
Form Letters with 3-Across Labels Capability

Jackie Damrau
Superconducting Super Collider Laboratory
Dallas, Texas, 75237 USA
214-708-6048; FAX: 214-708-5143
Internet: damrau~sscvxl . s s c .gov

Michael Wester
Department of Mathematics and Statistics
University of New Mexico
Albuquerque, New Mexico, 87131 USA
505-277-4613
Internet: wester(0spectre .unm.edu

Abst rac t

This article discusses a general-purpose program for generating

form letters. using either TEX or I4W. Given three inputs:

a preamble file for initializations, a list of blank separated ad-

dresses, and a letter template, this program can be used to gener-

ate a letter per address and provide personalizations as directed

by the template. Sample applications are presented, including

one which constructs 3-across mailing labels. Thus, both form

letters and mailing labels can be generated from the same list of

addresses by simply changing two inputs to the program.

Introduction

With or I4=, it is not hard to produce a letter

to be sent to a single addressee. Nor is it difficult to

create multiple letters that follow a similar format

by setting up a form in which changeable parame-

ters, such as the name and address, are specified by

macros. The form can then be input a fixed num-

ber of times, each time preceded by a redefinition of

the parameters. However, there are problems with

this approach. Modifying the list of addresses or

adding new parameters to the form can be cumber-

some. Also, serious reformatting may be required to

use the individual pieces of information (such as the

names and addresses) in other contexts.

An easy-to-use, general-purpose program to

generate form letters has been developed that over-

comes the above problems. This program, address,

is written using l&X constructs and macros and can

be executed by w i n g or M ' i n g it.

The address program requires three user-

supplied files: a preamble for performing initializa-

tions (which is optional), a list of addresses sepa-

rated by blank lines, and a template. On execution,

address asks for three file names, and then reads in

the addresses one by one. For each address. the indi-

vidual components are assigned to various macros,

after which the template file is \hput. The tem-

plate can, therefore, refer to these'macros.

The address list need not contain any format-

ting instructions as individual lines of text within a

given address are retained by address. This allows

the address file to be pure text and usable by any

other program. Nor is it required that an address

be simply that; any other data, such as telephone

numbers, test scores, or whatever, may be included.

Macros are provided to extract both individual lines

and individual blocks of data.

In the following sections, instructions on how to

set up the necessary files and details on running the

program are furnished. In addition, a template for

producing 3-across labels is provided which demon-

strates a simple, but useful application. Finally,

some discussion of the construction of the macros

in address is given, explaining some of the difficul-

ties encountered and how they were overcome.

Setting Up the Files

The easiest file to set up is the address list. It con-

sists of blocks of text separated by blank lines. Com-

monly, the first line of a block will be the name of

an addressee, while the rest of the lines form the ad-

dress. The address program therefore assigns these

510 TUGboat, Volume 12 (1991), No. 4-Proceedings of the 199.1 Annual Meeting

Form Letters with 3-Across Labels

segments of text to the macros \Name and \Address.

respectively.

Unlike normal l&X input, individual lines of

text within an address (which can be of arbitrary

length) retain their identity. This is accomplished

by concatenating the lines, using \ \ as a separator.

For U r n , this is quite convenient since a reference

to \Address will result in the expansion of each \ \
as a new line. In l&X, a similar effect can be ob-

tained by

\def\\C\hfil\breakl

In the template file, individual lines within

\Address can be selected by \AddrLineCn), where

n is a positive integer. In addition. \Laddr will

count the number of lines in \Address and \Naddr

will refer t o the current position in the address list.

It is often desirable to include other information

along with the address. The easiest way to do this

with address is to divide the lines of text in the ad-

dress segment into subblocks, each of which can be of

variable length. The macro call, \AddrBlock{k), is

provided t o select the k th subblock, where a line con-

sisting of --- acts as a separator between subblocks.

(Two consecutive lines of --- will not produce an

empty subblock, but this effect can be achieved by

inserting a line consisting of Cl between the lines.)

To extract individual lines from a subblock

of \Address, a two-step process is required.

\StoreAddrBlock(k)\in\Block will define the con-

tents of the macro \Block to be the lcth subblock of

\Address. \GetLineCnl\of \Block will then select

the nth line of the \Block. This procedure is neces-

sary to circumvent some peculiarities of TEX macro

expansion.

One of the more salient features of address is the

ability to intelligently parse the \Name and break it

up into its components. For example, suppose the

name is The Honorable and Mrs. Henry \& Matilda

Edward Bo van Frothingham Il l , Royals. The follow-

ing macro assignments will then be made when this

name is parsed:

\SocialTitle -+ The Honorable and Mrs.

\FirstName -+ Henry \& Matilda

\MiddleName -+ Edward Bo

\LastName -+ van Frothingham

\Suffix -+ I l l

\OtherTitle --+ Royals

Simpler names will result in some of the above

macros having null definitions.

The macros associated with the address pro-

gram are summarized in the following table.

default address list

(initially, tolist)

default letter

template (initially,

letter)

first line of the

address

subsequent lines of

the address

e.g., Dr., Mr.,Ms.

first name

middle names

last name

e.g., Sr., Jr., I11

academic and

professional titles

position of the

address in the

tolist

number of lines in

\Address

nth line of

\Address

nth subblock of

\Address

store the nth

subblock of

\Address in \B

nth line of \B

adds a space after

\A if it is not null

top aligned box of

height H and

width W

An example of an address list appears below. No-

tice that following the address in each instance is a

separate block of two lines.

Mrs. Apple Thesaurus

Apt. Z

234 Gestalt Lane

Cockermouth, Umbria, U.K.

artichokes

jalape\"nos

Harry K. Banana

P.O. Box 29246

Kahului, Maui , Hawaii

mustard greens

okra

TUGboat, Volume 12 (1991), No. 4 -Proceedings of the 1991 Annual Meeting

Jackie Damrau and Michael Wester

A typical (U r n) letter template that might be used

with the above list of addresses looks like:

\StoreAddrBlock{2)\in\veggies

Dear \addspace\SocialTitle\LastName:

Welcome to the vegetable of the month

club! Your introductory offer of

two selections this first month are

\GetLine{l)\of\veggies\ and

\GetLine{2)\of\veggies. . . .
\newpage

The macro \addspace is used to produce correct

spacing in the salutation by adding a proper space

after \SocialTitl2 if it contains text and doing

nothing if \SocialTitle is empty (as would be the

case for the second addressee).

The last file needed by address is the pream-

ble. This file is \input once and is used to perform

initializations, such as setting margins and defining

macros. If address is being U m e d , the pream-

ble is input before the \begin{document) that is

executed automatically before processing the ad-

dresses. A sample preamble that can be used under

or I4W is given below. (The definition for

\ifundef ined can be found in Knuth [page 401 and

is present in address.)

%
% Generic TeXjLaTeX preamble for

% address.tex .
%
\ifundefined{LaTeX) % TeX

\magnification=\magstepl

\vof f set=Oin

\hof f set=Oin

\vsize=gin

\hsize=6.5in

\nopagenumbers

%
\def \\{\hf il\break)

\def\newpage{\vfil\eject)

\else % LaTeX
\documentstyle [12pt] {letter)

\t opmargin Oin

\headheight Oin

\headsep Oin

\oddsidemargin Oin

\textheight gin

\textwidth 6.5in

\pagestyle{empty)
\f i

Running the Program

The address program is executed simply by typing

t e x address or latex address. This action produces

the following set of requests:

Enter the filename of the preamble

[preamble. texl :

Enter filename of recipients' addresses

[tolist. texl :

Enter the filename of the letter

template [letter.tex] :

The filenames in square brackets ([I) are

default values and are accepted by pressing a

m. (The default names for the second
1 I \

and third files can be changed by redefining the

macros \DEFAULTtolist and \DEFAULTletter in

the preamble.) Of course, the various files should

contain commands appropriate to the package actu-

ally being used.

address is designed to be reasonably robust.

This and m ' s rules for reading input allows some

sloppiness in setting up the address list. For ex-

ample, leading and trailing white space and extra

blank lines are all ignored. Also, a % can be used to

comment-out text. This last item implies that any

line with a % as its first nonblank character will be

treated as a blank line.

Making 3-Across Mailing Labels

By taking advantage of the macros defined in

address, it is not difficult to design a template that

can produce 3-across labels. The following template

will create a three-column, 33 labels-per-page for-

mat for a standard sheet of 2.75" x 1" labels. The

resulting output can be sent directly to sheets of la-

bels or onto regular paper, which can then be pho-

tocopied onto label sheets.

\ifcase\the\Naddr

\or\topbox{lin){2.75in){\Name\\\AddrB1ockl~%

\or\topbox{lin){2.75in){\Name\\\AddrBlockl)%

\or\topbox{lin~{2.75in){\Name\\\AddrBlockl~\\

\Naddr=O

\f i

The methodology used here is to produce dif-

fering output depending on the value of \Naddr.

The \if case construct will result in three horizon-

tally aligned boxes, each containing the current con-

tents of \Name and the first subblock of \Address,

as \Naddr takes on the values 1, 2 and 3. At

the end of the third case, a new line is started

and \Naddr is reset to 0. Thus, the next time

around, address will have incremented \Naddr back

to 1 and the process will start over. The macro

\topbox{H){W){text), defined in address by

512 TUGboat, Volume 12 (1991), No. 4-Proceedings of the 1991 Annual Meeting

Form Letters with 3-Across Labels

\def \topbox#l#2#3C\1eavevrnode

\vtop t o #1C\hsize=#2 #3 \v f i l \ e j ec t))

will produce a top-aligned box containing the t e x t

of height H and width W.
The above strategy is easily modified to han-

dle any number of columns and any spacing require-

ments for a regular gridlike pattern of labels. De-

pending on the printer settings, the top and left mar-

gins established in the preamble (not shown) may

need to be changed as well. Using 12-point fonts,

it is possible to put 6 lines of text in a one-inch-

high label. This can be increased by decreasing the

fontsize set in the preamble.

Comments on other labeling schemes. A label-

making capability is already available in as

well as in other programs; but these do not pos-

sess the flexibility nor the ease of use exhibited

by address. According to Lamport [page 671, the

\makelabels command prints a "list of mailing la-

bels, one for each l e t t e r environment, in a format

suitable for xerographic copying onto 'peel-off' la-

bels." However, the two-column format produced

does not correspond nicely to 3-across and other

common mailing label arrangements nor can it be

changed easily.

In printing 3-across mailing labels in Microsoft

Word, it is necessary to type three sets of field

names, a NEXT instruction telling Microsoft Word

to place information from more than one record onto

a single copy of a form document, and various other

commands and formatting statements. Typically, in

programs of this type, a number of steps will be re-

quired; and again, the choice of output formats will

be quite limited. Also, the data typically cannot be

a simple ASCII file but must be converted into the

program's possibly multifield internal format.

Comments on the Code

In developing address, certain difficulties had to be

overcome. The solutions found may be of benefit

to other users. One problem encountered was cre-

ating a box of text that had a definite height, as

well as a definite width. The \topbox macro men-

tioned above has these features. It is adapted from

the definition of M W ' s \parbox command. With

respect to W ' s viewpoint, the H in the definition

of \topbox is really a depth with the height of the

box being zero, but these details can normally be

ignored.

A second obstacle was obtaining sequential

space delimited strings (e.g., words) from a line

of text in a robust manner. Macros to do this

were needed to build the name-parsing macro

(\breakup). For example, suppose \ L i s t is de-

fined by \def\ListC a l b2 c3 3. The first 'word'

of \L i s t is a l , the second is b2, and the third

is c3. One way to select elements in this fash-

ion is to construct macros, \wcar and \wcdr,

that are analogous to the Lisp functions, CAR

and CDR. \wcar\List \ni l should select a1 and

\wcdr\List \ni l should return (b2 c3). More-

over, \wcar and \wcdr of C) and 0 should be

null, and any sequence of multiple spaces should be

treated like a single space.

If \ L i s t is a simple list of tokens (for example,

C a b c I) , then a token CAR and CDR can be

defined as follows:

%
% Test for {).

%
\def\ifnull#l{\ifx#l\empty)

%
% \tcar\List\nil picks off the first non-

% blank token (which is typically a

% character or a control sequence) in

% the \List. If the \List is blank or

% empty, then a null string is returned.

%
\def \tcar#l\nil{\ifnull#l

\empty

\else

\tCar#l\nil

\f i}

\def\tCar#1#2\nil{#1)

%
% \tcdr\List\nil removes the first nonblank

% token in the \List and any preceding

% blanks. If the \List is blank or

% empty, then a null string is returned.

%
\def\tcdr#l\nilC\ifnull#l

The general case is trickier and requires auxiliary

macros.

% first expands A, then expands B, then

% expands D.

%
\def\ABDReverseExpand#1#2#3#4{%

\expandaf ter\expandaf ter

\expandafter#l%

\expandaf ter\expandaf ter

\expandaf ter#2\expandaf ter#3#4)

%
% Used to remove leading spaces.

TUGboat, Volume 12 (1991), No. 4 -Proceedings of the 1991 Annual Meeting

Jackie Damrau and Michael Wester

%
\def \pretrim.#l{#l)

%
% \wcar\List\nil picks off the first word
% (string of nonblank characters) in the

% \List. If the \List is blank or

% empty, then a null string is returned.

%
\def\wcar#l\nil{%

\if null#l

\empty

\else

\expandafter\wCar\pretrim.#l \nil

\f i)

\def \wCar#i #2\nil{#l)

%
% \wcdr\List\nil removes the first word and

% any preceding blanks from the \List.

% If the \List is blank or empty, then a

% null string is returned.

%
\def\wcdr#l\nil{%

\if null#l

\empty

\else

\ABDReverseExpand

\if x\empty\wCdr\pretrim. #l \nil

\empty

\else

\expandaf ter\wCdr\pretrim. #l\nil

\fi

\f i 3
\def\wCdr#l #2\nil{#2)

\ABDReverseExpand is a simplification of the exam-

ple found in Knuth [page 3741 in the "Dirty Tricks"

appendix.

One more pair of useful Lisplike macros are

\setq and \gsetq, which are defined by

These macros allow statements such as

to function correctly by performing an immediate

expansion on the second argument. This particular

example results in \List being redefined to be Cb2

c3 1 .

Using the preceding as building blocks, it is

easy to devise more complex macros. address

defines \wmember\Element\of \List\nil, which

causes \ifmember to be true if the \Element

is found in the \List (false otherwise); and

\wendcarcdr\List\nil\A\B, which assigns \A and

The comment there incorrectly predicts that

such a construction is "probably too lengthy to be

of any use."

\B to the CAR and CDR of the \List, starting

at the rzght. The assignment to macros provided

as arguments in the latter case is done for two

reasons. It is more efficient in this situation to

make both assignments at once. More importantly.

since \wendcarcdr uses recursion via the \loop con-

struct, as well as defining temporary variables,

will complain if an attempt to force an immediate

expansion of the result is made with \edef. Thus,

\wendcarcdr uses \xdef internally to define \A and

\B.

The problem of being unable to store and fur-

ther manipulate the results of certain macro ex-

pansions can be solved in a second way. The

\StoreAddrBlock macro mentioned earlier is de-

fined by

\def\StoreAddrBlock#l\in#2(%

{\setboxO=\hbox~\AddrBlock#l~%

\toksO=\expandafter{\Current)%

\xdef #2C\the\toks0))3

In the first line, \AddrBlock completely expands

within the \hbox and the result is assigned to a box

which is subsequently ignored. As a side effect of

the expansion, the global macro \Current is set to

be the value of the reference to \AddrBlock. The

last two lines of the macro then store this result in

the second argument, operating with a token list to

prevent premature expansion of any \\'s that may

be present. The extra set of braces ensure that the

assignments to \box0 and \toksO are local to the

macro.

This section concludes with a small, but impor-

tant point. TEX will append an end-of-line character

to any line of input text unless \endlinechar=-1

is performed. This character will be treated like a

space unless the line is blank, in which case it will

be converted into a \par. Since \ifx performs one

level of macro expansion on its arguments, one way

to read a line from a file and test if it is blank is:

\read\file to \Line

\if x\Line\blank

where \def \blankC\par) must be done somewhere

previous.

Summary

We have designed a general-purpose form-letter gen-

erator that runs directly under or I4W. This

program requires three files, supplied by the user:

a (optional) preamble, a simple format address list,

and a letter template. These files are prompted for

interactively, and they default to certain names if

none are specified. We have also developed vari-

ous sample files, including a preamble and template

514 TUGboat, Volume 12 (1991), No. 4-Proceedings of the 1991 Annual Meeting

Form Letters with 3-Across Labels

to produce 3-across labels. Thus, form letters and

mailing labels can both be generated from the same

address list by just changing two inputs to the pro-

gram. Of course, there is nothing magical about

names and addresses; this program can certainly be

adapted to other uses.

This form-letter program has been designed to

be both robust and easy to work with. The for-

mer means; for example, that excess white space

and lines commented out with a % in the address

list will not cause havoc. To make the program

easy to work with, the files have been designed to

be easily modified for various types of results. Thus,

the files themselves have been made READABLE so

that anyone who wishes to alter them may do so eas-

ily. These files will be made publicly available from

the repositories at sun. soe. clarkson. edu and

ymir.claremont.edu.

Acknowledgments

Thanks are due to Ellen Golden and Sam Matthews

for providing certain crucial help during the devel-

opment of this program. Also, Tom Stickels is due

thanks for the encouragement and sound editing ad-

vice provided throughout the development of this

paper. Finally, hats off to the reading club for insti-

gating this endeavor.

Bibliography

Knuth, Donald E. The !&I+Xbook. Reading, Mass.:

Addison-Wesley, 1984.

Lamport, Leslie. L A W : A Document Preparation

System. Reading, Mass.: Addison-Wesley, 1986.

Microsoft Corporation. Microsoft Word Processing

Program Version 3.0 for IBM Personal Com-

puters and Compatibles. Redmond, Wash.: Mi-

crosoft Corporation, 1986.

Appendix: Selected Macro Definitions

\newif \ifnotdone

\newif\ifwmember
7 ----------=----------------------------------
%
% Allow \par's within \loop constructs.

%
\long\def \loop#l\repeat{\def \body{#l)\iterate)
7 ...
\def \AddrLine#l{\GetLine#l\of \Address)

%
\def\AddrBlock#l{%

\GetBlock#l\of\Address\by{\\---\\I)

%
\def\Get~ine#l\of#2{\~et~lock#l\of#2\b~\\)

%
% \GetBlock{N)\of\List\by\Delim gets block N of

% the \List. The blocks in the \List are

% assumed to be separated by \Dellm's.

% \Current will hold the last block

% selected.

%
\def \Current{)

\def\GetBlock#l\of#2\by#3{%

C\countO=#l

\toksO=\expandafterC#2#3)%

\edef\List{\the\toksO)%

\def\lcar##1#3##2\nilC##lI%

\def\lcdr##1#3##2\ni1{##2)%

\not donetrue

\loop

\ifx\List\empty

\notdonef alse

\gdef\Current{)%

\else

\advance\countO by -1

\ifnum\countO=O

\notdonef alse

\toksO=\expandafter\expandafter

\expandaf ter{%

\expandaf ter

\lcar\List\nil)%

\xdef \Current{\the\toks0)%

\Current

\f i

\fi

\ifnotdone

\toksO=\expandaf ter\expandaf ter

\expandaf ter{%

\expandafter

\lcdr\List\nil)%

\edef \ListC\the\toksO)%

\repeat 13
%
% \wendcarcdr\List\nil\A\B picks off the last

% word in the \List and places it in \A.

% The rest of the list (stripped of leading

% blanks) is placed in \B.

%
\def\wendcarcdr#l\ni1#2#3(%

C\edef\List{#l)%

\def\carListC)%

\def\neuList{)%

%
\not donetrue

\loop

\ifnull\List

\notdonef alse

\xdef#2{\carList)%

\xdef#3C\newList)%

\else

\if x\List\space

\notdonefalse

\xdef#2()%

TUGboat, Volume 12 (1991), No. 4 -Proceedings of the 1991 Annual Meeting

Jackie Damrau and Michael Wester

\xdef#3()%

\fi

\fi

\if not done

\ifx\newList\empty

\edef\newList(\carList)%

\else

\edef \newList(%

\newList\space\carList)%

\f i

\setq\carList{\wcar\List\nil)%

\setq\List(\wcdr\List\nil)%

\repeat))

%
% \wmember\Element\of \List\nil causes
% \ifmember to be true if the \Element is a

% member of the \List and false otherwise.

%
\def \wmember#l\of #2\nil(

(\global\wmemberfalse

\edef\ElementI#l)%

\edef \List{#2)%

\setq\carList(\wcar\List\nil)%

%
\ifnull\Element

\notdonefalse

\else

\notdonetrue

\fi

\loop

\if null\carList

\notdonef alse

\fi

\if notdone

\ifx\Element\carList

\notdonef alse

\global\wmembertrue

\else

\setq\List(\wcdr\List\nil)%

\setq\carList{\wcar\List\nil~%

\f i

\repeat))

TUGboat, Volume 12 (1991), No. 4-Proceedings of the 1991 Annual Meeting

