
TUGboat, Volume 13 (1992), No. I

Software

Inside Type & Set

Graham Asher

Abstract

Type & Set is a typesetting system consisting of

TEX, several macro packages, and a suite of

C programs including a style sheet editor, an au-

tomatic page make-up system which replaces W ' s

output mechanism, and a family of drivers. It solves

many of the problems which make plain 'l$jX diffi-
cult to use for commercial journal and book publish-

ing. This article explains in detail how Type & Set

works.

History of the project

Type & Set has been under development at In-

format Computer Communications since February

1987. Informat is the software development and

typesetting division of Current Science (formerly

Gower Academic Journals), a publishing house, and

because the two companies share the same premises

we have had constant access to users and their sug-

gestions and criticism. Some ideas in Type & Set
are tsken from an earlier (non-QX) package of the

same name which it has superseded. For these ideas
(principally the style sheet hierarchy, the mark-up

system and the input format for the table genera-

tor) I am indebted to Mr. A. Harris, a former pro-

grammer at Informat. I take full responsibility for

the present form of the system. The first version of

Type & Set was installed in June 1988. but since
then nearly every part has been rewritten.

What problems does Type & Set solve?

Using Type & Set rather than QX incurs costs in

running time and disk space. However, Type & Set

solves or ameliorates the following problems, many

of which are discussed in detail by Mittelbach [I].

The severity of these problems amply justifies the

increased use of resources.

Page breaking is taken away from TEX com-

pletely and given to a program called PAGE which

analyses the D V I file and writes a new D V I file.

optimally paginated, with balanced columns, fig-

ure spaces, running material, headers and footers.

PAGE takes i ts formatting information from a style

sheet created using Type & Set's style sheet editor.
Varying numbers of columns. Type & Set can

13

switch freely, as many times as you like (and as many

times as you like on the same page) . between text in
one. two, three and four columns.

Baseline-to-baseline spacing occurs as a result

of using PAGE rather than TEX to make up pages.

All vertical dimensions in the Type & Set system are

measured from the baseline of one line of text to the

baseline of another. In particular. baselines at the

bottom of pairs of columns align with each other,
as do those of the last lines of text on facing pages.

This also allows style sheets to specify a grid of lines

on to which all baselines should fall if possible: that
is, the y coordinate of a baseline should be an exact

multiple of the grid interval.
Composite fonts (I prefer this term, suggested

by Beebe [2] . to the less descriptive 'virtuai fonts')

are used where necessary in the drivers. Readable
data files called FD or 'FontData' files provide all the

information a driver needs to convert a QX char-

acter code into a device character, using transfor-
mations and superimposition if necessary. A utility.

hfAKETFhl, is used to create TFM files for various

output devices, given appropriate FD files and width
tables.

Tables are created using a quasi-wyszwyg format

in a text editor and converted into TjjX by a pro-

gram called TABLE. Horizontal spans, vertical and

horizontal rules, and centring around any character

(such as a decimal point), are all supported. Tables
are very easily created and modified using this sys-
tem.

Graphics is absent from TEX, and should not

be added. The prevailing standard for graphics is

Postscript. and so the Type & Set Postscript driver
will pick up a named Encapsulated Postscript file,

translate and scale it, and embed it in a figure space.

The driver is told to do this by a \special written

by a macro placed in the text and passed through
by PAGE. A more general feature of PAGE, that

can be used with any driver, is its ability to load,

scale and embed a D V I file in exactly the same way.
Ease of use. Once a style sheet has been cre-

ated for each kind of document to be typeset the

rest is very easy. Staff at all levels of the publishing

process, including those with no specialist computer

knowledge (that is, nothing beyond basic abilities

such as the use of the file system and rudimentary

text editing) can be trained to use Type & Set in a

day or two.
The rest of this article describes in detail how

the problems were solved and how Type & Set

works. What is described is a working system which

was designed and implemented at a publishing house

over a period of four years, and is now in daily use.

14 TCGboat, Volume 13 (1992), No. 1

Data flow and general operation

Input. The user types a document using his or her

favourite word processor. This may. for example. be
Wordstar or Wordperfect, or (as I prefer, being in

part an unreconstructed TJ$ hacker) an ordinary

ASCII text editor. The document contains little or

no TEX apart from markup codes known as mode

n a m e s which are determined by the style sheet to be

used. Mode names look like ordinary T@X control se-

quences. mainly because that is what they are. The

preferred Type & Set style places mode names on

separate lines. The mode determines all the stylistic

and structural parameters of the text: its font, jus-

tification, indents. paragraph spacing, and whether

it is part of the body text. a figure caption, or, say. a

running header-and many other details. Tag is the

term preferred in the world of desktop publishing,

but we stay with mode for historic reasons.

Preprocessing. The first part of Type & Set to

be run is the appropriate preprocessor for the text

editor or word processor that has been used. In the

case of Wordstar this is WS2TEX. which strips the

high bits that Wordstar uses to mark the ends of

words. converts Wordstar codes for italic, bold face,

etc., into \it. \bf. etc., and emits standard ASCII

text of the type 7&X reads.

'QX. Any version of can be used, with the

proviso that if the document contains large tables a

version with the biggest possible memory is desir-

able. loads a customised format file, very sim-

ilar to p l a i n . fmt (indeed, almost upwardly com-

patible) called t s p l a i n . f mt. The first command

T@X finds in its input file is something like \ input

mystyle . s t y , which loads the style sheet, which de-

fines all the mode names and other markup codes

used in the document. TJ$ then runs normally and

writes a DVI file, using the minimal output routine

from t s p l a i n . fmt. This output file is effectively a

galley in traditional typesetting terms, in that the

text has been set in the desired fonts and counted or

broken into lines, but has not yet been made up into

pages. The D V I file contains numerous \specials,
mostly for use by PAGE.

Page make-up. PAGE reads the D V I file and

analyses i t into lines. determining the mode of each

line from a \special. A packet of information is

built up for each line giving quick access to its mode,

leading, position in the D V I file, and so on. At this

point any automatzc materzal is added. This con-

sists mainly of the spacing and rules which the style

sheet specifies for insertion before or after certain

modes. or between paragraphs, or around blocks of

text. PAGE then uses the line information to write

a new file, given the extension DVP, but precisely

conforming to the D V I format, which contains the

made-up pages. If TEX fonts were used the work of

Type & Set proper could end here, and the DVP file

could be typeset using a third-party driver.

Previewing. Both D V I and DVP files for any

printing device can be previewed on the screen using

the Type & Set previewer, DVISCR. which draws

characters using a device-independent vector font.

This evades the problem of screen bitmap fonts not

being available for, say, Optima on the Linotronic

100.

Proofing. Proofing is generally done on a laser

printer, using the Postscript or Hewlett Packard

LaserJet driver as appropriate. All drivers have the

ability to emulate a font not found on the output

device by using a similar one that zs present: and

the Postscript driver is especially optimised for em-

ulation.

Printing. The driver family includes drivers for

Postscript, Hewlett Packard LaserJet, Linotype de-

vices using CORA V, Chelgraph devices using ACE,
and Agfa Compugraphic devices. All drivers share

common code which reads the FD (FontData) file, in-
terprets the D V I file, and implements the composite

font system.

Style sheets

The style sheet system both endows Type & Set with

much of its power and limits it in various ways. Style

sheets embody a generalisation about the possible

forms of a document: a model which necessarily ex-

cludes some possible documents. The Type & Set

style sheet model is designed to handle most types

of journal and book design. but not magazines or

newspapers, which in any case are laid out manu-

ally, page by page, rather than being intended for

automatic page make-up.

Type & Set documents organise their text into

two major divisions:

0 body text, and
0 running matter

The body text is a single continuous sequence laid

out over as many pages as necessary within a certain

rectangle known as the text area, which may be posi-

tioned differently on left and right pages. Footnotes

and figures are included within the broad heading of

body text: these are positioned within the ordinary

text under the control of callouts or references to

them.

The running matter comprises running headers

and footers, and folios (page numbers). These items

TUGboat, Volume 13 (1992)) No. 1 15

are placed in the margin outside the text area at

fixed positions on each page. Style sheets allow you

to specify different positions and different text for

left, right, start and end pages.

Style sheets have three levels, page, block and

mode. Each level has its own dialog within the inter-

active style sheet editor, STYLE. To create a style

sheet a designer runs STYLE and fills in the boxes

in the dialogs. The following paragraphs explain the

meaning of each level.

Page level. This is where you specify the size

and position of the page and of the text area within

it. In the present version of Type & Set each doc-

ument can have only a single page style: but mul-

tiple page styles are an obvious and not impossibly

difficult extension which may be considered in the

future.

Block level. You must create a block for each

structurally different type of text in the document.

Blocks are named objects belonging t o one of the

following categorzes, each of which has a two-letter

symbolic name:

text

running header, start page

running header, end page

running header, left pages

running header, right pages

running footer, start page

running footer, end page

running footer, left pages

running footer. right pages

footnote

folio, start page

folio, end page

folio, left pages

folio, right pages

figure

It is often necessary to have more than one text

block. Blocks may be set in one, two, three or four

columns: if you need to switch between text in differ-

ent numbers of columns, as, for instance, in the case

of a document with full-width single-column head-

ings and two-column text, then the single-column

text must have one block and the double-column

text another.

The other main motivation for multiple text

blocks is the need to position the blocks differently:

each block may be offset from the left margin of the

text area by a different amount, and this may be

specified separately for left and right pages. This

facility enables you to design a document (as in the

case of a medical textbook published using Type &

Set) where the headings project beyond the text,

inward toward the margin.

Usually no more than one block will belong to

each of the running header and running footer cat-

egories.
To sum up, the following information is specified

at block level:

0 name of the block

0 category: see previous table

0 offset from left margin

0 absolute coordinates, unless category = text

0 width
0 number of columns

0 gutter between columns

0 weight of gutter rule, if any

0 weight of box rule, if any
0 margins inside box rule

0 grid spacing, if any

0 automatic spaces and rules

explicit spaces, rules and indents

A typical simple style sheet will have six or seven

blocks: a complex one will have twenty or thirty.

Mode level. This is the lowest level of descrip-

tion, corresponding to the tags used in desktop pub-
lishing packages such as Ventura Publisher. Here all

the information about fonts and point sizes is stored,

along with the justification and indents. The mode

may be indented within its column, so the measure

or, in 5 Y terms, the \hsize of a paragraph of text
is determined by width of a column (set at block le-

vel) minus any left or right indents applied at mode

level.

The name you give a mode is the actual markup

code used in the input text, and may be any alpha-
betic sequence up to ten letters long. In the text

all that is needed is a prefixed backslash: to invoke

mode 'ref', the command \ref is used, on a line of

its own.

Every mode belongs to a block, and normally

several modes belong to the same block. In an ex-

tremely simple document consisting only of text and
headings, there might be two modes, \ t ex t , in a

fully justified roman font, and \head, in a left jus-

tified bold font. Automatic spacing can be used to

insert space between the heading and the text.
Not one but four fonts are specified in every

mode. These are roman, bold? italic, and bold italic,

and will nearly always come from the same face or

family unless special effects are intended. For exam-

ple, a text mode might have Garamond Light, Gara-

mond Book, Garamond Light Italic and Garamond

Book Italic; within this mode the control sequences

\rm, \bf , \it and \ b i respectively would be used

16 TUGboat, Volume 13 (1992), No. 1

to select each of the four fonts. Where the mode is

inherently bold, as in a heading, the fonts are usu-

ally chosen so that roman and bold are identical, as
are italic and bold italic.

Although Type & Set gives you control, via

PAGE, over the degree of tolerance extended t o wid-

ows and orphans, sometimes absolute prohibition of

unwanted page and column breaks is preferred. This

is done at mode level. For example, if you want the

first two lines of each paragraph to be locked to-

gether and never split in any circumstances you can
give paragraph s tart lock the value 2. Headings must

never be separated from the text that follows, and

this is done by specifying that the heading mode is

t o be locked to the next mode, as well as having all
its lines locked together. Of course, this does not

mean that all the heading lines in the document are

locked into one huge block: the lock applies only to

continuous sequences of lines belonging to the same

mode.

To sum up. the following information is specified
at mode level:

0 name of the mode

0 the block it belongs to
0 the four fonts

0 pointsize

0 leading
0 justification

0 hyphenation tolerance

0 looseness of word spacing

left and right indents

paragraph indent

glue between paragraphs (\parskip)

indent the first paragraph?

0 lines t o lock at start of mode

0 lock all lines of mode together?

0 lock this mode to following text?

0 lines t o lock at start of paragraph

lines t o lock at end of paragraph

0 automatic spaces and rules
0 explicit spaces, rules and indents

Table modes. I shall not deal with table modes in

detail. They are at the same level of description as

ordinary modes, and contain much of the same in-

formation, with the addition of some things needed

specifically for tables, such as the amount of space

to leave between the table and its caption. if any.

Tables are explained below.

Fonts and font families

All text in a Type & Set document belongs to one of

the modes of the style sheet in use. When STYLE

creates a style sheet one of the files it writes is a

large macro package: each mode is a macro.

This is how the fonts are selected. When a mode

macro is interpreted by w, ten control sequences

(among others) acquire new meanings:

roman text

italics

bold face
bold italics

superscript

subscript

math italic font

symbol font

math extension font

Type & Set extension font

These invoke lower-level macros to select the appro-
priate fonts and pointsizes. The first six need not

be used if WordStar or Wordperfect is used to in-

put the text, because Type & Set can convert the

control characters used by the word processors if

necessary. The last four are also rarely seen in Type

& Set text, but are invoked automatically in mathe-

matical text and when special characters from those

fonts are used.

The xx or Type & Set extension font is a rag-

bag of characters which seem to be required in jour-

nal and book publishing, and are generally provided

on typesetting equipment, but are absent from the

standard rn layouts. These include solid triangles,

solid circles. copyright symbols as single characters

rather than composites, guillemets, etc.

Plain preloads the sixteen most popular

Computer Modern fonts and sets up a math font sys-

tem at 10pt. The Type & Set format, t s p l a i n . f m t .

preloads no fonts at all: Type & Set is designed to

be used on a wide variety of different devices, many

with differing TFM files for fonts with the same

names; so to preload fonts would cause confusion

and errors.

The family mechanism used in plain w ' s math

setting has to be retained, since it is hard-coded into

W; but the other families are slightly different.

Type & Set has:

family

0

1

2

3

4
5

6

7

descrzption

text
math italic

symbol
math extension

italic

bold face

bold italic
Type & Set extension

TUGboat, Volume 13 (1992), Xo. 1 17

No fonts are assigned to members of these families in

t s p l a i n . fmt. This is all done when the style sheet

is loaded. For each mode, a font is assigned for all

eight families at three different sizes, making a pos-

sible total of twenty-four fonts per mode. Very large

style sheets may exhaust W'S font memory, but in

practice that does not happen very often, because

many of the fonts belonging to one mode will be

exactly the same as those of another: and STYLE

is optimised to make use of any coincidences when

writing the style sheet macros.

Superscripts and subscripts are implemented
in a different way from plain W ' s method, ex-

cept within math mode, where everything as far

as possible is identical to plain W . Outside math

mode the \ sp and \ sb macros provide more con-

sistent text-mode superscripting and subscripting

than - and -. They use 'I)$'s font family sys-

tem to determine the appropriate \ s c r i p t fon t or

\ s c r i p t s c r i p t f o n t to use.

Type & Set's consistent approach allows every-

thing to work in the same way whatever the current

point size. In particular. mathematical setting is the

same at any size, while remaining compatible with

plain w.

Page make-up

DVI files written using Type & Set style sheets are

completely standard and can be translated using any

driver. All the extra information needed by PAGE,

Type & Set's page make-up program, is to be found

in xxx commands written by w ' s \ spec i a l prim-
itive.

PAGE is line-based: it analyses the DVI file into

separate lines and moves these around, but goes no

deeper than tha t except in the case of page num-

bers or folzos, which must be often inserted into the

middle of lines. Finding out where a line starts and

ends in a DVI file originally seemed difficult, and

a complex algorithm for finding minimal push-pop

pairs enclosing pieces of text was used in an early

version of PAGE, but eventually it was realised that

with a little care one can ensure that every line is a

first-level push-pop group.

PAGE can if needed optimise its layout over

a whole document, by building a directed acyclic

graph in which nodes are page breaks and arcs are

possible pages labelled with their cost or 'badness',

which is assessed using w - l i k e criteria: and finding

the lowest-cost traversal of the graph. In practice,

however, users of Type & Set accept PAGE'S first

attempt a t a solution, which is produced by succes-

sively taking t h e lowest cost for the current page

and then moving on to consider the next. This will-

ingness to accept compromise is caused by the slow-

ness of PAGE when in whole-document optimisation

mode. and obviously this is a shortcoming of the sys-

tem. Nevertheless, people still find whole-document

optimisation useful for improving documents which

are badly laid out at the first attempt, usually be-

cause of problems with figure placement.

Blocks and column balancing. Pages are made

up block by block. Each group of contiguous lines

belonging to a single text block is collected together,

with any figures called out somewhere among these

lines, and any figures held over from previous pages.

Lines are grouped into shims-bundles which can-

not be split because they are locked together. or be-

cause they comprise a figure. (I have borrowed the

term shim from Michael Plass [3, p. 361, who uses

it in a slightly different way.) The list of shims for

a block are then split into columns, and any mode-

level space appearing at the top or bottom of a col-

umn is discarded. Block-level space is retained ex-

cept when it appears at the top or bottom of a page.

Columns are balanced using a method that is

similar, but not identical, to the method used by

for breaking paragraphs into lines. The method

must be different, for the problem is different: para-

graphs are split into an unknown number of lines,

each of a known length, while in column balanc-

ing a known number of columns must be produced,

each of an unknown length. The badness of a group

of balanced columns is calculated in the same way

that TEX uses for lines. using a function propor-

tional to the cube of the glue ratio. Glue is set in

such a way that the baselines of the bottom line of

text in each column align together as well as those of

the top lines. Since the height of the block is meas-

ured from its top baseline to its bottom baseline,

this ensures that pages also align properly.

Figures. A figure in a Type & Set document is

any section of the document starting with \ f igure ,

ending with \endf igure, and containing a sequence

of figure spaces and captions. Figure spaces are in-

serted by writing \f igurespace <dimen>, where

<dimen> is the height of the space; and captions

are chunks of arbitrary text in any mode belonging

to a block of category f i .

PAGE extracts the figures and assigns each one

a callout number which determines where it goes

in the text. In fact, every contiguous sequence of

lines of a certain category is given a callout num-

ber. This means that in a document consisting of

some ordinary text, followed by a figure, followed

by some more ordinary text, the callout numbers 0,

TUGboat, Volume 13 (1992), No. 1

1. and 2 would be assigned to the three sections.

This would cause the figure, callout number 1. to

be placed somewhere after the first section of text.

A figure's ideal position for Type & Set is where it

appears in the original source text: the further away

it ends up. the greater the penalty levied.

Internally figures are split into two groups: nar-

row and wide. Narrow figures span a single column

in multi-column text, while wide figures are those

which span all the columns of the block. (Type & Set

cannot yet handle figures spanning more than one

column but not all columns, such as two-column fig-

ures in a three-column block.) Wide figures are easy

to place: they are inserted as soon as enough room is

found, at or after their ideal position. Narrow figures

are treated in a special way by the column-balanc-

ing system, in that they are allowed to float forwards

from their ideal positions if the columns cannot be

balanced otherwise. The algorithm which does this

has recently been improved and now will very rarely

fail to produce an acceptable page; but if there are

just too many figures and not enough text, figures

will inevitably appear one or more pages after their

callouts.

PostScript and D V I embedding. Type & Set

makes it very easy to embed Postscript pictures

or existing D V I files in a document. The simplest

way to do this is to place the command \p i c tu r e

<filename> on a line of its own in the source text.

The \ p i c t u r e macro will write a \ spec i a l t o be

read by PAGE. which then finds the file and deter-

mines its bounding box, deciding whether it is an

encapsulated PostScript (EPS) or a D V I file from

the first two bytes: %! for the former and bytes

with the decimal values 247 and 2 for the latter.

EPS files divulge their bounding boxes via a com-

ment of the form %%BoundingBox <lower-left-x>

<lower-left-y><upper-right-x> <upper-right-

y>, while for D V I files PAGE uses the values 1 and

u from the postamble. unless it finds a \ spec i a l of

the form page : bounds <n> , <n> , <n> , <n>, which it

interprets in the same way as the Postscript Bound-

ingBox comment.

Having found out how big the figure is, PAGE

scales it t o fit the column width of the current mode.

Unless t he user has requested otherwise (via variants

of \ p i c t u r e allowing greater control) the scaling is

isomorphic: the width of the figure is scaled to be

the same as the width of the column, then the height

is adjusted to preserve the aspect ratio.

If the figure is a DVI file it is directly embedded

in PAGE'S output D V I file. To do this PAGE has

to assign new numbers to the fonts in the embedded

file so that they do not conflict with any in the main

file; and all dimensions and fonts must be scaled by

the appropriate amount as the file is read in. Only

a single page, the first page of the file, is embed-

ded: PAGE copies and scales everything between

the BOP (beginning of page) and EOP, inserting a

PUSH and a move to the correct x coordinate be-

fore the embedded code and a POP after it. The y

coordinate need not be set explicitly: by the time

PAGE has arrived at this point it will already be at

the correct vertical position, since every line above

the figure will have moved the current y coordinate

down by its leading.

The procedure is different for PostScript files.

PAGE calculates the coordinates and scaling fac-

tors needed and places them, with the filename, in

a new \ spec ia l , or rather, since it is not written by

w, xxx command. DVIPS, the Type & Set Post-

Script driver, reads this information and loads the

file in. creating a transformation matrix to scale and

translate the embedded graphics.

Using this method one of Current Science's as-

sociated companies, Current Patents, publishes a

journal giving details of the latest pharmacologi-

cal patents. Diagrams of the chemical structures are

created using commercial software which writes EPS

files that are loaded with no modification into the

PostScript output of Type & Set.

The following variants of \p ic ture exist:

\p ic ture <filename>: scale to fit column

\ap ic ture <filename>: set at actual size

\ sp i c tu r e <filename> <scale>: set at given scale

\wpicture <filename> <width>: or given width

\hp ic ture <filename> <height>: or given height

\xpicture <filename> <indent>: or indented

A further variant, \gp ic ture or 'general picture,'

gives you control over all the variables a t once. In

fact, all the above variants are expressed internally

using \gpicture. Some examples:

will be indented 2pc and forced to be lin wide and

3cm high;

will be indented 4pc and forced t o 20pc wide, and

its height will be calculated from that: Opt means

'don't force'; and

TUGboat, Volume 13 (1992), No. I

will be scaled t o half-size horizontally and three-

quarters vertically and centred.

The \gpicture format is: \gpicture {<f i l e>)

{<indent>) (<width>) {<height>) {<xscale>)

{<ysca le>l {<alignment>). If <xscale> is 0,

<width> is used; and if <yscale> is 0, <height>

is used. If <alignment> is non-zero and <indent>

is zero the picture is aligned according to 1 =left,

2 = right, 3 = centre; otherwise it is aligned in the

same way as the current mode. If <width> is zero it

is calculated from height and vice versa. If <width>

and <height> are zero both are calculated from the

current column width.

Drivers and font layouts

The Type & Set drivers (with the exception of the

screen previewer, which, being interactive, has to

work in a different way) are all linked to two library

packages, one to perform the basic D V I file interpre-

tation, and the other to create data structures repre-

senting lines, phrases, words and characters, and to

read the translation tables specifying the way

characters are rendered by device characters.

Thus most of a driver program is well-tested

standard code, leaving only a small (300-400 lines

of C code) device-dependent section containing the

procedures needed to drive the actual printer or

typesetter.

The main() function in a driver immediately

calls the library function DVImainO with arguments

giving the name of the default FD file to be read,

whether accents are to be associated with the char-

acters they are on or positioned separately, whether

the device needs lines of text or separate characters.

whether the output language is textual, like Post-

Script, or binary, like the Compugraphic language;

and other information.

DVImain () has control for the entire run, calling

other library functions to interpret the FD file and

the DVI file and callback functions in the device-

dependent module to set lines of text or individual

characters.

Part of the reason for the simplicity of this ap-

proach is the use of a completely standard charac-

ter layout on all devices. Type & Set is rigorously

device-independent, like itself, and apart from

the font metrics no device-specific information is

known at the time of running or PAGE. Type

& Set has a character set consisting of 640 charac-

ters, divided into five layouts:

text
* math italic

symbol

0 math extension

Type & Set extension

For a given printing device there are always many

text fonts, but only one font in each of the other

layouts: at least in logical terms, for the purposes of

Type & Set. This reflects the fact that at sites us-

ing typesetting machinery such as the Linotron 100

and the Chelgraph IBX many text fonts exist, but

only a few pi or symbol fonts. Similarly, Postscript
provides a large number of text fonts but originally

only one Symbol font.

The text layout is the same as that of plain

[4, p. 4271 except for the following differences:

0 character 14 changes from ffi to i

* character 15 changes from ffl to A
character 35 changes from # to £

These changes are all motivated by the need to have

different variants of these characters in each text

font, rather than have to use, say. the same pound
Sterling with all the different fonts, whether bold or

light, roman or italic.
The math italic, symbol and math extension

layouts are identical to the plain layouts [4, pp.

430-4321. This enables Type & Set to be 100% com-
patible with mathematical setting, a feature

which apart from its evident convenience absolves

us from the task of writing a manual. The Type &
Set extension layout, as described above, contains

characters essential to book and journal publishing

but entirely absent from the TEX layouts; and, since

this is not the text font but one of the pz fonts, of

which only one version exists per device, only sym-

bols can go here, not textual characters. At present
this font contains some forty characters. New ac-

cessions are made with reluctance, and only if the

candidate character actually exists or can be emu-

lated on most of the output devices.
As previously mentioned, drivers can elect to

be passed complete lines or individual characters.

There is flexibility too in the way a line is repre-

sented. A line-based driver will define a DVIline 0
callback function that is passed the address of a line

structure. When a line arrives it is guaranteed to

contain characters lying within a certain vertical dis-

tance of a common baseline, with no kerns greater

than a certain size, and with no horizontal spaces
greater than a predefined maximum. The idea is

that drivers such as DVICORA, which generates Cora

TUGboat, Volume 13 (1992), No. 1

V code for Linotron typesetters, can set the entire

line at once, taking advantage of Cora's justification

system and ability t o interpret kerns, small amounts

of up and down movement, and font changes within

the line.

Postscript's widthshow primitive. however. al-

though able to justify to a given measure, takes a

string which must consist only of characters and

spaces: movements and font changes have to be done

separately. DVIPS, the PostScript driver, works at

the phrase level rather than the line level. A line

is a list of phrases, and phrases are defined in a

much stricter way: each phrase is guaranteed to con-

tain characters on precisely the same baseline, all in

the same font, and possibly some spaces, each of

which must be the same width within a certain pre-

defined tolerance. This means that DVIPS can set
each phrase using widthshow.

Each phrase is divided into words. These are
composed of characters abutting horizontally. shar-

ing a common font and baseline. Each character
may have an associated accent. This last feature
is used where accents are positioned by the de-

vice, and w ' s positioning must be discarded, as

on Linotron devices using Cora V. No Type & Set

drivers yet work at the word level, but the Compu-

graphic driver DVICG is an example of a character-le-

vel driver. These define a DVIchar 0 callback func-

tion that receives every character separately.

Composite fonts

A composite font is a font containing characters from

more than one device font, or containing characters

rendered by distorting or overlaying one or more de-

vice characters. Type & Set's composite font system

is defined by FD or FontData files, one for each type

of output device. An FD file is a readable ASCII file

in a format modelled on that of Adobe Font Metric

(AFM) files: that is, it is made up of sections start-

ing with Start<name> and ending with End<name>,

possibly nested, and within these sections there are

data lines of the form <key> <data>. The main sec-

tions are DevFonts, mapping device font names or

numbers t o the names of their AFM files; TSFonts,

mapping Type & Set fonts to device fonts; and sev-

eral Layout sections, mapping standard Type & Set

character codes to local character codes.

Rather than look at an exhaustive definition of

the FD syntax and semantics, it will be more illumi-

nating to follow two examples all the way from the

D V I file t o their representation in a typical output

language, PostScript.

First, an ordinary character. Opcode number 12

is read from the D V I file and interpreted as 'set char-

acter 12 and move right by its escapement'. The cur-

rent font is font 0, which has already been mapped

to a TFM file called time. To convert the character

into PostScript these two pieces of information are

sufficient.

The TFM name time is is used as a key into a

section in the FD file bracketed by StartTSFonts

and EndTSFonts. This section associates Type &
Set logical fonts with font layouts and names of AFM

files, and contains the line time, meaning that, no

layout having been specified, this font uses the de-

fault layout, given at the start of the FD file by the

line Def aultLayout t e x t . This tells the driver to

look at the section starting with StartLayout t e x t

and ending with EndLayout. The character code,

12, is used as a key into a section within the layout

called the CharDef s section and the line 12 174 is

found, meaning that on this device Type & Set text

character 12 (which, incidentally, is the fi ligature)

is t o be translated into character 174, the PostScript

code for fi.

The PostScript font is determined by reference

to a section starting StartDevFonts, which contains

lines mapping the names of AFM or Adobe Font Met-

ric files to a string of characters identifying the font

on the device: in this case, the name Times-Roman.

AFM files are used as the standard readable format for

font metrics on all devices-not just for Postscript.

Now a composite character. This time the char-

acter code is 11, or the f f ligature, which does not

exist in the PostScript text layout. If TFM files pre-

pared specifically for PostScript fonts are used this

character will of course never appear in the D V I file;

but in this example we assume that DVIPS is being

used for proofing, and must do its best to produce

an emulation of something which will eventually ap-

pear, say, on the Chelgraph IBX typesetter, which

does possess an ff ligature.

Everything happens in the same way until the
layout line is reached, which is 11 I02 # # 102 # [I

0 0 I .25 01. Here 11 is the TEX character code,

and the rest consists of two triplets, 102 # # and

102 # [I 0 0 1 .25 01. Each triplet represents a

device character, and is of the form <code>

<transform>, with # indicating that the default is

to be used. The <transform> is a transformation

matrix in the PostScript format [5. p. 651. To ren-

der a composite character the output device takes

each triplet in turn, setting the specified character

from the specified device font, transforming it in the

specified way. Here, if the second triplet had been

identical to the first only a single f would have ap-

TUGboat, Volume 13 (1992), Eo. 1

peared, since they would have been superimposed:

but the transform on the second f moves it right by

a quarter of an em, giving a tolerable rendition of

an ff ligature.

You can see that the ordinary character in the

first example uses the same syntax as the composite

character once you know that any trailing # tokens

can be dropped: the layout line for character 11 can

be expressed more pedantically as I1 174 # #.

At present there are two noticeable defects in

the composite font system. The first is that a charac-

ter cannot contain rules, and the second is that the

transformation cannot make use of character met-

rics. It would be very useful to be able to define a

transformation to move a character right by half the

width of another character, but a t the moment the

x and y translation elements in a transform can be

expressed only in ems, or. more accurately speaking,

in fractions of the current pointsize.

FD files, as well as being read by the drivers.

are used to generate TFM files for the various de-

vices. For non-Postscript devices a utility called

MAKEAFM creates AFM files from the width tables

and other metrics supplied by manufacturers, while

Postscript AFMs are downloaded via the Adobe Post-

Script Archive File Server. The AFMs are then used

by another utility, WIAKETFM. in conjunction with

the FD files, t o write the TFMs. This has to be done

after any revision to the FD or AFM files that could
affect character metrics.

Tables

Medical journals are full of tables, most of which

contain spans, brace rules and numbers centred on a

decimal point or a i: sign. The difficulty of creating

tables in makes an automatic table generator

not only desirable but essential. The way Type &
Set solves this problem is for the user to type the

table in a sort of wysiwyg format, preferably. but

not necessarily, using a special editor giving access

to symbols representing column delimiters and rules.

All the user has to do is ensure that the table is topo-

logically equivalent to the desired result. Specifi-

cally, he or she must align the column breaks and

arrange for t he right things to span.

Each cell of the table can contain ordinary text,

with or without control sequences, plus special

characters to tell the table processor how to align the

cell. The absence of an alignment character causes

the text in t he cell to be centred. Macros are also

available to insert multi-line paragraphs into cells if

necessary. These are justified and hyphenated ac-

cording to parameters defined in the table mode.

Here is an example: a modified and shortened

version of a table in The w b o o k [4, p. 2461. The

user creates a file called, say, mytable. tab, contain-

ing the following:

\narrow

I
I Year
I
1 8000 B.C.
1 50 A.D.

I

I
World Population I

I
5,000,000

200,000,000
I
I
I

The vertical and horizontal rules here represent sym-
bols taken from the standard IBM P C extended

character set; but any symbols can be used, since

the table system itself reads its special characters

from a table. The control sequence \narrow is the
table mode to be used.

When TABLE, the Type & Set table generator,
is run, it translates the above into code:

\vfil\eject

\narrow

\setboxO\hbox{a)

\boxtable{\off interlineskip\tabskip=Opt

\halignto \hsize{\vrule # \tabskip=Opt%

&# \tabskip=\tg& # & #\tabskip=Opt%

&\vrule #&# \tabskip=\tg& # & #%

\tabskip=Opt&\vrule #\cr\vrzero height%

\hrzeroht&\multispan{3)\hrf{O)%

&\vrzero height\hrzeroht&\multispan{3~%

\hrf{O)&\vrzero height\hrzeroht\cr

\vrzero\global\tablepos=l&&\tsp Year%

\strut \tsp&&\vrzero%

&&\tsp WorldPopulat ion\ tsp&&\vrzero\cr

\vrzero&\multispan{3)\hrf{O~&\vrzero&%

\multispan{3)\hrf{O)&\vrzero\cr

\vrzero&&\tsp 8000 B.C.\strut \tsp&&%

\vrzero&&\tsp 5,000,000\tsp&&\vrzero\cr

\vrzero&&\tsp 50 A.D.\strut \tsp&&\vrzero%

&&\tsp 200,000,000\tsp&&\vrzero\cr

\vrzero depthOpt\global\tablepos=2%

&\multispan{3)\hrf{O)&\vrzero depthopt%

&\multispan{3)\hrf{O)&\vrzero depthOpt\cr

)

\tablewrapup

\vf il\e j ect

\endinput

This contains many control sequences referring to
parameters defined in the style sheet, such as the

width of the table and the weight of the rules. A
table is thus 'soft', in the sense that a given TAB

file can be typeset in varying ways depending on

the style sheet; or can even be used in two different

TUGboat. Volume 13 (1992), No. 1

documents, looking different in each, because of dif-

ferences in the definitions of the table mode. I t is

common practice to define a \narrow and a \wide

table mode, and if a table exceeds the allowed width

when typeset \narrow, it can be set using \wide.

The table is included in the source text using the

command \ input mytable, and when PAGE anal-

yses the DVI file it recognises the table as such and

treats it as a figure, floating it to a convenient posi-

tion. The code above produces the following result:

Year

Conclusion

World Population

8000 B.C.
50 A.D.

T)$ is readily available, standard, stable, reliable

and well documented. It is also complicated and

hard to program in: and unsuitable for multi-col-

umn setting and baseline-to-baseline measurement.

These facts have led us to use T G ' s incomparable

facilities for galley setting as the inner engine of our

typesetting system, but to replace W ' s page make-

up system with our own post-processor program.

written not in Tj$ but in C. The program-

ming difficulties have been obviated by arranging for

Tji$ macro packages to be written automatically by

a style sheet editing program; and tables are coded

not in but on the screen in a wyszwyg format.

The other big TJ$ problem concerns fonts.

Journals and books must be typeset using standard

commercial faces such as Garamond, Optima, Hel-

vetica, Univers, and Gill. T G , while not in theory

connected with any particular typeface or character

set, is in practice closely bound to Knuth's Com-

puter Modern family and its character set. The main

achievement of Type & Set, apart from the page

make-up system, is to retain almost complete com-

patibility with the plain Tji$ font layouts while type-

setting on standard equipment-such as the Chel-

5,000,000
200,000,000

graph IBX-using the standard typefaces available

on the equipment.

These things make up Type & Set. This system
has enabled us at Informat and Current Science to

typeset about thirty academic journals and many

other publications automatically using conventional

typesetting equipment and standard fonts.

Afterword

Since this article was written two names have

changed. The name of the software is to change from

Type & Set to P a g e w , which. although similar to
several other names of systems involving T)$, high-

lights the most important feature: automatic page
make-up.

Informat Computer Communications is now
subsumed into Life Science Communications, the
holding organisation for Current Science and other

companies, and it is Life Science Communications

which will market P a g e w . Only the names have

changed: the people and the software are the same.

References

1. Mittelbach, Frank. "E-'l&X: Guidelines for
Future Extensions." TUGboat. 11 (3) :

337-345, September 1990.
2. Beebe, Nelson. Personal communication,

September 1990.
3. Plass, Michael F. Optimal pagination techniques

for automatic typesetting systems. Department of

Computer Science, Stanford University, California,

1981.
4. Knuth, Donald E. The W b o o k .

Addison-Wesley, May 1989.

5. Adobe Systems Incorporated. PostScrzpt

Language Reference Manual. Addison-Wesley,

Graham Asher
Life Science Communications Ltd
34-42 Cleveland Street
London W1P 5FB
England
Telephone 1-44 81 348 1043

