
TUGboat, Volume 12 (1991)' No. 2 

The crucial line in this is the grep, which ta,kes all 

the lines from example. log  containing % diagramf 

and puts them in example. dia. 

And so we've achieved labelled diagrams in 

METAFONT. The diagramf package is free software, 

and is available from the Aston archive. 

3 Acknowledgements 

The inspiration, and many of the original ideas, for 

this article came from Alan Hoenig's talk on the 

same subject at Cork. I'd also like to thank Jeremy 

Gibbons and Damian Cugley for comments, advice 

and allowing me to bounce ideas off them. 

o Alan Jeffrey 
Programming Research Group 
Oxford University 
11 Keble Road 
Oxford OX1 3QD 
Alan.JeffreyQprg,ox.ac.uk 

@ 1990 Alan Jeffrey 

Graphics 

X Bitmaps in 

Reinhard Foameier 

Abstract 

A new I4m style, bitmap.sty, allows the direct 

inclusion of bitmaps from the X Window System in 

documents. With a tiny modification, the 

macros can be used with plain 7!$X, too. 

Resumo 

Nova ordonaro bitmap. s t y  por permesas rek- 

t a n  enkludon de bit-matricoj el la fenestro-sistemo X 
en  D w - a j  dokumentoj. Post eta modzfo, la mak- 
rooj estas uzeblaj ankati por simpla m. 
1 Introduction 

The X Window System uses a special C language 

syntax to describe bitmaps, images made up from 

black and white pixels. The syntax consists of sev- 

eral C definitions that specify the width and height 

of the bitmap and possibly the position of a "hot 

spot", and the declaration of a character array for 

the bitmap information, with initializers in hexadec- 

imal notation (see figure 1). Each pixel line starts 

with a new byte; the last byte in a line is normally 

padded with zero bits. 

#define bildo-width 50 

#define b i l d o l e i g h t  30 

s t a t i c  char b i ldo-b i t s [ ]  = i 

0x00, 0x60, Oxff , . . . 
. . . 

. . . OxeO, 0x013; 

Figure 1: Example of the C bitmap format in X 

Apart from being suited for inclusion in C 

programs where it can be processed by the Xlib 

routines XCreat eImage or XCreat ePixmapFromBit - 
mapData, this format can be read by the Xlib rou- 

tine XReadBitmapFile or written by XWriteBit- 

mapFile. It is also supported by several programs, 

including a graphic editor ( bitmap), conversion pro- 

grams from/to ASCII character maps (atobm, bm- 

toa),  and a screen dump utility (Bruce Schuchardt's 

xgrabsc). So it has become a true standard for the 

representation of bitmaps. 

Figure 2: An example from the X Window System 

bitmaps (xlogo64) 

2 The bitmap. s t y  style 

A new style "bitmap" provides a macro to 

include and print such bitmaps in documents. 

The macro is called \Bitmap and has two arguments: 

the name of the file containing the bitmap, and the 

pixel size desired. The latter is saved in \bmpsiz 

and 

1 

2 

3 

4 

5 

6 

used to set the value of \baselineskip: 

\newcount\bmhpoz 

\newcount\bmwid 

\newif \ifbmblack 

\newdimen\bmrlen 

\newdimen\bmpsiz 

\catcode' ,= \ac t ive  



TUGboat, Volume 12 (1991)' No. 2 

Figure 3: Example of an included bitmap, taken 

from an Asterix cartoon 

The comma, separating the hex-numbers in the file, 

is made an  active character; its function is to an- 

alyse the hexadecimal information and translate it 

into \vrules.  It also throws away the leading 

Ox of the hex numbers: the second and third argu- 

ment (the hex figures) are swapped and each given 

to \HexFig for further analysis. Then. \bmhpoz is 

incremented by 8 columns and checked against the 

width of the bitmap; if the former exceeds the latter, 

the line is terminated and \brnhpoz is reset to 1. 

12 \ ca t code l ,= \ ac t i ve  

13 \def,##iOx##2##3{% 

14 \HexFig{##3)\HexFig{##2)% 

15 \advance\bmhpoz 8 

16 \ifnum\brnhpoz>\bmwid 

17 \O\hf i l  \vskip Opt 

18 \bmhpoz=l \bmrlen=Opt 

19 \ f i )  

The \HexFig macro analyses a hexadecimal figure 

and translates it to four calls of the macros \ O  or 

\ l ,  for white and black pixels, respectively. As the 

hex figures A to F normally are not capitalized in 

bitmap files, \uppercase is used to convert them if 

necessary. 

20 \def\HexFig##l{% 

21 \uppercase{\if case "##I) 

22 \O\O\O\O\or 

23 \l\O\O\O\or 

24 \O\l\O\O\or 

25 \l\I\O\O\or 

Figure 4: Another example (Abraracourcix, Gaul- 

ish tribe chief) 

Figure 5: The bitmap logo of the Akademio Inter- 
nacia de la Sciencoj (AIS) San Marino 

Black pixels are printed as rectangular spots, pro- 

duced by \vrule .  To save space in m ' s  memory, 

\ O  and \1 collect sequences of equal bits and put 

them together to longer \vrules.  Invisible \vrules  

of height 0 are used for the white space rather than 

\hskips because they, too, save a little memory 

space. The length of the current sequence of 0 or 

1 bits is kept in the dimension \bmrlen, the color 

of the current pixel is remembered in the value of 

\ifbmblack. 

39 \def\O{\ifbmblack 

40 \vru le  width \bmrlen height \bmpsiz 

41 \bmrlen=\bmpsiz \bmblackfalse 

42 \ e l s e  

43 \advance \bmrlen\bmpsiz 

44 \ f i )  



TUGboat, Volume 12 (1991), No. 2 

(discarded) 

width 

(discarded) 

(discarded) 

Table 1: Arguments of \BmContent in the example 

of figure 1 

45 \def \l(\ifbmblack 

46 \advance \bmrlen\bmpsiz 

4 7  \else 

4 8  \vrule width \bmrlen height Opt 

49 \bmrlen=\bmpsiz \bmblacktrue 

50 \fi) 

The only pieces of information used from the bitmap 

file are the width of the bitmap and its picture 

information; height and hot spot coordinates are 

discarded. The contents of the file are read with 

\@@input; a macro \BmContent gathers the width 

as its second and the picture information as its fifth 

argument. The other arguments are ignored; their 

only purpose is to get rid of the rest of the bitmap 

header. \BmContent is prefixed with \expandafter, 

to capture the result of \@@input in its arguments. 

51 \def\BmContent 

52 ##I-width ##2 ##3[1 ##4 ##5;(% 

53 \bmwid=##2 

54 \bmhpoz=l 

55 ,##5 

56 1% end of \BmContent 

57 \expandafter\BmContent\@@input #1 

58 \egroup>% end of \Bitmap 

Finally, the comma's \catcode is reset to "other": 

59 \catcode',=12 % other 

In the example of figure 1, the arguments of \Bm- 

Content would be like shown in table 1. Obvious- 

ly, the 3rd and 4th argument could be combined 

into one; yet this way provides some more security 

against erroneous use. 

The macros can be used with plain TEX, too, if 

\@@input in the last line of \BmContent is replaced 

with \input. The L4-m macro \input doesn't 

work with the \expandafter technique. 

Figure 2 shows the X logo bitmap, included in 

this document from the X bitmap file xlogo64. Fig- 

ures 3 to 7 show some more examples, which may 

serve to show the versatility of even small bitmaps. 

All bitmaps presented here are far under 100x100 

pixels. 

Figure 6: Yet another example . . . 

3 Possible extensions 

To draw boxes around bitmaps, they can be put 

into a \vbox. In its present form, the macro doesn't 

compute the necessary width of such a box, although 

this information is available from the bitmap header. 

This functionality can be achieved by adding to 

\BmContent, after the definition of \bmwid in line 

53, the statement 

\hsize \bmwid\bmpsiz 

Sometimes it is interesting to have statistics about 

the complexity of a bitmap. To this end, a \new- 

count\Complty may be introduced, initialized to 

zero and incremented by 

\advance\Complty I 

either in \I before the \ifbmblack at line 45 (to 

count black pixels) or in \O within the \ifbmblack 

at line 39 (to count \vrules). The result may be 
issued by a \message statement. 

4 Problems, conclusion 

Unfortunately, typesetting bitmaps is slow. A 60x85 

bitmap (like the one shown in figure 6) can easily 

consume more of m ' s  time than an ordinary text 

page. Moreover, the many \vrules consume a lot 
of W ' s  space, even with runlength encoding. Tests 

show that drawing bitmaps with two printing char- 

acters (e. g., - and +) for \O and \ I  saves some time 

but needs even more space. For really big bitmaps, 

Big may have to be used; it was, however, not 
necessary for this article. 



TUGboat, Volume 12 (1991), No. 2 

Figure 7: . . . and another. 

This problem could be alleviated by creating 16 

special drawing characters for the bitmap patterns 

corresponding to the 16 hexadecimal figures. The 

complexity of a bitmap, however, will always be re- 

flected in the cost of its typesetting. Remember that 

the aforementioned bitmap contains about as many 

pixels as there are characters on an average page. 

Serious problems may arise if the bitmap file 

contains C language comments. They are discour- 

aged when using bitmap.sty. The brtmap editor 

discards them anyway, so they aren't normally used; 

however. the termznal bitmap used in the X System 

contains a comment. 

If the bitmap width is not a multiple of 8, the 

algorithm in "\," depends on the last byte in each 

line being padded with 0's. This could be changed 

by putting the check of \bmhpoz against \bmwid into 

\l. It turned out to be hardly ever necessary in 
practice. 

Pictures with small pixel sizes come out better 

if a multiple of the printer resolution is chosen for 

the pixel size. (Oh well, I know !QX input should 

be device independent.. .) Here sometimes the "big 

point" ( lbp = 1/72 in) unit is useful if the resolution 

is related to inches; e.g. the resolution of a 300dpi 

printer is 0.24bp; with 400dpi. 0.18bp. 

Although the use of bitmaps in documents is 

limited by w ' s  resources, they provide a comfort- 

able way to put small images into documents and 

a useful interface to the X Window System, e.g. for 

documentation. 

o Reinhard Foflmeier 
iXOS Software GmbH 
Bretonischer Ring 12 

D-W-8011 Grasbrunn 
Germany 
refo@ixos.de 

Output devices 

Report on the D V I  Driver Standard 

Joachim Schrod 

Secretary 

TUG D V I  Driver Standards Committee 

The D V I  Driver Standard will be available in several 

stages. The basic stage is now called level 0. 

It covers only those driver capabilities which are 

really necessary to output a D V I  document on an 

output device. All other driver capabilities will be 

called features (and may even be realized outside 
a driver). In the future we will publish several 

additional standard documents which will cover 

ranges of features; those documents will represent 

"tiers" built upon level 0 or on previous tiers. In 

this way they will be available as future stages of a 

complete standard. (One may doubt whether the 

standard will ever be complete as there may be 

always new features to standardize.) 

The basic stage, level 0, consists of three parts: 

(1) The pure standard document telling what a 

driver must be able to do. 

(2) Definitions of all file formats spoken of in 

part 1. 

(3) A rationale describing why the committee has 

chosen the given definition in part 1, recalling 

discussions that led to particular decisions. 

A draft of the level 0 document is about to be 

published for public review. Part 1 of the draft is 

(almost) ready: a few spelling errors and such have 

to be removed. Part 2 was ready, but D.E. Knuth 

has changed the GF documentation, and this change 

must be incorporated. Part 3 exists only in part. 

The committee will publish the draft as soon as 

possible. It may be that the draft of the rationale 

will not be finished in time; in that event we will 

publish part 1 by itself. This is considered to 

be useful (although not desirable) so that we will 

get responses very soon - and especially to change 

the status from "draft" to 5eleasedn as soon as 

possible. The file formats will not be published in 

TUGboat; they are available on several file servers. 

For people who do not have access to file servers 

I've prepared a brochure covering all file formats. 

When complete, the standard will be published 

in the m n i q u e s  series. The style will be modified 

slightly to follow formal standards conventions. The 

body of the standard will form the main text; this 

will be followed by a number of "annexes". The 


