
TUGboat, Volume 15 (1994)) No. 1

Macros

The bag of tricks

Victor Eijkhout

Hello all. The other day I was asked to assist in solv-

ing the following problem: format a file of address

labels that is given as plain text, like

My Name

123 My Street

My Town

with the items of a label on separate lines and the

labels separated by empty lines. Without inserting

any w commands, of course.

This problem turned out to be a tricky one, and

I'll make this into a sort of a tutorial on end-of-line

handling in w' .
Normally, w converts the end of the line into

a space, but here we want to keep the lines the way

they are. For this, we start mucking about with

the 'secret character' that puts at the end of

each line. Every time reads a line from the

input file, it appends the character with number

\endlinechar2. Usually, this is character 13, and

you can write '\--M if you don't want to remember

that number3.

The crucial point is that this character has cat-

egory code 5, for end-of-line. converts such

characters into spaces, or into \par if it finds them

on an otherwise empty line4.

And now we are in trouble: on the one hand

you would want to write a macro along the lines of

but that \par token needs an \endlinechar of cate-

gory code 5, and that would obliterate the line ends,

which we wanted to keep.

Looking at it from the other side, if we change

the category code of the line end to anything but 5

And I'll delegate all the 'unlesses' to the foot-

notes. If you want to read about this topic in more

detail, read chapter 2 of my book 7JjX by Topic'.

Unless this number falls outside the range of O-

255.

SO why is ' \^-M easier t o remember? Well, in

Ascii, <Control>-M is the Carriage Return. Does

that help?

It doesn't hurt if your input file has some

spaces on the 'empty' line, because spaces at the

end of a line are discarded. There is also something

about spaces at the beginning of a line, but that's a

different story.

in order to keep it recognizable, we don't get a \par

token after the label text anymore.

There doesn't seem to be another possibility

than changing the category code of the line end, and

processing the labels line by line.

Let us start programming bottom-up with some

preliminaries: we will need macros to process the la-

bels. I assume that you define macros \AddToLabel

and \LabelFinished, for instance like this:

\newbox\LabelBox

\def\LabelFinished

{\box\LabelBox)

\def\AddToLabel#l%

{\setbox\LabelBox

\vbox{\unvbox\LabelBox

\hbox to 5cm{#l\hfil\strut))

1

Now we continue top-down by specifying how the

formatting is going to look to the user. Here is how

it could be done in plain m.
\def\endplainlabels{\Bye)

\plainlabels{Here come the labels:\par)

My Name

My Street 1

My Town

Your Name

Your Street 2

Your Town

\Bye

The command \endplainlabels specifies how

recognises that the labels are finished. Whatever is

on that line is also executed. The \plainlabels

command5 starts the formatting of the labels, and

its argument (which can be empty) specifies what-

ever should be done prior to typesetting the labels.

The blank lines before the first and after the last

label are optional.

One remark: the \bye and \end macros are

outer macros, so you cannot write

\def \endplainlabels{\bye)

Instead you have to resort to the following trick:

\edef\endplainlabels{\noexpand\bye)

Here is the full implementation of the line pro-

cessing macros. I am assuming that you will put

them into a separate file

I've tried to make this into a L A W environ-

ment, but ran into all sorts of problems. Sorry.

Simply use the same syntax in MT)jX as in plain

w.

56 TUGboat, Volume 15 (1994), No. 1

\endlinechar=-1

\def \empty{)

\newif\iflabelpending

\catcode'\^-M\active

\long\def-^M#1--M(\def\test(#l)

\ifx\test\endplainlabels

\cat code ' \--M=5\relax
\iflabelpending\LabelFinished\fi

\expandafter\endplainlabels

\else \ifx\test\empty \LabelFinished

\labelpendingf alse

\else \AddToLabel(#l)

\labelpendingtrue

\f i

\expandaf ter - ̂ M
\fi

1
\long\def\plainlabels#l

(\toksO(#l)\labelpendingfalse

\edef\next(\everypar

C\the\everypar

\everypar(\the\everypar)

\the\toksO\relax

\catcode'\noexpand\^^M\active

\noexpand-^MI)

\next\par)

\endlinechar='\^-M \catcoder\-^M=5 \relax

\endinput

There are lots of tricky points to these macros. Here

are a few

All that redefining of \everypar is for the ben-

efit of packages such as LATEX which themselves

redefine \everypar. The macros given here

make sure that the custom \everypar first ex-

ecutes whatever was in the old one, and after

executing its own commands, restores the old

value.

The conditional \if labelpending handles the

case where there is no blank line after the last

label. Without it, that label would not be

printed.

The \par at the end of \plainlabels puts Q X
into vertical mode, so that the first label will

trigger \everypar.

The \toksO register makes sure that the initial

commands get executed after TjJJ has come out

of vertical mode: this is mostly for the case of

L A W lists; see the examples below. They do

not like it if an item occurs in vertical mode6.

For a slightly more complicated example, let us

turn the labels into items in a LATEX list. Define

This is also the reason that I could not use

grouping: LAW'S tests have to be set globally.

\def\LabelFinished

(\item [I \box\LabelBox)

and process the labels with

\def\endplainlabels(\end~rivlist))

\plainlabels(\begin(trivlist))

. . .
\end(trivlist)

Would you like to have several labels on one

line? Use the following macros:

\newbox\AllLabels

\def\LabelFinished

{\setbox\A11Labels\hbox

(\unhbox\AllLabels\hfil

\box\LabelBox))

\def\ejectlabels(\linepenaltylOO

\no indent

\unhbox\AllLabels)

This appends all labels to a long \hbox, which you'll

have to eject at the end-and it is then treated as

a paragraph - with

\def\endplainlabels

(\ejectlabels\end(something))

\plainlabels(Something something)

\ejectlabels\end(something)

If you catch my drift. And you may want to make

sure that all labels have the same width:

\def\AddToLabel#l%

(\setbox\LabelBox

\vbox(\unvbox\LabelBox

\hbox to 3cm(#l\hfil\strut))

1

Finally, a comment for the true hackers among

you: suppose you don't want to assume that the

\endlinechar is 13. First of all you'll have to add

a few lines:

\countO=\endlinechar \endlinechar=-I

. . .
\endlinechar=\countO

to save and restore the proper \endlinechar while

you define the macros. More importantly, you don't

know what active character to define for processing

the lines! Here's a way out:

\begingroup

\uccodef\--N=\countO \catcode'\-^N\active

\uppercase(\gdef--N#l--N)(. . . .)
\endgroup

This uppercases an active character 14, and you've

set it up so that this is the (saved) end-of-line char-

acter.

Happy hacking to you hackers, and to the rest,

don't be afraid to ask, we hackers are only too happy

TUGboat, Volume 15 (1994), No. 1

to show off. And reader contributions for this col-

umn are still welcome!

o Victor Eijkhout
Department of Computer Science
University of Tennessee at

Knoxville
Knoxville T N 37996-1301
Internet: eijkhoutQcs .utk. edu

Random Bit Generator in

Hans van der Meer

1 Introduction

When I started using w for my collection of exam

questions, the need of a random bit generator arose.

With such a generator it is easy to randomly per-

mute items of multiple choice questions, choose be-

tween different variants, e t ~ .

Since part of my interests are in the field of

cryptography it was most natural to look for a con-

venient source of a random bitstream in that field.

Such a source is provided by shiftregisters, the sim-

plest form of which is the linear variety. Although

not strong enough for direct use in cryptographic

applications, their random properties are neverthe-

less excellent. Furthermore they are easily imple-

mented, a real asset because of W ' s limited abili-

ties in arithmetic. The prime reference for shiftreg-

isters is the famous book by Golomb[l].

2 Linear Shiftregisters

Before describing how such a shiftregister can be im-

plemented in w, it is necessary to have a modest

look a t their construction. The figure shows a small

linear shiftregister. It consists of five so-called stages

So . . . S4 and is therefore called a five-stage register.

Each stage is a memory unit capable of holding one

bit. The values of all the stages together make up

the state of the register; in the figure the current

state S = (11010).

The register is operated in the following way.

At each step the bits in the stages are shifted to the

stage at their left. The bit in stage So is thereby pro-

duced as the output bit. Of course the vacancy left

in the rightmost stage must be filled up. Therefore

all stages which in the figure have an exit at the top

of the stage box, also spawn their bit through this

exit just before the bit migrates to the left. These

exits are called taps. The bits spawned are com-

bined by the exclusive-or operator and the resul-

tant bit fills the rightmost stage. E.g., with taps at

S,,S,,Sk, . . . the mod2 sum S, @ S, @ Sk @ .. . is

formed. Thus the register produces an output bit

and a new state at each operation step. In the ex-

ample the output bit will be a 1 and the next state

s = (10101).

It is easily understood that eventually the bit-

stream must repeat itself. Because an n-stage reg-

ister holds an n-bit quantity it can exist in 2n dif-

ferent states only. Since new states are produced by

a strictly deterministic process, a periodic pattern

of successive states must result. Thus the output

stream will be periodic. Of course it is desirable

that the length of the cycle be as long as possible.

These registers can also be described with a

polynomial in a bit variable x E {0,1}, called the

characterzstzc polynomzal. The example register has

characteristic polynomial

f (x) = 1 + x2 + x5

It turns out that the length of the cycle produced

by a register characterized by a given polynomial

is connected to certain properties of this polyno-

mial. Particularly useful are the so-called primitive

polynomials.1 One is able to show that primitive

polynomials lead to the longest possible period for a

linear shiftregister of a given size. In fact two cycles

are produced: (1) a cycle of period 1 consisting of a

stream of zeroes, (2) a fine random stream of zeroes

and ones of length 2n - 1. The first cycle, the zero

cycle, is not entirely useless as it offers a natural way

for shutting off the random ~ t r e a m . ~

After having explained how a shiftregister

works, it is easy to see why I chose the register based

on

f (x) = 1 + xZ1 + x2*

for the implementation of a random bit generator

in w. It is a primitive polynomial and therefore

has a longest period of 4,194,303 bits-more than

enough for all but the most exotic applications. And

another important fact is that it has only two taps,

Roughly the equivalent of a prime number

among polynomials plus an additional condition.

I am using this stream when typesetting the

full collection of exam questions. The absence of

random shuffling makes it easier to connect the

printed output with the TEX input.

