
Tugboat, Volume 14 (1993), No. 2

Fonts

Implementing the extended T)jX layout

using PostScript fonts

Sebastian Rahtz

1 Introduction

When Donald Knuth made virtual fonts part of the

general TEX repertoire at the end of 1989 151, at the

same time as extending both rn and METAFONT

to support 8-bit input, it immediately became obvi-

ous that the world needed a new standard for

the layout of fonts. This is not the place to review

the discussion of what characters should be in a gen-

eralized 256 character text font (see 14, 3]), nor to

pass judgement on the proposed solution, finalized

at the rn Users Group meeting in Cork in Septem-

ber 1990, but rather to demonstrate how the layout

can be implemented using POSTSCRIPT fonts (Don-

ald Knuth and Tom Rokicki have already shown how

to create POSTSCRIPT fonts in the original TEX lay-

out, using virtual fonts, implemented in the latter's

distributed af m2tf m ~rogram) . To remind ourselves

what we are aiming at , Fig. 1 shows the new lay-

out using the Extended Computer Modern Roman

font (dcrlO, from the dc family created by Norbert

Schwarz). Some characters needed extra work with

METAFONT, but most were created from existing

building blocks, and we shall follow this approach

with the POSTSCRIPT fonts.

The set of procedures described below has only

been made to work in a limited environment, but

the principles can be used for most common dvi-to-

POSTSCRIPT drivers, so long as they support vir-

tual fonts. Our assumption in what follows is that

we are using Rokicki's afm2tfm program (to convert

Adobe font metrics to TEX font metrics) and the

same author's dvips program, currently the only

public domain dvi to POSTSCRIPT program to im-

plement virtual fonts. The system has only been

tested under Unix and OS/2, but should be easily

portable, consisting of a program written in C, and

the standard m w a r e programs.

Examples are given in a Lucida Bright font.

2 Strategy

It may be necessary to remind readers that normal

POSTSCRIPT fonts are essentially arranged as a set

of procedures which use a lookup table of names for

the characters; generally, fonts include a mapping

between the names and numbers, but this is eas-

ily changed. Thus the character exclamdown (i) is

normally mapped to decimal 161, but it can always

be called by name, or mapped to another number.

The standard Adobe mapping is given in [I], and

corresponds to no obvious standard; the layout is as

shown in Fig. 2.

We can use straightforward methods to do the

basic redefinition of characters so that they suit the

extended layout. Firstly, we follow Rokicki's lead in

afm2tfm and build up a virtual font which fools EX
into thinking that character X is at position A in the

font, when it is in fact at position B; since we shall

need virtual fonts anyway, this is an economic so-

lution. Until version 7.0 of afm2tfm, this was made

difficult by the fact that afm2tfm mapped undefined

characters in an Adobe font more or less randomly;

these are characters not assigned a font position in

the Adobe Font Metric file (such as composite let-

terlaccent combinations) which we want to use at

specific positions. This required changing the AFM

file (using a simple program to automate the pro-

cess) so that characters were given the number we

actually wanted-this forced afm2tfm to allocate

them correctly. Thus the AFM entry

C -1 ; WX 444 ; N zcaron ; B 25 0 418 674 ;

was changed to

C 186 ; WX 444 ; N zcaron ; B 25 0 418 674 ;

This also needed a slightly revised version of the

afm2tfm program itself, as it used to have a fixed

table listing the first 128 characters in the font (in

traditional TEX layout). I implemented this change

by having afm2tfm read an encoding table from an

external file.

With version 7.0 onwards of afm2tfm, Rokicki

provided a more general mechanism for changing

the encoding of a font at successive stages (at the

level of the virtual font, and also at the level of the

Postscript font itself). This has made the process

described here rather easier.

When we have constructed a suitable AFM file,

we can run af m2tf m with the option to generate a

. vpl file; but this only rearranges the existing char-

acters-what about the symbols which are not in

the original font? These fall into four groups:

0 New composite letterlaccent combinations like

'S acute' (s) which can be generated using the

available floating accents.

0 Composite characters which can be 'fudged'

using existing letters, such as the pseudo-

character for capital & (SS) or 'ij' (ij).

0 New glyphs, such as the visible space character

(which can be created using rules, as in this

experiment) or 'dotless j' (J).

0 New ligatures not provided in POSTSCRIPT

fonts, such as ffi (ffi).

Tugboat, Volume 14 (1993), No. 2

Figure 1: Extended 7i&X layout

"Ox

" ix

"2x

"3x

"4x

"5x

"6x

'6

<

-

ffi

&z

6

>
F

N

V
,.

f

n

'5

1

-

fl

%

5
- -

E

M

U

I
e

m

'7'

>

ffl
7

I
7

?

G

0

W

-

g

o

'4

>>

fi

$

>

4

<
D

L

T

\
d

1

'2

,,
J
t l

*
2

B

J

R

z
b

j

'1

-

> >

1

!

1
1

9

A

I

Q
Y

a

i

'OOx

'Olx

'02x

'03x

'04 x

'05x

'06x

'0 7~

'1 Ox

'112

'1 2x

'1 3x

'14~

'1 5x

'3

-

<<

ff

+
3

1

C

K

S

[
c

k

'0

<(

o

U

(
0

8

62

H

P

X
(

h

Tugboat, Volume 14 (1993), No. 2

Figure 2: Unadulterated Adobe font layout (using AvantGarde)

Tugboat, Volume 14 (1993), No. 2

(CHARACTER 0 221 (comment Sacute)

(CHARWD R 525.00)

(CHARHT R 908.00)

(CHARDP R 20.00)

(MAP

(SETCHAR C S)

(MOVERIGHT R -429.00)

(MOVEUP R 231.00)

(SETCHAR 0 1)

Figure 3: Virtual font file entry for S acute

(CHARACTER 0 274 (comment i j)

(CHARWD R 425.00)

(CHARHT R 688.00)

(CHARDP R 283.00)

(MAP

(SETCHAR C i)

(MOVERIGHT R -100.00)

(SETCHAR C j)

1

Figure 4: Virtual font file entry for ij

All of these need a character added to the vir-

tual font; each virtual font character description

consists of metrics for character width, height and

depth (and italic correction where appropriate), and

some instruction for what to do. These instructions

usually involve setting one or more characters from

base fonts, and inserting vertical or horizontal move-

ment (which can, of course. be negative). Typical

entries are shown in Figs. 3 and 4.

Making accentlletter combinations work in-

volves setting a letter, moving back to the right.

and then setting the accent. Assuming that accents

go onto the centre of a letter, the movement to the

right can be calculated automatically from the width

of the letter and the accent. In some cases there

must also be an upward movement to place an ac-

cent over, for instance, a capital letter. This up-

ward movement would be a problem were it not for

the fact tha t most fonts are consistently designed,

and accents are already at the right height to sit

over lower-case letters. The upward (or downward

for sub-letter accents) movement can be observed in

the AFM file which supplies model instructions for

the creation of the normal composites; this example

gives the right and upward movement of the acute

over a capital E:

Some cases will present special problems, such

as '1 acute' (1). but an algorithm can be developed

for each of these characters which seems to be con-

sistent across fonts; thus '1 acute' needs the accent

raising more than normal. For those fonts which lack

characters like Thorn (P) and eth (a), these have to

be fudged in a way copied from the original Cork

demonstration chart.

To create completely new characters, we may

need to resort to coding directly in POSTSCRIPT;

for this demonstration, I experimented with creating

an extra font which contained just four new char-

acters. Luckily, the code to do this had already

been derived. and posted in a Usenet news group,

by Amanda Walker. Greater patience would proba-

bly permit these characters to be generated entirely

by \ spec ia l commands in the virtual font, which

would avoid the need for a font metric file for the

tiny font. The code for creating the new font is given

in Appendix B.

3 Usage

The approach outlined in the previous section re-

sulted in two programs written in C, vpl tovp l and

af m2af m, and a slightly amended af m2tf m program.

The latter two were made redundant by afm2tfm

7.0. Once the program vpl tovp l has been compiled,

the procedure for generating the final font is as fol-

lows, with examples shown in Unix syntax for a font

'Times-Roman' with an AFM file called ptmr . afm:

we generate a new font called ptmrq to distinguish

it from 'normal' fonts. utilising a kaw' font called

p t m r ~ . l

Run afm2tfm on the AFM file to generate a tfm

file for an unmapped version of the font, and a

vpl file describing the virtual font. The map-

ping is taken from an encoding file ec . enc, and

the -T option means that the encoding is to be

used both for the virtual font layout, and also

as instructions to the POSTSCRIPT interpreter

to change the internal mapping of the font to

make the normally inaccessible characters visi-

ble. The start of ec. enc is listed in Fig. 6.

afm2tfm ptmr.afm -T ec.enc -v ptmrq.vp1 \
pmtr0. tfm

Run vpl tovp l on the v p l file, also telling it

the name of the afm file so that it can work out

accent corrections etc.

vpl tovp l ptmrq.vp1 ptmr.afm

This uses the 'standard' names proposed by

Karl Berry, suffixing them with a variant letter in-
CC Eacute 2 ; PCC E 0 0 ; PCC acu te 139 214 ;

dicating an encoding.

Tugboat, Volume 14 (1993); No. 2

This adds virtual character entries to the end

of the . vpl file

3. We can now run the normal vptovf program

which creates the tfm file which rn will ac-

tually use, and the vf file which drivers will

access.

vptovf ptmrq.vp1 ptmrq.vf ptmrq.tfm

4. We have to tell dvips about the fonts we have

created, so that it can resolve references to, e.g.,

ptmrq in the virtual font. This is done by lines

in the control file psf ont s .map, which also in-

structs dvips to send the (same) encoding file

ec . enc to the POSTSCRIPT interpreter to set

up the font correctly. Some fonts may also need

downloading. Some examples lines are given in

Figure 5.

If we use the public domain ps2pk program

(created by Piet Tutelaars using IBM's library

for rendering POSTSCRIPT Type1 fonts), we

could instead generate rn .pk fonts using ex-

actly the same encoding file.

The result is a tfm file for TEX (ptmrq. tfm),

and a vf file for the driver (ptmrq. vf) , which makes

references to the 'raw' font ptmr0.

Before we can go ahead and use the font in

TQX, there is one more job: rebuilding some of

(L*)TQX's standard macros to do with accents and

special characters which have hard-wired character

positions hardwired. A sample set of code is given

in Appendix A.

4 Using the result

The final product of the work is no more than a font

table; Fig. 7 shows the result using Times Roman.

The 'visible space' (which was absent in earlier ver-

sions on this system) has been created with SETRULE

commands in the virtual font. In most of the mod-

ern Adobe fonts, the more awkward glyphs already

exist, but some of the characters are rather badly

fudged. as a comparison with the DC chart shows.

A run with LucidaBright derived small caps (Fig. 8)

shows that the procedure works with small caps as

well as with normal roman.

5 Remaining problems

There are problems left for the '!$X community to

solve in their relationship with POSTSCRIPT, even if

we agree on the suggested layout -and it must be

said that there are many people unhappy with the

proposal. Thus the 'visible space' character is an

extremely specialized brute, which, in the opinion

of the author, has no place in a normal text font,

and should be banished to a symbol font.

1. There remain some characters which are inade-

quately defined:

The 'Eng' (g) and 'eng' (8) characters

need total reworking; their creation from

'r' and 'j' is ridiculous; the original Cork

table used this temporarily to show what

was intended, but the combination was not

designed to be useable.

The 'd bar' (d) character is difficult be-

cause of the very short length of the as-

cender of the 'd' in some styles, such as

Times Roman. In a more leggy font like

Palatino (d), it fits quite well. Someone

more versed in font design than the writer

should consider this.

The latter caveat applies even more

strongly to the 'ij' characters (ij and IJ)

all Adobe fonts have the same characters;

may cause a problem in the future, though

it is rather more likely that fonts will increase

their ranges and acquire, for instance, an ffi lig-

ature (ffi) or a Thorn (P). Rather more serious

is the fact that the thousands of copies of, say,

Palatino already in use are different versions,

and symbols available on one printer's copy may

be absent on another. 'y acute' (y) is a good ex-

ample of this, not being present in older copies

of Adobe TimesRoman.

Some of the symbols that we are used to in TQX

(such as t and $) have been squeezed out of the

layout. We need to agree on a useful set of

symbols as a companion to the extended TQX

layout.

Lastly, is this the right approach? It might be

more effective to do all the calculation of new

composite characters in POSTSCRIPT itself, so

that no virtual font was needed at all. We must

bear in mind, however, that at some point a

font metric file must be created for (pos-
sibly generated automatically from information

in the POSTSCRIPT font dictionary, which is rel-

atively easy).

Some of these problems are soluble with a little pa-

tience; others need some careful expert advice; yet

others may need manual intervention for each font.

In the worst case, a font design program may have

to be brought in to create the missing symbols.

6 Conclusions

The techniques presented in this article illustrate

the skeleton of methods whereby fairly wide-ranging

changes can be made to the effect of a POSTSCRIPT

font, beyond simple remapping. The same technique

may be appropriate to create IS0 Latin-1 layouts,

for instance.

Readers who use their POSTSCRIPT fonts with

other software (such as Adobe Type Manager) may

112 Tugboat, Volume 14 (1993), No. 2

pplrO Palatino-Roman ECEncoding ReEncodeFont <ec.enc

ptmroO Times-Roman ECEncoding ReEncodeFont " <ec.enc ".I67 SlantFont"

plcbO Lucida-Bold <plcb.pfb " ECEncoding ReEncodeFont " <ec.enc

hlcdi40 LucidaFax-DemiItalic I' ECEncoding ReEncodeFont " <ec.enc chlcdi4.pfb

Figure 5: Example additions to dvips file psf onts .map

%
/ECEncoding [% now 256 chars follow

Figure 6: Start of encoding file for afm2tfm

prefer to eschew this whole approach in favour of

manipulating a copy of the Type1 font itself. Com-

mercial programs are available which allow you not

only to change the encoding of a font, but also to

add new ligatures and composite characters in the

same way as our virtual fonts do. This would pro-

vide POSTSCRIPT fonts which can be used in any

environment directly, and by TEX without virtual

fonts.

The programs and header files used to create

the examples in this article are available by elec-

tronic mail from the author, or from the UK
archive at Aston (ftp. tex. ac .uk). As this work

is extremely derivative, the writer is very grateful

to Norbert Schwarz (co-ordinator of the Cork ta-

ble, and author of the dc fonts), Tom Rokicki and

Donald Knuth (whose af m2tf m supplied the basis),

A m a d a Walker (who showed how to create missing

characters), Alexander Samarin (some additions to

vpltovpl. c), Karl Berry, and Berthold Horn (dis-

cussions of font encoding problems).

References

[I] Adobe Systems Incorporated 1985 POSTSCRIPT

Language Reference Manual, Addison-Wesley,

Reading, Massachusetts

[2] Adobe Systems Incorporated 1987 POSTSCRIPT

Language Tutorial and Cookbook, Addison-

Wesley, Reading, Massachusetts

[3] BIEN, J . 1990. 'On standards for computer

modern font extensions' Tugboat 11, no. 2.

pp. 175-183

[4] BEEBE, N. 1990. 'Character set encoding', Tug-

boat 11, no. 2, pp. 171-174

[5] KNUTH, D. 1990. 'Virtual fonts: more fun for

grand wizards' Tugboat 11, no. 1, pp. 13-23

o Sebastian Rahtz

ArchaeoInformatica

12 Cygnet Street

York YO1 2JR

U.K.
spqr0minster.york.ac.uk

Tugboat, Volume 14 (1993), No. 2

Figure 7: Extended TpX layout in Times Roman

Tugboat, Volume 14 (1993). No. 2

'322

'<?<?x

Figure 8: Extended T)$ layout in Lucida Bright derived small caps

'34x

'35~

D

(21

A

E

I3

u
A

E

0

u
A

E

0

ir
A

E

0

u
A

I

0

Y

A

I

0

D

K

i

CE

SS
"Dx

C

I
"Ex

Tugboat, Volume 14 (1993), No. 2 115

A U r n macros to set up accented characters and ligatures

Practical use of the extended layout requires that we redefine some T ' X or LATEX macros which deal with

accented characters. This is addressed perhaps more thoroughly in support files distributed with the New

Font Selection Scheme for LATEX, but a skeleton code is presented below:

% ecacc.tex

%
% set up composite characters and accents
% assuming TeX Extended Layout (Cork September 1990)
%
% many combinations are included as ligatures
% in the virtual font
%

% some obvious ASCII characters used for other purposes
\chardef\%='\%

\chardef\&='\&

\chardef\#='\#

\chardef\$='\$

% a group of common extended characters
% this could probably be usefully expanded

germandbls

ae

oe

oring

AE

OE

Oslash

dotless i

dotless j

aring

Aring

lslash

Lslash

%\def \-{\leavevmode\kern. OGem\vbox{\hrule width. 3em))

\chardef\-='\-

% some miscellaneous symbols
\chardef \pounds= ' 277%
\chardef\guillemotleft='023%

\chardef\guillemotright='024%

\chardef \guilsingllef t='016%

\chardef\guilsinglright='017%

\chardef\quotesinglbase='015%

\chardef\quotedblbase='022%

\chardef \S= ' 237% section mark

%
% but these are not in the new font:
% need agreement on a symbol font layout
% to include all this sort of thing
%\def\dagCC\symfont \charJ207)3% dagger

%\def\ddagC(\symfont \charJ21033% doubledagger

%\def\PCCsymfont\charJ266))% paragraph mark

%
\ifx\protect\undefined\let\protect=\relax\fi

\def\pd#1C\oalign~#l\crcr\hidewidth.\hidewidth))

\def\dC\protect\pd)% dotunder accent

\def\pb#l~\oalign{#l\crcr\hidewidth

\vbox to.2exC\hbox(\char'055~\vss)\hidewidth~

Tugboat, Volume 14 (1993), No. 2

\def\b{\protect\pb)% barunder accent

%
% accents for manual combination
\def\pc#1{\setbox\zQ\hbox{#l)\ifdim\ht\z@=1ex\accent'013#1%

\else{\ooalign{\hidewidth\char'013\hidewidth\crcr\unhbox\zQ~~\fi~

\def\ci\protect\pc)% cedilla

\def\'#lC{\accent'OOl #ill% grave

\def\'#lCC\accent'OOO #I))% acute

\def\v#lC{\accent'O07 #l))\let\-'-=\v% hacek

\def\u#l{~\accent'OlO #l))\let\--S=\u% breve

\def\-#lI{\accent'002 #l))\let\--D=\-% circumflex

\def\.#1CC\accentJO12 #I))% dotaccent

\def\H#lCC\accent'005 #I))% hunganunlaut

\def\-#l~(\accent'003 #I))% tilde

\def\"#1CC\accentJ004 #I))% dieresis

\def\=#lCC\accent'Oll #I))% macron

%
% how do you specify ogonek ?

%
\def\acute{\mathaccent"7001 3 % acute
\def \grave{\mathaccentt'7000) % grave
\def \ddotC\mathaccent1'70O4) % dieresis
\def\tilde{\mathaccent"7003 3 % tilde
\def \barC\mathaccent"7009 3 % macron
\def\breve{\mathaccent"7008) % breve
\def \check~\mathaccent"7007 3 % caron
\def \hat{\mathaccent"7002 3 % circumflex
\def \dot~\mathaccent"700A 3 % dotaccent

% upper and lowercase codes
\lccode223=255 % Germandbls
\uccode223=223

\uccode255=223

\lccode255=255

% etc etc; rest omitted

B Creating new characters in PostScript

When I originally worked to produce EC-style POSTSCRIPT fonts, I created a tiny four-character font which

contained the characters commonly missing from POSTSCRIPT fonts. This approach was clumsy, and in

daily use of the fonts, I have simply ignored the missing characters, or used a font (like Lucida Bright) which

had a full set of glyphs.

The code for deriving the characters is listed here out of interest:

%%BeginDocument: texchars.pro

YL

%% create a small new font with some extra characters

%% S Rahtz December 1990; stolen from Amanda Walker's font for TeX
%%
/TeXZZencoding 256 array def

0 1 255 (TeXZZencoding exch /.notdef put 3 for
TeXZZencoding dup 0

/ff put dup 1 /ff i put dup 2 /f f 1 put dup 3 /dotlessj put pop

/MakeTeXChars {

20 dict begin

/FontType 3 def

/FontMatrix C.001 0 0 .001 0 01 def

/FontBBox [O 0 1000 10001 def

/FontName exch def

/BFont exch def

/BaseFonts [BFont findfont 1000 scalefont] def

/Encoding TeXZZencoding def

Tugboat, Volume 14 (1993), NO. 2

/Str ing 1 s t r i n g def

/CharProcs 5 d i c t def

CharProcs begin

/ .notdef C 1 def

/ f f C
(f f) stringwidth exch 50 sub exch

0 0 moveto (f f) f a l s e charpath f l a t t enpa th pathbbox

exch 50 sub exch

6 copy setcachedevice

0 0 moveto (f) show -50 0 rmoveto (f) show

1 def

/ f f i C
(f\256) str ingwidth exch 50 sub exch

0 0 moveto (f\256) f a l s e charpath f l a t t enpa th pathbbox

exch 50 sub exch

6 copy setcachedevice

0 0 moveto (f) show -50 0 rmoveto (\256) show

1 def

/ f f l C
(f\257) str ingwidth exch 50 sub exch

0 0 moveto (f\257) f a l s e charpath f l a t t enpa th pathbbox

exch 50 sub exch

6 copy setcachedevice

0 0 moveto (f) show -50 0 rmoveto (\257) show

1 def

/dot less j C
(j) stringwidth

0 0 moveto (j) f a l s e charpath f la t tenpath pathbbox

6 copy setcachedevice newpath

0 0 moveto (\365) f a l s e charpath f l a t t enpa th pathbbox

newpath -1000 -1000 moveto

dup -1000 exch l i n e t o

I000 exch l i n e t o

1000 -1000 l i n e t o

closepath c l i p

POP POP POP
0 0 moveto (j) show

1 def

end

/Buildchar C
exch begin

BaseFonts 0 get se t font

dup Encoding exch get

dup CharProcs exch known

(CharProcs exch get exch pop exec)

C pop St r ing exch 0 exch put

St r ing stringwidth

newpath 0 0 moveto St r ing f a l s e charpath

f la t tenpath pathbbox

setcachedevice

0 0 moveto

St r ing show

1 i f e l s e

end

3 def

cu r ren td i c t

end

dup /FontName get exch definefont pop

1 def

%%EndDocument

