
TUGboat, Volume 13 (1992), No. 4

Fonts

Postnet codes using METAFONT

John Sauter

Abstract

A reimplementation of Dimitri Vulis' Postnet
bar codes.

1 Introduction

I was excited to read in TUGboat 12, no. 2,
about Dimitri Vulis' work with the Postnet bar

codes for envelopes. I was determined to include
his work into my letter-writing software until I

came to the last line of his article, where he says

"The macros are copyrighted, though, and I intend

to defend them strenuously against unauthorized
commercial use."

I was disappointed. This stricture meant that
I could not use Mr. Vulis' work, since I sometimes

write letters on behalf of a small retail store near
my home. I was determined to find a way to use
the Postnet codes in spite of Mr. Vulis' limitation.

2 A Different Approach

To avoid violating Mr. Vulis' copyright on his

macros, I decided to take a different approach to

the problem of producing Postnet codes. I would
implement the bar codes using METAFONT as much

as possible, with only as much TJ$ macros as

necessary for support. I started by visiting my
local Post Office, so I could obtain the information
for constructing the bar codes from the source, to

avoid any accusation that I had violated Mr. Vulis'

copyright by using the dimension information in his

macros.

I was pleased to find that the Post Office
has liberalized the rules for Postnet codes since

Mr. Vulis did his work. The FIM is no longer
necessary, and the Postnet code can be placed

immediately above the addressee's name, as follows:

1111111111l11lll,1lIIIIIIIIIIIIIIIIIIIIIllllllllllllllllllllll
John Sauter

9-801128-09 Elizabeth Drive

Merrimack, NH 03054-4576

Placing the Postnet code here avoids the hassle
of figuring out how to get the code to appear in the
proper corner of the envelope.

3 The METAFONT Font

The Postnet font file begins with identification

and setup information.

% Postnet font, for USPS barcodes.

%
mode-setup;

%displaying:=O;

"Postnet digits" ;

f ont-identif ier "POSTNET" ;

font-coding-scheme "Digits";

As Mr. Vulis describes in his article, Postnet rep-

resents digits using long and short bars. The first

order of business in the font, therefore, is to define
the dimensions of the bars and the spacing between

them. This information is taken from the United
States Postal Service regulations as described in the

Domestic Mail Manual (DMM) issue 39 (June 16,

1991) sections 551 and 552, as summarized and ex-

plained in Bar Code Update, a document provided
to me by my Postmaster.

% Primary parameters, as specified by

% the U. S. Postal Service.
bar-width# := 0.020in#;

% plus or minus 0.005in

half-bar-height#:= 0.050in#;

% plus or minus 0.010in

full-bar-height#:= 0.125in#;

% plus or minus 0.OlOin

bar-spacing# := 1/22in#;

% 20 to 24 bars per inch

The tolerances placed on the bar dimensions are

great enough that any reasonably modern printer

should have no trouble producing acceptable bar
codes.

I now define some secondary parameters, so
called because they are based on the primary
parameters.

% Secondary parameters

digit_width#:=5/22in#;

% width of a digit

digit-height#:=full-bar-height#+O.O4in#;

% leave space above bars

digit-depth#:=O.O4Oin#;

% min space below bars

The font parameters are next. These parame-

ters are very simple, since this is a fixed-width font

and all the characters are the same height.

font-size digit-height#;

font -slant 0 ;

font-normal-space digit-width#;

font-normal-stretch 0;

font-normal-shrink 0;

TUGboat, Volume 13 (1992), No. 4

font-x-height half-bar-height#;

f ont-quad digit-width#;

font-extra-space 0 ;

It is now time to specify pixel-dimensioned
versions of the necessary parameters. These will be
used when actually drawing characters.

def ine-pixels (bar-width) ;

def ine-pixels (half -bar-height) ;

def ine-pixels (full-bar-height) ;

def ine-pixels (bar-spacing) ;

define-pixels (digi t -width);

def ine-pixels (digi t -height) ;

def ine-pixels (digi t -depth) ;

Here is an alternate version of Plain MET&
FONT'S makebox, which provides more information
when printing proofs. It is based on an example in
The METRFONT~OO~, Appendix E.

def makebox(text r) =

f o r y=O,full-bar-height,

half-bar-height,digit-height,

- d i g i t -depth:

r ((0 , y) , (w, y)) ; endf o r % horizontals
f o r x=O s t e p bar-spacing u n t i l w :

r ((x , O) , (x , h)) ; endfor % v e r t i c a l s

r((w,O), (w,h)) ;
enddef ;

All of the real work in a bar code font is done
by drawing bars. It therefore seems fitting to place
the bar-drawing macro next. This macro has two
explicit parameters, the bar number and the bar
height. It defines two points, t at the top and b at
the bottom of the bar, and uses the current pen to
draw it. The macro also depends on bar-pos to be
the left edge of the bar, and increments this value
so that the next invocation of the macro will draw
the next bar in the following position.

def draw-bar (su f f ix $1
(expr bar-height) =

lft x$t = bar-pos*bar-spacing;

t o p y$t = bar-height;

x$b = x$t ;

bot y$b = 0;

draw (z$t -- z$b);

l a b e l s ($ t , $b) ;

bar-pos := bar-pos + 1

enddef ;

Now, following the example of Computer Mod-
ern, I have defined macros to provide the beginning
and end of each character. These macros are quite
simple because of the simple nature of the font. All
of the digits have the same width, height and depth,

so the only parameter is the character code of the
digit. The end macro is for aesthetics.

def beginpostnetchar (expr char-code) =

beginchar (char-code, digit-width#,

digi t -height#, digit-depth#) ;

bar-pos := 0;

pickup stdpen;

enddef ;

def endpostnetchar =

endchar ;

enddef ;

We use only a single pen, with a simple shape:
it has no height and is the width of a bar. We will
use this pen only for vertical strokes.

pen stdpen;

stdpen = penrazor xscaled bar-width;

Well, it seems I lied about this font only
containing digits. We need an additional full bar at
the beginning and end of numbers, and as long as
we need a separate full bar we should in fairnes~ also
have a half bar. We can use the draw-bar macro,
but not the others since they assume a complete
digit.

" f u l l bar" ;

beginchar ('If 'I, bar-spacing#,

d ig i t -he ight# , digit-depth#) ;

bar-pos := 0 ;

pickup stdpen;

draw-bar (0, f ull-bar-height) ;

endchar ;

"half bar" ;

beginchar ("h" , bar-spacing#,

digi t -height# , digit-depth#) ;

bar-pos := 0 ;

pickup stdpen;

draw-bar (0 , half -bar-height) ;

endchar ;

Now that the preliminaries are out of the way
we can proceed with the digits themselves. Each

digit consists of five bars, two full height and three
half height. The pattern for each digit is described
in Bar Code Update.

"Digi t Zero" ;

beginpostnetchar ("0") ;

draw-bar (0, fu l l -bar -he ight) ;

draw-bar (I , f ull-bar-height) ;

draw-bar (2 , half -bar-height) ;

draw-bar (3 , half-bar-height) ;

draw-bar (4, half -bar-height) ;

endpostnet char;

TUGboat. Volume 13 (1992), No. 4

"Digit One";

beginpostnetchar (" I ") ;

draw-bar (0 , half -bar-height) ;

draw-bar (1, half-bar-height) ;

draw-bar (2 , half -bar-height) ;

draw-bar (3, ful l -bar-height) ;

draw-bar (4, ful l -bar-height) ;

endpostnetchar;

"Digit Two" ;

beginpostnetchar ("2") ;

draw-bar (0, half-bar-height);

draw-bar (I , half -bar-height) ;

draw-bar (2, f ull-bar-height) ;

draw-bar (3, half-bar-height) ;

draw-bar (4, ful l -bar-height) ;

endpostnetchar;

"Digi t ThreeH;

beginpostnetchar ("3") ;

draw-bar (0, half-bar-height) ;

draw-bar (1, half -bar-height) ;

draw-bar (2, ful l -bar-height) ;

draw-bar (3, ful l -bar-height) ;

draw-bar (4, half-bar-height);

endpostnetchar;

"Digit Four";

beginpostnetchar ("4") ;

draw-bar (0, half-bar-height) ;

draw-bar (I , f ull-bar-height) ;

draw-bar (2, half -bar-height) ;

draw-bar (3, half-bar-height) ;

draw-bar (4, f ull-bar-height) ;

endpostnetchar;

"Digit Five" ;

beginpostnetchar ("5") ;

draw-bar (0, half -bar-height) ;

draw-bar (1, ful l -bar-height) ;

draw-bar (2, half -bar-height) ;

draw-bar (3, fu l l -bar -he ight) ;

draw-bar (4, half -bar-height) ;

endpostnetchar;

"Digit Six" ;

beginpostnetchar ("6") ;

draw-bar (0, half -bar-height) ;

draw-bar (1, ful l -bar-height) ;

draw-bar (2, f ull-bar-height) ;

draw-bar (3, half-bar-height) ;

draw-bar (4, half -bar-height) ;

endpostnetchar;

"Digi t Seven";

beginpostnetchar ("7") ;

draw-bar (0, ful l -bar-height) ;

draw-bar (1, half -bar-height) ;

draw-bar (2, half-bar-height);

draw-bar (3, half-bar-height) ;

draw-bar (4, ful l -bar-height) ;

endpostnet char ;

"Digit Eight" ;

beginpostnetchar ("8") ;

draw-bar (0, full-bar-height) ;

draw-bar (1, half-bar-height);

draw-bar (2 , half -bar-height) ;

draw-bar (3, f ull-bar-height) ;

draw-bar (4, half-bar-height);

endpostnet char ;

"Digit Nine" ;

beginpostnetchar ("9") ;

draw-bar (0 , ful l -bar-height) ;

draw-bar (1, half -bar-height) ;

draw-bar (2, ful l -bar-height) ;

draw-bar (3 , half -bar-height) ;

draw-bar (4, half -bar-height) ;

endpostnetchar;

In the Postnet code a number is more than a
string of digits. To be a proper number a string
of digits must have a full height bar before and
after it. We can use the new facilities of META-

FONT version 2 to provide these additional bars as
ligatures.

%
% l i g a t u r e t ab l e f o r Postnet fon t .

% provide t a l l bars a t t he beginning

% and end of numbers.

%
boundarychar := 32;

beginchar (boundarychar, 0 , 0 , 0) ;

endchar ;

TUGboat, Volume 13 (1992), No. 4 475

And with that, the font description is complete.

bye;

4 The macros

The font itself is adequate for simple examples,
like the one earlier in this article. However, as
explained by Mr. Vulis, each number also ends with
a check digit. I considered, very briefly, trying to do
the check digit computation as a ligature table in
the font. I came to the conclusion that METAFONT

is the wrong language for such a computation, since
the size of the ligature table gets very large with
11-digit numbers. Therefore, I decided to write the
check digit code using T@ macros. Mr. Vulis used
a very clever technique, but because of his copyright
I had to use a different method. After some hunting
I found an example of almost exactly what I needed
in The W b o o k , Appendix D.

In the following pair of macros, \postnet-

checkdigit takes as its argument a string of digits
followed by a vertical bar. It uses \getpostnet-
checkdigit to set \count0 to the sum of the digits,
and then arranges for token register \Postnet-
checktoken to be set to the correct checksum digit
for the string.

\def\getpostnetcheckdigit#l~\ifx#l\end

\let\next=\relax

\else\advance\countO by #I%

\let\next=\getpostnetcheckdigit\fi

\next3

\def\postnetcheckdigit#l~{{\count0=0

\getpostnetcheckdigit#l\end

\countl=\countO

\divide\count 1 by 10

\multiply\count 1 by 10

\advance\countO by -\count1

\count i=lO

\advance\countl by -\count0

\ifnum \count1>9

\advance\countl by -10\fi

\af tergroup\Postnet checktoken

\af tergroup=\af tergroupC%

\expandafter\aftergroup\number\countl

\af tergroup3%

33

The check digit must be combined carefully
with the rest of the digits so that the ligatures work
correctly, placing a full bar before the first digit and
after the check digit. In addition, it is convenient
to have a macro which specifies the Postnet digits

so they can be printed wherever in the letter the
style requires. In some cases the Postnet code will
be unknown or inappropriate, and so should not be
printed.

To accommodate these needs I have a macro
\Postnetdigits which accepts the digit string,
and \Postnetline which is used from my letter
formatting macros to set a line of Postnet bar
codes.

\def\Postnetdigits #I{%

\Postnettoken=C#l3%

\postnettrue3

\def\Postnetline(\ifpostnet

\expandafter\postnetcheckdigit

\the\Postnettokenl%

\Postnettoken=\expandafter\expandafter

\expandaf ter(\expandaf ter

\the\expandafter\Postnettoken

\the\Postnetchecktoken]%

{\Postnetfont \the\Postnettoken\hfil)%

\f i3

In support of the above macros we must declare
the token registers and the condition.

\newtoks\Postnettoken

\newtoks\Postnetchecktoken

\newif\ifpostnet

\postnetf alse

My letter formatting macros are based on
The W b o o k , Appendix E. I have placed the
Postnet code only on the envelope, so only macro
\makelabel needs modification. The Postnet bar
code goes just above \theaddress, as follows:

\def\makelabel(\endletter\hboxi\vrule

\vbox{\hrule \kern6truept

\hboxC\kern6truept

\vbox to 2truein

{\hsize=6truein

\smallheadf ont

\baselineskipgtruept

\returnaddress

\vfill\vbox C%
\hskip 2truein\Postnetline)%

\moveright 2truein

\copy\theaddress\vfi113%

\kern6truept)%

\kern6truept\hrule3%

\vrule3

\pageno=O\vfill\eject)

5 Conclusion

I thank Mr. Vulis for the motivation his article
gave me to re-implement his Postnet bar codes.

