
TUGboat, Volume 13 (1992), No. 1

Oral w: Erratum
TUGboat 12, no. 2, p. 272-276

Victor Eijkhout

Alert reader Bernd Raichle pointed out that my

macro for lexicographic ordering was not correct.

Here is a repaired version. Replace the definition

of \ i f a l l c h a r s at the bottom of page 274, column

1, by the following.

This macro contains the slightly ridiculous sequence

of 15 \expandafter commands. However, Bernd
Raichle also supplied his own solution to string test-

ing and lexicographic ordering, which use a some-

what different principle (and are in addition shorter)

than mine.

Some Basic Control Macros for 'IjEX

Jonathan Fine

Abstract

This article is concerned with the mouth of m,
particularly macros and the primitives \ i f . . . ,
\ e l s e and \ f i used to control expansion. (Recall

that the mouth expands the input stream until it

comes to something unexpandable, which is then

passed to the stomach.)
Although it can do little but absorb parameters

and expand macros, the mouth is powerful. Alan

Jeffrey (Lists in W's Mouth, TUGboat 11, no. 2

pp. 237-245, June 1990) shows that it can do the
lambda calculus.

Our purpose is more limited. It is to define

and describe macros \break. \continue, \switch,

\ re turn , \ ex i t , \chain, and labels \end and ' : '
that make it easier to write 7&X macros. These

macros will be collected into a file con t ro l . s t y .
Several worked examples are given.

1 Introduction

There are now some substantial programs written

in 7&X. The source for I4m runs to 8,500 lines.

has 3,500 lines. A style file might have 120
lines of code and 300 lines of comments. is a

terse and at times cryptic language. A great deal

can be done in 26 short lines. This article is devoted

to making life easier for that suffering creature, the

writer of macros.

Acknowledgements. The author thanks the

referees for their careful comments, which have

greatly improved the article.

1.1 Ignoring spaces

T@ has rules for ignoring spaces in the input

stream that are well adapted to reading a text file

spiced with control sequences. But these rules do

not suit the macro writer, whose words are few,

and control sequences many. Many programming

languages today are 'free form'. White space is

ignored, allowing the programmer to indent or

otherwise arrange the code, so that the meaning is

more easily read.

Accordingly, by changing the category of tab,

carriage return, space, and '- '

\chardef\ignore 9

\catcode 9\ignore

\catcodei3\ignore

\catcode32\ignore
\catcode1\- 10\relax % make - space

TUGboat, Volume 13 (1992), No. 1

we ignore all white space except when we explictly

ask for it.

1.2 Speaking clearly

All m@nn@r @f d@vic@s @re us@d t@ gener@te

priv@te c@ntr@l s@qu@nc@s in macro fil@s. I'll

say that again. All manner of devices are used to

generate private control sequences in macro files.

And they are a nuisance. Here, we will take the

programmer's side, and use names built out of

ordinary letters.
We also give our control sequences the names

we want to give them. In particular \break and

\end do not have the usual meanings.

1.3 Top-down and step-wise

The author hopes that he has used here the tech-

niques of top-down programming and step-wise re-

finement to obtain these basic control macros.

This means we first identify and solve some of
the essential features of the problem, and then go

to details. We may have to go round several times

until we are finished.

Auxiliary macros

will need some general purpose helper macros.

\def\unbrace # I { #1)

\def\gobble # I C
\def\gobbletwo # I #2 C)

Macros for loops

Repetition and termination are the essential features

of a loop.

2.1 Writing \myloop

Our first attempt

produces a loop that will, when executed, endlessly
do nothing useful. It has the required virtue of
repetition, but in excess.

First, we will make the loop do something

useful. (Then worry about stopping.) Suppose, for
example, that we wish \myloop abc . . . to have

\myoperation a

\myoperat ion b

\myoperat ion c

as its result.

We add a parameter and an action to the

definition of \myloop.

\def\myloop # I {

\myoperation # I

\myloop
}

Now worry about stopping. Suppose that

\myloop is to stop when some token, for example

\end, is passed as a parameter. Before executing

\myoperation # I we must make a test \ i f x#l\end

and if it succeeds, the loop is to be terminated.
Termination will require a strange trick which

we will call \break. (The programming language C
uses break for a similar purpose.)

We now have

\def\myloop # I I
\ i f x #I \end \break \ f i

\myoperation # I

\myloop
1

where \break, when called, terminates the loop.

2.2 \breaking from \myloop

We are now able to specify and code the \break

command. Its definition is at first less than intuitive,
although arrived at logically. To prevent repetition,

\break must absorb the lines

\myoperat i o n # I

\myloop

of \myloop. We can do this by letting \myloop

delimit the argument to \break. The command

\def\break # I \myloop C)

will absorb the unwanted tokens. Sadly, it also

absorbs the \ f i , which we must put back again.

This is easy! Just put it back.

\def\break # I \myloop C \fi 3

To summarize, the code for \myloop works because

0 The expansion of \myloop terminates with
\myloop. (This is tail recursion.)

0 The expansion of \break successfully breaks
the loop.

2.3 Don't do this

Someone coding their first loop might write

\def\myloop # I C
\ i f x # l \ end \e l se

\myoperat ion #1

\myloop
\f i

3

TUGboat, Volume 13 (1992), No. 1 77

which looks correct but isn't. The reason is

subtle. We will expand \myloop AB, assuming that

\myoperation is \gobble. Here it is, step-by-step.

1. \myloop AB

2. \ifx A\end \else

\myoperation A\myloop \fi B
3. \myoperation A\myloop \fi B

4. \myloop \fi B

and now we are in trouble. \myloop is about to eat

the \f i. It should be getting the B. In fact \myloop

will continue to generate and consume \f i tokens,
and will never get to B.

5. \ifx \fi \end \else

\myoperation \fi \myloop \fi B

6. \myoperation \f i \myloop \fi B

7. \myloop \fi B

For \myloop to be successful, calling itself must,

literally, be the last thing it does. Only then can

it read the next token, which is B in our example.

Computer scientists call this 'tail-recursion'. This

trick avoids another hazard, the filling up of memory

during a long loop. 5.1 gives an example of how

this can arise (see also The W b o o k , p. 219).

2.4 Coding Tail Recursion

It is traditional to use an assignment to a scratch

control sequence

\def\myloop #I C
\ifx #l\end

\let\next \relax

\else

\myoperat ion #I
\let \next \mymacro

\f i

\next

3

to achieve tail recursion.

Assignments (and other unexpandable prim-

itives) are not performed within \edef, \xdef,

\message, \errmessage, \write, \mark, \special

and also the \csname - \endcsname pair. This limits
the usefulness of the traditional design.

However, the macros of control. sty can safely

be used in these situations, and also when TFJ is
looking for a number, dimension, glue or filename.

2.5 Writing \yourloop

Now suppose you wish to use the above to code

another loop, \yourloop. A problem appears. The
definition

has \myloop coded into it, and so is not suitable

for coding \yourloop. We do not wish each loop to

need a different \break command. This would be

wasteful. We notice that the key to \break is that

it gobbles to a certain point, and then puts down a

balancing \f i. Here is a first guess to a universal

\break.

\def\break #I : { \fi 3

(C uses the colon ':' as a label to allow use of the

much-abused goto command.)
Given this \break, the definition

\def\yourloop #I i
\ifx #I \end \break \fi

\youroperation #I

:\yourloop % notice the colon!

3

is natural. However, as we have introduced a ' : ' into

each iteration of the loop, we should ensure that its

expansion is empty. (plain has \def \emptyC3.)

- -

The rules around the code indicate that it is to

be part of the macro file control. sty and not an

example.

There is another failing-\break will gobble

\youroperation #I

and leave

\yourloop % notice the colon!

which is the continue command in C! To be

successful, \break must consume also the token

that follows the ' : ' delimiter.

(The author expects \continue will be used

less often than \break. It causes the next iteration

of the loop to begin. For example, to process only

some of the input tokens, code similar to

\def \ignoresome #I I
\ifignore #I \continue \fi

% now process those tokens that
% have not been ignored
:\ignoresome

1

should be used, where \ifignore determines the

fate of the token.)

The definitions

will be refined no more in this article.

78 TUGboat, Volume 13 (19921, No. 1

3 Use \switch or \else!

Here we construct in TEX an analogue to the s u i t ch

construction provided by C. It is useful when one of

a list of cases is selected, depending on the value of

some quantity. (Note that \switch does not share

with C the fall through property. It is more like the

CASE construction in Pascal.)

3.1 The alphabetic \ f r u i t macro

Suppose we wish to write a macro \ f r u i t such

that \ f r u i t a will result in \apple, \ f r u i t b in

\banana etc. One method is to produce a cascade
of \ i f . . . \ e l s e . . . \f i statements. However, we
could write

\ d e f \ f r u i t #I {

\switch \ i f $1 \ i s

a \apple
b \banana

c \cherry

d \date

\end

>
if only we had a suitable \switch command. We
will produce such a command. (The reader may

benefit from trying to write such a command before

and so we have

\def\switch # I \ is
#2 #3

C
% i f (t e s t key) succeeds

#1 #2 \ ex i t #3 \ f i % do option

\switch #1 \ i s

3

where \ ex i t is a helper macro for \switch.

3.2 An \ ex i t for \switch

As with \continue, \ ex i t must gobble to some
point and restore the \f i balance

\def \ex i t #I \end C \ f i 3

but it should also pick up and reinsert the current

option

\def \ex i t # I #2 \end i \ f i #I 3

which will work in the context of \ f r u i t . It will

fail if the option has several tokens.

For example, the definitions above expand

\switch \ i f a \is a {Jonathan) \end

to 'J'.

There are several solutions to this problem.

Here is the one that executes the most rapidly.

reading on.)

First, some terms. \catcodef\@ 11- % make @ a l e t t e r

% Section 1 . 2 l i e s
' \ i f #1' is the test

\ l e t \ @ f i \ f i
' a \apple1 is the first alternative

\def\switch #I \ is #2 #3 C
'a' is the key to the first alternative

#I #2 \@exit #3 \ @ f i
' \apple' is the option for the first alternative

\switch #I \ i s
It is clear that \switch must go through the

alternatives one after another, reproducing the test

\def\switch # I \ is % t he t e s t

#2 #3 % key & option

C
. . .
\switch #I \ i s % reproduce

1

and doing nothing unless the key fits the test

\def\switch #I \ is % t he t e s t

#2 #3 % key & option

C
I #2 . . . \ f i % t e s t key

\switch #1 \ is

3

in which case we should

gobble to the end (marked by \end) of the
expansion of \ f r u i t

insert the current option #3

3
\def\@exit # I \ @ f i #2 \end { \ f i #I 3
\ ca tcodef \@ 12- % put @ back again

where \@exi t and \ @ f i are helper macros, private

to \switch.

3.3 Default actions for \switch

The expansion of ' \ f r u i t z' will fail horribly. As

'z' is not a key, \switch will read and discard up

to the 'd \date' alternative, and then read \end

and another parameter from the input stream. Now
we are in trouble. \switch is still expanding, and

there is no \end in sight.
Unless a matching key is sure to be found, a

\switch should have a line handling the default. If

\nof ru i t is to handle the default for \ f r u i t , the

line

#1 \nof ru i t

TUGboat, Volume 13 (1992), No. 1

should be inserted as the last alternative.

(Another method would be to have \switch
test for the \end token before reading '#I ' and '#2'.

Using macros to do this would result in a much

slower \switch. But see section 11.)

4 Applying \switch t o \markvowels

By way of an example, we apply \switch to a

problem posed and solved in Norbert Schwarz's
Introduction to QjX, Ch7 $7.

4.1 T h e problem

We wish to write a macro \markvowels that prints

the vowels of a given word in a different typeface.
For example

is to give

audacious.

(There is a subtle reason why we use \ end l i s t
rather than \end. There is a surprise in the

expansion of a \switch that has \end as a key.)

4.2 T h e solut ion

Here are some pointers for the solution.

We need a \switch whose keys are a , e, i, o,

u, \ e n d l i s t and the default handler #I .

Every letter, vowel or not, is to be printed.
If a letter is a vowel, we apply \enbold to it.

The expansion of \markvowels is to finish with
\markvowels.

When an option is selected, all up to the
\end of the \switch is gobbled. For the

key \ e n d l i s t the two tokens #1 \markvowels
must be absorbed.

We are not obliged to use ' : ' when constructing
a loop.

And here it is

with helpers

5 F in i te S t a t e A u t o m a t a (FSA)

The stomach of TpJ, as the reader must well

be aware, can be in one of number of states-

horizontal mode, vertical mode, etc. The result of

a command, such as \hbox(A), will often depend

on the current state. There are also rules that

govern the transition from one state to another.

Similarly, the text of a document passes from state

to state-ordinary text, quotation, theorem, list

item, and so forth. M m does this by changing the
environment.

One way of coding such a device is to let

the state be represented by a macro or parameter,
whose value is then tested or altered by a single

macro that contains code for all of the automaton's

states. Although such a design is not without merit,

here we will code Finite State Automata by using

one macro for each state.

5.1 Skipping multiple blank lines

We proceed by means of an example. Suppose that

we are \reading a file, and that we wish to ignore

all but the first of adjacent blank lines. We have

two states.

\ l a s t l i neb l ank

\ las t l inenotb lank

Here is a first attempt to code the states.

\def \ las t l ineb lank (

\ r e ad \ t he f i l e t o \ cu r r en t l i ne
\ifx\currentline\blankline

% do nothing, c a l l same s t a t e

\ l a s t l i neb l ank

\ e l s e

\p rocess \cur ren t l ine

\ l as t l inenotb lank

\f i

}

\def \ las t l inenotb lank C
\ read\ thef i l e t o \ cu r r en t l i ne

\ifx\currentline\blankline

\processblankline

\ l a s t l i neb l ank

\ e l s e

\p rocess \cur ren t l ine

\ l as t l inenotb lank

\f i

1

80 TUGboat, Volume 13 (1992), No. 1

Although the above works for small files, it
has a fault. Each time a line is read, the number
of unbalanced \f i s increases by one. The missing
\f is (and other code) are pushed into the input
stream, and will produce

! TeX capacity exceeded,

sorry [input stack size=2001 .
before too long.

5.2 Using \end to \return a state

This problem arises because the next state is called
before the current state is finished. As in \switch,
at the end of each state macro we will place an \end
marker, and use \return to move the next state to
the head of the input stream. (C uses return to
terminate a function with a specified value.)

Here we go. \lastlineblank should be

\def\lastlineblank {

\read\thefile to \currentline

\ifx\currentline\blankline

\return\lastlineblank

\else

\process\currentline

\return\lastlinenotblank

\f i

\end

3

where \return

-- -- - - - -

will gobble to the \end of the current state, balance
the \f i, and place the next state at the front of the
input stream.

To end the current state and do nothing more,
the command \exit

should be called.
The command \end is merely a delimiter. We

define

so that no harm occurs should it be executed.

5.3 Dealing with end-of-file

The code above continues to \read, even when the
file has come to an end. An elegant solution is to
write

\def\lastlineblank (

\readfile\thefile\currentline\exit

\ifx\currentline\blankline

\return\lastlineblank

\else

\process\currentline

\return\lastlinenotblank

\f i

\end

3

where \readf ile takes three parameters.

#I an input stream number.
#2 the macro the stream is to be read to.
#3 the action to be taken on end of file.

Here is \readf ile (see also 7 and 9.5).

\def\readfile #I #2 #3

\ifeof #I

% #3 may be several tokens
% to be safe, we brace it
\return C #3 3

\else

\read #I to #2

\f i

\end

3

6 Choosing between ' : ' and \end

The delimiters L : ' and \end perform similar but
different functions. The programmer is advised on
their use, and introduced to the last control macro,
\chain.

6.1 The differences

' : ' and \end have the same \empty meaning. The
difference is that ' : ' delimits \break and \continue,
while \end delimits \return and \exit. Each of
these macros will jump to ' : ' or \end, and put down
a balancing \f i.

Although \break and \exit are analogues,
\return has a flexibility that \continue lacks.
We can (and must) decide what to \return but
\continue provides no such choice.

To complete the use of ' : ' we introduce \chain.
(See 9.5 for an example of its use.)

\def\chain #I #2 : #3 { \fi #I 3
% Here ends control.sty .
% If you wish, restore white space.

TUGboat, Volume 13 (1992), No. 1 8 1

6.2 Making the choice

Suppose that in the normal course of events, \my-

macro will be followed by \usualmacro, where

\usualmacro may or may not be \mymacro. Then
the form

\def \mymacro . . . C
% code goes here

% use \break, \continue

% and \chain

: \usualmacro

1

is preferred.

If there is no single most likely outcome, then

\def\mymacro . . . C
% code goes here

% use \exit and \return

\end

)

is probably best.

7 The \f i count problem

There is an error in \readf ile that the author and

the referees did not notice. However, when this
macro was used, T)$ found it.

We get the ' ! Extra \fi.' error. To un-

derstand why, suppose \thefile is at an end.

\lastlineblank calls \readf ile which \returns

\exit. At this point the \ifeof in \readfile
has been exactly matched by the \fi put down by

\return. Now \exit gobbles to the \end and puts
down another \f i. This is the error.

The problem is with the \f i count. \exit and
the like put down \f i s to balance the ones they

gobble. They have to do this, because T)$ keeps in
its main memory a record of each unbalanced \if.

When the job is finished, they are reported. If

could be told not to do this, the balancing \f i s

could be omitted and the problem would go away.
(The apology

! TeX capacity exceeded,

sorry [main memory size=655331 .
is produced when the macro

is executed.)

Given 'IjEX as it is, it seems best to produce \f i-

less verions of \exit and the like for precisely this

situation. Replacing the \exit in \lastlineblank

by

\def\gotoend #I \end { }

will make the problem go away.

Or rather, this will move the problem. The
macro writer now has to determine whether a
balancing \f i is needed.

8 The Official version of control. sty

Here we list the version of control. sty that is to

be used by macro writers. Compatibility with other

macros demands that some changes be made.

0 To allow active ':' to be used by other macro

packages, ' : ' is made a letter, and throughout
' : ' is replaced by '\ : : '.
Because the names \break and \end are

already taken, uppercase names are used

throughout.

0 The \f i-less version of \break is to be \BREAK,
while \ :BREAK puts down a balancing \f i.

There is another problem- \exit and \return
clash with \switch. All three macros use \end as
a delimiter. This is not a desirable feature, and so

\SEND (Switch-END) will be used to delimit \SWITCH.

Finally, by letting \ IS equal \f i allows lines

such as

\SWITCH \ifx #I \IS

to be correctly skipped in conditional text (see The
W b o o k , p. 211).

This article will now use these definitions.

1,\immediate\writel6(control.sty v1.O

2. --- Jonathan Fine, 24 March 1991.)
3. \immediate\writel6{ Public Domain, see

4. TUGboat (to appear) for documentation)

5.

6 . \catcoder\ : 11 \catcoder \Q 11

7. \let\::\empty \let\END\::

8.

9. \def \BREAK#l\ : : #2C)

lo . \def \CONTINUE#l\ : : C)
11. \def \CHAIN#l#2\ : : #3C#l)

12. \def \RETUFlN#1#2\ENDC#l)

13. \def \EXIT#l\ENDO

14.

~\def\:BREAK#l\::#2C\fi)

16.\def\:CONTINUE#I\::C\fi)

17.\def\:CHAIN#1#2\::#3{\fi#l~

18.\def\:RETURN#1#2\END{\fi#l)

19. \def \ : EXIT#l\END{\f i}

20.

21. \let\@f i\f i \let\IS\f i

22. \def \SWITCH#l\IS#2#3%

23. C # I # ~ \ @ E X I T # ~ \ C ! ~ ~ \ S W I T C H # I \ I S ~

24,\def\@EXIT#l\@fi#2\SENDC\fi#I}

25.

82 TUGboat, Volume 13 (1992), No. 1

T h e author would like t o receive examples of the use

of these macros, and reports of problems and bugs.

As a general rule, before using a control macro

that gobbles from a control macro A, to a label,

\END or \ : : as appropriate, B start at A and read

on until one reaches one of

a \ f i

an \ i f B

(but skip code enclosed by braces). In the first case
use the \ f i-ed version, otherwise the \f i-less.

9 Odds and Ends

Here are various bits and pieces that don't belong

anywhere else. Some are quite important.

9.1 Name and Context

Other programming languages avoid conflict of

names by giving each identifier a scope which is
usually less than global. This is done by mapping

each scoped identifier to a unique symbol, such as a

number. I have work in progress that will add this
capability to m. It will be a macro package.

9.2 Nested conditionals

Because \:BREAK et al. replace only one gobbled

\f i,

\ i f . . .
\ i f . . .

\ : BREAK -_
\f i

\f i

\ : : \nextmacro

will unbalance the \f i-count.
Rather than introduce \: :BREAK it is better for

the moment to say that such code is bad style, and

discourage it. (The author would like to see any

problem whose best solution requires breaking from
a nested \ f i.)

If the completed execution of \mymacro requires no

parameters, and buildup of the input stack is not a

problem, then instead of

\RETURN \mymacro

one can use

\mymacro \EXIT

which is slightly quicker. (\EXIT and any tokens

between it and the matching \END will be sitting

in the input stack waiting to be skipped until

\mymacro has done its work.)

9.4 Dedicated \SWITCH

If large use is made of, for example,

\SWITCH \ i f x # I \ IS

then it is better to use a specially adapted switch.

\def\SWITCHx # I #2 #3 C
\ i f x # I #2 \@EXIT #3 \ @ f i

\SWITCHx #I

3

9.5 A better \readf i l e

In the expansion of \readf i l e , #3 is read, copied

into place, and then either thrown away or read and
copied again.

In the normal course of events, \readf i l e

needs only # I and #2. The end of file action #3 will

be discarded. Thus,

\def\readf i l e # I #2 1

\read # I t o #2

\ : : \gobble % gobble ' #3 '

3

is a step towards the more efficient (and smaller)

\def \ readf i le # I #2 1
\ i feof # I

\:CHAIN \unbrace

\f i

\read # I t o #2

\ : : \gobble % gobble '#3 '

1

Note that \ : : is very helpful, even though

\readf i l e is not a loop.

10 Performance

It seems that once the idiom is mastered, these

basic control macros will make it easier to write
TpX macros.

The result will be code that is concise and

relatively easy to understand. Code that is compact

will load more rapidly from mass storage and use

fewer words of memory.

It also seems likely that the idiom here will

encourage utility commands, such as \readf i l e .

This will reduce the size of both the code and the

hash table.

TUGboat, Volume 13 (1992), No. 1

Where speed of execution is paramount, custom

devices are required. A carefully crafted cascade

of \ i f . . . \ e l s e . . . \ f i statements will run
somewhat quicker than the \ s u i t ch alternative. In

other areas of programming, the prevailing wisdom

is that good algorithms make for rapid execution.
Once the program is tested and running prop-

erly, significantly quicker performance can be ob-
tained by rewriting a small amount of the code in

lower level commands.

11 Enhancements to

The Grand Wizard has said "no further changes

except to correct extremely serious bugs" (TUG-

boat 11, no. 4, p. 489, June 1990) but this does

not stop the wanting. That unbalanced \ i f s accu-
mulate in memory without limit has already been

mentioned.

Here are two devices that would improve the

basic control macros of this article.

\nil-a primitive that does nothing. Although
this is available as a macro, \def \nil{), as

an interpreted command it is over three times

slower than the primitive \ re lax , which does
slightly more!

\abort-a command which when passed as a

parameter to a macro immediately halts its

expansion. (If the macro is not \ long then

the token \par has the desired effect, but the

error condition so generated is an unwanted

side-effect .)

For the rest of the section, suppose that \abort

has both of these properties. There are nice results.

Provided we

\ l e t \SEND \abort

the \ f r u i t with no action as default becomes

\def \f r u i t #I (
\SWITCH \ i f #I \IS

a \apple
. . .
d \da te

\SEND

1

which is more intuitive.

Provided \END is also set to \abort , it can be

used to delimit \markvowels, which becomes fewer

tokens executing faster.

\def\markvowels #I {

\SWITCH \ i f x #I \IS

a \enbold

\SEND

#I \markvowels

1

It is also simpler. The somewhat obscure line

\ end l i s t \gobbletwo

is no longer needed.

Finally, we (almost) have an elegant means of

handling default values.

\ l e t \DEFAULT \abort

allows

\ d e f \ f r u i t #I {
\SWITCH \ i f #I \ IS

a \apple
. . .
d \date
\DEFAULT \nof r u i t

\SEND

3

to code a default value of \ no f ru i t .
(There are two problems here. If \nof ru i t

expects a parameter, it will get \SEND, which will
then \abort it! This is wrong. In this situation

\def\USE #I \SEND (#I 1

will allow

\DEFAULT \USE \nof r u i t

to correctly code such a default. The second

problem is more serious. Should a key satisfy the

test, such a \DEFAULT will \abort the \@EXIT macro

called by \SWITCH. This is wrong.)
This area needs further investigation.

12 A Groaning Pun

Asked to write a macro \goodthing that does
something useful, the design

\def\goodthing . . . 1
. . .
\END

1

was used by 7 out of 10 programmers.
This only goes to show that most \goodthings

come to an \END.

o Jonathan Fine
203 Coldhams Lane
Cambridge CB1 3HY
England
T e l +44 223 215389

