
To a very large extent, TEX was designed
for the placement of characters on a page. It
was implicitly assumed that the characters were
probably alphabetic or mathematical. Nevertheless,
Knuth notes

If you enjoy fooling around making
pictures, instead of typesetting ordinary
text, TEX will be a source of endless
frustration/amusement for you, because
almost anything is possible. . .
While it is well able to draw horizontal and

vertical lines, or even to plot dots more or less
at random (see, for example, Knuth, 1986, p.389,
and Figure 1), most people expect a little more
from their graphics. There is also an architectural
limitation: although TEX could easily simulate an
arbitrary continuous curve by placing a very large
number of small dots (or rules) on the page (or
screen), TEX was only granted a finite memory. You
quickly run out of memory. This is all the more
distressing since there now exist versions of TEX
with small and large amounts of memory (basically
related to the addressing ability: 64-bit TEX on a
Cray has potentially much more memory than 16-bit
TEX on a pc: TEX-in-unix is generally somewhere
in between). Sadly, this has had the effect of
making TEX documents less portable, and seriously
undermines TEX’s claim to universality. TEX is
universal, but the documents may be restricted to
certain versions—and you won’t necessarily know
until you try to process them (and run out of
memory, or not).

This article is reprinted from Chapter 17 of
A Plain TEX Primer, by Malcolm Clark, Oxford
University Press, 480pp, November, 1992.

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 253

KEYNOTE ADDRESS:
Portable Graphics in TEX

Malcolm Clark
Information Resource Services

Polytechnic of Central London

115 New Cavendish Street

London W1M 8JS England

Phone: 44 – 71 – 269 – 3555 x3567

Internet: malcolmc@mole.pcl.ac.uk

� (0;0)

� (0;8)

� (�1;�2:5)

� (4;7)

� (4;2)

� (10;8)

� (3;5)

� (14;0)

� (1;1:5)

Figure 1. Simple graphics within TEX

All sorts of diagrams have been created using
TEX. References to some of these are given in the
bibliography.

There are three major ways in which graphics
may be made part of TEX documents. For simplicity
and brevity, ‘graphics’ is restricted principally to
line graphics, but most of what is covered can
be generalized. As with most things, the more
limited the capabilities, the closer they may be to
universality. High degrees of sophistication usually
mean greater restrictions are present. Attention is
directed here to techniques which have some claim
to generality: the ‘running on my Sun workstation
using proprietary software’ solution is ignored as far
as possible. The vain hope is that someone working
on their Macintosh will be able to exchange TEX
documents with someone working on an IBM pc, an
Amiga, an Atari, a NeXT, a Vax under VMS, and
so on up the scale until we reach the supercomputer
league. We do not wish to present solutions which
only work on specific boxes. unix may be the de
facto operating system, just as PostScript is the
de facto page description language. But there are
more non-unix boxes out in the world than there

are unix boxes. Similarly, there are more non-
PostScript output devices than there are PostScript
outputs. If everybody were to standardize on the
same computing box many problems of interchange
would go away, but this is unlikely to happen.

Special Fonts

This first approach is limited, but very general—
it will work with TEX and any of its drivers. It
is possible to use special fonts to build pictures.
Again there are three main ways to do this: the first
is through simple font elements (that is, straight
line segments, or curves) which can be assembled
to give (fairly simple) pictures. The second is
through METAFONT. Here, we use METAFONT to
create a single character which is our graph (or
whatever). This seems intimidating, but need not
be. And lastly, we can create special fonts without
METAFONT.

Simple font elements. So, start with the simple
font elements. Knuth gives an example in The
TEXbook, pages 389 – 391, but the font he uses is
not generally available. Alternatively, LATEX already
does this, in its picture environment (cf. Lamport,
1986, pp.101 – 111). Unfortunately Lamport did not
develop this to the same extent as the rest of LATEX,
and it has a distinctly ‘squared graph paper’ feel.
But it is certainly possible to create quite attractive
graphs. Any vertical and horizontal elements are
just standard TEX rules, while rounded corners and
circles can be made from the LATEX circle fonts—
�
Æ

�

(Figure 2). A small range of diagonals is
possible through other special line fonts—�✁✁✂✄�✆.

The LATEX picture environment is amazingly
modular. In other words you can rip it out of
LATEX and run it in plain TEX, using the same
basic commands which are documented in the
LATEX book. Although creating pictures this way is
time consuming, it can give quite pleasing quality
(at least on the laser printer). Quite acceptable
bar charts may be created, as Nagy (1989) shows
(Figure 3). It is possible to tackle chemistry through
the use of these fonts, as Figure 4 demonstrates. In
this case some of the tedium is removed by creating
the ring structure only once, storing it in a box, and
then copying that box when it is needed. Besides
making the procedure less long winded, it cuts down
on the effort needed by TEX itself, since copying a
box requires no new manipulations.

The creation of diagrams like this can be
amazingly tedious, but the approach still achieves a
generality and portability which cannot be ignored.

254 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Malcolm Clark

Page makeup

e.g.

Ventura

?

Printed page

�

�

�

via PDL

e.g. PostScript

?

Maths & text type-

setting language

e.g. TEX

?

Interactive

preprocessor

-

Chemical structure

editor, e.g.

ChemDraw

�

Graphs

e.g.

Gino-F

Q
Q

Q
Q

Q
Q

Q Qs

Word Processor

e.g.

WordPerfect

J

J

J

J

J

J

J

J

J
J^

SGML

�

Photographs

(scanner)

�
�

�
�

�
�

��+

Illustrations

e.g.

GemDraw

Figure 2. Using the LATEX fonts, from
Norris and Oakley (1990)

Computing Costs

0 10 20 30 40 50 60 70 80 90 100

Jan

Feb

geoidMar

Apr

Super '88May

Chapman ConfJun

Key:
compute

disc-space

other

Figure 3. Bar chart, from Nagy (1989)

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

Figure 4. Simple chemistry with LATEX
fonts, from de Bruin et al. (1988)

Because of this generality, there are some pre-

s

s s

�
�

�
�

�
�

�
�

�
�

�

s

s s

X X X X

C

C

C
C s

s

s

H
H

H
H

H
H

H
H

H H A

A

A

A

A

A

A

A

AA

s

s

s

Figure 5. Bézier curves and control
points, from Beebe (1989)

processor programs which will allow you to create
something interactively which is then transformed
into LATEX commands. If you have access to
a unix system, gnutex can assist. On an ms-
dos system, part of the emTEX package does just
this (although it adds a few extra features of its
own). The key drawbacks of the LATEX special
font approach are centered around the limited fonts
which are available, both in the slope of lines and
their thicknesses, and the limited range of curves.
These very limited resources can be encouraged to
generate quite an amazing range of possibilities.
But an enormous amount of time and effort is
also required. Having said this, traditionally a
tremendous amount of effort had to be expended
to create diagrams like these anyway. In this way
we have a single document, and the opportunity to
revise.

An advantage of course is that everything is
in (LA)TEX, so that we can ensure that the relative
weights of lines, the font sizes, the symbols, blend
in well with the rest of the document. This is a
feature which we should not ignore.

A further advantage is the ability to preview
the diagram on the screen. Since the METAFONT

descriptions of the fonts are available, the screen
fonts may also be generated.

The use of the rules might indicate that you
could build the most complex curves out of small
rectangular boxes: make them small enough and
it will not be possible to see the join. In fact,
an extension to LATEX picture environment is the
bezier style, which allows a bézier curve to be
plotted (see Figure 5). Make too many of them and
TEX runs out of memory.

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 255

KEYNOTE ADDRESS: Portable Graphics in TEX

The parabola y = x
2
=4

before rotation

�

F = (0; 1)

...............
.......
.....
.....
....
...
...
...
...
...
...
...
..
..
...
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
.
..
..
.
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..

...............
.......

.....
.....

....
...
...
...
...
...
...
...
..
..
...
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
.
..
..
.
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

..

.

..

.

..

..

..
..
.

.

..

.

..

.

..

..

..
..
.

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

....
....
....
.....
....
....
.....
....
....
...................
...............

.

.....
....
....
....
.....
....
....
.....

....
.

...
....
....
.....
....
....
.....
....
....
...................
...............

.

.....
....
....
....
.....
....
....
.....

....
.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

.

..

.

..

.

..

.

.

After rotation about the

focus F by 15�

�

F = (0; 1)

...
........
.....
.....
.....
....
....
...
....
...
...
...
...
...
..
...
...
..
...
..
...
..
..
...
..
..
...
..
..
..
..
..
...
..
..
..
..
..
..

.....
...
....
...
...
...
..
...
..
...
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
.
..
..
.
..
..
..
..
..
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
..
..
.
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
.

.

.

..

..

.

..

..

.

..

..

.

..

..

.

..

....

..

.

..

.

..

.

..

.

..

..

..

..

..
..
.
..
..
.

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
..
...
.................

.........
...
...
.

..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
.

..
..
..
...
..
..
...
..
..
...
..
..
...
..
..
..
...
.................

.........
...
...
.

..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
.

..

..

.

..

..

.

.

..

..

.

..

..

.

.

..

.

..

..

.

..

.

Figure 6. PICTEX graphics, from
Wichura (1987)

Resolution becomes an issue if we try to create
continuous curves from small elements. If TEX
memory fills up quickly at 300dpi, it will fill up
even more quickly at 1270dpi. It is difficult to claim
device independence when we must take resolution
into account. We can of course ignore the resolution
problem, but on those times when we want to pro-
duce high-quality graphs, we may be disappointed
by the faithful rendition of those 300dpi blobs, and
the angular ‘staircasing’ which is all too obvious at
the higher resolution.

The creation of bézier curves is a remarkable
achievement, given TEX’s limited arithmetic capa-
bility. Adding two numbers together is awkward
enough, and when we realize that TEX will only use
integers in a rather limited range, the results are all
the more surprising.

Since the picture environment is rather crude,
one or two people have put higher-level commands
around them. The two best known are PICTEX and
epic. PICTEX (Wichura, 1987) can be run with
both TEX and LATEX (Figure 6).

The commands for PICTEX are distributed
freely, but the 85 page manual is essential in order
to use it sensibly. This article has already loaded
quite a few picture-drawing commands and many
of the allocation registers are becoming filled up.
While it is no real problem to stick to (say) the
picture environment, once we start mixing in extra
commands the limitation to 256 counters, boxes,
dimensions, and token strings starts to hurt.

The syntax of the commands required by
PICTEX seems quite reasonable, if quirky at times.
It is no worse than many commercial plotting
packages like SAS or SPSS. But even if we have
enough room for allocation of the registers, running
with PICTEX and LATEX, on a 32-bit TEX, it is
still possible (but not easy) to exhaust the available
memory. And given the amount of arithmetic going
on in the background, these diagrams tend to be
slow.

x
?
?

1=�m

T [K] �!

75.0 80.0 85.0 90.0 95.0 100.0

1.25

1.20

1.15

1.10

1.05

+

+
+

+
+

+
++

+
++

+
+
+

+
+

+
+

Figure 7. Reciprocal magnetic suscepti-
bility, from Ramek (1990)

Olivier (1989) describes an amalgam between S,
the unix statistical package, and PICTEX. Clearly
this is restricted to unix in the first instance,
although the PICTEX would be portable.

Although epic (Podar, 1986) was targeted for
LATEX it can also be used in TEX. It lacks the
generality of PICTEX, but is a useful extension.
Podar added some higher-level commands in order
to provide a ‘friendlier and more powerful users
interface’. In particular he managed to reduce
the amount of manual calculation required. For
example, he introduced a \drawline command
which allows specified points to be connected. In
order to avoid the problem of slope segments outside
LATEX’s ability, he uses the closest slope available.
This can lead to rather jagged lines. If the lines are
dashed, this problem appears less acute.

There are several collections of commands
which draw all sorts of rather nice graphs. My
favourites are those of Michael Ramek (Ramek,
1990). Figure 7 is taken from his paper and
helps illustrate the scope that is possible. Besides
the ‘normal’ graph requirements, he provided some
other commands to draw chemical structures as
shown in Figure 8.

Other fonts. So far we have been discussing the
use of special fonts. Of course, we can also generate
our own. There are two different directions here.
On the one hand we can use some suite of other
fonts; on the other we could generate METAFONT

descriptions somehow and use those descriptions.
In both cases there is appreciable generality. In the
final analysis, METAFONT is as portable as TEX,
and once the descriptions are made available we are

256 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Malcolm Clark

N

C

H N

CH3

C

C

N

CH3

C

O

N

CH3C

O

Figure 8. Caffeine

as free to use those as we would be to use (LA)TEX
commands.

Knuth (1987) introduced some halftone fonts
which allow greyscale ‘pictures’ to be typeset in a
completely device independent way. Adrian Clark
(1987) also made some contribution to this, and
Hoenig (1989) shows some interesting examples.
Since the descriptions are available, anyone may
‘borrow’ them quite easily. Adrian used a Fortran
program as a pre-processor. This is fair, since
for all sorts of reasons we would normally expect
the data to be provided in a digital form from
some other source. There are problems of TEX
memory here again. Even with a ‘big’ version, TEX
may only handle one 512 × 512 picture (or four
256 × 256 pictures). Knuth’s paper discusses some
manipulation techniques which would allow greater
clarity from lower-resolution pictures. This is a
fairly general and well-understood aspect of image
processing which need not concern us here. The
point is that it is quite possible and represents no
new addition of hardware or software.

An alternative use of METAFONT is to view it
as a means of describing an arbitrary picture, not
a typeface. All the tools are there to do it, and in
fact it is really a lot simpler than creating fonts. Of
course, you do not really do it in METAFONT; you
do it in something else, which is then translated to
METAFONT. The something else at the moment is
one of several programs by Rick Simpson (Simpson,
1990), which works on the IBM RT (running AIX,
a unix lookalike), or Metaplot (Pat Wilcox, 1989).
This latter was written in C, and is available in a
number of forms. There is at least a pc version, an
Amiga version, and lots of unix versions.

In both cases, what comes out at the far end
is a single (very large) character (or even a set of
characters which are ‘tiled’ together), which you
plot wherever you want. The disadvantage is that
scaling the picture is tedious (just like scaling a
‘normal’ character), and editing it requires a re-run

of METAFONT. But it is device independent. The
only proviso is that the device driver be able to
handle these very large characters. This is not a
trivial expectation, since many drivers were written
expecting that they would be dealing with letters,
and that there was some reasonable maximum size
to a letter.

Wilcox did not really expect the user to write
in her ‘Metaplot’. The notion was that a variety
of other, arbitrary, plotting languages could be
mapped onto the Metaplot commands, which were
then shipped to METAFONT.

CGM, or Computer Graphics Metafile, is worth
considering too. It has a couple of features which
we ought to bear in mind. It is an international
standard. Nominally, every graphics package ought
to have the facility to generate CGM, and also to
read it in. The metafile should also be able to
be transmitted over electronic networks with the
minimum of fuss. The other feature is that CALS
(Computer-aided Acquisition and Logistics System)
has adopted CGM as one of its components: while
we may worry about the militaristic background of
CALS, it has done much to revitalize and make
acceptable sgml, and we can expect it to help
in the adoption of CGM. One other component
of CALS is that it has adopted another ‘graphics’
standard, IGES. IGES is usually described as a de
facto standard; it was developed principally for use
with CAD-CAM software. Nevertheless, it does
offer another routeway. In essence there is no real
reason why Metaplot could not read an IGES file
and transform it to METAFONT form. Since we are
in the real world of ‘standards’, Heinz (1990) notes
that GKS (Graphics Kernel Standard) may also be
transformed into TEX.

Another route to create a character. If we
look a little more closely at what a driver actually
requires to set a character, we note that there are
two items: the pixel file, and the TEX font metric
file. Conventionally, the route to produce these is
METAFONT, but there is no particular reason why
we should have to adopt this route. Provided the
tfm and pk contain appropriate information, the
driver should be able to typeset. The underlying
idea here is that we can have another program take
(say) a grey-scale picture and process it to produce
both the required files. The tfm file should be
simple enough to produce, even by hand, since we
might make this ‘font’ have only one character at a
time. The property list would be fairly simple. A
traditional pixel (or pxl) file only contains binary
information, so we are back in the realms of image

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 257

KEYNOTE ADDRESS: Portable Graphics in TEX

processing or half toning if we wish to do something
rather fancy. Most drivers now accept ‘packed pixel’
rather than ‘pixel’ information. This is simply a far
more compact form of the same information.

Simpson (1990) also describes an application
of this approach. The example he chooses takes a
raster image and turns it into a font. The program
imtopk converts an impart image processing file
into a pk/tfm pair. impart handles the image
scaling, allowing for device pixel density, does any
filtering necessary, and converts an n-level grey scale
to two levels. TEX positions the image on the page,
typesets any annotation, and handles any other
typesetting. At Texas A&M University, a similar
approach is used where output from a number
of graphics programs, but especially the graphics
software package ‘Disspla’, is processed to produce
the pk/tfm pair. This has some appeal since Disspla
runs on a very wide variety of machines, and may
even be called from programming languages. A
drawback of this approach is that it is difficult to
annotate the diagrams with fonts similar to the ones
used in the TEX document.

Special

Now to the less general: any sort of material may
be incorporated in a \special. Whatever appears
there is passed directly to the dvi file, where it
will be handled by the dvi driver. For example,
we could have PostScript commands in there (or
even a reference to a file containing a PostScript-
created graphic). The problem is that you also
need a driver which knows what to do with the
information, and a device (printer/screen) which
can display the information. While PostScript is
described as a de facto standard, not everyone has
access to a PostScript device, and in fact more
Hewlett Packard (and compatible) machines are out
there in the real world than anything else.

This actually opens up another route. While we
could easily include a complete graphic produced
by another approach (one of the vast array of
graphics packages which will produce PostScript),
and probably scale or otherwise modify it, we can
also pass simpler information to the dvi file for
processing by the driver. Maus and Baker (1986)
extended the LATEX picture environment by adding
a whole host of commands, which, when examined
closely, are little ‘specials’ which do things like
draw a line of arbitrary slope through PostScript
commands. Now TEX does not process anything;
therefore TEX’s memory does not fill up. When
printed (on a PostScript device), the line is there.

Unfortunately, only a few screens are PostScript
devices, and so we don’t usually expect to see these
elements previewed.

One other disadvantage of using specials
is that the form of specials is by no means
standardized. Although there is a working
party (TUG, 1992) attempting to standardize and
issue recommendations, they are facing the usual
problems of standardization committees. One of
the recommendations is that a level 0 driver should
be able to place at least 1000 rules and 20,000
characters on a single page, unless the output
device is constrained in some way. On-board
device memory may be limited and limit these ideal
minima.

Recall that well over half of the drivers written
for use with TEX reside in the public domain. No
commercial forces come into play with them, nor
can the TEX Users Group impose rules (it is there
to serve its members, not police them: in general
this sort of anarchy works, since there is enough
goodwill around). What we are coming to is the
fact that specials have to be written with a specific
driver in mind. To give an example: imagine we
want to ship out a couple of PostScript commands,
represented by <command>. Using Textures on the
Macintosh, which has its own built-in driver, you
could say

\special{postscript <command>}

Using ArborText’s (1987) PostScript driver, Dvi-
laser/PS, the command is

\special{ps:: <command>}

Using the public domain dvips, the structure is
\special{pstext=<command>}

or using another public domain driver dvips (Tom
Rokicki), the equivalent is

\specialps: <command> or
\specialps:: <command>

while Nelson Beebe’s driver (Beebe, 1987) appears
to have no way of including a single command (you
could obviously use the facility to read in a file,
which itself contained only one command); similarly,
Personal TEX’s PostScript driver (Personal TEX,
1987) appears to lack the ‘in-line command’ feature.

Trevor Darrell (1987) wrote a useful set of
commands, psfig, which greatly ease the prob-
lems of incorporating PostScript into a document.
The PostScript is really ‘encapsulated’, since the
‘bounding box’ information is required. ‘Encapsu-
lated’ also implies that the PostScript should not
change the state of commands— in other words,

258 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Malcolm Clark

that any changes should be local (in TEX termi-
nology). The portion of psfig which deals with
the \specials is well separated, and it is possi-
ble to modify that part of the command suite for
particular drivers.

You could reasonably ask why we do not include
CGM files in \specials. In fact, this has been done
(Andrews, 1989). Provided the driver can handle
the commands and change them into the correct
form for the output device, any sort of file can be
processed. As noted earlier, the dvi is itself a sort
of metafile. Andrews’ extensions work for unix and
VMS environments.

PostScript is not yet ubiquitous. Fortunately,
there is also an approach which allows us to use
a Hewlett Packard LaserJet—capture (Pickrell,
1990). Any program which produces output for
a LaserJet can have that output processed with
capture to produce a file which may be input to
TEX, through some suitable commands (which will,
somewhere, employ \specials). Again, this sounds
longwinded, but there are a great many programs
which will do this. Even more remarkable, there
are programs which can take PostScript and turn it
into LaserJet form (Freedom of the Press, GoScript,
Ghostscript, etc.). This means that we are now
relatively independent of PostScript.

In Betweens

A few years ago the notion of ‘little languages’
became current. This is a scheme which is
found most generally in unix. Instead of adding
features to troff, ‘little languages’ were created: pre-
processors which massaged some reasonable form of
input into troff. These include chem (for chemistry),
tbl (for tables), eqn (for equations), grap (for general
graphs), and pic (for pictures). The one we are
interested in is pic and perhaps grap: pic has a
language which allows creation of line diagrams
with embedded text. Sounds simple. Of course,
with the way that unix works, it is ‘easy’ to write
a command line which hides all the ‘little language’
bits and pieces from the end user.

How is this relevant? Recall that TEX passes
\special information straight to the dvi file. That
information could easily be special commands which
the driver could interpret. If we pass PostScript
commands, then the driver can handle PostScript
(maybe). What if we pass higher-level commands
which the driver then processes to produce a new
dvi file? In other words, a dvi to dvi processor.
The new dvi file would, among other things, be
able to be previewed, or be sent to any suitable

printer (provided you had the correct dvi-to-printer
driver). So what we end up with is a device
independent method.

There are a couple of attempts to do this.
There is a program around called dvidvi (Rokicki,
1989) which processes a dvi file, but only so that
you can rearrange the pages— say to shrink them
to thumbnails and arrange them all on a single
sheet (actually very useful for book make-up). Mike
Spivak (1989) has provided dvipaste which allows
you to ‘paste’ a dvi file into another dvi file, so that
you can put a table (which gobbles up space in TEX)
where you want (equally it could paste in a large
picture—and that is why it has been mentioned
here). And lastly, the one that really does pictures,
Rolf Olejniczak’s texpic (1989). This is a TEX
implementation of pic which does all the things
that pic does and more, and works in just the way
outlined.

What is the snag? The driver has to be
implemented on all sorts of different machines. We
are gnawing away at the portability. Including Post-
Script or Hewlett Packard’s laser printer language
seems also eminently non-portable. At least this
localizes the problem and in the longer term gives
a far more general solution. Olejniczak’s program
is available only for ms-dos, and is currently
proprietary, although it is not especially expensive.
It is the restricted platform which is the real
problem.

Closing Comments

Beebe (1989), Rahtz (1989), and Heinz (1990) have
all contributed to the discussion of incorporating
graphics into TEX documents. The adoption of the
METAFONT and pk/tfm solution goes some way to
ensuring the transportability of documents. None
of the other approaches yet comes close enough
to being capable of being transmitted over fairly
arbitrary networks. Another advantage of this
approach should be the capability of viewing the
diagrams on the screen, as well as on paper. The
tools which enable these transformations ought to
be part of the standard TEX distributions. Within a
closed environment, any solution which works is to
be applauded. But one of the major features of TEX
is its ‘open’-ness, and the portability of documents
created with TEX.

It will have become apparent that we are always
in the hands of the drivers available. This is perhaps
the weakest link in the whole chain. Whether you
regard the drivers as part of TEX or not depends on
your viewpoint.

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 259

KEYNOTE ADDRESS: Portable Graphics in TEX

It is perhaps wise to remind ourselves that even
in the days of Johann Gensfleisch zum Gutenberg
the integration of text and illustration (through
woodblocks) took some time, and could only be
achieved after agreement with the professional
woodblock cutters.

Bibliography

Andrews, Phil. “Integration of TEX and graphics
at the Pittsburgh Supercomputing Center.”
TUGboat 10(2), pages 177 – 178, 1989.

ArborText. Dvilaser/PS User Manual, 1989.
Beebe, Nelson H.F.. “A TEX DVI Driver Family.”

TEXniques 5, pages 71 – 113, 1988.
Beebe, Nelson H.F. “TEX and Graphics: The State
of the Problem.” Cahiers GUTenberg 2, pages
13 – 53, 1989.

Bruin, Rob de, Cornelis G. van der Laan, Jan R.
Luyten, and Herman F. Vogt. “Publiceren met
LATEX.” CWI Syllabus 19, 1989.

Clark, Adrian F. “Halftone Output from TEX.”
TUGboat 8(3), pages 270 – 274, 1987.

Clark, Adrian F. “Practical Halftoning with TEX.”
TUGboat 12(1) pages 157 – 165, 1991.

Darrell, Trevor. “Incorporating PostScript and
Macintosh Figures in TEX.” Electronic document
available with psfig commands, 1987.

Ehrbar, Hans. “Statistical Graphics with TEX.”
TUGboat 7(3), pages 171 – 175, 1986.

Gehani, N. “Tutorial: Unix Document Formatting
and Typesetting.” IEEE Software, pages 15 – 24,
September 1986.

Gruber, H., E. Krautz, H.P. Fritzer, K. Gatterer,
G. Sperka, W. Sitte, and A. Popitsch. “Electrical
Resistivity, Magnetic Susceptibility, and Infrared
Spectra of Superconducting RBa2Cu3O7 with
R = Y, Sc, Tm, Ho, Eu, Nd, Gd.” Pages 83 –
88 in High-Tc Superconductors, H.W. Weber, ed.
New York: Plenum Press, 1989.

Heinz, Alois. “Including Pictures in TEX.” Pages
141 – 151 in TEX Applications, Uses, Methods,
Malcolm Clark (ed.). Chichester, England: Ellis
Horwood Publishers, 1990.

Hoenig, Alan. “Fractal Images with TEX.” TUGboat
10(4), pages 491 – 498, 1989.

Kernighan, Brian W. “pic— A Language for
Typesetting Graphics.” Software— Practice and
Experience 12(1), pages 1 – 21, 1982.

Kernighan, Brian W. “The Unix Document
Preparation Tools— A Retrospective.” Pages
12 – 25 in PROTEXT I. J.J.H. Miller, ed. Dublin:
Boole Press, 1984.

Knuth, Donald E. The TEXbook. Reading, Mass.:
Addison-Wesley, 1984.

Knuth, Donald E. The METAFONT Book. Reading,
Mass.: Addison-Wesley, 1984.

Knuth, Donald E. “Fonts for Digital Halftones.”
TUGboat 8(2), pages 135 – 160, 1987.

Lamport, Leslie. LATEX: A Document Preparation
System. Reading, Mass.: Addison-Wesley, 1985.

Maus, Doug, and Bruce Baker. “Dvilaser/PS
Extensions to LATEX.” TUGboat 7(1), pages 41 –
47, 1987.

Murray, Peter, and Linda Murray. The Art of the
Renaissance. London: Thames & Hudson, 1963.

Nicole, Olivier, “A Graphic Driver to Interface
Statistical Software S with PICTEX.” TUGboat
12(1), pages 70 – 73, 1990.

Norris, A.C., and A.L. Oakley. “Electronic Publish-
ing and Chemical Text Processing.” Pages 207 –
225 in TEX Applications, Uses, Methods, Malcolm
Clark (ed.). Chichester, England: Ellis Horwood
Publishers, 1990.

Olejniczak-Burkert, Rolf. texpic User Manual 1.0.
Interplan TB Software GmbH., 1990.

Olejniczak-Burkert, Rolf. “texpic— Design and
Implementation of a Picture Graphics Language
in TEX à la pic.” TUGboat 10(4), pages 627 –
637, 1989.

Personal TEX Inc. PTI Laser/PS Manual, 1987.
Pickrell, Lee S. “Combining Graphics with TEX
on IBM PC-Compatible Systems and LaserJet
Printers.” TEX Users Group 11(1), 26 – 31, 1990.

Podar, Sunil. “Enhancements to the Picture
Environment of LATEX.” Technical Report 86-
17, Department of Computer Science, SUNY,
1986.

Rahtz, Sebastian. “A Survey of TEX and Graphics.”
CSTR 89-7, Department of Electronics &
Computer Science, University of Southampton,
1989.

260 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Malcolm Clark

Ramek, Michael. “Chemical Structure Formulas
and X/Y Diagrams with TEX.” Pages 227 –
258 in TEX Applications, Uses, Methods, Malcolm
Clark (ed.). Chichester, England: Ellis Horwood
Publishers, 1990.

Rokicki, Tom. “dvidvi: read.me.” Electronic docu-
mentation), Radical Eye Software, 1989.

Rokicki, Tom. dvips: A TEX Driver.
Salomon, David. “DDAMethods in TEX.” TUGboat
10(2), pages 207 – 216, 1989.

Schöpf, Rainer. “Drawing Histogram Bars inside the
LATEX Picture-Environment.” TUGboat 10(1),
pages 105 – 107, 1989.

Simpson, Richard. “Nontraditional uses of META-
FONT.” Pages 259 – 271 in TEX Applications,
Uses, Methods, Malcolm Clark (ed.). Chichester,
England: Ellis Horwood Publishers, 1990.

Ballantyne, Michael, Michael D. Spivak, and Yoke
Lee. “HI-TEX Cutting & Pasting.” TUGboat
10(2), pages 164 – 165, 1989.

TUG DVI Driver Standards Committee. “The DVI
Driver Standard, Level 0.” TUGboat 13(1), pages
54 – 57, 1992.

Van Haagen, A.J. “Box Plots and Scatter Plots
with TEX Macros.” TUGboat 9(2), pages 189 –
192, 1988.

Wichura, Michael. The PICTEX Manual. (TEXniques
6 series. Providence, Rhode Island: TEX Users
Group, 1987.

Wichura, Michael. “PICTEX: Macros for Drawing
PICtures.” TUGboat 9(2), pages 193 – 197, 1988.

Wilcox, Patricia. “Metaplot: Machine Independent
Line Graphics for TEX.” TUGboat 10(2), pages
179 – 187, 1989.

Wujastyk, Dominik. “Chemical Ring Macros in
LATEX.” TEXline 4, page 11, 1987.

Wujastyk, Dominik. “Chemical Symbols from
LATEX.” TEXline 5, page 10, 1987.

