
I The Communications of the TEX Users Group 1

Volume 14, Number 4, December 1993

T$jX Users Group Board of Directors

Memberships and Subscriptions

TUGboat (ISSN 0896-3207) is published quarterly

by the 'TEX Users Group, Balboa Building. Room
307, 735 State Street, Santa Barbara, CA 93101,
U.S.A.

1994 dues for individual members are as follows:
Ordinary members: $60

Students: $30
Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

and and TUG NEWS for the year in which
membership begins or is renewed. Individual mem-
bership is open only to named individuals, and
carries with it such rights and responsibilities as
voting in the annual election. A membership form

is provided on page 443.
TUGboat subscriptions are available to organi-

zations and others wishing to receive TUGboat in a

name other than that of an individual. Subscription
rates: North America $60 a year; all other countries,

ordinary delivery $60, air mail delivery $80.
Second-class postage paid at Santa Barbara,

CA, and additional mailing offices. Postmaster:

Send address changes to TUGboat, Users
Group, P. 0. Box 869, Santa Barbara, CA 93102-
0869. U.S.A.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TfjX
and the Users Group. For further information,
contact the TUG office.

TCGboat @ Copyright 1993, TkX Users Group

Permission is granted to make and distribute verbatim

copies of this publication or of individual items from this

publication provided the copyright notice and this permission

notice are preserved on all copies.

Permission is granted to copy and distribute modified

versions of this publication or of individual items from

this publication under the conditions for verbatim copying,

provided that the entire resulting derived work is distributed

under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute transla-

tions of this publication or of individual items from this

publication into another language, under the above condi-

tions for modified versions, except that this permission notice

may be included in translations approved by the 7&X Users

Group instead of in the original English.

Some individual authors may wish to retain traditional

copyright rights to their own articles. Such articles can be

identified by the presence of a copyright notice thereon.

Donald Knuth. Grand Wzzard of 7 & h n - c a n a t
Christina Thiele, Preszdent*
Ken Dreyhaupt*, Vzce Preszdent
Bill Woolf * , Treasurer
Peter Flynn* , Secretary
Peter Abbott, Speczal Dzrector for U K W U G
Barbara Beeton
Alain Cousquer, Speczal Dzrector for GUTenberg
Luzia Dietsche

Michael Ferguson
Roswitha Graham, Speczal Dzrector for

the Nordzc countrzes
Yannis Haralambous

Doug Henderson
Alan Hoenig
Anita Hoover

Mimi Jett
David Kellerman
Kees van der Laan, Speczal Dzrector for N T G
Joachim Lammarsch, Speczal Dzrector for DANTE
Nico Poppelier

Jon Radel
Raymond Goucher. Foundzng Executzve Dzrectort
Hermann Zapf, Wzzard of Fontst

* m e m b e r of executive commzt tee

+honorary

Addresses
General correspondence:

TfjX Users Group
P. 0 . Box 869
Santa Barbara,

CA 93102-0869 USA

Payments:

TfjX Users Group
P. 0. Box 21041

Santa Barbara,
CA 93121-1041 USA

Parcel post.
delivery services:

Users Group
Balboa Building
Room 307
735 State Street

Santa Barbara, CA 93101

USA

Telephone

805-963-1338

Fax

805-963-8358

Electronic Mail
(Internet)

General correspondence:
TUG@tug.org

Submissions to TUGboat:
TUGboatQMath. AMS . org

is a trademark of the American Mathematical

Society.

Printed in U.S.A

Printing eventually slowed the pace of makeshift
invention, forcing out many quaint superfluities, but
novel [punctuation] marks, and surprising adaptations of
old marks, may appear at any time.

Nicholson Baker
Survival of the Fittest, a review of

M. B. Parkes, Pause and Effect:
An Introduction to the History
of Punctuation in the West,

in The New York Review of Books
(Volume XI, Number 18,
4 November 1993)

COMMUNICATIONS OF THE USERS GROUP

EDITOR BARBARA BEETON

VOLUME 14, NUMBER 4 DECEMBER 1993
PROVIDENCE . RHODE ISLAND U.S.A.

TUGboat TUGboat Editorial Board

During 1994, the communications of the m Users
Group will be published in four issues. One issue

(Vol. 15, No. 3) will contain the Proceedings of the
1994 TUG Annual Meeting.

TUGboat is distributed as a benefit of mem-

bership to all members.
Submissions to TUGboat are reviewed by vol-

unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to be

the experts. Questions regarding content or accu-

racy should therefore be directed to the authors,
with an information copy to the Editor.

Submitting Items for Publication

The next regular issue will be Vol. 15, No. 1;
deadlines for that issue will have passed by the
time this issue is mailed. Deadlines for Vol. 15,
No. 2 are February 15, 1994, for technical items,
and March 15, 1994, for reports and similar items.
Mailing dates for these two issues are scheduled for

March and June. Deadlines for future issues are

listed in the Calendar, page 438.
Manuscripts should be submitted to a member

of the TUGboat Editorial Board. Articles of general
interest, those not covered by any of the editorial
departments listed, and all items submitted on
magnetic media or as camera-ready copy should
be addressed to the Editor, Barbara Beeton (see
address on p. 369).

Contributions in electronic form are encour-
aged, via electronic mail, on magnetic tape or

diskette, or transferred directly to the American
Mathematical Society's computer; contributions in
the form of camera copy are also accepted. The

TUGboat "style files", for use with either plain

TEX or M w , are available "on all good archives".
For authors who have no access to a network, they
will be sent on request; please specify which is

preferred. For instructions, write or call the TUG
office.

An address has been set up on the AMS com-
puter for receipt of contributions sent via electronic

mail: TUGboatQMath. AMS . org on the Internet.

Reviewers

Additional reviewers are needed, to assist in check-
ing new articles for completeness, accuracy, and
presentation. Volunteers are invited to submit
their names and interests for consideration; write to
TUGboat @Math. AMS . org or to the Editor, Barbara
Beeton (see address on p. 369).

Barbara Beeton, Editor

Victor Eijkhout, Associate Editor, Macros
Jackie Damrau, Associate Editor, DQX
Alan Hoenig, Associate Editor, Typesetting on

Personal Computers

See page 369 for addresses.

Other TUG Publications

TUG publishes the series Wniques , in which have

appeared reference materials and user manuals for
macro packages and m - r e l a t e d software. as well
as the Proceedings of the 1987 and 1988 Annual
Meetings. Other publications on W n i c a l subjects
also appear from time to time.

TUG is interested in considering additional
manuscripts for publication. These might include
manuals, instructional materials, documentation, or

works on any other topic that might be useful to
the m community in general. Provision can be

made for including macro packages or software in
computer-readable form. If you have any such items
or know of any that you would like considered for
publication. send the information to the attention
of the Publications Committee in care of the TUG
office.

TUGboat Advertising and Mailing Lists

For information about advertising rates, publication
schedules or the purchase of TUG mailing lists,
write or call the TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue may

not be complete.
APS p5 is a trademark of Autologic, Inc.

DOS and MS/DOS are trademarks of Microsoft
Corporation

METAFONT is a trademark of Addison-Wesley Inc.
P C W is a registered trademark of Personal 7&X,

Inc.
Postscript is a trademark of Adobe Systems, Inc.

TEX and AJVrS-W are trademarks of the American
Mathematical Society.

Textures is a trademark of Blue Sky Research.

UNIX is a registered trademark of UNIX Systems
Laboratories, Inc.

TUGboat, Volume 14 (1993), No. 4

General Delivery

Opening words

Christina Thiele
President, TFJ Users Group

Well, here we are-end of the year. Publications
for 1993 are back on track, as far as schedules go.
This has been a difficult year for both Barbara and
myself, as we have found more and more work, both
volunteer and that-which-pays-our-bills piling up on
our desks. You will have seen the ad in TTN, looking
for a new editor; while I really enjoy working on the
newsletter, I just have to pass the job on to a new
person. Similarly, Barbara is making changes in how
work on TUGboat is going to be re-distributed, as
she also has to make some concessions to the fact
that the day only has 24 hours in it. We acquire
tasks, and make offers of assistance, and generally
try to provide information when asked, and it just
keeps on going-so we are looking to gently move
some of our responsibilities onto new shoulders.

As we sit here at the end of the year (perhaps
reading this issue, to avoid going out to shovel the
snow yet again), it seems appropriate to reflect on
my first year as TUG'S president. I've seen a signif-
icant upsurge in activities in our user group: com-
mittee work, especially with respect to conferences;
the Technical Council and its TWGs and SIGs. We
have a new board in place, with a combination of
old hands and new faces, if you'll pardon the mixed
anatomy. The office is almost done with tidying
up all the expected and unexpected loose ends from
the move out to Santa Barbara. As a user group, I
think we have improved our accountability and our
responsiveness to our ~nembers. We've also begun to
actively seek out opportunities to introduce a TFJ
presence outside our immediate community; I hope
to see more of this in the new year.

1 Other happenings

For anyone in the Boston area in January (6th
through 9th), there's a meeting of the Linguistic
Society of America at the Sheraton Boston Hotel-
and TFJ will be there, the form of a poster session
on T@ and linguistics. I hope to see the informa-
tion which is gathered for the LSA meeting develop
into a nice little package for linguists on how they
can use 'IfEX and all its add-ons in their work. Since
this is an on-going project, I invite anyone who's in-
terested to get in touch with me, and we'll add you
to our group.

We're also hoping to have a TUG and TFJ pres-
ence at the June meeting of the Society for Scholarly
Publishing, which will be held in San Francisco.

2 Free-Net

Something which I've been meaning to write a bit
about in this column is Free-Net. You may have
heard this new buzz-word; you may have seen it as

part of someone's e-mail address. All that's needed
is a modem and a computer. There are no user fees,
no connect fees-on the other hand, donations are
never turned down! For a community such as ours,
where so much of our work, our information, and
many of our contacts are network-based, not being
connected is a big problem; there's a sense of the
haves and the have-nots, the privileged and the or-
dinary manlwoman in the street. While the ser-
vices available vary from site to site, all provide full
service Internet e-mail. The opportunity to finally
be connected- to reach colleagues, to find the files
you want, the information you need - that alone is
worth the price of asking. So find out if there's a
Free-Net where you live!

3 Renew for 1994!

And remember to send in that TUG renewal form
for 1994. You don't want to miss anything that's
coming in the new year: new articles and tips in
TUGboat and TTN; the annual meeting in Santa
Barbara (if you want to submit a paper, your
deadline is February 1, 1994; send queries to
tug940tug. org). Barbara's editorial has a list of
some new ideas that are brewing for the coming
year's issues of TUGboat. So stay tuned.

Tell a friend or colleague about the benefits
which come with being a member in the TFJ Users
Group. If every current member brought in one
new member, think of all the projects we could un-
dertake. We aren't lacking for ideas; we're lacking
funds, and volunteers. You can show your support
by renewing your own membership; by letting peo-
ple know what you do with 'I'EX and lending a hand
when someone asks for some advice or help. And
you can always show your support by submitting
items for publication in either TUGboat or TTN.

Have a safe and happy holiday season. And we'll see
you next year!

o Christina Thiele
President, 'QjX Users Group
5 Homestead Street
Nepean, Ontario
K2E 7N9 Canada
cthieleQccs.carleton.ca

TUGboat, Volume 14 (1993), No. 4

Editorial Comments

Barbara Beeton

For this last issue of 1993, I'd like to indulge in a
little wishing. Aside from grandiose wishes for im-
provements in the state of the world and hopes that
people get some sense and learn to respect the be-
liefs and aspirations of others, I have some more
mundane desires for TUG and TUGboat.

For TUG I wish many active and enthusiastic
members as we enter our fifteenth year.

For TUGboat I hope for a deluge of interesting
and informed authors, many hands to help, with
some way of keeping them organized and directed
toward a common goal, and the time to do my job
as editor as it should be done. As for specific items,
some suggestions are shown in the "wish list" on
the next page; you, the readers, probably have some
suggestions too - and you might also consider be-
coming an author or volunteering in some other way.
Send in your suggestions, or declare your intentions,

in a message to TUGboat Qmath . AMS . org. Happy
holidays!

1 Reminder to potential TUGboat authors

We always welcome submissions to TUGboat. They
can be on any topic related to w and its use. The
net spreads rather broadly - typography, SGML,

fonts, suitable hardware, . . . , you name it!
There are a few things that a potential author

should keep in mind:

0 Technical articles will be refereed.

0 It's easier for the production staff (usually me)
if a submission has already been tagged accord-
ing to TUGboat style. The official and up-to-
date plain and MTEX style files can be obtained
by anonymous ftp from a CTAN site, in the di-
rectory . . . /digests/tugboat . The files are
*tugboat. s t y and tugboat . cmn; instructions
for their use are in tubguide. t e x in the same
area. For authors without net connections, the
TUG office can supply the files on diskette.

Actually test the file(s) as submitted. If ad-
ditional macros or style options are required,
send them along, or say where you obtained
the version you are using. The same goes for
fonts. Nothing is more discouraging than trying
to send a file through (LA1Tp-X and finding out
that something is missing, or a control sequence
isn't defined (perhaps just because something is
spelled wrong).

An alternative to testing the files yourself is to
ask a T)$ friend, preferably one with a different
T@X system, to run the article and read it before

you submit it. This would not only shake out
any site-specific constraints, but would give you
the benefit of a second pair of eyes checking
your spelling, the flow of ideas, and so forth.
This isn't a replacement for the referee process,
but a good test of portability and lucidity.

A brief comment on the level to which articles
might be directed: contrary to popular opinion, the
desired level is not "by some great expert, for the
edification of other great experts" .' I continue to
hope for good introductory and elementary mate-
rial, though no one seems to want to write it, a t
least not for TUGboat. I'd like to be proven wrong!
Remember - it isn't possible to publish something
in TUGboat that hasn't been written or submitted.

2 Call for volunteers

As always, there are more tasks in producing TUG-

boat than can be done by just one person. Many,
many thanks to all those people who have been
working faithfully behind the scenes - associate edi-
tors, referees, and in particular, Ron Whitney, with-
out whose assistance the July issue would have been
even later than it was.

There are still areas not tended to as well as
they might be. Some of the positions where skilled
new

0

0

volunteers might be of assistance are these:

Referees. If you are interested in reading
submissions to TUGboat before publication,
and "assist[ing] authors in creating articles
that are of maximum value to the TUGboat
r e a d e r ~ h i ~ , " ~ this could be a job for you. Send
a message to the TUGboat address stating your
availability, listing your specific interests and
experience, and identifying any restrictions.

Columnists. TUGboat covers a wide variety of
subject areas, only some of which appear in any
particular issue. Yours truly comes across a lot
of ideas through reading the QX-related net-
work discussions, but only rarely has time to
follow them up. A volunteer with a strong in-
terest in a particular subject and fewer distrac-
tions than the editor could follow up such leads
and twist arms (gently, of course) to bring use-
ful information into print.

There are two tracks that a columnist can follow:
actually writing a regular or occasional column, or,
for someone with a particularly solid background in
the area, tactfully persuading someone else to do the
work, and acting as midwife until the article is de-
livered ready to publish. After a suitable internship,

' Anna Russell, in her analysis of Wagner's Ring
der Nibelungen

Victor Eijkhout, TUGboat 11, no. 4, p. 605

TUGboat, Volume 14 (1993), No. 4

I TUGboat wish list

These are some of the topics on which the editor is looking for authors.
Add your own suggestions or volunteer!
Send e-mail to TUGboatQmath . AMS . org with details.

0 interviews with people who have influenced w and TUG

real product reviews of both commercial and FD implementa-
tions and other software, also macro packages like ps t r icks , etc.

0 surveys of w implementations for particular hardwareloperating
system combinations, with comparisons of features

0 "road map" to the CTAN w areas

0 more tutorials and expository material, particularly for new users
and users who aren't intending to become w wizards; one possi-
bility -answers to the "top ten" questions sent to comp. t e x t . t e x
by people writing dissertations

0 "how to" articles-how to build your own style based on, say,
a r t i c l e . s ty , how to include an abstract and other stuff in the
full-width block at the top of a two-column article, etc.

comparative analyses of style files that address the same problem,
e.g., crop marks

0 crossword puzzles for the whole community

columnists of the latter variety may be promoted to
associate editor (see the list on the reverse of the ti-
tle page of this issue). If you are interested in either
track, a message to TUGboat would be welcomed.

0 Production assistance. This is a more prob-
lematic area, as the successful production of an
issue of TUGboat requires that every file and
every font be available to and compatible with
the equipment on which the camera copy is gen-
erated. However, sometimes it's useful to have
someone to call on to generate fonts, vet macro
files (I always assume that if the author doesn't
specify otherwise, the current version on CTAN
will work properly, an assumption that isn't al-
ways warranted), and help fight other fires. If
you're an experienced (L A) w user and are in-
terested in this sort of challenge, send a mes-
sage to the TUGboat address with the details of
the system you're working on-computer, op-
erating system, implementation and version of
w and METAFONT, output device(s) avail-
able. Previous production experience is a big
plus, and a direct Internet connection a neces-
sity.

By now, you've seen Christina's solicitations for a
new W and TUG NEWS editor. The editor of
TUGboat has been having similar thoughts off and
on for several years, but hasn't done anything se-

rious about it. After the nearly disastrous failures
to meet the publication schedule this past year, it's
imperative that I do start looking toward the fu-
ture. I know that TUGboat edited by someone else
wouldn't be quite the same, but there are many valid
conceptions of what such a journal should be. The
criteria that I'd value in a possible successor include,
in no particular order:

0 broad and thorough knowledge of w and its
relations;
fascination with the typographic art and a de-
sire always to learn more;

0 literacy;
0 a good (native) command of English and some

ability to understand other human languages;
0 tact;
0 a comfortable familiarity with the electronic

networks;
0 the ability to bend a computer to one's will;
0 a well-developed sense of responsibility.

If you think you might be such a person, or know
of someone else who is, please contact me directly:
bnbmath . AMS . org.

o Barbara Beeton
American Mathematical Society
P. 0. Box 6248
Providence, RI 02940 USA
bnb@Math.AMS.org

TUGboat, Volume 14 (1993), No. 4

Dreamboat

-: A Personal View

Malcolm Clark

Explanat ion

Last year, at the Portland TUG Conference, I was

invited to give the keynote address. What was
printed in the conference proceedings was not what

I talked about. This was perhaps a bit arrogant

on my part, but since the conference preprints were
available to those who wished to read the 'official'

paper, I felt that it was not stretching the prerog-

ative too far to talk about something which, at

the time, I thought more important to the QX
community. Perhaps unsurprisingly, the talk was

mis-reported. Joachim Lammarsch, President of

DANTE, the German-speaking heard it as an attack
on NTS, the 'New Typesetting System' which his

group had initiated. Since Lammarsch expressed his
displeasure in DANTE'S 'Die Technische Komodie',

reported in TUGboat 14(1) as 'he (Lammarsch) ex-

presses his strong disappointment over the state-
ments on NTS (. . .) made by Malcolm Clark', I feel

it is appropriate to have the opportunity to see what
was actually said. Naturally I cannot guarantee that

what I said was exactly what is written below, but

it is the text from which I was working (and one
which I gave to Lammarsch later in 1992 so that

he would have an accurate original which he might

use). I have not included all the overhead slides

I used, since they were a little too fragmentary, but
they do not diverge from the argument developed

below. I have corrected one or two grammatical er-

rors, and added the footnotes. Nothing substantive
has been changed.

It would have been difficult for me to say any-

thing about NTS at the time, since it had hardly
been reported in the English-speaking world, ex-

cept in an email (NTS-L) list, where the status of

the project was not particularly clear. It was not
until September of 1992 that Philip Taylor [19] pre-

sented a paper at the Prague E u r o w conference
in which details were given on a wider basis, but

even this hardly amounts to widespread dissemina-

tion. Perhaps Taylor's later exposition at the As-
ton'93 conference [20] will give the NTS project the

exposure it warrants. Joachim Lammarsch [lo] also

accepted an invitation to talk on the subject.

1 Introduction

One of the consistent recurrent themes present at
any gathering of two or more W i e s is the conver-

sation about the deficiencies of the program, and

the need to enhance by adding a number of features,

both to do something in particular, but also to en-

sure that T$$ remains in the forefront of quality

technical publishing.

On examination, it often, but not always, turns
out that w is well able to do the particular task

which provided the perceived requirement to en-

hance the program, but that the code needed to
achieve the result is not immediately obvious or intu-

itive (Spivak gives a good example 1181). There can

be no doubt that TEX is a very subtle beast and has
depths that few of us will ever plumb. But equally,

there are some things which QX does with great

difficulty: a well-known example is the (almost) im-
possibility of finding out exactly where on the page

you are (but see Hoenig's solution [6]). Various peo-

ple, with a deep understanding of the program, have
listed some features that they would like to see en-

hanced: the papers of Stephan von Bechtolsheim [I],

Frank Mittelbach [13] and David Salomon 1151 are
recent examples, but if we delve back into the

literature (exemplified by TUGboat), we will find
other examples. It is quite arresting to read Lynne

Price's words 1141: 'One refreshing quality of the

TEX user community, and particularly the system's

creator, is that is viewed, in fact intended, to be
the ancestor of an evolving family of document for-

matters rather than as a static piece of software that
will be used for decades.' In the same article, I was

astounded to note an account of LAW: 'a hybrid of
QX and Lisp', where text manipulations too diffi-

cult or impossible in are done in Lisp. (I had
thought I had merely been joking when I had from

time to time suggested implementing in Lisp
for just this sort of reason!) As a result of this note

by Price, proposals for future enhancements were
given a column in TUGboat - the Dreamboat col-

umn (one recently revitalized by Barbara Beeton).

In 1987 Lamport [ll] bemoans the 'idiosyncrasy' of
dvi format and suggests a switch to Postscript.

2 Change already

Looking at the problem historically, there have been

two major jumps in QX. But not all jumps are
alike: the first change was a major one-the change

from w 7 8 to m 8 2 . m 8 2 is the one with which

most of us who have used will probably be

familiar. It survived mostly unchanged save for

bug fixes until 1988. The transition from w 7 8 to

w 8 2 was radical. Some of the language primitives

TUGboat, Volume 14 (1993), No. 4 375

changed: one of the most striking was in font han-

dling: I was fortunate that I learned rn as m 7 8 .

when the manual was a scant 200 or so pages long.

I doubt that I would have started if the manual had

been 500 pages long. Internally, the changes were

even more marked, since the language was changed

from SAIL to Pascal. This also meant that TEX

became much more portable, inaugurating a whole
new concept in software development.

The other change which will still be in our im-

mediate memory is the change to the so-called 7333,

which began in 1988. The magnitude of the change

is much less great than the earlier change. In essence
it was to enhance T&X to handle eight-bit charac-

ters, instead of the seven-bit characters with which

it originated. The immediate benefits of this change
were felt mostly with respect to the ease with which

accented characters could be dealt with - among

other things, making it possible, at last, to hyphen-

ate accented words properly. There were one or two
other relatively minor changes too. I have to admit

that the transition to m 3 has made hardly any dif-

ference at all to me, although I regularly use m 3

on Macintosh, UNIX and VAX/VMS.
In between times, there were a few other

changes in the w world, although not directly to

w itself. For example, METAFONT was upgraded
in 1984, in rather the same way that 7&X had been:

in general, the change was hardly noticed by the

mass of m i e s , since they do not use METAFONT

explicitly. Similarly the Computer Modern typeface

started out as Computer Modern, reverted to Al-
most Computer Modern, and then re-asserted itself

as Computer Modern (and as recently as 1992 was
still being subtly altered). Those of us around in

the days of this transition will recall the confusion
caused between those machines which had the Al-
most fonts, and those with the more final version.

In particular, PCs seemed to hang on to these older
versions.

3 We are not alone

Naturally, T)@ does not live in noble isolation. In

the years since its birth, we have seen a number
of notable developments which have produced res-

onances within the somewhat hermetic m uni-

verse. The dramatic rise in personal computing

power spread the use of 7l&X widely, and to some

extent loosened the ties between TQXies. Reflect

that the and LAW books have both sold into

the hundreds of thousands. I think that the com-

bined figure is now over 150,000-that's an expen-

diture of approximately $5,000,000: if we take that

as a crude measure of the number of and I h m
users (and ex-users), and compare it with the num-

ber of TUG members (about 3,500), and then the

number at the recent TUG conference (about 150),

we see there may be a lot more people doing it than
talking about it (maybe they are too embarrassed

to talk about it).

In passing it is surprising just how long it took

before the first non-canonical 7J$ and L A ' books

appeared (my guess is that the first properly pub-
lished follower was Norbert Schwarz [16], first in

German in 1988, and then translated into English

[17]). Maybe The m b o o k really is crystal clear.

4 Diffuse

But this takes us away from the main theme I would
like to develop. We have a vast increase in the num-

ber of users, and the majority have on their own
individual machine with limited support from else-

where. This has quite far-reaching consequences, es-

pecially when coupled with the near demise of com-

mercial vendors outside the USA and the widespread
availability of public domain implementations. To

whom does the user turn? And how does she or he

get information about changes and developments?
To take a specific example, did you realise that the

Computer Modern fonts had been tweaked earlier

this year? The sub-text here is that changes may

not diffuse too readily. A similar slowness of dif-

fusion rates is experienced with LAW styles. The

current version of LA' is 2.09. Most users seem to
have this. But this version number is not sufficient.

One must also know the date. The files should be

dated February 1991.' Experience shows that this is
not always the case. Similarly, the complete lack of

clarity of the availability and distribution of the New

Font Selection Scheme (seldom part of a vendor's of-
fering) bodes ill for the acceptance and widespread

availability of LAW3 (whenever it appears). There

is a counter-example in the relative speed with which
m 3 appears to have swept around the world.

5 Commercials

The rise of personal machines stimulated the
widespread adoption of improved printing facilities.

especially the 300dpi laser printer. This was a de-

velopment on which w was well able to capitalise.

But it is probably not a development which had

been anticipated when METRFONT and Computer
Modern were created. Laser printers were seen as

low resolution devices used at a stage prior to the

final high resolution photo-typesetting. Computer

Wrong! Even at the time of writing, the-lat-

est release was March 25th, 1992, but since then
LAw2e has been announced at Aston- let's watch

its diffusion.

376 TUGboat, Volume 14 (1993), NO. 4

Modern fonts (like very many others) are not ideal
300 dpi fonts (and the even lower resolution screen
versions leave much to be desired- sometimes the
METAFONT rather falls apart). But the point being
embroidered is that this identified two new foci, the
laser printer, which quickly became identified with
Postscript, Warnock & Geshke's page description
language, and then direct manipulation word pro-
cessing programs. Remember that w ' s avowed
aim was to assist publishing (masterpieces of the
publishing art); the new generation of personal pub-
lishing was initially very happy with relatively low
resolution laser printed copies. But in time qual-
ity and scope improved, up to the level where con-
temporary publishing packages, like Quark Xpress,
PageMaker, InterLeaf, FrameMaker and 3B2 (to
name a few) can arguably produce masterpieces.

Commercial software has some interesting qual-
ities: it evolves. In order for the vendor to survive,
it is essential that new versions of the software are
released, correcting some of the bugs, introducing
some new features, and basically keeping the soft-
ware in the public's eye. TEX is not commercial
software, except in a very limited sense. It is al-
most always possible to find a public domain im-
plementation. But there is no development of the
core software; there is no reason to keep releasing
new versions. The only real exception to this rule is
when a version for a new machine or version of an
operating system is released.

In order to pay lip service at the altar of fair
play, I have to admit that there is software around
which is not commercial, and yet which has evolved.
Kermit springs to mind, although I am not sure if it
is still evolving now. I have versions of Kermit which
work for the machines I use, and until they fall over
badly, I won't bother replacing them. Much of the
Gnu (n e e Software Foundation) project's software
is also still being developed. If we ignore the forbid-
ding air of messianic fundamentalism surrounding
the Gnu project (just as we expect everyone else to
ignore our very own missionary position) we have to
admit that they do provide a model of public domain
software development.

I think there is a difference between this devel-
opment and w, or some successor to it. There is
a fixed mark, something to aim for: Kermit did de-
velop along the way, but the main issue was to have
something which worked on many platforms and
performed a reasonably well-defined function. The
Gnu project is aiming to provide substitutes for soft-
ware which already exists (like a C compiler), and
is therefore specified already (or even mis-specified
already). The TEX successor will first have to decide
what features it will encompass.

6 Quality

One of the arguments put forward for the need to de-
velop w further is the quest for quality. It is said
that there are areas where the highest quality is just
not obtainable. I do not wish to challenge this state-
ment, but rather to question the quest for quality.
I appreciate that this is heretical. Currently, my
organization,' a self-styled educational institution,
is going through a sort of managerial restructuring.
Part of the new baggage of management is the idea
of 'total quality'. It is difficult to stand up and say
that you do not believe in quality. But as far as a
publishing system is concerned, I think it is possible
to say that aspiration to the highest typeset quality
is not the sole criterion.

I am not sufficient of an aesthete to recognise
the highest quality. I think I can often find things
which I consider to be pleasing to the eye, but when
it comes to qualitative judgments, absolutes are so
very elusive. Typographic quality at least has the
advantage that there is often a function lurking un-
derneath, and we can always appeal to the extent
to which the form and function complement one
another, or appeal to notions of 'fitness for pur-
pose'. But sadly it often seems that the consensus
for quality is a rather conservative one. Apparently,
within a few years of Gutenberg's 42 line Bible being
produced, there were vociferous complaints by the
cognoscenti bemoaning the sad reduction in quality
from traditional hand-lettered manuscripts. And we
can see this pattern repeated again and again. We
can be relatively confident that a departure from
the norm is perceived as bad. In a few years it may
become acceptable, but at the time, it is new and
suspect. Of course, the iconoclasts will be prepared
to pick up the new, for good and bad reasons. But
even if we hedge around the problem of identifying
the highest quality, we can usually acknowledge that
some things are suspect.

But who actually worries? A few years ago, it
was common to see typewritten manuscripts pub-
lished by reputable publishers as whole books. The
argument was usually that it was better to have
something published at this lower quality than noth-
ing published at all. It does seem to indicate that
quality is only one of several issues, even among
'quality' publishers. Even today, using the same
sort of argument, we often see books published from
laser printed masters (even 7QX books!). This is
sad. The difference in cost is really not great. The
publisher, for whatever reasons, economic or aes-
thetic, clearly feels that typographic quality com-
mensurate with the book's 'worth' may be met with

' My ex-organisation!

TUGboat, Volume 14 (1993), No. 4 377

inferior production. Let me take two contemporary

examples. The quality of the paper used in the

softback W b o o k has deteriorated over the years

(in my opinion): I will not rise to the bait of the

abysmal binding of the softback; even the hardback

is not designed to last for ever-I was very disap-

pointed when my Knuth-autographed hardback fell

apart last year. And yes, I do look after books and
take great care not to break the spines. Another

example would be Victor Eij khout's recent book [3].
Victor obviously spent a good deal of time and ef-

fort in the design of his book, even to the extent of
eschewing the delightful (if traditional) Computer

Modern typeface. Sadly, at least half the copies

I have seen were under-inked. Both these examples
emphasise that getting the marks on the paper in

the right place is only one of the problems facing us.

In recent years, a number of word processing

programs have acquired so-called mathematical abil-
ity. For example, Microsoft Word even has an ad-

vert for Word 5 with some equations in it: they

are acceptable, but not really of the highest quality:

they are not even of the quality of eqn. Either qual-
ity is not an issue, or mathematics is such a strange

pursuit that no-one recognises when it is done badly.

I have a problem with 'highest quality', as is
probably evident. I expect QX or whatever to be

pretty good. I do not expect it to be perfect. Like

a Persian rug, it ought to have at least one mistake

in it. The fear of hubris is just too great. Even

the concept that perfection could be achieved by a

program worries me. I expect, indeed I am duty
bound, t o get in there and meddle. Obviously there

are levels and magnitudes of meddling.

But there is an interesting question: why
would anyone re-invent the mathematics typeset-

ting wheel? or why would you not incorporate QX
mathematical typesetting in Word, or Wordperfect,

or Ventura, or Frame, or Interleaf? Can anyone
explain this? Sometimes we find eqn in there in-

stead: sad. Having brought up eqn, we have to point

out the presence of a computerised typesetting tool

which seems to keep running, without moans and

groans about its total inadequacy to face the fu-
ture -troff: it just goes on as every UNIX system

rolls off the production line. It doesn't aspire to ex-

cellence, it just comes as part of every system, and

all the manuals expect its availability-for good-

ness sake, it isn't even device independent (well, it is

now, but that took for ever to achieve - ditroff pro-
duces dvi!). It is surprising to see the longevity of

the nroff/troff tools. They seldom produce anything

very exciting, and they make no pretension towards

quality. They seem to meet a very real need and

in a very straightforward way, although I was sur-

prised to see a book produced recently which had as

it topic tbl [12]. Maybe it's a subject area a whole

lot more difficult than it seems.

7 Time

Let's briefly consider time spans. It isn't easy to
work out just how much effort went into m. Some-

where, Knuth records that in 1977 he announced to

Jill that he was going to take a year off his aca-

demic work to write a typesetting system. In fact

we actually know when he started working predom-
inantly on QX (Thursday May 5th, 1977) (see [7]

and [g]). Even more bizarre, we know what films

he went to see that weekend (Airport 77 and Earth-

quake). In the midst of this trivia, we have the

estimate from Knuth, arguably one of the most tal-

ented programmers to have existed, that the pro-

gram would take one year (or perhaps less) to com-
plete. More realistically it appears to have taken

at least four or five years in elapsed time (this is a

wild guess: improved estimates would be appreci-

ated): from this we might have to subtract the time

spent on METRFONT and Computer Modern (and

WEB), but on the other hand we should add in the
efforts of his graduate students and all the others

(like Art Samuel, David Fuchs, Luis Trabb Pardo.

Frank Liang, Michael Plass, Arthur Keller.. .) who
contributed to the program. I suspect that four or

five man years is still a conservative estimate. Four

or five man years of a small, highly motivated team,

with one person in control who could decide what
and what not to include.

This was not a democratic process, although it

is clear that there was feedback. Even more recently,
the transition to m3 seems, to me. to have taken

a shade longer than anticipated. There are prob-

ably many reasons for this. After all, Knuth was

not really planning to change QX in 1989. Forces

conspired against him there, and marshalled some

convincing arguments, and it is evident that he al-
ready had the feeling that seven-bit character repre-

sentations were inadequate. The point here is that

Knuth, with his intimate knowledge of the program,

still appears to have taken longer than he expected

to complete the changes.

One of the things that we have surely learned
over the last fifty or so years of programming is

that it takes longer than you expect. The folk-lore

of computing (backed by some extremely readable

books like Brook's Mythical Man Month [2]) knows

that a project will take at least twice as long as

you estimate; that doubling the estimated time has
no effect on this inflation factor; and that the pro-

gram will always be finished 'in another four weeks'.

Changes to TEX, or a re-write, are going to take a

378 TUGboat, Volume 14 (1993), No. 4

the designer of a new kind o f system must partic-

ipate fully in the implementation

writ ing software is much harder than writing

books

the designer should also write the first user manual

Figure 1: Knuth's lessons

long time. It will be a pity to have any new develop-
ment labeled vapourware, but there will necessarily

be a long time spent in development. It is unlikely
that we will find some wealthy benefactor who will

turn round and say 'take this million dollars: take
your time: improve m'.

Knuth [8] himself says 'If I had time to spend
another ten years developing a system with the same

ideas as w - i f I were to start all over again from

scratch, without any considerations of compatibility
with existing systems-I could no doubt come up

with something that is marginally better.' My point
here is the word marginally.

8 Or money

Because of p ' s public domain status, we some-
times lose sight of the fact that it did cost money to

develop. Knuth [8] records 'generous financial back-

ing' from a number of sources, including the System
Development Foundation, the US National Science

Foundation, and the Office of Naval Research. How
much money is indeterminate, since it is unlikely

that any of the funding detailed 'work on m ' .

Any future work will have to be done by inter-
ested individuals, probably working in their spare

time, or, if we are exceptionally lucky, by graduate

students working together on a funded project, al-
though note Knuth's 'lessons' from the TEX project

(181, Figure 1). I am not clear I see who to approach

for the funds. Inter-disciplinary research has not

been too well funded (certainly in the UK) in reces-

sionary times. The core areas let the peripheral stuff
go in times of crisis.

Where does computerised typesetting fit? Is it

computer science; is it a branch of engineering; is
it part of some typographic or fine arts discipline?

Let's hope it isn't the latter, since they are partic-

ularly badly funded. But is this really research in

the commonly accepted sense? What will we end
up with? Something which is in some sense bet-

ter than a n existing program. How are we going
to sell this? How will we convince some body with
loose cash to support this? Do we indicate just how

dreadful is, exposing all its warts and deficien-
cies? Why are we using it in the first place if it is so

bad? Would a cheaper and easier solution not just

be to use an existing program which has none of

these deficiencies? Never mind that there is no such

paragon. The other contenders must offer some im-
proved or needed features or they would not be in

use at all. The chances are this proposal will have to

go through a committee. If those on the committee

have ever prepared their own documents (and re-

member there are still some oldsters out there who
do not; their secretary does it), they will have their

own favourite software. So we will end up telling

a reasonably influential (maybe) bunch that lQX is

deficient and needs changing. In the end we are ask-
ing them to invest a fair chunk of money in order to

benefit whom? This is one I find difficult.

8.1 Cui bono?

The people who seem most likely to benefit are book

publishers: correct me if I am wrong here. But it
appears to me that the principal beneficiaries are

organisations like Elsevier, Springer Verlag, Addison

Wesley and so on.
Oh dear. I confess that I would anticipate that

printing and publishing organisations might reason-
ably be expected to underwrite research into the de-

velopment of quality typesetting. There are research

organisations founded and financed (at least in part)

by them. In the UK, PIRA (Printing Industries Re-
search Association) does just that, although in re-

cent years it has become much more commercially
oriented. There are others in other countries.

A ray of hope might be seen in some projects
funded through initiatives which ultimately derive

from Brussels and the EC. The Didot project is/

was a three-year project set up to re-establish Eu-

ropean pre-eminence in typography (in the sense of
type design), and, from the outset, had a very strong

digital component. It seems to have been successful
in bringing type practitioners and computing peo-

ple together (and maybe even a few engineers). The

outcome of the project is to develop training pro-
grams, and an increased awareness and facility with

digital type design. The project should finish in

1993. It does not quite do what we want, but it
indicates that there are precedents. Although Didot

started out with a rather strong chauvinist element

(basically to prevent Europe being overwhelmed by

the US, always a populist rallying call in Europe), it
mellowed quite considerably and there is apparently

effective interaction with North America now. But

it remains a suspicion in my mind that an appeal to

some external threat could be the most effective, if
least ethical, way of appealing for funds.

TUGboat, Volume 14 (1993), No. 4

9 I'll be in Scotland afore ye

I see two main routes towards a descendant of m.
One is an evolutionary approach, where the per-

ceived deficiencies are remedied, and a few new fea-

tures are added. Basically, T)$ itself changes only

slightly, and in a well-defined way. Vulis' V7&X [21]
can be seen as an example, where the handling of

fonts has been substantially changed, and arguably

enhanced. Similarly, Ferguson's M L W 141 which

allowed multilingual hyphenatioq3 falls into this

category. It might even be reasonable to place Har-

rison's V O ~ project [5] into this model. I am
quite a fan of the project, partly because I feel that

the model they developed, of multiple views of doc-
uments, has much to commend it. The fact that the

program itself was rather machine specific is a side

issue. Almost five years or so ago, it accomplished

at least some of the things that we presently feel we
need.

There is probably not a single route, but sev-

eral. If people go ahead and add some features to

the underlying code, is there any guarantee that the
full range of features added will be compatible with

one another? I can envisage a whole cluster of sim-

ilar but incompatible descendants. With luck an
existing m-encoded file will produce identical out-

put, but there may be no way to use the extended

features of more than one. Perhaps one will out-

evolve the rest. There are examples of this happen-

ing. Tom Rokicki's DVIPS is arguably the de facto
Postscript driver. This was not always so. There

are, or have been, at least eight Postscript drivers,

but Tom's has the advantage of being versatile, u p

to-date, and runs on most platforms. It is also in
the public domain.

If this is one route, what is the other? Why, a

radical restructuring. Throw away the baby, bath-
tub and water, but keep the mission-that of cre-

ating a device for typesetting of the highest quality.

I confess I find this a somewhat vague statement

at best. How will the model be chosen? Who will

be involved? In the worst possible case it may be

totally democratic, and we can look forward to in-

terminable referenda on desirable features. Let me
quote from Knuth [8]:

I was constantly bombarded by ideas for ex-

tensions, and I was constantly turning a deaf

ear t o everything that did not fit well with

as I conceived it at the time . . .
I was perhaps able to save from the
'creeping featurism' that destroys systems

whose users are allowed to introduce a patch-

work of loosely connected ideas.

an altered TEX is not 'TEX'

will descendants be accepted widely?

will they be public domain?

who authorises or legitimises?

will there be a t r ip test?

may be multiple, mutually incompatible, descen-

dants

will they be widely ported?

begins a tradition and expectation

what t ime scales?

Figure 2: Some fears for a future development(s)

Apart from a warm and fuzzy glow, I am not
too clear what I or any other existing TFJ or I P m

user will get out of either route, apart from more

upgrades. I feel I may even be tempted to do noth-
ing, and just hang onto my working and apparently

almost perfectly satisfactory current version of m .

For remember this: you will not be able to call this

new beast ' W ' . This alone seems to me to mean

that any small enhancements are likely to be still-

born. It will be viewed with suspicion. It is m,
but it isn't '7&X'. Perhaps the highly TJ$ literate

will understand the differences. but the great un-

washed will have to be sold the idea. How do you

sell ideas when you are not commercial? and not

very fashionable? Some of my fears are summarised
in Figure 2.

I do not want to appear gloomy and despon-

dent. I do not feel that way at all. I know that TEX
is not perfect. I can see several minor blemishes (and
at least one major one). I would prefer the program

to be truly modular, although that confers no im-

mediate benefit. But I am not altogether convinced

that the next generation will please me any more.
What pleases me most about QjX is its solidity. It

has not changed much in the last eight or so years.

And I do not feel too dissatisfied, although I think

I have been using it seriously. Maybe I do not use
it to its limits, but that is largely because its limits

are pretty wide and the little I have learned about

software indicates that when you push it to its lim-

its, it breaks. That is not to say that developments

will not take place, but like many others. I see them

around the periphery (Figure 3).

This conclusion is awesome: in my self-view

I like to feel I am some sort of radical, an icono-

clast (in spite of my love of the Macintosh and its

icons), and here I am saying do not change the core.

This is so embarrassing. But equally it indicates
that maybe it's a valid view. I may now go on and

Now, of course, superseded by m 3

380 TUGboat, Volume 14 (1993). No. 4

improve the support environment

- editors

- drivers

- overall integration level

widen the scope

- additional macros/styles

- dvi processors for increased functionality

Figure 3: Already suggested alternatives for devel-
opment

show how many angels may stand on the head of a

pin.4

A An editorial paraphrase

Lammarsch's editorial comments [9] in the German-

speaking group's 'Die m n i s c h e Komodie' were

published in August of 1992. They throw some use-
ful light on what has been done, although the de-

tails are perhaps still unknown to those who do not

read the Komodie. Paraphrased and translated (for
which translation I am grateful to Peter Schmitt).

Lammarsch stated the following

Knuth is positive with regard to the project;

funds, amounting to 20% of that required, have

been secured already; in an earlier report, Lam-
marsch estimated that the project would cost

DM 500 000, over 5 years;

'big publishers' have promised to support the

project;

commercial rn dealers have accepted the

project;

the program will remain 'freeware'.

Like many others, I look forward to details of

Knuth's endorsement, the extent of publishers' sup-
port, and the progress of the project. It is to be

hoped they will be circulated widely.

References

[I] Stephan von Bechtolsheim, 1990, m in prac-

tice: comments on a 4-volume, 1400-page series

on TQX, TUGboat 11(3), pp. 409-412.

[2] Frank P. Brooks, 1974, The Mythical Man

Month, Addison -Wesley.

[3] Victor Eijkhout, 1992, TJ$ by Topic, Addison-

Wesley, 307 pp.

[4] Michael Ferguson, 1985, A multilingual w,
TUGboat 6(2), pp. 57-58.

[5] Michael Harrison, 1989, News from the V i m
project, TUGboat 10(1), pp. 11-14.

[6] Alan Hoenig, 1990, Line-oriented layout with
m, in m, Applications, Uses, Methods (ed-

itor, Malcolm Clark), Ellis Horwood, Chich-

ester, pp. 159-183.

[7] Donald E. Knuth, 1989, Remarks to celebrate

the publication of Computers & Typesetting,

TUGboat 7(2), pp. 95-98.

[8] Donald E. Knuth, 1989, The errors of

w, Software practice and experience 19(7),

pp. 607-685.

[9] Joachim Lammarsch, 1992, Gruawort, Die

m n i s c h e Komodie 4(2), pp. 4-5.

[lo] Joachim Lammarsch, 1993, A new typesetting
system: is it really necessary? TUGboat 14(3),

pp. 167-170.

[11] Leslie Lamport, 1987, 7$J output for the fu-

ture, TUGboat 8(1), p. 12.

[12] Henry McGilton and Mary McNabb, 1991,

Typesetting tables on the UNIX system, Ad-

dison-Wesley, 280pp.

[13] Frank Mittelbach, 1990, E-TEX: guidelines for

future W, TUGboat 11(3), pp. 337-245.

1141 Lynne Price, 1981, Dreamboat, TUGboat 2(2).

p. 58.

[15] David Salomon, 1991, personal communication
to TUG Board.

[16] Norbert Schwarz, 1988, Einfiihrung in m ,

Addison-Wesley.

[17] Norbert Schwarz, 1989, Introduction to m,
Addison-Wesley, 278pp.

[18] Michael Spivak, 1991, A contrarian view on
'l$J extensions, m i n e 13, pp. 1-3.

[19] Philip Taylor, 1992, The future of w, in

E u r o m ' 9 2 , Proceedings of the 7th European

m Conference, Prague (editor JiEi ZlatuSka),
pp. 235-254; reprinted in TUGboat 13(4),

pp. 433-442.

1201 Philip Taylor, 1993, NTS: the future of m ?

TUGboat 14(3), pp. 183-186.

[21] Michael Vulis, 1990, V w enhancements to

the rn language, TUGboat 11(3), pp. 429-

434.

o Malcolm Clark
Computing Services
University of Warwick
Coventry CV4 7AL, England, UK

As many as want to.

TUGboat, Volume 14 (1993), No. 4

NTS Update

Philip Taylor

This is a report on the inaugural meeting of

the NTS' project group, held during the Autumn

DANTE meeting at Kaiserslautern (Germany) on

23rd and 25th September, 1993.

Present: Joachim Lammarsch (DANTE Presi-

dent, and instigator of the NTS project); Philip Tay-

lor (Technical co-ordinator, NTS project); Marion
Neubauer (minutes secretary); Prof. Dr. Peter Bre-

itenlohner, Mariusz Olko, Bernd Raichle, Joachim

Schrod, F'riedhelm Sowa.

Background: Although the NTS project has

been in existence for approximately eighteen months,

there has not previously been a face-to-face meeting
of members of the core group; at the Spring meeting

of DANTE Rainer Schopf announced his resignation

as technical co-ordinator, and Philip Taylor was

invited by Rainer and Joachim to take over as

co-ordinator, which he agreed to do.

Joachim Lammarsch opened the Autumn meet-
ing by reviewing the history of the project and the
rationale which lay behind its creation; each mem-

ber of the group then briefly reviewed his or her
particular area of interest in the project, after which

the group received an extended presentation from
Joachim Schrod on one possible approach to the

realisation of NTS. The members of the group

were broadly in support of the approach outlined by

Joachim Schrod, and it was agreed that this should
form the basis for discussions at the meeting.

The approach proposed by Joachim may be

summarised as follows: ?]EX in its present form is

not amenable to modification: the code, although
highly structured in some ways, is also painfully

monolithic in others. and any attempt to modify

the present code in anything other than trivial ways
is almost certainly doomed to failure. Accordingly,

before attempting to modify ?]EX in any way, it

is first necessary to re-implement it. the idea be-

hind such re-implementation being to eliminate the
interdependencies of the present version and to re-

place these with a truly modular structure, allowing

various elements of the typesetting process to be

easily modified or replaced. This re-implementation

should be undertaken in a language suitable for
rapid prototyping, such as the Common Lisp Ob-

ject System (%LOS'). The primary reason for the

re-implementation is to provide modularisation with
specified internal interfaces and thereby provide a

NTS: the 'New Typesetting System'

test bed, firstly to ensure that TpX has been prop-

erly re-implemented and subsequently to allow the
investigation of new typesetting paradigms.

Once a working test bed has been created,
and compatibility with existing demonstrated,

a second re-implementation will be undertaken;

this re-implementation will have the same modular

structure as the test bed but will be implemented
with efficiency rather than extensibility in mind.

and will be undertaken using a combination of

literate programming and a widespread language
with a more traditional approach, such as 'C++'.

When this second version has also been demon-

strated to be compatible with m, it will be made

available to implementors around the world, the
idea being to encourage people to migrate to NTS

by demonstrating its complete compatibility with

m. (The test bed will also be made available if
there is interest shewn in its use.) Thereafter new

ideas and proposals will be investigated using the

test bed, and if found to be successful these will be

re-implemented in the distribution version.

The main problem which the group identified
with the approach outlined by Joachim was simply

one of resources: ,in order to accomplish two re-
implementations within a reasonable time-scale, it

would be essential to use paid labour, it being es-

timated that each re-implementation would require

a minimum of four man-months work to produce

a prototype, and eight man-months to reach the
production stage. As this is far beyond the ability

of members of the group to contribute in the short
term, it is clearly necessary to employ a small team

(between two and four members) to carry out the

re-implementations, under the guidance and super-
vision of one or more members of the core group.

Initial costings suggested that this could not be

accomplished within the present financial resources

of the group, and accordingly it was agreed that
Joachim Lammarsch should seek further financial

support. Subsequent investigations shewed that a

quite significant reduction in costs could be achieved
if the programming team were sited in a central or

eastern European country, particularly if the mem-

bers of the team were also residents of the country;

this approach is being investigated.

As it was obvious that no immediate progress
could be made with Joachim Schrod's proposal,

even though the group agreed that it represented

an excellent philosophical approach, it was also

agreed that the group needed to identify some

fallback approaches, which could (a) be commenced

immediately, and (b) would be of significant benefit
to the l&X community at large. The group

TUGboat, Volume 14 (1993), NO. 4

identified two such projects, these being (1) the

specification of a canonical TEX kit, and (2) the
implementation of an extended TEX (to be known as

e - m) based on the present WEB implementation.

It was also agreed that Marek RyCko & Boguslaw

Jackowski would be asked if they were willing to
co-ordinate the first of these activities, and that

Peter Breitenlohner would co-ordinate the second.

The ideas behind the two proposals are as
follows.
(1) The canonical m kit: at the moment, the

most that can be assumed of any site offering
TEX is (a) i n i w ; (b) plain w; (c) LAW:

and (d) at least sixteen Computer Modern
fonts. Whilst these are adequate for a restricted

range of purposes, it is highly desirable when
transferring documents from another site to be

able to assume the existence of a far wider

range of utilities. For example, it may be
necessary to rely on BIB^, or on MakeIndex;

it may be useful to be able to assume the
existence of BM2FONT; and so on. Rather

than simply say "all of these can be found on

the nearest CTAN archive", it would be better
if all implementations contained a standard

subset of the available tools. It is therefore
the aim of this project to identify what the

elements of this subset should be. and then

to liaise with developers and implementors to
ensure that this subset is available for, and

distributed with, each T)$ implementation.
(2) Extended w (e - m) : whilst the test bed and

production system approach is philosophically

very sound, the reality at the moment is that
the group lacks the resources to bring it to

fruition. None the less. there are many areas in
which a large group of existing m users be-

lieve that improvements could be made within

the philosophical constraints of the existing
implementation. E - w is an attempt to

satisfy their needs which could be accomplished

without a major investment of resources, and
which can pursued without the need for addi-

tional paid labour.

Finally the group agreed to individually undertake

particular responsibilities; these are to be:

Peter Breitenlohner: Remove any existing in-

compatibilities between w-rn and 7$jX, with

the idea of basing further e - w developments on

W-w; liaise with Chris Thompson concerning
portability of the code; produce a catalogue of

proposed extensions to e-TJ$.

Joachim Lammarsch: liaise with vendors and

publishers in an attempt to raise money for the

implementation of NTS proper; arrange a further

meeting of interested parties; liaise with Eberhard
Mattes concerning the present constraints on the

unbundling of e m w ; negotiate with leading aca-

demics concerning possible academic involvement in

the project.
Mariusz Olko: take responsibility for the multi-

lingual aspects of e - m and NTS; discuss the

possibility of siting the NTS programming team in

Poland; discuss the possibility of academic involve-
ment with leading Polish academics.

Bernd Raichle: endeavour to get m - X @
integrated into the standard UNIX distribution;

prepare a list of proposed extensions to e - w ; lead

discussions on NTS-L.
Friedhelm Sowa: primary responsibility for

finance; prepare proposals for a unified user interface
and for unification of the integration of graphics;

liaise with the Czech/Slovak groups concerning

possible siting of the NTS programming team in
the Czech Republic or Slovakia; discuss possible

academic involvement with leading academics.
Philip Taylor: Overall technical responsibility

for all aspects of the project; liaise with other

potential NTS core group members; prepare and
circulate a summary of the decisions of this and

future meetings.

o Philip Taylor
The Computer Centre, RHBNC
University of London, U.K.
<P.TaylorOVax.Rhbnc.Ac.Uk>

Software & Tools

Two Extensions to GNU Emacs that Are
Useful when Editing QjX Documents

Thomas Becker

Introduction

One of the most outstanding features of the GNU
Emacs editor is the fact that it is customizable in

the best and widest sense of the word. In this
note, we present two extensions to GNU Emacs
that are particularly useful when editing or

LAW documents; these extensions were written

by the author while typesetting a 574 page book

TUGboat, Volume 14 (1993), No. 4 383

in I P The first package actually consists of
a single function that provides an intelligent way

of automatically blinking matching opening dollars

each time a dollar sign is inserted. The second one

improves an existing general feature of GNU Emacs,

namely, keyboard macros. These are particularly

but not exclusively interesting for mathematical
typesetting with and LATEX.

As a GNU Emacs user, you know that when you

insert a closing delimiter such as in a buffer.

Emacs will blink the matching opening delimiter

for one second or until new input arrives. In

fact, you can declare any character to be a closing
delimiter and tell Emacs what the matching opening

delimiter is supposed to be. Emacs also knows

that there is at least one self-matching delimiter

known to humankind, namely, W ' s dollar sign.
Emacs' regular tex-mode makes the dollar sign

a self-matching delimiter. The effect of this is

that each time a dollar is inserted, the preceding
dollar will blink. This blinking will skip a dollar

that immediately precedes the one that is being

inserted. This behavior is undoubtedly helpful

when editing 'I)$ or LAW documents. I have also
seen tex-modes for GNU Emacs that tried to be

more intelligent about the dollar sign. However,

everything that I have seen thus far along these

lines has been, in one way or another, incomplete
or outright annoying.

The function super-tex-dollar tries to provide a

clean, safe, and intelligent way of dealing with the

dollar sign when editing TEX or LAW documents.
The function is to be bound to the $-key whenever a

. t e x file is being visited, so that it is invoked every

time a dollar is inserted. (The mini-manual that
comes with super-tex-dollar explains how to achieve

this.) This is of course the kind of software that

should not and does not require studying a manual

before it can be used. You install it, continue to

work as usual, and see if you like what is happening

on your screen. The following short description of
super-tex-dollar is meant to help you decide if you

want to try this at all.

7l&X requires that all open dollars be closed at
the end of a paragraph. Therefore, super-tex-dollar's

basic strategy is to investigate the dollar situation

between the beginning of the current paragraph

and the current cursor position (point in Emacs
terminology) and then decide what to do about

the dollar that is being inserted. Now there are
quite a few ways to start a paragraph in T&$ or

LAW, many of them unpredictable, so super-tex-

dollar simply assumes that there is always at least

one blank line between paragraphs. In order to

get meaningful results and good performance, you

must therefore make sure that a command like
\chapter in LAW is always preceded or followed

by a blank line. This is certainly not a bad idea

anyway, but if you are not comfortable with it, then

super-tex-dollar is not for you.

If super-tex-dollar finds that all opening dollars
have been closed in the present paragraph up to

the cursor position. then it will simply insert a

dollar. When you type the closing dollar after
having inserted your math formula, a dollar will

be inserted and the opening dollar will blink for

one second or until you continue typing. The next

opening dollar will once again be inserted plainly. It
should be clear that this behaviour gives you a lot

more information than Emacs' default blinking as

described above; in particular, if you have created a
mess by deleting things in previously written text,

you can locate the trouble by erasing and reinserting

dollars.
Before we discuss super-tex-dollar's handling of

$$'s. a few comments about displayed formulas in

LAW are in order. If you are a I P ' user, then

you probably use

\beginidisplaymath)

(formula)

\endidisplaymath}

or \ [(formula)\] to create displayed formulas. It is
true that \beghimath) (formula) \end(math} and

\((formula)\) are both equivalent to $(formula)$,

while

\beginidisplaymath)

(formula)

\end(displaymath)

and \[(formula)\] are not exactly the same as
$$ (fornula) $$. There are sometimes minuscule

differences in vertical spacing, but I do not know
of a situation where the double dollar produces

something unwanted. The only real difference I can

see is that the double dollar is more convenient to

type and offers more flexibility because of the \eqno

feature.

If you type an opening dollar and then another
one immediately following it, then super-tex-dollar

will insert this second one without any blinking:

you have created an opening $$. a y i n g to insert

a third dollar following the double dollar will have

no effect whatsoever. When you type a dollar after

having inserted your displayed formula, this dollar

will automatically be doubled and the (first of the)

384 TUGboat, Volume 14 (1993)) No. 4

opening double dollars will blink. Trying to insert

a third dollar after the closing double dollar will

blink the opening one but not insert anything. In

particular, if, out of habit, you close the opening

double dollar by typing two dollars in succession,
this will have the same effect as typing a single

dollar.

If you have typed $(formula) and then decide

that you really want this to be a displayed formula,

then you can achieve this by typing two dollars
at this point. The first one will of course be

interpreted as the closing one for the opening dollar

at the beginning of the formula. The second one.

however, will cause that opening dollar to blink

and be doubled automatically, so that you are now

looking at $$(formula)$$. Again, trying to insert a
third dollar will do nothing but blink the opening

double dollar.

There is one situation in connection with double
dollars for which there does not seem to be a perfect

solution. Suppose you want to type

$$

y = \cases(x & if\quad $x>O$\cr
0 & otherwise. \c r)

$$

The first two dollars, i.e., the opening $$, will be

inserted plainly. The third dollar will be seen by

super-tex-dollar as an attempt to close the double

dollar: it will be automatically doubled, and the

opening double dollar will blink. To get what you

want, you must now delete a character backwards.

From then on, however, super-tex-dollar will once
again know what is going on. The fourth dollar

will be interpreted correctly as the closing for the

preceding one. The attempt to insert another dollar
immediately following the fourth one will be denied,

and you will get the message "Dangling $$. Closing
it now would leave an uneven number of $'s in

between." When the fifth dollar is inserted, this

will again be interpreted as an attempt to close
the opening double dollar and handled accordingly

by automatic doubling and blinking. Deleting one

character backwards will enable you to insert more
pairs of single dollars, with the same behavior as

in the case of the first pair. Instead of deleting a

dollar backwards, you may of course always enforce

plain insertion of single dollars by typing C-q $.

How does super-tex-dollar cope with garbage

encountered when checking the dollars in the cur-

rent paragraph? When super-tex-dollar encounters a
triple dollar, it concludes that no meaningful conclu-

sions are possible. It assumes that all $'s and $$'s
have been closed at this point, continues its regular
operation based on that assumption, and displays

an appropriate warning including the number of the

line that contains the triple dollar. I do not know of

a situation where the sequence $xxx$$ -with the
first dollar being an opening one - is meaningful in

m. When super-tex-dollar encounters it, it will
implicitly assume that the opening dollar has been

closed before the double dollar. It will also display

a warning that informs you of the problem and the

number of the line where it occurs.
The handling of %, \%, and \$ is as follows. If

the cursor position is preceded by a % on the same

line, then a $ is inserted like an ordinary character.

When super-tex-dollar encounters a % earlier in the
paragraph, it ignores the rest of that line. Moreover,

it fully recognizes the fact that a \ quotes a $ as

well as a %. However, it will see \ \$ and \\% as

quoted $ and % as well.

The time that it takes super-tex-dollar to decide
what to do increases linearly with the length of

the region from the beginning of the paragraph to

the cursor position, and with the number of dollars

therein. A delay is not noticeable under normal

circumstances, and it is negligible under all circum-
stances that are anywhere close to normal (i.e., on

today's personal computers and workstations, and

assuming that you do not write ridiculously long
paragraphs with absurdly many dollar signs). As

with Emacs' blinking of matching opening delim-

i t e r~ , the blinking is always interrupted when the

user continues to type. The byte-compiled code of

super-tex-dollar takes up 2.5 kB when loaded into

Emacs. The space consumption of the program at

runtime is always negligible: the position of each

encountered opening $ or $$ will be forgotten as
soon as it has been closed.

For information on how to obtain super-tex-

dollar, see Section "Availability" below.

Emacros

When T@ is being criticized for not providing

WYSIWYG, buffs like to retort by saying that

WYSIWYG is for wimps. I tend to agree. On the

other hand, I have had some weak moments when I

got tired of typing

$$

\begin(array)(rccc)

: & & \longrightarrow & \\
& & \longmapsto &

\end(array)

$ $

for the umpteenth time just to get something like

f : [O? 11 - [O l l l

x - x2.

TUGboat, Volume 14 (1993), No. 4 385

Even something like

gets to be a drag after a while. There is of

course the possibility of using TFJ macros - with

parameters if necessary -in this situation. On the

other hand, there are very good reasons not to

define a macro every time you find yourself

typing something more than three times. I was soon

led to the conclusion that the appropriate solution

in this situation is the use of keyboard macros on the
editor level, where you issue some short, mnemonic

command to insert a long and complicated string,

with the cursor moving to a particular position if

appropriate.
GNU Emacs provides keyboard macros.' How-

ever, I soon found out that Emacs' keyboard macros

are the only feature that is somewhat underdevel-
oped in an otherwise perfect editor. I have therefore

written a package called Emacros that adds a

number of conveniences such as easy saving and

reloading of macros and help with remembering

macronames. A detailed manual comes with the
package; in the sequel, we give a short general

description of its capabilities.

Emacros' way of saving macro definitions to
files is based on the idea that macro definitions

should be separated by major modes to which they

pertain. The macros used when editing a w - f i l e ,

for example, will not be needed when working on
a C-program. Moreover, within each mode. there

will be macros that should be available whenever

Emacs is in that mode, and others that are relevant
for specific projects only. Consequently, each mode

should allow one global macro file and several

local ones in different directories as needed. This

arrangement saves time and space and makes it

easy to keep track of existing macro definitions.

A keyboard macro really consists of two com-

ponents: the (complicated) string which is to be

inserted and the (short) command which invokes

this insertion. Here, we will refer to the string as the

macro, and to the command as its name. In GNU

Emacs, the key sequence C-x (starts the definition

of a macro: the keystrokes following the command

have the usual effect on the current buffer, while

they are at the same time memorized to be inserted

Using an editor like GNU Emacs to the full
extent of its capabilities does of course require some

effort and a certain computer maturity; but then.

we are not wimps like the rest of them, remember?

automatically as a macro later on. The key se-

quence C-x) ends this process; the macro can now

be inserted before the cursor by typing C-x e. Note
that a macro may not only contain self-insert com-

mands, i.e., ordinary text, but arbitrary keyboard
input. You can, for example, define a macro that

creates

on the screen, with the cursor, represented by the
underscore, at the beginning of the blank line.

To be able to use the macro after defining

another one, it must be given a name. This can

be done by means of the Emacs function name-last-

kbd-macro. This function is adequate if the macro

is to be used in the current session only and if,
moreover, there are very few macros around so that

one can easily memorize them all. Otherwise, this

is where Emacros comes in. The macro can now

be named using the new function ernacros-name-

last-kbd-macro-add. This function first prompts the

user for a name, enforcing appropriate restrictions.

Next, the function saves the macro definition to a
file named mode-mac . e l , where mode is the current

major mode, for reloading in future sessions. This

file can be in the directory for global macros, in

which case the macro will be available whenever

mode is the major mode, or it can be in the current

directory, in which case the macro will be locally

available whenever mode is the major mode and
the file that is being visited is from this directory.

The function will ask you to choose between 1 for

local and g for global. When the function is called

with prefix argument, then you will be prompted to
explicitly enter the name of a file to save the macro

to.

Once a macro macro has a name macroname,
this name is in fact a command which causes the

macro to be inserted before the cursor: typing
M-x macroname RET inserts macro. This has the

disadvantage that completion takes into account all

command names rather than just macro names.
Emacros therefore provides a function specifically

for executing keyboard macros. As a further con-

venience for the impatient (which was motivated

by the attempt to make macro insertion no more

tedious than using a macro), there is a func-

tion called emacros-auto-execute-named-macro. This
function will prompt for the name of a macro in

the minibuffer. The cursor will stay at its position

in the current buffer. As soon as the sequence that
you have entered matches the name of a macro, this

386 TUGboat, Volume 14 (1993), No. 4

macro is inserted and regular editing is resumed

without the need to type a RET.

Every time you read a file into Emacs, Emacros

invokes a function that will load those macros that

have been saved to files named mode-mac . e l in the

current directory and in the directory for global

macros. Here, mode is the major mode which
Emacs has chosen for the visited file. Macro

files that have been loaded before during the same

session will be disregarded. If you have been editing

a file and then read another one with a different
mode and/or from a different directory, then the

macros pertaining to the new file will be loaded, and
all others that were loaded previously will remain

active as well. If there are not too many macros

around, this is probably what you want. In the

long run, however, especially when you are one of

those users that never leave Emacs, you would end
up with all macros being loaded, thus rendering

the separation into different files pointless. The
function emacros-refresh-macros takes care of this

problem. It will erase all previously loaded macros

and load the ones pertaining to the current buffer,
thus creating the same situation as if you had just

started Emacs and read in the file that the current

buffer is visiting.

There are three functions that allow you to
manipulate macro definitions that have already been

saved. The function emacros-rename-macro assigns
a new name to a previously named macro, making

the change effective in the current session and in the

local or global macro file pertaining to the current
buffer, as appropriate. The function emacros-move-

macro moves macro definitions between the local

and global file pertaining to the current buffer.
Finally, the function emacros-remove-macro deletes

macros from the current macro files and disables

them in the current session.

Three functions provide help with keyboard
macros. (The manual tells you how to make these

available as help options.) The first of these will
display in Emacs' help window a list of all currently

defined macronames and the corresponding macros.

The second one prompts you for a macro and

then tells you its name. The third one acts like
the second one, except that it also inserts the
macro whose name you were asking for after the

point in the current buffer, assuming that you were

asking because you wanted to use the macro. The

possibility to complete when entering the macro
makes this an attractive way to insert, making it

worthwhile using macros even if you never ever
remember the name of one.

When I wrote Emacros, I made a strong effort

to conform with Emacs' general style, both in

terms of source code and in terms of look-and-
feel. Completion is supported whenever an existing

macro or macroname is to be entered, defaults

are offered whenever there is the remotest chance

of anticipating what the user wants to do next,
and messages appear whenever the user tries to do

something meaningless or dangerous. The byte-

compiled code takes up 16 kB; otherwise, the space

consumption is only a trifle more than what is
needed to store your macros and their names.

Super-tex-dollar and Emacros Combined

There are two things that need to be said about
using super-tex-dollar and Emacros together. When

a dollar sign occurs in a keyboard macro, it should

always be inserted as C-q $ when defining the

macro. That way, you do not get the blinking
and, possibly, doubling of dollars when the macro

is being executed. With this in mind, you will find
that the unwanted doubling when placing single

dollars between a pair of double dollars (see Section

"Super-tex-dollar" above) becomes a rather rare

occurrence. For example, I have a macro named

cas. so that-with the function emacros-auto-

execute-named-macro bound to M-\-I can type
M-\ cas, and voila, I have

on the screen, with the cursor in the position

indicated by the underscore. All I have to do now
is to fill in things and perhaps delete or copy the

middle line. The whole thing is most likely to be in

a displayed formula; the double dollars will now be
handled correctly by super-tex-dollar.

Availability

Both the Superdollar package and the Emacros

package are available via ftp from

where they are to be found in the directory
pub/emacs-contrib. The Emacros package will

also be made part of the GNU Emacs distribu-

tion in the near future. Both packages come with

manuals explaining installation and usage.

o Thomas Becker
Fakultat fiir Mathematik und Informatik
Universitat Passau
94030 Passau
Germany
becker@alice.fmi,uni-passau.de

TUGboat, Volume 14 (1993), No. 4 387

Icons for TEX and METRFONT

Donald E. Knuth

Macintosh users have long been accustomed to see-

ing their files displayed graphically in "iconic" form.

I recently acquired a workstation with a window sys-

tem and file management software that gave me a
similar opportunity to visualize my own UNIX files;

so naturally I wanted my w - r e l a t e d material to

be represented by suitable icons. The purpose of

this note is to present the icons I came up with,

in hopes that other users might enjoy working with

them and/or enhancing them.
The file manager on my new machine invokes

a "classing engine", which looks at each file's name

and/or contents to decide what kind of file it is. Ev-
ery file type is then represented by a 32 x 32 bitmap

called its zcon, together with another 32 x 32 bitmap

called its zcon mask. In bit positions where the icon
mask is 1, the file manager displays one of two pixel

colors, called the foreground and background colors,

depending on whether the icon has 1 or 0 in that po-

sition. (The foreground and background colors may
be different for each file type.) In other positions

of the bitmap, where the icon mask is 0, the file

manager displays its own background color.

Thus, I was able to fit my and METAFONT

files into the file manager's scheme as soon as I de-

signed appropriate icons and masks, once I had told

the classing engine how to identify particular types
of files.

For example, I decided that each file whose

name ends with . t e x or .mf should be iconified with
the bitmaps

********XII**XXX*~X* ~ I x X * * * x * X * X * * X m

i f R

I**, I I * x x

1 I *x f *
3u.rxxgE #**%*&.

I f I E I 1 ::
* M#M$ MX *EX E 8

*m 1
f X E

' X Z 3 Or

ypl r 1: * **X.*X [1 * # It I
I A* &* *** M E

R '
I E

R i 1
"Wrn@RE*%&3%::

1
f::maaFmm::@F&

respectively; these are compatible with the existing

scheme in which C program source and header files,
ide c and

and

as icons. Similarly, a file named * . l t x will get the
icon

1
h%Ee::Ee:%*&-=I

In each case the corresponding icon mask is one

that the file manager already has built in as the

Generic-Doc-glyph-mask, namely

The transcript files output by and METR-

FONT provided me with a more interesting design

problem. They're both named * . log on my sys-

tem, so they can't be distinguished by file name. I

decided that any file whose first 12 bytes are the

ASCII characters 'ThisuisuTeX, ' should be consid-
ered a TEX transcript, and any file that begins with

'ThisuisuMETAFONT, ' should be considered a META-

FONT transcript. The corresponding icons were fun
to make; I based them on the illustrations Duane

Bibby had drawn for the user manuals:

The icon masks for tri :ript files are then

respectively.

m ' s main output is, of course, a device-

independent (. dvi) file, and METRFONT produces

388 TUGboat, Volume 14 (1993), No. 4

generic font (gf) files. I decided to represent such are identified by the suffix . w, and CWEB change files

files by have the suffix . ch; the corresponding icons
I IXtWHI1**IBIII I . H l t l . i) . * t f i . l * L X X .

.illt***.H**lll*r
lff.lll*lllffk

A.
"y*yT ' :X : *

X I * * * . * * . f M * . 1
U * . l l ~ * * * t X f * X * * t l l t * * X * L 1 * 1 I R % I t
I * f * t * + X l ~ . l . ~ . 2 ** I * . *

U+t S X l t R 1 li
. X a X H 1 I I X + * f 1

' ** 2
*.,**.U ..lr**tt*f *i
t lw.x~t l tLi**xt l t* *

.IIIRIMI;R II

x * $~Z%:zLm-A* .JM.%X* ** Y f.Y1 'UlmL*fl:~
I It%%* . r*-*tII r If*%** f.

2% *t *&*,* I*LRarl
.I* *t;tf,tt.. t. *U . :$:g H L at 11 X+ * d f . I I

f t .f

X1. ,-,:XI. . a&*aE*5*z; st * I* * U * X * 6. . X I t *.*.*.** 1

+1 * t f M X r n ri ***t ** 2.2 ,*' 23
W. X .X *L*I*.Ix * * L* tf ** a*. .***U . **Ht*. I d f f

2 * * +r

~H$x&*~ 2 Z%'~~r*..**::%:~*X:E E, **llftHlf li*

t .*.tfl*l.t :: and X L .*. Llx *HTH*tHLI.X , *,,,,, EEm,.:: and g ~F~~::* :x i~~~~*- : .
tl I **t.H*

X*

t -**I Z"t:-rE&+.x.+&ZZR5 xi. ss P tf ZE ~&KZKWG*Z% s t f r r X * x H i * n x s tx***l H A x ** 11 *1
X - X U LI**.H HIIL; I11.1

I f * x t X. r*
I .it

Lt 1 ftx*... * U L U I* z* A& 3L***~:'.:
m:Y&~**-&

t*lltf)litd l : *t*tf 23 *=* ** .* " +X " *. L*. *x X"
b) + t..** 11

II .i*t .X *+r n r
a M M tt

~ M : , ~ : ~ z : N * A & & ~ *a * * * * * * E: L -. t;t lEI .XI *I

*f tx. l** X*
e* $2 p& a *E

.*X f f t l l ~*x*~*I*.**~*u~*****I Ix I f P "&t9,$z2x2y&,:z:.;:& . . X t t X + . * ~ * l ~ t t + " * t f X ~ * i

because they are analogous to photographic "neg-

atives" that need to be "developed" by other soft-
ware. When a gf file has been packed into a pk file,

its icon will change to

Virtual font files are represented by an analogous

These file types are identifiable by the respective
names * . dvi, *gf, *pk, *. vf , and they can also be

identified by content: The first byte always has the
numerical value 247 (octal 367), then the next byte

is respectively 2, 131, 89, 202 (octal 002, 203. 131,

312) for dvi, gf, pk, or vf.
The other principal output of METAFONT is a

font metric file, which can be identified by the suffix

. tfm in its name. I assigned the following icon and
mask to such files:

B I
x

and

I do all my programming nowadays in the CWEB

language [I, 2, 3, 41, hence I also accumulate lots
of files of two additional types. CWEB source files

are intended to blend with the system's existing con-

ventions for . c and . h files, mentioned above.
What foreground colors and background colors

should be assigned to these icons? I'm not sure. At

the moment I have a grayscale monitor, not color,
so I don't have enough experience to recommend
particular choices. Setting all the foreground col-

ors equal to basic black (RGB values (0,0,0)) has
worked fine; but I don't want all the background

colors to be pure white (RGB (255,255,255)). I'm
tentatively using pure white for the background

color of the "negative" icons (dvi, gf, pk, and vf),

and off-white (RGB (230,230,230)) for the back-
ground of transcript icons. The rn and META-

FONT source file icons currently have background

RGB values (200,200,255), corresponding to light
blue; font metric icons and LATEX source icons have

background RGB values (255,200,200), light red.
(I should perhaps have given METAFONT source files

an orange hue, more in keeping with the cover of The
METRFONTbook.) On my grayscale monitor I had
to lighten the background color assigned by the sys-

tem software to C object files and to coredump files

(* . o and core*); otherwise it was impossible for me
to see the detail of the system icons

and

I expect other users will need to adjust foreground
and background colors to go with the decor of their

own desktops.

In 1989 I had my first opportunity to work with
a personal graphic workstation, and I immediately
decided to make 64 x 64-bit icons for and META-

FONT-for the programs, not for the files. But I've

always found it more convenient to run TJ$ and

METAFONT from UNIX shells, so I never have used

TUGboat, Volume 14 (1993), No. 4 389

those early icons. Here they are, still waiting for (Stanford, California, October 1990), 200 pp.

their proper raison d'6tre: An up-to-date version is available online in [I].

[3] Donald E. Knuth, Literate Programming
(Stanford, California: Center for the Study of
Language and Information, 1992), xvi + 368 pp.
(CSLI Lecture Notes, no. 27.) Distributed by
the University of Chicago Press.

[4] Donald E. Knuth, The Stanford GraphBase:
A Platform for Combinatorial Computing
(New York: ACM Press, 1993).

o Donald E. Knuth
Stanford University

Editor's note: An additional icon, for files whose
name ends with . s ty , has been provided by Peter
Flvnn:

This icon has been deposited in the CTAN archives
in the file . . . /digests/ tugboat/s ty . icon

All of the icons shown above, except for those
already present in directory /usr/openwin/share /
include/images of Sun Microsystem's OpenWin-
dows distribution, can be obtained via anony-
mous ftp from directory "ftp/pub/tex/icons at
labrea . s tanf ord. edu on the Internet. That direc-
tory also contains a file called cetex . a s c i i , which
can be used to install the icons into OpenWin-
dows by saying 'ce-db-merge system -from-ascii
cetex. a s c i i ' .

References

[I] CWEB public distribution, available by anony-
mous ftp from directory 'ftp/pub/cweb at
l ab rea . stanf ord. edu.

[2] Silvio Levy and Donald E. Knuth, The CWEB
System of Structured Documentation, Stan-
ford Computer Science report STAN-CS-1336

TUGboat, Volume 14 (1993), No. 4

bibview: A graphical user interface to
Bib=

Armin Liebl

Abstract

This paper describes an X Window application for

manipulating BIBTEX databases. The application

provides the following facilities: creation of new en-

tries, deletion and editing of entries, searching for
entries, sorting and printing BIB^ databases or

subsets of them. It is possible to work with several

 BIB^ databases simultaneously and copy entries
between databases. Entry types other than the stan-

dard BIB^ types can be defined in a configuration

file. The paper describes the features of the pro-

gram. It contains a comparison of bibuiew with sim-

ilar tools and discusses some useful improvements.

1 The windows of bibview

bibuiew uses the following types of windows:

The main window contains five menus de-

scribed in Section 1.1.

A bibliography window is displayed for each
 BIB^ database loaded. It offers features to

manipulate a single BIB^ database, such as
making new entries, sorting the database, etc.

0 A list window shows a list of all entries of a

 BIB^ database or the entries resulting from
a search, respectively.

A card window provides a template to edit the
fields of an entry or to create a new entry.

A macro window is used to edit the QSTRING

and @PREAMBLE parts of a BIB^ database.

In a search window the user can specify (using

regular expressions) the entries he/she is look-
ing for.

An error window can be used to correct syn-
tax errors in a B I B W database. An addi-

tional window contains information concerning

the syntax errors.

0 Help windows show help information.

1.1 Main window

The main window of bibuiew (see Figure 1) provides

the following menus:

File - Open a BIB^ database, create a new
 BIB^ database, or close/save an open BIB^
database. The name of the database is chosen

through a file selection box.

0 Services - The following services are available:

- Consistency Check: The entries not con-

taining all fields required by BIB^ are

displayed in a list window. Note, however,

4
4 B=mP

If Ons on DesktOp

Pvltornatlc Check

Requimd Feltis

4 Ignore Case
J Rin t As Bib

Figure 1: Main Window

that cross references are not checked, i.e.,
an entry is regarded as complete if it con-

tains a cross reference.

- Unify: All entries of a BIB^ database

are inserted into another loaded BIB^
database. If key conflicts occur, a new

unique key is generated by appending a
letter (a-z, A-Z) to the conflicting key.

- Prznt: Print a BIB^ database. The

database can be printed as a Lbw file
with \nocite commands or in a fixed for-

mat defined by bibuiew.

- Edit Macros: A window is displayed for

editing the QSTRING and @PREAMBLE parts

of a BIB^ database.

- Load Conjiguratzon: A configuration file

is evaluated. The structure of a configu-
ration file is described in Section 2. The

[Options] part of the configuration file is

not evaluated.

0 Options - bibuiew can be customized according

to the preferences of the user. The default of the
options can be changed in the configuration file.

If an option is set, it is marked by a tick (see
Figure 1). The following options are available:

- Beep on Error: Beep if an error occurs

(default: true).

- Backup: Before an existing database is

written to disk, a backup of the database

is created with the suffix .bak. (i) where
(i) is the number of the last backup incre-

mented by one (default: true).

- Icons on Desktop: Icons of list and card

windows are placed within the correspond-

ing bibliography window (default: false).

- Automatic Check: A consistency check

takes place whenever a BIB^ database

is loaded (default: true).

- Required Fields: A warning message is dis-

played if an entry is saved that does not
contain all fields required by BIB^ (de-

fault: false).

- Ignore Case: In a search the case of the
letters is ignored (default: true).

TUGboat, Volume 14 (1993), No. 4

- Pmnt As Bzb: When printing a database, a

L A W file containing \no c i t e commands

is created. The style file is alpha. This de-
fault can be changed in the [StyleFile]

part of the configuration file.

- Dzsplay Error Wzndow: If a syntax error

is found while loading a BIB^ database,

a window is displayed for possible correc-

tions of the error (default: true).

0 Window - Windows belonging to the same

 BIB^ database are grouped together.

0 Help - A help wzndow is displayed containing

help information.

1.2 Bibliography Window

blbv iew: brbv lew.b lb -
Mew I Search I k t I Macms I Fnnt 1 Save I Close I Wfndow

conference

inbook

incolectjOn

inpmceedings

manuill

mastersthesis

misc

phdmesis

proceedings

techrepat

Figure 2: Bibliography Window

The bibliography window (see Figure 2) provides the

following commands:

0 New: Select the type of a new entry from a

menu. Entries of a type other than the standard
 BIB^ types or the types defined in the config-
uration file can be created by selecting userde-

fined. A card window is displayed for making
the new entry.

0 Search: A search window is displayed in which

a search for entries can be initiated. The result
of the search is shown in the list window.

0 List: A list with all entries of the BIB^
database is displayed.

0 Macros: A macro window is displayed.

0 Print : A L A W file with the entries of the

database is produced.

0 Save: The BIB^ database is saved on sec-

ondary storage in a format conforming to
BIBTEX'S specification.

0 Close: Close the BIB^ database.

1.3 Card Window

The card window provides a template of the required

as well as optional fields for each entry type defined
by BIB^ or in the configuration file. Figure 3

shows the card window for the type 'article'. Re-

quired fields are marked by bold lines. A card win-

dow is used to make a new entry or to edit an entry
(eg to correct spelling errors). A card window for

editing an entry is displayed after the correspond-
ing entry has been clicked in the list window. It

is possible to have several card windows displayed

simultaneously. This is useful to cut and paste in-

formation between different entries.

E3 b r b v ~ e w bzb: art ic le Q

Duplicate 1 user Data (Annote (Delete I save I ~ o p y (aooe /
BibTeX- Key Z-8

cmssre1 y1
key Zara68 1

uue m t s IS m e uue I
louma

Figure 3: Card Window

Macros are entered with a preceding 'Q', other-

wise bibview automatically surrounds the entry with

brackets. In our example, bibview will produce

Qarticle(zara68,

key = {Zara68),

author = (Zarate, Luz Angela),

t i t l e = {This i s the t i t l e) ,

j ournal = j ggl ,
year = Ci9683,

month = nov # {7th),

pages = {7--11),

mycomment = (not about Gnats and Gnus)

3

The card window provides the following com-

mands:

TUGboat, Volume 14 (1993), No. 4

Duplicate: Duplicate an (already saved) entry.

The type of the new entry can be chosen in the

menu. Fields that are not standard fields of

the new type become user-defined fields. This
feature is useful if one wants to make a new

entry that has many fields in common with an

existing entry. It can also be used to change the
type of an entry.

UserData: Additional fields not used by

 BIB^ can be entered in the section Userde-

fined Fields of the card window.

0 Annote: Edit the 'annote' field of an entry in a
window. This field can be used to contain an
abstract.

0 Delete: Delete an entry. This is useful if

one discovers a duplicate entry in a BIB^
database.

0 Save: Save an entry. If the option Required

Fields is chosen, a warning message is displayed
if not all fields required by BIB^ were entered.

If no BIB= key exists, bibview generates it.
If key conflicts occur, a letter (a-z,A-Z) is ap-

pended in a unique way. This allows 52 differ-

ent entries with the same BIB^ key. As no

check for syntax errors occurs when an entry is
saved, it is the task of the user to care for the

correctness of the entry.

0 Copy: Insert an entry into another loaded

 BIB^ database. Key conflicts are solved as

described above.

Close: Close the card window.

1.4 List Window

Urn n. Bor8hoff
Uue ll. Borghoff
uw n. eorehofr
Licbl, Rnin
Liebl, Rnin and Bin
LWI, Rnin and Bic
1(LUMM, Christof R.
Joham H. SchLichter
J h H. Schlichter
Jaham H. Schlichter
Guns Teege
Gums T-
F. Vojik and U.n. Bo
Zarate. Luz tlngela

t i t l e

k i e n of Dptinal Distributed File Systnns: R Fran
Catalopm of distributsd fildopsratinp w t m s
Fehlertolerm in verteiltan Dateisyshm: Eine \
Oynmischchs OateialMatim innsrhalb sinas voiltr
Ruthentication in Distributed Swtens: R Bibliqra
Dis Sichsrhsit dcs ~ - B s t r i c b o s y s t m s
Sidrrrheitseswkte das &tritbsswtms UWD(
Caputavircn - Snmdlagen. Entdc&q ud b d r
Collabwatia in Distributed Oownant Fr-k
Task H a n m t in Foliffd k t 4
Rchitc&trs of the Rpplatsad Savsr
Ein Systan rn Rnpr\"asentation wm dddarativem G
Tha Activity Support S w h TRCTS
Rutmae RspUatimssbuenw f\'v vsrteilte Sys
This i s the t i t le

The list window is displayed after the List button

of the bibliography window has been pressed or as a

result of a search or consistency check. As there is

not more than one list window per BIB^ database,
an already existing list is overwritten.

The list contains by default information con-

cerning author, title, year, BBW key, categoy and
BBT&Y type of an entry. This is useful if one wants

to browse through BIB^ databases.
The information displayed in the list and the

layout of the list can be changed in the configuration
file.

The following commands are provided:

Save: Save the entries of the list as a new

BIB= database. This feature can be used to
partition a BIB^ database.

Sort: Sort the entries of the list. By default

the list can be sorted by all standard BibTeX
fields. The author and editor fields are sorted

by "last name". The sort order is used when
the list is saved or printed.

In the configuration file the user can choose

the fields for sorting a list. This is useful if new

fields were added to standard BIB^ types or
if new types were defined.

0 Copy: Insert all entries of the list into an-

other loaded BIB^ database. Key conflicts
are solved in the way described in Section 1.3.

0 Pr in t : Produce a Ml&X file with the entries of

the list.

0 Close: Close the list window.

Search Window

S t a t search I Cancel I
I P1IFields: I I 1

[BlbTeX Type: / larlicle_

[B i b ~ e ~ Key: 1-

Figure 5: Search Window

Figure 4: List Window bibview allows to search for entries matching regu-
lar expressions in certain fields. The result of the

TUGboat, Volume 14 (1993), No. 4
M

search are the entries whose fields match all regular

expressions specified in the search window.
If a regular expression is entered in the box All-

Fields, the entries that match the expression in any

field (including the user-defined fields) are displayed

in the list window. It is possible to use the AllFields
box in combination with the other boxes.

It is possible to use (not more than two) user-

defined fields in a search. In the left box of the

"Userdefined Fields" part of the search window the

exact name of the user-defined field is entered, in

the right box a regular expression is entered.
In our example (Figure 5), we search for all ar-

ticles by author Zarate that were published in 1968

and for which the 'mycomment' field contains the
string Gnus.

Regular expressions for each field can be de-

fined in the configuration file. A predefined expres-
sion is selected by pressing the left mouse button

in the box belonging to the field. In Figure 5 the

expressions LZarate' and 'Liebl' were defined for the

'author' field.
The fields that are available in the search win-

dow can be defined in the configuration file. By
default, all standard BIB^ fields can be used.

1.6 Macro Window

A macro window is used to edit the @STRING and
@PREAMBLE parts of a BIB^ file. As the content

of the macro window is not checked for syntax er-

rors when the database is written, it is the task of

the user t o care for a syntactically correct definition
of the macros. An example of a macro window is

shown in Figure 6.

Save I Oose I
BSTRINGijggl : "Journal of Gnats and Gnus. Series"i"1

Figure 6: Macro Window

1.7 Error Window

An error window is used to correct syntax errors in

B I B W databases. If syntax errors are found when
a database is loaded, bibview reads the correct en-

tries of the B I B W database, but the incorrect en-

tries will be lost. To avoid this, the user should cor-
rect the syntax errors, save the database and load

it again. A help window shows the BIB^ keys of

the incorrect entries (see Figure 7). LINE refers to

the line number in the database, and OFFSET refers

to the line within the entry. With this information

it is easy to correct errors by searching for the key
and using OFFSET to find the erroneous line.

Save 1 aose /
/@articletborghoff91,

author = [U.H. Borghoff3.
title = [Fehlertoleranz in verteilten Dateisystemen: Eine

\"Ubersicht \"uber den heutigen Entuicklungsstand
bei den Votierungsverfahren?,

iournal I [Infornatik-SpektrunIr
year = t19911.
month 3 feb,
volume = 1143,
number = 113
pages = El%-273

3

I I @bookEborghoff92. author = EUue H. Bomhoffl,
title = [Catalogue of distributed file/operating systensl,
year = 519923,
publisher = (Springer-Verlagl, I I. address = [Berlin]
keyuord = CDist, 053

HELP for f l nd lng errors

orry, but there uere syntax errors: or1

KEY OFFSET
borghoff91: 10
borghoff92: 6 40

/usr/uiss/liebla/bib/bibvie~~bib: 2 errors

Figure 7: Error Window

2 The configuration file

When bzbvzew is started, it looks for a configuration

file with the name . bibviewrc in the user's home di-

rectory. In this file, some user-specific default values
can be specified. The following sections are allowed:

0 [Options]: The default options can be cus-
tomized to the preferences of the user.

0 [Types] : New BIB^ types can be defined and

additional fields can be added to existing types.

An example of a type definition is:

t : isonorm

rf : title

rf : number

f : year

f : note

t is used to define a new type or to add fields
to an already defined type. With tc the fields
of an already defined type are undefined.

Additional fields to all already defined types

can be defined with t : all followed by the .
descriptions of the fields.

rf indicates that the following field is a re-
quired field for the defined type.

TUGboat, Volume 14 (1993)' No. 4

In the example above, a type 'isonorm' is de-

fined with fields 'year' and 'note' and required
fields 'title' and 'number'.

[ListFields] : The fields that are displayed in

the list window and the layout of the list are

defined. The definition for the list shown in

Figure 4 is:

author : 20

t i t l e : 50

mainkey : 10

cardtype : 10

The field names mainkey and cardtype are

used for the B I B W key and BIB' type of

an entry. Following the colon, the number of

characters is given that is used for displaying

the field.

[SearchFields] : The fields that are displayed

in the search window are defined. With

$clear$ the fields that are displayed in a search
window by default (all standard B I B W fields)
are overridden. The definition for the search

fields of Figure 5 is:

$clear$

author

t i t l e

b o o k t i t l e

j ournal

year

[SortFields] : The fields that are offered in

the sort menu of the list window can be cho-
sen. With $clear$ the fields that are used by

default (all standard BIB' fields) are overrid-
den. A line in the [SortFields] part has the

form

< f i e l d name>

or

< f i e l d name> : <sor t order>

<so r t order> can be n if the field contains a

name or d if the field contains a date of the form
dd .mm. yyyy.

[UserFields] : User defined field names can be

defined for certain types or for all types. A field

name for <type> is defined by

<type> : < f i e l d name>

A field name for all fields is defined by
<type> : a l l

[Predefines] : Data can be predefined for use

in the search window. The field names mainkey

and cardtype are used for the B I B W key and

 BIB^ type of an entry. a l l f i e l d s defines

data for the Allfields box of the search window.

The definition for the predefined data of Figure
5 is:

the
the

author: Zarate

author: Liebl

[LatexHeader]: A L A ' header is defined to

be used in the LAW file produced by the Print
command.

[LatexFooter]: A LAW footer is defined to

be used in the LAW file produced by the Prznt
command.

[BibDir] : This section contains the directory

that is initially used by the file select box.

[StyleFile] : This section contains the name

of the B I B W style that is used in the L A W

file produced by the Print command.

[AnnoteField]: The name of the field that is

used for annotations is entered. In most cases,
this will be 'abstract' or 'annote'. The default

name is 'annote'.

[SortedBy] : The name of the field by which a

B I B W file should be sorted by default.

[Indent]: The format used when saving a

 BIB^ database can be specified.

A configuration file can be loaded from within

Servzces menu of the mazn window. In this case

[Options] part is not evaluated.
The distribution of bzbvzew contains an example

of a configuration file. The syntax of the configura-

tion file can be seen in this example.

3 Comparison with similar tools

In the last few years some tools have been developed

for manipulating BIB^ databases.

bzbcard is a graphical interface to B I B W with

features similar to bzbvzew. Its user interface follows
the OpenLook style. bzbview provides additional fa-

cilities like printing a database and correcting syntax
errors in an error window. An important advantage

of bibview is the mechanism to define new types in a
configuration file, because BIB^ allows to create

styles with new types. The searching and sorting

facilities of bzbview are more comfortable.

X B I B W (described in TUGboat 13, no. 4) is
an X Window interface for inserting entries into a

 BIB^ database. There are no features like sorting,

searching or moving entries between databases.
The lookbibtex Per1 script is intended for

searching in BIB= databases. Its searching facili-

ties are comparable to those of bzbview.
bibadd, b ibsor t and bibgrep are tools for in-

serting entries, sorting BIB' databases by B I B W
key and searching for entries with a given key word.

The advantage of bibview is that it offers the
features of other tools in one single graphical user

interface.

TUGboat, Volume 14 (1993), No. 4 395

4 Limitations of bibview

bzbview is intended for small personal databases.

There may be problems with databases consisting
of more than 1000 entries.

It is desirable to search in more than one

database.

The consistency check should be more sophisti-

cated and, for example, look for duplicate entries.

The algorithm for key generation is fixed. The
user should be able to define his own method for key

generation.

Comments in BIB= databases are accepted

but ignored. They will be lost in the output pro-

duced by bzbview.

5 How to Obtain bibview

The source for bibview can be obtained via anony-
mous ftp from f tp . inf ormatik . tu-muenchen . de
(current Internet ad-
dress: 131.159.0.110) as /pub/comp/typesetting/

tex/bibview-1 .5 . tar. Z. It must be transferred in

'binary' mode.

Bibliography Prettyprinting and Syntax
Checking

Nelson H. F. Beebe

Contents

1 Introduction

2 BIB^ needs improvement

3 Run-time options

4 Prettyprinting

5 Pattern matching and initialization files

6 Lexical analysis

7 Portability

8 SCRIBE bibliography format

9 Recommendations for BIB= design

10 A lexical grammar for BIB=

11 A parsing grammar for BIB^
12 Software availability

References

Index

List of Tables

Acknowledgements 1 Sample bibclean initialization file. 400

2 Escape sequences in quoted strings. 40 1
Holger Martin and Peter M. Urban implemented an ~ ~ i ~ ~ ~ l ~ ~ ~ ~ ~ ~ ~ file pattern characters. 40 1
earlier version of bzbview. Prof. J. Schlichter and my

colleagues helped to improve the tool. 1 Introduction

o Armin Liebl
 BIB^ [18, Appendix B] is a convenient tool for

Technische Universitat Munchen
solving the vexing issue of bibliography format-

Fakultat fiir Informatik ting. The user identifies fields of bibliography en-

Arcisstr. 21 tries via fieldlvalue pairs and provides a unique ci-

80290 Munchen tation key and a document type for each entry. A
1ieblaQinf ormatik. tu-muenchen. de simple string substitution facility makes it easy to

reuse frequently-occurring strings. A typical exam-

ple looks like this:

@Book(Lamport:LDP85,

author = "Leslie Lamport",

title = I1(\LaTeX)---A Document

Preparation System---User's

Guide and Reference Manual",

publisher = pub-AW,

year = " 1985" ,
ISBN = "0-201-15790-X",

3

The TEX file contains citations of the form
\cite(Lamport : LDP85), together with a \bibli-

ographystyle command to choose a citation and

bibliography style, and a \bibliography command

to specify which BIB^ files are to be used.

records this information in an auxiliary file.

396 TUGboat, Volume 14 (1993), No. 4

A subsequent BIB^ job step reads this auxil-

iary file, extracts the requested bibliographic entries
from the specified BIB^ files, and outputs the en-

tries into a bibliography file formatted according to

the specified style. Several dozen such styles are cur-

rently available to help cope with the bizarre vari-
ations in bibliography formats that publishers have

invented.

In a second Tj$ step, the \ c i t e commands are

not correctly expandable until the \bibliography

command is processed and the bibliography file out-
put by BIB= is read. However, at that point, the
desired form of the citations is finally known, and

at the end of the job, an updated auxiIiary file is

written.

A third w step finally has the necessary infor-
mation from the auxiliary file and the bibliography

file to correctly typeset the \ c i t e commands and

the bibliography in the specified style.
With the GNU Emacs text editor 17. 271, power-

ful BIB^ editing support makes it simple to gen-

erate bibliography entry descriptions via templates
that can be inserted with a couple of keystrokes,

or on workstations, selected from a pop-up menu.
This editor is freely available on UNIX, VAX VMS,

and the larger members of the IBM PC family under

PC-DOS.
The major benefits of using BIB^ are the po-

tential for data reuse, the separation of form and

content (like the descriptive markup of LATEX and
SGML[6, 31]), and the many stylistic variants of

the typeset bibliography. During the preparation
of this article, a scan of our Mathematics Depart-

ment workstation file system located about 14 000
Tj$ files, and 445 BIB^ files. The latter contained

about 870 000 lines and almost 94 000 bibliography

entries. These files form a valuable resource that au-

thors and researchers can use to track and properly
cite literature in their publications.

During my term as TUG President, I initiated

a project t o collect BIB^ styles and bibliography

data base files of material related to Tj$ and its
uses, and electronic document production and ty-

pography in general. This dynamic collection also
covers a few journals, including more than 1000 en-

tries for TUGboat. A snapshot of part of the col-

lection was published in the 1991 TUG Resource Di-
rectory [4, 51.

One drawback of BIB^ is that errors in a bib-

liography file, such as unmatched quotation marks

around a value string, can sometimes be hard to
locate, because the current version of the program

raises an error at the end of a scan when internal ta-
bles overflow after gobbling several thousand char-

acters of input. The result is that the error location

is completely bogus, and actually lies much earlier

in the file. We can hope that this serious deficiency

will be remedied in the final version of BIB^, 1.0,

which is expected to appear when the LATEX 3.0 de-

velopment is completed.
Another drawback is that such bibliography

files are normally prepared by human typists, and

consequently there are formatting variations that

reduce readability, and inconsistencies that persist
into the final typeset bibliography. Some examples

of such inconsistencies are variations in naming of

publishers and journals, spacing around author and
editor initials, and variations in letter case in titles.

In addition, there are usually numerous typograph-
ical errors of omission, doubling, spelling, transcrip-

tion, translation, and transposition.

In the fall of 1990, faced with a growing collec-
tion of BIB^ files, I set out to write a software

tool to deal with these problems. This program is

called bibclean. It is a syntax checker, portabil-

ity verifier, and prettyprinter. and was made freely

available in 1991. In the fall of 1992, after consider-

able experience with the first version, I embarked on
a set of enhancements that produced major version

2.0, and the purpose of this paper is to describe the

new version, and to widely advertise its existence to
the Tj$ community.

2 Bib= needs improvement

BIBTEX, like Tj$, assumes that its input is pre-

pared correctly, and works best when that is the

case. Both programs attempt to recover from er-

rors. but that recovery may be unsuccessful, and er-

rors may be detected only after lengthy processing.
In neither case is the output of these programs suit-

able for input to them. That is, their knowledge of
how their input streams are to be parsed is available

only to them, and cannot be applied independently

and used by other software. Both programs have a
hazily-defined input syntax, and Tj$'s is extensible,

making it even harder to give a precise description

to the user.
The trend of compiler technology development

of the last two decades, largely on UNIX systems, has

been to separate the compilation task into several

steps.
The first is generally called lexical analyszs, or

lexing. It breaks the input stream up into identifi-

able tokens that can be represented by small integer

constants and constant strings.
The second step is called parszng, which in-

volves the verification that the tokens streaming

TUGboat, Volume 14 (1993), No. 4 397

from the lexer conform to the grammatical require-

ments of the language, that is, that they make sense.

As parsing proceeds, an intermediate represen-

tation is prepared that is suitable for the third step.
namely, code generatzon or interpretatzon.

This division into subtasks diminishes the com-
plexity of writing a compiler, reduces its memory re-

quirements, and importantly, partitions the job into

two parts: a language-dependent, but archztecture-

independent, part consisting of lexing and pars-

ing, and a language-independent, but archztecture-
dependent, part where code is generated or inter-

preted.

This makes it possible to write a front end for

each language, and a back end for each architec-
ture, and by combining them, obtain compilers for

all languages and all architectures. The most suc-

cessful example of this approach at present is al-

most certainly the Free Software Foundation's GNU

Project compilers, which support all common com-

puter architectures with the back ends, and C, C++,

and Objective C with the front ends. Additional
front ends for several other popular languages are in

preparation.

When a lexer is available as a separate program,

its output can be conveniently used by other pro-
grams for tasks such as database lookup, floating-

point precision conversion, language translation, lin-
guistic analysis, portability verification, prettyprint-

ing, and checking of grammar, syntax, and spelling.

In response to a command-line request, bib-

c lean will function as a lexer instead of as a pret-

typrinter. An example is given later in Section 6.

3 Run-time options

On several operating systems, bibclean is run by a

command of the form

bibclean [options] bibf i l e (s) >newf i l e

One or more bibliography files can be specified; if

none are given, input is taken from the standard

input stream. A specific example is:

bibclean -no-fix-name mybib.bib >mybib.new

Command-line switches may be abbreviated to
a unique leading prefix, and letter case is not sig-

nificant. All options are parsed before any input
bibliography files are read, no matter what their or-

der on the command line. Options that correspond

to a yes/no setting of a flag have a form with a pre-

fix no- to set the flag to no. For such options, the
last setting determines the flag value used. This is

significant when options are also specified in initial-
ization files (see Section 5).

On VAX VMS and IBM PC-DOS, the leading hy-

phen on option names may be replaced by a slash;

however, the hyphen option prefix is always recog-
nized.

-author Display an author credit on the standard

error unit, s t d e r r . Sometimes an executable

program is separated from its documentation
and source code; this option provides a way to

recover from that.

-error-log filename Redirect s t d e r r to the in-

dicated file, which will then contain all of the
error and warning messages. This option is pro-

vided for those systems that have difficulty re-
directing s t d e r r .

-help or -? Display a help message on s tde r r ,

giving a sample command usage, and option de-

scriptions similar to the ones here.

- in i t - f i l e filename Provide an explicit value

pattern initialization file. It will be processed
after any system-wide and job-wide initializa-

tion files found on the PATH (for VAX VMS,

SYS$SYSTEM) and BIBINPUTS search paths, re-

spectively, and may override them. It in turn

may be overridden by a subsequent file-specific
initialization file. The initialization file name

can be changed at compile time, or at run time
through a setting of the environment variable

BIBCLEANINI, but defaults to .b ibcleanrc on

UNIX, and to bibclean. i n i elsewhere. For fur-

ther details, see Section 5.

-ma-width nnn Normally, bibclean limits out-
put line widths to 72 characters, and in the

interests of consistency, that value should not

be changed. Occasionally, special-purpose ap-
plications may require different maximum line

widths, so this option provides that capability.

The number following the option name can be
specified in decimal, octal (starting with 0), or

hexadecimal (starting with Ox). A zero or neg-

ative value is interpreted to mean unlimited, so

-max-width 0 can be used to ensure that each

fieldlvalue pair appears on a single line.

When -no-prettyprint requests bibclean

to act as a lexical analyzer, the default line

width is unlimited, unless overridden by this
option.

When bibclean is prettyprinting, line wrap-

ping will be done only at a space. Conse-
quently, an extremely long non-blank charac-

ter sequence may result in the output exceed-

ing the requested line width. Such sequences

are extremely unlikely to occur, at least in

English-language text, since even the 45-letter

TUGboat, Volume 14 (1993), No. 4

giant 116. p. 4511 pneumonoultramzcroscopzcszl-
zcovo~canoconioszs will fit in bibclean's stan-

dard 72-character output line, and so will 58-
letter Welsh city names.

When bibclean is lexing, line wrapping is
done by inserting a backslash-newline pair when

the specified maximum is reached, so no line
length will ever exceed the maximum.

- [no-] check-values With the positive form,

apply heuristic pattern matching to field val-

ues in order to detect possible errors (e.g. year
= "192" instead of year = "1992"), and issue

warnings when unexpected patterns are found.

This checking is usually beneficial, but if it
produces too many bogus warnings for a par-
ticular bibliography file, you can disable it with

the negative form of this option. Default: yes.

- [no-] delete-empty-values With the positive

form, remove all fieldlvalue pairs for which the

value is an empty string. This is helpful in

cleaning up bibliographies generated from text
editor templates. Compare this option with -
[no-] remove-OPT-pref ixes described below.

Default: no.

- [no-] f ile-position With the positive form,

give detailed file position information in warn-

ing and error messages. Default: no.

- [no-] f ix-f ont-changes With the positive form,

supply an additional brace level around font

changes in titles to protect against downcasing
by some BIB^ styles. Font changes that al-

ready have more than one level of braces are
not modified.

For example. if a title contains the Latin
phrase {\em Dictyostelium Discoideum) or

{\em {D)ictyostelium {D)iscoideum), then

downcasing will incorrectly convert the phrase

to lower-case letters. Most BIB^ users
are surprised that bracing the initial let-

ters does not prevent the downcase action.

The correct coding is {{\em Dictyostelium

Discoideum)). However, there are also le-

gitimate cases where an extra level of brac-

ing wrongly protects from downcasing. Con-

sequently, bibclean will normally not supply
an extra level of braces, but if you have a bib-

liography where the extra braces are routinely

missing, you can use this option to supply them.

If you think that you need this option, it
is strongly recommended that you apply bib-
clean to your bibliography file with and with-

out -f ix-f ont-changes, then compare the two

output files to ensure that extra braces are not

being supplied in titles where they should not

be present. You will have to decide which of

the two output files is the better choice, then

repair the incorrect title bracing by hand.

Since font changes in titles are uncommon,
except for cases of the type which this option

is designed to correct, it should do more good
than harm. Default: no.

- [no-l f ix-initials With the positive form, in-

sert a space after a period following author ini-

tials. Default: yes.

- [no-l f ix-names With the positive form, reorder

author and editor name lists to remove commas

at brace level zero, placing first names or initials
before last names. Default: yes.

- [no-l par-breaks With the negative form, a

paragraph break (either a formfeed, or a line
containing only spaces) is not permitted in

value strings, or between fieldlvalue pairs. This

may be useful to quickly trap runaway strings
arising from mismatched delimiters. Default:

yes.

- [no-] prettyprint Normally, bibclean func-

tions as a prettyprinter. However, with the neg-
ative form of this option, it acts as a lexical

analyzer instead, producing a stream of lexical
tokens. See Section 6 for further details. De-

fault: yes.

- [no-] print-patt erns With the positive form,

print the value patterns read from initialization
files as they are added to internal tables. Use

this option to check newly-added patterns, or
to see what patterns are being used.

When bibclean is compiled with native
pattern-matching code (the default), these pat-
terns are the ones that will be used in checking

value strings for valid syntax, and all of them

are specified in initialization files, rather than
hard-coded into the program. For further de-

tails, see Section 5. Default: no.

- [no-] read-init-f iles With the negative form,

suppress loading of system-, user-, and file-

specific initialization files. Initializations will
come only from those files explicitly given by

-init-f ile filename options. Default: yes.

- [no-] remove-OPT-pref ixes With the positive

form, remove the OPT prefix from each field

name where the corresponding value is not an

empty string. The prefix OPT must be entirely

in upper-case to be recognized.

TUGboat, Volume 14 (1993), No. 4

This option is for bibliographies generated

with the help of the GNU Emacs BIB^ edit-
ing support, which generates templates with op-
tional fields identified by the OPT prefix. Al-

though the function M-x bibtex-remove-OPT

normally bound to the keystrokes C-c C-o does

the job, users often forget, with the result

that BIB^ does not recognize the field name,
and ignores the value string. Compare this

option with - [no-] delete-empty-values de-

scribed above. Default: no.
- [no-] scribe With the positive form, accept

input syntax conforming to the SCRIBE docu-

ment system. The output will be converted to

conform to BIB^ syntax. See Section 8 for

further details. Default: no.
- [no-] trace-f ile-opening With the positive

form, record in the error log file the names of

all files which bibclean attempts to open. Use
this option to identify where initialization files

are located. Default: no.
- [no-] warnings With the positive form. allow

all warning messages. The negative form is not
recommended since it may mask problems that

should be repaired. Default: yes.

-version Display the program version number on

stderr. This will also include an indication of

who compiled the program, the host name on

which it was compiled, the time of compilation,

and the type of string-value matching code se-

lected, when that information is available to the

compiler.

4 Prettyprinting

A prettyprinter for any language must be able to

deal with more than just those files that strictly con-
form to the language grammar. For programming

languages, most compilers implement language ex-

tensions that prettyprinters must recognize and try

to deal with gracefully. bibclean recognizes two

such input languages: BIB^ and SCRIBE.

Ideally, a prettyprinter should be able to pro-

duce output even in the presence of input errors, dis-
playing it in such a way as to make the location of

the errors more evident. bibclean provides detailed

error and warning messages to help pinpoint errors.

With the -f ile-position command-line option, it

will flag the byte, column, and line, positions of the
start and end of the current token in both input and

output files.
Here is a summary of the actions taken by bib-

clean on its input stream.

0 Space around string concatenation operators is

standardized.

0 Leading and trailing space in value strings is

discarded, and embedded multiple spaces are
collapsed to a single space.

0 String lengths are tested against the limit in
standard BIBTEX, and warnings issued when

the limit is exceeded. The standard limit has

proven to be too small in practice, and many

sites install enlarged versions of BIB^. Per-
haps BIBTEX version 1.0 will use more realistic

values, or eliminate string length limits alto-

gether.

0 Outer parentheses in entries are standardized

to braces.

0 Braced value strings are standardized to quoted

value strings.

0 Field/value pairs are output on separate lines.

wrapping long lines to not exceed a user-

definable standard width whenever possible.

0 A trailing comma is supplied after the last field/

value assignment. This is convenient if assign-
ments are later reordered during editing.

-f ix-f ont-changes provides for protecting

value string text inside font changes from down-

casing.

0 Brace-level zero upper-case acronyms in titles

are braced to protect from downcasing.

0 -no-par-breaks provides a way to check for

blank lines in string values, which may be in-

dicative of unclosed delimiter errors.

0 Umlaut accents, \"x, inside value strings at
brace-level zero are converted to (\"x). This

has been found to be a common user error.

 BIB^ requires embedded quotes to be nested

inside braces.

Letter-case usage in entry and field names is

standardized, so for example, mastersthesis
and MASTERSTHESIS become Mast ersThesis.

ISBN and ISSN checksums are validated.
 BIB^ style files that recognize field names for

them are available in the TUG bibliography col-

lection, and the bibliography for this document

uses them.

a Name modifiers like Jr, Sr, etc., are recognized

and handled by -f ix-names, and names are put

into a standard order, so that Bach, P . D . q.
becomes P . D . 4. Bach.

a With -f ix-init ials, uniform spacing is sup-

plied after brace-level zero initials in personal
0 Space between entries is discarded, and re-

placed by a single blank line.
names.

TUGboat, Volume 14 (1993), No. 4

With -check-values, citation key and field
values are matched against patterns to catch
irregularities and possible errors.

Dates of the month, like "July 14", are con-
verted to use month abbreviations, j u l #

" 14".

Page number ranges are converted to use en-
dashes, instead of hyphens or em-dashes.

With -check-values, year numbers are checked
against patterns, then if no match is found, the
year values are checked against reasonable lim-
its.

With -trace-f ile-opening, file open at-
tempts are logged. This helps in the diagnosis
of problems such as missing files, or incorrect
file permissions.

0 On lexing or parsing errors, bibclean attempts
to resynchronize by flushing the input until it
finds the next line containing an initial @ char-
acter preceded by nothing other than optional
white space.

0 When an @ character begins a line, a new bibli-
ography entry is assumed to have started. The
current brace balance is then tested to make
sure it is zero. A non-zero brace level is strongly
suggestive of an error, so bibclean issues an er-
ror message, and zeros the brace level.

0 At end-of-file, the brace level is tested. A non-
zero brace level is very likely an error, and oc-
casions an error message.

5 Pattern matching and initialization files

bibclean can be compiled with one of three different
types of pattern matching; the choice is made by the
installer a t compile time:

The original version uses explicit hand-coded
tests of value-string syntax.

The second version uses regular-expression
pattern-matching host library routines together
with regular-expression patterns that come en-
tirely from initialization files.

0 The third version uses special patterns that
come entirely from initialization files.

The second and third versions are the ones
of most interest here, because they allow the user
to control what values are considered acceptable.
However, command-line options can also be speci-
fied in initialization files, no matter which pattern-
matching choice was selected.

When bibclean starts, it searches for initial-
ization files, finding the first one in the system ex-
ecutable program search path(on UNIX and IBM

PC-DOS, PATH) and the first one in the BIBINPUTS

search path, and processes them in turn. Then,
when command-line arguments are processed, any
additional files specified by - ini t -f i l e filename

options are also processed. Finally, immediately
before each named bibliography file is processed,
an attempt is made to process an initialization
file with the same name, but with the extension
changed to . i n i . The default extension can be
changed by a setting of the environment variable
BIBCLEANEXT. This scheme permits system-wide,
user-wide, session-wide, and file-specific initializa-
tion files to be supported.

When input is taken from stdin, there is no
file-specific initialization.

For precise control, the -no-init-f i l e s option
suppresses all initialization files except those explic-

- -

itly named by - in i t - f i l e filename options, either
on the command line, or in requested initialization
files.

Recursive execution of initialization files with
nested - in i t - f i l e filename options is permitted;
if the recursion is circular, bibclean will finally get a
non-fatal initialization file open failure after opening
too many files. This terminates further initialization
file processing. As the recursion unwinds, the files
are all closed, then execution proceeds normally.

An initialization file may contain empty lines,
comments from percent to end of line (just like
m), option switches, and fieldlpattern or field/
patternlmessage assignments. Leading and trailing
spaces are ignored. This is best illustrated by the
short example in Table 1. Long logical lines can be

Table 1: Sample bibclean initialization file.

"/,% S t a r t with our departmental pa t t e rns

- i n i t - f i l e /u/math/bib/.bibcleanrc

%% Make some small addi t ions

chapter = "\"D\"" %% 23

pages = "\"D--D\"" %% 23--27

volume = "\"D \\an\\d D\"" %% 11 and 12

year = \
"\"dddd, dddd, dddd\"I1 \
"Multiple years spec i f ied ."

%% 1989, 1990, 1991

-no-fix-names %% do not modify

%% author/edi tor l ists

TUGboat, Volume 14 (1993), No. 4

split into multiple physical lines by breaking at a

backslash-newline pair; the backslash-newline pair

is discarded. This processing happens while charac-
ters are being read, before any further interpretation

of the input stream.

Each logical line must contain a complete op-

tion (and its value, if any), or a complete fieldlpat-

tern pair, or a field/pattern/message triple.

Comments are stripped during the parsing of
the field, pattern, and message values. The com-

ment start symbol is not recognized inside quoted

strings, so it can be freely used in such strings.
Comments on logical lines that were input as

multiple physical lines via the backslash-newline

convention must appear on the last physical line;

otherwise, the remaining physical lines will become
part of the comment.

Pattern strings must be enclosed in quotation

marks; within such strings, a backslash starts an

escape mechanism that is commonly used in UNIX
software. The recognized escape sequences are given

in Table 2. Backslash followed by any other charac-

ter produces just that character. Thus, \" produces
a quotation mark. and \ \ produces a single back-

slash.

Table 2: Escape sequences in quoted strings.

\a alarm bell (octal 007)

\b backspace (octal 010)

\ f formfeed (octal 014)
\n newline (octal 012)

\r carriage return (octal 015)

\t horizontal tab (octal 011)

\V vertical tab (octal 013)
\ooo character number octal ooo (e.g.

\012 is linefeed). Up to 3 octal

digits may be used.
\Oxhh character number hexadecimal hh

(e.g. \OxOa is linefeed). xhh may

be in either letter case. Any num-

ber of hexadecimal digits may be
used.

An ASCII NUL (\O) in a string will terminate

it; this is a feature of the C programming language

in which bibclean is implemented.

Field/pattern pairs can be separated by arbi-
trary space, and optionally, either an equals sign or

colon functioning as an assignment operator. Thus,
the following are equivalent:

pages="\"D--~\""

pages:"\"D--D\""

pages "\"D--I)\""

pages = "\"D--D\""

pages : "\"D--D\""

pages "\"D--D\""

Each field name can have an arbitrary number of

patterns associated with it; however, they must be

specified in separate fieldlpattern assignments.

An empty pattern string causes previously-

loaded patterns for that field name to be forgot-

ten. This feature permits an initialization file to

completely discard patterns from earlier initializa-

tion files.
Patterns for value strings are represented in a

tiny special-purpose language that is both conve-
nient and suitable for bibliography value-string syn-

tax checking. While not as powerful as the language

of regular-expression patterns, its parsing can be
portably implemented in less than 3% of the code

in a widely-used regular-expression parser (the GNU

regexp package).
The patterns are represented by the special

characters given in Table 3.

Table 3: Initialization file pattern characters.

one or more spaces
exactly one letter

one or more letters

exactly one digit
one or more digits

exactly one Roman numeral
one or more Roman numerals (i.e.

a Roman number)
exactly one word (one or more

letters and digits)
one or more words, separated by

space, beginning and ending with

a word

one 'special' character, one of the
characters u!#O*+,-./: ;?[I1,
a subset of punctuation charac-

ters that are typically used in

string values
one or more 'special' characters

one or more 'special'-separated

words, beginning and ending with

a word
exactly one x (x is any character),

possibly with an escape sequence

interpretation given earlier

exactly the character x (x is any-

thing but one of these pattern
characters: aAdDrRwW. : u\)

TUGboat, Volume 14 (1993), No. 4

The X pattern character is very powerful, but
generally inadvisable, since it will match almost any-

thing likely to be found in a BIB^ value string.

The reason for providing pattern matching on the
value strings is to uncover possible errors, not mask

them.

There is no provision for specifying ranges or
repetitions of characters, but this can usually be
done with separate patterns. It is a good idea to ac-

company the pattern with a comment showing the

kind of thing it is expected to match. Here is a
portion of an initialization file giving a few of the

patterns used to match number value strings:

number = "\llD\" 11 %% 23

number = " \ " A AD\"" %% PN LPS5001

number = "\!'A D(D)\"" %% R J 34(49)
number = " \ " A D \ " " %% XNSS 288811
number = " \ " A D \ \ . D \ I 1 " %% Version 3.20
number = fl\"A-A-D-D\"" %% UMIAC-TR-89-11
number = 11 \ "A-A-D\ 11 11 %% CS-TR-2189

number = "\"A-A-D\\ . D \ " " %% CS-TR-21.7

For a bibliography that contains only Ar t ic le en-
tries, this list should probably be reduced to just

the first pattern, so that anything other than a digit

string fails the pattern-match test. This is easily

done by keeping bibliography-specific patterns in a
corresponding file with extension . i n i , since that

file is read automatically. You should be sure to use

empty pattern strings in this pattern file to discard
patterns from earlier initialization files.

The value strings passed to the pattern matcher

contain surrounding quotes, so the patterns should
also. However, you could use a pattern specification

like "\"DM to match an initial digit string followed
by anything else; the omission of the final quota-

tion mark \ " in the pattern allows the match to

succeed without checking that the next character in

the value string is a quotation mark.

Because the value strings are intended to be
processed by m, the pattern matching ignores

braces, and T)$ control sequences, together with

any space following those control sequences. Spaces
around braces are preserved. This convention allows

the pattern fragment A-AD-D to match the value

string TN-K\slash 27-70, because the value is im-
plicitly collapsed to TN-K27-70 during the matching

operation.

bibclean's normal action when a string value
fails to match any of the corresponding patterns is to

issue a warning message similar to this: Unexpected
value i n ' 'year = " 192" ' ' . In most cases, that

is sufficient to alert the user to a problem. In some
cases, however, it may be desirable to associate a dif-

ferent message with a particular pattern. This can

be done by supplying a message string following the
pattern string. Format items %% (single percent), %e

(entry name), %f (field name), %k (citation key), and

%v (string value) are available to get current values

expanded in the messages. Here is an example:

chapter = l l \ l l D : D \ l l l l \
"Colon found i n "%f = %v"" %% 23:2

To be consistent with other messages output by

bibclean, the message string should not end with
punctuation.

If you wish to make the message an error, rather

than just a warning, begin it with a query (?), like
this:

chapter = l l \ l l D : D \ l l l l \
"?Colon found i n "%f = %v"" ' " A/ . 23:2

The query will not be included in the output mes-

sage.
Escape sequences are supported in message

strings, just as they are in pattern strings. You can

use this to advantage for fancy things, such as termi-

nal display mode control. If you rewrite the previous
example as

chapter = "\"D:D\"" \
"?\O33 [7mColon found \

i n "%f = %vJ'\033COm" %% 23:2

the error message will appear in inverse video on

display screens that support ANSI terminal control

sequences. Such practice is not normally recom-

mended, since it may have undesirable effects on

some output devices. Nevertheless, you may find it
useful for restricted applications.

For some types of bibliography fields, bibclean
contains special-purpose code to supplement or re-

place the pattern matching:

ISBN and ISSN field values are handled this way

because their validation requires evaluation of

checksums that cannot be expressed by simple

patterns; no patterns are even used in these two
cases.

When bibclean is compiled with pattern-

matching code support, chapter, number,
pages, and volume values are checked only by

pattern matching.

month values are first checked against the stan-

dard BIB^ month name abbreviations, and

only if no match is found are patterns then used.

year values are first checked against patterns,

then if no match is found, the year numbers

are found and converted to integer values for

testing against reasonable bounds.

TUGboat, Volume 14 (1993), No. 4

Values for other fields are checked only against

patterns. You can provide patterns for any field

you like, even ones bibclean does not already know
about. New ones are simply added to an internal ta-

ble that is searched for each string to be validated.

The special field, key, represents the biblio-
graphic citation key. It can be given patterns, like

any other field. Here is an initialization file pattern

assignment that will match an author name, a colon,

an alphabetic string, and a two-digit year:

key = "A:Addl' %% Knuth:TB86

Notice that no quotation marks are included in the

pattern, because the citation keys are not quoted.

You can use such patterns to help enforce uniform
naming conventions for citation keys, which is in-

creasingly important as your bibliography data base
grows.

6 Lexical analysis

The command-line option -no-prettyprint re-
quests bibclean to function as a lexical analyzer

instead of as a prettyprinter. Its output is then a

stream of lines, each of which contains one token.

For the bibliography entries shown in Section 1; here
is what the output looks like; the long lines have

been wrapped by a backslash-newline to fit in these
narrow journal columns:

line 1 "stdin"

2 AT 11 Q 11

18 STRING "String"

11 LBRACE "{"

1 ABBREV "pub-AW"

6 EQUALS "=I1

line 2 'Istdin"

19 VALUE l'\llAd{\\-d)i{\\-s)on-Wes(\

\\-l)ey\""

15 RBRACE ") "

line 4 "stdin"

13 NEWLINE "\n"

13 NEWLINE " \n"
2 AT N Q I I

5 ENTRY "Book"

I I LBRACE " {I1

10 KEY "Lamport : LDP85"

3 COMMA l1 ,
13 NEWLINE "\n"

line 5 "stdin"

7 FIELD "author"

6 EQUALS "="
19 VALUE "\"Leslie Lamport\""

3 COMMA ,
13 NEWLINE " \n1I
line 6 "stdin"

7 FIELD "title"

6 EqUALS "="

line 8 "stdin8'

19 VALUE "\"{\\LaTeX)---{A) Docme\

nt Preparation System---User's Guide and \
Reference Manual\""

3 COMMA " , "
13 NEWLINE "\nu

line 9 "stdin"

7 FIELD "publisher"

6 EQUALS I' = "
I ABBREV "pub-AW"

3 COMMA ",I1

13 NEWLINE "\nu

line 10 "stdin"

7 FIELD "year"

6 EQUALS "= "
19 VALUE "\" 1985\""
3 COMMA " ,"
13 NEWLINE "\n"

line 11 "stdin"

7 FIELD "ISBN"

6 EQUALS It="

19 VALUE "\"0-201-15790-X\""

3 COMMA " , "
13 NEWLINE "\nH

line 12 "stdin"

15 RBRACE ") "

line 13 "stdinl'

13 NEWLINE "\nu

Each line begins with a small integer token type

number for the convenience of computer programs.

then a token type name for human readers. followed
by a quoted token string.

Lines beginning with a sharp, #, are ANSI/ISO

Standard C preprocessor line-number directives [3,

Section 3.8.41 to record the input line number and

file name.

There are currently 19 token types defined in
the documentation that accompanies bibclean. Be-

cause BIB^ styles can define new field names,

there is little point in the lexical analyzer of attempt-

ing to classify field names more precisely; that job
is left for other software.

Inside quoted strings, the ANSI/ISO Standard
C 13, Section 3.1.3.41 backslash escape sequences

shown in Table 2 on page 401 are used to encode

non-printable characters. In this way, a multi-line

string value can be represented on a single line. This
is convenient for string-searching applications. If the

long output lines prove a problem on some systems,

the -max-width nnn command-line option can be

used to wrap lines at a specified column number by
the insertion of a backslash-newline pair.

TUGboat, Volume 14 (1993), No. 4

As a simple example of how this token stream
might be processed, the UNIX command pipeline

bibclean -no-prettyprint mylib. bib I \
awk '$2 == llKEY1l {print $3)' 1 \
sed -e 's/"//gJ I \
sort

will extract a sorted list of all citation keys in the
file mylib. bib.

As a more complex example, consider locating
duplicate abbreviations and citation keys in a large
collection of bibliography files. This is a daunting
task if it must be done by visual scanning of the files.
It took me less than 10 minutes to write and debug
a 35-line nawk [I] program (15 lines of comments, 20
of code) that processed the token stream from bib-
clean and printed warnings about such duplicates.

The processing steps can be represented by the
simple UNIX pipeline

bibclean -no-prettyprint bibfiles 1 \
tr ' [A-ZI ' ' [a-zl ' I \
nawk -f bibdup.awk

which is most conveniently encapsulated in a com-
mand script so that it can be invoked more simply
as

bibdup *.bib

to produce output like this:

Duplicate string abbreviation ["pub-awl1] :

line 1 llll.bib"

line 141 "master.bibl'

Duplicate key ["lamport : ldp85"I :

line 4 "1l.bibM

line 4172 "master.bibM

. . .
B I B W ' S grammar is somewhat hazy, so it is

not easy to perform a lexical analysis without some
context sensitivity. bibclean therefore produces the
lexical token stream merely as an alternate output
format. In particular, this means that any requested
run-time formatting options will have been applied
to the tokens before they are output to the lexical
token stream. For example, a SCRIBE bibliography
file can be converted to a BIB^ token stream so
that software that processes bibclean's output need
not be SCRIBE-aware.

7 Portability

bibclean is written in ANSI/ISO Standard C [3]
with great care taken to produce maximum portabil-
ity. It has been successfully tested with more than
30 different compilers on all major workstation, and
one mainframe, UNIX systems, plus VAX VMS, PC-

DOS, OS/2, and Atari TOS.

The C programming language has become the
language of choice today for most personal computer
and UNIX software development, and the increasing
availability of C implementations conforming to the
1989 Standard [3] makes it easier to write code that
will compile and run without modification on a wide
variety of systems.

C does not have Pascal's problems with char-
acter strings and dynamic memory allocation that
forced Don Knuth to implement the WEB string pool
feature and to use compile-time array allocation in
the software development. C's rich operator
syntax, its powerful run-time library, and generally
excellent operating-system interfaces have made it
widely popular. More than a million copies of the
first edition of The C Programming Language book
[13] have been sold, and the second edition 1141 may
do even better.

Nevertheless, C has some serious problems.
Philippe Kahn, the founder of Borland Interna-
tional, has called C a write-only language. Two
books have been written about its syntactical pe-
culiarities [9, 171, and one of them has already ap-
peared in a second edition.

The only way to overcome these problems is
meticulous care in programming, and experience
with as many compilers and computer architectures
as possible. Several books offer valuable advice on
C portability 110, 11, 19, 23, 24, 26, 291.

C++ [8, 301 is an extension of C to support
object-oriented programming, and has an enthusias-
tic following. ANSI/ISO standardization efforts are
in progress, sadly while the language is still evolving.

From the point of view of a C programmer, the
advantage of C++ over C is its much stricter check-
ing of type conversions and intermodule interfaces.
bibclean has been carefully written to be compil-
able under C++ as well as C, and to date, has been
tested with more than a dozen C++ and Objective
C (another C superset) compilers.

All of the extra features of the C++ language
are strictly avoided, because using them would se-
riously limit bibclean's portability. Not only is

the syntax of the C++ language under evolution,
but the C++ class libraries are for the most part
completely dependent on the particular implemen-
tation. Microsoft's 1020-page documentation of its
C++ class library is 10% larger than that of its C
run-time library.

Nevertheless, I strongly recommend use of C++
compilers in preference to C compilers, so as to catch
bugs at compile time that would otherwise not be
found until post-mortem dump time, or when the
code is ported to a new architecture.

TUGboat, Volume 14 (1993), No. 4 405

8 Scribe bibliography format

The SCRIBE document formatting system [25]
greatly influenced LAW and BIB^, as well as the
GNU Emacs W i n f o system.

With care, it is possible to share bibliography
files between SCRIBE and BIB^. Nevertheless,
there are some differences, so here is a summary
of features of the SCRIBE bibliography file format.
We record them because they are difficult to deter-
mine from the published manual, and because read-
ers may sometimes acquire files in this format with-
out having prior exposure to SCRIBE.

1. Letter case is not significant in field names and
entry names, but case is preserved in value
strings.

2. In fieldlvalue pairs, the field and value may be
separated by one of three characters: =, /, or ,
(space). Space may optionally surround these
separators.

3. Value delimiters are any of these seven pairs:
€) , [I , (I , < > , ' ' , I 1 " , a n d c ' .

4. Value delimiters may not be nested, even
though with the first four delimiter pairs,
nested balanced delimiters would be unambigu-
ous.

5 . Delimiters can be omitted around values that
contain only letters, digits, sharp (#), amper-
sand (&) , period (.) , and percent (%) .

6. Outside of delimited values, a literal at-sign (0)

is represented by doubled at-signs (@a).
7. Bibliography entries begin with @name, as for

 BIB^, but any of the seven SCRIBE value de-
limiter pairs may be used to surround the values
in fieldlvalue pairs. As in (4), nested delimiters
are forbidden.

8. Arbitrary space may separate entry names from
the following delimiters.

9. QComment is a special command whose delim-
ited value is discarded. As in (4), nested delim-
iters are forbidden.

10. The special form

@Begin{comment 3
. . .
@End{comment 3

permits encapsulating arbitrary text contain-
ing any characters or delimiters, other than
@End{comment}. Any of the seven delimiter
pairs may be used around the word com-
ment following the @Begin or @End; the de-
limiters in the two cases need not be the
same, and consequently, @Begin{comment)/
@E.d{comment} pairs may not be nested.

11. The key field is required in each bibliography
entry.

12. A backslashed quote in a string will be as-
sumed to be a TFJ accent, and braced appro-
priately. While such accents do not conform to
SCRIBE syntax, S C ~ ~ ~ ~ - f o r m a t bibliographies
have been found that appear to be intended for
TEX processing.

Because of this loose syntax, bibclean's nor-
mal error detection heuristics are less effective, and
consequently, SCRIBE mode input is not the default;
it must be explicitly requested.

9 Recommendations for B i b m design

The documentation available for BIB^ leaves sev-
eral points about the input syntax unclear, and I
had to obtain answers to the following questions by
experiment:

Can an at-sign occur inside a @Comment{. . .)?
No.

Can string abbreviation names be used on the
right-hand side of string definitions? Yes.

Can the argument of @String be empty? No.

Can a citation key be omitted in an entry? No.

0 Can the list of assignments in an entry be
empty? Yes.

Can a QComment { . . . } occur between arbitrary
tokens? No.

Are newlines preserved in the argument of a
@Preamble{. . .}? The answer is relevant if the
user includes comments in the preamble
material. No.

I view the experimental answers to these questions
as pure happenstance, and could reasonably argue
for the opposite answers to the ones obtained.

Grammar

The most important recommendation that I can
make for the next version of BIB^ is that it must
have a rigorous grammar, including a well-defined
comment syntax.

The grammar can almost be of the simple class
LL(0) [2], requiring no lookahead during parsing,
and one-character lookahead during lexical analysis.
However, the presence of the string concatenation
operator complicates things sufficiently to require
at least an LL(1) grammar.

Such grammars are straightforward to handle
with either hand-coded parsers, or with parsers au-
tomatically generated from grammar files by com-
piler development tools like the UNIX l ex [20] and
yacc [12, 21, 22, 281 programs, or the Free Software
Foundation equivalents, f l e x and bison.

406 TUGboat, Volume 14 (1993): No. 4

yacc and bison implement LALR(1) parsers;

the acronym stands for "Look-Ahead at most 1 to-
ken with a Left-to-Right derivation". These are sim-

pler than the L R (~) grammars introduced by none

other than the author of ?jEX in the fundamental pa-

per on the theory of parsing [15]. Nevertheless, they

are sufficient for a broad class of language grammars,

including most major programming languages, and
importantly, they produce compact, efficient, fast,

and reliable parsers. LL(1) grammars are a special

case of LALR(1) grammars, and we will later define
a BIB^ grammar in LALR(~) form in Section 11.

Comment syntax

The comment syntax should preferably be identical
t o that of m, so that a comment runs from per-

cent to end-of-line, and then additionally gobbles all
leading horzzontal space on the next line, up to, but
not including, its end-of-he. This permits break-

ing of long lines without having to destroy inden-
tation that is so necessary for readability. Percent-

initiated comments are already supported in BIBTJTJ

style files, though such comments end after the first
following newline.

For SCRIBE compatibility, BIB^ should also

support a @Comment{. . .) entry type. This will re-
quire additions to all BIBTJTJ style files, since the

entry types are known there, and not in the BIBTJTJ
code itself. BIB^ 0 . 9 9 ~ already knows about
@Comment{. . .), but the WEB code section "Process

a comment command will have to be extended to
deal with the grammar changes.

It is important that B I B W not discard @Corn-
menti. . .) entries, because it would then not be pos-

sible to write a BIB^ style file that converted a
bibliography file to another format without loss of

information. One such style already exists to con-
vert BIB^ files to UNIX bib/ref er format.

Characters in names

The characters that can appear in key, entry, and

field names must be defined by enumeration, rather

than by exclusion, as is currently done [18, Sec-
tion B.1.31. The reason is that character sets vary

between computers, and the new, and very much

larger, IS010646M character set may be widely

available in this decade. These variations make
the set of admissible name characters vary between

systems, compromising portability. I strongly rec-

ommend following the conventions for identifiers in
widely-used programming languages to define the

grammar of key, entry, and field names. It seems

to me that letters, digits, colon, hyphen, and possi-
bly plus and slash, should be adequate, and names

should be required to begin with a letter. 'Letter'

here should include only the 26 Roman letters 'A'

through 'Z', because allowing letters from other al-
phabets opens a horrid can of worms that will se-

riously impact portability of bibliography files until

the computer world has a single uniform character

set.
I tested this set of characters against 92 500

entries in local bibliography files, and found only a

few keys that used other characters: the new ones

were period and apostrophe (e.g. 01Malley:TB92).

They might therefore be permitted as well, though
I would prefer to omit them, and retrofit changes in

a few citation keys.
The characters permitted in citation keys

should be the same as those in entry and field names,

so as to avoid user confusion.

Error reporting

When BIBTJTJ begins to collect a token, it should

record the current line number. When an unclosed

string later causes internal buffer overflow, it could

report something like String buffer overflow on
input lines 24--82 that would better help locate

the offending string by giving its starting and ending

line numbers.
To simplify error recovery in such cases, BIBTJTJ

could additionally require that the @ character that

starts a new entry must be the first non-space char-

acter on a line.

File inclusion

 BIB^ sorely needs a file inclusion facility. With

B I B W 0.99c, this feature is available in a crude
fashion by listing several files in the \bibliography

command. However, this is not sufficiently general,
and requires unnecessary knowledge on the part of

the user of the bibliography.
The author of a BIB^ file should be free to

restructure it into subfiles without requiring modifi-

cations to all documents that use it. File inclusion

is important to allow sharing of common material,

such as @String{. . .) definitions.
SCRIBE uses the form

@Include(filename)

and BIB^ should too. It must be possible to nest

file inclusions to a reasonable depth, at least five

levels.

10 A lexical grammar for Bib-

To test the recommendations of Section 9, I wrote
and tested a lex grammar for BIBTEX. It took just
22 rules to identify the 19 basic token types. The

TUGboat, Volume 14 (1993)) No. 4 407

complete lex file was about 510 lines long, with The first macro, N, represents the set of char-

about 340 lines of C code mostly concerned with the acters permitted in BIB^ names of abbreviations,

input and output of strings, and 120 lines of function citation keys, entries, and fields. If this set is ever

and variable declarations. After lex processing. the modified, this is the only place where that job has

complete C program was about 1130 lines long; with to be done.

f l e x , it is 1700 lines long. This program is named

biblex, and its output is compatible with that of

bibclean with the -no-prettyprint option. How-

ever, it offers none of bibclean's other services.

The l ex grammar is presented in this section

in the style of literate programming, with grammar
rules interspersed with descriptive text. The index

at the end of this document provides an essential

feature of a literate program. To my knowledge,

no WEB facility yet exists for lex and yacc. so this
literate program must be handcrafted.

File structure

A lex file has this general structure:

de f in i t i ons

%%
r u l e s

%%
user funct ions

C declarations and definitions can be included
in the definitions part if they are enclosed in %i
and %). Such text is copied verbatim to the out-

put code file, together with additional lex-supplied
header code.

Running lex on this file produces a C file that

can be compiled and linked with a main program

from the l e x library to produce a working lexical
analyzer. Alternatively, the user can write a cus-

tomized main program which is linked with the lex-

generated code to make a functional lexer.

In the following subsections. we describe the
contents of the definitions and rules parts, but omit

the user functions, since they are not relevant to un-
derstanding the grammar.

Macro definitions

The l ex grammar begins with macro definitions.
lex macros are single letters followed by a regular

expression that defines them.
In regular expressions, square brackets delimit

sets of characters, hyphen is used for character

ranges inside sets, asterisk means zero or more of

the preceding pattern, and plus means one or more.
A period represents any character other than a new-
line.

l ex macro names are braced to request expan-

sion when they are used in grammar rules.

N [A-Za-z] [---A-Za-zO-9 : .+/'I *
It is not reasonable to make this set differ for

these four different uses, because the differences are
insufficient to distinguish between them lexically.

We'll see later that we have to examine surround-

ing context to tell them apart.

Macro 0 represents the set of open delimiters

that start a BIBT~X entry argument. We could ex-
tend this grammar for SCRIBE by adding additional

characters to the set.

0 [((I

Macro W represents a single horizontal space

character.

W [\f \r\t\Ol3l

Notice that we include formfeed, \ f , and vertical

tab. \v, in the set of horizontal space characters,
even though they produce vertical motion on an out-

put device. The reason is that we want to treat them

just like blanks, and distinguish them from newlines.

which are handled separately. lex does not recog-

nize the escape sequence \v, so we have to reencode

it in octal as \013.

Carriage return, \r, is not normally used in
UNIX text files, but is common in some other op-

erating systems. On the Apple Macintosh, carriage

return is used instead of newline as an end-of-line

marker. Fortunately, this will be transparent to us,
because the C language requires [3, Section 2.2.21
that the implementation map host line terminators

to newline on input, and newline back to host line
terminators on output, so we will never see carriage

returns on that system.
The last macro, S, represents optional horizon-

tal space.

s C W I *

Format of grammar rules

The remainder of the grammar consists of pairs of

regular expression patterns and C code to execute
when the pattern is matched. lex uses a "maximal

munch" strategy in matching the longest possible

sequence to handle the case where two rules have

common leading patterns.
In the grammar file, the pairs are each written

on a single line, but we wrap lines here to fit in the

narrow journal columns, with the backslash-newline

convention used earlier.

408 TUGboat, Volume 14 (1993), No. 4

Q token

The first grammar rule says that an Q character
should be recognized as the token named TOKEN-AT.

[@I RETURN (out-token(T0KEN-AT)) ;

On a successful match, the output function op-
tionally emits the token, then returns its argument
as a function value which the lexer in turn returns
to the parser.

The C return statement is hidden inside the
RETURN macro, because for yacc and bison, we need
to bias bibclean's small integer token values to
move them beyond the range of character ordinals.

Comment, Include, Preamble, and String
tokens

The next four rules ignore letter case in matching
the words Comment, Include, Preamble, or String.
If they follow an @ character, they are identified as
special tokens; otherwise, they are regarded as string
abbreviation names.

[Ccl Cool [Mml [Mml [Eel [Nnl [Ttl \
RETURN ((last-token == TOKEN-AT) ?

out-token(T0KEN-COMMENT) :

out-token (TOKEN-ABBREV)) ;

[Iil CNnl CCcl CL11 CUul [Ddl [Eel /CS)CO> \
RETURN ((last-token == TOKEN-AT) ?

out-token(T0KEN-INCLUDE) :

out-token(T0KEN-ABBREV));

CPpl CRrl [Eel CAal CMml CBbl [Lll [Eel /CS3CO3 \
RETURN ((last-token == TOKEN-AT) ?

out-token(T0KEN-PREAMBLE) :

out-token (TOKEN-ABBREV)) ;

[Ssl [Ttl CRrl CIil CNnl CGgl/CS>CO) \
RETURN ((last-token == TOKEN-AT) ?

out-token (TOKEN-STRING) :
out -token (TOKEN-ABBREV)) ;

Although lex supports examination of trail-
ing context in order to identify tokens more pre-
cisely, the presence of arbitrary whitespace and in-
line comments in this grammar makes it impossible
to use this feature. The output routines remember
the last non-space, non-comment token seen in or-
der to make use of leading context to assist in token
identification.

Abbreviation, entry, field, and key tokens

Several token types are recognized by a match with
the name macro, N. Since the same set of charac-
ters can occur in abbreviations, entry names, field
names, and key names, we have to use the record of

leading context to distinguish between the various
possibilities.

CN3 C
if (last-ob j ect == TOKEN-STRING)

RETURN (out-token(T0KEN-ABBREV)) ;

switch (last-token)

C
case TOKEN-COMMA:

RETURN(out-token(T0KEN-FIELD)) ;

case TOKEN-LBRACE:
RETURN (out-token(T0KEN-KEY)) ;

case TOKEN-AT:
RETURN(OU~_~O~~~(TOKEN-ENTRY));

default :
RETURN (out -t oken (TOKEN-ABBREV)) ;

3

3

In the event of errors in the input stream, this
identification of token types may be unreliable; such
errors will be detected later in the parsing program.

Digit string

A digit string is an undelimited value string. The

output function will supply the missing quotation
mark delimiters, so that all strings take a standard
form.

[O-9]+ RETURN \
(out-protected-string(TOKEN-VALUE));

In-line comment token

A percent initiates an in-line comment that con-
tinues to the end of line and then over all leading
horizontal space on the next line.

[%I . * C\nl CS3 \
RETURN (out-token(T0KENJNLINE)) ;

Because this pattern marks the start of a new
token, the previous token has already been termi-
nated. Thus, an line-line comment cannot split a
token. The same is true for w macros, though
not for ordinary T)jX text.

String concatenation token

A sharp sign is the BIB^ string concatenation op-
erator.

[#I RETURN (out-token(TOKEN3HARP)) ;

Delimited string token

A quotation mark initiates a delimited string.

["I RETURN (out-string()) ;

The complete string must be collected by the C
function out-string() because regular expressions
cannot count balanced delimiters.

TUGboat, Volume 14 (1993), No. 4 409

B I B W ' S quoted string syntax is a little un-

usual, in that an embedded quote is not represented

by double quotes, as in Fortran, or by an escape se-

quence, as in C, but rather by putting the quote

character in braces.

Brace tokens

Left and right braces are recognized as single tokens.

[{I RETURN (out-lbrace ()) ;

[}I RETURN (out-rbrace 0 ;

The output functions keep track of the current

brace level to distinguish between outer braces de-

limiting a BIB^ entry, and inner braces delimit-
ing a string value, and return TOKEN-LBRACE, TO-

KEN-LITERAL, TOKEN-RBRACE, or TOKEN-STRING, de-

pending on preceding context.
TOKEN-LITERAL is used for the argument of

Comment and Include entries, and contains the de-

limiting braces.

Parenthesis tokens

In order to simplify the parser grammar, we remap

outer parentheses delimiting arguments of B I B W
entries to braces. However, if the parentheses are

not preceded by a valid entry name, they are out-

put instead as single-character tokens of type TO-
KEN-LITERAL. They cannot legally occur in this

context, but that error will be detected during the

parsing stage. During lexical analysis, we do not

want to have any error conditions.

[(I RETURN (out-lpareno) ;

[) I RETURN (out-rparen0) ;

To support SCRIBE, we would need to add pat-
terns for other delimiters here.

Assignment and separator tokens

The assignment operator and assignment separator
are returned as single tokens.

[=I RETURN (out-token (TOKEN-EQUALS)) ;

[, I RETURN (out -token (TOKEN-COMMA)) ;

Newline token

A newl ine is returned as a separate token because
we want t o be able to preserve line boundaries so

that filter tools that make minimal perturbations

on the input stream can be constructed.

[\nl RETURN (out-token(T0KEN-NEWLINE) ;

Horizontal space token

Consecutive horizontal space characters are re-
turned as a single space token, for the same reason

that newlines are recognized as distinct tokens by

the preceding rule.

{W)+ RETURN (out-token (TOKEN-SPACE) ;

Unclassifiable tokens

Finally, we have a catch-all rule: any character not

recognized by one of the preceding rules is returned

as a literal single-character token, and will cause
an error during the parsing. The regular-expression

character period matches anything but a newline,

and we already have a rule for newline.

. RETURN (out-t oken (TOKEN-LITERAL)) ;

Lexical grammar summary

We now have a complete lexical grammar suitable

for lex that can complete tokenize an arbitrary in-

put stream containing any character values what-

ever.
The associated C code functions normalize en-

tries by changing outer parentheses to braces, brace

string delimiters to quotes. and undelimited digit

strings to quoted strings.
All string tokens of type TOKEN-VALUE output

by the lexer will contain surrounding quotes, and

any nested quotes will be braced, with proper care
taken to handle \" accent control sequences prop-

erly.

All special characters inside the quoted strings
will be represented by the escape sequences given

in Table 2 on page 401. Thus, even with a binary

input stream, the output of the lexer will contain

only printable characters.
It must be observed that lex is not capable of

handling all 256 8-bit characters. In particular, it

treats an ASCII NUL (\O) in a string as an end-

of-file condition. Older versions of lex are not 8-

bit clean; they will not reliably handle characters

128-255. This latter deficiency is being remedied by
the X/Open Consortium activities to international-

ize and standard UNIX applications f321.

11 A parsing grammar for Bib=

To complete the job, I wrote a yacc grammar for

 BIB^. This was considerably more work than the

lex grammar, mostly due to my relative inexperi-
ence with writing LALR(1) grammars, and it took

several days to understand the process well enough

to eliminate the grammatical ambiguities that ini-

tially plagued me.

The final complete yacc program is about 270
lines long, and produces a parser of 760 (yacc) to

1000 (bison) lines, excluding the lexer. The gram-

mar contains just 35 rules. Ten of these rules could
be eliminated if we arranged for the lexer to dis-

card space and in-line comments, but for a pretty-

printer and other BIB^ tools, they must be pre-

served. This parsing program is called bibparse;

it can be used with the output of either bibclean

-no-prett ypr in t , or biblex.

The complete BIB^ grammar is given below,
expressed as yacc rules, again in literate program-
ming style. It must be augmented by about 180 lines

of C code to provide a working parser.

File structure

A yacc file has this general structure:

dec lara t ions

%%
r u l e s

%%
user funct ions

C declarations and definitions can be included
in the declarations part if they are enclosed in %(and

%I. Such text is copied verbatim to the output code
file, together with additional yacc-supplied header

code.

Running yacc on this file produces a C file that
can be compiled and linked with the lexical analyzer

code to produce a working parser.

In the following subsections, we describe the
contents of the declarations and rules parts, but
omit the declaration C code and the user functions,

since they are not relevant to understanding the
grammar.

Format of grammar rules

The grammar rules will be presented in top-down

order, from most general, to most particular, since
this seems t o be the best way to understand the over-

all structure of the grammar, and to ensure that it
describes current BIB^ usage, plus our suggested
extensions and clarifications.

The colon in a grammar rule should be read "is"
or "produces", because the rule is also known as a

production. A vertical bar separates alternatives,

and can be read "or". A semicolon terminates the
rule.

Lower-case letters are used for non-teminals,
which are names of rules in the parser grammar.

Upper-case letters are used for terminals, which are
names of tokens recognized by the lexer.

TUGboat, Volume 14 (1993), No. 4

The spacing shown is arbitrary, but conven-

tional for yacc grammars: each rule starts a new

line, with the right-hand side indented from the mar-
gin, and the semicolon occupies a separate line.

Token declarations

The %token declarations merely provide symbolic

names for the integer token types returned by the

lexer. The values are arbitrary, except that they

must exceed 257, and must agree with the definitions

in the lexer code. We simply increment the token

types output from bibclean by 1000, matching the

offset added in the RETURN macro in the lexer.

%token TOKEN-ABBREV

%token TOKEN-AT

%token TOKEN-COMMA

%token TOKEN-COMMENT
%token TOKEN-ENTRY

%token TOKEN-EQUALS
%token TOKEN-FIELD

%token TOKEN-INCLUDE

%token TOKEN-INLINE

%token TOKEN-KEY
%token TOKEN-LBRACE

%token TOKEN-LITERAL
%token TOKEN-NEWLINE

%token TOKEN-PREAMBLE

%token TOKEN-RBRACE
%token TOKEN-SHARP

%token TOKEN-SPACE
%token TOKEN-STRING

%token TOKEN-VALUE

Precedence declarations

The %nonassoc declaration makes the assignment

operator non-associative, so input of the form a =

b = c is illegal.

%nonassoc TOKEN-EQUALS

The first % l e f t declaration makes space, in-line
comment, and newline tokens left associative, and of

equal precedence.

% l e f t TOKEN-SPACE TOKEN-INLINE \
TOKEN-NEWLINE

The second % l e f t declaration makes the BIB^
string concatenation character, #, left associative,

and of higher precedence than space, in-line com-

ment, and newline.

% l e f t TOKEN-SHARP

TUGboat, Volume 14 (1993), No. 4 411

These precedence settings are crucial for resolv-

ing conflicts in this grammar which arise in assign-

ments when the parser has seen an assignment op-

erator and a value. Without the operator prece-

dences, it cannot decide whether to complete the

assignment, or to read ahead looking for a concate-
nation operator.

B i b w file

The beginning of the grammar rules is indicated by
a pair of percent characters.

%%

The first rule defines what we are going to
parse, namely, a B i b 7&X file. The left-hand side of

the first rule is known as the grammar's s tar t s y m -
bol.

bibtex-f i l e :

opt-space
I opt-space ob jec t - l i s t opt-space

9

This rule says that a BIBTEX file contains either

optional space, or optional space followed by a list of

objects followed by optional space. This definition
permits a file to be empty, or contain only space

tokens, or have leading and trailing space.

Object lists

A l ist of objects is either a single object, or a list

of such objects, separated by optional space from
another object.

o b j e c t - l i s t :

object
I ob jec t - l i s t opt-space object

3

For LL(1) parsers, usually implemented by
hand-coded recursive descent programs, this kind

of left-recursive rule must be rewritten by standard

methods [2, pp. 47-48, 176-1781 to avoid an infinite

loop in the parser. In this rule, we would instead de-

fine a list as an object, separated by optional space
from another list. However, for LALR(1) parsers,

left-recursive definitions are preferable, because they

avoid parser stack overflow with long lists.

Objects

An object is one of the BIB^ @name{. . .) con-

structs. Notice that we allow optional space between
the Q and the name.

object :

TOKEN-AT opt-space at-object

In this grammar, we will consistently allow op-

tional space between a n y pair of BIB^ tokens;

space is described more precisely below. This con-

vention is easy to remember, and easy to implement
in the grammar rules.

While it would be possible to include the @ as

part of the name, making Qname a single lexical to-

ken, both BIB^ and SCRIBE permit intervening

space, so we cannot collapse the two into a single

token.

Entry types and error recovery

Here are the possibilities for the name following an

Q, which we call an at-object.

a t-object :

comment

/ entry
I include

I preamble

I s t r i n g

I e r ro r TOKEN-RBRACE

9

Comment. Include, Preamble, and S t r ing must

be handled separately from other types of entries,

like Ar t ic le and Book, because their braced argu-

ments have a different syntax.
The rule with e r ro r is a special one supported

by yacc and bison. It says that if an at-object

cannot be recognized at the current state of the

parse. then the input should be discarded until a
right brace is found. An error message will be issued

when this happens, but recovery will be attempted

following that right brace. Without this error han-
dling, any input error will immediately terminate

the parser, hardly a user-friendly thing to do.

This is the only place where we will attempt er-

ror repair, although we could certainly do so in other
rules, such as in the assignment rule below. The

goal here is to present a rigorous complete gram-

mar, without additional embellishments that would

complicate understanding.

Comment entry

A BIB^ @Comment{. . .) is special in that the only

requirement on the argument is that delimiters be
balanced. The lexer returns the delimited argument

as a single literal string, including the delimiters,

and standardizes the delimiters to braces.

comment :
TOKEN-COMMENT opt-space

TOKEN-LITERAL

,

412 TUGboat, Volume 14 (1993), No. 4

Bibliography en t ry However, the file name can have embedded space if

A BIB= bibliography entry is braced text contain-
ing a citation key, a comma. and a list of assign-

ments. The rules provide for an optional assign-

ment list, and for an optional trailing comma. To

shorten the rules, we introduce a subsidiary rule,

entry-head, to represent their common prefix.

entry: entry-head

assignment-list

TOKEN-RBRACE

1 entry-head

assignment-list

TOKEN-COMMA opt-space

TOKEN-RBRACE

I entry-head TOKEN-RBRACE

entry-head:

TOKEN-ENTRY opt-space

TOKEN-LBRACE opt-space

key-name opt-space

TOKEN-COMMA opt-space

3

There is no opt-space item following assign-

ment-list because it is included in the definition

of the latter. This infelicity seems to be necessary
to obtain a grammar that conforms to the LALR(1)

requirements of yacc and bison.

K e y n a m e

Because of intervening newlines and in-line com-
ments, the lexical analyzer cannot always correctly

recognize a citation key from trailing context. It

might instead erroneously identify the token as an
abbreviation. We therefore need to account for both

possibilities:

key-name :

TOKEN-KEY

I TOKEN-ABBREV

Include e n t r y

The Include entry is followed by a file name en-

closed in balanced braces.

include :

TOKEN-INCLUDE opt-space

TOKEN-LITERAL

Because file names are operating-system depen-
dent, the only restrictions that are placed on the file

name are tha t it cannot contain unbalanced braces,
and that it cannot contain leading or trailing space.

the operating system permits.

 BIB^ should discard the delimiting braces
and surrounding space in the TOKEN-LITERAL to iso-

late the file name. It should search for this file in its

standard input path, so that the file name need not
contain an absolute directory path. This feature is

not supported in BIB^ 0.99c, but bibclean and

the lexer and parser recognize it in anticipation of

its eventual incorporation.

Preamble ent ry

The Preamble entry argument is a braced BIB^
string value. BIB^ outputs the argument verba-

tim, minus the outer delimiters, to the . bbl file for

TpX to process.

preamble:

TOKEN-PREAMBLE opt-space

TOKEN-LBRACE opt-space

value opt-space

TOKEN-RBRACE

String ent ry

The String entry argument is a braced single as-

signment.

string:

TOKEN-STRING opt-space

TOKEN-LBRACE opt-space

assignment opt-space

TOKEN-RBRACE

,

Value str ing

A BIB'QX value is a string, which may be a simple
value, or a list of strings separated by the string

concatenation operator.

value: simple-value

I value opt-space
TOKEN-SHARP opt-space

simple-value

Simple values

A simple value is either a delimited string, returned

by the lexer as a TOKEN-VALUE, or a string abbrevi-

ation, returned as a TOKEN-ABBREV.

simple-value:

TOKEN-VALUE

I TOKEN-ABBREV
,

TUGboat, Volume 14 (1993), No. 4

The lexer can distinguish between these two be-
cause of the string delimiters. It is up to the parser
support code to verify that an abbreviation is actu-
ally defined before it is used.

Assignment list

The body of most BIB^ entries consists of a list
of one or more assignments, separated by commas.
Notice that this definition does not provide for an
optional trailing comma after the last assignment.
We handled that above in the rules for entry.

assignment-list:

assignment

I assignment-list
TOKEN-COMMA opt-space

assignment

Assignment

An assignment has a left-hand side separated from
a value by the assignment operator, =.

assignment :

assignment-lhs opt-space

TOKEN-EqUALS opt-space value

opt -space

J

Trailing optional space is included here, and
omitted before the comma in assignment-list, in
order to allow the LALR(1) parser to successfully
distinguish between space between a value and a
comma, and space between a value and a string con-
catenation operator.

My initial version of this grammar did not have
this optional space item, and the resulting parser
proved unable to recognize input in which a space
separated a value from a comma or closing brace;
it took quite a bit of experimentation to determine
how to rewrite the grammar to remove this problem.

The left-hand side of an assignment is either a
field name, like author or title, or a string abbre-
viation name. The lexer must distinguish between
the two by remembering the last entry type seen,
because they are made up of exactly the same set of
possible characters.

assignment-lhs :

TOKEN-FIELD

I TOKEN-ABBREV

Optional space

Optional space is either an empty string, here indi-
cated by the /*. . . */ comment, or space.

opt-space :

/* empty */
I space

f

Space

Space is an important part of the grammar. It is

one or more single spaces.

space : single-space

I space single-space
J

We include space handling to support tools that
process BIB^ files and wish to preserve the input
form. In normal compiler design, space is recognized
by the lexer, and discarded, so the parser never has
to deal with it, and the grammar can be considerably
simpler.

Single space

The final rule of the grammar defines a szngle space
as a literal space character. or an in-line comment.
or a literal newline character.

single-space:

TOKEN-SPACE

I TOKEN-INLINE
I TOKEN-NEWLINE
I

Although we could arrange for the lexer to
merge TOKEN-SPACE and TOKEN-NEWLINE into a sin-
gle token, this would interfere with heuristics used
by a prettyprinter to detect empty lines inside string
values, which are possibly indicative of missing de-
limiters.

Parsing grammar summary

We have now completed a yacc grammar for B I ~
that provides a rigorous grammatical analysis of a
stream of tokens recognized by the lexers in Sec-
tions 6 and 10.

Notice that there is no character-string process-
ing whatever in the parser, because it has all been
done in the lexer. Parsing operations just manipu-
late small integer values.

In this version, no actions have been supplied
as C code fragments in the yacc grammar. The only
output of the parser will be the token stream from
the lexer, interspersed by error messages when the
input fails to match a grammar rule.

Error recovery has been kept simple: input

is flushed to the next closing brace, which is pre-
sumably the end of an entry. Braces of type
TOKEN-LBRACE and TOKEN-RBRACE do not occur ex-
cept around apparent entries in the lexer output;

TUGboat, Volume 14 (1993), No. 4

other braces are returned as tokens of type TOKEN-

LITERAL.

No more than one token of lookahead is required
by this grammar, although the lexer often looked
several characters ahead to examine trailing context
in order to distinguish between otherwise similar to-
kens.

 BIB^ users should be able to read this gram-
mar and decide whether a questionable BIB^ con-
struct is legal or not, without having to resort to
software experiments as I did to clarify fuzzy gram-
matical points.

12 Software availability

The source code and documentation for bibclean

are in the public domain, in the interests of the
widest availability and greatest benefit to the 7$X
community. Commercial vendors of m w a r e are
encouraged to include bibclean with their distribu-
t ions.

The distribution also includes the separate com-
plete lexer and parser grammar and code, which can
be processed by l ex or f l ex , and yacc or bison,

respectively. The output C code from these tools
is included so that recipients need not have them
installed to actually compile and run the lexer and
parser.

If you have Internet anonymous f t p access, you
can retrieve the distribution in a variety of archive
formats from the machine f t p .math. utah . edu in
the directory pub/tex/bib. Major Q?J Internet
archive hosts around the world will also have bib-

clean, but the author's site will always have the
most up-to-date version. If you lack f t p capabil-
ity but have electronic mail access, a message to
tuglibQmath. utah. edu with the text

help

send index from tex /b ib

will get you started.
The bibclean distribution includes a substan-

tial collection of torture tests that should be run at
installation time to verify correctness. As with the

t r i p and METAFONT t r a p tests, this testing
has proved valuable in uncovering problems before
the code is installed for general use.

References

[l] Alfred V. Aho, Brian W. Kernighan, and Pe-
ter J . Weinberger. The AWK Programming
Language. Addison-Wesley, Reading, MA,
USA, 1988. ISBN 0-201-07981-X.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. U11-
man. Compilers-Principles, Techniques, and

Tools. Addison-Wesley, Reading, MA, USA,
1986. ISBN 0-201-10088-6.

American National Standards Institute, 1430
Broadway, New York, NY 10018, USA. Amem-
can Natzonal Standard Programmzng Language
C, ANSI X3.159-1989, December 14, 1989.

Nelson H. F. Beebe. Publications about m
and typography. TUGBoat, 12(2):176-183,
May 1991.

Nelson H. F. Beebe. Publications prepared with
m . TUGBoat, 12(12):183-194, May 1991.
TUGBoat, 12(2):183-194, May 1991.

Martin Bryan. SGML-An Author's Guzde
to the Standard Generalzzed Markup Language.
Addison-Wesley, Reading, MA, USA. 1988.
ISBN 0-201-17535-5.

Debra Cameron and Bill Rosenblatt. Learn-

zng GNU Emacs. O'Reilly & Associates. Inc.,
981 Chestnut Street, Newton, MA 02164, USA,
1991. ISBN 0-937175-84-6.

Margaret A. Ellis and Bjarne Stroustrup. The
Annotated C++ Reference Manual. Addison-
Wesley, Reading, MA, USA. 1990. ISBN 0-201-
51459-1.

Alan R. Feuer. The C Puzzle Book. Prentice-
Hall, Englewood Cliffs, NJ 07632, USA, second
edition, 1989. ISBN 0-13-115502-4.

Samuel P. Harbison and Guy L. Steele Jr. C-
A Reference Manual. Prentice-Hall, Englewood
Cliffs, NJ 07632, USA, third edition, 1991.
ISBN 0-13-110933-2.

Rex Jaeschke. Portabzlzty and the C Language.
Hayden Books, 4300 West 62nd Street, Indi-
anapolis, IN 46268, USA, 1989. ISBN 0-672-
48428-5.

Steven C. Johnson. Yacc: Yet another com-
piler compiler. In UNIX Programmer's Manual,
volume 2, pages 353-387. Holt, Reinhart, and
Winston, New York, NY, USA, 1979. AT&T
Bell Laboratories Technical Report, July 31,
1978.

Brian W. Kernighan and Dennis M. Ritchie.
The C Programmzng Language. Prentice-Hall,
Englewood Cliffs, NJ 07632, USA, 1978. ISBN
0-13-110163-3.

Brian W. Kernighan and Dennis M. Ritchie.
The C Programmzng Language. Prentice-Hall,
Englewood Cliffs, NJ 07632, USA, second edi-
tion, 1988. ISBN 0-13-110362-8.

[15] Donald E. Knuth. On the translation of lan-
guages from left to right. Information and Con-
trol, 8(6):607-639, 1965. This is the original
paper on the theory of LR(k) parsing.

TUGboat, Volume 14 (1993), No. 4

[16] Donald E. Knuth. The m b o o k , volume A of
Computers and Typesettzng. Addison-Wesley,
Reading, MA, USA, 1986. ISBN 0-201-13447-
0.

[17] Andrew Koenig. C Traps and Pztfalls. Addi-
son-Wesley, Reading, MA, USA, 1989. ISBN
0-201-17928-8.

[18] Leslie Lamport. B T ' - A Document Prepa-
ratzon System-User's Guide and Reference
Manual. Addison-Wesley, Reading. MA, USA.
1985. ISBN 0-201-15790-X.

[19] J . E. Lapin. Portable C and UNIX Program-
ming. Prentice-Hall, Englewood Cliffs, NJ
07632, USA, 1987. ISBN 0-13-686494-5.

1201 Michael E. Lesk and Eric Schmidt. Lex-a lexi-
cal analyzer generator. In UNIX Programmer's
Manual, volume 2, pages 388-400. Holt, Rein-
hart, and Winston, New York, NY, USA, 1979.
AT&T Bell Laboratories Technical Report in
1975.

[21] John R. Levine, Tony Mason. and Doug Brown.
lex & yacc. O'Reilly & Associates, Inc., 981
Chestnut Street, Newton, MA 02164, USA. sec-
ond edition, 1992. ISBN 1-56592-000-7.

[22] Tony Mason and Doug Brown. Lee €9 yacc.

O'Reilly & Associates, Inc., 981 Chestnut
Street. Newton, MA 02164, USA, 1990. ISBN
0-937175-49-8.

[23] P. J . Plauger. The Standard C Lzbrary. Pren-
tice-Hall, Englewood Cliffs, NJ 07632, USA,
1992. ISBN 0-13-838012-0.

[24] Henry Rabinowitz and Chaim Schaap. Portable
C. Prentice-Hall, Englewood Cliffs, NJ 07632.
USA, 1990. ISBN 0-13-685967-4.

[25] Brian Reid. Scrzbe User's Manual. Carnegie-
Mellon University, Pittsburgh, PA, USA, third
edition, 1980.

[26] Marc J. Rochkind. Advanced UNIX Program-
mzng. Prentice-Hall. Englewood Cliffs, NJ
07632, USA, 1985. ISBN 0-13-011818-4 (hard-
back), 0-13-011800-1 (paperback).

[27] Michael A. Schoonover, John S. Bowie, and
William R. Arnold. GNU Emacs: UNIX Text
Edztzng and Programmzng. Addison-Wesley,
Reading, MA, USA, 1992. ISBN 0-201-56345-2.

1281 Axel T. Schreiner and H. George Friedman.
Jr. Introductzon to Compzler Constructzon Un-
der UNIX. Prentice-Hall, Englewood Cliffs, NJ
07632, USA, 1985. ISBN 0-13-474396-2.

[29] W. Richard Stevens. UNIX Network Program-
mzng. Prentice-Hall, Englewood Cliffs, NJ
07632, USA, 1990. ISBN 0-13-949876-1.

[30] Bjarne Stroustrup. The C+ + Programmzng
Language. Addison-Wesley, Reading, MA,
USA, second edition, 1991. ISBN 0-201-53992-
6.

[31] Eric van Herwijnen. Practzcal SGML. Kluwer
Academic Publishers Group, Norwell, MA.
USA, 1990. ISBN 0-7923-0635-X.

[32] X/Open Company, Ltd. X/Open Portabzl-
zty Guzde, XSI Commands and Utzlztzes, vol-
ume 1. Prentice-Hall, Englewood Cliffs, NJ
07632, USA, 1989. ISBN 0-13-685835-X.

Index

., 401

. bbl, 412

. bibcleanrc, 397

. ini, 400, 402

/* empty */ rule, 413

/*. . .*/, 413
: , 401

?, 402

@, 400

%{, 407, 410

%), 407, 410
%%. 402, 407, 410

%e, 402

%f, 402

%k, 402

%left, 410

Xnonassoc, 410

%token, 410

%v, 402

\'I, 401, 402, 409

@, 405, 406, 408, 411

@Begin, 405

@Begin{ comment) , 405

@Comment, 405

@Comment{ . . .) , 405, 406, 411

@End. 405

@End{ comment) , 405

@Preamble{ . . .) , 405

@String, 405

@String{ . . .) , 406

@@, 405

@name. 405, 411
@name{ ...) , 411

\\, 401
\OxOa, 401

\ O x h h , 401
8-bit clean, 409

A, 401

\a, 401

a, 401
abbreviation, 408, 412, 413

accent control sequence, 409
Aho, Alfred V., 404, 405, 411

TUGboat, Volume 14 (1993), No. 4

anonymous f tp , 414
ANSI/ISO Standard C, 403, 404,

407
apostrophe

in citation key, 406
Apple Macintosh, 407
archive hosts

Internet, 414
Article, 411
assignment, 413

list, 412
operator, 409, 413

associativity of, 410
rule

error recovery in, 411

separator, 409
assignment rule, 412, 413
assignment-lhs rule, 413
assignment-list, 412, 413
assignment-list rule, 412, 413

associativity, 410
at-sign, 405
at-object rule, 411
Atari, 404
-author, 397
author, 413
author name

period after initials, 398
reordering, 398

auxiliary file, 395

\b, 401

Bach, P. D. Q., 399
back end, 397
backslash-newline, 398, 401, 403,

407
backslash-quote, 405
Beebe, Nelson H. F., 396
bib, 406
bibclean, 395-405, 407, 408, 410,

412, 414
bibclean.ini , 397
BIBCLEANEXT, 400
BIBCLEANINI, 397
bibdup, 404
bibdup. awk, 404
BIBINPUTS, 397, 400
biblex, 407, 410
bibliography

entry, 412
file, 396, 397
style, 395, 396

\bibliography, 395, 396, 406
bibliography-specific pattern, 402
\bibliographystyle, 395
bibparse, 410
bibtex-f i l e rule, 411
bison, 405, 406, 408, 410-412, 414
Book, 411

Borland International, 404
brace, 409

ignored in pattern matching,
402

space around, 402
Brown, Doug, 405
Bryan, Martin, 396
buffer overflow, 406

C++, 397, 404
Cameron, Debra, 396
carriage return, 407
chapter, 402
-check-values, 398, 400
checksum

in ISBN and ISSN, 402

citation
key, 395, 403, 412

problems in recognizing,
412

style, 395

\c i te , 396
class library, 404
code generation, 397
colon, 410
comma, 412

optional after assignment, 413

command-line options, see options
Comment, 408, 409, 411
comment

entry, 411
in-line, 408, 410, 412, 413

associativity of, 410
precedence of, 410

syntax, 406

comment, 405
comment rule, 411
concatenation, see string
control sequence

\bibliography, 395, 396, 406
\bibliographystyle, 395
\ c i t e , 396

core dump, 404

D, 401
d, 401
decimal, 397
-delete-empty-values, 398, 399

delimited string, 408, 412
delimiters

in SCRIBE, 405
mismatched, 398, 413

digit string, 408
documentation, 414
dump

post-mortem, 404

editor, see Emacs
editor name

period after initials, 398
reordering, 398

electronic mail server, 414
Ellis, Margaret A., 404
Emacs, 396, 399, 405
embedded quote, 409

empty
pattern, 402
string, 413
values

deleting, 398
entry

name, 408
entry rule, 411-413
entry-head rule, 412
environment variable, 397
error

log file, 399
message, 411

redirecting, 397
recovery, 411
reporting, 406

error rule, 411
-error-log filename, 397
escape sequence, 401, 403, 405, 409

in message text, 402
table, 401

\ f , 401, 407
Feuer, Alan R., 404
field name, 408, 413
file

.bbl, 412

.bibcleanrc, 397

. i n i , 400, 402
bibclean, 404
bibclean. i n i , 397
BIBCLEANEXT, 400
BIBCLEANINI, 397
bibdup, 404
bibdup . awk, 404
BIBINPUTS, 397, 400
bibliography, 396, 397
error log, 399
f tp.math.utah.edu, 414
inclusion, 406, 412
initialization, 397, 398, 400

locating, 399
nested, 400
pattern characters, 401
patterns in, 398

name
space in, 412
syntax of, 412

nawk, 404
PATH, 397, 400
pub/tex/bib, 414
regexp, 401
sample initialization, 400

TUGboat , Volume 14 (1993), No. 4

s tderr , 397, 399

s td in , 400

SYS$SYSTEM, 397
t r , 404
tuglib(9math.utah. edu, 414

-fi le-posit ion, 398, 399

-f ix-f ont-changes, 398, 399
-f i x - in i t i a l s , 398, 399

-f ix-names, 398, 399

f l ex , 405, 407, 414

font changes
fixing, 398

format

item, 402

U, 402
%e, 402

%f, 402
%k, 402

%v, 402
of grammar rules, 407, 410

formfeed, 407

Free Software Foundation, 397, 405
Friedman, Jr., H. George, 405

front end, 397

f t p , 414
ftp.math.utah.edu, 414
function

out-lbrace 0, 409

out-lparen0 , 409

out-protected-string(), 408
out-rbrace 0, 409
out-rparen0 , 409

ou t - s t r ing0 , 408

out-token0 , 408, 409

GNU

Emacs, 396, 399, 405
regexp package, 401

=info, 405
grammar, 405

format of rules, 407, 410
formatting conventions, 410

LALR(l), 406, 412
lexical, 406

LL(O), 405
LL(l) , 405, 406

LR(k), 406
parsing, 409
size of, 407, 410

Harbison, Samuel P., 404
help, 414

-help or -?, 397
Herwijnen, Eric van, 396

hexadecimal, 397

horizontal space character, 407,

409

in-line comment, 408, 410, 412,

413

associativity of, 410

precedence of, 410

Include, 408, 409, 411, 412
include rule, 411, 412

-init-f i l e filename, 397, 398,

400

initialization file, 397, 398, 400

locating, 399

nested, 400

pattern characters, 401
patterns in, 398

sample, 400

Internet archive hosts, 414

interpretation of code, 397
ISBN, 402

ISBN (International Standard
Book Number), 399

IS010646M character set, 406

ISSN, 402

ISSN (International Standard
Serial Number), 399

Jaeschke, Rex, 404

Johnson, Steven C., 405

Kahn, Philippe, 404
Kernighan, Brian W., 404

key, 403, 405
key name, 408, 412

key-name rule, 412

Knuth, Donald E., 398, 404, 406
Koenig, Andrew, 404

LALR(1)

grammar, 406, 412

parser, 406
Lamport, Leslie, 395, 403, 406

Lapin, J. E., 404

last-object , 408
last-token, 408

% l e f t , 410
left-recursive rule, 411

Lesk, Michael E., 405
Levine, John R., 405

lex, 405-409, 414

lexer , see lexical analyzer

lexical analysis, 396
lexical analyzer, 397, 398, 403

lexical grammar, 406

line

number, 406

number directive, 403
width limit, 397

wrapping, 397, 403, 407

list

of assignments, 412
of objects, 411

literate programming, 407, 410

LL(0) grammar, 405

LL(1)
grammar, 405, 406

parser, 411

LR(k) grammar, 406

Macintosh

Apple, 407

macro, see also control sequence

N, 407, 408

0, 407

RETURN, 408-410

S, 407

W, 407

macro definition

lex, 407

macro use

lex, 407

Mason, Tony, 405

-marwidth 0, 397

-max-width nnn, 397, 403

menu

pop-up. 396

message

disabling warning, 399

error, 411

help, 397

redirecting, 397

mismatched delimiters, 398, 413

month, 402

N, 407, 408

\n, 401

name, 411

nawk, 404

newline, 409, 412, 413

associativity of, 410

-no-check-values, 398

-no-delete-empty-values, 398,

399

-no-file-position, 398

-no-fix-font-changes, 398

-no-fix-init ials , 398

-no-f ix-names, 398

-no-init-f i les, 400

-no-par-breaks, 398, 399

-no-prettyprint, 397, 398, 403,

407, 410

-no-print-patterns, 398

-no-read-init-files, 398

-no-remove-OPT-prefixes, 398

-no-scribe, 399

-no-trace-file-opening, 399

-no-warnings, 399

non-terminal, 410

/* empty */, 413

assignment, 412, 413

assignment-lhs, 413

assignment-list, 412, 413

TUGboat, Volume 14 (1993), No. 4

at-object, 411

bibtex-f i l e , 411

comment, 411

entry, 411-413

entry-head, 412

er ror , 411

include, 411, 412

key-name, 412

object , 411

ob jec t - l i s t , 411

opt-space, 411-413

preamble, 411, 412

simple-value, 412

single-space, 413

space, 413

s t r ing , 411, 412

value, 412, 413

Yaonassoc, 410

NUL (0)
in string, 401, 409

number, 402

0, 407

object, 411

list, 411

object rule, 411

object-oriented programming, 404

ob jec t - l i s t rule, 411

Objective C. 397, 404

octal, 397

\ooo, 401

operator

assignment, 409, 413

string concatenation. 408,

410, 412

OPT- prefix

removing, 398

opt-space, 412

opt-space rule, 411-413

option

-author, 397

-check-values, 398, 400

-delete-empty-values, 398,

399

-error-log filename, 397

-f i le-posit ion, 398, 399

-f ix-f ont-changes, 398, 399

-f i x - i n i t i a l s , 398, 399

-f ix-names, 398, 399

-help or -?, 397

- in i t - f i l e filename, 397,

398, 400

-ma-width 0, 397

-marwidth rum, 397, 403

-no-check-values, 398

-no-delete-empty-values,

398, 399
-no-file-position, 398

-no-fix-font-changes. 398

-no-fix-init ials , 398

-no-f ix-names, 398

-no-init-f i l e s , 400

-no-par-breaks, 398, 399

-no-prettyprint, 397, 398,

403, 407, 410

-no-print-patterns, 398

-no-read-init-files, 398

-no-remove-OPT-prefixes,

398

-no-scribe, 399

-no-trace-file-opening, 399

-no-warnings, 399

-par-breaks, 398

-pre t typr in t , 398

-print-patterns, 398

-read-init-f i les, 398

-remove-OPT-prefixes, 398

-scribe, 399

-trace-f ile-opening, 399,

400

-version, 399

-warnings, 399

options, 400

OS/2, 404

out-lbrace 0, 409

out-lparen0 , 409

out-protected-string(), 408

out-rbrace 0, 409

out-rparen0 , 409

out-str ing() , 408

out-token0 , 408, 409

overflow of string buffer, 406

pages, 402

-par-breaks, 398

parenthesis, 409

parser

LALR(l), 406

LL(l), 411

parsing. 396

parsing grammar, 409

Pascal, 404

PATH, 397, 400

pattern

bibliography-specific, 402

changing warning message,

402

empty, 402

quotes in, 402

pattern matching, 400

brace ignored in, 402

regular expression, 400

PC-DOS, 396, 397, 400, 404

period

in citation key, 406

in regular expression, 407, 409

pipeline, 404

Plauger, P. J., 404

pop-up menu, 396

portability, 404

post-mortem dump, 404

Preamble, 408, 411, 412

preamble rule, 411, 412

precedence declaration, 410

preprocessor, 403

-prettyprint , 398

prettyprinter, 397, 398, 403

prettyprinting, 399

-print-patterns, 398

program

search path, 400

version, 399

pub/tex/bib. 414

query (?)
in messages, 402

quote

embedded, 409

in pattern, 402

R, 401

\r, 401, 407

r, 401

Rabinowitz, Henry, 404

-read-init-f i les, 398

recovery

from error, 411

recursion, 400

re fe r , 406

regexp, 401

regular expression

pattern matching, 400

syntax of, 407

Reid, Brian, 405

-remove-OPT-prefixes, 398

RETURN, 408-410

return, 408

Ritchie, Dennis M., 404

Rochkind, Marc J., 404

Rosenblatt, Bill, 396

run-time options, see options

runaway string argument, 398, 406

S, 407

Schaap, Chaim, 404

Schickele, Peter, 399

Schmidt, Eric, 405

Schreiner, Axel T., 405

SCRIBE, 395, 399, 404-407, 409,

411, 416

-scribe, 399

search path, 400

semicolon, 410

send, 414

separator

assignment, 409

Sethi, Ravi, 405, 411

TUGboat, Volume 14 (1993): No. 4

SGML, 396
sharp (#), 403, 408

simple value, 412

simple-value rule, 412

single space, 413
single-space rule, 413

source code, 414

space, 410, 413

associativity of, 410

between tokens, 411
precedence of, 410

space rule, 413
standard error unit, 397

stderr, 397, 399
stdin. 400

Steele Jr., Guy L., 404
Stevens, W. Richard, 404

String, 408, 411, 412
string

concatenation operator, 408.
410, 412

pool. 404

runaway, 398, 406

substitution. 395
string rule, 411, 412

Stroustrup, Bjarne, 404

style
bibliography, 396

SYS$SYSTEM, 397

\t, 401
template

editor, 396
terminal, 410

TOKEN-ABBREV, 403, 408, 410,

412, 413
TOKEN-AT, 403, 408, 410, 411

TOKEN-COMMA. 403, 408-410,

412, 413
TOKEN-COMMENT, 408, 410, 411

TOKEN-ENTRY, 403, 408, 410,

412
TOKEN-EqUALS, 403, 409. 410,

413
TOKEN-FIELD, 403, 408, 410,

413
TOKEN-INCLUDE, 408, 410, 412

TOKEN-INLINE, 408, 410, 413

TOKEN-KEY, 403. 408, 410, 412

TOKEN-LBRACE, 403, 409, 410,

412, 413
TOKEN-LITERAL, 409-412. 414

TOKEN-NEWLINE, 403, 409, 410,

413

TOKEN-PREAMBLE, 408, 410,
412

TOKEN-BRACE, 403, 409-413

TOKEN-SHARP, 408, 410, 412
TOKEN-SPACE, 409, 410, 413

TOKEN-STRING, 403, 408-410,

412
TOKEN-VALUE, 403, 408-410,

412

testing, 404, 414
m i n f o , 405

text editor, see Emacs
title, 413

token, 396, see terminal
string, 403
type, 403

unclassifiable, 409
TOKEN-ABBREV, 403, 408, 410, 412,

413
TOKEN-AT, 403, 408. 410, 411

TOKEN-COMMA, 403, 408-410, 412,

413
TOKEN-COMMENT, 408, 410, 411

TOKEN-ENTRY, 403, 408, 410, 412

TOKEN-EQUALS. 403, 409, 410, 413
TOKEN-FIELD, 403. 408, 410, 413

TOKEN-INCLUDE, 408, 410, 412

TOKEN-INLINE, 408, 410, 413
TOKEN-KEY, 403, 408, 410, 412

TOKEN-LBRACE, 403, 409, 410, 412,

413
TOKEN-LITERAL, 409-412, 414

TOKEN-NEWLINE. 403, 409, 410, 413
TOKEN-PREAMBLE, 408, 410, 412

TOKEN-BRACE. 403, 409-413
TOKEN-SHARP, 408, 410, 412

TOKEN-SPACE, 409, 410, 413

TOKEN-STRING, 403, 408-410, 412
TOKEN-VALUE, 403, 408-410, 412

TOS, 404

tr. 404
-trace-file-opening, 399, 400

trailing context. 412, 414

trap, 414

trip, 414
TUG bibliography collection, 396,

399
TUG Resource Directory, 396

TUGboat, 396
tuglibomath .utah. edu, 414

Ullman, Jeffrey D., 405, 411

unclassifiable token, 409

UNIX, 396, 397, 400, 401,
404-407, 409

\v, 401, 407

value, 412

value rule, 412, 413

van Herwijnen, Eric, 396

variable
last-object, 408

last-token, 408

VAX, 396, 397, 404

version

of program, 399

-version, 399

vertical
bar. 410

tab, 407

VMS, 396, 397, 404

volume, 402

W, 401, 407

w, 401

warning message
changing, 402

disabling, 398, 399

redirecting, 397

-warnings, 399

WEB, 404, 406, 407
Weinberger, Peter J . , 404

wrapping
of long lines, 397, 403, 407

X, 401, 402

\x, 401

x, 401

X/Open Consortium, 409

yacc, 405-414

year, 402

Nelson H. F. Beebe
Center for Scientific Computing
Department of Mathematics
University of Utah
Salt Lake City, UT 84112

USA
Tel: $1 801 581 5254

FAX: $1 801 581 4148
Internet: beebehath. utah. edu

TUGboat, Volume 14 (1993), No. 4

Graphics

A Tough Table Becomes Easy with

Kevin Carmody

A comment was made in TUGboat L2, p. 4371 to the
effect that 'QX does not allow one to typeset a table
or anything else by specifying page positions. This
made me think of my own experience typesetting
the table below. This table with its "gnomons" (L-
shaped corridors) had defeated my best efforts to
typeset it in plain TpX. Fortunately, I remembered
that I was already familiar with a way to place text
and draw lines by coordinates: m.

Infinite Rectangular Array

The commands for this table are as fol-
lows:

$$\beginpicture

\setcoordinatesystem u n i t s (20pt ,20pt>

\ s e tp lo t a r ea x from 1 t o 10,

y from I t o -10

\put (1) [r] a t I -1

\put (3) [rl a t 2 -1

\put (5) [rl at 3 -1

This table appears in a famous Russian puzzle
book [I]. Among its properties is the fact that the
sum of the numbers in each gnomon is a perfect
cube.

This small example reminds us once more that
proper macros can accomplish the seeming impossi-
ble. It further shows us how to do coordinate-based
layouts in w.

References

[I] Kordemsky, Boris A. The Moscow Puzzles. New
York, Scribner's, 1972.

[2] Taylor, Philip. "The Future of T#", TUG-
boat 13, no. 4, (December 1992), pp. 433-442.

[3] Wichura, Michael. The PlCljjX Manual. (T@-
niques Series, No. 6.) Providence, R.I., T@
Users Group. 1987.

o Kevin Carmody
R.O.W. Sciences
1104 Arcola Avenue
Wheaton, MD 20902

. . .
\ pu t ru l e from 0 . 3 -1.5 t o 1 . 3 -1.5

\ pu t ru l e from 1 . 3 -1.5 t o 1 . 3 -0.5

TUGboat, Volume 14 (1993), No. 4

Book Reviews

Book review: !&X per I'impaziente

Claudio Beccari

P. W. Abrahams, K. Berry and K. Hargreaves, TjJY

per I'impaziente. (Translation of for the impa-

tient; translated by Gaia and Guido Franchi.) Mi-
lano: Addison-Wesley, 1991. 396 pp. ISBN 88-7192-
022-8.

Although in Italy there is no national TUG associa-
tion, the 7$jX users community is pretty broad since

TkX is widely used in academic environments as well
as in commercial activities and in public services.

In the summer of 1991 the Italian branch of the

well known publishing house Addison-Wesley pub-
lished a translated version of TjJY for the impatient

by P. W. Abrahams, K. Berry and K. Hargreaves.
The new title, TjJY per I'impaziente, closely reflects
the original one, and the same applies for the con-

tents, although the sitting White Rabbit of Alice in
Wonderland is reproduced only on the front cover,
not in the chapter front pages.

The translators, Gaia and Guido Franchi, did
a very good job with the translation, but they had
to face the lack of professional phototypesetters ca-
pable of setting a book with Computer Modern

fonts; in my country there are no problems with
phototypesetters that use the classical Postscript
standard fonts and a large variety of other outline

fonts, since most of the machinery is imported or is
adapted from U.S. hardware and software. There-
fore the Franchis had to rely on their 300 dpi laser
printer and have the publisher print the whole book

from the translators' originals; the result is fairly
good but compares unfavorably with the English
version.

On the other hand the Italian version is free
from that annoying bug that infested the original

book, when the Optima font with a different char-
acter layout was used for the command headings so

that open and closing braces were substituted with
en-dashes and closing double quotes respectively;
the Computer Modern sans serif font is used in its

place, but when you find \ I you don't know if it
means \1 or \I.

The translation is quite good, and some of the
small errors of the English version are eliminated

(for example in the Edible Mushroom table Bole-
tus edulzs is spelled correctly) and the translators
succeeded in rendering all the examples in Italian,
even the one that explains the \parshape command

with the paragraph shaped as the silouette of a wine

glass; it is not simple at all considering that Italian

words are significantly longer on the mean than their
English counterparts.

It is not the purpose here to praise or disparage

the book: it has more or less the same advantages
and faults that Victor Eijkhout pointed out in his

review (TUGboat, vol. 11 (1990), pp. 572-573) but
it has some features that are specific for the Ital-

ian orthography that were not listed (of course) in
the original English text; this is a reason why the

translators must be praised for the good job they
did. At the same time (a book review must always
contain some criticism) there are some points that
leave me unsatisfied, and I think it is very impor-
tant to point them out because, besides this trans-
lation, they might be overlooked also in other cir-

cumst ances.

From the very beginning (page 15) the transla-
tors introduce the possibility of assigning a cat-
egory code 13 to the accented characters &, a, 6 ,

i, 6, ii that have individual keys on the Italian
keyboard, and to define them so as to corre-

spond to the \ ' a, . . . , \ 'u commands. This is
certainly possible if the 7$jX implementation in
use accepts input characters with ASCII codes
higher than 127; but this is not always the case.

Sometimes this is just impossible, sometimes it
requires a special initialization with a suitable
codepage file that establishes the necessary cor-

respondences for the input and the output of
these characters with the internal codes that
l)$i uses; no warning is given with this regard.

Italian hyphenation, or better, the patterns

that were used for the Italian hyphenation
of this book, are reported in an appendix
(pp. 381-382); the rules are taken from an un-

specified Italian grammar that I suppose was

a junior high school level textbook. The rules
specified in such initial level grammars reduce

to the simple statement that "you can put the
hyphen wherever the syllable to the right of the

hyphen starts with one or more letters that may
be found at the beginning of another Italian
word." This statement probably holds true for

the totality of the words a junior high school

student might encounter, but is completely un-
satisfactory with grownup people's vocabulary.

Apparently Guido Franchi listed the groups
of two consonants that could be found at the be-
ginning of words1 and then prepared patterns

He lists also v l but I do not know of any com-
mon Italian word starting with this group: there

TUGboat, Volume 14 (1993), No. 4

with all combinations of one and two conso-

nants of the form

where K is any of the 16 "Italian" consonants2,
and B and C are the sets of consonants such

t h a t ~ = ~ \ h a n d C = K \ { h , 1 , m , n , r , s) .
They obtain a total of 210 simple patterns that

do a pretty good job with the setting of the

book.

Unfortunately this set of patterns has several
drawbacks (and one advantage) :

1. the set contains a large number of com-
binations that never occur in Italian (for

example all those of the series 4q3C4, and

many more);

2. the set is incomplete in the sense that
it cannot split vocalic clusters into their
component diphthongs and "triphthongs" ;

although T@ minimizes the number of hy-
phenated line breaks, this is a major point

with Italian where vowels play a more
important r61e than in several other lan-

guages;

3. the set contains some errors in the sense

that the groups pn and ps should be split,
even if there are some Italian words start-

ing with such groups; fortunately enough

these groups occur very rarely;

4. separable prefixes are ignored; the na-

tional regulations allow prefixed words to
be hyphenated with common hyphenation
rules, but there are some prefixes, used

mostly in technical writing, that it is bet-
ter to separate according to etymology;

5 . (advantage) the method Franchi used, al-
though incomplete and error prone, is suit-
able for a "formal hyphenation" grammar
for many languages provided that sets of

vowels, semivowels, consonants and semi-

consonants are properly defined. It would
be a pleasure if T@ could deal with "gen-
eralized" patterns so that the hyphenation

is Vladimiro, but this is an italianization of a for-

eign proper name, and in my dictionary I found the
word "vladika" that comes from (actually is) Serbo-

Croatian and means bishop in the orthodox church.
Take the 26 letter Latin alphabet, eliminate

the vowels and the letters j , k, x, y, w and you are
left with the consonants that occur in ordinary Ital-

ian words. The adjective "Italian" is quoted because
even today many Italian grammars stick to the ob-
solete autharchic axiom that the Italian alphabet

contains just 21 letters.

table for each language could consist of a

very limited number of entries, such as the

three patterns above, without the need of
expanding the combinations.

Moreover the Franchis state that hyphen-
ation patterns should be written one per line

(which, unless they refer to a particular imple-
mentation of TEX and in i tex , is completely

new to me, and is not documented in The
m b o o k) ; in addition, before defining the Ital-

ian patterns they establish the the codes for the
apostrophe in this way:

\catcode ' \ '= I1
\ lccode ' \ '= l l

\uccode' \ '=lI

and after the list of patterns they reset the

codes this way:

\catcode'\ '=12

\lccode'\ '=12
\uccode'\'=12

The w b o o k states that patterns can be con-

structed with any character of category 11 or
12 provided it has a nonzero \lccode; there-

fore the above definitions are mostly superflu-
ous and may lead to errors if the primitives

\uppercase and \lowercase were used.

Aside from the above comments, the book is

well translated and should prove very useful among
the Italian users and, may be, help the further dif-
fusion of our favorite text processor.

o Claudio Beccari
Dipartimento di Elettronica
Politecnico di Torino
Turin, Italy
beccariQpolito.it

TUGboat. Volume 14 (1993), No. 4

are the sign of a true w-novice . Please write

Hints & Tricks

Ten Tricks for t h e Mathematician

Helmer Aslaksen

T)jX has changed the face of mathematical typeset-

ting. If you look at the proceedings from a confer-

ence published ten years ago, you will probably find
that most of the articles were prepared with a type-
writer. Today, most of them will be done by w.
More and more monographs are also produced using
the author's w file. Is this a step forward?

For proceedings, I would definitely say yes. The

typewriter will go the way of the dinosaurs, and
I'm not going to miss it. But when it comes to

monographs, the author's camera ready copy must
be compared to professionally set books. An ex-

pert W n i c i a n can produce output of the highest
standard, but the average TE;X author/typist fails

miserably when compared to professional typeset-
ting. Most authors/typists are not very knowledge-
able about 7Q$ or mathematical typography. They

tend to make the same common mistakes. The pur-
pose of this brief article is to try to point out some

such errors. This list reflects my personal choice. I
would like to thank the referee for helpful comments.

All page references are to the seventh printing

of you-know-which book. I don't always give details
about how to achieve the different effects. This is

partially because the syntax would be different de-

pending on which dialect of 7&X you use.

1. Set operator names in roman. My head
goes into a spin whenever I read about Spin(n) .
Look at the spacing! Math italics uses spe-

cial spacing (p. 164). As a general rule, ev-
ery mathematical term with more than one let-
ter should be set in roman, whether or not it is

in Knuth's list (p. 162 and p. 361). So please

write Spin(n). If you use A M - L A W , you can

write $\operatorname{Spin) (n) $, or you can de-
fine \Spin to be \mathop{rm Spin)\nolimits. A
clever trick (due to the referee) is to define a macro
like

\def \newop#l
(\expandafter\def\csname #l\endcsname

{\mathop{\rm #l)\nolimits))

Then \newop{~pin) will define a command \Spin
that can be used throughout the paper.

2. Scale the delimiters. Constructions like

I also find [[X,Y],Z] easier to read than

[[X' YI 21.
3. Use / more often. Always write alb in text.

a
Big fractions like - can mess up a whole paragraph.

b
This also raises another issue. You should under-

stand the difference between display style and text

style. Tji$ has a tendency to use text style when I
feel display style would be better. I prefer

4. Use the right kind of dots. This is slightly

controversial. Everybody I know writes 1, . . . , n

and . . . x,, but Knuth (p. 172) wants XI.. .x,.

Anyway, don't write

21 + . . . +x,.
5 . Should you break before or after + ' s f The

rule is simple (p. 195): you break after binary oper-
ators in text and before binary relations in displays.
And when you break before a +, remember to write
{)+x. so knows that the + is a binary operator

(p. 196).
6. Be generous with space. Watch for places

to put \, (pp. 167-169). Don't you think (,) looks
better than (,)? Learn how to insert space between
formulas in display, or use constructions that do it

for you. Compare

f (z) = x and
f (XI = 2

g(x) = x2 g(x) = x 2 .
Notice how the parentheses almost touch in the first

one.
8. Get your bibliography right. Don't write No-

tices Amer. Math. Soc., write Notices Amer. Math.
Soc. (Use . \u to get proper spacing.) And write
pp. 1-40 instead of pp. 1-40 (remember to use --,
see p. 4).

9. Don't use symbols for visual eflects. Learn
to use the proper commands. On a typewriter. peo-
ple must use logical symbols like < for visual ef-

fects. like writing < x, y > to denote an inner prod-

uct. Fortunately, Tji$ has a huge supply of math-
ematical symbols and delimiters. In this case you

should use the so-called angle brackets, to get (x, y)

($\langle x , y \rangle$). And remember to write

(,) ($\langle \ , , bangle$) and not (,).
Similarly, don't write XCS ($x \epsilon S$),

but x E S ($x \ i n S$). First of all, \epsi lon is the
wrong symbol. and secondly the spacing is wrong.
When you use \ in . W knows that you want a bi-

nary relation, so it puts in the proper amount of

space.

424 TUGboat, Volume 14 (1993), No. 4

I'm also tired of seeing "this" ("this"). It
should be "that" (' 'that ' ')! Notice how " will al-

ways give the wrong result on the left. When using
Computer Modern fonts, " gives the right result on
the right, but it may not work for other fonts.

And I think that looks too wimpy. Beef it up

with a \widetilde to get S.
10. Read Chapter 18. Just do it!

o Helmer Aslaksen
Department of Mathematics
National University of Singapore
Singapore 0511, Republic of

Singapore
mathelmrQnusunix.nus.sg

Macros

The bag of tricks

Victor Eijkhout

Hello all. From Jonathan Kew I received the follow-

ing useful macros. Their purpose is to make test-

ing hyphenation patterns easier. We all know about
\showhyphens, but for long lists of words using this
is tedious. The macro \printhyphens takes a list

of words and prints their hyphenation on consecu-
tive lines. hackers will get a kick out of these

macros. In particular the nested use of \everypar
is neat.

\def \printhyphens(

\everypar(%
\setboxO\lastbox

\setboxl\hbox~\strut~

\vbox\bgroup

\everypar{\setboxO\lastbox

\nobreak\hskipOpt

\relax)

\dimenO=\hsize

\hsize=Opt \hfuzz\maxdimen

\def \parC\endgraf \hsize=\dimenO

\getlastline \egroup \endgraf))

\offinterlineskip\breakafterword)

A small test

\begingroup

\printhyphens

photograph photography photographer

photographical photographically

hypersupersuperdupercali%

fragilisticexpihalidocious

Ei j khout

\endgroup

gives

pho-to-graph

pho-tog-ra-phy
pho-tog-ra-pher
pho-to-graph-i-cal

pho-to-graph-i-cally
hy-per-su-per-su-perduper-cal-ifrag-ilis-tic-ex-pi-

hali-do-cious
Eij k-hout

The \discretionary()()() is an addition to the

original macros; I took it from the macro by Oliver
Schoett that is used for the hyphenation exception
list of TUB. Its purpose is to make line breaks pos-

sible for long words.
And that's it for this time. More contributions

from readers are welcome!

o Victor Eijkhout
Department of Computer Science
University of Tennessee at

Knoxville
Knoxville TN 37996-1301
Internet: eijkhoutBcs .utk. edu

TUGboat, Volume 14 (1993), No. 4

The "operational requirement" (?) for
support of bibliographic references by
LAqjx3

David Rhead

Abstract

It is suggested that:

0 LAW3 should aim to support the principal ci-
tation schemes used in conventional publishing

0 consideration be given to a modus vivendz be-
tween LAW3 and mainstream bibliography-
formatting software.

Contents

Introduction 425

Doing it yourself 425

Using bibliography-formatting software 427
3.1 Background 427

3.1.1 Software available 427
3.1.2 Modus vivendi with the

main 4? 428
3.1.3 Preferred interface 428
3.1.4 Hybrid approaches 430
3.1.5 The user's choice 43 1

3.2 OR for MQX3 43 1

Miscellaneous 431
4.1 "Local names" for keys 43 1
4.2 Reference-lists that are also indexes 432

Some suppliers of mainstream bibliographic
software 432

E-mail discussion lists about bibliographic
software 432

Introduction

Ideally, when writing software, it is a good idea to
write down what the software is intended to achieve
-the "operational requirement" -before writing
any code.

This article attempts to take an "operational
requirement" approach to the "bibliographic refer-
ence" aspects of I P m 3 . l The objective is to stim-
ulate debate-if you don't agree with my sugges-
tions, please suggest specific alternatives! (In the

Obviously, there are limits to the what the OR
approach can achieve. For example, it is difficult
to quantify "usability". Nevertheless, the approach
should facilitate debate about objectives before the
"user interface" has been fixed.

remainder of the article, "operational requirement"
is abbreviated to "OR" .)

Generalizing the approach taken by the LAW
2.09 manual [I, pp. 73-74], it is convenient to di-
vide the topic into LLdoing it yourself" and "using
bibliography-formatting software".

2 Doing it yourself

In effect, the only scheme that is "fully supported"
by LAW 2.09 is "reference by number, where the
sequence of numbers is determined by position in
the reference-list" .

By contrast, for "real-world publishing", my
impression is that:

only a minority of "instructions to authors"
specify anything like the default LAW 2.09
scheme. This minority consists of those jour-
nals that specify "reference by number, with
the reference-list in alphabetical order of au-
t hor 's names" .
the majority of "instructions to authors", style-
books, etc., specify one of the following:

(a) reference by number, with the reference-
list in order of first citation

(b) author-date

(c) "short-form in footnotes". For publica-
tions in the humanities, there seem to be
two main variants of this scheme, depend-
ing on whether or not there is a reference-
list .2

IS0 690 [3, sec. 91 provides a convenient spec-
ification of the details of these schemes. The
default LAW 2.09 system gives no particular
help to anyone wanting to use them.3

a few publishers specify alternative schemes.

E4.7

If there is no reference-list, the convention is
usually %rst citation gives full bibliographic details,
subsequent citations give cross-reference to first ci-
tation". This variant is common in law publications,
when it is used in conjunction with numerous law-
specific citation conventions [2].

BIBQX can help with (a). Anyone wishing

to use (b) will probably grope around in archives
looking for style-options that: arrange for \cite to
give (. . .) rather than [. . . 1; omit [. . .] from
the reference-list; support date-only citations when
the author's name appears naturally in a sentence.
Apart from the law-specific L e x i w [4], I'm not
aware of any 2.09-related software that helps peo-
ple who wish to use scheme (c).

TUGboat, Volume 14 (1993), No. 4

some Springer journals4 accept citations of

the form "first letter of author's surname.
in square brackets"

Butcher [5] mentions a variation of
the reference-by-number system in which

there is a separate numerical sequence for
each letter, and a variation of the author-
date system in which a number is used in-

stead of a date

a scheme like the BIB^ alpha style is

sometimes used (for example, in the jour-
nal Formal Aspects of Computing).

Therefore, I suggest that the OR for LAW3:

should include support5 for the schemes men-

tioned in items 1 and 2 above, i.e.,

- a 2.09-like scheme aimed at journals that
specify "reference by number, with the

reference-list in alphabetical order of au-
thor's names"

- the schemes specified in IS0 690, namely:
"reference-by-number in order of first ci-
tation", author-date, and 2 variations of

"short-form in footnotes" .6

should bear in mind the possibility of a "plug-
in module" to support law conventions. Since

such conventions are crucial only to lawyers,
it would probably be inappropriate to delay

L A C 3 while law-specific commands were fi-
nalised, or to increase the bulk of the LAW3

See the "instructions for authors" in, for exam-
ple, Mathematische Zeitschrzft.

I assume that "sorting a reference-list" will be
beyond the scope of LAW3. Thus, in practice, the

LAW3 "support" might be minimal (a "better than
nothing" warning that a reference-list needs hu-
man intervention, perhaps). People who want any-

thing better would be advised to use bibliography-
formatting software.

To support these schemes, it is probably de-
sirable that LAW3 should be able to determine
whether a citation of a source is "the first citation"

of that source. Clearly this would help to provide

support for "reference by number in order of first
citation". In the author-date case, it would allow

support for the convention 16, sec. 3.871 that, when
there are multiple authors, they should all be named
in the first citation but "e t al." should be used subse-

quently. It might also help to provide support for the
variant of the short-form scheme in which a "sub-

sequent citation" uses the short-form and gives a
cross-reference to the footnote containing the "first
citation" (where full details of the source can be
found).

manual by including law-specific material. Nev-

ertheless, it might be worth simultaneous exper-

iments with a prototype LAW3 and a proto-
type law-support module, in the hope that the
law-specific commands in such a module might

end up with a similar "look and feel" to those
for the mainstream "short-form in footnotes"

commands.

need not include support for the alternative

schemes mentioned in item 3 above (although
the possibility of "plug-in modules'' to support
these schemes might be borne in mind).

In addition, the following features are desirable:

for situations where several bibliographic

sources are cited simultaneously:

- a syntax that permits a particular division
of each source to be pin-pointed [7, sec.

15.251. (The 14" 2.09 \ c i t e C. . . I €. . .3
syntax only supports pin-pointing within a
single source.)

- a mechanism for sorting reference-by-
number citations into ascending numerical

order [8, p. 1061.~

- a mechanism for sorting author-date
citations7 into alphabetical order of au-

thor's surnames (or, ideally, the order in
which the sources appear in the reference-
list) [6, sec. 3.911 or into "date of publica-

tion" order [7, sec. 15.241.

support for types of bibliography that, although

not as common as a single undivided list,
are appropriate in particular circumstances,
namely:

- a list divided into sections according to

kinds of material, subject matter or other
appropriate categories

- an annotated bibliography

- a bibliographical essay.

See, for example, the Chicago Manual of Style
[7, chap. 151.

(End-users get confused if they try using
LAW 2.09's thebibliography environment for

such bibliographies.)

The above might provide the major elements of an

OR. Minor elements may be more difficult to spec-
ify, but can perhaps be summarized as

Alternatively, if it is not feasible to sort
reference-by-number and author-date citations into
a desired order, mechanisms for giving warnings if

simultaneous citations are in the wrong order would
be "better than nothing".

TUGboat, Volume 14 (1993), No. 4

LA'3 should be able to survive /?-testing

of whether it can conveniently deliver bib-
liographic details formatted as specified by

influential style-books and "instructions for

authors'? .

See 12, 3, 5, 6. 7, 9, 10, 11, 12, 13, 141.

3 Using bibliography-formatting software

3.1.1 Software available

The bibliography-formatting software that is "ad-
vertised" in the LAW 2.09 manual is B I B W [I, 151.
Tib [16] is also sometimes mentioned in W circles.

In fact, there are a large number of
bibliography-formatting programs available. A re-

cent review article [17] names 52 such programs.
Judging by comments on the bibsoft list, the

most important bibliographic programs (from the
point-of-view of professional librarians and bibliog-

raphers) seem to be EndNote, Library Master, Pa-

pyrus, ProCite and Reference Manager. (Appen-
dices A and B give details of the bibsoft list and
of the relevant vendors.)

Of these, EndNote, Papyrus, ProCite and Ref-
erence Manager have procedures for processing a
"manuscript", filling in the in-text citations and gen-

erating the corresponding reference-list. Although I
understand that a similar facility is planned for the

next version of Library Master, I don't know what
form this will take. Therefore. when referring to
these programs, I will use:

"main 4" to mean the programs (EndNote, Pa-
pyrus, ProCite and Reference Manager) whose

procedures for filling in the in-text citations are
currently known

"main 5" to mean the "main 4" plus Library Mas-

ter.

From a MT)Ql-er's point-of-view, the public-

domain BIB^ and Tib are obviously attractive,
since they were designed to work with =/LAW,

and are available for most of the platforms on which

m / L A m are available. By contrast, the "main 5''
are:

proprietary

Warning: I do not currently have "hands on"
experience of using L A ' in conjunction with soft-

ware other than BIB^ (although I have browsed
through as many of the relevant manuals as I could

find). Hence, the ideas given in this section, and in
section 4, are theoretical and speculative.

currently aimed at "wordprocessor" usersg

only available on a restricted selection of plat-
forms. (All are available for MS-DOS. Some are

available for Macintosh or VAX/VMS.)

Nevertheless, there are many things about the

"main 5" that are of interest:

The programs have standard procedures for
importing information from standard database

programs, online information services, CD-

ROMs and library catalogues.

They generally have good facilities for mainte-
nance of a "personal bibliographic database",

and for searching such a database for entries
that satisfy particular criteria.

It seems likely that the programs will continue
to be developed and supported into the future.

(By contrast, my understanding is that BIB^
will be "frozen" when version 1.0 has been fin-

ished.)

There is a choice. If one program has underly-
ing assumptions that don't match the assump-

tions that are usual in your discipline, you can
look for an alternative!

Even if you don't regard the "main 5" as of

positive interest, you may be unable to avoid them.
If a research-group contains a LAW-ing minority
and a non-LAW-ing majority:

0 the "majority" may choose one of the "main 5"

as the group's "standard bibliography-format-

ting software"

the L A ' - e r s will then be at a serious disadvan-
tage if they cannot use the group's bibliographic

databases.

Also, if your librarian is providing bibliographic in-
formation in electronic form (e.g., from a comput-

erized library catalogue), s/he may offer an off-the-
shelf way to get the information into a database for
one of the "main 5", but be unable to help you if

you use BIB=.
Overall, it seems to me desirable that, as well as

having standard procedures for inter-working with
B I B W and Tib, LAW3 should have standard pro-
cedures for inter-working with the "main 5". Such

procedures are unlikely to be perfect, but it should
be possible to agree on some modus v i ~ e n d z . ~ ~

Certain vendors state that W is one of their

program's "supported wordprocessors" . You may or
may not regard this as a hopeful sign!

l o It is unlikely that the vendors will re-focus

their products to concentrate on LAW users -and
equally unlikely that LA'-ers will start to think of

themselves as "wordprocessor users". Nevertheless,

TUGboat, Volume 14 (1993), No. 4

3.1.2 Modus vivendi with the main 4?

Before considering how LAW might co-operate with
the "main 4" it is convenient to contrast B I B W ' S
approach with that of Tib.

BIB=% approach involves searching a LATEX
. aux file for details of in-text citations, and then
writing out a .bbl file. The .bbl file defines a
reference-list that is read in when LATEX is next ap-
plied to the root file.

Tib's approach is different. It starts with a
. t ex file that contains "incomplete or keyed cita-
tions" within citation-delimiters, and produces an-
other . t e x file that contains proper in-text citations
plus (optionally) a reference-list.

When the procedures used by the "main 4" are
interpreted in terms of LAW, they seem to be more
akin to Tib's approach than to BIBW'S . It looks
as though the end-user would start with a . t e x file
containing keys, etc., within citation-delimiters, and
use the bibliography-formatting program to produce
a near-duplicate . t ex file that contains proper in-
text citations plus a reference-list.

In fact, Tib's citation-delimiters are chosen so
that:

The escape characters of Tib do not interfere
with processing. If l&X is applied to the
original pre-Tib document, the escape char-
acters and incomplete citations will appear
as written.

I.e., the pre-Tib . t e x file and the post-Tib . t e x file
are both valid L A ' input files.

This seems a useful precedent. If L A m could
inter-work with the "main 4" in an analogous way,
it would not be necessary to

Apply bibliography-formatting software.
Then apply LAW.

every time that a . dvi file is required. For example,
if someone is concentrating on getting their equa-
tions typeset correctly, they might want to get . dvi
files quickly without always having to go through
the bibliography-formatting step. At the equation-

with a few minor changes (which might involve the
I 4 W end, the bibliographic program end and/or
the documentation), it should be possible for LAW3
and the mainstream bibliographic software to work
reasonably well together.

"Modus vivendi" , i.e., "an arrangement between
peoples who agree to differ", seems to fit the situa-
tion quite well.

l1 Hopefully, it will be possible to use the same
general ideas for Library Master when its procedure
for "filling in the in-text citations and generating the
reference-list" becomes known.

checking stage, they may just want a . dvi file that
shows their equations, and not be worried about the
appearance of their in-text citations or reference-list.

A potential problem for any LAW-er trying
to follow the Tib precedent, is that EndNote and
ProCite use # to identify "number within database".
Hence the end-user may need to put a # (which is
one of I 4 " ' s 10 "special characters") within the
relevant citation-delimiters. (See Table 1 for details
of the programs' default citation-delimiters, and the
alternatives available.)

One way of imitating Tib (in spite of the possi-
bility of # characters) might be to arrange delimiters
such that the proprietary program's "start delim-
iter" is interpreted by LAW as being equivalent to
L A m 2.09's \verb+, and its "end delimiter" is in-
terpreted as equivalent to the + that terminates the
text introduced by \verb+. Then:

if LATEX is applied to the original . t ex file,
the citation keys will be typeset "as is" in a
typewriter font (to remind the I4QX-er that
the bibliographic software needs applying be-
fore the document can be regarded as finished)

if the bibliographic software is applied to the
original . t e x file, a new . t e x file will be pro-
duced that, when BQX-ed, has proper in-text
citations and a reference-list.

Overall, the LAW-er will be able to apply Bw
and the bibliographic software in either order (in
much the same way that LAQX and Tib can be ap-
plied in either order).

This approach could be the major element of a
modus vzvendi between LAW3 and the "main 4".
Table 2 shows some delimiters that might be suit-
able.

A modus vzvendz would also need to incorporate
an approach to the "root file and \include-ed files"
situation. Although I don't have any specific sug-
gestions at this stage, I speculate that support for
this feature might be obtained by reference to the
bibliographic software's support for analogous fea-
tures in wordprocessors (e.g., Wordperfect's "master
document and subdocument" scheme, and Microsoft
Word's "include" scheme).

3.1.3 Preferred interface

The suggestions in Table 2 are intended as part of
a modus vivendi between BQX3 and the current
versions of the "main 4". Although the general ap-
proach is the same, the details differ from product
to product.

It would be open to I4W-ers to decide on a
preferred interface, and to inform the vendors of

TUGboat, Volume 14 (1993), No. 4

Software Citation Notes

delimiters

L w 2.09 with BIB^ \ c i t e {)
Tib [. . I The delimiters < . . > are used

in some circumstances

EndNote Default: [3 You can tell EndNote to look for alternative
1-character delimiters (e.g., < >)

Library Master Not known I understand that a facility for "given
the in-text citations, compile a
reference-list" is in preparation

Papyrus Default: %% %% You can tell Papyrus to look for alternative
delimiters (but "start delimiter" must

be the same as "end delimiter")
ProCite Default: () You can tell ProCite to look

for [I rather than for ()

Reference Manager Default: {) You can tell Reference Manager to look
for alternative delimiters. "Start delimiter"

and "end delimiter" can each have up
to 7 characters.

Table 1: Citation-delimiters: defaults and alternatives

Biblio. Tell bib. software Tell VQ3X3 Notes
software

EndNote Delimiters are < . . . > is equivalent
< and > to 2.09's \verb+ . . . +

Papyrus Delimiter is " " . . . " is equivalent
to 2.09's \verb+ . . . +

ProCite No obvious alternative to "always

apply ProCite before VQ3Xn

Reference Delimiters are \bsof t{ . . .) is equiv. to

Manager \bsof t{ and) 2.09's \verb+ . . . +

Note: Clearly the default Papyrus and Reference Manager delimiters
(see Table 1) must be changed if the end-user is to have the option
of applying L w without having previously dealt with citations,

etc. However, the Papyrus and Reference Manager keys are not
liable to contain a # character. Hence, it is not crucial whether

Papyrus and Reference Manager keys are "hidden" from m.

Table 2: Choice of delimiters for modus vivendi?

TUGboat, Volume 14 (1993), No. 4

their preference in the hope that it may be possi-
ble to implement the approach more consistently at

some time in the future. We wouldn't lose anything
by asking!

For example, if the preferred interface involved

\bsoft{key) (as shown in Table 2 for Reference

Manager), it would be open to us to ask the other
vendors to relax their rules on citation-delimiters so
that future versions of the "main 5" will all accept

\bsoft{key). If we were lucky enough to get the
vendors' agreement, we might be able to produce
notes about "using proprietary bibliographic soft-

ware with L A W that would appear simpler to the
end-user than Table 2.

Note It might be possible to have a modus

vivendi (e.g., with Reference Manager) involving
\verb+key+, rather than having an additional com-
mand such as \bsoft (which would, in any case, be

implemented in much the same way as \verb). The
bibliographic software will probably ignore things
within \verb+ and + that don't look like citation
keys. Nevertheless, I would be inclined to introduce

an extra command (e.g., \bsoft) so that . t ex files
can be "marked up logically" to distinguish between:

0 delimiters for a key that is intended for process-
ing by bibliographic software

0 delimiters for text that is intended to appear in
a typewriter font in the final document.

3.1.4 Hybrid approaches

One can envisage schemes that embed a proprietary
bibliographic system's mechanism for dealing with
citations and reference-lists within LAW'S mecha-
nism (or vice versa). Examples might include:

telling Papyrus to use ! ! as its delimiter, and
putting the Papyrus citation markers inside
a LATEX \ c i t e command, thus \ci te{! ! . . .
! !) . I2

0 trying to get proprietary bibliographic software
to read an . aux file, and write a . bbl file, as

 BIB^ does. (Perhaps this could be done by a
shell script which invokes the proprietary soft-
ware in a suitable way.)

Generally, I fear that such hybrid schemes may

lead to confusion, and I would not be inclined to
pursue them:

0 Anyone constructing a hybrid scheme will have

to be very careful about "which software is
in charge when" (e.g., whether citation num-
bers are incremented by LAW, by the propri-
etary system, or by "one shadowing the other").

Bernard J. Treves Brown. of Manchester Uni-
versity, is experimenting with this technique.

The hybrid scheme will need maintenance (e.g..

someone will need to verify that the scheme still
works with each new release of the proprietary

system). There may be three lots of documen-
tation for the end-user to study: that about

LAQ-33, that about the proprietary system, and
that about the hybrid scheme's subtle combi-

nation of elements of both. If anything goes

wrong, it may be in "a grey area", which is nei-
ther the responsibility of the LAW3 project,

nor the responsibility of the bibliographic soft-
ware vendor.

The proprietary systems seem more akin to Tib

than to B I B W . To try and force them into the
B I B W sterotype when they are not designed
to work like B I B W seems like "asking for trou-

ble". I doubt whether the T)jX community has
the resources to produce interfaces that "make
proprietary systems work like BIB^", and I

doubt whether the vendors have the inclination
to commit such resources.

My instinct is that it would be better to have

a simple interface (e.g., conventions such as those
outlined in Table 2), so as to put the end-user in a
situation where responsibilities are clear:

0 typesetting is the responsibility of LAW3

0 bibliography-generation is the responsibility of
the bibliographic software.

Hence, if using a proprietary bibliographic sys-
tem, the end-user should ignore the LAW3 manual's

descriptions of commands to support the DIY-er (i.e,
ignore the LAW commands envisaged in section 2) ,

and ignore anything that is provided to support the
 BIB^-er.

0 The proprietary system will be "in charge" of

bibliography generation. The method used will
be that envisaged by the vendor, and docu-

mented in the vendor's manual: if it's good,
the vendor will get the credit; if it's bad, the
vendor will get the blame.

The delimiters in the . tex file will be delimiters

for the proprietary system (chosen, if possible,

in such a way that the . t ex file is acceptable to
LAW even before processing by the proprietary
system). They might be as shown in Table 2.
The "keys", etc., inside the delimiters will fol-
low the rules given in the vendor's manual (not

the rules given in the LAW3 manual about keys
that the DIY-er can use).

The proprietary system will be "told to produce
W output". How good or bad they are at this
will be the responsibility of the proprietary sys-
tem (although interested LAW-ers might ad-

vise the vendors about what is required).

TUGboat, Volume 14 (1993), No. 4 43 1

Overall, the end-user will get in-text citations filled

in, and reference-lists generated, in the standard
way that is described in the manual that describes
the proprietary system. If this standard way does

not suit a LAW-er's requirements, it may be bet-
ter for him/her to seek alternative bibliography-

formatting software rather than spending time try-
ing to circumvent the problems.

Of course, if people want to put effort into de-
veloping hybrid schemes, and happen to get good

modus vzvendz between LAW and proprietary bib-
liographic systems, I would be delighted to find that
my instinct is wrong!

3.1.5 The user's choice

Given some modus vivendi, end-users would be able
to make their own assessments of which biblio-

graphic software suits their needs.

0 Cost is obviously a factor.

0 An end-user who wants software that has been

designed specifically for use in conjunction with
LA', will probably be inclined to choose
 BIB^ or Tib.

0 BIBTEX'S approach makes good use of disk-
space. A . bbl file will be smaller than "near-

duplicates of . t ex files".

0 An end-user who wants ready-made methods of

downloading information from commercial bib-
liographic databases, library catalogues, etc.,
will probably favour one of the proprietary
programs. The proprietary systems also offer

database administration and searching facili-
ties.

0 Anyone who does not have the time and pa-
tience to deduce (from a proprietary system's
wordprocessor-oriented documentation/menus)
what the M m - e r should do might prefer to

wait until someone else has deduced what is re-
quired, and has documented the tricks involved.

0 The end-user's choice may be constrained by

the platform on which they are using L A '
(e.g., they may need bibliographic software for
a Unix system).

Wordprocessor-oriented systems may not sup-
port typesetting subtleties to the degree that

LAW-ers would like.

0 Support (or lack of it) for non-English lan-

guages may be another factor.13

l3 Decisions may be needed about whether to try
using a proprietary system's support for diacritics,

in the hope of being able to share a database with
colleagues who use wordprocessors. The alternative
would be t o have database entries that use TEX en-
coding for diacritics.

0 End-users may be constrained to use the same

system as other people in their research group
(e.g., so that the group can share databases).

It is unlikely that anyone will find bibliographic
software that is perfect for their needs. However,

people are more likely to find something that suits
them if they have a choice than if they have no

choice.

3.2 OR for IKl33X3

Given the situation outlined in section 3.1, I suggest
the following as the OR for LAW3's relationship

with bibliography-formatting software:

As far as practicable, LAW3 should be neutral
towards the end-user's choice of bibligraphy-

formatting software. Ideally, people should be
able to choose typesetting software for typeset-
ting reasons, and bibliographic software for bib-

liographic reasons - their choice of typesetting
software should not restrict their choice of bib-
liographic software.

0 Hence, a modus vivendz between LA333 and
each of the "main 5" should be thought up,

tested and documented.14

0 There might be "a preferred interface" between
M W 3 and proprietary bibliographic software.
It vendors can be persuaded to support this in-

terface, LAW-ers will get a consistent interface
to proprietary bibliographic software. If not,

things will stay inconsistent (e.g., as shown in

Table 2).

0 In line with the neutrality suggested above,
B I B W will continue to be supported, but

L A ' 3 documentation will not be particularly
p r o - B ~ ~ m . It is desirable that . bst files
should be updated so that B I B W produces

M'3 commands (designed to satisfy the re-
quirements listed in section 2) rather than

LATEX 2.09 commands.

4 Miscellaneous

4.1 "Local names" for keys

If you are "doing it yourself", choice of keys is un-
likely to be a problem. For example, you could

equally well use lamport-86 or latexbook as a key

for the LATEX manual. There is no particular need
for consistency from one document to another: you

l4 The modus vivendi might be along the lines

shown in Table 2, or might be something else that
emerges from practical experience. It doesn't mat-
ter much whether the documentation is provided by
the LAW3 project or by the bibliography software

vendor, as long as someone provides it!

432 TUGboat, Volume 14 (1993), No. 4

can use lamport-86 as the key in one document,

and use latexbook as the key in another.
However, if you have a large bibliographic

database (perhaps shared with a group of col-

leagues), it may be impracticable to keep track of

keys assigned on an ad hoc basis, and difficult to
guarantee that keys will stay unique whenever a new
item is added to the database.

Moreover, a .tex file to be \input may con-
tain bibliographic details and LATEX commands that

are generated automatically by bibliographic soft-
ware (even though LAW will have no way of dis-

tinguishing the file from a one typed in by a DIY-
er). Such bibliographic software might be pro-
grammed to assign keys automatically. For exam-

ple, software might write a .tex file that contains

L A ' 2.09 \bibitem commands, with keys of the
form lamport-86 constructed automatically from
two fields in the database.15

To help cater for such situations, it might be
useful if LAW3 allowed "local names" for keys, i.e.,

some mechanism whereby an author could declare
(e.g., in a document's root file) that, for the du-
ration of a document, a particular L'informal key"
(to be used in in-text citation commands) should
be treated as a synonym for a "formal key" (which
appears in an entry in an automatically generated
reference-list). For example, it might be useful to

be able to declare that latexbook can be used as a
"local name" for lamport-86.

4.2 Reference-lists that are also indexes

Another requirement that needs to be borne in mind
is for reference-lists which, as well as providing bib-
liographic details of sources, provide an index to the
pages on which the sources are cited:

in mainstream academic publications, the re-
quirement will probably be for a "combined list

of references and author index" [5, pp. 198 &
2581

in law books, the requirement is usually for
"front matter" units such as "table of cases",
"table of statutes" and "table of treaties". In
a typical "table of cases", each entry tells the
reader

l5 Some thought would need giving to any
method of assigning keys automatically. If a biblio-
graphic database is continually growing, there may
be no guarantee that keys of the form lamport-86
will stay unique when new items are added to the
database. I t might be safer to assign less memorable
keys that can be guaranteed to stay distinct, e.g., the
"record number" in the database, or a book's ISBN

- where further details of the case can be
found (e.g., the relevant law report)

- which pages in the book's main text men-
tion the case.

The other types of tables are analogous.

A Some suppliers of mainstream
bibliographic software

EndNote Niles and Associates. 2000 Hearst
St, Berkeley, CA 94709, USA. E-mail:

nilesincQQwell.sf.ca.us.

Library Master Balboa Software, P. 0 . Box 3145,
Station D, Willowdale, Ontario, M2R 3G5,

Canada. E-mail: hahneQepas . utoronto . ca.
Papyrus Research Software Design, 2718 S. W.

Kelly St, Suite 181, Portland, Oregon 97201.
USA. E-mail: RSDQapplelink . apple. com.

ProCite Personal Bibli-

ographic Software, P. 0. Box 4250, Ann Arbor,
Michigan 48106. E-mail: salesQpbsinc. corn

or supportQpbsinc.com.

Reference Manager Research Information Sys-
tems, Camino Corporate Center, 2355 Camino
Vida Roble, Carlsbad, CA 92009, USA. E-mail:
salesQris.risinc.com.

B E-mail discussion lists about
bibliographic software

The bibsof t list provides a forum for general discus-
sion of personal bibliographic database management
systems. You can subscribe by sending a one-line e-

mail message of the form
subscribe bibsoft last-name,first-name

to
listservQindycms.iupui.edu.

There are also specific discussion lists for End-

Note, Library Master and ProCite. See [17].
In the United Kingdom, there is a discussion list

for Higher Education institutions that have taken up
the CHEST Papyrus deal. You can subscribe by send-

ing a one-line message of the form
subscribe

chest-papyrus first-name last-name

to
mailbaseQmailbase.ac.uk.

References

[I] Leslie Lamport. BQX: A Document Prepara-
tion System. Addison-Wesley, 1986.

[2] The Bluebook: A Unijorm System of Citation.
Harvard Law Review Association, 15th edition,
1991. Obtainable from: Harvard Law Review
Association, 151 1 Massachusetts Avenue, Cam-
bridge, Massachusetts 02138.

TUGboat, Volume 14 (1993), No. 4 433

Documentation - bibliographic references -
content, form and structure. IS0 690, Interna-
tional Organization for Standardization, 1987.

Frank G. Bennett, Jr. Lexi': a L A ' macro

package for lawyers. Document deposited in
electronic archives, 1993.

Judith Butcher. Copy-edzting. Cambridge Uni-
versity Press, 3rd edition, 1992.

Publicatzon Manual of the Amerzcan Psycholog-
zcal Associatzon. American Psychological As-

sociation, 3rd edition, 1983. Obtainable from:

American Psychological Association, P. 0 . Box
2710, Hyattsville, MD 20784.

The Chzcago Manual of Style. University of
Chicago Press, 13th edition, 1982.

Janet S. Dodd. The ACS Style Guzde. Ameri-
can Chemical Society, 1986.

MHRA Style Book. Modern Humanities Re-
search Association, 4th edition, 1991.

Joseph Gibaldi and Walter S. Achtert, editors.
M L A Handbook for Wrzters of Research Papers.
Modern Language Association of America, 3rd
edition, 1988.

International Committee of Medical Jour-

nal Editors. Uniform requirements for man-
uscripts submitted to biomedical journals.
Brztzsh Medzcal Journal, 302:340-341, Febru-
ary 1991. Note: This article was also published
in the New England Journal of Medzczne (7th
Feb. 1991). It specifies the "Vancouver style"

for manuscript-preparation, which is accepted
by over 400 journals.

[12] Citing publications by bibliographic references.

BS 5605, British Standards Institution, 1978.

[13] References to published materials. BS 1629,
British Standards Institution, 1989.

[14] Citation of unpublished documents. BS 6371,
British Standards Institution, 1983.

[15] Oren Patashnik. BibTeXing. Document de-
posited in electronic archives, January 1988.

[16] James C. Alexander. Tib: A bibliographic
preprocessor. Document deposited in electronic
archives, 1989.

[17] Sue Stigleman. Bibliography formatting soft-

ware: a n update. Database, February 1993.

o David Rhead
Cripps Computing Centre
University of Nottingham
University Park
Nottingham NG7 2RD England;

U.K.

Relative moves in M m pictures

Richard Bland

1 Introduction

In this note I hope to do three things:

1. Make a number of observations about why
picture-drawing in L A ' , as described by Lam-
port, is so difficult and unpleasant.

2. Put forward a suggestion for a very simple
mechanism to overcome at least some of these
difficulties.

3. Show one way of implementing this suggestion.

using the Unix utility m4. This particular im-
plementation is presented only to demonstrate
the simplicity of the underlying mechanism: no

claim is made that it is an optimal implemen-
tation.

2 A n example

Consider the simple picture in Figure 1. As is ob-
vious, this picture has no meaning: it is just a col-
lection of graphic elements such as labelled shapes,
text strings, lines and arrows: but it does exemplify
the kind of output which many users have in mind
when they set out to draw a picture in LA'. Such
users want some form of diagrammatic representa-
tion in which different shapes are used to represent

types of entity, lines and arrows are used to con-
nect the entities, and labelling is used to give some

domain-specific meaning. Often these pictures are
conceptually quite simple.

Wilhelm Marta Rudolf

r - - - - - 1
Oval shape

I

William Freddy Henry

Figure 1: A LA' picture

434 TUGboat, Volume 14 (1993). No. 4

How does one produce pictures like this? Many

people would suggest using an interactive drawing
tool (on some suitable hardware) to produce an in-

termediate file which can be incorporated into the
LAW source of a document (or added at some ap-

propriate point downstream). I've never found this
an agreeable approach, for two main reasons: first,

as an occasional user I find it hard to come to grips
with the supposedly intuitively-obvious interfaces

which these tools present. After a certain point in

one's career the fun of learning another system be-
gins to diminish: the busy user who has learned one
set of syntactic and semantic ideas (like those of
LAW) would like to get results from those ideas
rather than adding a new set. Second, in using

an interactive drawing tool one often abandons or
jeopardises some of the main reasons for using a
markup system like LAW in the first place. These
are, of course, portability, device-independence, and
the ability to manipulate the source indefinitely with
any number of the myriad tools which handle ASCII

text. This last point is particularly important: be-
cause I&= source is just a character file it can be
edited, cut, pasted, searched, burgled, extended, all
without limit. This is certainly not the case with the
behind-the-scenes formats of many drawing pack-

ages.
These considerations suggest that there are

good reasons for trying to produce pictures with the
LAW tools described by Lamport.

Now consider the commands which produced
Figure 1. Slightly edited, they are as follows:

\begin{f igure) [htb]

\setlength{\unitlength)Clpt)

\centering

\begin(picture) (216,216)

\put (48,781 {\dashboxC5) (60,601 {

\begin{tabular){ 1 c 1)
\hline Here \\ we go \ \ again \\
\hline

\end{tabular]))

\put (78,731 {\vector (1, -1) (32))

\put (110,361 {\makebox(O ,O) [tll {Henry))

\put (78,73){\vector(-1 ,-I) (32))

\put (46,36){\makebox(O ,O) Ctrl {William))

\put (78,73>C\vector(O ,-l)C323)

\put (78,361 €\makebox(O ,O) [tl CFreddyH

\put (78,143) {\vector (I, IlC323)

\put (1 10,180) {\makebox (0,O) [bl] {Rudolf 33
\put (78,1431 {\vector (-l,l){32)3

\put (46,1801 C\makebox(O ,O) [brl Oilhelm))

\put (78,143) {\vector (0,l)

\put (78,18O){\makebox(O ,O) [bl {Marta))

\put (ll3,lO8) {\line (4,l) {64)3

\put(177,132>{\oval(70,16))\put (177,132)

{\makebox(O, 0) {Oval shape))

\put (177,124) {\line (0 ,-1){32))

\put(l77,74){\circle{36))\put(177,74)

{\makebox(O,O){A circle))

\end{picture)

\caption{A \LaTeX\ picture

\label{exampfig))

\end{figure)

What can we say about this? Well, readers

of TUGboat presumably have strong stomachs, but
even those who read The W b o o k for fun will surely
realise that these instructions are awful. Users who
set out to produce pictures using this sort of appara-
tus will very soon become discouraged. In the next
section we try to analyse the problem with these
instructions.

3 The difficulties

Looking at the code above, we can draw three main
conclusions. First, the syntax of the instructions is
very complicated and very hard to remember, mak-

ing the instructions extremely hard to write unless
one has a model immediately to hand. Also, there

seem to be inconsistencies. For example, the pa-

rameters for \oval are in round brackets while the
parameter for \circle is in curly brackets, although

they are semantically equivalent - in each case the
parameter(s) give the size of the shape to be drawn.

Second, the code is stuffed full of literal nu-
meric constants. This immediately makes users with
a programming background uneasy. After all, one

of the things we are always told (or are telling oth-
ers) is not to use constants. Because they convey

no semantic information they make code hard to

read: because we have to change every semantically-
equivalent instance of a constant in order to edit
code, the code is hard to change without making

mistakes. In this case there is the additional diffi-

culty that we suspect that the author of the code
must have sweated blood in order to work out what
all these constants ought to be in the first place: in

our mind's eye is an image of Lamport crouched over
his quadrille paper, cursing.

Third, the picture is composed in terms of ab-
solute positions rather than relative positions. We

realise that if we were to try to move the components
of the picture in relation to one another, it would be
very hard to do so by editing the absolute positions
(the pairs of values in all the \put instructions).

4 Existing remedies

Some of these problems can, of course, be dealt
with by sensible use of existing I4m facilities. We
can make the literal constants into symbolic con-
stants (using \newcommand), we can tinker a bit

TUGboat, Volume 14 (1993), No. 4

with the syntax of repeated constructions (also using

\newcommand) and we can modularise the picture
(using nested \p ic ture environments) and move the
modules in relation to one another using offsets.

These solutions only go so far, however. Defin-

ing symbolic constants is fine: but one soon needs
a facility for arithmetic in these definitions, which
LATEX lacks. For example, if one has a symbolic
constant for the width of a box, you may need one

for half the width as well. There's no easy way (that
I know of) of defining one constant as a function of

a previously-defined constant, so you must define
them both literally: once again this makes changes
difficult. Also, the scope for simplifying the syntax
is quite limited because each command is still quite

complicated semantically: 'at the point (177,132)
draw an oval of size (70,16) and within it centre the
string "Oval shape"' could certainly be more simply
expressed, but not very much more simply. Finally,

the method of modularising the picture by nesting
\p ic ture environments is useful, but has to be set
out very carefully if the human reader is not to be-

come hopelessly lost about the scope of the environ-
ments and hence about the offset to be applied to
any particular position.

5 New remedies

There are two remedies which I wish to propose: one

minor and one major. The minor one is to make it
easier to define symbolic constants as functions of
other constants. The major one is to remove the
'position' information from the drawing commands.
The minor remedy really needs no further discussion
at this stage: the only question to be settled is the
method of implementation. The idea of taking the
'position' information out of the drawing commands
is more complex.

The basic notion is to introduce the idea of a
current position at which the next drawing action
is to be done. Using macros, we re-package all the

drawing operations which we wish to use, so as to

Make them all draw at the current position.

The re-packaged commands can now be sim-
pler, because they no longer need position pa-
rameters.

Give each of them a defined effect on the current

position. For entity-representing shapes (boxes,
ovals, circles, strings) the command will leave

the current position where it is: for connectors
(lines, arrows) the command will start drawing

the line or arrow at the current position and end
by moving the current position to the other end
of the line or arrow.

Obviously we also need to add new commands

to manipulate the current position: these will in-
clude

An absolute jump, to move the current position
to some new point.

A relative move, to move the current position
by an offset (it turns out to be convenient to

have a family of these: four single-parameter

moves, up, down, l e f t and r igh t , as well as a
full two-parameter move).

A method of 'remembering' the current posi-
tion, and of resetting the current position to
some remembered point.

One way of thinking about these commands, and
of implementing the 'remembering' mechanism, is
that we have introduced position variables. There's
a behind-the-scenes position variable, the current

position, which is global to all commands, and as
many explicitly-named position variables as the user
wishes. The only defined operations (so far, anyway)
are those of assigning from a user-declared position

variable to the current position and vice-versa.
The payoff turns out to be quite considerable.

Our repackaged commands can be much simpler (for
example, the command for an oval has three param-
eters instead of five). More importantly, the whole

business of absolute positions (which gives the user
so much difficulty) has now disappeared and been
replaced by a much more natural idea of drawing

one thing, moving relative to that thing and drawing
another thing. This is what we do when we sketch
naturally, on the backs of envelopes: we certainly
don't work as Lamport recommends, "first pick[ing]

the slopes of all lines, then . . . calculat[ing] the po-
sition of each object before drawing it on the graph
paper" ([3], page 110). The naturalness of this new
approach is particularly obvious when the graph of

the entities and connectives is a tree: in this case

the new approach makes the picture simple to draw
and very easy to change.

An example is needed here, but before we can

present one. an implementation is needed. This is

discussed in the next section.

6 Implementation

No doubt in an ideal world I would now present

an implementation in TEX macros. In fact I shall
not do this. For many years I have used the Unix
macroprocessor m4 ([I, 2]), which comes free with

Unix and is in the public domain for MS-DOS. It has
the facilities which we need (including arithmetic)
and I know how to use it. Unfortunately I don't

know how to write TpX macros.

436 TUGboat, Volume 14 (1993), No. 4

Is this a problem? I believe not. My inten-

tion in this note is not to advertise a product but to
discuss an approach. Although I shall of course be

happy to share my few lines of code with anyone who
wants them, my purpose here is to demonstrate that

a particular approach can be made to work very eas-
ily and can greatly simplify a particular task. I hope
that readers will be stimulated to suggest better or
fuller implementations of the idea.

Using m4 means that the source file (a mixture

of m4 statements and LAW statements) must be
run through m4 before processing by LAW, but this
step is easily arranged and has a negligible penalty
in processing time.

In the following account I shall not show the

full details of the implementation in m4 (although
this is only a few dozen lines): I shall concentrate
instead on explaining the commands which a user
would need to know in order to draw the picture of

Figure 1. In this account. I shall show macro names
defined by me in capital letters, for clarity, and will
follow the m4 convention of describing macro param-
eters as $1, $2, etc,, rather than the convention

of #I , #2, etc. I shall not attempt to give a rigorous
account of m4, which is completely defined in [2]. As
a working label, I'll refer to the set of macros writ-
ten by me as the Macro Library for UQX Pictures
MLLP, although this perhaps conveys an undue air
of importance for a very few lines of code.

We begin by noting that in m4 we define
a macro using the define macro, which takes
two arguments, as in define (HEIGHT, 216) which
sets up the symbolic constant HEIGHT to be 216.

This is the intended height of the picture-216
points (which is about three inches). We also de-

fine other useful dimensions for the picture, whose
meanings should be obvious: WIDTH, BOXHEIGHT,

BOXWIDTH, CIRCLEDIAM, OVALHEIGHT, OVALWIDTH
and XARROWLEN. This is done in the same way as for

HEIGHT (but with different values, of course, the ex-
act values of which aren't important for the exposi-
tion). We also define a useful quantity SEPARATION,
which is defined as 5 (points) and is used as a general

spacing parameter in the picture.
We can now write

\begin(picture) (WIDTH, HEIGHT)

as the start of the environment. The first thing we
should like to do is draw the most significant element

of the picture, the dashed box, slightly to the left
of the midpoint of the picture. We can calculate

this using the m4 built-in macro eval, which takes
a conventionally-formed arithmetic expression as its
argument and replaces it by an integer, the result
of evaluating the expression. Before we do the sum,

we first the constant LEFTABIT to be (say) 20 points,
to move the box off-centre, and note that boxes are

usually drawn with their bottom-left corner as the
reference point: this means that we must jump to a
point half a box-width to the left of, and half a box-
height below, the chosen centre point of the box.'

All of this is rather a mouthful. However, we can

now set the current point to its starting position:

JUMP(eval((W1DTI-I-BOXHEIGHT)/2-LEFTABIT),
eval ((HEIGHT-BOXWIDTH) /2))

Now the dashed box. MLLP includes a three-
parameter macro which draws a dashed box of size

$1 by $2, with the (optional) $3 centered within it.
This operation does not affect the current position.

We can now write

DASHBOX(BOXHEIGHT,BOXWIDTH,
'\begin{tabular){lc() \hl ine Here \ \
we go \\ again \ \ \hl ine
\end{tabular) ')

demonstrating in rather a flashy way that the third
parameter of DASHBOX, the object to be centered
within it, can be a complicated LAW object. This is
not exclusive to DASHBOX: the other macros in the set

can also have complicated picture objects as param-
eters. Notice that to be on the safe side the parame-
ter is wrapped in paired left and right single-quotes:
this protects it from any unwanted processing by m4.

We now wish (say) to draw the cluster of ar-

rows, and the associated strings, under the box.
First we move the current point from the bottom-
left corner of the box: in doing so we use another
macro from MLLP, HALF, whose effect is obvious.

Once we've arrived, we want to remember this po-
sition because it will be the base for three arrows,
so we shall use the MLLP macro SET to hold the
position.

RIGHT(HALF(BOXWIDTH))
DOWN(SEPARATION)

SET(' arrowbasel')

The string arrowbasel is the name of an MLLP po-

sition variable, as described above. It can be any
identifier which won't interfere with or m4.

When acting as the parameter to SET, it needs to
be in paired left and right single-quotes: this is for

reasons internal to m4.
Now we draw an arrow and the string at the

end of it. MLLP includes a three-parameter macro

ARROW, which is just a packaging of Lamport's
vector. The first two parameters give the slope and
the third the length, just as described by Lamport

' Alternatively, one could make the centre of the

box the reference point: but if you work it through
this doesn't simplify things.

TUGboat, Volume 14 (1993), No. 4 437

([3], page 106). The arrow is drawn from the cur-
rent point and the current point zs moved to the head
of the arrow. There are two variants, A R R O W and
ARROWDOWN, which move the current point slightly

away from the end of the arrow, either up or down:
the length of the move is given by SEPARATION. The

string at the end of the arrow is written using PUT,
which is just a packaging of Lamport's put. The first
argument is the string to be written. The (optional)

second argument gives the relative position of the

string with respect to the current point. The de-

fault is to centre the string round the current point,
horizontally and vertically, but this can be changed
by using the second parameter. Just as in Lamport,

$2 can be 0, 1 or 2 of the letters t, b, 1 or r. These
determine where the current point is with reference
to the text. For example, tl means that the current

point is at the top left of the text. PUT does not
move the current point. So:

ARROWDOWN(1,-1,XARROWLEN)
PUT (Henry, t l)

The remaining two arrows in the cluster can

be drawn easily once we note that JUMP will accept
a position variable as its (single) argument. This of
course resets the current point to the position stored
in the position variable. Off we go:

JUMP (arrowbasel)

ARROWDOWN(-1,-1,XARROWLEN)
PUT(William, t r)

JUMP (arrowbasel)
ARROWDOWN(0,-1,XARROWLEN)

PUT(Freddy,t)

Drawing the top set of arrows doesn't require any
new techniques: we move to the top of the box,
establish a new arrow-base and draw the cluster.

JUMP (arrowbasel)

UP(eval(BOXWIDTH+2*SEPARATION))
SET('arrowbase2')

A R R O W (I , 1 , XARROWLEN)
PUT(Rudo1f , b l)

JUMP (arrowbase2)

ARROW(-1,1,XARROWLEN)
PUT(Wilhelm, br)

JUMP (arrowbase2)

ARROW(O,l,XARROWLEN)
PUT (Marta, b)

Given that our aim here is not to produce a ref-
erence manual for MLLP, or anything like it, it will
perhaps be enough to leave the reader to infer from

the code the properties of the remaining macros to
be used, LINE, VLINE, OVAL and CIRCLE, given the
information that OVAL and CIRCLE are drawn cen-
tred on the current point. We first move round to

the right-hand side of the box, then draw the rest of
the picture:

JUMP (arrowbase21
RIGHT(~v~~(BOXHEIGHT/~+SEPARATION))
DOWN(eval(BOXWIDTH/2+SEPARATION))

LINE(4,l,eval(XARROWLEN*2))

%
UP (HALF (OVALWIDTH))
OVAL(OVALHEIGHT,OVALWIDTH,Oval shape)

DOWN (HALF (OVALWIDTH) 1
%
VLINE(-XARROWLEN)

DOWN(HALF(CIRCLED1AM))
CIRCLE(CIRCLEDIAM,A c i r c l e)

\end(picture)

7 Conclusion

This note has attempted to identify a number of fac-
tors which make LAW picture-drawing a frustrating
and error-prone business, and to suggest a simple
approach which ameliorates those difficulties, and

which can be implemented without much difficulty.

An example has been presented: the code of this

example is, I believe, strikingly easier to understand
and to change than the original LAW code. Prac-
tical experience with a number of drawings has re-
inforced the belief that the approach presented here
is simple and effective.

No claim is made that the implementation of
these ideas in m 4 is particularly elegant, or that the

MLLP set of macros (which is larger than that shown
above) is optimal or complete. I have, however,
found it to be effective for my purposes. I should be

very grateful for suggestions or comments on these
points.

References

111 Brian W Kernighan and P J Plauger. Software
Tools. Addison-Wesley, Reading, Mass, 1976.

[2] Brian W Kernighan and Dennis M Ritchie. The
m4 macro processor. Technical report, Bell Lab-
oratories, Murray Hill, New Jersey, 1977.

[3] Leslie Lamport. B W : a document preparation
system. Addison-Wesley, Reading, Mass, 1986.

o Richard Bland
Computing Science and

Mathematics
University of Stirling
Stirling FK9 4LA
Scotland

438 TUGboat, Volume 14 (1993), No. 4

Calendar

1993

Dec 2

Dec 20

Dec 21

Dec 22

1994

m-Stammtisch at the Universitat
Bremen, Germany. For information,

contact Martin Schrijder
(115dQalf.zfn.uni-bremen.de;

telephone O421/628813).

m-Stammtisch in Bonn,
Germany. For information,

contact Herbert Framke
(Herbert-FramkeQBN.MAUS.DE;

telephone 02241 400018).

m-Stammtisch in Duisburg,
Germany. For 'information,
contact Friedhelm Sowa
(texQze8.rz.uni-duesseldorf.de;

telephone 0211/311 3913).

m-Stammtisch, Hamburg,
Germany. For information,
contact Reinhard Zierke

(zierkeQinformatik.uni-hamburg.de:

telephone (040) 54715-295).

Jan 6 - 9 Linguistic Society of America,
Annual Meeting, Sheraton Boston

Hotel, Boston, Massachusetts.
(m and linguistics poster
session, Friday, January 7.) For
information, contact the LSA office,

Washington, DC (202 834 1714,
zzlsaQgallua.bi tnet) .

Feb 1 TUG Annual Meeting,
titles and outlines due.

Send proposals to tug94Qtug. org.

--

TUG Courses, Santa Barbara, California
(For information, contact j ohnQtug . org.)

Jan 31 - Intensive LAW
Feb 4

Feb 7 - 11 Beginning/Intermediate 'TkX

Feb 14 - 18 Advanced TEX and Macro Writing

Feb 28 - Modifying LAW Style Files

Mar 4

Feb 15

Feb 16-18

Mar 9

Mar 15

Apr 11-15

0

Spring

May 23

Jul 6-8

TUGboat Volume 15,
2nd regular issue:
Deadline for receipt of technical
manuscripts.

DANTE194, lgth general meeting,

Miinster, Germany. For information,
contact Wolfgang Kaspar
(kasparQdmswwu1a.uni-muenster.de).

TUGboat Volume 15,
lSt regular issue:
Mailing date (tentative).

TUGboat Volume 15,
2nd regular issue:
Deadline for receipt of news items,

reports.

Four conferences,
Darmstadt, Germany:

EP94, Electronic Pubishing,
Document Manipulation and
Typography (for information,

contact ep94Qgmd. de);
RIDT94, Raster Imaging and Digital
Typography (for information,

contact r i d t94Qi r i sa . f r) ;
TEP94, Teaching Electronic
Publishing (for information, contact
1tsdysonQreading.ac.uk);

PODP94, Principles of Document
Processing (for information,
contact podp940cs. umd . edu).
Deadline for submission of papers:
15 August 1993

NTG 1 3 ~ ~ Meeting, " (LA)m,

METAFONT, and tools education",
Groningen, at RUG. For information,
contact Gerard van Nes
(vannesQecn . nl) .

TUGboat Volume 15,
2nd regular issue:
Mailing date (tentative).

C.N.E.D. 94: 3iBme Colloque

National sur 1'Ecrit et le Document,

Rouen, France. For information,
contact Jacques Labiche
(labicheQla3i . univ-rouen. f r) .

Status as of 19 November 1993

TUGboat, Volume 14 (1993), No. 4

Jul 24-29

Jul 31-

Aug 4

Aug 17

Sep 14

Nov 23

SIGGRAPH'94: 21St International

ACM Conference on Computer
Graphics and Interactive Techniques.

Orlando, Florida. (For information,
contact s iggr aph-94Qs iggr aph . org,

telephone 312-321-6830.)

TUG 1 5 ~ ~ Annual Meeting,
Santa Barbara, California.
For information, contact

Debbie Ceder (tug94Qtug. org).

TUGboat Volume 14,
3rd regular issue:
Deadline for receipt of technical
manuscripts (tentative).

TUGboat Volume 14,
3rd regular issue:
Deadline for receipt of news items,
reports (tentative).

TUGboat Volume 14,
3 1 ~ regular issue:
Mailing date (tentative).

For additional information on the events listed

above, contact the TUG office (805-963-1338, fax:
805-963-8358, email: tugQtug . org) unless otherwise
noted.

Production Notes

Barbara Beeton

Input and input processing

Electronic input for articles in this issue was received
by e-mail and on diskette, and was also retrieved

from remote sites by anonymous ftp.
In addition to text amd various code files pro-

cessable directly by m, the input to this issue

includes several encapsulated Postscript files. More
than 60 files were required to generate the final copy;
over 60 more contain earlier versions of articles, aux-

iliary information, and records of correspondence
with authors and referees. These numbers represent

input files only; . dvi files, device-specific transla-
tions, and fonts (. tfm files and rasters) are excluded
from the total.

Most articles as received were fully tagged for
TUGboat, using either the plain-based or L A W

conventions described in the Authors' Guide (see

TUGboat 10. no. 3, pages 378-385). The macros

are available from CTAN (the Comprehensive
Archive Network); see TUGboat 14, no. 2, p. 100.

The TUG office will provide copies of the macros on
diskette to authors who have no electronic access.

Almost 75% of the articles in this issue are in
L A W . accounting for about 85% of the pages.

Test runs of articles were made separately and

in groups to determine the arrangement and page
numbers (to satisfy any possible cross references).
A file containing all starting page numbers, needed

in any case for the table of contents, was compiled
before the final run. Final processing was done in 2
runs of and 3 of TPm, using the page number
file for reference.

The following articles were prepared using the

plain-based tugboat. s ty:

the NTS update, Philip Taylor, page 381

Two extensions to GNU Emacs, Thomas
Becker, page 382
Icons for and METAFONT, Donald

Knuth, page 387
A tough table, Kevin Carmody, page 420
the TUG calendar, page 438.
these Production notes.

"Coming next issue".

The index to the article by Nelson Beebe

(page 395) required processing with Makeindex.
A 1991 version of this program failed miserably
under both VMS and UNIX, first looping and

then terminating with a segmentation fault/invalid
access. Thanks to George Greenwade a more recent
version was found on CTAN and installed under
the pressure of the deadline; this version did work

properly. bibclean, the package described in this

article, will be available in the archives, as will

the article; anyone intending to W the article is
advised to make sure that their copy of Makeindex

is up to date.

Output

The bulk of this issue was prepared at the American
Mathematical Society from files installed on a

VAX 6320 (VMS) and m ' e d on a server running
under Unix on a Solbourne workstation. Output was
typeset on the Math Society's Compugraphic 9600

Imagesetter, a Postscript-based machine, using the
Blue Sky/Y&Y Postscript implementation of the

CM fonts, with additional fonts downloaded for

special purposes.
No pasteup of camera-ready items or illustra-

tions was required for this issue.

440 TUGboat, Volume 14 (1993), No. 4

Coming Next Issue

Typesetting of ancient languages

The visual characteristics of ancient languages were

based originally on manuscript traditions, not those
of printing. Claudio Beccari provides some history
and proposes an approach that, while not adhering
strictly t o ancient traditions, may be more suitable
for modern presentations of ancient works. [Delayed

for technical reasons.]

Slanted lines with controlled thickness

David Salomon describes a method that makes it

possible t o typeset slanted lines of any thickness
by typesetting a rule, shifting it in the desired
direction, and repeating the process a number of
times.

New techniques in METAFONT

Certain geometrical problems that arise very of-

ten in glyph design are not directly solvable by
METAFONT'S p l a i n macros. Yannis Haralam-
bous presents two such problems and solutions

for them, along with a discussion of an approach
that, although geometrically correct, does not work
in real-world METAFONT practice and should be

avoided.

Book reviews

Writing new books about and related subjects
has become a cottage industry. Reviews of the

following are expected:

Stephan von Bechtolsheim, 5!)jX in Practice
a Malcolm Clark, A Plain !QX Primer
0 George Gratzer, Math into

. . . 0 and possibly others

FOR YOUR T@ TOOLBOX FOR YOUR TEX BOOKSHELF

CAPTURE
Capture graphics generated by application programs.
Make LaserJet images compatible with w. Create
pk files from p c l or pcx files. $135.00

t expic
Use texpic graphics package to integrate simple

graphics-boxes, circles, ellipses, lines, arrows-into
. your documents. $79.00

Voyager
QX macros to produce viewgraphs-including bar

charts-quickly and easily. They provide format, in-

dentation, font, and spacing control. $25.00

'QX BY EXAMPLE NEW!
Input and output are shown side-by-side. Quickly

. see how to obtain desired output. $19.95

'TEX BY TOPIC NEW!
. . . Learn to program complicated macros. $29.25

FOR THE IMPATIENT
Includes a complete description of W ' s control se-

. quences. $29.25

'QX FOR THE BEGINNER NEW!
. . A carefully paced tutorial introduction. $29.25

BEGINNER'S BOOK OF TEX
A friendly introduction for beginners and aspiring

. "wizards." $29.95

Micro Programs Inc. 251 Jackson Are. Syarret, BY 11791 (516) 921-1351

TUGboat, Volume 14 (1993), No. 4

Institutional
Members

The Aerospace Corporation,
El Segundo, California

Air Force Institute of Technology,
Wright-Patterson AFB, Ohio

American Mathematical Society,
Providence, Rhode Island

ArborText, Inc.,
Ann Arbor, Michigan

ASCII Corporation,
Tokyo, Japan

Brookhaven National Laboratory,
Upton, New York

Brown University,
Providence, Rhode Island

California Institute of Technology,
Pasadena, California

Calvin College,
Grand Rapids, Michigan

Carleton University,
Ottawa, Ontario, Canada

Centre Inter-Rbgional de

Calcul ~ l e c t r o n i ~ u e , CNRS,
Orsay, France

CERN, Geneva, Switzerland

College Militaire
Royal de Saint Jean,
St. Jean, Quebec, Canada

College of William & Mary,
Department of Computer Science,
Williamsburg, Virginia

Communications
Security Establishment,
Department of National Defence,
Ottawa, Ontario, Canada

Cornell University,
Mathematics Department,
Ithaca, New York

CSTUG, Praha, Czech Republic

E.S. Ingenieres Industriales,
Sevilla, Spain

Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands

European Southern Observatory,
Garching bei Miinchen, Germany

Fermi National Accelerator
Laboratory, Batavia, Illinois

Florida State University,
Supercomputer Computations
Research, Tallahassee, Florida

GKSS, Forschungszentrum
Geesthacht GmbH,
Geesthacht, Germany

Grinnell College,
Computer Services,
Grinnell, Iowa

Grumman Aerospace,
Melbourne Systems Division,
Melbourne, Florida

GTE Laboratories,
Waltham, Massachusetts

Hungarian Academy of Sciences,
Computer and Automation
Institute, Budapest, Hungary

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Communications Research
Division, Princeton, New Jersey

Intevep S. A., Caracas, Venezuela

Iowa State University,
Ames, Iowa

Los Alamos National Laboratory,
University of California,
Los Alamos, New Mexico

Louisiana State University,
Baton Rouge, Louisiana

Macrosoft, Warsaw, Poland

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University,
Brno, Czechoslovakia

Mathematical Reviews,
American Mathematical Society,
Ann Arbor, Michigan

Max Planck Institut
fiir Mathematik,
Bonn, Germany

National Research Council
Canada, Computation Centre,
Ottawa, Ontano, Canada

Naval Postgraduate School,
Monterey, Calzfornza

New York University,
Academic Computing Facility,
New York, New York

Nippon Telegraph &
Telephone Corporation,
Software Laboratories,
Tokyo, Japan

Observatoire de GenBve,
Universitk de GenBve,
Sauverny, Swztzerland

The Open University,
Academic Computing Services,
Mzlton Keynes, England

Personal TEX, Incorporated,
Mzll Valley, Calzfornza

Politecnico di Torino,
Tonno, Italy

Princeton University,
Pmnceton, New Jersey

Rogaland University,
Stavanger, Norway

Ruhr Universitat Bochum,
Rechenzentrum,
Bochum, Germany

Rutgers University,
Computing Services.
Pzscataway, New Jersey

St. Albans School,
Mount St. Alban,
Washzngton, D. C.

Smithsonian Astrophysical
Observatory, Computation Facility,
Cambndge, Massachusetts

Space Telescope Science Institute,
Baltzmore, Maryland

Springer-Verlag,
Hezdelberg, Germany

Springer-Verlag New York, Inc.,
New York, New York

Stanford Linear
Accelerator Center (SLAC),
Stanford, Calzfornza

Stanford University,
Computer Science Department,
Stanford, Calzfornza

TUGboat, Volume 14 (1993), No. 4

Texas A & M University,

Department of Computer Science,

College Station, Texas

United States Military Academy,
West Point, New York

Universitat Augsburg,

Augsburg, Germany

University of British Columbia,

Computing Centre,

Vancouver, British Columbia,
Canada

University of British Columbia.

Mathematics Department,

Vancouver, British Columbia,
Canada

University of California, Berkeley,

Space Astrophysics Group,

Berkeley, California

University of California, Irvine?

Information & Computer Science,

Irvine. California

University of California, Santa

Barbara, Santa Barbara, California

University of Canterbury,

Christchurch, New Zealand

University College,

Cork, Ireland

University of Crete,

Institute of Computer Science:

Heraklio, Crete, Greece

University of Delaware,

Newark, Delaware

University of Exeter,

Computer Unit,
Exeter, Devon, England

University of Groningen,
Groningen, The Netherlands

University of Heidelberg,

Computing Center,

Heidelberg, Germany

University of Illinois at Chicago,

Computer Center,

Chicago, Illinois

Universitat Koblenz-Landau,

Koblenz, Germany

University of Manitoba,

Winnipeg, Manitoba

University of Maryland,

Department of Computer Science,

College Park, Maryland

Universita degli Studi di Trento,

Trento, Italy

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

University of Salford,

Salford, England

University of South Carolina,

Department of Mathematics.

Columbia. South Carolina

Index of Advertisers

447 American Mathematical Society

447 ArborText

Cover 3 Blue Sky Research

446 Ed Baker Technical Services

448,449 Kinch Computer Company

440 Micro Programs, Inc.

450 Y&Y

University of Southern California,

Information Sciences Institute:
Marina del Rey, California

University of Stockholm,

Department of Mathematics,

Stockholm, Sweden

University of Texas at Austin,

Austin, Texas

University of Washington,

Department of Computer Science,

Seattle, Washington

Uppsala University,

Uppsala, Sweden

Villanova University,

Villanova, Pennsylvania

Virginia Polytechnic Institute,

Interdisciplinary Center

for Applied Mathematics,

Blacksburg, Virginia

Vrije Universiteit,

Amsterdam, The Netherlands

Washington State University,

Pullman, Washington

Wolters Kluwer,

Dordrecht, The Netherlands

Yale University,

Department of Computer Science,

New Haven, Connecticut

Complete and return this form with
payment to:

TEX Users Group
Membership Department
I! 0. Box 869
Santa Barbara, CA 93102 USA

Telephone: (805) 963-1338
FAX: (805) 963-8358
Email: tugatug . org

Membership is effective from Jan-
uary 1 to December 31 and includes
subscriptions to TUGboat, The Com-
munications of the '7)j% Users Group
and the TUG newsletter, '7)j% and
TUG NEWS. Members who join after
January 1 will receive all issues
published that calendar year.

For more information . . .

Whether or not you join TUG now,
feel free to return this form to
request more information. Be sure
to include your name and address
in the spaces provided to the right.

Check all items you wish to receive
below:

Institutional membership
information

Course and meeting information

Advertising rates

C] Products/publications catalogue

Public domain software
catalogue

Individual Membership Application

Name

Institutional affiliation, if any

Position

Address (business or home (circle one))

City ProvinceIState

Country Postal Code

Telephone FAX

Ernail address

I am also a member of the following other Q X organizations:

Specific applications or reasons for interest in Q X :

There are two types of TUG members: regular members, who pay annual
dues of $60; and full-time student members, whose annual dues are $30.
Students must include verification of student status with their
applications.

Please indicate the type of membership for which you are applying:

Regular at $60 Full-time student at $30

Amount enclosed for 1994 membership: $

0 ChecWmoney order payable to Q X Users Group enclosed
(checks in US dollars must be drawn on a US bank; checks in other
currencies are acceptable, drawn on an appropriate bank)

Bank transfer:

Q X Users Group, Account #1558-816,
Santa Barbara Bank and Trust, 20 East Carrillo Street,
Santa Barbara, CA 93101 USA

your bank

ref #

Charge to MasterCardMSA

Card # Exp, date -

Signature

Complete and return this form
with payment to:

Q X Users Group
Membership Department
P. 0. Box 21041
Santa Barbara, CA 93121-1041
USA

Membership is effective from
January 1 to December 31. Members
who join after January 1 will receive
all issues of TUGboat and and
TUG NEWS published that calendar
year.

For more information . . .
Correspondence

Q X Users Group
F! 0. Box 869
Santa Barbara, CA 93102
USA

Telephone: (805) 963-1338
FAX: (805) 963-8358
Ernail: tugQtug . org

Whether or not you join TUG now,
feel free to return this form to
request more information.

Check all items you wish to
receive below:

El Course and meeting information

II] Advertising rates

II] Products/publications catalogue

II] Public domain software
catalogue

II] More information on TEX

Institutional Membership Application

Institution or Organization

- -

Principal contact

Address

City Province/State

Country Postal Code

Daytime telephone FAX

Email address

Each Institutional Membership entitles the institution to:

designate a number of individuals to have full status as TUG
individual members;

take advantage of reduced rates for TUG meetings and courses for
all staff members;

0 be acknowledged in every issue of TUGboat published during the
membership year.

Educational institutions receive a $100 discount in the membership fee.
The three basic categories of Institutional Membership each include
a certain number of individual memberships. Additional individual
memberships may be obtained at the rates indicated. Fees are as follows:

Category Rate (educ. / non-educ.) Add'l mem.
A (includes 7 memberships) $ 540 / $ 640 $50 ea.
B (includes 12 memberships) $ 815 1 $ 915 $50 ea.
C (includes 30 memberships) $1710 / $1810 $40 ea.

Please indicate the type of membership for which you are applying:

Category - + - additional individual memberships

Amount enclosed for 1994 membership: $

ChecWmoney order payable to Q X Users Group enclosed
(payment in US dollars must be drawn on a US bank; payment in
other currencies is acceptable, dmwn on an appmpriate bank)

II] Bank transfer: your bank

ref #

Q X Users Group, Account #1558-816,
Santa Barbara Bank and Trust, 20 East Carrillo Street,
Santa Barbara, CA 93101 USA

El Charge to MasterCardMSA

Card # Exp. date

i Signature

1 Please attach a list of individuals whom you wish to designate as TUG

, individual members. Minimally, we require names and addresses so
that TUG publications may be sent directly to these individuals, but we

would also appreciate receiving the supplemental information regarding

phone numbers, email addresses, and TEX interests as requested on the
TUG Individual Membership Application form. For this purpose, the

1 latter application form may be photocopied and mailed with this form.

North America

Abrahams, Paul
214 River Road, Deerfield, MA 01342;
(413) 774-5500

Development of Q X macros and macro
packages. Short courses in QX. Editing
assistance for authors of technical articles,
particularly those whose native language is
not English My background includes
programming, computer science,
mathematics, and authorship of 7&X for the
Impatient.

American Mathematical Society
I? 0. Box 6248, Providence, RI 02940;
(401) 455-4060

Typesetting from DVI files on an Autologic
APS Micro-5 or an Agfa Compugraphic
9600 (Postscript). Times Roman and
Computer Modern fonts. Composition
services for mathematical and technical
books and journal production.

Anagnostopoulos, Paul C.
433 Rutland Street, Carlisle, MA 01741;
(508) 371-2316

Composition and typesetting of high-quality
books and technical documents.
Production using Computer Modern or any
available Postscript fonts. Assistance with
book design. I am a computer consultant

-
with a Computer Science education.

ArborText, Inc.
1000 Victors Way, Suite 400, Ann Arbor,

48108; (313) 996-3566

Q X installation and applications support.
QX-related software products.

Archetype Publishing, Inc.,
Lori McWilliam Pickert

F? 0. Box 6567, Champaign, IL 61821;
(217) 359-8178

Experienced in producing and editing
technical journals with Q X ; complete book
production from manuscript to
camera-ready copy; TEX macro writing
including complete macro packages;
consulting.

The Bartlett Press, Inc.,
Frederick H. Bartlett
Harrison Towers, 6E 575 Easton Avenue,
Somerset, NJ 08873; (201) 745-9412

Vast experience: 100+ macro packages,
over 30,000 pages published with our
macros; over a decade's experience in all
facets of publishing, both '&X and
non-TEX; all services from copyediting and
design to h a 1 mechanicals.

Cowan, Dr. Ray E
141 Del Medio Ave. #134, Mountain
View, CA 94040; (415) 949-4911

Ten Years of and Related Software
Consulting, Books, Documentation,
Journals, and Newsletters. Q X & I~TEX
macropackages, graphics; Postscript
language applications; device drivers; fonts;
systems.

Electronic Technical Publishing
Services Co.
2906 Northeast Glisan Street, Portland,
Oregon 97232-3295;

(503) 234-5522; FAX: (503) 234-5604

Total concept services include editorial,
design, illustration, project management,
composition and prepress. Our years of
experience with TEX and other electronic
tools have brought us the expertise to work
effectively with publishers, editors, and
authors. ETP supports the efforts of the
TEX Users Group and the world-wide Q X
community in the advancement of superior
technical communications.

NAR Associates
817 Holly Drive E. Rt. 10, Annapolis, MD
21401; (410) 757-5724

Extensive long term experience in Q X
book publishing with major publishers,
working with authors or publishers io turn
electronic copy into attractive books. We
offer complete free lance production
services, including design, copy editing, art
sizing and layout, typesetting and repro
production. We specialize in engineering,
science, computers, computer graphics,
aviation and medicine.

Ogawa, Arthur
1101 San Antonio Road, Suite 413,
Mountain View, CA 94043-1002;
(415) 691-1126;
ogawac0applelink.apple.com.

Specialist in fine typography, UQX book
production systems, database publishing,
and SGML. Programming services in Q X ,
U r n , Postscript, SGML, DTDs, and
general applications. Instruction in Q X ,
UTEX, and SGML. Custom fonts.

Pronk&Associates Inc.
1129 Leslie Street, Don Mills, Ontario,
Canada M3C 2K5;

(416) 441-3760; Fax: (416) 441-9991

Complete design and production service.
One, two and four-color books. Combine
text, art and photography, then output
directly to imposed film. Servicing the
publishing community for ten years.

Quixote Digital Typography, Don
Hosek
349 Springfield, #24, Claremont, CA
91711; (714) 621-1291

Complete line of TEX, MQX, and
M ETA FONT services including custom
UQX style files, complete book production
from manuscript to camera-ready copy;
custom font and logo design; installation of
customized Q X environments; phone
consulting service; database applications
and more. Call for a free estimate.

Richert, Norman
1614 Loch Lake Drive, El Lago, TX 77586;
(713) 326-2583

TEX macro consulting.

l$Xnology, Inc., Amy Hendrickson
57 Longwood Ave., Brookline, MA 02146;
(617) 738-8029

QX macro writing (author of MacroQX);
custom macros to meet publisher's or
designer's specifications; instruction.

Type 2000
16 Madrona Avenue, Mill Valley, CA
94941;
(415) 388-8873; FAX (415) 388-8865

$2.50 per page for 2000 DPI Q X camera
ready output! We have a three year history
of providing high quality and fast
turnaround to dozens of publishers,
journals, authors and consultants who use
T'X. Computer Modern, Bitstream and
METRFONT fonts available. We accept DVI
files only and output on RC paper. $2.25
per page for loo+ pages, $2.00 per page for
500+ pages.

Outside North America

lypoqp Ltd.
Electronical Publishing, BattyAny u. 14.
Budapest, Hungary H-1015;
(036) 11152 337

Editing and typesetting technical journals
and books with Q X from manuscript to
camera ready copy. Macro writing, font
designing, Q X consulting and teaching.

Information about these services
can be obtained from:

Users Group

P. 0. Box 869

Santa Barbara, CA 93102-0869

Phone: (805) 963-1388

Fax: (805) 963-8538

LKoD
A BTEX Source Code Development System I

The BTEX document preparation system has proven it-
self as a tremendous system for creating technical doc-

uments. It is a feature rich system that can produce
documents to the highest standards of typography.

Unfortunately, even if you use it everyday, remembering
how to use all those features is next to impossible.

The BCOD system brings a new, more user friendly, face
to the creation of UTEX documents.

A Pop-Up command selector contains all UTEX
commands. You simply select a command and

UCbD will prompt you for all options and fill-in
information. WbD then inserts the syntactically
correct command, or environment, into your doc-
ument.

-<Index-&-Glossary>>
amakeindex>> When you need help, or examples for reference,
<<makeglossary>> place the cursor under any BTEX command and
<< inde%>> request Hyper-Help. A Pop-up screen will dis-
<< indexentryn
e< indexspace>> play proper command syntax and a complete

~<qlossary>* example of its use. Many screens are cross-

0 Pop-Up UTEX Command Menu

0 Pop-Up UTEX Hyper-Help

0 OS/2 and DOS Compatible

10 Editing Windows

0 Versatile Macro Capability

0 Unlimited Undo

0 Regular Expression Search

0 Journaling wlplayback

<<glossa*entryu
BACKUP TO PREVIOUS SYMBOL

Includes 2nd Day Priority Mail Shipping
for U.S. customers. Shipping not included
for international orders. However, inter-
national orders gladly expedited via Air
or Express Mail.

30-Day Money Back Guarantee

referenced by Hyper-Links to related commands
and examples.

EBTS

tabular

... Row Material
\end(tabular)
The tabular environment is used for producing ruled tables.
It can be usad in any mode and it processes text in LR mode.

The format scopa dafines the overall look or the table.
The following special characters are used to specify format:

I Definas a vertical line.
1.c.r Determines left, center or right text placement
e(text1 Inserts text in every row.
ptwidth) Producs a parbox column ot width units wide.
*(num)fimt) Produce num columns with tbe amme tmt spec.

Example: ((* (4) { c ()) produce a table of 4
cnntarad column each boundad by a vrule.

Controlling Row Material:
L sepcrate row ele~ants.

Dalines the row separator (aka. a carraige return).
::line Draws a horizontal linm across the full width

of the array. nay only appear after a \ \ or at the
and of tha first line.

\ Draws a horizontal line across columns i
through j , inclusive.

I
See Also:
~ s b u l a r - h ~ p l e - 1
Tabular*

single item that spans multiple columns is produced with
e \multicolumn command.

PO BOX 642L Norfolk, MA 02056
- -

TEL: 508-528-7728 FAX: 508-520-3272 email: ejb@world.std.com

TEX Publ ish ing Serv ices
From the Basic:

The American Mathematical Society offers you two basic, low cost TEX publishing services.

You provide a DVI file and we will produce typeset pages using an Autologic APS Micro-5

phototypesetter. $5 per page for the first 100 pages; $2.50 per page for additional pages.

You provide a Postscript output file and we will provide typeset pages using an Agfa/

Compugraphic 9600 imagesetter. $7 per page for the first 100 pages; $3.50 per page for
additional pages.

There is a $30 minimum charge for either service. Quick turnaround is also provided ... a manuscript

up to 500 pages can be back in your hands in one week or less.

To the Complex:

As a full-service TEX publisher, you can look to the American Mathematical Society as a single source

for any or all your publishing needs.

For more information or to schedule a job, please contact Regina Girouard, American Mathematical

Society, P. 0. Box 6248, Providence, RI 02940, or call 401-455-4060.

Macro-Writing

Art and Pasteup

NEW! NEW!

I
TEX Problem Solving ' Non-CM Fonts 1 Keyboarding 1

Silicon Graphics Iris or Indigo DVILASERmP3
Solaris 2.1 Motif and OPEN LOOK Preview

Camera Work

Complete TEX packages

Ready to use, fully documented and supported.

1
Printing and Binding Distribution i

Also Available For: Sun-4 (SPARC), IBM RS16000,

DEC/RISC-Ultrix, HP 9000, and IBM PC's

Call us for more information on our exciting new products!

1000 Victors Way A Suite 400 A Ann Arbor, MI 48108 A (313) 996-3566 A FAX (313) 996-3573

Typesetting Software
Executables $150
With Source $300

c0MPmLE

J 1 V

Executables $150

T
HE MOST V E R S A ~ E TEX ever
published is brealung new
ground in the powerful and
convenient graphical envi-

ronment of Microsoft Windows: Tur-
~oTEX Release 3.1E. TurboT~X runs
on all the most popular operating
systems (Windows, MSDOS, 0S/2,
and UNIX) and provides the latest
TEX 3.14 and METR FONT 2.7 stan-
dards and certifications: preloaded
plain TEX, BTEX, AMS-TEX and m-
BTEX, previewers for PC's and X-
servers, M ETA FONT, Computer
Modem and I~TEX fonts, and printer
drivers for HP LaserJet and DeskJet,
PostScript, and Epson LQ and FX
dot-matrix printers.

W Best-selling Value: TurboTEX
sets the world standard for power
and value among TEX implementa-
tions: one price buys a complete,
commercially-hardened typesetting
system. Computer magazine recom-
mended it as "the version of TEX to
have," IEEE Software called it "indus-
trial strength," and thousands of sat-
isfied users around the globe agree.

TurboT~X gets you started quickly,
installing itself automatically under
MSDOS or Microsoft Windows, and
compiling itself automatically under
UNIX. The 90-page User's Guide in-
cludes generous examples and a full
index, and leads you step-by-step
through installing and using TEX and
M ETA FO NT.

W Classic TEX for Windows. Even if
you have never used Windows on
your PC, the speed and power of
TurboT~X will convince you of the
benefits. While the TEX command-
line options and T~Xbook interaction
work the same, you also can control
TEX using friendly icons, menus, and

dialog boxes. Windows protected
mode frees you from MSDOS lim-
itations like DOS extenders, over-
lay swapping, and scarce memory
You can run long TEX formatting
or printing jobs in the background
while using other programs in the
foreground.

W MS-DOS Power, Too: TurboT~X
still includes the plain MSDOS pro-
grams. Virtual memory simulation
provides the same sized TEX that
runs on multi-megabyte mainframes,
with capacity for large documents,
complicated formats, and demanding
macro packages.

W Source Code: The portable C
source to TurboT~X consists of over
100,000 lines of generously com-
mented TEX, TurboT~X, M ETR FONT,

previewer, and printer driver source
code, including: our WEB system in
C; PASCHAL, our proprietary Pascal-
to-C translator; Windows interface;
and preloading, virtual memory, and
graphcs code, all meeting C portabil-
ity standards like ANSI and K&R.

W Availability & Requirements:
TurboT~X executables for IBM PC's
include the User's Guide and require
640K, hard disk, and MSDOS 3.0
or later. Windows versions run on
Microsoft Windows 3.0 or 3.1. Order
source code (includes Programmer's
Guide) for other machines. On the
PC, source compiles with Microsoft
C, Watcom C 8.0, or Borland C++ 2.0;
other operating systems need a 32-
bit C compiler supporting UNIX stan-
dard I/O. Specify 5-1/4" or 3-1/2"
PC-format floppy disks.

W Upgrade at Low Cost. If you
have TurboT~X Release 3.0, upgrade
to the latest version for just $40 (ex-

ecutables) or $80 (including source).
Or, get either applicable upgrade free
when you buy the AP-TEX fonts (see
facing page) for $200!

W No-risk trial offer: Examine the
documentation and run the PC Tur-
~oTEX for 10 days. If you are not sat-
isfied, return it for a 100% refund or
credit. (Offer applies to PC executa-
bles only.)

W Free Buyer's Guide: Ask for the
free, 70-page Buyer's Guide for de-
tails on TurboT~X and dozens of TEX-
related products: previewers, TEX-to-
FAX and TEX-to-Ventura/Pagemaker
translators, optional fonts, graphics
editors, public domain TEX accessory
software, books and reports.

Ordering TurboT~X

Ordering TurboT~X is easy and deliv-
ery is fast, by phone, FAX, or mail.
Terms: Check with order (free media
and ground shipping in US), VISA,
Mastercard (free media, shipping ex-
tra); Net 30 to well-rated firms and
public agencies (shipping and media
extra). Discounts available for quan-
tities or resale. International orders
gladly expedited via Air or Express
Mail.

The Kinch Computer Company

PUBLISHERS OF TURBOTEX

501 South Meadow Street
Ithaca, New York 14850 USA

Telephone (607) 273-0222

FAX (607) 273-0484

AP-'l$jX Fonts Avant Garde BoM

Avant Garde &;ue
Avant Garde Demibold

=-compatible Bit-Mapped Fonts
Identical to

Adobe Postscript Typefaces
DelrdbQkl Avant Garde Obliaue

If you are hungry for new TI$ fonts, here is a feast guar-
anteed to satisfy the biggest appetite! The AP-T@ fonts

- -

serve you a banquet of gourmet delights: 438 fonts cov-
ering 18 sizes of 35 styles, at a total price of $200. The
AP-TI$ fonts consist of PK and TFM files which are ex-
act w-compat ib le equivalents (including "hinted" pix-

Demibold Bookman
C o u r i e r

els) to the popular Postscript name-brand fonts shown C o u r i e r Oblique

at the right. since they are-directly compatible with any --

Courier ~ d d
s t a n d a r d w implem&tation (including kerning and liga-
tures), you don't have to be a 'JJ$ expert to install or use
them.

C o u r i e r &ue

Helvetica
Helvetica Oblique When ordering, specify resolution of 300 dpi (for laser

printers), 180 dpi (for 24-pin dot matrix printers), or 118
dpi (for previewers). Each set is on ten 360 KB 5-114"
PC floppy disks. The $200 price applies to the first set

Helvetica BoM

Helvetica Narrow you order; order additional sets at other resolutions for
$60 each. A 30-page user's guide fully explains how to
install and use the fonts. Sizes included are 5, 6, 7, 8, 9,
10, 11, 12, 14.4, 17.3, 20.7, and 24.9 points; headline styles
(equivalent to Times Roman, Helvetica, and Palatino, all
in bold) also include sizes 29.9, 35.8, 43.0, 51.6, 61.9, and
74.3 points.

Helvetica Narrow Oblique

Helvetica Narrow Bold

Helvetka Narrow KfqW
-

Schoolbook :znBntury
SchooZbook r:P"ury
Schoolbook 'i%ce*ury
Schoolbook

New Century
Bold Italic

The Kinch Computer Company

501 South Meadow Street
Ithaca, New York 14850

Telephone (607) 273-0222
FAX (607) 273-0484

Palatino itali,

Palatino BOM

Helvetica, Palatino, Times, and New Century Schoolbook are trademarks of
Allied Linotype Co. ITC Avant Garde, ITC Bookman, ITC Zapf Chancery,
and ITC Zapf Dingbats are registered trademarks of International Typeface
Corporation. Postscript is a registered trademark of Adobe Systems Incorp*
rated. The owners of these trademarks and Adobe Systems, Inc. are not the
authors, publishers, or licensors of the AP-7$J fonts. Kinch Computer Com-
pany is the sole author of the AP-'I)$ fonts, and has operated independently
of the trademark owners and Adobe Systems, Inc. in publishing this soft-
ware. Any reference in the A P - w font software or in this advertisement to
these trademarks is solely for software compatibility or product comparison.

LaserJet and DeskJet are trademarks of Hewlett-Padcard Corporation. TEX
is a trademark of the American Math Society. Turbo10>; and AP-l&X are
trademarks of Kinch Computer Company. Prices and specifications subject to
change without notice. Revised October 9, 1990.

Times Roman

Times lu ic

Medium Zapf Chnce y IME

Svmbol A@l-'?sNl@

Zapf Dingbats X=CI

==a DVlWindo Inewtugad.dvi3 page: 1

Bitmap-free QX for Windows

Powerful, fast, flexible T@ system for Windows

TeX Package

!

D W i n d o

DVIPSONE
Provides partial font downloading

Can use any Windows printer driver
Adobe Type Manager

Big T@ runs in Windows or DOS
Acrobat Reader

Commercial grade, fully hinted fonts
Postscript Type 1 fonts

Complete flexibility in font encoding

Support for EPS and TIFF images
1

Why Y&Y?

j Mature products. Years of experience with
Windows, Postscript printers and scalable
outline fonts. We understand and know
how to avoid problems with Windows, ATM,
'clone' printers, and problem fonts.

Y&Y - the experts in scalable outline fonts for T@

Y&Y, Inc. 106 Indian Hill, Carlisle, MA 01 741 USA - (800) 742-4059 - (508) 371-3286 - (508) 371-2004 (fax)

DVlWlndo and DVIPSONE are trademarks of YLY, Inc. Windows Is a registered trademark of MlcroSoft Co. Adobe Type Manager Is a registered trademark of Adobe Systems Inc.

Volume 14, Number 4 / December 1993

369 Addresses

Gene ra l Del ivery 371 Opening words / Christina Thiele

at meetings of other societies; Free-Net: Renew for 1994

372 Editorial comments / Barbara Beeton

Reminder to potential TUGboat authors; Call for volunteers

372 TUGboat wish list

Dreamboa t 374 m: A personal view / Malcolm Clark

381 NTS update / Philip Taylor

Software & Tools 382 Two extensions to GNU Emacs that are useful when editing T)jX documents /

Thomas Becker

387 Icons for l$jX and METAFONT / Donald E. Knuth

390 bibview: A graphical user interface to BibTeX / Armin Liebl

395 Bibliography prettyprinting and syntax checking / Nelson Beebe

Graphics 420 A tough table becomes easy with / Kevin Carmody

Book Reviews 421 Book Review: P. W. Abrahams. K. Berry and K. Hargreaves,

per 1 'impaziente / Claudio Beccari

Hin t s & Tricks 423 Ten m tricks for the mathematician / Helmer Aslaksen

Macros 424 The bag of tricks / Victor Eijkhout

425 The "operational requirement" for support of bibliographies / David Rhead

433 Relative moves in L A W pictures / Richard Bland

N e w s & Announcemen t s 438 Calendar

- Late-Breaking News 439 Production notes / Barbara Beeton

440 Coming next issue

T U G Business 441 Institutional members

Forms 443 TUG membership application

Adver t i sements 442 Index of advertisers

445 TJ-$ consulting and production services

