Model-Based Conversions of IATEX Documents

Dennis S. Arnon

Xerox PARC

3333 Coyote Hill Road

Palo Alto, CA 94304 USA
415-812-4425; FAX: 415-812-4241
Internet: arnon@parc.xerox.com

Isabelle Attali

INRIA Sophia Antipolis

Route des Lucioles

06565 Valbonne Cedex, France

Internet: Isabelle.Attali@sophia.inria.fr

Paul Franchi-Zannettacci
University of Nice

CERISI

Sophia Antipolis

06561 Valbonne Cedex, France
Internet: pfz@essi.cerisi.fr

Abstract

We are creating a document conversion system based on modelling the logical
structures of two broad categories of document types: human-oriented and
machine-oriented. Each human-oriented, or user, type is a genre of documents
that is well defined and well known to human authors and readers; for example,
“scientific articles”, “mathematical formulae” (e.g., %), or “limericks”.
Each machine-oriented, or agent type, is the set of legal data objects of a
document processing tool, for example, “IATEX documents” or “troff/EQN
documents”. Our models specify the abstract, rather than the concrete (i.e.,
surface) syntax, of particular documents. Thus we work with documents as tree
data structures, whose concrete presentations have a surface syntax of no intrinsic
interest. By so proceeding we hope to best utilize the computational sciences,

and sidestep what we believe to be the red herring of “markup language”.

Introduction

In contemporary document management systems,
documents are often characterized chiefly by the for-
mat in which they happen to be represented at some
instant of time. A format is simply the document en-
coding convention of a particular document process-
ing agent; we thus prefer to refer to formats as agent
document types. Formats are often classified into a
rough hierarchy of “levels”: image formats (TIFF,
SunRaster, Fax, etc.) are said to be the lowest level,
next are page description level formats (PostScript,
InterPress, etc.), and finally are high level, or struc-
tured, formats (TEX , SGML DTD (Goldfarb, 1990),
ODA DAP (Rosenberg, 1991), etc.).

For some classes of people, such as the imple-
mentor of such a document management system, the
format-centric approach to document taxonomy is
reasonable. These are people who in all likelihood
have no contact with either the creators or the con-
sumers of the documents, and their role is to be a
“middleperson”, or broker, between a creator whose
output is in one format, and a consumer who wants
the document presented in a different format. The
document broker probably neither knows nor cares
what the document is about, how it is organized, or
what its actual content is; instead, accepting a char-
ter to render instances of one format in the other,
as “faithfully” as possible.

380 TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting



Document brokering is not an appropriate view
of another large class of document transactions,
however. A collection of individuals who use differ-
ent document processing tools may be co-authoring
a single document; or, an author and a sophisticated
reader; e.g., a colleague, may wish to share a docu-
ment. In these instances, the “sender” and the “re-
cipient” may have a good deal of common knowledge
about a document’s organization and content. In-
deed, for optimal communication among themselves,
the individuals in such groups want their respective
document processing tools to fade into the back-
ground. They want instead to focus clearly on the
“abstract” document that is the object of their in-
teraction; i.e., an abstract intellectual entity that
is independent of the particular software tools used
to process concretizations of it. Furthermore, they
undoubtedly have a common model of this abstract
document (which we would say belongs to a user
document type) in their respective mind’s eyes. To
convert the document from one format to another
in these situations, it may be advantageous to know
what the model is, and use it to “direct” or “govern”
the format conversions. In these model-centric con-
texts, there are likely to be aspects of one format
that do not map well to another format, in gen-
eral. However, there will most likely be some way of
encoding the relevant features of the abstract docu-
ment in the destination format. By having the un-
derlying abstract model in hand, and only in this
way, we can maintain “knowledge” of which model
features are encoded which way in which format,
and thereby accomplish higher-quality format con-
versions for a community of model-centric document
users.

In this paper we focus on a single user docu-
ment type, that of “technical articles” (which may
include mathematical formulae). We give a gen-
eral model-building methodology, then specialize it
to create models for the Article user type, and
for agent types. Currently our system deals with
two agent types, I{TEX documents and Tioga doc-
uments. (Tioga is a WYSIWYG editor for structured
documents in the Cedar programming environment
at Xerox PARC; see Swinehart, et al., 1986). We
have created a software tool that supports conver-
sions in which we are given a I#TEX or Tioga in-
carnation of a document asserted to be a technical
article, and we want to convert it to the other agent
type. We utilize distinct models for each user and
agent type, and precisely specify the rules of inter-
conversion for each (agentType, userT'ype) pair. An
agentType — agentType conversion is then carried
out by agentType — userType — agentType map-

Model-Based Conversions of I#TEX Documents

pings. Thus our tool converts a document from one
format to another, while explicitly seeking to pre-
serve its “technical-article-ness” as much as possi-
ble. This is what we mean by a model-based con-
version of a document: a document believed to be
a valid instance of some user type, and presented
as an instance of some agent type, is converted to
an instance of another agent type, in a manner as
faithful to its user type as possible. The choice of
particular agent types is secondary; the crux of our
methodology is the “direction” of document format
conversions by user type models.

The following section presents our general model-
building methodology, based on the notion of a for-
malism, and our model for the Article user type.
Our model-based approach to format conversion is
divided into two steps: analysis; i.e., creating a valid
user type model for the input document, and syn-
thesis; i.e., rendering the model instance in the de-
sired output format. We also call these steps parsing
and unparsing. In subsequent sections, we discuss
the parsing and unparsing of Tioga documents, and
the parsing and unparsing of IATEX documents. We
concentrate on parsing Tioga documents to Articles
and unparsing Articles to I#TEX , rather than the
opposite direction. This reflects the fact that at the
moment the least developed link in our system is
our IATEX to Article parser, a situation we are in
the process of rectifying.

Currently our system is implemented in the
Cedar programming environment (Swinehart et al.,
1986), which in turn runs on top of UNIX and
X Windows. Although we do not currently make
actual use of the Centaur system (Borras et al.,
1988), we are heavily influenced by the architecture
and concepts of Centaur, and of attribute grammars
(e.g., see P. Franchi-Zannettacci & D. Arnon, 1989,
and A. Brown, H. Blair, 1990).

Modelling Articles with Formalisms

Terms. The first key component of our system is
a single, universal data structure and surface syn-
tax for labelled, n-ary, attributed trees. This we
accomplish with a general tree manipulation pack-
age we have written, called Scrimshaw. “First
order terms”, “abstract syntax trees”, “functional
forms”, and “expression trees” are additional equiv-
alent names for the basic entities of Scrimshaw;
we refer to all of them simply as terms. Atomic
terms are identifiers, 32-bit integers, “reals” (i.e.,
IEEE standard floating point numbers), and charac-
ter strings. Composite terms are “expression trees”,

TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting 381



Dennis Arnon, et al.

whose “operator names” are identifiers, and whose
“arguments” are (recursively) terms.

We implement document processing operations
(e.g., parsing, unparsing, conversion) as term rewrit-
ing or tree transformation operations on Scrimshaw
terms. The particular “function”, from terms to
terms, that any such operation represents, is not
a part of Scrimshaw itself. Rather, each document
type gives certain “interpretations”, i.e., meanings,
to certain terms of interest, and its operations map
them to certain other terms which also have in-
tended interpretations. All document types can
equally make use of the general term data struc-
tures and operations that Scrimshaw provides, for
what it considers to be uninterpreted terms.

Here is a portion of a Scrimshaw term repre-
sentation of the Tioga form of this paper, which
we hope will suffice to illustrate the nature of
Scrimshaw Terms, in lieu of a full definition:

internalNode [
nodeList[
leafNode[
format [title],
contents[
runList [
text["Model-Based Conversions
of LaTeX Documents"]
]
]
1,
leafNode [
format [authors],
contents[
runList [
text["Dennis S. Arnon ..."]
]
]
1,
leafNode[
format [abstract],
contents[
runList [
text [
"Abstract: We are creating a
document conversion system
. formulae\’\’ (e.g., "],
text ["X",
propl
$MathNotation,
"quotient [diff [sum[power [name [x],
number [3]], power [name[x],
number[2]]1], number[1]],
sum [power [name [x] , number[2]],
number[1]]]"

11,
text[
"), or ‘‘limericks\’\’.
Each machine-oriented ... ."]
]
]
]
]
]
Formalisms: abstract vs. concrete syntax.

A document type is a certain family of labelled,
n-ary trees, or in other words, some subfamily of
Scrimshaw terms. There is some finite set of label
names (each of which is a Scrimshaw identifier) for
nodes; a node’s label is called its “operator”. The
set of label names is non-disjointly partitioned into
subsets called phyla; thus, each operator belongs to
one or more phyla. In addition, each leaf node has a
value that is either an identifier, an integer, a char-
acter, a string, a term of some other formalism, or
empty. For each operator, we specify the number
(arity) and phyla (types) of its descendants. An op-
erator is either atomic; i.e., it is a leaf node with
zero descendants and a value, or a fized arity oper-
ator, with some fixed number n > 1 of descendants,
whose root operators belong respectively to phyla
P, ..., P, or a list operator, capable of having zero
or more descendants whose root operators all be-
long to a single phylum P. Atomic operators in one
formalism, whose values are terms of another for-
malism, are our means of providing for the nesting of
document types one within another, e.g., mathemat-
ical formulae within technical articles. The terms of
a document type may be attributed, and the at-
tribute (i.e., property) values may be crucial to the
specification of the type model; in the limited space
of this paper, however, we have little to say about
attributes.

A family of terms specified as above is called
a formalism, and its constituent terms are called
the abstract syntax trees of the formalism. We
implement each abstract type of documents (e.g.,
Article, math formula) as a formalism. Thus the
“canonical” abstract representation of a document
in our methodology is as an abstract syntax tree of
some formalism.

Let us now illustrate these concepts with ex-
cerpts from the Article formalism we use to model
technical articles. Owing to the limited space in this
paper these excerpts will stand in lieu of a full def-
inition. Here are the specifications of the article
and header operators in the Article formalism:

article — HEADER BODY END ;

382 TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting



header — TITLE AUTHORS ABSTRACT KEYWORDS;

is a 4-ary operator; the first descendant of a header
must be of phylum TITLE, its second of phylum
AUTHOR, etc. These phyla happen to contain only
one operator each:

TITLE ::= title ;
AUTHORS ::= authors ;
ABSTRACT ::= abstract ;
KEYWORDS ::= keywords ;

so we are effectively requiring a single, 4-part struc-
ture in the header of an article. (We write operators
in lower case and phyla in upper case throughout
this section).

Our model of “text” in Articles is that it is a
“list of text items”. Thus we have a list operator
“paragraph” defined by:
paragraph — TEXTITEM * ... ;
which says that a paragraph node has zero or
more descendants, each belonging to the phylum
TEXTITEM. That phylum is defined by the lines:
TEXTITEM ::= word specialChar formula ...;
word — value is string ;
specialChar — value is string ;
formula — value is MathNotation.ANY ;
where MathNotation is a separate formalism for
mathematical formulae. These lines define our “ab-
stract”, “logical”, model of text. They say what
kinds of things we believe “text” to be comprised
of. The word, specialChar, and formula operators
are atomic, with their value types specified by the
object of the phrase value is.

We attach text to structural components of a
document with lines such as the following:
subsubsection — TITLE PARAGRAPHLIST ;
paragraphList — PARAGRAPH + ... ;
PARAGRAPHLIST :
PARAGRAPH ::= paragraph ;

::= PARAGRAPH ;

These say that subsubsection is a binary operator,
whose first child is a TITLE, and whose second child
is a PARAGRAPHLIST, i.e., a list of paragraphs. A
TITLE node must have a title operator, which is
unary: its child is the PARAGRAPH that comprises
the text of that title.

Let us briefly consider the MathNotation for-
malism itself (c.f., D. Arnon, S. Mamrak 1991, and
D. Arnon, et al., 1988). There, e.g., we define the
quotient notation with the lines:
quotient — FORMULA FORMULA;

FORMULA :

:= paragraphList ;

title

:= quotient sum power ... name ;

Model-Based Conversions of I#TEX Documents

Thus quotient is a binary operator.

Thus we use the same definitional mechanism
for mathematical formulae as for Articles. As a
complete example of the Article formalism, here is
an excerpt of a representation of the present paper
in it. A more detailed version of this excerpt can
be found in the Appendix. Note that we see here
how the value of the formula operator, which is
atomic in the Article formalism, is a term of the
MathNotation formalism.

article[
header [
titlel[
paragraph[
word [
"Model-Based Conversions of LaTeX
Documents " ]

1,
authors[
displayItemList[
paragraph[
word[ "Dennis S. Arnon
. Palo Alto,
CA 94304 USA"
]
1,

1,
abstract[
paragraphList [
paragraph [
word["Abstract: We are creating"]

word[‘‘formulae’’ (e.g., " 1],
formula[ quotient[
diff[ sum[ power[ name[x ],
number[ 3 ] ], power[ namel x ],
number[ 2 1 1 ], number[ 1 ] 1],
o111
1 1 1

Validation. Validation is the task of deciding whether

a given term belongs to a given formalism. Obvi-
ously this is a fundamental consistency check that
we make frequently when using our system. For ex-
ample, we take it as a basic criterion for parsing and
unparsing steps that the output document, however
perturbed it may seem from the input, should al-
ways be valid for the target formalism to which it is
supposed to belong.

We may define validation of a term for a for-
malism by means of a slightly more general notion:
the validation of a term ¢ for a phylum P. This we

TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting 383



Dennis Arnon, et al.

define recursively as follows: let rootOp be the oper-
ator of the root node of t. If root0Op is atomic, then
t is valid for P if rootOp belongs to P, and if the
value of rootOp is valid (this involves checking the
syntactic correctness of an integer, real, identifier,
or string, or recursively checking the validity of its
term value for the expected formalism). If rootOp
is n-Ary, then t is valid for P if rootOp belongs to
P, if the actual number m of children of rootOp is
equal to n, and if for i = 1, ...,n, childTerm; is valid
for childPhylum,;. If rootOp is a list operator the
definition is similar. Finally, we say that ¢ is valid
for the formalism if ¢ is valid for ROOTPHYLUM, where
ROOTPHYLUM consists of the allowable operators of
root nodes of terms in this formalism (ROOTPHYLUM
is analogous to the “start symbol(s)” of a grammar).
Often a formalism permits any operator to be a root
operator, i.e., its ROOTPHYLUM is ANY.

Converting Tioga Articles to INTEX

In this section we first describe the main features of
the Tioga editor’s document model, and then briefly
examine the actual formalism we currently use to
model Tioga documents. We then describe the tree
pattern matching functions we use to convert Tioga
documents to Articles, and finally we outline the ac-
tual Tioga-To-Article converter we have written us-
ing the tree pattern matching functions. For general
background on Tioga, and the Cedar programming
environment of which it is a part, the reader may
consult Swinehart et al., (1986).

The Tioga document model. Tioga is a true
structured document editor in the sense that its in-
ternal data structure for any document is a tree of
nodes, each of which has character string content.
Both entire nodes, and individual characters within
a node, can have properties, i.e., attributes. Each
node is labelled by an identifier that Tioga calls a
format. Typical formats are title, abstract, head,
block, reference, etc. Tioga documents are for-
matted by associating a collection of style rules with
them. In particular, there should be a style rule
for each format that specifies, in a PostScript-like
language, how to graphically render nodes of that
format. Multiple fonts are provided via both special
character properties called looks; e.g., bold, italic,
greek, plus a mechanism for using the full multi-
national range of the Xerox character code standard.
Mathematics and imbedded illustrations are accom-
modated via character and node properties.

There is no standard surface syntax for Tioga
documents. Virtually all authors of Tioga docu-
ments use a small number of standard styles.

A formalism for Tioga documents. As an in-
termediate step in Tioga to Article conversion, we
have defined a formalism which directly expresses
the Tioga document model. We call this the Medi-
umTioga formalism; we saw an example of it in the
subsection on Terms above. We have written Tioga-
to-MediumTioga, and MediumTioga-to-Tioga con-
verters. Thus we reduce the Tioga-Article conver-
sion problem to the MediumTioga-Article conver-
sion problem, which we can approach from com-
pletely within the Scrimshaw world. Thus, for ex-
ample, we implement Tioga-to-Article conversion
by appropriate tree transformations of Scrimshaw
MediumTioga terms to Scrimshaw Article terms.

Tree pattern matching functions. At present
our term rewriting capabilities are built on sim-
ple tree pattern matching, in which patterns are
just literal terms, possibly containing (any num-
ber of instances of) pattern variables of two kinds.
First, a variable which matches any term (which
we call ANYTERM). Second, a variable which
matches any list of one or more terms (which we
call ANYTERMLIST). For example, here is a list
of the patterns we use to search for title nodes in
MediumTioga documents:

leafNode[format[title], ANYTERM]
internalNode [format[title], ANYTERMLIST]

Having matched patterns such as the ones above,
e.g. having found all the title nodes in a Medi-
umTioga document, we then perform a “rewriting”
action, e.g. to construct the (unique) title node we
must have in the output Article. For this example,
the action is to concatenate the text content of all
title nodes, and their descendant nodes, to make
the text content of the Article’s title.

Tioga-to-article converter. Our goals are to not
fail on any legal Tioga document as input, and to
always produce a valid Article as output. Hence,
using the pattern matching functions, we traverse
the MediumTioga form of an input document and
apply a succession of rules to build a valid Article.

Unparsing Articles to IATEX. An Article term
can be unparsed to a IATEX source file through a
straightforward recursive descent tree traversal. A
sample of a IATEX unparsing of an Article represen-
tation of this paper is shown in the appendix.

Converting IXTEX Articles to Tioga

The Article document model has been designed to
be highly compatible with typical IATEX represen-
tations of documents that are in fact technical ar-
ticles. Thus at the moment it works well for us to

384 TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting



simply define the IATEX agent model as being iden-
tical to the Article user model. Hence at present we
“convert” a IATEX document to an Article by sim-
ply “parsing” its I[#TEX source file and “recognizing”
the Article that we consider to be encoded there.
As before, our goals are to not fail on any valid
IATEX input, and to always produce a valid Article
as output. Once we have an Article, it is straight-
forward to unparse it to a MediumTioga document.
At present, we ignore unknown control sequences,
including macros. We are in the process of devel-
oping a separate IATEX agent model, and upgrading
our IMTEX parser to use it.

Bibliography

Arnon, D., R. Beach, K. Mclsaac, and C. Wald-
spurger. “Caminoreal: An Interactive Mathe-
matical Notebook.” Pages 1 —18 in Proceedings
of the International Conference on Electronic
Publishing, Document Manipulation, and Ty-
pography, J.C. van Vliet, ed. Cambridge: Cam-
bridge University Press, 1988.

Arnon, D., and S. Mamrak. “On the Logical Struc-
ture of Mathematical Notation.” TUGboat
12(2), pages 479484, 1991.

Borras, P., D. Clément, T. Despeyroux, J. Incerpi,
G. Kahn, B. Lang, and V. Pascual. “Centaur:
The system.” Proceedings of the SIGSOFT’88,
Third Annual Symposium on Software Develop-
ment Environments. Association for Comput-
ing Machinery, Boston, Massachusetts, 1988.

Model-Based Conversions of I#TEX Documents

Brown, A., and H. Blair. “A Logic Grammar Foun-
dation for Document Representation and Doc-
ument Layout.” Pages 47—-64 in Proceedings
of the International Conference on Electronic
Publishing, Document Manipulation, and Ty-
pography, R. Furuta, ed. Cambridge: Cam-
bridge University Press, 1990.

Franchi-Zannettacci, P., and D. Arnon “Context-
Sensitive Semantics as a Basis for Process-
ing Structured Documents.” Pages 135-146
in Proceedings of WOODMAN’89. Workshop
on Object-Oriented Document Manipulation. J.
André and Jean Bézivin, editors, (BIGRE 63-
64), IRISA, Campus de Beaulieu, 35042 Rennes
Cedex, France, Mai 1989, ISSN 0221-5225.

Goldfarb, C. The SGML Handbook. Oxford: Claren-
don Press, 1990.

Rosenberg, J., M. Sherman, A. Marks, and J. Akker-
huis. Multi-Media Document Translation: ODA
and the EXPRES Project. New York: Springer-
Verlag, 1991.

Swinehart, D., P. Zellweger, R. Beach, and R. Hag-
mann. “A Structural View of the Cedar Pro-
gramming Environment.” ACM Transactions
on Programming Languages and Systems 8(4)
419-490, 1986.

TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting 385



Dennis Arnon, et al.

Appendix

Examples of Conversions

Here is the beginning of the actual Article representation of the Tioga form of this paper.

article[
header [
titlel
paragraph[
word [
"Model-Based Conversions of LaTeX
Documents "
]
]
1,
authors[
displayItemList[
paragraph [
word [
"Dennis S. Arnon"
1,
specialChar[
"(000|012)"
1,
word [
"Xerox PARC"
1,
]
]
1,
abstract[
paragraphList[
paragraph [
word [
"Abstract: We are creating a
document conversion .., for example,
‘‘scientific articles\’\’,
‘‘mathematical formulae\’\’ (e.g., "
1,
formulal
quotient[

name [

X

1,

number [

386

diff[
sum[
power [

TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting



number [

2

machine-oriented, ... sidestep

herring of ‘‘markup language\’\’."

Model-Based Conversions of I#TEX Documents

word [

power [
1,
number [
1
]
1,
sum[
power [
name [
number [
1,
number [
1
]
]
]
1,
"), or ‘‘limericks\’\’. Each

what we believe to be the red

TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting 387



Dennis Arnon, et al.

1,
keywords [
paragraph [
word [
"Keywords: Structured Documents,
Electronic Documents, Document Conversion "

]
]

1,
body [
sectionList[
sectionIntroOnly[
titlel
paragraph[
word [
"Introduction"

]

1,
paragraphList [
paragraph[
word [
"In contemporary
document management systems,

Example of Unparsing

Here is the beginning of the IATEX unparsing of the document that our system actually produces:

\documentstyle[12pt]{Article}
\title{Model-Based Conversions of LaTeX Documents }
\author{

Dennis S. Arnon

%Article), specialChar["(000/012)"]
A\

Xerox PARC

%Article), specialChar["(000]/012)"]
A\

3333 Coyote Hill Road

%Article), specialChar["(000/012)"]
AR

Palo Alto, CA 94304 USA

\and

Isabelle Attali

%Article), specialChar["(000/012)"]
AR

INRIA Sophia Antipolis

%Article), specialChar["(000]012)"]
\\

Route des Lucioles

%Article), specialChar["(000/012)"]
A\

06565 Valbonne Cedex, France

388 TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting



Model-Based Conversions of I#TEX Documents

\and

Paul Franchi-Zannettacci
%Article), specialChar["(000/012)"]
A\

CERISI

%Article), specialChar["(000]012)"]
A\

Sophia Antipolis

%Article), specialChar["(000/012)"]
\\

06561 Valbonne Cedex, France }
\begin{document}

\maketitle

\begin{abstract}

Abstract: We are creating a document conversion system based on

for example, ‘‘scientific articles’’, ‘‘mathematical formulae’’ (e.g.,
${\frac{{{{{{{{x}F"{{3}}}

LI {{2}}3

i3

F{{1}}}

P {233

F{{1}}}

i3

$

), or ‘‘limericks’’. Each machine-oriented, or {\em agent} type, is the set

sidestep what we believe to be the red herring of ‘‘markup language’’.
\end{abstract}
\begin{keywords}
Keywords: Structured Documents, Electronic Documents, Document Conversion
\end{keywords}
\section{Introduction}

In contemporary document management systems,

TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting

389



