
Introduction

T-EDIT is a powerful collection of editing macros,
TEX execution control macros, and a collection of
special TEX macros to be used in conjunction with
the other macros. The macro package is designed
to be used with the KEDIT editor on IBM PC
or PC-compatible computers, but can probably be
modified to be used with other editors in other
environments. In addition, although it currently
makes use of a PCTEX implementation of TEX, the
ArborText previewer, and the MicroSpell spelling
checker, T-EDIT is in no way bound to these
software packages. With a few simple changes, it
should work with other software.

The editing macros are currently all written in
the macro language KEXX, which is essentially a
subset of the computer language REXX.

The T-EDIT macro package was developed
to make the entire process of creating a TEX
source program, TEXing it, previewing it, and
debugging it into a fairly simple task. This has
been accomplished in many instances by using
menus and prompting messages within the macros
which guide the user through each required step.
Like TEX macros, existing T-EDIT macros may be
modified if desired, and new T-EDIT macros may
be created. In addition, menus may be modified
and created.

The present version of T-EDIT was designed
under the assumption that its primary use would

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 281

T-EDIT, A Collection of Editing Macros for TEX

Larry F. Bennett
Department of Mathematics

South Dakota State University

Box 2220

Brookings, South Dakota 57007-1297

Phone: 605-688-6218

Bitnet: MA01@SDSUMUS.BITNET

Abstract

T-EDIT is a powerful collection of editing macros designed specifically for TEX.
The macros are designed to be used with the KEDIT editor on IBM PC or
PC-compatible computers. The user is aided in every step of the preparation of
a completed document. Menus or prompting messages are included with many
of the macros. Over 1250 TEX and AMS-TEX control sequences may be accessed
through menus. The control sequences may either be inserted directly into the
text or assigned to function keys. T-EDIT can be used to control the TEXing
and possible previewing of output. Debugging features are included. Macros
generating several lines of complicated TEX source code are available, and TEX
macros have been designed to be used with several of the code-generating macros.

be for the entry of mathematical text into source
files. Consequently, many T-EDIT macros have
been created for specific mathematical applications.
Furthermore, the macros have all been designed
under the assumption that the user will employ
Plain TEX and/or AMS-TEX. However, since
T-EDIT may be easily modified and expanded, it
would be a simple matter for a user to modify it to
suit his or her needs.

An editing macro package for TEX based
upon the KEDIT editor was developed in 1989 by
Don L. Riley and Brad L. Halverson (See Riley and
Halverson). These macros were based mainly upon
REXX macros instead of KEXX macros. T-EDIT
was developed independently. Consequently, the
two collections of macros are completely different
and were created with different needs in mind.

In the remainder of this paper, I shall describe
what T-EDIT is capable of doing, although I will
not be able to discuss everything. In most cases, I
will not be able to go into too much detail about
how it accomplishes what it does. This is simply
because of the enormous number of the macros
employed by T-EDIT, the length of some of the
macros, and the fact that the macros are written in
a computer language which most readers may not
be familiar with. This paper should be considered
as an introduction to T-EDIT.

Editing Features

Special keys. T-Edit employs special keys and
key combinations to implement KEXX macros.
IBM compatible Personal Computer keyboards are
ordinarily supplied with ten so-called Function keys,
which are designated on the keyboard as F1, F2, . . . ,
F10. In addition, keyboards which are referred to as
extended keyboards have two additional Function
keys: F11 and F12. In this paper, it will be assumed
that an extended keyboard is being employed.
There is also a Control key, which is denoted
by Ctrl, and there is an Alternate key which is
abbreviated Alt. Key combinations may be formed
using Ctrl and Alt. To form a key combination
using Ctrl, the Ctrl key is held down and a second
key is pressed. If the second key happens to be the
Function key F5, then Ctrl-F5 is used to denote
this key combination. Similarly, if Alt is held down
and P is pressed, then this gives the key combination
Alt-P. Any one of the key combinations Alt-F1,
Alt-F2, . . . , Alt-F12 will be referred to as an
Alt-F key. The purpose of the Alt-F keys will be
discussed later. The Escape key, which is denoted
by Esc, is another special key that is employed in
various T-EDIT macros.

KEDIT allows a user to assign a KEXX macro
to any key or combination of keys, and the macro
is stored in computer memory. Such a macro will
be referred to as both a level-0 macro and as
the macro associated with the key or combination
of keys. KEDIT refers to the associated macro
using the name of the key or key combination it is
associated with. For example, the macro associated
with Ctrl-T is named Ctrl-T by KEDIT. This
naming convention makes it possible to initiate
the macro without pressing the corresponding key
or combination of keys. For example, including
the command ’macro Ctrl-T’ in another KEDIT
macro will cause the macro associated with the key
combination Ctrl-T to be executed.

Throughout this paper, a simple macro should
be thought of as level-0 macro which does not
call upon any macro stored on the hard disk. A
redirection macro is a level-0 macro which calls
immediately upon a macro stored on the hard
disk. Ordinarily, T-EDIT uses the same name
for the macro on the hard disk as the name
of the redirection macro. For instance, Ctrl-T
is a redirection macro, and it calls immediately
upon the macro Ctrl-T.kex on the hard disk.
The extension kex is simply the default extension
employed by KEDIT for macros stored on the hard
disk. Whenever a macro which resides on the

282 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Larry F. Bennett

hard disk is called upon, it is loaded into memory,
executed, and then released from memory. These
macros may also call upon other macros stored in
memory or on the hard disk. Any macro T-EDIT
associates with a key or combination of keys is either
a simple macro or a redirection macro. However, T-
EDIT makes use of many more redirection macros
than simple macros, and throughout the remainder
of the paper, all macros associated with keys or key
combinations should be assumed to be redirection
macros unless specified otherwise.

KEDIT only allows macros to be associated
with a single key or a key combination consisting
of two keys. In order to create the illusion of
extended key combinations, T-EDIT makes use of
selection macros. By definition, a selection macro
is a macro which is stored on the hard disk whose
only purpose is to allow the user to select from
other macros which are stored on the hard disk by
simply pressing a key or combination of keys.

Although several selection macros are employed
by T-EDIT, only three are going to be mentioned
in this paper. As mentioned earlier, the redirection
macro Ctrl-T, associated with the key combination
Ctrl-T, calls upon the macro Ctrl-T.kex which is
stored on the hard disk. The macro Ctrl-T.kex is
a selection macro. Once this macro is initiated, a
message appears on the screen informing the user
of possible choices of keys to press next. One of
the options which is available, and which will be
discussed in more detail later, is to press O. The
character associated with the key pressed is read
into a KEDIT variable called readv.1. Next, a
substitution is made in a KEDIT command which
is similar to, but slightly more complicated than
the KEDIT command

’macro \Ctrl-T’readv.1’.kex’.

Thus, the macro called upon at this point is
actually Ctrl-TO.kex. Although there is no
message to the effect that it is possible to enter
the extended key combination in any other way,
the same results are achieved by pressing Ctrl-O
instead of O. This option is allowed since after
pressing Ctrl-T it is very easy to forget and press
O next while still holding down the Ctrl key.
Because of this additional option, the extended
key combination Ctrl-T followed by either O or
Ctrl-O will be designated as Ctrl-TO. Similar
notation will be used to denote all other extended
Ctrl-T key combinations as well as extended key
combinations involving Ctrl-I and Ctrl-D, which
are also associated with redirection macros and
which call upon selection macros.

Throughout the remainder of this paper,
extended combinations will be used without further
explanation.

Automatic key assignments. Whenever a TEX
source program is edited with T-EDIT, a great
number of macros are automatically associated
with keys and key combinations. It is the collection
of macros associated with various keys and key
combinations which does much of the work for
T-EDIT. Some of these macros call upon menus
which may be used to select other macros, insert
TEX source code, or associate macros with Alt-F
keys, etc.

Text insertion. Many macros associated with
keys, key combinations, or extended key combi-
nations eventually cause text to be inserted in a
document. Any time T-EDIT inserts text into a
document, it automatically puts the KEDIT editor
into insert mode and often repositions the cursor in
the proper position for the user to continue. This
means that text, which was above and to the right
of the cursor at the time the new text is inserted,
will be moved to the right. Furthermore, until the
user turns insert mode off, additional text typed in
will cause any characters above and to the right of
the cursor to be shoved to the right.

TEX control sequence insertion macros. The
macro associated with the key combination Ctrl-I
is a redirection macro. It calls upon the selection
macro Ctrl-I.kex. Although many options are
available after Ctrl-I is pressed, only one will be
discussed in this paper. In particular, suppose
that @ (that is, Shift-2) is pressed next. A
menu of over 1250 Plain TEX and AMS-TEX control
sequences and corresponding text insertion macros
is initiated. The screen is split into 2 windows. The
source program which is being edited appears in the
lower window with the cursor under the character
it was positioned under when Ctrl-I was initially
pressed. The user is in what may now be referred
to as menu mode.

The user sees the first 9 control sequences of
the over 1250 which are available displayed in the
upper screen window with the first of these control
sequences highlighted in red. Also displayed near
the top of that window is a message which lists, in a
somewhat cryptic form, eighteen options which are
available. One of these options, Name, is included
to suggest that the user begin to type in the name
of the control sequence. Suppose that the control
word \begingroup is needed. After typing B and E,
the user sees

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 283

T-EDIT, A Collection of Editing Macros for TEX

\begingroup \endgroup

highlighted in red. In addition, the characters
which have been typed in so far, namely be, are
displayed in the upper portion of the top screen
window in order to keep track of what has been
typed in. Note that these are lower case letters.
In order to have obtained the corresponding upper
case letters, the Shift key would have had to have
been employed. The cursor is still resting beneath
the same character as when Ctrl-I was pressed. If
Enter is pressed at this point, then the text

\begingroup \endgroup

will be inserted beginning at the current position
of the cursor, and the cursor will be repositioned
to rest under the second \. Any characters on the
current line which were above and to the right of
the cursor are moved to the right. The menu is
still displayed in the top screen window, but there
is a new message that informs the user that he or
she is in program mode. This means that editing
can proceed as usual, even though it is actually
being accomplished under the control of the macro
Ctrl-I.kex. The message also instructs the user
that to enter menu mode again, press Ctrl-Enter,
or press Alt-Esc to get rid of the menu and return
the screen to full screen edit mode.

Now, let’s assume that once a desired entry is
highlighted, then instead of pressing Enter, the user
presses @ (that is, Shift-2). Then the highlighted
text insertion macro is assigned to some undefined
Alt-F key. In the bottom window of the screen, a
new message appears which tells what Alt-F key
the macro was assigned to and describes what the
macro does. In the case of the preceding example,
the displayed message would be

Alt-F3 : ’text \begingroup \endgroup’

if the text insertion macro was automatically
assigned to the undefined Alt-F key Alt-F3. The
user can prohibit the display of such information,
then display it again, etc. This time, T-EDIT stays
in menu mode. After all, there are probably more
text insertion macros which should be assigned to
Alt-F keys. To escape this mode, Esc may be
pressed to get back into program mode. In fact,
Esc may be used at any time the user is in menu
mode to return to program mode.

Additional keys which may be used in the menu
mode to make a selection are the Up Arrow and Down
Arrow keys, PgUp and PgDn keys, and the Ctrl-
PgUp and Ctrl-PgDn key combinations. Pressing
the Backspace key will undo the last key entry, and

pressing the key combination Alt-Enter will cause
the highlighted macro or text insertion macro to
be executed with an automatic cancellation of the
menu.

It should be clear that macros which control
menus are not selection macros as described earlier.
All but 21 of the over 1250 T-EDIT KEXX text
macros which can be accessed using the menu just
described are generated on the fly. That is, they do
not exist at the time they are called upon, but are
created using a special code which is present in the
menu line containing the desired control sequence,
but which is not seen by the user. Specifically, a
code appears in the first 4 columns of each menu
line which instructs T-EDIT how to handle the
creation of the text insertion macro, or if the macro
is saved on the hard disk instead, then the code m
is found in column 1 and the name of the macro,
which is visible to the user, is found starting in
column 69 of the line. Although the other codes
available are quite simple, it is far beyond the scope
of this paper to describe them all.

Private macros. The key combination Ctrl-P
will activate a private menu of user defined macros.
This menu in used in the same way as described
for the menu of TEX insertion macros. However,
many of the macros which may be called upon in
this menu are much more powerful than any control
sequence TEX insertion macros. In addition, the
menu may call upon sub-menus, and a couple of
extra options may be used in searching for specific
macros. Also, in most cases, a fairly lengthy
description of what the macro will do is included,
and this will be displayed at the bottom of the
screen if the user elects to assign the macro to
an Alt-F key. Furthermore, when called upon,
most of these macros lead the user through all
of the additional steps necessary to fill in needed
data. Some of these macros are powerful TEX
code-generating macros which in many cases make
use of specially designed TEX macros.

Examples of private macros. Three ex-
amples have been included in the Appendix to
demonstrate the capabilities of T-EDIT. In each
case, a typesetting problem is presented, the steps
necessary to generate the required TEX source code
using T-EDIT are discussed, and the output ob-
tained from the code is displayed. Please look
carefully at these examples so that you can judge
for yourself!

At the present time, the private menu refers to
a great number of macros which perform remarkable
typesetting feats with a minimum amount of effort.

284 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Larry F. Bennett

In the future, many new private macros will be
added to T-EDIT. As a matter of fact, the list will
probably continue to grow indefinitely as more and
more applications arise. At the same time, many
difficult typesetting problems will be reduced to
trivial tasks.

Alt-F key management. If the key combination
Alt-E is pressed, then a number of options are
made available. It is now possible to edit or delete
Alt-F key macro definitions and descriptions, or
even enter new ones directly from the keyboard.
Collections of Alt-F key definitions and descriptions
may be automatically saved and added to a menu.
When the user saves such a collection of Alt-F
key definitions, he or she is asked to enter a name
for the file in which to store the key information
as well as a description of the collection. This is
then added to a menu so that the entire collection
of key definitions and descriptions may be easily
reinstated later using that menu. In addition, files
containing collections of Alt-F key definitions as
well as the menu referring to collections of Alt-F
key files may be edited. The macros associated
with Alt-E make each of these tasks fairly easy.
Because of the capabilities just mentioned, the key
assignments which T-EDIT makes at the beginning
of each editing session should be adequate for most
users.

Letter and mail merge menu. By pressing
Alt-0, a menu of letter-writing and mail-merge
options appears on the screen. The user is aided
in writing documents with a minimum amount
of effort. Descriptive information concerning a
document is recorded in a menu. Later, if the
document needs to be located, the desired menu
is called upon. Once the information describing
the desired file is seen highlighted in red, pressing
Enter will cause the file to be loaded into the
KEDIT editor to be reviewed or revised. Special
data-writing macros for mail-merge documents are
included. Again, descriptive information concerning
specific data sets is inserted in a menu so that the
data set may be located easily in the future. Other
options allow letter or data menus to be edited. Of
course, all documents and data sets are written for
use with TEX.

The key combination Alt-0, which may seem
somewhat out of place, was chosen so that no
useful key combination would be wasted. It was
included as an additional way of accessing a macro
on the hard disk which was actually designed to
be initiated from the DOS command line using the
Function key F11.

Special text insertion keys. Some examples of
simple macros associated with keys or combinations
of keys are as follows. Keep in mind that T-EDIT
is currently used most frequently to enter text
which contains mathematical text written for use
with Plain TEX or AMS-TEX. It is useful to have
additional methods of inserting often-used control
sequences so that these control sequences can be
entered as easily as possible. When F1 is pressed,
$$ is inserted in the file beginning at the position of
the cursor at the time that the key is pressed. The
cursor is positioned under the second $ sign. The
simple macro associated with the Function key F1
is

’insert on’;’text $$’;’cur left’.

Definitions of other simple macros are similar. If
the user proceeded to type E=mc^2, then after
typing the 2, $E=mc^2$ would be seen with the
cursor positioned under the last $ sign. Remember,
KEDIT was put automatically into insert mode
when the F1 key was pressed. Similarly, pressing
Ctrl-[causes {} to be inserted as text with the
cursor repositioned below }. The symbol { appears
on the key referenced by the symbol [, so the choice
of Ctrl-[to represent {} is a fairly natural one.
Pressing Ctrl-\ causes \{ \} to be inserted into
the source file with the cursor resting under the
blank space to the right of {. Here, since the
first character generated is the character \, the key
combination Ctrl-\ was chosen to generate this
character string.

The macro associated with the key combination
Ctrl-D is a redirection macro which calls upon the
selection macro Ctrl-D.kex. When Ctrl-D is
pressed, a message appears on the screen which
instructs the user to press Esc to get out of the
menu, press 1 for $$, press 2 for $$$$, or press 3
for $$ $$ spread out over three lines. Only one
of the three options will be discussed. Suppose
the user presses 3. Then the following will occur.
If the cursor is not resting on a blank line, then
a new line is first added after the line the cursor
was positioned on. Three lines of text are created.
The first line contains $$ left justified, the second
line is a blank line, and the third line is $$. The
cursor is repositioned to appear at the first column
of the blank line separating the two $$ groups. This
format is used when mathematical expressions are
to be entered in display math style.

The macros associated with the key combi-
nations Ctrl-G and Ctrl-O, which are discussed
next, are redirection macros, but the corresponding
macros on the hard disk which they call upon are

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 285

T-EDIT, A Collection of Editing Macros for TEX

not selection macros or menu-type macros. Details
cannot be included in paper as short as the present
one.

Greek letters. To get Greek letters quickly, the
combination of keys Ctrl-Gmay be pressed followed
by one, two, or three of the letters in the control
word representing that letter. For example, the text
\varepsilon is automatically inserted after Ctrl-T
is pressed followed by VE, while the text \gamma
is automatically inserted after pressing Ctrl-G
followed by G. The instant that the user has typed
in enough information to distinguish the desired
Greek letter from all others, then the text for that
Greek letter is automatically inserted. The user
never presses the Enter key.

Math delimiters. Opening and closing math
delimiters can be obtained by pressing Ctrl-O.
Suppose that the text

\left\lceil \right\rceil

needs to be inserted in a document to create
delimiters for a mathematical expression. Assume
that the key combination Ctrl-O is pressed. A
message appears at the top of the screen which
instructs the user to press the key which represents
the first symbol in the opening delimiter. So suppose
that \ is pressed. At this point, the screen will
be split into two windows, with a menu displayed
in the upper window. The source file appears in
the lower window with the cursor positioned as
it was before Ctrl-O was pressed. Suppose LE
is typed next. The code \left \right appears
highlighted in red in the menu. Assume that Enter
is pressed. The text \left is inserted. However,
note that \right has not been inserted yet. It
has been saved to be inserted later. The menu is
still in effect, and a message instructs the user to
type the first symbol of the code representing the
opening delimiter. That symbol would be \ for the
opening delimiter \lceil. So suppose that \ is
pressed next. A matching math opening and closing
delimiter code is highlighted in red, but it is not
the pair which is currently being sought. However,
after pressing C and E, the desired matching opening
and closing delimiter pair is seen highlighted in red.
If the Enter key is pressed next, then the menu
disappears, and it is observed that the TEX code

\left\lceil \right\rceil

has been inserted in the source file with the cursor
positioned under the first space to the left of the
control word \right. Note how the control word
\right, which was not present before, has now been

inserted in the proper position. Incidentally, the
requirement that \ be entered as the first symbol in
the control word representing the opening delimiter
is due to the fact that simple math opening and
closing delimiter pairs like () may be used also.

TEXing, Previewing, and Debugging

When a source file is ready to be TEXed, the
combination of keys Ctrl-TE is pressed. A check is
made to make sure that a \bye or \end statement
is included at the end of the program. If there is no
such statement, then one is added. The TEX source
file is saved, and then TEXed. If no error occurs
when the source file is TEXed, then the output
is automatically previewed. After the preview is
completed, there is a return to the editor and the
source file. The cursor is positioned wherever it
was when Ctrl-TE was pressed. If an error occurs
while TEXing the file, and if the user enters the
TEX option e, then the line in the source file where
the error occurred becomes the current line in edit
mode, and the cursor is positioned at the beginning
of this line. Furthermore, the screen is split into
two windows, and as much of the pertinent log
file information as possible is shown in the upper
window. If it isn’t possible to display all of this
information, then the user is advised and informed
to press Ctrl-U if there is need to review more
of the error message than is shown. If Ctrl-U is
pressed, then although the cursor never moves from
its current position in the source file, the log file
may be reviewed using the Up Arrow, Down Arrow,
PgUp, PgDn keys, etc. The key combination Ctrl-TT
may be used to TEX a file without previewing the
output.

Pressing the key combination Ctrl-TB allows a
user to TEX a KEDIT so-called “marked block” in
a file. This could include as much or as little TEX
source code as desired. In fact, a single character
could be TEXed this way. What actually happens
is that the block is saved as a TEX source file called
\exper.tex with a \bye statement inserted as the
last line. This file is then TEXed and previewed.
If there is an error, then the offending line in the
original file, not the \exper.tex file, becomes the
current line in the editor with the cursor positioned
at the beginning of that line. The screen is split into
two windows, with the error message or a portion
of it displayed as was described above.

Pressing the key combination Ctrl-TO does
the very same thing as Ctrl-TB with one important
exception. Any lines in the file with % in column 80
are also included in the \exper.tex file. Such lines

286 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Larry F. Bennett

can be marked immediately by pressing Ctrl-M
while the cursor is positioned on the line. Later the
symbol % may be erased by pressing Ctrl-E while
the cursor is positioned on the line. However, in
most cases, only certain lines need to be marked in
this way, and they will not have to be altered again
later.

Pressing the key combination Ctrl-TD will
cause all lines in the current source file, from the
first blank line at or above the cursor to the bottom
of the file, together with any lines marked with a %
in column 80, to be TEXed, and previewed, etc.

Pressing Ctrl-C will cause a forward search
from the beginning of the file for matching pairs
of {}, followed by a backward search from the end
of the file for such matching pairs. Pressing the
key combination Ctrl-TC followed by F will cause a
forward search from the current cursor position to
the end of the file for matching pairs of this type,
while pressing Ctrl-TC followed by B will cause a
backward search from the current cursor position to
the top of the file for such pairs. In all cases, the
search will end at the first { or } for which there is
no match.

If Ctrl-S is pressed, then the MicroSpell
spelling checker is activated. Up to about 90% of the
spelling errors in the document are usually spotted
and corrected this way. The key combination Ctrl-
TP will cause the output to be printed, and Ctrl-TH
will cause the dvi file associated with the source
file to be copied to a diskette.

In case a user cannot recall all of the pre-defined
key definitions, Alt-H brings up a menu of all such
key assignments the user may not be familiar with.
Once the given key and description are shown
highlighted in red, the key can be accessed by
simply pressing the Enter key! By pressing Ctrl-H,
a menu comprised of a subset of the key definitions
just mentioned, which are TEX related, is initiated.

Future of T-EDIT

T-EDIT is still in its infancy. It will continue to
grow and become more sophisticated in the future
regardless of whatever else happens. Hopefully,
other individuals will become interested in T-EDIT,
and perhaps a method for the distribution of T-
EDIT software will become available.

Bibliography

Riley, Don L. and Brad L. Halverson, “Creating an
Efficient and Workable PC Interface for TEX”,
TUGboat, 10 (4), pages 751–759, 1989.

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 287

T-EDIT, A Collection of Editing Macros for TEX

Appendix

Example 1

Suppose that a user wants to display the long division of the polynomial

6x6 − 15x5 − 34x4 + 36x3 − 14x2 − 7x+ 7
by the polynomial

2x2 + 3x − 2.
The user presses Ctrl-P to get into the private macro menu. After POL has been typed in, the user sees the
entry which says polynomial division highlighted in red. If the user presses Enter, then the first thing
which is done by T-EDIT is to search the TEX source file for an \input statement for file \polydiv.mac,
which contains the TEX macros which will be needed. If no such \input file is found, then one will be
added automatically to the source file at the beginning of the file or following the last \input statement
found, if any. While this is accomplished, the cursor appears to stay in precisely the same position that it
was in before Enter was pressed. Next, the name of the variable to be used is requested. This could be a
Greek letter, etc. if desired. Suppose that x is entered. The user is then asked to insert the coefficients of
the denominator. Here, that would mean that 2 3 -2 is typed in and then entered. Now the coefficients of
the numerator are requested. For the current problem, the user would type 6 -15 -34 36 -14 -7 7 and
enter it. T-EDIT causes all of the additional numerical information required to be computed. Line after
line of TEX code is automatically generated until all necessary code has been inserted. The code generated
by T-EDIT is shown below.

\polydiv
\lp 3x^{4}\m 12x^{3}\p 4x^{2}\p 0x\m 3
\hbar{15}
2x^{2}+3x-2\vbar\lp 6x^{6}\m 15x^{5}\m 34x^{4}\p 36x^{3}\m 14x^{2}\m 7x\p 7\crn{3}
\lp 6x^{6}\p 9x^{5}\m 6x^{4}\ubar{4}{5}{5}
\lm 24x^{5}\m 28x^{4}\p 36x^{3}\crn{5}
\lm 24x^{5}\m 36x^{4}\p 24x^{3}\ubar{5}{6}{7}
\lp 8x^{4}\p 12x^{3}\m 14x^{2}\crn{7}
\lp 8x^{4}\p 12x^{3}\m 8x^{2}\ubar{8}{5}{11}
\lm 6x^{2}\m 7x\p 7\crn{11}
\lm 6x^{2}\m 9x\p 6\ubar{11}{6}{13}
\lp 2x\p 1
\endpolydiv

The output which will be produced by the code is shown below.

3x4 − 12x3 + 4x2 + 0x − 3
2x2 + 3x − 2 6x6 − 15x5 − 34x4 + 36x3 − 14x2 − 7x+ 7

6x6 + 9x5 − 6x4

− 24x5 − 28x4 + 36x3

− 24x5 − 36x4 + 24x3

8x4 + 12x3 − 14x2

8x4 + 12x3 − 8x2

− 6x2 − 7x+ 7
− 6x2 − 9x+ 6

2x+ 1

The user can position the output on the page however desired. In the case of the example above, the display
has simply been indented by the default indentation amount.

288 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Larry F. Bennett

Example 2

A user desires to create a short table of Laplace transforms of functions. Assuming that the appropriate
T-EDIT macro has not already been assigned to an Alt-F key, the first step in creating the table would be
to press Ctrl-P to access the private macro menu. After TA has been typed, the desired entry is highlighted
in red. It is listed in the form table, math together with some additional information which identifies the
table style. Beneath this entry, other styles of math tables are listed.

To initiate the macro, the user presses Enter (or Alt-Enter if the menu is to be exited after the
selection of the macro). A check is made to see if the user has included an \input file for the required TEX
macro \mathtabl.mac. If no such statement is found, then one is added after the last \input statement
in the file, or at the beginning of the file if there is no \input statement. A beep sounds and a message
appears which requests the user to enter the title on one line, separating lines of the title with \cr, or to
press Enter to quit. Suppose that Laplace Transforms\cr of Functions is typed in and entered. A new
line is added if the line upon which the cursor is resting is not a blank line. The text below is inserted, a
beep sounds, and a message appears requesting the user to either enter the amount to spread the table or
to press Enter to accept the default of 100pt.
\mathtable{Laplace Transforms\cr of Functions}

Assume that Enter is pressed to accept the default. The symbols {} are added to the text shown above.
There are three more input parameter values which the user may enter or accept default values for. The
first of these parameter values is the amount of indentation from the left margin, and has a default value of
1truein associated with it. The other two parameters represent strut heights and depths which will be used
in the construction of the main part of the table. Suppose that the default value is accepted for each of
these parameters. After the last time Enter is pressed to accept a default value, a new line is automatically
added, the symbol | is inserted, and the cursor is positioned two spaces to the right of it. So far,
\mathtable{Laplace Transforms\cr of Functions}{}{}{}{}
|

has been generated. Now, the user is asked to enter a heading for the first column and press the Tab key
when the entry is completed. Suppose that f(t) is typed, and then the Tab key is pressed. The following
text is displayed with the cursor positioned two spaces to the right of the last | shown.
\mathtable{Laplace Transforms\cr of Functions}{}{}{}{}
| f(t) |

Next, a message requesting the entry of the column heading for the second column appears. The message
also includes instructions to press the Tab key when the entry is completed. Assume that {\cal L}(f) is
typed in and the Tab key is pressed. The text which has been inserted after the Tab key was pressed is
shown below.
\mathtable{Laplace Transforms\cr of Functions}{}{}{}{}
| f(t) | {\cal L}(f) |
|

The symbol | has been automatically inserted twice more, and the cursor is positioned on the last line
shown, two spaces to the right of it. The user is requested to insert the entry for the first column and press
the Tab key when that entry is completed, or to press @ to finish the creation of the table. Suppose that 1
is typed in and the Tab key is pressed. So far, the following text has been added to the TEX source file .
\mathtable{Laplace Transforms\cr of Functions}{}{}{}{}
| f(t) | {\cal L}(f) |
| 1 |

A space separates the last symbol | on the right from the current position of the cursor.

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 289

T-EDIT, A Collection of Editing Macros for TEX

The text 1\over s is typed in next, and the Tab key is pressed. The text below is present after the
Tab key is pressed, with the cursor positioned one space to the right of the symbol | on the last line.
\mathtable{Laplace Transforms\cr of Functions}{}{}{}{}
| f(t) | {\cal L}(f) |
| 1 | 1\over s |
|

Now that the idea is clear, let’s look at the keystrokes needed to complete the table. Tab will be used
to represent the Tab key.
e^{at} Tab 1\over{s-a} Tab \sin at Tab a\over{s^2+a^2} Tab \cos at
Tab s\over{s^2+a^2} Tab \sinh at Tab a\over{s^2-a^2} Tab \cosh at Tab
s\over{s^2-a^2} Tab @

All of the necessary code to generate the Table has been entered and appears below.
\mathtable{Laplace Transforms\cr of Functions}{}{}{}{}
f(t)	{\cal L}(f)
1	1\over s
e^{at}	1\over {s-a}
\sin at	a\over {s^2+a^2}
\cos at	s\over {s^2+a^2}
\sinh at	a\over {s^2-a^2}
\cosh at	s\over {s^2-a^2}

\endmathtable

Note that the required control word \endmathtable was automatically inserted on the last line. In
addition, one extra line has been added following the last line shown, and the cursor is positioned under
the first column of that line. The table produced by the code is illustrated below.

Laplace Transforms

of Functions

f(t) L(f)

1
1
s

eat 1
s − a

sinat
a

s2 + a2

cos at
s

s2 + a2

sinhat
a

s2 − a2

coshat
s

s2 − a2

290 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Larry F. Bennett

Example 3

Consider the problem of displaying a linear system of equations. In this example, it will be assumed that
the T-EDIT macro has already been assigned to an Alt-F key, say Alt-F5, using the private menu. Then
towards the bottom of the screen, the message

*** Use Ctrl-V to toggle info. display. Use Alt-5 to clear keys and screen ***

appears together with information for Alt-F keys which have been defined. For Alt-5, the user would see
the following line displayed.

Alt-F5 : systems of equations

Assume the key combination Alt-F5 is pressed. As in the case of the previous examples, the \input
statement for the macro \sysequa is inserted in the source code if it does not already appear. A beep is
heard, and a message appears towards the top of the current screen window which instructs the user to
enter each variable name to be used or enter the name of the subscripted variable name which will be
employed followed by the number of unknowns. Pressing Enter is mentioned as a method of terminating
execution. For this example, suppose that \alpha 4 is typed in and entered. If the cursor is resting on a
line which is not completely blank, then a new line is added. The code
\sysequa

appears left justified as shown on that line. In addition, a beep is heard and a message appears towards the
top of the current screen window which instructs the user to enter four coefficients, followed by the entry
to appear on the right-hand side of the equals sign for this row equation. Entering too little information
or too much information for this row equation will cause several beeps to sound, together with a message
instructing the user to enter values for this row equation again. If 1 35 -3 2 6 is entered then the following
code will be seen.
\sysequa
\lp \alpha_{1} \p 35\alpha_{2} \m 3\alpha_{3} \p 2\alpha_{4} \eq{6}

Of course, a beep is heard and the same message appears as before. Continuing, let’s assume that 15 -4
21 9 5 is entered, followed by -2 0 2 4 8, and then 1 3 0 -1 10. Finally, f is entered to finish. The code
which has been generated by T-Edit is shown below.
\sysequa
\lp \alpha_{1} \p 35\alpha_{2} \m 3\alpha_{3} \p 2\alpha_{4} \eq{6}
\lp 15\alpha_{1} \m 4\alpha_{2} \p 21\alpha_{3} \p 9\alpha_{4} \eq{5}
\lm 2\alpha_{1} \zero \p 2\alpha_{3} \p 4\alpha_{4} \eq{8}
\lp \alpha_{1} \p 3\alpha_{2} \zero \m \alpha_{4} \eq{10}

\endsysequa

Note that \endsysequa has been automatically added to the code. Furthermore, an additional line has
been added following this line, and the cursor appears at the first column of the new line.

The system of equations generated may be displayed wherever desired on the page. If $$ had been
typed in before the macro was initiated, and if $$ had been entered on the line following the command
word \endsysequa, then the output obtained would be the same as that displayed below.

α1 + 35α2 − 3α3 + 2α4 = 6
15α1 − 4α2 + 21α3 + 9α4 = 5

− 2α1 + 2α3 + 4α4 = 8
α1 + 3α2 − α4 = 10

