
TUGboat, Volume 13 (1992), No. 2

Over the multi-column

P6ter Huszar

With a good multi-column environment you can

handle almost every problem you are faced with.

But sometimes you may want to produce more

complicated pages: text around a picture or real

newspaper pages which are sets of articles (boxes)

rather than sequences of columns. The environment

presented in this article gives you a convenient way

to describe such pages.

The idea

When you use plain w, you needn't care about

page-setting. TEX has a powerful algorithm for

making lines into a single-column page. This

format is so simple (even if it depends on a dozen

or so parameters) that such a page can be produced

by a constant output routine provided in p l a i n .

Thus you only have to type your text and 7&X

builds up this format. However, if you want to

produce a more complex page, first you should

describe its structure, i.e., how many parts does a

page contain and how are they connected logically

and physically. For example. a multi-column page

consists of as many parts as the number of columns:

there is an order on the parts (the sequence of the

columns); and they are put next to each other. But

this is still a restricted form of a general page which

looks as follows:

A page is built up of logical areas. I will use

the phrase 'logical area' for the logical units of the

page (articles, pictures, etc.). Each area is a list of

boxes (you may want to divide an article in two or

more parts). For example let's consider the page of

Figure 1.

There are six areas on the page:

the TITLE

a PICTURE

article 1, which consists of three boxes:

BOX 1.1, BOX 1.2 and BOX 1.3

article 2, which consists of just one box:

BOX 2.1

article 3, which consists of two boxes:

BOX 3.1 and BOX 3.2

an ADVERTISEMENT

As you can see it is rather difficult to describe this

page in a multi-column format which is just one

area with restricted placement of its boxes on the

page. The main problem is that there is no proper

ordering on the boxes (if you represent each box as

a point then this is the same problem as ordering

on complex numbers), so you can't make one list

from the boxes. I will now give an environment to

describe such a page.

How to describe (plan) the page

The strategy of planning is that first we describe

the areas and the boxes on the page, then we 'fill'

the boxes with their contents (text, picture, etc.).

This means that the dimensions (width, height and

depth) of a box are independent from its contents,

contrary to m ' s boxes where you can prescribe

only one of the three dimensions and the other two

will be known just after putting the contents into

them. (The problem of how much space a text

needs is rather general, I guess.)

The description part of the macro package

should allow you

1. to describe as many areas as you want to;

2. to describe the list of boxes of each area;

3. to specify vertical and horizontal sizes of each

box;

4. to specify the position of each box on the

page.

First let's examine these problems from the point

of syntax. You should specify boxes and areas as

a list of boxes. An element in the list has a data

part and a pointer to the next element; this pointer

points to 'null' (i.e. nowhere) at the end of the list.

It means each box (I'll use the name planbox for

these boxes to differentiate them from W ' s boxes)

should have the following parameters:

a. a name (we want to handle it as an ordinary

allocated \box),

BOX

1.1

BOX

2.1

BOX

1.2

TITLE

PICTURE

1 BOX
1.3

Figure 1.

TUGboat, Volume 13 (1992), No. 2

b. horizontal and vertical sizes (width and

depth),
c. position on the page specified as horizontal

and vertical distance of the left upper corner

of the box from the left upper corner of the

page,
d . a pointer to the next planbox (the best way is

to give the name of the next planbox);

in other words, something like this:

<name>,<width>,<depth>,<hdis>,<vdis>,<next>;

where <next> is either a <name> or the constant

\null. The semicolon is redundant but you can

read the source code easier with it. In this format

we can describe the example page above with the

\plan macro as follows (the parameter of \plan is

the total number of planboxes on the page):

\plan 9; % total number of planboxes
\TITLE , \hsize , 2cm, Opt, Opt, \null;
\ArtIone , 3cm, IOcm, Opt, 2cm,\ArtItwo;

\ArtItwo , 3cm, 13cm, 3cm, 2cm, \ArtIthree;

\ArtIthree , 4cm, 2cm, 6cm, Iscm, \null;

\ArtIIone , 3cm, 6cm, Opt,l2cm,\null;

\ArtIIIone, 4cm, 5cm, lOcm, l3cm, \ArtIIItwo;

\ArtIIItwo, 2cm, 5cm, 14cm, Iscrn, \null;

\AD , 7cm, 3cm, 3cm,l5cm,\null;

\PICTURE , 10cm,llcm, 6cm, 2cm,\null;

This format also specifies the areas. Each area starts

after the end of the previous area, i.e., after a \null

pointer. You'll see below that this information is

enough to handle the areas.

Until now I've written about whole pages, but

you aren't restricted to plan the whole page every

time. If you plan just a part of the page, the origin

for the positions of planboxes is the left upper
corner of the planned part (i.e., relative positions,

so you can shift the plan on the page without

changing them) and the planned part will be put

a t the current position when \bpage (see below) is

performed.

Filling the page

The plan is ready, knows the structure of the

page (or the planned part of it), and we can start

putting the text into planboxes. The procedure my

macro offers you is the following:

You should choose an area you want to deal

with.

You can type in your text.

At any point you are allowed to choose

another area.

At any point you are allowed to switch to the

next box within the area (like an \eject).

e If you don't want to switch by hand, the

macro automatically switches to the next box

when the current one is full. After the last

box in the area it gives you a warning.

Let's consider the actions step by step.

To start the page (the planned part) and to

select an area you simply type:

where <area> is the <name> of the first planbox in

an area. (You can choose not just the first but any

box in the area; however, you can't switch back to

the previous boxes.) The chosen planbox becomes

an individual page (with its own width as \hsize

and height as \vsize). This is a page from the

view of the algorithm but it hasn't got \headline,

\f ootline, \footnote or floating insertions.

Now you can type your text for this area.

Having finished, you can choose another area by

saying:

It is quite simple, isn't it? You can fill the areas

one by one in any order you want (there is no

restriction). Indeed you can go back to a previous

area but if you do so the previous 'value' of the area

will be overridden.

Inside an area you are allowed to switch to the

next box with the command:

There is no need to specify the next box by giving

its name. With the pointer technique the macro

figures it out.

At <nextbox> and <nextarea> you have a

choice: you can put a \vfill at the end of the

current planbox with \fillON or you can omit it

with \f illOFF. The macro package sets \f illOFF

at the beginning of every box.

At the end simply say:

to finish the page. All four commands can be used

immediately after a paragraph, but not inside one!

Hyphenation. The macro package tries to avoid

any hyphenation (for the reasons see below). But

sometimes (especially in narrow planboxes) it gives

very poor output (underfull hboxes). You can

enable hyphenations with \hyphensON. However,

this way the package may produce hyphenations in

the midst of some lines. You can correct mistake

by saying \hbox{word) to enclose the hyphenated

word.

Automatic switch

The main advantage of the macro package is the

automatic switch. If a planbox is full of text the

macro package automatically switches to the next

box in the area. With this feature you can e.g.

have text to flow around a picture (see An example

below), or plan a page like the one above.

The default way to fill the page is the automatic

switch. You can disable it with \automaticOFF and

enable it again with \automaticON.

If there are no more boxes in an area the macro

package produces an error message (a warning), and

calculates and writes to the logfile the space which

the rest of the text needs.

An example

This is a very simple example but it can be used

often in everyday w i n g . The problem is a picture

which is in the middle of the page and which is

narrower or wider than a column or the page:

Here is the text above a picture of width (5pc)

less than one third of the column's (1 8 . 7 5 ~ ~) :

and the text continues here below the picture.

The empty space around the picture is about

6 . 2 5 ~ ~ ~ 1 3 ~ ~ . With this environment you can have

the text flow around the picture. The parameters

are as above (picture height=6. lpc):

\let\bs=\baselineskip

\let\hs=\hsize \let\vs=\vsize

\newdimen\pwd \pwd=6.25pc % picturewd
\newdimen\pht \pht=6.lpc % pictureht
\newdimen\ptop \ptop=2\bs

\newdimen\pbot \pbot=\ptop

\advance\pbot \pht

\def\boxit#1~\vbox~\hrule\hbox(\vrule

\kern7pt\vbox{\kern7pt#l\kern7pt)%

\kern7pt\vrule)\hrule))

\plan 4;

\above, \hs, \ptop, Opt, Opt, \near;

\near , llpc, \pht, opt, \ptop, \below;

\below, \hs, 2\bs, Opt, \pbot, \null;

\pict , \pwd, \pht , 12pc, \ptop, \null;
Just a little text outside of the plan to

show the possibility of planning a part
of the page.

\bpage\above ;

\automat icON \hyphensON

TUGboat, Volume 13 (19921, No.

Here are two lines of text above the

picture. When these two lines are full

the text continues at the side of the

picture. The picture is placed on the

right side of the column as you can see.

When this box is full of text (somewhere

here at this point) the text flows

automatically to the next box which

is actually a little space below the

picture \fillON for the rest of the

paragraph.

\nextarea\pict ;

\f illON

\leftline{)\nointerlineskip

\vf ill

\centerline{%

\boxit{\boxit{\boxitI\boxit{~)~~%

)

--

\epage
And now we're outside of the planned part

again.

This code yields (notice that the whole plan

in the middle of a multicolumn environment):

Just a little text outside of the plan to show

the possibility of planning a part of the page.

Here are two lines of text above the picture.

When these two lines are full the text continues at

the side of the picture. The

picture is placed on the right

side of the column as you can

see. When this box is full of

text (somewhere here at this

point) the text flows automat-

ically to the next box which is actually a little space

below the picture for the rest of the paragraph.

And now we're outside of the planned part

again.

The rest of the paper looks behind the screens and

explains how this package works.

Planning the page

When the user invokes \plan the package should

store all the information about the structure of the

page. This includes the attributes of the planboxes

and some supplementary information used by the

package. The attributes require registers for their

values while the system information supplies some

notes on these registers. First of all, \plan stores

TUGboat, Volume 13 (1992), No. 2 195

the number of planboxes on the page in \planbQxno

and the current insertion number in \maxplanbQxno

(the reason for this will be explained later).

Information about each planbox is stored by

the recursive macro \makeplanbQx. This is

done in two steps: first allocating the necessary

registers (\planboxallQc), then setting their values

(\setsiz@s):

% creating a planbox
% #I name, #2 width, #3 depth
% #4 hdis, #5 vdis, #6 next

\def\makeplanbQx#l,#2,#3,#4,#5,#6; i%
\planboxall@c#l#6

\setsiz@s#2,#3,#4,#5;

\advance\planb@xno \m@ne

\if num\planbQxno>\zQ

\let\next \makeplanbQx

\else \let\next\pl@nrest \f i \next]

Allocation. We need six registers for a planbox:

a box register named <name> for the contents; four

dimension registers for <width>, <depth>, <hdis>

and <vdis>; and a token list register for <next>

which contains the <name> of the next planbox.

The package should figure out from the <name> the

other registers for this planbox. Using an insertion,

we get just a box register, but no token list register

and instead of four just one dimension register.

The token list register can be 'appended' to the

insertion but we have to allocate the dimension

registers separately from the other registers and

use a 'pointer' to these dimensions. This pointer

comes from the count register of the insertion. It

always points to the highest of the four consecutive

dimension registers. The first version of this would

look like this:

\def\planboxall@c#l#2~%

\newdimen#l % the names
\newdimen#i % of these
\newdimen#l % registers are
\newdimen#l % unimportant
\newinsert#l

\global\toksdef #2=\allocat ionnumber

\global\toks\allocationnumber~#2)

% the token list register
\global\count#l=\countll

% the pointer to the
% highest allocated dimen

Unfortunately there are some problems with this

construction. First of all the \new. . . commands

cannot be used inside a macro because they

are defined to be \outer. Redefinition would

be a good solution for this but not the other

problems. Namely in this case you would find

in the log file many messages about insertion and

dimension allocations but no information about

planbox allocation. Furthermore this is not an

efficient construction and its form is quite different

fi-om the other kinds of allocation in plain. Yet

planbox is something like an insertion: not just a

set of certain registers but also logical connections

among them. For this reasons my solution for the

allocation is the following, which is a simple merge

of a \newinsert, a \newtoks and four \newdimen

commands with only one \chQck for each kind of

register and with the appropriate message to the log

file. I also set the value of the token list register here

because I want to keep the assignments connected

with \allocationnumber together:

% allocation for width,depth,

% hdis,vdis,name,next

\def\planboxallQc#l#2(%

\global\advance\insc@unt by\mQne

\global\advance\countll 4

\ch@ckO\insc@unt\count

\chQckl\insc@unt\dimen

\chQck4\inscQunt\box

\chQck5\inscQunt\toks

\allocat ionnumber=\inscQunt

\global\chardef#l=\allocationnumber

\global\toksdef#2=\allocationnumber

\global\count#l=\countll

{\advance\count#l -3

\wlog{\string#l=\string\insert

\the\allocationnumber;

\dimen\the\count#l . . .
\dimen\the\countll .I)

\global\toks\allocat ionnumber(#2))

For storing the values, it would be better to use

the pointer of the planbox, but instead I use the

'dirty information' that right after the allocation

\count11 points to the same register as the pointer

of the planbox would do (this way I save an

indirection) :

% storing width, depth, hdis and vdis
% in the appropriate registers
\def\setsiz@s#l,#2,#3,#4; i%

{\global\dimen\countll #4

\advance\countll \m@ne

\global\dimen\countll #3

\advance\countll \mQne

\global\dimen\countll #2

TUGboat, Volume 13 (1992), No. 2

\advance\countll \m@ne

\global\dimen\countll #I))

After getting the attributes of the planboxes,

\pl@nrest is invoked. It stores the current

insertion number in \minplanb@xno. This register

and \maxplanb@xno point out the place of the

planboxes; this information will be used at the end

of each use of the package to release the occupied

registers. I also allocate a planbox for \null. It's a

trick and seems to be useless here but you'll see its

importance below. Nevertheless, notice that \null

is not a real null pointer but a planbox!

\newcount\minplanb@xno

\def\pl@nrest{%

\global\minplanb@xno\insc@unt

\planboxall@c\null\zero

\setsiz@s\hsize , \maxdimen, \z@ , \z@;
\egroupl

Filling the page

The structure is ready, all the registers have been

allocated and all the logical connections are set; we

can start to fill the planboxes with their contents.

Let's consider the actions step by step:

The first macro invoked is \bpage:

\def \bpage#l ; {\bgroup \s@vepagesof ar

\tolerance=10000

\showboxbreadth1 \showboxdepth1

% there are many Underfull hboxes
% while processing

\advance\baselineskip Opt

plus .3pt minus .lpt

\wlog{Beginning of Page.)

\def\par(\endgraf\egroup\pl@npar)

\output{\fullb@xoutput)\topskip\z@

\bb@x#l;)

Its main task is some preparation and initialization.

Before any action, it saves the part of the page

which is ready at this time in \s@vepagesof ar:

\newbox\p@gesof arbox

\def\s@vepagesofar{\output{%

\global\setbox\p@gesofarbox\vbox~%

\unvbox255))\eject)

Afterwards, it sets \tolerance=10000 to avoid

overfull hboxes in the planned page. The pack-

age produces many underfull boxes without any

visible reason. Thus \showboxbreadth and \show-

boxdepth are set to their minimal values. The little

stretchability and shrinkability of \baselineskip is

needed because of the relatively small height of the

planboxes. After the message to the log file comes

the essential part of the macro.

The algorithm of the process. The idea is

that the package proceeds through the entire text

paragraph by paragraph. Each paragraph is put in

a vbox. If this paragraph has room in the current

planbox. then it is simply added to the material so

far; otherwise the paragraph has to be split up into

two parts. The first part goes to the current planbox

and the second one to the next planbox. At the

same time we should finish the current planbox and

switch to the next one. Then the next paragraph is

processed.

Redefinition of \par is the essence of this

idea. Namely, it finishes the vbox by \egroup and

does the necessary actions through \pl@npar (see

Accumulating the paragraphs below). The last of

these actions is starting a new paragraph and also

a new vbox. The output routine is also redefined

(this will be explained later) and \topskip is set to

zero because we're making not a whole page, just a

part of it. Believe it or not, no more preparation

is needed; we can start the current planbox (in

\bbQx):

\newcount\curplanb@xno

\newdimen\curplanb@xsofar

\newif\iffillO

\def\bb@x#l; {\initb@x#l; \fillOFF \st@rtpar)

\def\newsiz@s#l{%

\advance\count#l -3

\hsize\dimen\count#l

\advance\count#l \One

\vsize\dimen\count#l

\advance\count#l \twQ)

\def\initb@x#l; 1%

\wlogCThe next planbox is #I.)

\global\curplanb@xno#l

\curplanbQxsof ar\zO

\newsiz~s\curplanb@xno)

Again, first some initialization for the box (\initbOx).

This means a message to the log file, a note on

the current planbox to \curplanbOxno, resetting

the height of the material in the planbox so far

to zero (there is no material at all) and setting

\hsize and \vsize to the <width> and <depth>

of the planbox. The last step of the initialization

(\fillOFF) is the decision that at the end of the

planbox we don't want to fill the rest space with

\vf il (detailed explanation will come below). Fin-

ishing the initialization we can start to process the

first paragraph:

\def\st@rtpar{%

\advance\curplanb@xsofar \parskip

\vskip\parskip

\setbox\c@rrpar\vbox\bgroup}

TUGboat, Volume 13 (1992), No. 2 197

The reason for putting \parskip into the vertical

list by hand is that with our macros TEX sees only

vboxes and not paragraphs, since we put every

paragraph into \cQrrpar, which is the box finished

in \par.

The normal way of processing is simply to

accumulate the paragraphs. Two things may

happen which can break this accumulation. The

first occurs when the planbox is full, and the second

when a user command is encountered. The former

causes the automatic switch to be invoked (see

the next section). The user commands can be

divided in two classes: the first class contains the

commands related to the parameters of the package.

The second is formed by \nextbox, \nextarea and

\epage. As I mentioned before, the commands of

the second class can be performed only between two

paragraphs, but not inside one.

Switching by hand

The commands \nextbox and \nextarea have

much the same code:

\def \nextarea#l ; {\endplanb@x

\wlogCNew area.)\bb@x#l ;)

\def\nextbox(\endplanbQx

\bb@x\the\toks\curplanb@xno ; 1
\def \endplanb@xC\iff ill@ \vf ill \f i \break)

Both of them should finish the current planbox

(\endplanb@x) and start the next one (\bb@x). At

the time \endplanb@x is invoked we are in vertical

mode (between two paragraphs), hence \break

causes a page break, i.e., it causes the output

routine to be invoked (still see below). But before

this we should decide if a \vfill is needed at

the bottom of the current planbox. In \bb@x the

decision is no (\fillOFF) but you can change it

(the ultimate explanation will come soon).

To start the new planbox in \nextbox, \bb@x

uses the <next> attribute of the planbox while

\nextarea works with its parameter, the <name>

of another planbox. Let me remind you that this

<name> can be the <name> of any planbox with its

successors (see above).

The third command of the second class is

\epage:

\def\epageC\endplanbOx\egroup

\box\p@gesofarbox

\nointerlineskip

\vskip\aboveplanskip

\hboxC%

\loop

\advance\maxplanb@xno \m@ne

\ifvoid\maxplanb@xno

\else \dimen@\wd\maxplanbQxno

C\advance\count

\maxplanb@xno \m@ne

\kern\dimen\count \maxplanb@xno)%

% kern <hdis>

\lower\dimen\count \maxplanb@xno

\hbox~\box\maxplanb@xno)%

% lower <vdis>

C\advance\count

\maxplanb@xno \mOne

\kern-\dimen\count \maxplanb@xno)%

% kern -<hdis>
\kern-\dimen@

% kern -<width>
\f i

\ifnum\maxplanb@xno>\minplanb@xno

\repeat)\wlogCEnd of Page.)%

\rele@seplan}

\def\rele@seplanC%

\global\insc@unt\maxplanb@xno

\advance\maxplanbQxno \m@ne

\advance\count\maxplanb@xno -4

\global\countll\count\maxplanb@xno~

It has a more difficult job to do. After finishing the

last planbox, \epage should construct the whole

page, i.e., put each planbox in its place on the

page. But first it leaves the group started in \bpage

and puts back the part which was ready before the

planned part. The variable \aboveplanskip has

the same function as \topskip for whole pages.

After putting it on the vertical list, an \hbox is

started in order to keep the planned part together.

and separately from the other material.

Inside the \hbox a \loop goes through all the

planboxes. Apart from empty planboxes, placing

a planbox means a horizontal kerning for <hdis>,

a vertical kerning for <vdis>, putting the box at

the point reached. and afterwards coming back to

the origin. The horizontal kerning is done by a

real \kern where \hdis comes from the indirection

through the \count register of the planbox. Vertical

kerning and placing are done by a \lower command.

Again, \vdis is found with the same indirection.

After performing \lower the 'cursor' of the page

goes back automatically to its original place so we

have to 'undo' only the horizontal kerning. This

also includes the width of the planbox.

And finally we should release all the planboxes

(\rele@seplan). This feature is missing from

plain T)$ so \rele@seplan has to do it explicitly.

Resetting \insc@unt is simple because \bpage has

stored its value in \maxplanb@xno. The dimen

allocation register (\countll) was originally four

less than the value of the \count register of the

TUGboat, Volume 13 (1992)' No. 2

first planbox, since this count register points to the

highest of the four dimension registers related to

the planbox.

The output routine. This is an interesting output

routine because the major part of it does nothing

else but give information:

\def\fullb@xoutputC%

\global\setbox\curplanb@xno

\vtop to \vsizeC%

\line{\hfil)\nointerlineskip

\unvbox255)%
\ifnum\null=\the\curplanb@xno

\errhelp{I'll forget

the superfluous text.)

\errmessageCCurrent area is full.

You'll lose a part of your

text on the output)

\wlogCThereJre no more boxes for

this area, so I forget)
\wlog{the superfluous text.

The text needs about:)

\setbox\null\vtopC\unvbox\null)

\wlogivertical : \the\dp\null,

horizontal : \the\wd\null.l . -
\wlogCor any equivalent space.)

\else

\wlogCCurrent planbox is full.)

\f i)

Its task is t o save the main vertical list in the box

related to the planbox. The modification

(\line(\hf ill)\nointerlineskip) prevents the

commands \vf il, \vskip, . . . from getting lost.

And now comes the trick of \null! If there is
not enough room in the area for the text, then the

package switches from the last box to \null. Since

\null has <depth>=\maxdimen, the rest of the text

goes to \null. And at the end of \null the output

routine is able to give you the information about

the amount of the lost text.

Setting the parameters. After the interruption

of the output routine let's go back to the first class

of the user commands. The algorithm depends on

three parameters, which are chosen to be exact.

The simplest decision is mentioned twice above: the

user should decide if he/she wants to fill out the

space at the bottom of a planbox (handled with the

\newif construction):

The second parameter gives a choice about hyphen-

ation (for exact explanation of how \pretolerance

works see The T)iJYbook, p. 96):

\def\hyphensONC\pretolerance 300)

\def\hyphensOFFC\pretolerance 10000 3

The third choice is the most important one. You

can turn on and off the automatic switch:

\newtoks\aut@switch

\def\automaticON~\aut@switch=(%

\if dim\curplanb@xsof ar>\vsize

\splitit@p \f i))

\def\automaticOFFC\aut@switch=C\relax))

\def \pl@nparC%

\advance\curplanb@xsofar \ht\c@rrpar

\advance\curplanb@xsof ar \dp\c@rrpar

\the\aut@switch

\unvbox\c@rrpar

\afterassignment\wh@tnext\let\nextt=)

Both definitions is connected to \planpar. This

leads us to the last part of this section:

Accumulating the paragraphs. I hope you

remember that I haven't mentioned how to append

the current paragraph to the current planbox. All I
have written about is how 'to cut out' a paragraph

and to put it into a vbox. But after this, \planpar

is invoked in \par:

% from \bpage
. . .

\def\parC\endgraf\egroup\pl@npar)

. . .
Behaviour of \pl@npar depends on whether \auto-

maticON or \automaticOFF is active. In both

cases it measures the vertical size of the material

in the current planbox and appends the current

paragraph (\c@rrpar) to the vertical list. When

\automat icON is active, \pl@npar checks whether

the current planbox is full or not. If it is, then the

code for the automatic switch (\splitit@p) takes

place (see Automatic switch below).

On the other hand, when \automaticOFF is

active, the material is not handled automatically.

Thus the user himlherself should take care of page-

setting, i.e.. invoking \nextbox or \nextarea at the

necessary points in the text.

You may say that no one will use \auto-

maticOFF since it has only disadvantages. But

this is not true. If two consecutive planboxes have

the same width, then by using \automaticOFF the

page builder of plain T)$ may be executed to

find another (and perhaps better) solution for page

breaking than the automatic switch of my package.

And one more thing about \automaticOFF: it

should do all other things except checking because

the user may switch ON again in the same planbox

where it was switched OFF (even if there is no

reason for doing so).

TUGboat, Volume 13 (1992), No. 2

Let us return to \pl@npar. At the end it looks

ahead for the next token:

If the first token is one of \nextbox, \nextarea or

\epage then that command should be performed,

because they can be performed just outside the

vbox containing the paragraph. As you can see,

\wh@tnext performs at most one command before

starting a new paragraph. Hence, if you want

two commands to be performed, leave a blank

line between them. It has just one effect: the

empty line means an empty paragraph between

the two commands. And if there is no command

at all, a new paragraph is to be started and the

token is to be put back. But this happens just

after the new paragraph, i.e., the vbox has been

started! Fortunately \afterassignment puts the

saved token back right after starting the vbox.

Again, we are at the beginning of a new

paragraph.

Automatic switch

Let's pick up the thread at \splitit@p:

This macro is invoked when the current para-

graph has no room in the current planbox. First

\m@veextra reduces the vertical size of the para-

graph to the appropriate size by removing the last

lines of it. Then the remaining part is appended to

the current planbox. This planbox is finished and a

new one is initialized (not started!). The removed

part of the paragraph is then retypeset with the

new \hsize. If this amount of material is too much

for this planbox, then the whole process is repeated.

The macro \mQveextra removes the necessary

lines one by one with \rem@velastline:

\def\m@veextra{%

\global\setbox\c@rrpar\vbox{%

\unvbox\c@rrpar \rem@velastllne)%

\global\setbox\extrat@xt\vbox~%

\unvbox\extrat@xt\box\l@stline)%

\ifdim\curplanb@xsofar>\vsize

\let\next\m@veextra

\else \let\next\relax \fi \next)

It also accumulates these lines in \extrat@xt, and

it goes on until the vertical size of the material is

less than or equal to \vsize. One single line is

removed by \rem@velastline:

\def\rem@velastlineC%

\global\setbox\l@stline\lastbox

\ifvoid\l@stline

\global\advance\curplanb@xsof ar

-\lastskip \unskip

\unpenalt y

\global\advance\curplanbQxsofar

-\lastkern \unkern

\let\next\rem@velastline

\else

\global\advance\curplanbQxsof ar

-\ht\l@stline

\global\advance\curplanb@xsofar

-\dp\l@stline

\let\next\relax

\f i \next)

The macro works with W ' s \lastbox and

\un.. . operations. If a box could be removed,

the macro returns it in \l@stline. Otherwise

\rem@velastline tries to remove the last item in

the vertical list and updates \curplanb@xsof ar.

Unfortunately there is no proper \un. . . command

for each type of item, but the commands for

the missing types ("whatsit", mark, insertion) are

mode-independent, so in general you can avoid

their being appended to the vertical list. (I hope

this feature of 7&X won't cause too much trouble

for you and for the package.) Moreover there is

no opportunity to check whether the last item is

glue or not, because there is no \if skip command

to distinguish \zQskip=Opt plus Opt minus Opt

from let's say \parskip=Opt plus lpt. Thus

brute force is used instead of checking the last item

with \if. . . operations.

Notice that \extrat@xt contains only lines of

text, i.e., neither glue items nor kerns nor penalties,

and the lines are placed in reverse order. They will

be reversed again in \r@typeset:

\def \r@typesetC%

\global\setbox\extrat@xt\vbox~%

\unvbox\extrat@xt

\global\setbox\n@xtline\lastb~x~%

200 TGGboat, Volume 13 (1992), No. 2

\setbox\n@xtline\hbox(\unhbox\n@xtline

\unskip>%
\global\setbox\c@rrpar\vboxC\noindent

\unhbox\n@xtline}%

C\parskip\zQskip

\loop

\global\setbox\extrat@xt\vbox~%

\unvbox\extrat@xt

\global\setbox\n@xtline\lastbox3%

\global\setbox\c@rrpar\vboxC%

\unvbox\c@rrpar \ rem@velast l ine

\@penhbox\l@stline

\setbox\n@xtline\hbox~\unhbox\n@xtline

\unskip}%

\noindent \unhbox\l@stl ine\ %
\unhbox\n@xtline}%

\ i fdim\ht \extrat@xt>\z@ \repeat})

\def\@penhbox#1{\setbox#l \hboxC\unhbox#l%

\unskip \unskip \unpenalty})

Before examining the code. let's go through the idea.

It seemes to be simple: join the lines again and let

the line breaking algorithm form the new paragraph.

Unfortunately the task is more difficult. The main

problem is that because of the different \hsize, the

breakpoints in the new paragraph will be at other

points than they were in the original paragraph.

The line breaking algorithm puts \ r i gh t sk ip at

the end of every line. So \ r i gh t sk ip is t o be

removed from the original ends of lines.

At the end of a line a hyphenation may occur.

too. The trade-off is to check every line end with

a number of complicated macros or to leave the

task of correcting the bad hyphenations to the user.

Because of the easy correction I decided to use the

latter option.

On the other hand, joining the lines means

that the first couple of lines form the beginning

of the new paragraph and the next line is joined

to the last line of the partial paragraph. And

the last line of a paragraph contains not just

\ r i g h t s k i p but three more items related to \par,

namely, \penaltyl0000, \hskip\parf i l l s k i p and

\penalty-10000 (The W b o o k , p. 100). The third

item is discarded at the line break but the two other

items also should be removed before the join. The

macro \@penhbox removes all three items from its

parameter box.

Last but not least, there is no space between

the last word of a particular line and the first word

of the next line. Hence we should put a space

before each line except the first one. The first line

differs from the others in another respect: We don't

need to apply the joining algorithm just discussed

because there is no last line of the empty paragraph.

Let's go back to the code! In the code up

to the C before the \parskip\zQskip command

the first line is retypeset in three steps. First the

line is removed from \ex t ra tQxt (there is no need

to use \ remQvelast l ine because \ex t ra t@xt only

contains the lines). Then \ r i gh t sk ip is removed.

Finally. the line is put into \c@rrpar . Because

\c@rrpar now contains not a real paragraph but

just the second part of it, \noindent is inserted

before the line.

The other lines will be appended according

to the algorithm. First the line is removed from

\ex t ra t@xt the same way as the first line. Then

the last line of the paragraph is removed with

\rem@velastline. Both lines are 'peeled' and then

joined with a space between them. We should insert

\noindent before \ l Q s t l i n e because this line may

be the first in the paragraph; so the paragraph may

be restarted at this point. This is the reason for

setting \parskip to \z@. When a paragraph starts

\parskip is automatically inserted. In our case

the paragraph may start again but we don't need

another \parskip.

The whole action is repeated until all the lines

have been joined together.

And in the end. . .

This package is developed to handle pure text. It

was created in such a way that it avoids interfering

with \ p l a in w whenever possible. On the other

hand the package has to change things deep inside

w. I'm sure these changes mean restrictions of
the usage but only experiments can discover all of

them. However, I think that independently from

the restrictions the package is useful and helps to

create documents with a better look.

Already at the moment there is one possible

improvement: the multipage version of the package.

This needs only technical, and not fundamental

changes, but it gives the possibility of making whole

newspapers. I hope sooner or later that version will

come out.

My only reference was The W b o o k . If you

find my article does not explain a notion you will

find the best possible answer in this book.

At last: I hope you will enjoy this 'pagemaker'.

o Pbter Huszar
Budapest
Bogdanffy 6t 10.b.

H-1117 Hungary
hl612husC!ella.hu

