
TUGboat, Volume 13 (1992). No. 2

From 'I'EX to I4w

Maria Luisa Luvisetto and Enzo Ugolini

1 Introduction

Our Institute is a very old m site (since 1982)

and users have basic or good knowledge of w,
but would also like to use I P m without the need

of reading manuals and documentation. For such
users we have prepared a fast reference with guide-

lines for article setup (title, authors, page num-
bers, etc.), page setup (section, subsections), font

selection, mathematics, tabular information (item,

subitem, tables, etc.), index and bibliographic refer-

ence, comparing with I P w commands. Tools

are provided to help in editing the document and

inserting complex elements, such as tables.

2 IQw Syntax

I P w defines the logical design of a document and

provides environments for title, author, abstract,
and the like. Environments are structures start-

ing with \begin and ending with the corresponding

\end statement. Each document unit is enclosed

in a structure, the whole document is delimited

by \begin{document) and \endidocument), where
begin and end have the same function as { . . .) in

m . A I4m input looks like the following:

\documentstyle [12pt] {article)

%
% preamble section
% add other options in [. . .]
% add size and paging options here, if any
% add definitions
%
\title(Any Title)

\authoriAny N. Author)

%
\begin{document)

% document structure init
\maketitle

% produce title from definition
%
\beginCabstract)

. . . abstract text . . .
\endCabstract)

%
\section(First)

. . . section text . . .
%

%
\sect ion(Last)

. . . section text . . .
%
\begin{thebibliography)

\bibitem(bib:one) . . . bib text . . .
. . .
\bibitem(bib:end) . . . bib text . . .

\end(thebibliography)

%
\tableofcontents

%
\end{document)

We will limit our description to articles and to

basic typesetting, but can refer to any other

style your local installation supports. In general.

each document is made at least of a style defini-

tion command (preamble), the document structure
and some text (the document body), an optional

abstract, a few sections, reference information and

a table of contents, with reference and index at the
end of the document. Macro definitions and style

changes are declared in the preamble.

I4m changes font size for titles and au-

thors, automatically centers both title and au-

thors, adds document date, numbers sections and

tabular information, etc. For articles, the sec-

tioning commands are: \section \subsection

\subsubsection \appendix

The input format is similar to m, with the

escape character \ and the same special char-

acter set (# $ % & '- - ^ \ ()). Basic T)jX
macros are common to I P W . Obviously struc-

tures (\begin . . . \end) and braces (C. . .)) must

be balanced. Environments can have optional pa-
rameters that are enclosed in brackets. Options

must be specified immediately after the environment

call, multiple options are separated by commas, no

blank is allowed inside the brackets.
As in m, the document can be split into mul-

tiple input files: these are included uncondition-

ally using \input{file-name) or conditionally us-

ing \includeCfile-name) to include only the files

named in the preamble through the command:

\includeonly(file-1,file-2,~%-3. ..)
If the preamble does not contain an \includeonly

command all files are included. If \includeonly has

an empty argument list, no file is included.

3 Fonts

Font selection in I 4 m is almost the same as in m .

The default active font is roman, the default inactive

font is ztalzc. Font size is selected at document level:

the default is 10 pt.
Furthermore, I4m provides a useful tool to

emphasize text elements, the \em environment. The

TUGboat, Volume 13 (1992), No. 2

\em command switches the default font from the for large bold letters. Examples of the \ t i ny , \Huge
active one to the inactive; thus if the current font and \large\bf follow:
is roman, the emphasized text is printed in italic,

and vice versa. For entire sentences or paragraphs, F~~~ Font Font
the emphasized mode is declared as a structure, i.e. Users can define other fonts not orovided in the
\beginCem) . . . \endCem). As a COnSeqUeIlCe of default set, as in w, with the
the switching feature, in a long emphasized text

\newfontC\symbf~CcmsylO scaled\magstepl)
typeset in italic, a shorter fragment can be empha-

sized in roman, as in the following example: where \symbf is name of the new font that is avail-

A long emphasized text can include emphasized able in the cmsylO font description file in an enlarged

strings in roman, inside an italic sentence. size. To typeset some text in the new font, just call it

The above fragment is produced by the follow- any other font: { \ s ~ b f \ s ~ b o l (2 6)) to write

ing source code: the symbol with character code 26 (i.e. C).

\begin{em) A long emphasized t e x t can

include (\em emphasized s t r i ngs) wr i t t en

i n {\em roman), i n s ide an i t a l i c
sentence.\end(em)

Other predefined fonts are:

bf bold Bold font

sf sans serif Sans Serif font

s l slanted Slanted font
s c small caps SMALL CAPS FONT

tt type writer Typewriter f on t

Fonts are declared as in TJ$ (i.e. {\bf text)).

Accents and symbols are typeset as in m. Other

fonts are defined for mathematical use, like greek

letters (limited set), calligraphic ones (only upper-

case), plus the mathematical italic (\ m i t) that is

the default type for maths and mathematical bold
(\boldmath) fonts.

In technical manuals, especially when reporting
computer programs. it is required not only to use

a non-proportional font as \tt, but also to repro-

duce the text as it stands, including producing a

mark such as for required spaces. For this purpose
IPW has four commands:

\begin{verbat i m) . . . \end{verbatim),

\begin{verbatim*) . . . \endCverbatim*),
\verb, \verb*

The * commands typeset , for blanks. The
verbatim environment typesets the text on a new

line; thus i t is used for long insertions. The \verb

command is used for short strings inside the current

line. The text is delimited by any pair of identical

characters such as ! as in the following example:

To display blanks in computer programs type
\verb*! i n t 1 , k ; !, the typeset result will be
i n t , l , k ;

Font size can be changed with the commands

\ t i n y or \small for smaller fonts, or \Large

or\Huge for bigger fonts, followed by the font specifi-
cation if different from roman, so we have \ large\bf

4 Notes

IPW provides two types of notes: footnotes and

marginal notes. The syntax for footnotes is similar
but not identical to TEX. In TEX footnote number-

ing is required (number and text enclosed in braces)

and number generation is not handled, thus the user

must take care of footnote numbering.
In IPW the number is a positive integer auto-

matically stepped for the next footnote command.

The numbering can be changed at user's will as an

option. The syntax is: \ footnote h u m] {text)

where num is the optional number for the following

footnote text.

Marginal notes are not numbered and are
placed in the free paper margin with the first line

even with the line of text in which the note is in-

serted, as happens here. The note is placed accord- note

ing to the style in use: it is placed on the right

for one-sided documents, on the outside margin for
two-sided printing, in the nearest margin for multi-

column style.

The marginal note is produced by \marginpar

and different text can be produced for left and right
margin as an option. The syntax is:

\marginpar [left-text] {right-text)

5 I t e m Lists

has extensive capabilities to handle tabular
information, both in the form of tables (see Sec-

tion 6) and in the form of aligned text.

IPW defines a set of structures to format lists

of items or quotations. The structures are: quote,

quotation, i temize, enumerate, descr ip t ion . In-

side the structure, each entry is declared through the
\i tem command.

The quote environment is used for short quo-
tations, the quotat ion environment for longer ones.

The "quoted" text is indented, as shown here.

IPw is able to handle quotations.

Each quotation is indented.

210 TUGboat, Volume 13 (1992), No. 2

The above example is produced by:

\beginCquote)

\LaTeXC) i s ab le t o handle quota t ions .

Each quotat ion is indented.

\end{quot e)

More useful in technical documents are the
i temize and enumerate environments described in

the following example.

Each item in a list is marked by a bullet.

0 Item lists can be nested.

1. Items in enumerated lists are labelled by
numerals.

2. Lists can contain two or more items.

3. If there is only one item, there is logically

no list.

Blank lines are ignored.

In the input file, indent lines to show the item

list structure.

Item lists can be nested in complex manners,

as shown by the above example produced by the
following code:

\begin{itemize)

\i tem Each item i n a . . .
\ i tem Item l i s t s can be . . .

\begin{enumerate)

\item Items i n . . .
\item L i s t s can . . .
\item I f t he re i s . . .

\end{enurnerate)

\item Blank l i n e s a re . . .
\item I n the input f i l e , . . .

\end{itemize)

Another very useful feature to format item lists

is the dec l a ra t i on environment. In this environ-
ment an item has a name, which is typeset in bold-

face, and is followed by its description, which is type-
set as itemized text:

X nX delete one or 'n' characters starting at cursor
position.

dnG delete all lines starting with the current line
up to line 'n'.

The commands for the above example are:

\begin{description)

\item[X nX1 de l e t e one o r 'n ' cha r . . .
\itemCdnGl de l e t e a l l l i n e s s t a r t i n g . . .

\endCdescription)

6 Tables

In tables are handled by the "settabs" com-
mands, tha t can either create fixed width columns

or use a template to describe the table fields. I4M
has two environments for tables: the \ tabbing and

the t abular environments. The first one emulates

m commands with template description, while the

second one enables the user to create very complex

tables in an easy way. Furthermore I4" code for
tables is much more readable than ?IEX one.

The tabbing environment handles tables of any

length that span across pages. The tab stops can be

set either in a prototype or as columns are typed.

The tabbing information is a structure started by

\begin{tabbing) and ended by \endCtabbingl.

The command \= sets the tab stop, \> moves to

the next stop. The element of the first column has

no tab information, and the line is ended by \\. If
the line represents a prototype, it ends with \ k i l l .

As a tabbing example consider the following ta-

ble describing how to type some special char-

acters in normal text:

\{ { open brace

} close brace
\$ $ dollar sign

\-> - underscore

\% % percent

This table makes use of a prototype line and is

generated by the following code:

\begin{center)

\begin{minipage){\hsize)

\begin{tabbing)

xxxx \= xxxxxxxx \= \ k i l l

\verb!\{! \> \{ \> open brace \ \
\verb!\)! \ \ \> close brace \ \
\verb!\$! \> \$ \> d o l l a r s i gn \ \
\verb! \ -> ! \> \- \> underscore \ \
\verb!\%! \> \% \> percent

\end{tabbing)

\end{minipage)

\endCcenter)

The t abular environment creates tables that

are essentially boxes, that behave like figures and

can float around the page but cannot span pages.

Frequently these tables are enclosed in drawn rect-
angles containing vertical and horizontal lines to

separate the columns. The tab stops are handled

automatically and specified by 8 , the position of the

items in the column is defined within the tabular

environment by one of the characters 1 r c to re-

spectively align on the left. on the right or center

the item, and the line is ended by \\.
A vertical line is drawn with I declared in the

tabular specification; the command \h l ine after \ \
draws a horizontal line across the full width of the

TUGboat, Volume 13 (1992), No. 2

table. The command \clineti - j) draws a hori-

zontal line across columns i through j , inclusive.

When an argument spans multiple columns, it
is produced by the \multicolumn command with

the following syntax:

\mult icolumn{n){pos)Citem)

where n is the number of columns to be spanned,

pos defines the position: 1 (for left), r (for right), c

(for centre), and item is the text to be typeset.

As an example consider the following table:

Cray Total Gain (millisec)

Level Time Gain CDC/Cray

29.86 10.5 1.52

that was produced by the following code:

\beginCcenterl

\beginCtabular){lclcIclclcl} \hline

\multicolumnC43iIclHCray . . . I\ \ \hline
Level & Time & Gain & CDC/Cray \ \ \hline
0 & 33.37 & -- & 1.36 \ \ \hline
1 & 29.86 & 10.5 & 1.52 \\ \hline
2 & 24.19 & 19.0 & 1.87 \ \ \hline
3 & 21.92 & 9.4 & 2.07 \ \ \hline
\end(t abular}

\end(cent er)

TO get an idea of the easy tabular environment

provided by I4m, note that the code used
to produce the same table is made of 22 lines, each
longer and more complex.

7 Mathematics

Mathematical formulas can appear as in-text ele-

ments (math environment) or as displayed formulas

(displaymath environment). Numbered displayed

formulas are produced in the equation environ-

ment. The commands to select the environments

are:

in-text maths: $. . . $ or \ (. . . \) or

\begin(math) . . . \endCmath}
displayed maths: \ C . . . \I or

\begin(displaymath) . . . \endidisplaymath)
equation: \beginCequation) . . . \endCequation)

Most math elements and symbols are made as

in TEX. The unchanged items are: subscripts and

superscripts, greek and calligraphic letters, math

spacing, symbols, ellipsis, etc. Most math com-
mands are identical to m, such as \overline and

\underline, \vec, etc. The same applies to font
selection for math, text and scripts.

Fractions are handled in an easy way by the
\frac command that has two arguments: numera-

tor and denominator.
Y + Z x=-
y2 + z2

\ [X = \fracCy+zHy"C2)+~^~2}} \I
a + b

\ [\f rac{a+bHl+\f rac{a}{aa2+ba2)}\1
Arrays are produced with the array environ-

ment, which is similar to the tabular one. The dec-

laration specifies the size (number of columns) and

the alignment of items: 1 r c for left, right or cen-

ter. New items are begun with &, rows are ended

with \ \

x - 1 1

A = (0 x - 1 1

0 0 2 - 1 I')
The above array is typeset with the following

commands. Note that array syntax in LAW is very

similar to TEX.

The delimiters for arrays are typeset in the

same way as W: the commands \left or \right

to specify the left or right delimiter followed by the
delimiter itself 0 [I I {). The \left and \right

commands must come in matching pairs, but the

delimiters do not need to match in any form.

Long or multiple formulas are displayed with

the eqnarray environment, that enables line num-

bering and equation splitting. Rows are sepa-

rated by \\, items by &; numbering is disabled by
\nonumber. The following example shows the use of

eqnarray.

When symbols must be typeset one above an-

other, use the command \stackrel:

212 TUGboat, Volume 13 (1992), No. 2

Theorems can receive a name, a label and a

number when defined by the \newtheorem command
that takes two arguments: the name and the label.

The theorem text is emphasized. The numbering is

automatic and can be computed within the specified
sectional unit using the optional argument. The sec-

tional unit can be one predefined by such as

chapter, section, etc., or the name of a user de-

fined theorem, so that all theorems of the same type

are numbered in the same sequence.

\newtheoremCguess)CConj ecture} [sect ion]

% define conjecture in section
. . . .

\beghiguess) This is a guess. \endiguess)

Conjecture 7.1 This is a guess.

8 Definitions

IN$$ provides tools to define new commands

(m macros). The new commands are defined by

\newcommand. followed by the name, the optional

arguments and finally the definition. The name

must be prefixed by \; when used, arguments must

be enclosed in braces. In the following example is

shown I4m syntax to define and call the macro

\abx and the typeset formula thus generated.

\newcommandi\abx) [21 C$#Ix+#2$) \abxC5alCb)

5ax + b
In a similar way, to change style, fonts, empha-

sis. etc., the user can define a new environment with

\newenvironment.

Commands can be defined anywhere, but the

definitions must appear before their use.

9 Graphics - Floating Objects

I4m has a limited capacity for creating graphic ob-

jects and is able to move figures around in a floating

way to avoid splitting between pages. Figures can

receive a caption; in this case a caption number is

produced (for an example see Figure 1). Suppose

that you must insert a figure 5cm tall in your text;
the I4m code is:

\beginif igure)

\vspaceC5cm) % leave space for figure
\caption{Fractal image.)

\endCfigure}

In the above example we leave blank space to

insert the picture at a later time with cut and paste

methods. For simple graphics is able to draw

axes, lines, circles. The coordinate system is ex-
pressed in \unitlength with default value 1 point

(nearly 1/72 inch).

Origin
Figure 1: Graphic example

A picture is created with the picture environ-

ment by specifying the picture's x - y dimensions

and, optionally, origin, enclosed in parentheses:

\begin{picture~(200,150)(20,10)

Any graphic and/or text information is positioned
in the picture with the \put command. which is

followed by the coordinates in parentheses and by

the object to put in braces: \put (0, -10) {Origin).

Objects are ordinary text, straight lines, arrows, cir-

cles, ovals.
The line and arrow syntax is the same; the

commands are \line and \vector. The com-
mand arguments are slope expressed as (Ax, Ay)
and length. For \circle the argument is the di-

ameter. For \oval the arguments are width and

height plus an optional argument to draw only half
or a quarter of the complete oval. Lines can have

two standard thicknesses: \thinlines (default) and

\thicklines. Both declarations are used in the ex-

ample.
The source code example for a simple drawing

follows. I4W output is shown in Figure 1. Note

that IPm requires the use of parentheses 0 when

describing graphic objects.

\beginif igure)

\begin(picture)(200,150)

\put (0, -10) {Origin)

\put(5,5)i\vector(l,O)C180)3 % x-axis
\put (5,5)C\vector(O, l)il4Ol) % y-axis
\thicklines

\put(20,20){\line(1,2){60)} %draw line

\thinlines

\put (lOO,9O) {\circle{40)) %draw circle

\put(lOO,90)(\circle*{5)} %fill center

\endipicture)

\captionCGraphic example)\labelifig:ex>

\endif igure}

TUGboat, Volume 13 (1992), No. 2 213

Using the same basic criteria, virtual boxes can

be created to split the physical page into subareas

called boxes. Text can be placed inside the boxes
at center (default), left (1) or right (r). There are

two commands to handle such boxes: \makebox and

\framebox; the second one draws a frame around

the box. Both commands have the same syntax: two

optional arguments for width and position, and the

text to be framed: \framebox[wzdth] [posl{text).

Both commands can define box size and text posi-
tion as optional arguments. The text to be typeset

is enclosed in braces. The syntax and typeset results

are shown in the following example:

I framebox I \f ramebox [2cm] (f ramebox)

[framebox / \f ramebox [2cm] [l] {f ramebox}

Besides the above commands, the minipage en-

vironment enables the user to split the typeset in-

formation into variable size paragraphs of specified

width and position typed as multicolumns side by

side inside the current environment. The minipage

environment is used in the above example with the
following commands, in which boxes are created in

a nested way. The first minipage is 2.5cm wide and

the second one is wider (4.0cm). Both minipages are

typeset with the top line at the current text position

(Kt]). Note that the two minipage environments
are typeset side by side as normal text with a \quad

horizontal space.

\noindent

\begin{minipage) [t] C2.5cmI

\f ramebox [2cm] {f ramebox)

\f ramebox [Zcml [l] {f ramebox)

\end{minipage)

\quad % a l ign second minipage

\begin{minipage) [t] C4.0cm)

\verb ! \f ramebox [2cm] i f ramebox) !

\verb ! \f ramebox [2cm] [I] {f ramebox) !

\end{minipage)

Text can be positioned in the center, left or

right of the page using the center , f l u s h l e f t or
f l u sh r igh t environments. To start new lines in
such environments use \ \ as in tabular and array

structures.

10 Reference - Index - Bibliography

UT)jX provides an easy way to create cross-
references linking the various elements of the doc-

ument, such as figures, equations, sections. Each
element can receive a name through the \ l abe l

command. Any string can be assigned to the

name, suggested naming conventions are eq: eu ler ,

s e c t : syntax and the like to create mnemonic

names related to structures and thus more easily

identifiable.

Once an element is named, it is referenced with

the \ ref command. The name can be defined in any

place in the source code (before or after being ref-

erenced), but it should be typed immediately after
the referenced item, i.e. if the user wants to label

a caption to refer it by figure number. the l abe l

statement must be typed after the caption title:

\caption{Graphic example)\label{fig:ex).

IPm writes temporary files to handle refer-

ences that are resolved on the next run, thus it must

be run twice to typeset the updated reference infor-

mation. If the temporary files are missing or pos-
sibly not up to date, a warning message is written.

As an example consider the following fragment:

Equation 3 is very famous.

. . .
Energy equation is

E = me2

produced by:

Equation \ref{eq:ck) i s very famous.

Energy equation is \begin{equation)

E = mc-2 \label{eq:ck) \end{equation)

References can be set also on any page us-

ing \ l abe l to name the text and the command

\pageref to get the page number of the named text.

the source code looks like the following:

see page"\pageref{fonts) f o r more d e t a i l s .

Predefined \label{fonts) fon t s a r e :

Keep label definitions to a reasonably short size

to avoid problems with internal space. Avoid

defining labels that are never used or used too sel-

dom. Keep a list of used labels and their meanings

to produce a readable and mantainable input file.

More than forty labels can cause problems.
Finally, IPm can produce a table of contents

and bibliographic reference with auto-labels. The

style of this information is, as always, related to the
document style. Its position inside the document is

determined by the place in the input file: at the be-

ginning if the command is typed before \maketi t le ,

at the end if it is typed before \end{document).

The table of contents is produced by the com-

mand \ tableof cont ents; other index information
can be produced for tables and pictures using

\ l i s t o f f i g u r e s and \ l i s t o f t a b l e s .

To produce a bibliography, the user defines en-

tries in the thebibiography structure, which can

have as optional argument the definition of the
widest label in the item list. Each item is inserted

with \ b i b i t em, which has the following arguments:

TUGboat, Volume 13 (1992), No. 2

an optional label that overides the default number-

ing scheme, the key-name for citations and the entry

text. The items are referenced with the \cite cbm-

mand.

An example of bibliographic data is given by

the following environment definition:

\begin{thebibliography)

\bibitem(bib:la) L. Lamport. \LaTeX:

{\em User's Guide and Reference . . .)
. . . .

\bibitem<bib-my)M. L. Luvisetto, . . .
(\em Introduzione . . . 3
\endithebibliography)

and are called in any place as shown:

. . . for more information see
\cite(bib:la,bib:le) and . . .
\cite{bib-my).

11 Useful Tools

At our site, many researchers have a workstation,

but a language sensitive editor is provided only on

some machines. To help our users in typing doc-

uments we have created a set of files containing a
template of the most common environments. The

files are defined at system level: as logicals under

VMS, as symbolic links under Unix, so they can be

inserted into a document during the editing session.
As most users are not computer professionals,

their knowledge of the editors is a basic one. There-

fore we have developed the utility program P r e I P m
that, when run on a new file, interactively asks for

title, authors, etc., and produces a template file sim-

ilar to the one listed at the beginning of this article.
The program asks also for section names and bibli-

ography; thus the user can create a skeleton of the

document a t his first session.

During the editing session, I P m environments

such as:

quotation itemize enumerate

description tabbing tabular

array minipage figure

can be inserted in template form by inserting one of

the template files.

The file contains the name of the environment,

the optional arguments, a title to declare its usage
and empty lines to produce the wanted information.

By following the template it is easy to create tables,

arrays, item lists, etc., even for newcomers. In a

few hours, inexperienced users are able to produce
simple documents. The file names and usage are de-

scribed in help files. For people using workstations,

it is simple to keep this information in a separate
window ready for use.

An example of a template file is given below for

the tabbing environment.

\begin{t abbing)

% create table, set tab with \=

% recall tab with \> end with \ \
% set template fields (f
% insert fields between tabs
% f l \= f2 \= f3 \= f4 \= \kill

\> \> \> \> \\
\> \> \> \> \ \

.
\end(t abbing}

Thus the user needs only to fill in the columns with

his own values.
P r e I P m can be run on an existing file. In this

case, it produces a list of all sections together with

their headings, a list of all ref, pageref and label

commands and, at the user's request, a list of all

figures, captions, equations and the like. If the bib-
liography data are present they are listed at the end,

together with cite commands. This feature is found

very helpful in checking cross-references, especially

in the final steps of the document preparation.

P r e B W is not static. Planned extensions in-

clude a reformatting option that would change the
columnar alignment in the source of tables, arrays,

etc., to more closely resemble the output. A source
in this form should be easier to read and maintain.

The above software is free and available from

the authors, who can be contacted at the cited e-
mail address.

o Maria Luisa Luvisetto and Enzo
Ugolini

Istituto Nazionale di Fisica
Nucleare

Viale Ercolani 8

40138, Bologna, Italy
Internet: LuvisettoQCNAF. INFN. IT
Internet: UgoliniQCNAF . INFN. IT

