
TUGboat, Volume 15 (1994), No. 1 25

using SGML, and was formatted using Adept 5.0

from ArborText Inc. Obviously, designing a book

that is comfortable to read is not the same as writ-

ing a 'FOSI', an output specification for ArborText's

Adept product. I hope that the publisher will work

hard on improving the layout of the book, but I have

my doubts.

Of course, this says nothing about the applica-

bility of SGML to book production, but only about

the quality of available SGML tools, or the exper-

tise of the people using these tools. That computers

are capable of producing more readable and more

attractive books is shown by a book co-authored

by one of Mr. van Herwijnen's colleagues at CERN,

namely A BTJjX Companion, by Michel Goossens,

Alexander Samarin and Frank Mittelbach. But

then, of course, that book was made with LATEX!

o Nico Poppelier

Elsevier Science Publishers

Amsterdam

The Netherlands

Internet:

n.poppelierQe1sevier.nl

Book review: Literate Programming

Christine Detig and Joachim Schrod

Donald E. Knuth, Literate Programming. Center

for the Study of Language and Information, Lecture

notes no. 27, Stanford 1991. (Distributed by the

University of Chicago Press.) xvi + 386 pp., index

and comprehensive bibliography.

ISBN 0-9370-7380-6 (pb), 0-9370-7381-4 (hc).

The essence of literate programming7

Say i t twice!

- D. Knuth (1993)

This book is an anthology of works by Donald

Knuth; it tells us the story of literate programming.

It consists of an introduction, a lecture, eight arti-

cles, three book excerpts, a program, and a bibliog-

raphy. John Hobby is responsible for the selection

of the contents; the introduction is the only text

previously unpublished.

The presented material spans almost 20 years of

Knuth's work, in which literate programming devel-

oped from concerns about the quality of software

description, through first ideas to categorize and

improve it, to applications and experience reports

based on the methods and tools he has created.

Contents

The collection starts with the Preface that presents

Knuth's views on the relation between the different

texts selected by Hobby. It shows the "red thread"

of the book and gives advice on how to read this

book. Besides this introduction, the only new ma-

terial is a paragraph at the start of each text that

presents the context of original publication.

The first text, chapter 1, is the lecture given by

Knuth in 1974 when he received the Turing Award,

the most important Computer Science award. Al-

ready at that time, Knuth had named the basic prin-

ciples and motivation of literate programming:

The chief goal of my work as educator and

author is to help people learn how to write

beautiful programs. [. . .]
[The goals of correctness and adaptibility]

are achieved when the program is easily read-

able and understandable to a person who

knows the appropriate language. [. . .]
Please, give us tools that are a pleasure to

use, especially for our routine assignments,

instead of providing something we have to

fight against.

In this lecture, Computer Programming as an Art,

Knuth argues that programming has much in com-

mon with music composition. Here we also find the

reasoning behind the statement that programming

is not a science, but an art. Knuth still holds the

professorship for the "Art of Computer Program-

ming" and this chapter shows us basic principles of

his whole professional life.

Chapter 2 presents one of Knuth's most cited

articles: Structured Programming with go to state-

ments (1974). This article must be read in the con-

text of its time: People had just started to develop

programs in a systematic, structured way; the sci-

entific community was discussing for the first time

how to write long-living programs. It's written in

the context of Dijkstra's famous letter "Go to state-

ment considered harmful'' and shows that the prob-

lem of unstructured programs is not based on lan-

guage constructs.

Chapter 3 continues with an early effort of

Knuth to present a larger piece of code in a read-

able and understandable way: A structured pro-

gram to generate all topological sorting arrange-

ments (1974). According to Knuth himself, the pre-

sentation of this article left much to be desired. He

had realized that writing programs intended for crit-

ical reading means to make construction and evolu-

tion recapitulable. This requires other forms of writ-

ing and presentation than the old, machine oriented,

style.

26 TUGboat, Volume 15 (1994), No. 1

Chapter 4 marks a turning point in the story

told by this anthology - Knuth takes the step from

structured to Literate Programming (1984). He for-

mulates the credo of this new paradigm:

Let us change our traditional attitude to the

construction of programs. Instead of imagin-

ing that our main task is to instruct a com-

puter what to do, let us concentrate rather

on explaining to human beings what we want

a computer to do.

This new way of thinking is presented by an exam-

ple; that example used the tool WEB he had created

for the work on the programs 'I)$ and METAFONT.

WEB supports the intertwining of informal and for-

mal parts: the former marked up with T@ tags,

the latter, pieces of Pascal code. These code pieces

are organized as refinements. Besides the facilities

outlined above, WEB is also burdened with a set of

features meant to overcome inherent deficiencies of

the underlying programming language Pascal.

Both readers and writers face new require-

ments and viewpoints with this new programming

paradigm. In chapters 7 and 9, two reflections on

this aspect are presented: How to Read a WEB (1986)

and an excerpt from Mathematical Writing (1987)

that reports from discussions between Knuth and

students on the subject of literate programming.

We just skipped chapter 8; there we enter

an area well known to our fellow TUGboat read-

ers. Two Excerpts from the Programs for rn and

METAFONT (1986) show the application of the lit-

erate programming paradigm in production-quality

software. We read something that seems to come

from a textbook on algorithm design, not from real-

life programs that are in use at hundreds of thou-

sands of installations.

Chapters 10 and 11 present data to support the

claim that literate programming leads to programs

that are better maintainable. The Errors of

(1989) presents the history of m, categorizes the

errors Knuth made, and makes a thorough analysis

of the development process. The data beyond this

analysis is the diary, The Error Log of rn (1978-

1991). This diary gives an insight into his work situ-

ation: programming at night, the switch from SAIL

to Pascal, finishing the last version of 1982 at

December 31, 23:59.

Back t o chapters 5 and 6, where the reaction

of the scientific community is representatively out-

lined. Jon Bentley picks up literate programming

in his regular column in the Communications of

the A CM, Programming Pearls: Sampling (1986).

(Eventually, this led to the establishment of an ac-

ming Pearls: Common Words (1986) Knuth presents

a WEB solution to a problem posed by Bentley; a re-

view by Malcolm McIlroy follows.

Chapter 12 finally presents Knuth's actual in-

terest in literate programming by giving a program-

ming example in CWEB, the tool he has also chosen for

presenting combinatorical algorithms in his newest

book The Stanford Graphbase. (This book will be

a base for the next volume of his major work, the

series The Art of Computer Programming.)

Review

The collection enlists pieces of work on the topic

without "glue", except for a few remarks that relate

to the origin of the articles. The reader himself is

in charge of finding the relation between them. But

especially the first article gives a clue to Knuth's

motivation behind all technical aspects: He, now

professor of The Art of Computer Programming, has

always tried to make programming an art.

[Plrogramming can give us both intellectual

and emotional satisfaction, because it is a

real achievement to master complexity and to

establish a system of consistent rules. [. . .]
My claim is that it is possible to write grand

programs, noble programs, truly magnificent

ones!

Starting with the metaphor of programming as

an analogy to music composition, he later recognized

that it's more like writing literature. "The practi-

tioner of literate programming can be regarded as

an essayist, whose main concern is with exposition

and excellence of style."

The anthology reveals that Knuth always made

literate programming speak for itself. In his articles,

it is always presented by examples, connected to the

tool WEB, based on Pascal (later C with CWEB).

The principles of literate programming,

1. integrating informal and formal expressions of

the same thing, combining explanation and pro-

gram code into one document,

2. presenting the software according to the solu-

tion's semantic structure, keeping the design

method visible until the implementation is fin-

ished; yielding - together with the human ex-

planation focus-traceability of the develop-

ment process,

3. concurrent, independent abstraction hierarchies

for informal and formal parts, i.e., sections for

documentation and refinements for code,

4. linking definition and usage of entities; in WEB

by the form of cross references, index, table of
" ,

tual Literate Programming column.) In Program- contents, etc.,

TUGboat, Volume 15 (1994), No. 1 27

5 . using modern presentation techniques; includ-

ing, but not limited to, typography, graphics,

formulas, tables, etc.,

have to be recognized by ourselves; they are partly

obscured by the concrete details of the used exam-

ples and tools.

Free distribution of all required tools and inte-

gration with made Knuth's way the choice to

access literate programming. For a long time, liter-

ate programming was totally determined by that ori-

entation, both by concept and problems addressed,

but also concerning the tools used. This has in-

fluenced at first hand also the reception of literate

programming, shown prototypically by the review

of McIlroy in chapter 6. Literate programming is

taken to be synonymous with WEB, the presented

programs are attacked for being monolithic and not

reusing other modules - caused in fact by the base

language Pascal.

In the meantime, more and more people use lit-

erate programming not for the creation of academic

solutions to small problems, but for their day-to-

day work instead. The discussion forum, a USEnet

newsgroup and electronic mailing list, shows that lit-

erate programming really starts to be a paradigm in

the sense of Thomas Kuhn: A new generation starts

to use the principles without caring if it's fully ac-

cepted in the traditional development process. As

Norman Ramsey put it once, it's the time of the

Yrue believers".

The book doesn't go beyond the starting pe-

riod of literate programming. Neither does it give

a reflection on the paradigm itself, isolated from its

own development. Nevertheless, Knuth calls for a

second generation of work on literate programming.

In the comprehensive bibliography, he lists current

work of those that follow his direction, but also of

those that go different ways: Extension of literate

programming to development of large software sys-

tems and t o the whole software development pro-

cess is addressed, printed publication is substituted

by electronic documents, and different programming

language concepts are taken into account as well as

separating literate programming from fixed target

languages.

Conclusion

As we expect from an anthology, no new material is

presented. The book provides a collection of texts

that might not have been very accessible to peo-

ple outside of universities. This gives the chance

to gain a clear understanding how Knuth developed

the literate programming paradigm .from first re-

quirements to its realization, built upon his ideas

for structured programming. If you are interested

in such a time-spanning view on scientific work, be

it for delight only or for interest in the topic itself,

this book is a must.

But beyond the formation of a paradigm, this

book also shows something rare: It provides insights

into the thoughts and working of one of the most

influential computer scientists of this century-a

man who does not only want to gain knowledge, but

wants to share it, wants to make it understandable

and accessible. This is so important for him that he

was willing to spend years of his work on projects

for realizing his ideas, and he has created something

qualitatively new with a potential not yet fully ex-

ploited.

LET'S GO FORTH now and create masterpieces of

the literate programming art!

o Christine Detig

Technical University of Darmstadt

WG Systems Programming

Alexanderstrafie 10

D-64283 Darmstadt

Germany

detig8iti.informatik.th-darmstadt.de

o Joachim Schrod

Technical University of Darmstadt

WG Systems Programming

Alexanderstrafie 10

D-64283 Darmstadt

Germany

schrod8iti.informatik.th-darmstadt.de

