
Developing a Multi-Windowing Environment for Research Based on TEX

Michel Lavaud
C.N.R.S.
GREMI, Universite d'orleans,
45067 O R L ~ N S Cedex (France)
Internet: lavaudecentre. univ-or1 eans . f r

Abstract

We have devised an experimental program, AST$, whch provides an easy to use
multi-window environment adapted to research work. It runs on any PC and is
b d t on the top of a commercial all-in-one software (Framework). It endows it with
scientific capabilities by coupling it to emTEX, Maple, Fortran and other scientific
software. It allows for the easy modification of the structure of large multi-author
documents and the performance of numerical and formal computations from the
document. It adds a hypertext file manager, a preprocessor of FTEX structure,
hypertext help and hypertext archving of messages, among others. It can use the
multitasking capabilities of Desqview or OS/2.

Many of the functions of AST$ could be implemented also on the top of other
existing software (commercial or public domain), provided they are endowed with
an internal programming language whch is powerful enough. We hope this could
be done with GNU emacs.

Several commercial WYSIWYG scientific word-
processors on PCs are now able to produce very nice
output. Since the advantage of TEX is diminishing as
concerns quality of output, some leading TjXperts
have concluded that it is becoming too old, and have
proposed creating a New Typesetting System from
scratch, which would incorporate all aspects that are
missing from TEX.

On the other hand, more and more scientists
have access to international networks, and they are
now using TEX as a language in the linguistic sense
of the term, i.e., as a means of communication. This
implies that TEX must remain stable in time as much
as possible, for it to be able to fulfill this communic-
ation function.

We suggest that keeping TEX unchanged, as de-
sired by many users, is not incompatible with build-
ing easy-to-use and powerful TEX-based software, as
desired by TEXperts. This can be done by improving
front ends and back ends to TEX and malung them
cooperate together via a multitaskmg 0s.

In t h s article we describe a program, AST$, that
we have written and that illustrates this point of
view. It might provide -we hope - some guidelines
for future developments in t h s direction.

Existing interfaces to TEX

In his article about the Future of TEX (Taylor, 1992),
Philip Taylor described how painful it was to use

TEX in the early eighties. Although he assured that
TEX users enjoy this way of worlung.. .for those who
do not, there are now several user-friendly pub-
lic domain interfaces to TEX and related software,
that make its use much easier! The first one is the
AUCTEX Lisp package for GNU emacs. It is extremely
powerful since it is based on the complete version
of emacs; t h s requires 386-based PCs and big hard-
disks, and preferably OS/2 or Unix. Another inter-
face that runs under OS/2 is TjXpert, by Johannes
Martin.

For DOS users, there is the very nice interface
T~Xshell, by J. Schlegelmilch. Its latest version (2.5.2)
is particularly useful for all users, since there is now
on-line help on LATEX in English. It is also public
domain, and very user-friendly. A new one, 4TEX
(W. Dol, et al., 1993), appeared very recently. It uses
the shareware programs 4 ~ 0 s and QEDIT. It seems
very nice too. Our interface ASTEX uses the cornrner-
cia1 program Framework, and optionally Desqview
or OS/2.

Finally, there are also several commercial sci-
entific word-processors that are able to edit math-
ematical equations in WYSIWYG mode and are able
to export them in TEX form (see Lavaud, 1991 and
1992 for some references).

T h s shows that, even on PCs, the Lion must
not be afraid any more of the Mouse (Siebenmann,
1992). . .

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Multi-windowing environments for TEX

Motivations for writing AST$

In the early hstory of computer science, programs
were written on sheets of paper by researchers,
typed on punched cards by specialized typists, and
submitted to the computer by an operator. When
teletype terminals became available, all scientists
began to type and run their computer programs
themselves because this allowed them to gain much
time, despite the fact that they did the work of three
people.

Many researchers still write their scientific art-
icles by hand, and have them typed by secretaries.
This can take a very long time, especially for articles
with many complicated formulae. It seems reason-
able to expect that, if software adapted to research
work becomes available, all scientists will also type
their articles themselves, because this wdl allow
them to gain much time, as with teletype termin-
als. In an earlier article (Lavaud, 1992), we argued
that, for a software to be adapted to scientific work:

It must allow the user to display and modify

easily the structure of the document, to ensure
that even very long multi-author documents will
be coherent and logically organized;

it must allow for the performance of everyday
research tasks from the document (numerical
and formal computations, management of the
files created or received in the research process,
etc.);

it must be TEX-based.

The first point implies that a document cannot
be just a sequence of characters typed inside one or
a few windows; it must be a tree whose leaves are
windows that contain coherent blocks of informa-
tion of various nature (paragraph of text, worksheet
of numerical results, database, computer program,
numerical result, e-mail, illustration, etc.).

Overview of AST$'s possibilities

We enumerate here the main possibilities of AST$.
Some are developed in more detail below. Others are
detailed in Lavaud, 1991 and 1992 and in references
therein.

Hypertext file manager:

- Immediate access to thousands of files
through hierarchy of explicit titles.

- Easy modification of the structure of very
big multi-author documents.

Scientific computations:

- Numerical (e.g., Fortran): compilation / ex-
ecution run directly from text of the docu-
ment.

- Formal (e.g., Maple): results automatically
included in text, worksheets, databases.

- Live links to data files.

- Interdependent worksheets.

Scientific text processing:

- Mathematical and chemical formulas dis-
played with a single keystroke.

- Preprocessor of Q X structure.

- Cut and paste from hypertext help into the
document.

- Automatic generation of environments.

- Creation of LATEX tables from worksheets
or databases of formulas.

Tool Box:

- External DOS (and UNIX) tasks can be run
from a customizable Tool Box.

Electronic mail:

- Hypertext archiving of messages.

- Automatic extraction of messages from
files issued from discussion lists.

- Local archiving of information about ftp
and archie servers to speed up connec-
tions.

Hypertext help for AST$, LATEX, emT& Ghost-
script, graphs used in physics . . .

The hypertext file manager of AST$

Writing a multi-author scientific book from scratch,
(or collating results of a research team regularly over
several years) is not only the matter of typing text
with a scientific word-processor. When you create
with colleagues a document that will at the end have
several hundred pages, and that will make reference
to hundreds of files (articles, chapters of book, nu-
merical results, computer programs, input and out-
put data, electronic illustrations, electronic mail.. .),
it is very important to be able to navigate easily, in a
logical way, in the document and in the files that are
related to it, during the whole process of its creation.
You need a file manager which allows you to classify
and archve your files in a structured way, so that
you can retrieve them easily, with a few keystrokes,
regardless of who created them.

Usual file managers. With usual file managers
(those of Framework 3, of Windows 3.1, etc.), you
access a file from its physical location on disks: you
have first to remember on which disk it is, then in
which directory. Then, you have to scroll among a
set of files, most of which are not pertinent to your
document. Moreover, as names of files and direct-
ories are limited to eight characters (with MS/DOS),

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 239

Michel Lavaud

they are not very explicit in general, and it may be

very difficult to retrieve a file that was created or

received a long time ago (see Figure 1). Even worse,
files created by colleagues and pertaining to the doc-

ument may have been moved without their alerting

you.

Iexte: Options: Caracthrss indices Oui

Figure 1: File retrieval with the file manager of
Framework 3, illustrated with e-mail received from

the GUTenberg discussion list (French TEX Users

Group): names of archive files are not explicit, files
are scattered over several disks.

The file manager of ASTE7J. For ASTEX, a document is
a set of files related logically and accessible from one

of them (the master file) by loading into linked win-

dows. The set of files has a tree structure, and each

file is itself a tree whose leaves are objects of vari-

ous nature (linked windows, texts, databases, work-

sheets, graphics, computer programs.. .). The files
may be on different media and be created/modified

by several people on a network.
With the hypertext file manager of ASTEX, a file

is accessed from its logical location in the document,

not from its physical location on disk. Each file re-

lated to the document is retrieved from a hierarchy
of explicit titles. T h s way of accessing files has
many advantages, among which (see Lavaud, 1991

for more details):

The way to retrieve a file from the document re-

mains unchanged when the file is moved phys-

ically to another place for some reason (the dir-

ectory is too crowded, the local hard disk is
full,. . .).
Only the files pertinent to the document are dis-

played and accessible from it. The files that are

unrelated are not displayed.

Modifying the structure of a document is very

easy and very fast, because files are reorgan-

ized logically in the document, not physically

on dlsk(s).

A file can be accessed from several documents,

in different ways, i.e., with different hierarchies

of titles.

Data (e.g., computer programs, numerical res-

ults, etc.) can be accessed as live links (i.e., the

latest version of the data file is automatically

loaded) or stored as backups in parent files.

One has several levels of backup for linked files.

You are automatically informed of new files ad-
ded to the document by colleagues, without

them having to tell you.

Figure 2: File retrieval with the hypertext file man-

ager of AST$, illustrated with the same example as

in Figure 1. e-mail is retrieved from a hierarchy of

titles.

Word processing with AST$

The general philosophy of AST$ is to display inter-

actively only global formatting of text, and to use

LATEX commands for local formatting. These are con-

sidered as encapsulated in small blocks of informa-
tion that are stored into linked files. ASTEX deals with

the organization of these blocks through organiza-

tion of linked windows on screen, and it allows the

author to forget completely about local formatting

commands. He is just reminded of the contents of
the blocks through their titles, and he can concen-

trate on the important part of h s work, that is on

the logical connection of the various components of

h s document and on the scientific computations that

are related to it.

240 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Multi-windowing environments for TEX

WYSIWYG or not WYSIWYG? That is the question!
When speakmg of WYSIWYG scientific editors, one

thnks automatically of interactive editing of math-

ematical formulas. In an earlier article (Lavaud,

1992), we explained that there are many interactive

equation editors able to export mathematical equa-

tions in TEX, but that, to be really useful, they ought

to be able also to import such equations and, more
generally, any TEX or Q X file. And t h s is much

more difficult, since t h s means that the equation

editor must contain almost all the capabilities of the

TEX compiler.
With AST$, mathematical equations and most

local formatting commands are supposed to be writ-

ten in native TEX. Some simple local commands that

Framework is able to display, such as italics, bold,
indices and exponents, can be translated automatic-

ally by AST$. It provides also on-line hypertext help

and a multi-level assistance in typing LATEX code, in

particular by generating automatically environments

from a hierarchical menu (see Lavaud, 1992).

Previewing portions of text. In the absence of a

satisfactory WYSIWYG editor able to import TEX and

IF@X files, a good front end to TEX must be able at

least to preview any portion of text with one or a
few keystrokes (Siebenmann, 1992). This has been
possible for quite a long time with emacs. This is

possible also with AST$ (see Figure 3). It is further

possible to preview the text contained in a selected

subset of windows, as appears in Figure 4.
As Laurent Siebenmann has emphasized, the

mechanism is very simple, but it seems very under-

used. For example, the question "How can I trans-

form m y Wordperfect files to T@ or BT@' is asked
very often on the net. Now, with Wordperfect, math-

ematical equations are typed in the eqn language

and are debugged exactly as indicated in Figure 3.

So, instead of trying to transcode from eqn to TEX,
it would be much more efficient to write and debug

equations directly in TEX. A program, written in the

programming language of Wordperfect, that would

implement the above mechanism would certainly
solve many problems. More generally, this mech-
anism could be implemented very easily into many

word-processors, so that files in native TEX could be

typed and debugged from these word-processors, in-
stead of being translated by an external program,

so that users accustomed to a given word-processor

can take advantage of TEX from withn their favorite

editor. So, although the mechanism is fairly trivial,

let us describe it in some detail for the PC.
The editor needs only to be able to save a se-

lected portion of text into a file, shell to DOS and

run an external program. A prolog and a trailer have
to be added to the selected text: t h s can be done

either inside the editor, if it is able to concatenate

chains, or during the shell by adding \i nput pro-

l o g and \ i npu t t r a i 1 e r at the beginning and at

the end of the file containing the text, with the DOS

copy instruction.
This results in previewing a portion of text by

switchng from source text in full screen to the pre-
viewer in full screen, and back again to the editor.

A more elaborate way is to display code and result
simultaneously as in Figure 3. This is obtained by

coupling the preceding mechanism to the multitask-

ing properties of Desqview or OS/2. With Desqview

for example, instead of running the previewer dir-
ectly during DOS shell, you have to run the share-

ware utility dvexec, telling it to create a child win-

dow and to run the previewer in it. This is done by
running a batch program containing a line such as:

dvexec c : \dv \ tp -p i f .dvp

where t p - p i f .dvp is a file created by Desqview,

which contains the parameters to run the TEX pre-

viewer.

1 chcument with a simple hrmula : U P

Figure 3: Displaying a portion of text with AST$: the

text selected with the mouse or the key arrows, is

displayed automatically in a child window by typing

a single keystroke (a1 t-A).

The prolog and trailer attached to the current

document have to be stored somewhere, in external

files or inside separate windows, according to the
capabilities of the editor used. The prolog must con-

tain all the necessary definitions. For example, if we

want to preview the chemical formula:

$$

\ethene{$CH-2 O H $ } { $ R A Z $ } { $ R A ~ $ } { $ R ~ ~ $ }

$ $

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Michel Lavaud

with the ChemTEX package, the prolog must contain
at least the instructions:

\documentsty1 e [chemtex] { a r t i c l e }

\begi n{document)

The prolog must also contain personal macros that
are used in the document. The trailer must contain
at least the \end{document) instruction for LATEX, or
\bye for TEX.

With ASTEX, since many individual documents
may be ~ t o r e ~ i n s i d e the master document, each may
have a special prolog/trailer. These are stored in
windows that immediately precede/follow the sub-
tree that contains the text of the document.

Preprocessor of LATEX structure. When you write
a long document, you have to modify its structure
very often. Local commands, such as \it, \i ndent,

mathematical formulas, etc. remain unchanged. But
global commands such as \chapter or \ sec t i on

must usually be modified: for example, if a long sec-
tion is becoming too big and has to be transformed
into a chapter, all \subsect ion commands must be
transformed into \sect ion, etc.. . . T h s may re-

matically erased, and the message "Instruction
\section forbidden" is displayed on the screen.

Therefore AST$ plays the role, at the front end
level, that is fulfilled by SGML parsers at the back end
level.

Exporting a LATEX document. Let us consider the
document of Figure 4 (whlch corresponds to the art-
icle by Lavaud, 1991):

quire modifying many LATEX sectioning commands,
which may be very error-prone if these are scattered
among several files. Figure 4: Example of an article, in the Table of Con-

With AST$, YOU do not have to modify section- tents

ing command;; because you never write any of them.
Any modification in the structure of the document is
made within Framework, and sectioning commands
are automatically generated by ASTEX from the tree
of the Framework document.

Implementing some functionalities of SGML pars-
ers. SGML is the IS0 standard for document descrip-
tion. It is designed specifically to enable text in-
terchange (van Herwijnen, 1990). Although SGML is
not very well adapted to everyday research work,
many of its ideas are very important and of general
scope, and can be implemented fruitfully into TEX-
based software. For example, an important function
of SGML parsers is to ensure that a document has
no chapter inside a section. This possibility is not
forbidden by LATEX: if we want to write "Hello every-
body!" in large letters in the middle of a paragraph,
it is possible to do it by including the instruction:

\ s e c t i onq{Hel l o everybody! 3

With AST$, it is impossible to create an ill-
structured document, for two reasons:

1. Sectioning commands are generated automatic-
ally from the tree of the document (cf. preceding
section);

2. Writing sectioning commands in text is inhib-
ited: if we type \ sec t i on in the text, it is auto-

When AST$ is asked to create a I Q X file from it,
it generates the document of Figure 5 . We see that
AST$ does not blindly export the whole document: a
lot of windows have been eliminated. When the doc-
ument is displayed as in Figure 4 (title of first section
in boldface, other titles in normal characters), it is
configured for debugging only the first section of the
article.

To illustrate further the great flexibility of AST$
in creating LATEX documents, let us just indicate that
the master document of Figure 4 manages several
thousand files; nevertheless when going from the
state of Figure 4 to Figure 5 , AST$ has exported only
a small part of one file linked to the document; and
it could have exported as easily small selected (non-
consecutive) parts of several files.

The Tool Box of AST$

ASTEX contains a Tool Box that automates access
to general internal or external resources, independ-
ent of the current document. Internal resources

are, for example, agenda, alarm, frequently used
databases.. .). External resources are in general
batch programs, to run external PC programs in a
customized environment or to send UNIX requests
to the server. All resources are accessible from the

242 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Multi-windowing environments for TEX

Figure 5: Document with W&X sectioning com-
mands, generated by AST$ from the document of
Figure 4.

Tool Box exactly as any item in a hierarchical system
of menu. They are activated by pointing to an expli-
cit title instead of typing the name of a program.

Porting AST$ to other software

AST$ has been developed on the top of Framework
because, at the time when the project began (19901,
this commercial program was the most suited to our
purpose, whle public domain editors available on
PCs were not powerful enough. In particular, emacs
was not available in its complete version.

Many functions of AST$ can be implemented in
other software, either PD or commercial, provided it
has a powerful enough programming language. We
enumerate the main possibilities offered by Frame-
work that are used by ASTEX, to indicate the pre-
requisites for such a porting.

Why use Framework?

Framework offers a hierarchical multiwindow-

ing system for the three basic applications:

- editor of text,

- spreadsheet,

- database manager.

It has a very powerful programming language,
which allows us to program very complex ap-
plications. This language is identical in all ap-
plications (when using specialized programs,
you have to learn several different languages).

It is ideally complementary to TEX: each applic-
ation is much more rudimentary than a special-
ized program (e.g., the spreadsheet module as
compared to Excel), but most possibilities that
are missing are added by its coupling with TEX,

and many more are added that may not exist
in the specialized program. For example, math-
ematical formulas cannot be written in cells of
Excel, while this can be done with Framework +
TEX (of course, t h s could also be done by coup-
ling Excel to TEX).

Telecommunications can be done in a window,
with the possibility to cut and paste text to and
from other windows containing text, worksheet
or database.

The three basic applications run much faster
than an equivalent set of programs under Win-
dows 3.1, and the multi-windowing system for
the basic applications, combined with multi-
windowing facilities of Desqview or OS/2, is
much more powerful than that whlch can be
obtained with Windows 3.1.

Framework also has several other advantages: it

runs on any PC, occupies only about 2 Mbytes on
disk, and it has some interesting built-in possibilit-
ies (spell-checker, synonyms, mailing, etc.).

Porting ASTEX to GNU emacs. Our dearest wish
would now be to port AST$ to GNU emacs. Indeed,
the complete version of emacs, with its Lisp-like pro-
gramming language, has been ported to OS/2. This
is still a limitation, because t h s requires a PC386
and large disks, but hardware prices are going down
very fast and older models will disappear soon.

Porting AST$ to emacs would be desirable for
many reasons. First, it is public domain, well-
supported and widely used. Second, since Frame-
work is a commercial program, some of its short-
comings cannot be solved. For example, although
Framework is mouse-based, no control of the mouse
is provided by its programming language. Since
the code of Framework is not public domain, t h s
makes programming the use of the mouse wiith
AST$ very difficult. Many other problems cannot
be solved neatly for the same reason. For example,
we could only forbid typing \ sec t i on { } but not
\ sec t ion { } , because only the space character is
considered as an end of word, in the automatic sub-
stitution function of Framework. T h s fairly stupid
limitation could be solved in a few lines of code with
a public domain editor.

Conclusion

We have proved, by building the program AST$, that
it is possible not only to make the use of TEX and
related software easy on low-cost PCs, but also to
build a powerful multi-window environment that is
adapted to scientific research and based on TEX.

TUGboat, Volume 14 (1993), No. 3 - Proceedings of the 1993 Annual Meeting 243

Michel Lavaud

For AST$ to be useful in practice (not only as

a model), it ought now to be ported to other more
widely used commercial software and above all to

public domain editors, in particular to emacs.

Bibliography

Dol, Wietse, Eric Frambach, and Maarten van der

Vlek, MAPS 93.1, pages 53 - 57, 1993.

van Henvijnen, Eric, Practical SGML, Kluwer, 1990.

Lavaud, Michel, EuroTH91 Conference Proceedings,

pages 93 - 116, 1991.

Lavaud, Michel, EuroTH'92 Conference Proceedings,

pages 307- 330, 1992. Reprinted in MAPS 93.1.

Siebenmann, Laurent, EuroT~X'92 Conference Pro-

ceedings, pages 43 - 52, 1992.

Taylor, Phlip, EuroT~X'92 Conference Proceedings,

pages 235 - 254, 1992. Reprinted in MAPS 93.1.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

