ l e t '

to redefine the control sequences \catcode, \def,

\hbox and \char. Also the number 13 may cause a

problem later, after the digit '1' is declared active.

The result is declarations such as:

\ le t \?=\catcode \ l e t \ !=\act ive

\let*=\def \ le t \+=\char \let\==\hbox

\ le t \<=\ leavemode \ le t \ \=\bye

following which, the active characters can be defined

by commands such as ' \? ' \a\ ! *a{\={\+' \ a l l 1 .

After this is done, any character of text input

by is expanded into a box containing that
character. Note that does not see any text

anymore, just a lot of small boxes. This means

that there will be nothing to start a paragraph

(we will have to place a \ leavemode explicitly at

the beginning of every paragraph). The following

example is a simple application of this technique.

About the examples

All three examples use the following text, that was

artificially divided into two paragraphs.

i n oLden t imes, when wishing stiLL heLped

one, t he re Lived a king whose daughters were

aLL beau t i fu l ; and the youngest was so

beautifuL t h a t t h e sun i t s e l f , which has

seen so much, was astonished whenever it

shone i n her face . cLose by the kings

castLe Lay a grea t dark f o r e s t , and under

an oLd Lime t r e e

i n t he f o r e s t was a weLL, and when t h e day

was very warm, t he kings chiLd went out

i n to t h e f o r e s t and s a t down by t h e s ide of

t h e COOL founta in ; and when she was bored

she took a goLden baLL, and threw it up on

high and caught i t ; and t h i s baLL was her

f a v o r i t e plaything.

Example 1. Widening certain letters

This example uses method 1. Before delving into

the details of the example, here is the code used to

activate characters and to conduct the test:

\hsize=3in\tolerance=7500

\raggedright\zeroToSp

\< i n oLden times . . . Lime t r e e

\< i n t he f o r e s t . . . f avo r i t e plaything.

\ \

The example itself is an interesting OTR prob-

lem that has recently been communicated to me

(Ref. 2), and was the main reason for developing

these OTR methods. If one decides, for some reason,

not to hyphenate a certain document, then a ragged

right margin is a good choice, which makes the text

30 TUGboat, Volume 15 (1994), No. 1

look best. Certain religious texts, however, don't

use hyphenation, and also frown on raggedright.

They produce a straight right margin by widening

certain letters. In the example below (Figs. 1 & 2)

I have selected the 'L', since it's easy to design this

letter out of two parts that connect with a rule. I

did not actually bother to design a special 'L', and

I simply extended it with an \hrulef ill.

in oLden times, when wishing stiLL

heLped one, there Lived a king whose daughters

were aLL beautiful; and the youngest was so

beautifuL that the sun itself, which has seen so

much, was astonished whenever it shone in her

face. cLose by the kings castLe Lay a great dark

forest, and under an oLd Lime tree

in the forest was a weLL, and when the

day was very warm, the kings chiLd went out

into the forest and sat down by the side of the

COOL fountain; and when she was bored she

took a goLden baLL, and threw it up on high

and caught it; and this baLL was her favorite

plaything.

Figure 1

in oL-den times, when wishing stiLT,-

heL-ped one, there L-ived a king whose daughters

were a L L - beautiful-; and the youngest was so

beautiful- that the sun i t s e l f , which has seen so

much, was astonished whenever it shone in her

face. cL-ose by the kings castL.e L-ay a great dark

forest, and under an o L d L i m e tree

in the forest was a weLL- , and when the

day was very warm, the kings c h i L d went out

into the forest and sat down by the side of the

C O O L fountain; and when she was bored she

took a goL-den baLL-, and threw it up on high

and caught it; and this b a L L - was her favorite

PL aything.

Figure 2

When I started thinking about this problem,

it was clear to me that this was an OTR problem,

and I tentatively outlined the following steps to the

solution:

1. Typeset the text with \raggedright. This

makes the interword glue rigid, and the \rightskip

glue flexible. Each line of text is placed in an

'\hbox to \hsize', and \rightskip is stretched

as necessary.

2. In the OTR, break \box255 up into indi-

vidual lines of text. For each line, perform steps 3

through 6.

3. Perform an \unhbox on the line, to return

\rightskip to its natural size (zero). Subtract the

present width of the line from its original width

(\hsize). The difference is the amount by which

all the L's on the line will have to be stretched.

4. Break the line up into individual components

(mostly characters, glue, and penalties), and count

the number of L's in the line.

5 . Divide the difference from step 3 by the

number of L's from step 4. The result is the amount

by which each L will have to be widened.

6. Break the line up again, widening each L.

Pack the line in a new \hbox.

7. Rebuild the page from the line boxes

generated in 6, and ship it out.

The only problem was step 4. A line of

text cannot normally be broken up into individual

characters and examined. However, using method

1, it is possible to break up such a line, since it does

not include any characters, and search for clues. A
clue, in our case, is a box whose width is the same

as that of an 'L' (if other characters happen to have

the same width, the width of the 'L' can be changed

by 1 s ~) .
The seven steps above can now '3e implemented,

using the breakup technique (Ref. i , p. 214).

Step 1. Just say \raggedright.

Steps 2 and 7. The OTR becomes

\newbox\brk

\output={\setbox\finPage=\vboxC)%

\setbox\brk=\vbox{\unvbox255 \breakup)%

\if dim\ht\brk>Opt

\message{Incomplete breakup,

\the\ht\brk)\fi

\shipout\box\finF'age \advancepageno)

\newif\ifAnyleft \newcount\pen

\newbox\finPage

\def\breakup{%

\loop \Anyleftf alse

\ifdim\lastskip=Opt

\else \Anylefttrue

\skipO=\lastskip \unskip

\global\setbox\finPage

=\vbox{\vskip\skipO \unvbox\finPage)%

\f i

\ifdim\lastkern=Opt

\else \Anylefttrue

\dimenO=\lastkern \unkern

\global\setbox\finPage

TUGboat, Volume 15 (1994), No. 1

=\vbox{\kern\dimenO \unvbox\f inpage)%

\f i

\ifnum\lastpenalty=O

\else\Anylefttrue

\pen=\lastpenalty \unpenalty

\global\setbox\finPage

=\vbox{\penalty\pen \unvbox\finPage)%

\f i

\setboxO=\lastbox

\ifvoid0 \else

\Anylefttrue\message{.)\breakupline

\global\setbox\finPage

=\vbox{\box2 \unvbox\finPage)%

\f i

\ifAnyleft

\repeat)

Macro \breakup is essentially the same as in

Ref. 1. It places each line of text in \boxO,

and expands \breakupline. Note the lines with

\global\setbox\f inpage=. . . They rebuild the

page, line by line, in \box\f inpage (step 7). When

the entire process is complete, the OTR ships out

\box\f inpage.

Steps 3 and 5. Macro \breakupline resets the

line of text to its natural width, calculates the

width difference in \dif f, expands \countLonline

to count the number of L's in the line, divides

\dif f by that number, and expands \longLline to

actually widen the L's in the line.

\newdimen\diff \newcount\Lnum

\def\breakupline{\diff=\hsize

\setboxO=\hbox{\unhboxO)

\advance\diff-\wdO

\Lnum=O

\setboxl=\hbox{\unhcopyO \countLonline)

\ifdim\wdl>Opt \message{%

Incomplete line breakup)\fi

\ifnum\Lnum=O \diff=Opt

\else \divide\diff by\Lnum

\f i

\setbox2=\null

\setboxl=\hbox{\unhboxO \longLline))

Step 4. Macro \countLonline breaks the line up

into individual components and counts the number

of L's in the line. It uses a breakup loop similar to

the one in \breakup above. Note how boxes with

'L' are identified by their width.

\newif \if Charlef t

\def \countLonline{%

\Charlef tf alse

\ifdim\lastskip=Opt\else \Charlefttrue

\skipO=\lastskip \unskip\f i

\ifdim\lastkern=Opt\else \Charlefttrue

\dimenO=\lastkern \unkern\fi

\ifnum\lastpenalty=O \else\Charlefttrue

\pen=\lastpenalty \unpenalty\f i

\setboxl=\lastbox

\ifvoidl\else

\ifdim\wdl=6.25002pt

\global\advance\Lnuml

\f i

\Charlef ttrue

\fi

\ifcharleft \countLonline\fi)

Step 6. Macro \longLline uses the same technique

to break the line up again, extend all the 'L's, and

rebuild it in \box2. Macro \extendL packs an 'L'
with an \hrulef ill in a new \hbox.

\newif\ifSomeleft

\def\longLline{%

\Someleftf alse

\ifdim\lastskip=Opt\else \Somelefttrue

\skipO=\lastskip \unskip \global\setbox2

=\hbox(\hskip\skipO \unhbox2)\fi

\ifdim\lastkern=Opt\else \Somelefttrue

\dimenO=\lastkern \unkern \global\setbox2

=\hbox{\kern\dimenO \unhbox2)\fi

\ifnum\lastpenalty=O \else\Somelefttrue

\pen=\lastpenalty \unpenalty \global

\setbox2=\hbox{\penalty\pen \unhbox2)\fi

\setboxl=\lastbox

\if voidl\else

\ifdim\wdl=6.25002pt \extendL\fi

\setbox2=\hbox~\boxl \unhbox2)%

\global\Somelefttrue

\f i

\ifsomeleft \longLline\fi)

\newdimen\Lwidth

\def\extendL{%

\Lwidth=\wdl \advance\Lwidth by\diff

\setboxl=

\hbox to\Lwidth{\unhboxl\hrulefill))

The code is somewhat long, but is well struc-

tured, and most macros use the same breakup

technique.

Problems. 1. A line of text without L's is not

extended, so it normally comes out shorter.

2. Since there are no letters in our texts, just

boxes, there is nothing to signify the start of a

paragraph. Each paragraph must therefore start

with a \leavevmode command (\< in our case).

3. \box255 may only contain boxes, glue, kern

and penalties. Anything else (such as text, rules,

whatsits or marks) would stop the breakup macros.

32 TUGboat, Volume 15 (1994), No. I

Note that overfull lines contain rules, so they should

be avoided (by increasing the tolerance, increasing

the stretch of \rightskip, or by rewriting the text).

4. Because of reasons discussed in Ref. 1, glues

with a natural size of Opt stop the breakup macros.

Macro \zeroToSp below changes the natural size of

several such glues to lsp. It also changes the plain

values of some common penalties from 0 to 1. This

macro should be expanded once, at the start of the

document.

\def\zeroToSp{\parskip=lsp pluslpt

\parfillskip=lsp pluslfil

\advance\leftskip bylsp

\advance\rightskip bylsp

\def\vfil{\vskiplsp pluslfil) %
\def\vfill{\vskiplsp pluslfill)%

\abovedisplayshortskip=lsp plus3pt

\postdisplaypenalty=l

\interlinepenalty=l)

5. To identify boxes with an 'L', we use the

width of an 'L' in font cmrl0. To guarantee reliable

identification, no other character in the font should

have the same width.

Possible improvements and applications. 1.

If \diff is less than \hfuzz (or some other small

parameter) it can be set to zero, since there is no

point in widening a letter by a very small amount.

2. The L's on the last line of a paragraph are

normally widened a lot. If this is not desirable,

the macros can be changed to treat the last line

differently.

Method 2

As mentioned earlier, the principle is to collect the

text of an entire paragraph in a toks register, then

to scan the register token by token, placing each

character token in a small \hbox. We again lose

hyphenation, kerning and ligatures, so we normally

have to resort to a ragged right margin. However,

we can have control sequences embedded in the

text. Care should be taken to identify each control

sequence (and its argument) and to expand it,

instead of placing it in a box. Here are the macros

and the test text:*

\hsize=4in \tolerance=7500

\raggedright \zeroToSp

\begingroup

\newif \if argmn

\everypar(\catcode' =I2 \toksO=\bgroup)

* Editor's note: This text, used to produce

Figures 3 and 4, has been realigned to fit the

narrow TUGboat measure.

\def\par(\catcode' =10 \argmnfalse

\expandafter\Tmp\the\toksO \end \endgraf)

\def\Tmp#l{\ifx\end#l\def\next{\relax)%

\else

\if argmn\cs{#l)\argmnf alse

\else

\ifcat\relax\noexpand#l%

\let\cs=#l\argmntrue

\else

\ifnumll=\catcode'#l\hbox(#l)%

\else

\ifnuml2=\catcode'#l\hbox{#l)%

\else\ifnumJ40='#l\ \fi

\fi

\f i

\f i

\f i

\let\next=\Tmp\fi\next)%

%
in\Mnote{xyz *) oLden times, when
\Mnote(abc 2)wishing stiLL

heLped\Mnote{note 3) one, there Lived a

king whose daugh\Mnote{note 4)ters

were aLL beautiful; and the

youngest\Mnote{note 5) was so beautifuL that

the sun itself, which has seen so much, was

\Mnote{note 6)astonished whenever it

shone in her face. cLose by the kings

castLe L\Mnote{note 7)ay a great dark

forest, and under an oLd Lime tree)

in the fore\Mnote{note 8)st was a weLL,

and when the day was\Mnote{note 9) very

warm, the kings chiLd went out into the

fores\Mnote{note 1O)t and sat down by the

side of the coo\Mnote{note 20)L fountain;

\Mnote{note 2l)and when she was bored

\Mnote{note 22)she took a goLden

baLL,\Mnote(note 12) and threw it up on high

and caught it; and this baLL was her favorite

\MnoteInote 13)pLaything.)

\endgroup

\bye

The \everypar parameter is modified to place

'\toksO=\bgroup' at the start of each paragraph.

At the end of a paragraph we need a closing

\egroup, which is easy to insert by redefining \par.

Unfortunately, the command

'\toksO=\bgroup . . . \egroup' does not work. Us-

ing \bgroup is okay, but a right brace (a token

of catcode 2) is required, instead of the control

sequence \egroup. When using this method we

unfortunately have to insert a 0' explicitly at the

TUGboat, Volume 15 (1994), No. 1 33

end of every paragraph. This is one of two unsolved

problems with this method.

The \par primitive is modified to expand

'\the\toksO1, to append an \end to it, to expand

\Tmp, and to close the paragraph.

Macro \Tmp uses recursion to extract the next

token from \toksO and to test it. Tokens with

catcodes 11 and 12 are placed in boxes and appended

to the current list (normally the MVL) (except

spaces, which are appended as spaces to the MVL).

Control sequence tokens are also identified. Each

such token is kept in \cs until its argument is

identified in the following recursive iteration, where

it is expanded. In the current version, any control

sequence embedded in the text must have exactly

one argument. The changes of \everypar and \par

are confined to a group.

Spaces present a special problem. The scanning

of tokens skips all spaces. Therefore, the catcode of

space had to be changed. It has been changed to 12

(other) and \Tmp identifies spaces by their character

code. When a catcode 12 space is identified by

\Tmp, a normal (catcode 10) space is appended to

\boxO.

The second unsolved problem in this method

is the end of lines. They are converted into spaces,

but only after the catcode of a space has been

changed. As a result, they appear in \toksO as

normal spaces (catcode 10) and are skipped.

Example 2. Marginal notes

Typesetting notes in the margins of a scholarly book

is very common. Ref. 3 is an interesting example,

familiar to many users. Another well known

example is the marginal notes of the mathematician

Pierre Fermat. When trying to prove the so-called

Fermat's last theorem (there is no integer n > 2

such that xn + yn = an for rational x, y and a) ,

he wrote in the margin of the book he was reading

(Bachet's Diophantus) "I have discovered a truly

marvellous demonstration of this general theorem,

which this margin is too narrow to contain" (Ref. 4).

Unfortunately for us, to this day no one has been

able* to prove (or find a counterexample to) this

theorem.* I like to call this famous note Fermat's

warning. I t warns us not to abuse this useful tool

of the author.

* Editor's note: While this article was in pro-

duction, it was announced that Andrew Wiles of

Princeton University had found a proof, then that

a gap may exist in the proof; Wiles is continuing

work on the paper.

When teaching I have always noticed how,

when discussing marginal notes, the class suddenly

comes to life and starts following the discussion with

renewed interest. In the lab that follows, people

start writing macros for marginal notes, invariably

ignoring Fermat's warning, and overdoing this useful

feature.

A single note can easily be placed in the margin

of a given line with the help of \vadjust . When

writing a text with many marginal notes, however,

the writer may end up with two or more notes

appearing on the margin of the same line. Because

of the limited space on the margin, the notes for

the same line of text may have to be rearranged

before the page is shipped out, and this is an OTR

problem. Rearranging notes may involve placing

some on the left, and some on the right margin; it

may mean to typeset them in very small type, to

move some up or down (if there is room on adjacent

lines), or to warn the author that there is no room.

In this example, rearranging is done in a simple

way. The first note found on a line is typeset on

the left, the second one, on the right margin. If

more notes are found on the same line, none is

typeset, and a warning, with the input line number,

is placed in the log file.

The implementation is straightforward. Macro

\Mnote places the text of the note in an '\hbox

to l sp ' inside the paragraph '\def \Mnote#l(\hbox

tolsp(#l\hss)) ' . Method 2 is used to place every

character of text in a box. The OTR breaks up

\box255 into its top level components and identifies

the lines of text. Each line is further broken up,

and all the clues (boxes of width lsp) in it located.

Depending on how many clues were found, the

macros place the notes as described above. The

OTR is straightforward:

\newbox\brk

\output=C\setbox\f inPage=\vboxC)

\setbox\brk=\vbox~\unvcopy255 \breakup)%

\ifdim\ht\brk>Opt \message(Incomplete

breakup, \ the\ht \brk)\f i

\shipout\box255 \shipout\box\finPage)

Note that it also ships out \box255, for comparison

purposes. Macro \breakup rebuilds all the elements

of \box255 in \box\f inpage, except that each line

of text is further broken up by \breakupline (and

the notes properly placed in the margins) before

being rebuilt and appended to \box\f inpage.

\newif\ifAnyleft \newcount\pen

\newbox\finPage

\def\breakup(%

\loop \Anyleftfalse

TUGboat, Volume 15 (1994), No. 1

\ifdim\lastskip=Opt

\else

\Anylefttrue \skipO=\lastskip \unskip

\global\setbox\finPage

=\vboxC\vskip\skipO \unvbox\f inpage)%

\f i

\ifdim\lastkern=Opt

\else

\Anylefttrue \dimenO=\lastkern \unkern

\global\setbox\finPage

=\vbox{\kern\dimenO \unvbox\finPage)%

\f i

\ifnum\lastpenalty=O

\else \Anylef ttrue

\pen=\lastpenalt y \unpenalt y

\global\setbox\f inpage

=\vboxC\penalty\pen \unvbox\finPage)%

\f i

\setboxO=\lastbox

\if void0

\else \Anylef ttrue\messageC.)%

\breakupline

\global\setbox\f inpage

=\vbox{\box2 \unvbox\finPage)%

\fi

\ifAnyleft

\repeat)

Macro \breakupline expands

\countNotesonline to break up one line of text,

and count the number of notes. It then rebuilds the

line in \box2 with the notes placed in the margins,

and with the special boxes emptied.

\newcount\numnotes

\def\breakupline{\numnotes=O

\setboxl=\hboxC\unhboxO \countNotesonline)%

\ifdim\wdl>Opt \message{%

Incomplete line breakup)\fi

\if case\numnotes

\relax % \numnotes=O -> 0 notes on this line
\or % 1 note
\setbox2=\hbox to\hsize{%

\llap~\box3\kern3pt)\unhbox2\hfil)%

\else % 2 or more notes
\setbox2=\hbox to\hsize(%

\llap{\box4\kern3pt)\unhbox2\hfil

\rlap{\kern3pt\box3))%

\f i)

Macro \countNotesonline is a simple appli-

cation of the breakup technique for one line of text.

The first note found in the line is placed in \box3,

and the second one, in \box4 All subsequent notes

are flushed. A small dash is inserted in each special

box to show where the note came from.

\newif\ifCharleft

\def\countNotesonline{%

\Charlef tf alse

\if dim\lastskip=Opt

\else \Charlefttrue

\skipO=\lastskip \unskip

\global\setbox2

=\hboxC\hskip\skipO \unhbox2)%

\f i

\if dim\last kern=Opt

\else \Charlefttrue

\dimenO=\lastkern \unkern

\global\setbox2

=\hboxC\kern\dimenO \unhbox2)%

\f i

\ifnum\lastpenalty=O

\else \Charlefttrue

\pen=\lastpenalty \unpenalty

\global\setbox2=

\hbox{\penalty\pen \unhbox2)%

\fi

\setboxl=\lastbox

\ifvoidl\else

\ifdim\wdl=lsp % a special box
\ifnum\numnotes=O

\global\setbox3=\hboxC\unhboxl)%

\fi

\ifnum\numnotes=l

\global\setbox4=\hbox{\unhboxl)%

\fi

\ifnum\numnotes>l

\global\setbox3=\hbox{! ! ! I%
\global\setbox4=\hbox{! ! !I%
\message{Too many notes on line

\the\inputlineno)%

\f i

\global\advance\numnotes 1

\global\setbox2=

\hbox{\pop\unhbox2)%

\else % not a special box
\global\setbox2=\hboxC\boxl \unhbox2)%

\fi

\Charlefttrue

\fi

\ifcharleft \countNotesonline\fi)

Finally, macro \pop places a small dash in the

special box after it has been emptied. The dash

is character "37 of font cmsy (the math symbols).

This character is constructed in a box of width

0 and it sticks out on the right. Normally it is

followed by a minus or a right arrow, to create a

"maps to" symbol (Ref. 5, p. 515).

\def \pop{\leavevmode\raise4pt\hbox tolsp

~\hss\smash~\tensy\char"37)\kernl. 2pt\hss))

TUGboat, Volume 15 (1994), No. 1 35

Tests

The two paragraphs used for the test were shown

earlier. The first diagram (Fig. 3) shows \box255

before any changes. Note how the text of the notes

overlap the text of the paragraphs, since they are

saved in boxes inside the paragraph. The diagram

in Fig. 4 shows the final result shipped out.

In practical use, sophisticated macros can be

developed that will set the notes in small type, will

number them consecutively, and will move them

vertically, if necessary. However, as long as they

are based on the principles shown here, raggedright

will normally have to be used, which is not always

acceptable.

Method 3

This method is based on a two-pass job. In the

first pass the text is typeset in the normal way,

with characters, not boxes. Clues are inserted in

the text, to be found later, by the OTR, in pass

2. Pages can either be shipped out or trashed, but

the OTR writes \box255 on a file, to be read by

pass 2. Advanced users know that a box cannot be

written on a file in the usual way, using \write.

The novelty of this method is that a box can be

written on the log file, using \showbox.

The user has to make sure that the log file is

saved after pass 1. Pass 2 reads the contents of

\box255 from the file, searches for the beginning

of each line of text, and for clues inside the line.

inqb&n times, when zdkdiihg stiLLheLpedmote;Shere Lived

a king whose daughf&iwbre aLL beautiful; and the youngestnote-5

was so beautifuL that thesun itself, which has seen so much,

was mdhrf5shed whenever itshone in her face. cLose by the kings

castLe La@-great darkforest, and under an oLd Lime tree

in the f o r e s b M a weLL, and when the day wasm&e@arm,

the kings chiLd went out into the f o r e s b ~ @ a t down by theside

of the c o o b m a i n ; an&Qlhen she was bored&&BBk a goLden

baLL,neQtd-f8rew it up on high andcaught it; and this baLL was

her favorite pb@tBing.

Figure 3

!!! in' oLden times, when wishing stiLLheLpedt one, there Lived !!!

note-4 a king whose daugh'terswere aLL beautiful; and the youngest' note-5

was so beautifuL that thesun itself, which has seen so much,

note-6 was 'astonished whenever itshone in her face. cLose by the kings

note-7 castLe L'ay a great darkforest, and under an oLd Lime tree

note-8 in the fore'st was a weLL, and when the day was'verywarm, note-9
note-10 the kings chiLd went out into the fores't and sat down by theside

!!! of the coo'L fountain; And when she was bored'she took a goLden !!!
note-12 b a ~ ~ , ' and threw it up on high andcaught it; and this baLL was

note-13 her favorite jplayt hing.

Figure 4

TUGboat, Volume 15 (1994), No. 1

If successful, pass 2 knows what clues are stored

in each text line. Pass 2 then reads the source

file, typesets it in the usual way and has the OTR

modify \box255, before shipping it out, according

to the clues read earlier.

Note that \ lastbox is not used. The details

of each line of text in \box255 are read from the

file. The main advantage of this approach is that

none of the high quality typesetting features, such

as hyphenation, kerning and ligatures, is lost.

The main problem with this approach is how to

read and analyse the contents of \box255 from the

log file in pass 2 (an example of such a file is shown

below for the benefit of inexperienced readers). This

turns out t o be easy, and it involves the following

tasks:

1. Certain records contain backslashes that

should be ignored. Examples are: ' . . \tenrm i',

' . \glue (\topskip) 3.05556' and

' . . \g lue 3.33333 plus 1.66666 minus 1.11111'.

To ignore these, pass 2 uses the following declara-

tions (inside a group):

\let\vbox=\relax \ let \glue=\relax

\ le t \ topskip=\ re lax \ let \kern=\relax

\ le t \ r ightsk ip=\ re lax

\let\baselineskip=\relax

\ l e t \ pa r f i l l sk ip= \ re l ax

\ le t \parsk ip=\ re lax

\def\shipout\box{\bgroup)%

\let\showbox=\egroup

\let\discretionary=\relax

2. Other records are important and should be

identified. Examples are:

a. '> \box255=' (this signals the start of the

box)

b. '.\hbox(6.94444+1.94444)~216.81, glue

s e t 0.45114' (this signals a new line of text).

b. '..\hbox(O.O+O.O)xO.00002, glue s e t

. . . ' (this is a box of width lsp, denoted a clue of

type 1).
C. ' ! OK (see the t r ansc r ip t f i l e) . ' (this

signals the end of the box).

Records of type a are identified by defining

\def \box255=C\global\clues={ (1). The defini-

tion of \box255 is changed (locally) to insert a '('

in the toks register \clues.

Records of type b are identified by redefining

\hbox.

\def \hbox (#I) x#2 {\toksO={)\one#2\end

\tmp=\the\toksO p t

\ifnum\tmp=lsp\appendcluel

\ e l s e

\ifnum\tmp=2sp\appendclue2

\ e l se

\ifnum\tmp=\Hsize\appendclue+

\f i \ f i \ f i)

\def\one#l{\def\arg(#1)%

\ i f x\end#l\let\rep=\relax

\else\ifx\comma\arg\let\rep=\one

\else\toksO=\expandafter{\the\toks0 #I)%

\let\rep=\one

\ f i \ f i \ r ep)

\def \appendclue#1~\global\clues=%

\expandafter{\expandafter#l\the\clues))

Parameter '#2' is the width of the \hbox. In the

records that interest us, it is either \hsize or lsp or

2sp. The examples in b above show that the width

is followed by a comma and a space, but there

are records on the log file (such as the paragraph

indentation ' . . \hbox(O . O+O .O)x20.0') where the

width is followed by a space. This is why '#2' in

the definition of \hbox is delimited by a space. If

the width is followed by a comma it (the comma) is

removed by macro \one. The width is stored in the

\dimen register \tmp.

Macro \hsize thus identifies the important

records, and appends the tokens '+', 'I ' or '2' to the

toks register \clues every time a line of text, or a

clue of type 1 or type 2, respectively, is found.

The end of the box in the log file is identified

when a type c record is found. We simply compare

each record read to the string ' ! OK (see the

t r a n s c r i p t f i l e) . '. When finding it, a '(I is

appended to \clues, and the loop reading the file

is stopped. Note that our macros are supposed to

stop reading when the end of box is found. They

are never supposed to read the end of file. If an end

of file is sensed while reading the log file, an error

must have occurred.

All the clues found in the log file for one page

(a single \box255) are stored in the toks register

\clues, so that later macros can easily find out

what clues were found in what text lines. A simple

example is the tokens ') 21++2+++121+ (' where the

0' and ' (' stand, respectively, for the end and start

of \box255 in the log file, each '+' stands for a line

of text, and each '1' or '2', for a clue of type 1 or

2 found in that line. Thus in the above example,

a type 2 followed by a type 1 clue were found in

the bottom line, another type 2 clue, in line 3 from

the bottom, and three more clues, in line 6 (the top

line).

Pass 1 normally writes several boxes on the log

file, each corresponding to a page. The following

appears in the log file between pages, and has to be

'neutralized'.

TUGboat, Volume 15 (1994), No. 1 37

<output> (\showbox 255 Note that the file name 'Log' is used here. In

\shipout \box 255) the general case, it is possible to read the name from

This is done by the weird definitions the keyboard. Now comes the OTR. It is divided

'\def\shipout\box{\bgroup)' and into two phases. Phase 1 reads a chunk off the log

'\let\showbox=\egroup'. The method is illus- file, corresponding to one page, and prepares tokens

trated below by applying it to a practical example. in Phase starts the breakup of \b0x255,

and ships out \box\bars (stretched to \vsize) and

Example 3. Revision bars \box255, side by side.

Certain documents, such as the bylaws of an orga-

nization, go through periodic revisions. It is good

practice to typeset each new revision with vertical

bars on the left of parts that have been revised.

This is an OTR problem (note that a revision may

be broken across pages), and the solution shown

here requires the two passes mentioned above. Pass

1 involves:

1. Two macros are defined, to indicate the

start and end of each revision.

\def\({\leavevmode\raise4pt\hbox tolsp{%

\hss\smash{\tensy\char"37)\kernl.2pt\hss))

\def\){\leavevmode\raise4pt\hbox to2sp{%

\hss\smash{\tensy\char"37)\kernl.2pt\hss))

The macros also place small dashes in the text, to

indicate the boundaries of the revision.

2. The OTR writes \box255 on the log

file, and can also ship it out, for later compar-

ison. If a shipout is not required, the OTR

can say \box255=\null \deadcycles=O instead of

\shipout \box255.

\hsize=3in \vsize=2.2in \tolerance=7500

\showboxbreadth=1000 \showboxdepth=lO

\output=~\showbox255 \shipout\box255

\advancepageno)

\input source

\vf ill\e j ect

The log file is saved between the passes. Note

that the two passes can be parts of the same m
job, and the log file can be saved when stops,

as usual, for a user's response, after the \showbox.

Pass 2 starts by opening the log file, if it exists:

\immediate\openin\logfile=Log

\ifeof\logfile\errmessageCNo log file)\fi

\output=I%

% Phase 1. Read a chunk off the log file
% and prepare codes in \clues
\begingroup

\def\appendclue#l{\global\clues=%

\expandafter{\expandafter#l\the\clues))

\def\OKC! OK (see the transcript file).)

\def \comma{,)

\def\box255={\global\clues=Co)

\def\hbox(#l)x#2 {\toksO={)\one#2\end

\tmp=\the\toksO pt

\if num\tmp=lsp\appendcluel

\else \ifnum\tmp=2sp\appendclue2

\else \ifnum\tmp=\Hsize\appendclue+

\f i\f i\f i)

\def\one#l{\def\argC#1)%

\ifx\end#i\let\rep=\relax

\else\ifx\comma\arg\let\rep=\one

\else\toksO=\expandafter~\the\toksO #I)%

\let\rep=\one

\f i\f i\rep)

%
\let\vbox=\relax \let\glue=\relax

\let\topskip=\relax \let\kern=\relax

\let\rightskip=\relax

\let\baselineskip=\relax

\let\parfillskip=\relax

\let\parskip=\relax

\def\shipout\box{\bgroup)

\let\showbox=\egroup

\let\discretionary=\relax

\setboxO=\vtop{\hsize=\maxdimen

\loop

\read\logf ile to\rec

\ifeof\logfile\morefalse

\message{end of log file!)

\else

\ifx\rec\0K\appendclue)\morefalse\fi

\rec

\f i

\if more

\repeat)

\endgroup

\nextclue

\if)\clue \else\message{Bad clue)\fi

TUGboat, Volume 15 (1994), No. 1

% Phase 2.
% Breakup \box255 and use the clues
\global\setbox\bars=\vboxI)%

\global\endRevfalse \global\begRevfalse

\global\Revfalse

\setbox\brk=\vbox(\unvcopy255 \breakup)%

\ifdim\ht\brk>Opt \message(%

Incomplete breakup, \the\ht\brk)\fi

\shipout\hboxC\vbox to\vsize{\unvbox\bars~%

\kern4pt\box255) \advancepageno)

3. Macro \breakup breaks up \copy255 into

its top level components. For each component with

a dimension, the macro places either a skip or a

vrule in \box\bars. It is important to realize that

when we say, e.g., \skipO=\lastskip we lose the

specific glue set ratio of \box255. This is why

the rules are placed in \box\bars using \leaders

and not \vrule. This way \box\bars can later be

stretched to \vsize, and all the leaders in it will be

stretched.

Exercise: Why is it that a rule placed by means of

\vrule height\skipO cannot be stretched later?

Answer: Because the command \vrule is sup-

posed to be followed by a height<dimen>. If we use

glue, such as \skipO, only the natural size is used,

and the stretch and shrink components are ignored.

\newif\ifAnyleft \newcount\pen

\def \breakup(%

\loop \Anylef tf alse

\ifdim\lastskip=Opt

\else \Anylefttrue

\skipO=\lastskip \unskip

\global\setbox\bars=\vbox(\ifRev\leaders

\vrule\fi\vskip\skipO\unvbox\bars)%

\f i

\ifdim\lastkern=Opt

\else \Anylefttrue

\dimenO=\lastkern \unkern

\global\setbox\bars=\vbox(\ifRev\leaders

\vrule\f i \kern\dimenO\unvbox\bd%

\f i

\if num\lastpenalty=O

\else\Anylefttrue

\pen=\lastpenalty \unpenalty

\f i

\setboxO=\lastbox

\ifvoid0 \else \Anylefttrue

\dimenO=\htO \advance\dimenO by\dpO

\setbox2=\vbox{\unhboxO \searchclues)%

\if begRev

\if endRev

\global\setbox\bars=\vboxC\leaders

\vrule\vskip\dimenO\unvbox\bars)%

\else

%TF
\global\Revfalse

\ifsplitrev \global\Splitrevfalse

\global\setbox\bars=\vbox(\leaders

\vrule\vskip\ht\bars)%

\global\setbox\bars=\vbox(\leaders

\vrule\vskip\dimenO\unvbox\bars)%

\else

\global\setbox\bars

=\vbox~\vskip\dimenO\unvbox\bars)%

\f i\f i

\else

\if endRev

%FT

\global\Revtrue

\global\setbox\bars=\vboxC\leaders

\vrule\vskip\dimenO\unvbox\bars)%

\else

%FF

\global\Revf alse

\global\setbox\bars

=\vbox~\vskip\dimenO\unvbox\bars)

\f i\f i\f i

\if Anylef t

\repeat)

When a line of text is found, \searchclues is

expanded (see below), to update variables \begRev

and \endRev. Four cases are possible:

a. Both variables are false (case FF above).

This means no revisions have been found yet. A

skip, equal in height to the current line of text, is

appended to \box\bars. Variable \Rev is set to

false, indicating that any future components found

in \box255 should become skips in \box\bars.

b. \begRev is false and \endRev is true (case

FT above), meaning the current line contains the

end of a revision. A rule, the height of the current

line, is appended to \box\bars. Also, \Rev is set to

true, indicating that any future components found

in \box255 should become rules in \box\bars.

c. Case TT. A revision starts on this line. A
rule is appended to \box\bars but \Rev is set to

false. (Also \endRev is set to false, so case T F will

be in effect from now on.)

d. Case TF. Normally this indicates a line

with no revisions but, if \Splitrev is true, we have

just found the start of a revision that will end on

the next page. In this case, \box\bars (which has

only skips in it so far) is filled up with a rule.

TUGboat, Volume 15 (1994), No. 1 39

Macro \searchclues removes the next token

from \clues and, if it is 1 or 2, sets \begRev or

\endRev to true, respectively. Note that a revision

may start and end on the same line. If the start of

a revision is found while \endRev is false, it means

that the revision will end on the next page. In such

a case, variable \Splitrev is set to true, indicating

that the entire \box\bars should be filled with a

rule.

\def\searchclues{\nextclue

\if +\clue\let\Next=\relax

\else

\if(\clue\let\Next=\relax

\message{bad Clue}

\else

\if2\clue \global\endRevtrue

\global\begRevfalse

\let\Next=\searchclues

\else

\ifl\clue \global\begRevtrue

\let\Next=\searchclues

\if endRev

\else\global\Splitrevtrue\fi

\else

\message{bad clue)

\fi\fi\fi\fi\Next)

\def\nextclue{\expandafter\~extr\the\clues X}

\def\extr#l#2X{\gdef\clue{#l)%

\global\clues=\expandafter{#2>}

The rest of pass 2 is straightforward.

\zeroToSp

\input source

\bye

For a multi-page document, the OTR performs

the same tasks for each page. It first receives

\box255 of page 1. It reads the corresponding lines

from the log file, looking for clues and storing them

in \clues. The OTR then breaks \box255 up,

isolating the lines of text from the bottom. It uses

the tokens in \clues to modify only the right lines.

At the end, \box255 (and \box\bars) are shipped

out. The process repeats for each successive page

sent to the OTR.

For each page, the OTR reads another chunk

off the log file. This is why the two passes must

typeset the same text. The best way to handle this

is to \input the text in the two passes from the

same source file. It is possible to make the macros

more robust by checking to see, in pass 2, that the

chunk read from the log file actually has the same

number of text lines as the current \box255.

The source file for our test is, as usual:

in oLden times, when wishing stiLL heLped

one, there Lived a king whose daughters

were aLL beautiful; and th\(e youngest

was so beautifuL that the sun itself,

which has seen so much, was astonished

whenever it shone in her face.

cLose by the kings castLe Lay a great dark

forest, and under an oLd Lime tree

in the forest\) was a weLL, and when the

day was very w m , the kings chiLd went

out into the forest and sat down\(by the

side of the COOL fountain; and when she

was bored she took a \)goLden baLL, and

threw it up on high and caught it;

and this baLL was her favorite plaything.-

Following are the final result and parts of the

log file produced by pass 1.

in oLden times, when wishing stiLL heLped

one, there Lived a king whose daughters were aLL

beautiful; and th'e youngest was so beautifuL that

the sun itself, which has seen so much, was aston-

ished whenever it shone in her face. cLose by the

kings castLe Lay a great dark forest, and under an

oLd Lime tree

in the forest' was a weLL, and when the day

was very warm, the kings chiLd went out into the

forest and sat down' by the side of the COOL foun-

tain; and when she was bored she took a 'golden

baLL, and threw it up on high and caught it; and

this baLL was her favorite plaything.

Figure 5

Textures 1.5 (preloaded format=plain 92.6.1)

21 OCT 1992 17:54

(test (source)

> \box255=
\vbox(158.99377+0.0)x216.81, glue set 3.04933fill

.\glue(\topskip) 3.05556

.\hbox(6.94444+1.94444)~216.81, glue set 0.45114

..\hbox(O.O+O.O)x2O.O

. .\tern i

. .\tenrm n

..\glue 3.33333 plus 1.66666 minus 1.11111

. .\tenrm o

. .\tenrm L

. .\tenrm d

.

.

. .\tenrm a

. . \tenrm n

. . \tenrm d

..\glue 3.33333 plus 1.66666 minus 1.11111

40 TUGboat, Volume 15 (1994), No. 1

. . \tenrm t

. .\tern h

..\hbox(O.O+O.O)xO.O0002, glue set - 0.59999fi1,
shifted -6.0

. . . \glue 0.0 plus l.Ofil minus l.Ofi1

. . \hbox(O.O+O.O)xO.O

. . . . \tensy 7

. . .\kern 1.2

. . . \glue 0.0 plus 1.Ofil minus l.Ofil

. .\tenrm e

.

. .\tenrm g

. .\tenrm .

..\penalty 10000

..\glue(\parfillskip) 0.0 plus 1.Ofil

..\glue(\rightskip) 0.0

.\glue 0.0 plus l.Ofill

! OK (see the transcript file).

<output> {\showbox 255

\shipout \box 255 \advancepageno)

\break ->\penalty -\OM

A summary and a wish

The methods described here have limitations and

disadvantages, so they cannot be used in every

situation. Method 2 still has a few unsolved

problems. As a result, the macros described here

cannot be canned and used 'as is'. They should be

carefully studied and understood, so that they could

be applied to practical problems. This means that

they are beyond the grasp of beginners but, because

of their power, they may provide the necessary

incentive to many beginners to become full fledged

wizards.

It would be so much easier to solve the three

problems discussed here if the \ lastbox command

could recognize characters of text, or if a new com-

mand, \ l a s t cha r , were available for this purpose.

This is a private wish that I hope will be shared by

readers.

Finally, I would like to thank the many people

who have responded to the original OTR articles of

1990. I would like to think that I was able to help

some of them, and I know that their comments,

questions, and criticism have helped me become

more proficient in this fascinating field of OTR

techniques.

References

1. Salomon, D., Output Routines: Examples and

Techniques. Part 11, TUGboat 11 (2), pp. 212-236,

June 1990.

2. Haralambous, Y., Private communication.

3. Graham, R. L., et al., Concrete Mathematics,

Addison-Wesley, 1989.

4. Bell, E. T., Men of Mathematics, Simon and

Schuster, 1937.

5 . Knuth, D. E., Computers and Typesetting, vol.

E, Addison-Wesley, 1986.

o David Salomon
California State University,

Northridge
Computer Science Department
Northridge, CA 91330-8281

dxsQsecs.csun.edu

Verbatim Copying and Listing

David Salomon

A general note: Square brackets are used through-

out this article to refer to The m b o o k . Thus 1391

refers to page 39. Also, the logo OTR stands for

'output routine', and MVL, for 'Main Vertical List'.

Introduction

Methods are developed, and macros listed, to solve

the following two problems. Verbatim copying is

the problem of writing a token string verbatim

on a file, then executing it. Verbatim listing

involves typesetting a token string verbatim, in

either horizontal or vertical mode.

We start with a short review of \edef. In

'\edef \abcC\xyz \kernlem)', the control sequence

\xyz is expanded immediately (at the time \abc is

defined), but the \kern command is only executed

later (when \abc is expanded).

The same thing happens when \abc is defined

by means of \def, and is then written on a file. Thus

'\write\auxC\abc)' writes the replacement text

that would have been created by \edef \abcC . . . 3.
Sometimes it is desirable to write the name

of a control sequence on a file, rather than

its expansion. This can be done either by

'\write\aux{\noexpand\abc)' or, similarly, by

'\write\aux{\string\abc)'. The former form

