
TUGboat, Volume 15 (1994), No. 1

The book is entertaining and interesting, but

there isn't a huge amount of practical information

in the book. That may or may not be a problem

for you, depending on what you're interested in; not

everyone wants or needs to delve deeply into typog-

raphy and design. If you're just interested in an

overview of typography to gain a simple awareness

of what is available and how type is used, this might

be a good book for you. If you're at all serious about

the use of type in your work, I recommend read-

ing more widely. There are vastly diverging points

of view and perspectives on design and typography.

The authors include a bibliography at the end of

their book for further reading, and many bookstores

have books on design and typography in their art

sections. I've had good experience with the selec-

tion in university libraries as well.

There are myriad opinions about what is good,

right, and true about the use of type, and it helps to

get a sense of the range before you make your own

decisions. I find a historical understanding of type-

setting and printing helpful (usually given in the in-

troduction or first chapter of many books on design

or typography) to understand where we've been,

past and present assumptions about what is read-

able and legible, and what's been done and what's

available with design and type. Once you're done

some background checking, just pay attention to the

print around you: movie titles and credits, advertis-

ing, labels, books, brochures, forms, whatever you

see that uses type. Develop your own list of fonts

you like to use, your own tastes, stay open, and keep

experimenting.

o Merry Obrecht Sawdey
3532 Bryant Ave So.
Apt. 112

Minneapolis, MN 55408

sawdey@denali.ee.umn.edu

Pre-publication review: Practical SGML

Nico Poppelier

Eric van Herwijnen, Practical SGhrlL. Kluwer 1994,

284 pages (including indexes). To be published.

In my review of the first edition of Practical SGML

by Eric van Herwijnen (TUGboat 13, no. 2), I

praised it as 'one of the best books on SGML cur-

rently available.' It still is one of the few books on

the practical application of SGML, by someone who

has used SGML in practice rather extensively. The

new edition has undergone significant changes with

respect to the previous one. Unfortunately, they are

not all changes for the good: the book still contains

a lot of practical information-more than the first

edition - but it is not a better book.

As a reference work the quality of the book has

certainly improved. More material has been added,

and the book has been largely re-structured. The

previous edition consisted of three parts, Getting

started with SGML, Advanced SGML and SGML

implementations. The new edition has more chap-

ters, grouped together in four parts, Getting started,

Writing a DTD, Customizing SGML and Special ap-

plications. Especially the second part, about how

to write a DTD (document type definition), has

improved a lot, with chapters on document anal-

ysis, structure diagrams, and the various declara-

tions one can find in a DTD. Part 111, about cus-

tomizing SGML, describes the SGML declaration,

and SGML features such as minimization, marked

section and short references. It also describes the

problems that can arise with ambiguous definitions,

and gives advice about how to avoid ambiguities.

Under the heading of 'Special applications' (part IV)

Mr. van Herwijnen discusses SGML and EDI, SGML

and mathematics, and SGML and graphics. He also

explains the relation between SGML and other IS0

standards, such as, e.g., DSSSL and SPDL. In all

the examples in the book the public-domain SGMLs

parser is used, which makes it possible for most read-

ers to try the examples for themselves.

On the negative side however: so much material

is now contained in the book, especially in the form

of figures and tables, that the book, in my opinion,

is not a pleasant-to-read introduction to SGML any

more. Another thing which I find rather distress-

ing, at least in the pre-publication copy the author

kindly sent me, is the design: the book uses too

many fonts, in sometimes unharmonious combina-

tions, the distribution of vertical space is uneven,

and the placement of tables and figures leaves a lot

to be desired. A possible explanation could be that

this new edition of Practical SGML was prepared

TUGboat, Volume 15 (1994), No. 1 25

using SGML, and was formatted using Adept 5.0

from ArborText Inc. Obviously, designing a book

that is comfortable to read is not the same as writ-

ing a 'FOSI', an output specification for ArborText's

Adept product. I hope that the publisher will work

hard on improving the layout of the book, but I have

my doubts.

Of course, this says nothing about the applica-

bility of SGML to book production, but only about

the quality of available SGML tools, or the exper-

tise of the people using these tools. That computers

are capable of producing more readable and more

attractive books is shown by a book co-authored

by one of Mr. van Herwijnen's colleagues at CERN,

namely A BTJjX Companion, by Michel Goossens,

Alexander Samarin and Frank Mittelbach. But

then, of course, that book was made with LATEX!

o Nico Poppelier

Elsevier Science Publishers

Amsterdam

The Netherlands

Internet:

n.poppelierQe1sevier.nl

Book review: Literate Programming

Christine Detig and Joachim Schrod

Donald E. Knuth, Literate Programming. Center

for the Study of Language and Information, Lecture

notes no. 27, Stanford 1991. (Distributed by the

University of Chicago Press.) xvi + 386 pp., index

and comprehensive bibliography.

ISBN 0-9370-7380-6 (pb), 0-9370-7381-4 (hc).

The essence of literate programming7

Say i t twice!

- D. Knuth (1993)

This book is an anthology of works by Donald

Knuth; it tells us the story of literate programming.

It consists of an introduction, a lecture, eight arti-

cles, three book excerpts, a program, and a bibliog-

raphy. John Hobby is responsible for the selection

of the contents; the introduction is the only text

previously unpublished.

The presented material spans almost 20 years of

Knuth's work, in which literate programming devel-

oped from concerns about the quality of software

description, through first ideas to categorize and

improve it, to applications and experience reports

based on the methods and tools he has created.

Contents

The collection starts with the Preface that presents

Knuth's views on the relation between the different

texts selected by Hobby. It shows the "red thread"

of the book and gives advice on how to read this

book. Besides this introduction, the only new ma-

terial is a paragraph at the start of each text that

presents the context of original publication.

The first text, chapter 1, is the lecture given by

Knuth in 1974 when he received the Turing Award,

the most important Computer Science award. Al-

ready at that time, Knuth had named the basic prin-

ciples and motivation of literate programming:

The chief goal of my work as educator and

author is to help people learn how to write

beautiful programs. [. . .]
[The goals of correctness and adaptibility]

are achieved when the program is easily read-

able and understandable to a person who

knows the appropriate language. [. . .]
Please, give us tools that are a pleasure to

use, especially for our routine assignments,

instead of providing something we have to

fight against.

In this lecture, Computer Programming as an Art,

Knuth argues that programming has much in com-

mon with music composition. Here we also find the

reasoning behind the statement that programming

is not a science, but an art. Knuth still holds the

professorship for the "Art of Computer Program-

ming" and this chapter shows us basic principles of

his whole professional life.

Chapter 2 presents one of Knuth's most cited

articles: Structured Programming with go to state-

ments (1974). This article must be read in the con-

text of its time: People had just started to develop

programs in a systematic, structured way; the sci-

entific community was discussing for the first time

how to write long-living programs. It's written in

the context of Dijkstra's famous letter "Go to state-

ment considered harmful'' and shows that the prob-

lem of unstructured programs is not based on lan-

guage constructs.

Chapter 3 continues with an early effort of

Knuth to present a larger piece of code in a read-

able and understandable way: A structured pro-

gram to generate all topological sorting arrange-

ments (1974). According to Knuth himself, the pre-

sentation of this article left much to be desired. He

had realized that writing programs intended for crit-

ical reading means to make construction and evolu-

tion recapitulable. This requires other forms of writ-

ing and presentation than the old, machine oriented,

style.

