
Specifying Document Structure:

Differences in IbW and TEI Markup

C. M. Sperberg-McQueen
ACH/ACL/ALLC Text Encoding Initiative
University of Illinois at Chicago
Internet: U35395@uicvm. cc .uic. edu

Bitnet: U35395QUICVM

Abstract

I4m and the Standard Generalized Markup Language

(SGML), specifically the SGML tag set created by the Text

Encoding Initiative (TEI), are two major systems developed to

make it easier to create and verify valid documents. Each at-

tempts to specify and enforce explicit definitions of valid textual

structures; each faces questions regarding the structural compo-

nents of texts, as well as the choice of abstract structures for

representing and of formal notations for specifying them.

This paper focuses on the ways I4m and the TEI identify

and classify the structural and other components of text; dis-

cusses the models of text underlying the two systems and the

methods of text definition and validation they make possible;

describes a number of specific issues that arise; considers some

systematic differences; and describes one possible way in which

they might coexist.

Introduction First, 1'11 discuss the substantive questions of what

As mechanical processing of text becomes easier,

it also becomes easier - and more important -to

specify formally what a text is and to use that speci-

fication to ensure the validity of the data stream that

represents the text in the machine. Validation be-

comes important because application software uses

increasingly complex data structures for text rep-

resentation, and because our mechanical processing

can destroy or corrupt data with an efficiency and

thoroughness that far exceed the wildest dreams of

the most assiduous scholar working by hand. Vali-

dation has become easier because computer science

has provided a rich set of data structures to use in

representing texts and increasingly sophisticated no-

tations for specifying the valid forms of those data

structures.

Today I want to discuss the specification of doc-

ument structure in I4m and in the SGML tag

set defined by the ACH/ACL/ALLC Text Encod-

ing Initiative (TEI), an international effort to define

an application-independent, language-independent ,

system-independent markup language for general

use (especially in research). This has four parts:

the structural components of texts are; and, second,

the methodological questions of choosing abstract

structures with which to represent texts and for-

mal notations with which to specify the abstract

structures. Third, I'll describe briefly a number

of concrete problems in the proper application of

such abstract structures and formal notations to pre-

existing texts of the sort studied by most textual

scholars, and, finally, I'll describe how I think SGML

and IPw can usefully coexist in practice.

Any text-encoding scheme must provide ways

to represent the characters of a text, its basic struc-

ture, intrinsic features other than structure, and ex-

trinsic information associated with the text by an

annotator. I am here concerned not with the first of

these, but only with the other three.

Substantive Issues: What Belongs in
a Text?

Basic text structure. On the basic structural

components of text, there is a rather surprising

agreement among the various markup languages in

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

current use - at least among those which attempt

to assign structure to texts.

I 4 m implicitly divides a text into a title

page (created by the \maket i t le command, which

must be preceded by author, document title, and

similar information), followed by the text body

and, optionally, by back matter (marked with the

\appendix command). The body and back matter

comprise either undivided text or a series of \par ts

or \chapters. Within parts, there is a straightfor-

ward hierarchy of chapter, section, subsection, sub-

subsection, paragraph, and subparagraph. in which

the hierarchical relationships are enforced automat-

ically.

The TEI tag set similarly divides documents

into front matter (which can contain more than the

title page), body, and back matter, with body and

the parts of the front and back matter all divided

into hierarchically nested blocks of text. Since exist-

ing (historical) texts may use structural units with

names other than chapter, etc., TEI uses the generic

term div for these blocks of text: The text body is

a series of <divO>s, divided into <divl>s, divided

into <div2>s, etc. The user can specify what name

should be associated with a given level by giving the

name as the value of an SGML attribute on the tag;

for example, <div l name= ' Chapter' >. The current

draft stops at <div5>, but this is a purely arbitrary

decision and can be changed.

An alternative proposal (used in some exist-

ing SGML tag sets) is to eliminate the redundant

nesting-level numbers and replace <divO> through

<divN> by the single tag <div> or <block>. Since

the nesting level can be readily calculated at process-

ing time, blocks at different levels can be processed

differently. This is elegant but complicates life for

whoever is specifying the processing.

Lower-level floating s t ructures . Within the

main structural divisions of the document, text is

divided into paragraphs, and these have no visible

internal formal structure. There are some chunks of

text, however, that do have visible internal struc-

ture; these I call crystals, borrowing a term from

Steven J. DeRose (in a TEI working paper). Crys-

tals are internally structured free-floating units of

text, such as figures, tables, or bibliographic cita-

tions. Leslie Lamport calls (some of) them floating

bodies.

I 4 W and the TEI recognize roughly the same

set of large-scale crystals: lists, verbatim exam-

ples, displayed equations, figures, tables, and bib-

liographic references. The TEI further expects to

provide tags for marking much smaller crystal struc-

tures like dates, addresses. personal and corporate

names, and so on. This reflects a major difference

between I 4 W and the TEI: does not need

special markup for addresses or personal names, be-

cause these do not typically require special treat-

ment in document layout. The closest IPW gets

are with the conventions used by BIB^ to distin-

guish first names from last names based on where

one puts the comma. The TEI is not exclusively or

primarily concerned with producing hard copy from

documents, but with making it possible to mark the

documents' logical structure in support of whatever

kind of processing the user might want to do. Histo-

rians. librarians, office-automation people, and oth-

ers may all want special processing based on the in-

ternal structure of names and dates-not for print-

ing, perhaps. but for indexing or other reasons.

For the converse reason, the TEI has not yet

made any concerted attempt to provide yet another

language for the description of mathematical equa-

tions, figures, graphics, or tables. U r n , being con-

cerned with processing for output (as well as with

the logical structure of the text), can hardly get by

without providing markup for such crystals. The

TEI has thus far exploited a feature of SGML that

allows sections of the text to be marked up in non-

SGML notations so they can be processed by some

appropriate processor. This keeps SGML out of

the graphics-standards wars and allows designers of

SGML tag sets to stay out, too. Although tables

often have a clear logical structure, and it would

make sense to attempt to capture this in descriptive

markup, the TEI has yet to make any concrete rec-

ommendations in this area; this is an area of ongoing

work.

For bibliographic citations, the TEI provides a

structured form patterned on the standard forms for

bibliographic references developed by librarians, as

well as a much less tightly structured form for those

with less concern about database usage of their cita-

tions. The structured form provides more structure

than appears to be available in the prose segments

of IPW documents, but is less rich than the cor-

responding B I B W structure. This is an area in

which the TEI tags must definitely be extended to

at least the level of detail offered by BIB^.

Phrase-level a t t r ibutes . Within the paragraph,

the rigid hierarchical text structure of chapter, sec-

tion, subsection, etc., suddenly breaks down, and

we are confronted with a non-rigid mess with the

consistency of soup. Within this soup, some larger

chunks (crystals, like figures and tables) may be

416 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Specifying Document Structure: Differences in I P m and TEI Markup

floating that we've already discussed. Some non-

structured bits may be floating there as well: em-

phasized phrases, quotations, and the like. Here,

U W and the TEI take a very similar approach.

Instead of describing the visual presentation of the

text in a particular output medium,.both encour-

age the user to describe its logical characteristics.

Thus, IPQX provides an \em command for empha-

sized text and suggests that the \bf, \sc. and sim-

ilar commands "should appear not in the text but

in the definitions of the commands that describe the

logical structure." Similarly, the TEI provides sev-

eral tags for marking words, phrases, or passages

that are specially marked in some way:

0 emph

0 foreign

cited word

0 term

book or journal title

0 quotation

'scare quotes'

article or poem title

In addition, since for historical texts one doesn't

always know why something is presented in a differ-

ent font, one can also mark such material simply

as <highl ighted> without any attempt to explain

why. This is a necessary compromise between the

advantages of logical or descriptive markup and the

requirements of scholarly integrity.

Typographic details, layout, processing.

Treatment of typographic details, layout, and sim-

ilar matters is predictably far more elaborate in

I4W than in the TEI tag set. I47&X, even with

its explicit preference for logical document design

over visual design, does after all have the function

of providing good typeset output; since good type-

setting is not wholly algorithmic, ?'EX and

provide plenty of opportunities for the user to give

them hints on what the output should look like.

The T E I tag set is far poorer in this respect,

for two reasons: First, we are attempting to create

an application-independent markup scheme, suit-

able for many different types of processing. It seems

more important just now to stress the possibilities

for processing other than printing, because these are

so often overlooked. Trying to provide a rich set of

layout tags i n the first draft would invite serious mis-

understandings and suggest that the TEI was try-

ing to compete with and other typesetting sys-

tems. The second reason is that SGML is designed

as a declarative, not a procedural language - pre-

cisely to ensure the application independence it is

designed to achieve. It is possible to specify presen-

tation declaratively rather than procedurally, as we

do already with the <highl ighted> tag described

above. But a full declarative description of page

layout is a large, challenging assignment, one that

requires a lot of further work. It is also a task that

the International Organization for Standardization

(ISO) is already addressing with its Document Style

and Semantics Specification Language (DSSSL); if

the DSSSL project is successful, the TEI can piggy-

back on their success by basing its further work on

layout problems on DSSSL.

Annotation. U W provides useful tools for anno-

tation: footnotes, marginal notes, and (in S L I ~)

inljne display notes. These correspond directly to a

single TEI tag, <note>, that uses an attribute value

to specify its location or type. But the TEI pro-

vides a large number of other tags for annotation of

various kinds that do not appear in I P W :

e an extensive document header that documents

the electronic text: its date and place of origin,

names of those responsible, copy text used, and

specifics of the encoding used;

tags for special items, like dates and numbers,

that allow their values to be given in a standard

format (so that a note containing the sentence,

"Let's have lunch next Thursday," might tag

"next Thursday" as a date with the standard

value 18 July 1991 or, in IS0 format, 1990-07-

18);
tags for recording editorial interventions, such

as corrections in the text, normalized spelling,

additions, deletions;

page and line references to canonical editions;

text-critical apparatus; and

most notably, a set of tags for the specification

of linguistic analysis or other interpretive ma-

terial relating to a text, which can be used (for

example) to specify part of speech information

or syntactic structure for every word or sentence

of a corpus.

This wealth of annotation markup reflects, of

course, the particular interest in analysis and in-

terpretation of existing texts found in the research

community, the need for which led to the creation

of the TEI as a project.

In all, I P W and the TEI tag set present a fun-

damentally similar view of the major components of

text; they have much the same view of basic text

structure and provide similar facilities for handling

most of the phrase-level markup needed for prose.

They differ in the amount of attention paid to fig-

ures, tables, and similar matter; in the amount of

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting 417

detail possible for the typographic description of the

text; and in the richness of their facilities for annota-

tion. These differences reflect in part the difference

between those interested in technical documentation

on the one hand (which I take to be the original audi-

ence of I4W) and those interested in the study and

analysis of existing texts, which is the constituency

of the TEI. In part, they reflect the difference be-

tween a mature piece of software aimed at a particu-

lar kind of processing, and a markup scheme still in

progress designed to be independent of any particu-

lar application and any particular piece of software;

and in part, these differences reflect a slightly dif-

ferent model of what text is. It is to this difference

that I now turn.

Models of Text and Text Grammars

Any markup language must embody some idea of

what text is. formally. How complex and how suit-

able that idea is for formal processing vary, of course.

Some languages (especially early ones) equate

text with internally unstructured strings of char-

acters; often this unstructured character string is

punctuated by occasional processing instructions

that themselves are constrained only by specific im-

plementation details. When no processing instruc-

tions are allowed, you have ASCII-only text, in

which markup is limited to the command repertoire

of a 1956 Teletype machine (carriage return, vertical

and horizontal tab, backspace, and bell).

For serious processing, extensive command sets

have been developed, mostly oriented to the task

of getting ink on paper in the right places. Com-

monly known schemes of this type include Waterloo

and IBM Script, troff, most word processors, and,

of course, m. Processors built on this model are

flexible and very easy to understand, but very diffi-

cult to prove correct. The number of states in which

such a processor can be explodes with the number of

commands, and there can be very tricky interactions

among various states. Since the state of the system

at any point is a function of the entire document

up to that point, it is hard to process documents in

languages like this except by left-to-right scanning.

And since almost any string of characters and com-

mands is legal. these languages offer no real help in

verifying the structural validity of machine-readable

documents.

A dramatic reduction in the combinatorial ex-

plosion of possible states comes with systems that

view text as a block-structured hierarchy. The hi-

erarchy is typically a relatively simple one of two

or three levels. below which one is back in a sort

of primordial prose soup without visible structure.

Well-known markup languages in this class include

IBM and Waterloo GML, various macro languages

for Script and troff, some style packages for micro-

computer word processors, and, of course, IPW.
These languages introduce a new (hierarchical)

model of text, and can thus avoid some interac-

tions among states by simply declaring them ille-

gal. Thus, in U r n , it is not legal to have a docu-

ment body without an enclosing document environ-

ment, and, in Waterloo GML, the software checks

to ensure that the front matter does not follow the

back matter. But no formalisms are introduced to

make the document hierarchy fully explicit; there

is no explicit document grammar. It is naturally

impossible then to enforce document validity fully

or automatically. Waterloo GML does not check

to see that the back matter does not precede the

body of the document. Since the more rigid no-

tion of valid document structures is not consistently

enforced, these document languages are a bit like

programming languages with weak type systems and

automatic type coercion and control structures built

around the GOTO, by relying on the user to fol-

low good practice rather than by verifying that good

practice formally and mechanically. The constraints

which are enforced are hard-coded into the process-

ing code and can thus be hard to change.

The next distinct model of text visible in text

processing uses fully explicit, well-defined hierar-

chies of text elements to define legal text structures.

In some cases, like Word Cruncher markup, the hier-

archy is so simple that there may still be no explicit

specification of the underlying document grammar;

in others, the legal structures of documents are spec-

ified explicitly and can thus be enforced formally.

The best-known markup scheme in this class is the

Standard Generalized Markup Language (SGML),

which differs from its prototype (IBM GML) pre-

cisely in the addition of explicit document gram-

mars with context-free power. (Strictly speaking,

of course, SGML is not a markup language but a

meta-language that allows the definition of markup

languages, precisely because it provides an explicit

language for the expression of document grammars.)

SGML markup is of two types: Structural units

of the text or specific points in the text (elements

in SGML parlance) are indicated with SGML tags,

delimited conventionally by angle brackets or by left-

angle-bracket-plus-slash and right-angle bracket.

Segments of the text are delimited by a start-tag and

an end-tag, much the same way structural units in

are delimited by \begin{environment) and

418 TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting

Specifying Document Structure: Differences in I 4 m and TEI Markup

\end(environment) commands or by left and right

braces.

The second type of SGML markup, entity ref-

erences, allows one to insert characters in a docu-

ment by referring to an entzty that contains those

characters. Entity references can thus be used for

special characters not on one's keyboard (analogous

to I 4 w ' s commands for accented letters, etc.),

for include boilerplate language (analogous to user-

defined macros in w that insert formulaic lan-

guage into a document), and to include external files

(analogous to M w ' s \input and \include com-

mands).

Any markup used in an SGML document must

be explicitly declared in a document type declaration.

Entities are declared by specifying their name and

the replacement value (which can be the name of a

system file or a string of characters). Elements are

declared by specifying their name and their allow-

able content; the declaration for element X specifies

what can occur within an X (or within the scope of

an X tag), such as character data, other tags, etc.

The document type declaration is thus similar to

a grammar that specifies the legal forms of a doc-

ument of a given type; the individual declarations

correspond to the production rules of a grammar in

Backus-Naur Form (BNF) .
The SGML element declaration, however, uses

a slightly richer notation than BNF. The content

model of an element is (more or less) a regular

expression composed of the names of SGML ele-

ments and the keyword #PCDATA (parsed char-

acter data). SGML thus resembles a regular right-

part grammar more than BNF does, but there are

further wrinkles we need not go into here that can

make SGML content models slightly more compact

than regular right-part grammars.

The use of an explicit grammar, together with

the explicit delimiters for enclosing each SGML ele-

ment, leads t o a natural view of an SGML document

as a tree rather than as a simple unstructured string.

The complexity of the processing is contained, since

the grammar is basically context-free, and the state

of the system at any point in the text can be read by

traversing the tree from the root node. M m docu-

ments (like any documents with a block-structured

model of text) can be treated this way, but the ab-

sence of any explicit grammar tends to make such

treatment a purely academic exercise.

Specific Design Issues

Some design issues arise in any attempt to specify a

document structure that is at once rich and flexible

enough to be usable in practice and rigid and precise

enough to be formally verifiable.

Prescr ipt ion a n d description. First of all, one

encounters a fundamental tension between pre-

scriptive and descriptive specifications of document

structure. If one is purely prescriptive, one can en-

sure that the documents one processes will all have

very similar structures. Software can make good use

of this consistency. However, when one is encoding

an already existing text written by someone else-

posssibly long dead-it is fruitless to expect it to

match a specific prescriptive document style, and

historically misleading to try. Rigid formal docu-

ment specifications may fail to match the chaotic

reality of historical documents; unless we are willing

to violate the historical integrity of the texts we are

studying, we have to provide a more flexible formal

structure within which we can find a representation

even for unconventionally structured texts.

Excessive flexibility means, of course. that the

document grammar may allow spurious document

structures that never would occur in practice. Given

the choice between excessive rigidity, which makes

some documents unrepresentable unless the gram-

mar is loosened, and excessive flexibility. which

makes some errors undetectable unless the gram-

mar is tightened, the TEI has consistently chosen

excessive flexibility. The issue does not arise in this

form for IPT)&X. because it does not claim to provide

a markup language for arbitrary existing texts; it

is comfortable, therefore, with its current degree of

prescriptiveness.

Controlling complexity t h rough modularity.

Whenever a document grammar is rich enough to

handle real texts with serious markup problems,

it has enough markup primitives to begin confus-

ing users and developers. It is useful, in this case,

to group tags into tag subsets that can be defined

and understood independently of each other; this

helps control the overall complexity of the markup

scheme. Of course, it helps a lot if the software can

guarantee that tags in different subsets don't have

long-distance interactions. We can see such modu-

larity in I 4 w in the separation of the specialized

tags needed for slides and bibliographies into the

semi-detached units of S L I ~ and BIB^. In the

TEI, similarly, the tags for specialized uses are en-

tirely separate and have no interaction with the core

tags for phrases and the like. Linguistic analysis,

text criticism, editorial intervention, etc., can all be

turned on or off by the user. The current direction of

development will lead to more such encapsulations

in the next version of the TEI DTDs.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

The user, of course, may need to use arbitrary

combinations of these specialized tag subsets to-

gether; this requires a careful specification of their

semantics to avoid side effects.

Multiple hierarchies. Although most texts fall

comfortably into a hierarchical analysis of their

parts, the use of cleanly hierarchical, block-

structured markup does lead to problems whenever

the text falls comfortably into more than one such

hierarchical structure. The volume, page, column,

and typographic line numbers of a standard edition

form a simple, clean hierarchy, but one which prob-

ably does not nest well with the logical hierarchy

of part, chapter, section, paragraph, sentence, and

word. If there are several standard editions whose

page references should be noted, we have one hier-

archy for each edition. When the text is in verse,

we can add the metrical hierarchy of canto, stanza,

line, and foot. And, of course, the labors of schol-

ars may assign rhetorical, thematic, narrative, and

other structures to the text.

The TEI scheme uses the SGML feature of con-

current m a r k u p to allow the user to maintain sev-

eral hierarchies in the same document. Bound by

the strict block structuring of TEX, it is hard to see

any solution to this problem for users of I P W ex-

cept to choose one hierarchy as the main one, and

to reduce the other hierarchies to simple scope-less

declarations in the text.

Systemic comparison of SGML and PTjijX.
I4W and SGML resemble each other strongly in

their common goals of providing system- and device-

independent markup and processing for texts, and

in their basically similar hierarchical models of text.

SGML pushes the hierarchical model and the notion

of formally specified, verifiable document structure

farther than does I4w. It provides a mechanism

for formal specification of a document grammar, and

validates the document automatically against that

grammar.

SGML attempts to provide a notation that is

not only system- and device-independent but also

software- and application-independent. The origins

of SGML are in attempts to ensure the reusabil-

ity of machine-readable texts by divorcing markup

from processing, and stressing descriptive or logi-

cal markup rather than procedural markup. IP'I'EX

stresses t he utility of logical markup to ensure the

structural soundness of a document and to make it

easy to lay it out in different styles. SGML and the

TEI push that concept farther and stress the impor-

tance of logical markup in ensuring that a document

can be processed without change for entirely dif-

ferent applications, including applications that have

nothing to do with text layout or typesetting.

This insistence on application-independence

leads SGML into what is its most striking feature as

a markup language: its complete lack of semantics.

SGML markup languages are entirely declarative,

not least because SGML simply provides no formal

mechanisms for defining any non-declarative mean-

ing for them. SGML allows you to say that a given

stretch of your document is (say) a quotation. It

does not require that your say how you want it pro-

cessed; indeed, it makes it impossible for you to do so

in SGML. You specify how an application program

should process an SGML document by talking to the

application program, not by talking to SGML. The

document itself remains a logical object untouched

by specific processing instructions. (N.B.: Insert-

ing processing instructions directly into SGML doc-

uments is allowed, provided the instructions are ex-

plicitly marked as processing instructions so they

can be skipped by other software.)

Coexistence

The TEI is intended to be an application-

independent markup language for texts of any pe-

riod, any genre, and any language. Because many

of its users will need or want to use already existing

software for processing their texts, without modify-

ing that software to read SGML documents, the TEI

is intended from the outset to coexist with other

software-dependent file formats. The fundamental

similarities of goal and the basic harmony of their

common emphasis on the logical structure of text

combine to make it very simple for the TEI scheme

to coexist with I4W in a single system.

Any file stored locally is stored in some partic-

ular file format. This local storage format may or

may not be identical with the input format of any

application program. If only one application is run

on it, the file is almost certain to be stored in that

application software's input format. A document

processed repeatedly with several different packages,

however, might have its own format, from which it

is translated into the input formats required by the

software.

One obvious use for a scheme like the TEI tag

set is as a local document storage format. When one

wants to make a concordance from a document, one

translates it from the TEI format into the form re-

quired by the Oxford Concordance Program or some

other concordance package: when one wants to make

420 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Specifying Document Structure: Differences in I P W and TEI Markup

hard-copy output, one translates it into the form re-

quired by the desired formatting or typesetting pro-

gram. The structural similarities of the TEI scheme

and MT@ mean that a TEI-to-MT@ conversion is

relatively straightforward, and for the most part the

same may be said of a Urn - to -TEI translation.'

In other words, I4m is a natural choice for the

typesetting of TEI-tagged documents, just as the

TEI format is a natural choice for the encoding of

a text's logical structure so that it can be processed

by many different pieces of software.

Acknowledgments

The TEI, an international cooperative effort to de-

velop and disseminate a common format for the en-

coding and interchange of machine-readable texts, is

sponsored by the Association for Computers and the

Humanities, the Association for Computational Lin-

guistics, and the Association for Literary and Lin-

guistic Computing.

It is funded in part by the U.S. National En-

dowment for the Humanities, an independent fed-

eral agency; DG XI11 of the Commission of the Eu-

ropean Communities; and the Andrew W. Mellon

Foundation.

The work is done by many generous individu-

als from the community who volunteer their time to

serve on the working committees and work groups

of the project.

References

[I] DeRose, Steven J. "Suggestions for improving

the AAP tag set." TEI working paper, document

TEI T R R7, August 1989.

[2] Knuth, Donald. The m b o o k . Reading, Mass.:

Addison-Wesley, 1984.

[3] Lamport, Leslie. U W : A Document Prepara-

tion System. Reading, Mass.: Addison-Wesley,

1986.

[4] Sperberg-McQueen, C. M., and Lou Burnard,

eds. Guidelines for the Encoding and Inter-

change of Machine-Readable Texts. Text Encod-

ing Initiative, Chicago, Oxford, draft version 1.1

edition, 1990.

This document, for example, was drafted using

SGML tags and converted to I P r n for submission.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

