
Fonts

Invisibility using virtual fonts

Sebastian Rahtz

Abstract

The SL~IQX 'invisible' fonts are currently produced

by a special set of METAFONT files; an alternative
method of generating 'invisible' versions of any font

is presented, using virtual fonts.

1 Introduction

As soon as Donald Knuth announced [Knuth 19901

that 'virtual fonts' would be an official part of the

TEX version 3 distribution, I started to think of ways
in which they could make life easier for me. Now

that drivers exist which support the new font for-

mat (I have used Tom Rokicki's dvips for Postscript
output, and Eberhard Mattes' driver family distrib-

uted with e m m for screen previewing), I have been
able to realize some of these ideas. In a forthcoming

article for the journal of the UK TEX Users Group,

Baskervzlle, I discuss the use of virtual fonts in a

PostScript environment to implement the suggest,ed
extended font layout for m: here I look at a very

simple use of virtual fonts to generate the invisible
fonts needed by S L ~ .

S L ~ needs a set of fonts which produce

no output, but use up the same amount of white
space as the main fonts, in order to produce over-

lays [Lamport 1986, pp. 136-371. Leslie Lamport

achieved the desired effect by taking the set of fonts
he was using for S L ~ anyway, and altering the

METAFONT source so that they produced no marks

on the paper but had the same metrics as the par-
ent font. Despite continued complaints that these
fonts are not found in all LATEX distributions, the

system works well, provided that one sticks to the

default fonts. The big disadvantage, of course, is

that if one uses a different typeface one has to go

right back to METAFONT sources (which may be

unavailable or non-existent) to generate invisibil-
ity. But who ever dared change the font setup in

S L ~ anyway? The exciting work of Mittelbach

and Schopf [Mittelbach & Schopf 19901 changes the

situation, however. It is now very easy to build a

S L ~ which uses a different set of fonts; but if we
decide t o do our slides in, say, Optima. how do we
get invisibility? There are three approaches:

1. If we are using a Postscript printer, there is
a simple. and elegant, solution. Where we

TUGboat, Volume 13 (1992), No. 1

want invisible text, we simply typeset it in
the parent font. but bracket it with a pair of

\special commands which instruct Postscript

to set these letters in white, i.e., invisible.' This

has the great advantage that only one set of

font metrics is needed for TEX. but has the dis-

advantage that it is dependent on the printing

device. Leslie Lamport (pers. comm.) has writ-

ten an appropriate style file for S L W which
does the necessary work (this is not part of the
LATEX distribution at present).

We could tinker slightly with to do the
same thing, i.e., read a single font metric file,

but in a certain mode produce only white space

rather than the characters. So far as I am
aware, this has not been done. Whether it is

possible by arcane 7$X macros, I feel incom-

petent to judge! The helpful reviewer of this

paper suggests, as a start:

\catcoder a = \active

\def a{\setboxO=\hboxia)\hskip\wd0\relax)

Chris Torek's 'mctex' distribution goes in this

direction by allowing for a mapping file read
by the drivers which lets you assign the names

of conventional tfm files to the invisible names,

and add an attribute of invisibility; this forces

the driver to look up the width in the tfm file.
and move right by the required amount.

We can take an intermediate route, and gener-

ate a set of font metrics which satisfy T&$ it-
self about the size of characters in the font, but

actually point to virtual fonts which produce

just white space. This is the approach I have

adopted. Its advantage is that it is portable,

and applicable to any font, but has the disad-

vantage that still has to load two sets of

font metrics. which are identical.

Methodology

Even if we have no METAFONT source for a font,

we certainly have a lJjX tfm file. We therefore start

with that as our basis, and extract from it the widths

of every character. This data can be used to write a

virtual font which has an entry for every character.

but whose body simply contains a dvi instruction

to move sideways by the width of the original char-
acter.

As the format tfm is not very easy to read, let

us look at the work that needs to be done in the

' This scheme would fail, not if we printed on

coloured paper, but if we overlaid text on some other

colour, in which case Postscript's imaging model
would produce white letters.

TUGboat, Volume 13 (1992), No. I

human-readable pl form. The format of the vpl

file. the corresponding human-readable form of the

vf file, is a superset of the pl format [Knuth 1990,
p. 18ff.l. The first part of the file, which describes

the basic characteristics of the font, can be left more

or less unchanged. adding just a VTITLE line: for

example:

(VTITLE created on Sunday, October 28, 1990

11:28 pm)

(COMMENT an invisible form of the font)

(FAMILY TIMES-ROMAN)

(CODINGSCHEME ADOBESTANDARDENCODING)

(DESIGNSIZE R 10.0)

(COMMENT DESIGNSIZE IS IN POINTS)

(COMMENT OTHER SIZES ARE MULTIPLES OF DESIGNSIZE)

(FONTDIMEN

(SLANT R 0.0)

(SPACE R 0.25)

(STRETCH R 0.3)

(SHRINK R 0.1)

(XHEIGHT R 0.448)

(QUAD R 1.0)

)

A typical entry for a character in the pl file

looks like this:

(CHARACTER C a

(CHARWD R 0.444)

(CHARHT R 0.458)

(CHARDP R 0.014)

)

so all we need do is reproduce this, and duplicate

the width in a MOVERIGHT command:

(CHARACTER C a

(CHARWD R 0.444)

(CHARHT R 0.458)

(CHARDP R 0.014)

(MAP

(MOVERIGHT R 0.444))

1

There is no need to worry about heights and

depths, as t he dvi file will contain commands to

reposition the current print position at the start

of each line, and T)$X will have ensured that the

baseline separation is correct. Even characters like

floating accents, such as the circumflex from Times-

Roman, have a negative 'depth' to tell that they

occupy only the top area of the box:

(CHARACTER 0 303

(CHARWD R 0.333)

(CHARHT R 0.675)

(CHARDP R -0.494999)

1

This presents no difficulties because it is
which has done all the work establishing where the

accent is to go, and has written instructions into the

dvi file to position us there. The simple MOVERIGHT

should continue, therefore, to work.

3 Implementation

An ideal conversion program would read a tfm file

and write a vf file. I have adopted a simpler

approach, which is to write a utility in the text-
processing language Icon which reads an ASCII pl

file and writes a vpl file. My program consists of

the following steps, illustrating how easily a pl can

be parsed:

run tftopl on the base font

open the pl file

read and concatenate lines until matching sets
of (and) are found; process result.

for each element that is a CHARACTER, copy out
the CHARWD value as a MAP . . . MOVERIGHT com-

mand at the end of the entry.

simply copy out other elements (e.g.

FONTDIMEN).

call vpt ovf .

When the resulting vf and tfm files are in-

stalled, we are ready for action. If we started with

a file called ptmr. tfm, we generate ptmrJ . tfm and

ptmr j . vf 2 . TEX is told the invisible font is called
ptmrj, and reads the metric file. The dvi driver

finds ptmrj . vf, obeys the MOVERIGHT instructions,

and no further characters are typeset.

4 Results and acknowledgements

This idea has not been fully tested, and TEX may

have tricks up its sleeve to waylay us. But it does

work in simple examples (including things like ac-

centuation), and I have some confidence that a

portable tftoiv program can be written to make

this a general technique. Those who use a Postscript

printer will find the 'write-white' approach more at-

tractive (especially as it saves on font space) and

extensible, but less portable.
Russell Lang (r j lQau . edu . monash . cc . monul)

has translated my rough Icon program into C, and

this latter version is available from him or me for in-

terested parties who care to rewrite the whole thing
in WEB for the 7$J community, or make it read and

write tfm and vf files.
Frank Mittelbach has written an experimen-

tal redefinition of the \invisible macro in S L ~
which takes the ingenious route of simply prepend-

ing 'iv' to the name of the current font family, and

then calling \selectfont to pull out the correct

font, bypassing the hard-wired font names in the

Using Berry's font naming scheme, and adding

a 'j' at,tribute for invisibility

TUGboat. Volume 13 (1992); No. 1

Investigate possibly sign~ficant relationships, such as:

Investigate possibly slgnlficant relationsh~ps,

such as:

. Fabric vs. type

. Fabric or type vs. phase

Thespatial distribution of typesorfabrlcs or phases;

the co-ordinates identify the location to a 112 me-

tre grid square - cons~der how to look at the

distribution by 50 metre square.

You will probably want to concentrate on one fabric

or type at a time - it would be nice to automate the

process of select~ng the appropriate data from the

database.

Fabric vs. type

. Fabrlc or t ype vs phase

T h e spatial distribution of types or fabrics

or phases: the co-ordinates identlfy the io-

cation t o a 1/2 metre grid square - con-

sider how t o look a t the distribution by 50

metre sauare.

YOU WIII probably want t o concentrate on one

fabrlc or type a t a t ime - i t would be nice t o

automate the process o f selecting the appro-

priate data f rom the database.

Helvetica Computer Modern

Figure 1: The effect of various fonts in slides

original S L ~ . Future releases of the font selection

macros are likely to feature this system; combined

with the virtual font suggestions outlined above, one

can envisage a long-overdue renaissance for SLITEX.
To demonstrate the effect of the virtual font ap-

proach in these pages would be difficult, but it may

be of interest to readers to see the visual effect (al-

beit reduced) of S L W slides set in Helvetica rather
than the familiar hugely expanded Computer Mod-

ern (Fig. 1).

This article has benefited considerably from

comments by the TUGboat reviewer.

References

[Knuth 19901 KNUTH, D. 1990. 'Virtual fonts:

more fun for grand wizards', TUGboat 11, no. 1,

pp. 13-23.

[Lamport 19861 LAMPORT, L. 1986. U T E ! User's

Guide & Reference Manual, Addison-Wesley
Publishing Inc., Reading, Massachusetts.

[Mittelbach & Schopf 19901 MITTELBACH, F. AND

R. SCHOPF 1990. 'The new font family
selection-User interface to standard LATEX',

TUGboat 11, no. 1, pp. 91-97.

o Sebastian Rahtz
ArchaeoInformatica
5 Granary Court
St Andrewgate
York YO1 2JR
U.K.

Packing METRFONTs into POSTSCRIPT

Toby Thain

Aimed at implementors of DVI-to-POSTSCRIPT

translators, this article suggests adapting Rokicki's

packed font format [I] to compactly define bitmap

fonts in POSTSCRIPT, an approach which has been

successfully implemented and tested by the author.
The problem of integrating METAFONT and

POSTSCRIPT has been tackled in two completely

different ways: by modifying METAFONT to out-

put curvilinear paths and outlines [4, 51, and by

using METAFONT's standard bitmap output di-
rectly. Since POSTSCRIPT allows flexibility in

representation, the choice is largely philosophical.

While outlines are less device-dependent and more
amenable to linear transformations, this author feels

that users need an effective means of using

METAFONT-generated bitmaps with the gamut of

POSTSCRIPT devices.

Another consideration is that METAFONT's

digitisation is likely to be better than that pro-

duced from a machine-translated outline font; cur-

rent POSTSCRIPT printers are notably lax in this

regard. (Adobe Type Manager is a significant

improvement, but printers do not yet incorporate

this renderer, resulting in the irony that some non-

POSTSCRIPT printers using ATM render text better

than many POSTSCRIPT printers.) In short, where
low-resolution devices are concerned, the author be-

lieves that METAFONTs such as Computer Modern

