
I The Communications of the Users Group I

Volume 12, Number 2, June 1991

Board of Directors Users Group

Memberships and Subscriptions
TUGboat (ISSN 0896-3207) is published four times
a year plus one supplement by the TEX Users
Group, 653 North Main Street, P. 0. Box 9506,
Providence, RI 02940, U.S.A.

1991 dues for individual members are as follows:
rn Ordinary members: $45
rn Students: $35

Membership in the TEjX Users Group is for the
calendar year, and includes all issues of TUGboat
for the year in which membership begins or is
renewed. A membership form is provided on page
331.

Subscription rates: United States $45 a year;
all other countries, $45.

Second-class postage paid at Providence, RI,
and additional mailing offices. Postmaster: Send
address changes to the TEX Users Group, P. 0. Box
9506, Providence, RI 02940, U.S. A.

Institutional Membership
Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the Users Group.

The privileges of institutional membership in-
clude:

rn designating individuals to receive TUG boat
subscriptions and be accorded the status of
individual TUG members, the number of
such designees depending on the category of
membership chosen;

= reduced rates for the purchase of additional
subscriptions;

rn reduced rates for TUG meetings/courses for
all staff members, and for rental/purchase of
videotapes.
acknowledgement in every issue of TUGboat
published during the membership year.

For further information, contact the TUG office.

is a trademark of the American Mathematical
Society.

TUGboat @J Copyright 1991, TJ$ Users Group

Donald Knuth, Grand Wizard of W-arcanat
Nelson Beebe, President
Malcolm Clark, European Coordinator,

Vice-President for the U.K.
Bernard Gaulle, Vice-president for GUTenberg
Roswitha Graham, Vice-president for

the Nordic countries
Kees van der Laan, Vice-president for NTG
Joachim Lammarsch, IBM VM/CMS

Site Coordznator, Vice-president for
DANTE

Barbara Beeton, TUGboat Editor
Lance Carnes, Small Systems Site Coordinator
Bart Childs, DG MV Site Coordinator
John Crawford. Prime 50 Series Site Coordinator
Allen Dyer
David Fuchs
Regina Girouard

Raymond Goucher, Foundzng Executive ~ i r e c t o r t
Dean Guenther
Hope Hamilton
Doug Henderson, METAFONT Coordinator
Alan Hoenig
Patrick Ion
David Kellerman, VAX/VMS Site Coordinator
David Kratzer
Pierre MacKay, UNIX Site Coordinator
Craig Platt. IBM MVS Site Coordinator
Christina Thiele
Hermann Zapf, Wizard of ~ o n t s t

t honorary
See page 203 for addresses.

Addresses Telephone
General correspondence: 401-751-7760
w Users Group
P. 0. Box 9506 Fax
Providence, RI 02940 401-751-1071

Payments:
Users Group Electronic Mail

,-

P,O. Box 594 (Internet)
Providence, RI 02901 General correspondence:

TUG@Math.AMS.com
Parcel post,

delivery services: Submissions to TUGboat:

TEX Users Group TUGboatQMath . AMS . cam
653 North Main Street
Providence, RI 02904

Publishers have, no doubt, influenced the course of history
no less than kings or generals; the publishers' trouble
being that they had to earn money during operations.

Ch. Enschedd,
quoted in S. L. Hartz

The Elseviers and their
Contemporaries (1955)

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

VOLUME 12, NUMBER 2 JUNE 1991

PROVIDENCE RHODE ISLAND U.S.A.

TUGboat TUGboat Editorial Committee

During 1991, the communications of the TEX Users
Group will be published in four issues. Two issues
will consist primarily of Proceedings, one of m 9 0 ,
Cork (Vol. 12, No. l), and the other of the 1991
TUG Annual Meeting (Vol. 12, No. 3).

TUGboat is distributed as a benefit of mem-

bership to all members.
Submissions to TUGboat are for the most part

reproduced with minimal editing, and any questions
regarding content or accuracy should be directed
to the authors, with an information copy to the
Editor.

Submitting Items for Publication

The deadline for submitting technical items for
Vol. 12, No. 4. is August 13, 1991, and for news
items, September 10, 1991; the issue will be mailed
in November. (Deadlines for future issues are listed
in the Calendar, page 307.)

Manuscripts should be submitted to a member
of the TUGboat Editorial Committee. Articles of
general interest. those not covered by any of the
editorial departments listed, and all items submitted
on magnetic media or as camera-ready copy should
be addressed to the Editor, in care of the TUG
office.

Contributions in electronic form are encour-
aged. via electronic mail, on magnetic tape or
diskette, or transferred directly to the American
Mathematical Society's computer; contributions in
the form of camera copy are also accepted. The
TUGboat "style files", for use with either p la in

or I4w, will be sent on request; please specify
which is preferred. For instructions, write or call
Karen Butler at the TUG office.

An address has been set up on the AMS com-
puter for receipt of contributions sent via electronic
mail: TUGboatQMath. AMS. corn on the Internet.

TUGboat Advertising and Mailing Lists

For information about advertising rates, publication
schedules or the purchase of TUG mailing lists, write
or call Karen Butler at the TUG office.

Barbara Beeton, Editor
Ron Whitney, Production Assistant
Helmut Jiirgensen, Associate Editor, Software
Georgia K.M. Tobin, Associate Editor, Font Forum
Don Hosek, Associate Editor, Output Devices
Victor Eijkhout. Associate Editor, Macros
Jackie Damrau, Associate Editor, U w
Alan Hoenig, Associate Editor, Typesetting on

Personal Computers

See page 203 f o r addresses.

Other TUG Publications

TUG publishes the series Wniques, in which have
appeared user manuals for macro packages and
w - r e l a t e d software, as well as the Proceedings
of the 1987 and 1988 Annual Meetings. Other
publications on m n i c a l subjects also appear from
time to time.

TUG is interested in considering additional
manuscripts for publication. These might include
manuals, instructional materials. documentation, or
works on any other topic that might be useful to
the QjX community in general. Provision can be
made for including macro packages or software in
computer-readable form. If you have any such
items or know of any that you would like considered
for publication, contact Karen Butler at the TUG
office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue may
not be complete.
APS p5 is a trademark of Autologic, Inc.
DOS and MS/DOS are trademarks of Microsoft

Corporation
LaserJet, PCL, and DeskJet are trademarks of

Hewlett-Packard. Inc.
METAFONT is a trademark of Addison-Wesley Inc.
PC l&X is a registered trademark of Personal m,

Inc.
Postscript is a trademark of Adobe Systems, Inc.
TEX and AMS-W are trademarks of the American

Mathematical Society.
UNIX is a trademark of AT&T Bell Laboratories.

TUGboat, Volume 12 (1991), No. 2

General Delivery

President's Introduction

Nelson H. F. Beebe

News Items

Some technical magazines have a regular column
each issue reporting recent newsworthy events in
their fields. Because typography has such a broad
range of applications, it would be impossible for a
single unaided individual to write a similar one for
TUGboat. I've been collecting small items of news
that should be of interest to readers of TUGboat,
and present them here as a small sample of what
could be a regular feature, were there sufficient con-
tributions from others.

Music typesetting

Those who have previously followed the work of Eric
Foxley [2], John Gourlay [3], Daniel Taupin [ll], and
Andrea Steinbach and Angelika Schofer (authors of
mtex, available in some T@ archives) on the type-
setting of music should read the recent paper by
Blostein and Haken [I]. It will also give you a chance
to compare the "new typography", and extensive use
of font scaling, introduced in the July 1990 issue of
the Communications of the ACM with that of older
issues. The change in the Communications of the
ACM is so radical that it seems worthy of further
comment. I shall refrain from doing so here, but
I invite readers with sounder typographical back-
grounds than mine to offer their scholarly views. I
raise this point because some TUG members have
called for a ,.new look" to TUGboat.

The internals of

David Salomon has expanded upon his earlier pre-
sentations of output routines in these pages
[8, 91 in some fine work which we hope to see pub-
lished as a W n i q u e s issue.

A grand challenge

At the m 9 0 meeting in Cork, Timothy Murphy
[7] raised an important point that I had not heard
discussed before. In compilation of computer lan-
guages, a number of automated techniques and pro-
grams were developed during the 1970s and 1980s
for the generation of lexical analyzers and parsers
directly from a concise specification of the language
grammars. Much of this is based on pioneering work

of none other than m ' s own author, Don Knuth,
on what are now known as LR(k) g r a m m a r s [5].

The advantages of such an approach are now
widely understood in the computer science commu-
nity. In particular, these methods provide for rapid
experimentation in language design, since grammar
changes can be immediately incorporated in a cor-
rect working parser. Timothy Murphy suggested
that we really ought to have a rigorous grammat-
ical description of m, and a reimplementation of
the Q X program based on that grammar.

Such an approach is, I believe, critical to fu-
ture development of m ' s descendants. I do not,
however, know whether it is even possible to define
m ' s parsing by a grammar that is amenable to
automatic parser generation. This could easily be
enough work for a graduate thesis.

METRFONT oddities

Sharp-eyed readers have sometimes observed pecu-
liar things happening in the fine details of characters
from METAFONT, particularly where lines join. The
Grand Wizard explains it all in [6].

TUGlib archive

The 7Q+X Users Group bibliography collection that
I've been maintaining in the TUGlib archives at
Utah continues to grow, thanks to the contributions
of several colleagues who are acknowledged in the
collections. Readers with network access can send
an e-mail message with the text

send index from tex/bib

to tug1ibQmath.uta.h. edu [128.110.198.2]. Alter-
natively, those with Internet connections can more
conveniently use anonymous ftp to math. utah . edu
and look in the directory pub/tex/bib.

There are now 65 book entries about TpX and
digital typography, 45 journal articles (these exclude
articles from the various 7$X user group publica-
tions). and a list of nearly 100 periodicals that are
typeset with m, exclusive of the many AMS jour-
nals. Contributions to these bibliographies are in-
vited from the TUGboat readership.

We expect to have current copies available for
distribution at the TUG91 meeting in July. While it
has been suggested that these bibliographies could
be published as a m n i q u e s issue, I am disinclined
to do so, for the reason that they are continually
being updated, sometimes more than once a week,
so any printed copy would rapidly be out of date.

TUGlib archive access via e-mail is still small,
but the log records over 800 accesses in the last year
from 173 users. The anonymous ftp access to the

TUGboat, Volume 12 (1991), No. 2

archives records 735 logins during the last two weeks
of April 1991. It seems that these services are being
found useful.

Checksums

Robert M. Solovay at the University of California
a t Berkeley took up my challenge to write an idem-
potent file checksummer in WEB, and succeeded. I
expect to incorporate it into regular use for files in
the TUGlib archives, and of course, the code will be
available as well.

Literate programming

The 40 entries in the literate programming bibli-
ography in the TUG archive now need to be sup-
plemented with the contents of a recent annotated
bibliography on the subject [lo].

Usenet newsgroups sc i .math. symbolic and
comp. text. tex carried a posting on 26 April 1991
about a new version (1.3) of m /Mathema t i ca
available for anonymous ftp from chem. bu . edu
[128.197.30.18] in the directory pub/tex-mathemat-
ica. This incorporates support for literate program-
ming in Mathematica.

TEX and computer architecture

The recent book by Patterson and Hennessy [4] on
computer architecture has attracted rave reviews.
A foreword by noted computer architect Gordon
Bell says T o advance computing, I urge publish-
ers t o wi thdraw the scores of books o n this topic
so a n e w breed of architect/engineer can quickly
emerge. The authors of the book are the origi-
nators of the Berkeley and Stanford RISC chips
which have revolutionized the computing industry
in the last decade. Throughout the book, they use
three widely-available programs to justify architec-
tural decisions. One of these programs is TJ$: the
others are the Free Software Foundation's C com-
piler, gcc, and the circuit-design program, spice.

E-mail lists and archives

For a number of years, TUGboat editor Barbara
Beeton has coordinated a small tex-implementors
electronic mail list as a forum for discussing im-
plementation issues, and sharing news about, and
problems with, rn and METAFONT software. Now
there are some new lists.

tex-archive is intended to contain addresses
of archive site coordinators, so that they too can be
kept aware of recent happenings. We have endeav-
ored to make this list reach major sites that we know
of, but if your archive site is not included, and you

wish to be added, send a message to the human an-
swering to tex-archive-requestbath. utah. edu.

People interested specifically in the problems of
font design and font naming can communicate on the
tex-f onts list; a message to tex-f onts-request@-
math.utah. edu will get you on it. One problem
that has received considerable discussion is how to
map the names of thousands of existing fonts into
the limited filenames of some operating systems, in
such a way as to preserve document portability, not
require forbidden changes to TEX itself, and still be
understandable by users.

The three lists above are not intended for wide
distribution; their goal is to reach a small core of
experts.

Some new lists may be of wider interest.
The formation of a group of Irish TFJ users was

discussed at the m 9 0 meeting in Cork, and on
22 February 1991, UKTeX issue 91.009 carried an
announcement about the establishment of ITALIC
(Irish m And MTJ$ Interest Community). Users
in Ireland and abroad are invited to signal their
interest in this group and join the mail discus-
sion list italic-1 by sending a one-line electronic
mail message to 1istservQirlearn. bitnet saying
subscribe italic-L <your real name>.

An announcement on 29 April 1991 appeared
in the tex-euro list about the formation of a
list to discuss Greek m . TO join, send a mes-
sage to 1istservQdhdurzl.bitnet with the text
subscribe ellhnika (ellhnika is Greek for Greek.
in Roman).

The T ' h a x issue of 21 April 1991 (vol-
ume 91, issue 20) carried a posting about a new
list for the discussion of Turkish m . To join.
send a message to 1istservQtrmetu.bitnet with
the text subscribe yunus <firstname> <middle-
name> <lastname>. The list is named after Yunus
Ernre, a fifteenth century Turkish poet and philoso-
pher.

A connection to the Usenet comp. text. tex list
is now available for Bitnet sites; send a message
to 1istservQshsu.bitnet with the text subscribe
info-tex. This list has been created by George
Greenwade at Sam Houston State University in
Huntsville, TX. A mirror image of the Aston archive
is being established there, which will at long last
make a North American copy of that archive readily
accessible.

Finally, for those of you who have net access
and have tried to answer the question "On what
archive will I find this software?", you should know
about the archie server at McGill University. This
is a new project that is an archive of archives: the

TUGboat, Volume 12 (1991), No. 2 207

archie server communicates about once a month
with known archive sites around the world, fetches
a directory listing of their holdings, and stores it in a
database. A request like prog dvialw returns a list
of all archives containing my Postscript DVI driver,
including their file time stamps. I intend to use this
to announce updates.

The archie server is available both via e-mail,
and via telnet to the host machine. quiche. cs . -
mcgill. ca [132.206.2.3], where you can login with
username archie (no password) and search the data
base. On-line help is available. Via e-mail, a request
help to archieQquiche . cs .mcgill. ca will get you
started. archie is already overworked, and the plan
is to clone him at other sites.

REVTEX

In early April, 1991, the American Physical Society
released Version 2.0 of the R E V T E X macro package,
which is a U r n - b a s e d system for preparation of
manuscripts for the Physical Review A, B, C, and D
journals, and soon, for Physical Review Letters and
Reviews o f Modern Physics.

This new version is incompatible with earlier
ones, and should replace them. Instructions are pro-
vided in a README file for the conversion of manu-
scripts that used earlier versions. The new R E V -
T E X is now compatible with BIBQX.

Most m w a r e archive sites should have the
new version available by the time you read this.

-4n industry leader's view

During the last week of March, the Novel1 Devel-
oper's Conference was held across the street from
my office, and I took the opportunity to listen to
keynote speakers each morning. One of them, Steve
Jobs, the co-founder of Apple Computer, and the
founder of NeXT Computer, said that in his view,
the two most significant events in computing during
the last two decades have not been hardware, win-
dows, graphical user interfaces, or the Macintosh.
They have been (a) the spreadsheet, and (b) desktop
publishing. These two areas have been responsible
for the spread of personal computers so that several
tens of millions have now been sold. and the manu-
facturing economies of scale have revolutionized the
rest of the computing industry.

T@ Users Group Board changes

The past year has been a difficult time for the TUG
Board. A severe division arose in the Board over
future directions, and management. This division
was approximately between the Executive and Fi-
nance Committee members on one side, and part of

the remainder of the Board on the other. Actions
were taken at the Cork meeting to partially revise
QX Users Group bylaws, and to terminate the con-
tract of the Executive Director effective at the end
of 1990.

These divisions have been so strong that three
of my fellow elected officials have resigned their of-
fices. In the interests of maintaining at least some
continuity, I will remain in office until the expira-
tion of my term at the end of 1991. At that time, I
will step down, and will not in the future be a can-
didate for TI$ Users Group office. I have chosen
not to appoint interim officers to fill the three Ex-
ecutive Committee vacancies. It is difficult for me
to write this; I have suffered many sleepless nights
over Board issues.

The Board has revised the election procedures,
and an election will not be held at the TUG91 meet-
ing. Instead, a mail ballot will be sent to the full
membership. Details should appear in the first is-
sue of a newsletter which is in preparation.

The new directions chosen by the Board will
require significant financial resources to carry out.
The fact that the TUG budget will suffer a signifi-
cant loss this year, mostly due to falling course rev-
enues (which in turn may be related to the state of
the economy), is a very real problem.

Most TUG members are probably unaware that
their membership/subscription dues contribute less
than 25% of the budget (a figure that can be readily
determined from the Treasurer's Reports published
periodically in TUGboat). Although dues have been
increased slightly, they do not produce sufficient ad-
ditional income to cover the deficit, which may this
year be more than 10% of the budget.

For comparison with another non-profit orga-
nization. the Association for Computing Machinery
(ACM) 1990 budget shows membership providing
30% and subscriptions 12% of their annual budget,
which is about 32 times larger than TUG'S. The
ACM has 18 times as many members as TUG, so
their budget share per member is about double that
of TUG.

The future

I regret the state of TUG finances, because it pre-
vents us from supporting research into digital ty-
pography at a time when I believe strongly that
such research is essential. We must not forget that
T)jX was designed before personal computers and
workstations, before bitmapped graphics displays,
before cheap memory, before fast RISC processors,
before laser printers, before graphics standards, be-
fore Postscript, and before SGML.

TUGboat, Volume 12 (1991), No. 2

All of these have resulted in limitations in W ' s
design that must be removed in future systems. I

believe that has many unique features, the
most important of which are high quality mathe-
matical typography. support for multiple languages
and character sets, programmability. and public ac-
cess to the source code.

The desktop publishing industry is responding
to all of the above issues, and there is the very real
risk that the benefits of 7&X will be lost to commer-
cial systems which will once again produce captive
markets and ultimately, throttle development.

References

Dorothea Blostein and Lippold Haken. Justi-
fication of printed music. Communications of
the ACM, 34(3):88-99, March 1991.

Eric Foxley. Music-a language for typesetting
music scores. Software-Practice and Experi-
ence, 17(8):485-502, August 1987.

John S. Gourlay. A language for music printing.
Communications of the Association for Com-
puting Machinery, 29(3):388-401, 1986.

John L. Hennessy and David A. Patterson.
Computer Architecture-A Quantitative Ap-
proach. Morgan Kaufmann Publishers, 1990.

Donald E. Knuth. On the translation of lan-
guages from left to right. Information and Con-
trol, 8(6):607-639, 1965.

Donald E. Knuth. A note on digitized angles.
Electronic Publishing-Origination, Dissemi-
nation, and Design, 3(2):99-104, May 1990.

Timothy Murphy. Postscript, QuickDraw, and
m. TUGboat, 12(1):64-65, March 1991.

David Salomon. Output routines: Examples
and techniques. Part I: Introduction and exam-
ples. TUGboat, 11(1):69-85, April 1990.

David Salomon. Output routines: Examples
and techniques. Part 11: OTR techniques. TUG-
boat, 11(2):212-236, June 1990.

Lisa M. C. Smith and Mansur H. Samadzadeh.
An annotated bibliography of literate program-
ming. ACM SIGPLAN Notices, 26(1):14-20,
January 1991.

Daniel Taupin. Musique en m : hcriture
de musique polyphonique ou instrumentale en
"plain m". Cahiers GUTenberg, (5):62-73,
May 1990. An English-language translation is
available from the author.

o Nelson H. F. Beebe
Center for Scientific Computing
Department of Mathematics
South Physics Building
University of Utah
Salt Lake City, UT 84112
USA
Tel: (801) 581-5254
FAX: (801) 581-4148
Internet: Beebeamath .utah. edu

Editorial Comments

Barbara Beeton

Newsletter news

The biggest piece of news to report here is the ap-
pearance of a new TUG publication-a newsletter.
(You should probably have received your copy by
now.) While the present incarnation is just a proto-
type, its usefulness will be examined in detail against
the mechanics and cost of production.

A newsletter is presumed to be a timely publica-
tion, providing information about events, scheduled
or spontaneous, and carrying questions and answers
with a short turnaround. A newsletter is a suitable
forum for reports on TUG activities and news from
the Board of Directors. (A significant part of the
prototype issue is devoted to such matters.) There-
fore, it should appear more frequently than TUG-
boat, probably about six times a year.

If you have opinions on this subject that you
wish to share, send them to the TUG Publications
Committee, in care of the TUG office (the address
is at the top of the list on page 203), or via e-mail
to TUG-PubcommQMath . AMS . corn.

TUGboat items in electronic archives

I have seen a number of inquiries about whether
macros, style files, and similar items published in
TUGboat are available from the various electronic
archives. This is an old question, and the answer
is also rather old, although it has unfortunately
not yet been put into action. Several years ago, it
was agreed in principle, and confirmed by the TUG
board of directors, that such items should be made
available electronically, one form of which is instal-
lation in the archives.

TUGboat, Volume 12 (1991), No. 2

The fact that this hasn't actually happened to
any great extent is due to the fact that the TUG-
boat production staff is very limited (it consists of
Ron Whitney and myself) and overworked (I am
employed full time by the American Mathematical
Society, and TUGboat is my avocation; Ron is at
present acting manager in charge of the TUG of-
fice).

The post-processing of items published in TUG-
boat is non-trivial. Use of such features as non-
standard fonts or multiple files must be documented
or changed. The author's address must be verified.
The author should get questions on how to use the
items, not the TUGboat staff. Other documentation
and identifying material at the beginning of the file
must be checked. Any special code added explicitly
for TUGboat should be removed. Although we try
very hard to avoid inserting explicit line and page
breaks, that isn't always possible. And, unfortu-
nately, we've never had time to write up guidelines
for doing this, so it's hard to turn it over to someone
else.

Nevertheless, we would like to try to do a bet-
ter job of electronic distribution, and if you'd like to
volunteer to help, please let us know. (Write to us at
TUGboatOMath. AMS . corn on the Internet.) Because
of the limits on our available time, we ask that you
have a stable e-mail connection and be familiar with
the use of the TUGboat styles; the current versions
of tugboat. s ty , l tugboat . s ty , and tugboat. corn,
as well as the documentation file, tubguide. t ex,
can be found at labrea . Stanford. edu in the direc-
tory /tex/tugboat as well as at other archive sites.

TUG Resource Directory

Accompanying this issue is a supplement; take a
close look a t it. Last year, the corresponding sup-
plement was the annual membership list. The mem-
bership list is still there, but it has been joined by
other useful information.

Short descriptions are given of other TEX user
associations, including the areas covered, officers,
how get in touch, and sometimes more. For several
countries of eastern Europe, where formal associa-
tions are still in the process of being formed, the
names of central contacts are given.

Sources of m - r e l a t e d software are listed in an-
other section. This includes electronic sources ac-
cessible by ftp or servers, other sources of public-
domain implementations of w, commercial ven-
dors, and Don Hosek's list of output device drivers
(formerly included in the body of TUGboat).

Another section provides information on elec-
tronic discussion and help lists.

The final section is the current contents of the
TE,X bibliography from the TUGlib archive.

Updates to these resource lists will appear in
the "Resources" column of TUGboat as previously.

(Mis)information about 'I'EX in non-TEX
publicat ions

From time to time, I come across references to T@
in rather unexpected places, and also unexpected
references in the more usual places. Many references
are knowledgeable and informative, but sometimes,
it's clear that whoever wrote the item didn't have
the foggiest idea of what s/he was talking about.
(It's been said that some publicity seekers welcome
any reference, as long as their name is spelled cor-
rectly; well, sometimes in the case of m that isn't
even true.)

TEX users can do a lot to improve this situation.
First, send a description (or, better still, a copy)

of the reference to the TEX Users Group office. Be
complete - include the name of the book or periodi-
cal, date of publication, the name and address of the
publisher, and the numbers of the page or pages on
which the (mis)information appeared. Include any
comments or suggestions you think might be helpful
in writing to the publisher. The e-mail address is
TUGQMath.AMS. corn, and the postal address can be
found at the top of page 203. (If you happen to
see a good, informative reference, send that too-
if appropriate, it will be added to the growing TEX
bibliography. To avoid duplication, you might want
to check the latest version of the T@ bibliography
first; see Nelson Beebe's instructions for accessing
the TUGlib archive, page 205, or the latest TUG
Resource Directory for a printed version.)

Next, if you ever have the opportunity, write
an article for some magazine or journal whose read-
ers are doing things where T@ could be a useful
tool, to describe what 'I'@L can do, and how to learn
more about it. Or give a talk to a group of people
at a meeting of a publishing, scientific or computer-
related society. Point out the fact that, though
software is in the public domain, the many different
implementations must all adhere to a single stan-
dard in order to be referred to as m , and one of the
consequences is that input prepared in a standard
way for one computer will yield exactly the same
results on another. A number of articles have been
written in this vein, and references can be found in
the 7&X bibliograpy.

Finally, put in a reference to TUG. There are
many users of 7&X who don't know that TUG exists.
or how to get in touch. There are thousands of users
of personal computers without access to electronic

210 TUGboat, Volume 12 (1991), No. 2

networks in this position. One of the TUG Board's
hot discussion topics is how to reach these people.
If you can help, or have any good ideas, do get in
touch.

DANTE meeting, Vienna

The tenth meeting of the German TEX interest
group took place in Vienna on 21-23 February 1991,
at the Technical University of Vienna. It was my
pleasure to attend this meeting and to meet a most
enthusiastic, well-organized, and growing group of
7&X users.

The meeting was divided into a number of tech-
nical sessions, each with a distinct theme, among
them I P ' , auxiliary software. fonts, and news
from other user groups. A business meeting oc-
cupied part of one afternoon, and workshops were
offered the last morning on the subjects of I P W ,
WEB, and SGML.

Rainer Schopf presented an update on the sta-
tus of I P m 3 . 0 . Barbara Burr, the editor of
DANTE's newsletter, Die Wnische Kornodie, de-
scribed features of GNU Emacs that could be used
to make I P W input easier and more reliable, and
also the GNU documentation system, m i n f o . A
presentation that I (as a former linguistics student)
found particularly fascinating was the description of
how T@ has been used in the preparation of a lin-
guistic atlas, with phonetic transcriptions of selected
words superimposed on maps to delineate the areas
in which distinct pronunciations are found, assisting
the study of patterns of linguistic change.

In the font area. Konrad Neuwirth surveyed
what fonts can be used with TEX besides Com-
puter Modern. Yannis Haralambous introduced
Scholar', intended not only to provide fonts for
many different languages, but also to simplify the
handing of multilingual documents in a scholarly
setting. The 256-character font agreed on in Cork
was presented by Norbert Schwarz and Peter Breit-
enlohner .

Users group news included a presentation by
Malcolm Clark on the state of user groups in Eu-
rope and America. JiiY Vesel? spoke on TEX in
Czechoslovakia. The final technical presentation
was by Joachim Lammarsch, describing DANTE's
software program.

In addition to the technical program and busi-
ness meeting, attendees were welcomed to a buffet
supper in the banner room of the Rathaus, with mu-
sical accompaniment appropriate to the waltz cap-
ital of the world. Some of us chose to enjoy more
musical adventures, in this 200th anniversary year

of Mozart's death, attending a performance of "Die
Zauberflote" at the Staatsoper. Wonderful!

I would like to congratulate Hubert Part1 and
Irene Hyna on their excellent meeting arrange-
ments-it was so well organized that it seemed to
run itself. And I would like to thank everyone who
had any part in the meeting for their kind hospital-
ity.

Publications of other TEX organizations

In previous issues, abstracts of TUGboat articles
have appeared in other languages, particularly Ger-
man. On thinking about this, however, it seemed
obvious that what would be most useful to TUG-
boat readers was information on what appears in
other T@ publications.

This new approach starts with this issue, where
we have abstracts of two issues of the Cahiers
GUTenberg, the official publication of the Groupe
francophone des Utilisateurs de 7$X. Coverage will
be expanded to the publications of other orga-
nizations in future TUGboat issues.

TUG'S annual meeting

The preliminary program for this year's meeting in-
dicates that there will be a higher concentration of
presentations than ever before on how T@ is actu-
ally used by publishers. Those of us who really do
production work know that there are times when it's
necessary to resort to more "traditional" methods
(like cut-and-paste for inserting figures or applying
page numbers or even running heads to items sub-
mitted in camera-ready form; careful reading of the
TUGboat "Production notes" column will uncover
many such references). There are also times when
other software is needed as well, working in consort
with m, to provide features not built into "canoni-
cal" 7$X (e.g. graphics) or to make certain phases of
manuscript preparation more convenient (e.g. trans-
lators from the input to word processors or SGML).
A realistic approach to such requirements is needed
for success in using TEX as a production tool, and I
expect to learn much from this summer's speakers.

I'd like to put in a plug here for the annual
question-and-answer session. Last year we tried a
new approach. Instead of expecting the attendees
to come up with questions on the spot, we solicited
questions from readers of several of the electronic
discussion lists. (We got started too late to put a
notice in TUGboat.) And we promised to search
out answers, report them at the meeting Q&A ses-
sion, and publish the results in TUGboat. The re-
sponse was not large, but the questions were good
ones. and the ability to research answers beforehand

TUGboat, Volume 12 (1991): No. 2 211

meant both that there were fewer cases of '-1 don't
know" and there was a transcript to be published
in the Proceedings. We were happy with the suc-
cess of this approach, and are using it again this
year. If you have any good general questions. or
ones that you think would be instructive. or even
specific problems that you've tried for a long time
to solve without success, send them in. and we will
do our best. For presentation at the meeting. ques-
tions that have relatively short answers will be fa-
vored, but all questions will be published, along with
whatever answers we can dig up.

If you have e-mail access, send your questions
to TUG-QQTAMVM1.Bitnet
or to TUG-QQTAMVMI . TAMU . edu.
If you have to use paper, write to "TUG91 Q&A
Session" in care of the TUG office (the first address
on page 203).

I expect to see many familiar TEX users in Ded-
ham, and hope to meet many new ones as well.

l&X in Germany

Walter A. Obermiller

Gottingen was the place to be for m users and im-
plementors, as the 9. annual meeting of the German-
language 'I'EX users was held from October 10-12.
1990. Formerly in a geographically "marginal" po-
sition. the old university town Gottingen is now
located in the center of Germany. Approximately
150 participants from Germany, Austria, Belgium
and the UK attended the meeting. It was jointly
sponsored and organized by the German-language
m - u s e r s group DANTE and the German Society
for Scientific Computing (GWDG), which is based
in Gottingen.

In the wake of the meeting, the 3. member con-
ference of DANTE was held in the afternoon on Oct
10. Chairman Joachim Lammarsch presented an en-
couraging outlook on DANTE'S future. DANTE has
had a boom year: membership increased from 150
at the beginning of 1990 to a staggering 858 with
another 100 applications still pending. These fig-
ures and the age structure, with students prevailing,
show that DANTE is doing its part to promote QX
in Germany.

The l$jX server in Heidelberg has been comple-
mented by the DANTE FTP-server at the University

of Stuttgart which stocks a fine collection of m
programs, amongst it e m m . Additionally DANTE

is making efforts to distribute QX to people not in
the possession of a network connection.

Talks were scheduled for Oct. 11, beginning
with a review by Joachim Schrod on the unholy mar-
riage of non-standard font files and drivers not con-
forming to the TUG driver committee standards.
The combination of two non-standard components
may work, but often as a nonstandard font and a
standard dvi-driver are used, problems arise. Char-
acter spacings will be incorrect and significantly de-
grade the readability of output. Unfortunately, even
commercial implementations of drivers have these
problems.

Peter Abbot presented the usage statistics of
the Aston Archive-Server for the last months. Prob-
lems with the Rutherford gateway into BITNET still
persist but are tackled with a new encoding scheme
(vvencode) which is under development at As-
ton. Some participants surmised the problems were
caused by left lane traffic in the UK part of the
BITNET cable. . . .

Applications of U m control statements. as in
i f t h e n . s t y , were discussed in a talk by H. Kopka.
It was followed by a report by A. Lingnau on the
development of an online documentation system for
mathematical software using as the typeset-
ting engine.

An approach to documenting U r n style files
was presented by W. Kaspar and received lively at-
tention of the audience. Many of the available style
files out there lack documentation. The solution is
not as trivial as it seems. For example. copyright is-
sues make documentation of certain styles wzthzn the
style file itself a contentious issue. The goal of the
discussion was to design a multilingual documenta-
tion format for style files. and a style file to print
them. The documentation should include informa-
tion on other required styles and style combination
that cause problems.

Some 30 popular U m style files have been
documented by volunteers in this manner and ef-
forts are under way to compile a complete list of
styles available. It was decided to pull different ap-
proaches together until the next German TEX meet-
ing in Vienna (Feb. 20-22, 1991) and resume discus-
sion.

Urs Widmer informed on the use of QX in
typesetting Chinese and Japanese texts, highlight-
ing problems with the fonts and the many differ-
ent character encoding schemes in use for Chinese,
Japanese and Korean.

Merits and some problems of producing texts
with diacritical marks and multilingual editions us-
ing TEX were shown by G. Koch in examples from
Hebrew texts and bilingual book projects.

Philosophical and technical insights into print-
ing old German documents with appropriate old
fonts were presented by Yannis Haralambous. He
introduced old German Fraktur, Gotisch, Schwaba-
cher and Initialen fonts he created with METAFONT.

and showed old German works of print he has type-
set in them. The fonts are fantastic! Yannis will
make them available in Heidelberg soon.

G. Bienek announced the availability of a new
T@ bulletin board. It is accessible under the num-
ber +49-8024-8416 and will carry the offerings of the
normal DANTE distribution.

A new twist to including graphics in TEX doc-
uments was introduced by F. Sowa. A preprocessor
converts Tag Image File Format (TIFF) graphic files
into a .pk font file which is then simply printed by
including a . tex file also produced in the process.
The bitmap is distributed over a number of charac-
ters. so even old drivers should be able to handle
them. His graphic inclusion mechanism hence does
not require the use of a \special. The preproces-
sor is capable of dealing with simple bitmaps and
has dithering capabilities to deal with grayscale and
RGB pictures.

From the user interface "department", L.P.
Kurdelski presented a Smallt alk based system to
simplify the creation and processing of TEX docu-
ments on PCs and their output via printers con-
nected to a heterogeneous network, so as to relieve
the user from having to deal with DOS or network
software.

The final day of the meeting had four tutori-
als on the agenda. H. Kopka introduced the use
of PI- macros, while B. Burr gave an introduc-
tory IPW tutorial. A tutorial on how to change
IPW style files (H. Partl) and one on METAFONT

(F. Sowa) were followed by a final discussion.

Conclusion

Many different uses of TEX in Germany are reflected
by the talks outlined above. As more and more peo-
ple are using TpX here, many more will be thought
of. As all meetings that I have attended this
meeting too was very short.

The challenges for the immediate future are
clear: introduction of the new 256 character Latin
fonts, for which the encoding scheme has been
tentatively approved at the Cork meeting. Only
new German hyphenation patterns and a revised
german. sty will then be needed to make full use

TUGboat, Volume 12 (1991), No. 2

of w l s hyphenation capabilities for German lan-
guage texts.

o Walter A. Obermiller
Max-Planck Institut fiir Chemie
Geochemistry Division
Postfach 3060
6500 Mainz
FRG
walterlmpch-mainz.mpg.dbp.de

Philology

Russian T&jX

Basil Malyshev, Alexander Samarin and
Dimitri Vulis

For processing Russian texts [I] by one should

adjust TEX to use: Russian language hyphenation,
coding of the Russian characters, and fonts with the
cyrillic symbols.

T)jX 3.0 can be adjusted without changes!
The hyphenation patterns described in [2] are

used for Russian language. Actually is bilin-
gual- the Russian and English hyphenation pat-
terns are loaded by following file:

\language=O % English
\lefthyphenmin=2

\righthyphenmin=3

\input ehyphen.tex

\language=l % Russian
\lefthyphenmin=2

\righthyphenmin=2

\input cyrdef.tex

\input rhyphen.tex

\language=O % English as default

In the file cyrdef . tex proper catcode, uccode,
lccode and mathcode are set for cyrillic characters.

Switching between Russian and English hy-
phenation is performing by \language: setting
\language=O means English, \language= I means
Russian. English words are not hyphenated if the
Russian patterns are active and reversely. Another
possibility is to merge the English and Russian hy-
phenation patterns as a single language.

TUGboat, Volume 12 (1991), No. 2 213

rn can use any 8-bit coding scheme for Rus-
sian characters- "alternative" l , K01-8~, IS0 8859-
53, etc. The hyphenation patterns and .tfm files
should correspond to the coding scheme being used.
Russian QX works with virtual fonts; each of them
consists of an original Computer Modern font (be-
low the 1 2 8 ~ ~ code) and a font with cyrillic char-
acters (above the 1 2 8 ~ ~ code). For m the cyril-
lic characters are completely equal in "rights" with
Latin characters. One could define new commands
as Russian words! The simultaneous usage of cyrillic
and Latin characters does not require any additional
commands for switching or separating them.

For creating the . tfm file of a virtual font the
program tf merge was designed. It merges the . tf m
for a Computer Modern font and . tfm for a cyrillic
font into a virtual font . tfrn and .vf in accordance
with the coding scheme of the Russian characters.

The managing of the program tfmerge is per-
formed by a file which contains the table of corre-
spondence between the position of a character in a
virtual font and the position of the same character
in a cyrillic font. E.g., the correspondence between
alternative coding into virtual fonts and "phonetic"-
like coding (with swapped lower/upper case) into
cyrillic fonts [3] is expressed by the following pairs:

\200 :a

\201:b

\202 : w

.
\36O : Q

The left part of a pair (up to delimiter character
":") is the position in virtual fonts and the right part
is the position in cyrillic fonts. The position can be
specified by a symbol or by an octal number. When
sorted by left parts the file becomes simpler:

\200:abwgdevzijklmnoprstufhc~()\177yx~ 'q

\240:ABWGDEVZIJKLMNOP

\ N O : RSTUFHC" [I -YX\\@q
The correspondence between IS0 8859-5 coding

in virtual fonts and the "phonetic1'-like coding in
cyrillic fonts is expressed by:

\260:abwgdevzijklmnoprstufhc~~)\177yxl'q

\320:ABWGDEVZIJKLMNOPRSTUFHC-[I-YX\\@Q

The calling sequence of tfmerge program is:

TFMERGE [-dl cmrlO cmcyr1O xcmrl0

Used mainly on the IBM PC, alphabetically or-
dered, almost identical to Microsoft's codepage 866.

Used on some UNIX-like systems. based on
"phonetic" correspondence between Latin and cyril-
lic characters.

Used on VAX/VMS, alphabetically ordered.

where cmrl0 and cmcyrlo are source Latin and
cyrillic fonts, xcmrl0 is the virtual font, which will
consist of two files: xcmri0. tfm and xcmrl0 .vf.
They are accepted by the standard program
vf t 0 ~ 1 . ~

Note that such merging is correct because the
cyrillic fonts are created by METAFONT on the base
of the same setup files, like cmrl0.mf. The font
parameters are identical for Latin and cyrillic fonts.

The files are merged by the following couples:

cmbx*

cmbxsll0

cmbxtilO

cmbxsll0

cmbxt i 10

cmmi5

cmmi6

cmmi*

cmmiblO

cmr*

cmsl*

cmslttlO

cms s *
cmssbxlO

cmssdclO

cmssi*

cmt i*

cmtt *

cmcbx*

cmcbxsll0

cmcbxtilo

cmcbxsll0

cmcbxtilo

cmcyr5

cmcyr6

cmct i*

cmcbxlO

cmcyr*

cmcsl*

cmcslttlo

cmcss*

cmcssbxlo

cmcssdcl0

cmcssi*

cmcti*

cmctt*

xcmbx*

xcmbxsll0

xcmbxt ilO

xcmbxsllO

xcmbxtilo

xcmmi5

xcmmi6

xcmmi*

xcmmibl0

xcmr*

xcmsl*

xcmsltt 10

xcmss*

xcmssbxlo

xcmssdcl0

xcmssi*

xcmti*

xcmtt*

Mathematical Italic fonts crnrni* are merged
with Cyrillic Text Italic fonts and proper mathcode's
have been set. One can use Russian letters in math.

To use another realization of the cyrillic fonts
one should create the table of correspondences for
tf merge and select other couples for merging.

Files plain. t ex for TJ# and If onts . tex for
MTJ# should be changed to substitute the references
to the Latin font being merged by references to the
proper virtual font.

For a VAX/VMS realization. creating . fmt files
requires only setting the parameter trie-size to
16000. For SB30TEX (on MS-DOS) some . tfm files
are not preloaded, because the size of the . tf m files
is increased. For EmQX C3al the options -i -0 -8

-mt : 12700 have been set.
The main problem with virtual fonts is that not

all .dvi drivers can handle the virtual fonts. To
avoid that problem the program PosTeX has been
designed. It reads a . dvi file, expands the virtual
fonts and writes a new .dvi file which is accepted
by any . dvi driver.

There are some . dvi drivers which already ac-
cept the virtual fonts, e.g. from the fine collection

Really more comprehensive utilities are needed
to create virtual fonts.

214 TUGboat, Volume 12 (1991), No. 2

by Eberhard Mattes. One can use such . dvi drivers

without PosTeX. But extensive usage of virtual fonts
with a previewer will require more memory and in-

crease the time before showing the first page. For a

. dvi file which consists of a single cyrillic character.

three files xcmrl0. v f , cmrl0. pk and cmcyr 10. pk
are opened instead of one file cmcyrlO.pk, and to-

tal required memory is increased by one-third. This

example only shows that extensive usage of virtual

fonts will require more economic realization.

Another reason to use the program PosTeX is

the portability of . d v i files. Our virtual fonts refer
to local coding of Russian characters and immedi-

ately after w i n g a . dvi file is not portable. After
being transforming by PosTeX a . d v i file becomes

portable - it refers only to ordinary fonts.

It 's also possible to enter Russian text using
pure ASCII. for people who don't do much Russian
w i n g , but need to set an occasional citation. In

this case. control sequences can be used, and it is

necessary to specify the boundary between Russian
and non-Russian text to switch the hyphenation pat-
terns. E.g.. for printing this article in TUGboat
the WNcyr realization of the cyrillic characters by

Thomas Ridgeway has been used.

An integration of Russian into "International

I4Wn by Joachim Schrod is done by the following
Russian. s t y file:

\def \cont e n t s n a m e C C o ~ e p x a ~ a e)
\def \ l i s t f igurename(Cnmco~ p r n c y ~ x o ~)

\def \ l i s t t ab lename(Cnmox T ~ ~ ~ H I I)

\def \ a b s t r a c t n a m e < A ~ ~ o ~ a q m s)

\def \par tnameCYac~b)

\def \chapternameCI'na~a3
\def \appendixname{np~~noxe~ae)

\def \ r e f n a m e C J I ~ ~ e p a ~ y p a)
\def \bibname{Ba6n~orpa@~s1)

\def \ i n d e x n a m e (A n @ a ~ H ~ ~ b ~ B y ~ a 3 a ~ e n b)

The macros \Alph and \a lph are redefined too.

References

[l] Barbara Beeton, Mathematical symbols and
cyrillzc fonts ready for distribution (revised).
TUGboat 6 (1985), no. 3, pp. 124-128.

[2] Dimitri Vulis. Notes o n Russ ian m. TUGboat

10 (1989), no. 3, pp. 332-336.

[3] H.J. ~ ~ O H T H H ~ p . M e m a n p o e x m xupunnoe-
cxozo an$aeuma d n x n e u a m a w q u x ycmpoCcme
c ea lcoxua pa3peue?tuea: n p e n p ~ ~ ~ HQB3.
90-66, IIPOTBMHO. 1990.

o Basil Malyshev
Institute for High Energy Physics
142284, Protvino, USSR
malyshev@m9.ihep.su

o Alexander Samarin
Institute for High Energy Physics
142284, Protvino, USSR
samarinQvxcern.cern.ch

o Dimitri Vulis
CUNY Graduate Center
NY, USA
dlvQcunyvms1.bitnet

TUGboat, Volume 12 (1991), Xo. 2

Serbo-Croatian Hyphenation:
a 'IjEX Point of View

Cvetana Krstev

On Serbo-Croatian

Serbo-Croatian is one of the South-Slavic languages.
It is characterized, as other Slavic languages, by a
rich morphology. A particular feature of the lan-
guage is its almost fully phonological orthography,
i.e. on a word level, one letter corresponds to each
phoneme and vice versa. As a result, the written
text practically represents a phonemic transcription
of speech. Still, the Serbo-Croatian literary lan-
guage has two main pronunciations, ekavian and
jekavian, which reflect the different development of
the pronunciation of the old Slavic sound h. Sound
h is usually replaced by vowel e in ekavian dialect
(for instance, dete, mleko, veEan, ~ o v e k) while
in jekavian dialect it is usually replaced either by
two-syllable group i j e (d i j e t e , mlijeko) or by
one-syllable group j e (v j e ~ a n , Eovjek). Those
differences in pronunciation are recorded in the
written text. Accent has a distinctive role in Serbo-
Croatian and as it is not marked in written texts
there is a number of homographs.

Two alphabets are in use: Latin and Cyrillic.
The Serbo-Croatian Latin alphabet is different from
the English alphabet. Both letters with diacritics -
E, E, Z, g, d-and digraphs-d~, l j . n j -are
in use and they all have a separate place in the
alphabet. The order of the Serbo-Croatian Latin
alphabet is therefore as follows: a, b. c. E. t, d,
dZ, d, e and so on. As the letters q, w, x and
y don't exist in the Serbo-Croatian alphabet, the
total number of letters is 30. Transcription of
foreign words and names is compulsory in Serbo-
Croatian of ekavian pronunciation while jekavian
pronunciation allows the orthography of the source
language.

While all the letters with diacritics are assigned
separate keys on the standardized national keyboard
as well as the positions in the national version of
7-bit code [I, 2, 31, neither keys nor codes are
provided for digraphs so they are input by striking
two keys, i.e. by entering two codes. Besides that,
although the standard provides a separate key for
the letter d. the keyboards of old typewriters often
did not have it. As a result, this letter was-and
sometimes still is -recorded as the digraph d j . in
spite of orthographic rules.

Serbo-Croatian Cyrillic has the equivalent 30
letters but with neither diacritics nor digraphs. The

order of the letters in the Serbo-Croatian Cyrillic
alphabet is completely different from the order in
the Latin alphabet. The Serbo-Croatian Cyrillic
alphabet is also different from the Russian alphabet
as there are letters which do not exist in Russian
Cyrillic: 5, j , JL, I+, h, u, and vice versa, which is
important as the Russian Cyrillic was the basis for
the development of appropriate international coding
standards.

The digraphs of the Serbo-Croatian Latin al-
phabet can cause problems when using formatting
and typesetting programs. particularly for hyphen-
ation and automatic transcription from the Latin
to the Cyrillic alphabet. These problems can
be caused by each combination-lj, n j , dZ and
dj-which in the text may represent both di-
graphs and consonant clusters. A digraph is always
transcribed into one Cyrillic letter and is never hy-
phenated. For instance, nadZak-baba is transcribed
into ~avax-6aGa and in both cases is hyphenated
as na-dZak-ba-ba. On the other hand, a consonant
cluster is always transcribed into two Cyrillic letters
and can, in principle, be hyphenated. For instance,
nadZiveti is transcribed into Ha,qxmem and is
hyphenated as nad-Zi-ve-ti.

Serbo-Croatian Hyphenation Rules

Several sets of hyphenation rules for Serbo-Croatian
were proposed on different occasions [4, 51, but
to none of them did linguists gave unqualified
support. Thus, the Serbo-Croatian Orthography
Book [6] only gives the recommendations on how to
hyphenate words, avoiding formulating precise rules.
These recommendations can briefly be described as
follows [7]:

(a) Two adjacent vowels should be divided, but it
is not wrong if they are not. For instance, Za-oka
or Zao-ka.

(b) It is not allowed to carry over to the next line
two or more final consonants without a vowel. For
instance, not mlado-st but mla-dost.

(c) If there is only one consonant between two
vowels, the consonant belongs to the second vowel
and it is carried over with it to the next line. For
instance, not bor-ac but bo-rac.

(d) If there are two or more consonants between
two vowels, only those consonants that can be
easily pronounced with the vowel that follows can
be carried over to the next line (for instance, ze-
mlja but also zem-lja). On the other hand, it
is not recommended to carry over to the next line

216 TUGboat, Volume 12 (1991), No. 2

a consonant cluster which is difficult to pronounce
(for instance, not bu-mbar but bum-bar).

(e) If the constituent parts of a compound word can
be distinguished, the break point is between those
parts and each part is further hyphenated as if it
were a separate word (for instance, raz-vuCi and
raz-oru ta t i) . If those parts can't be distinguished.
the word is hyphenated as if it were not compound
(for instance, not raz-urn but ra-zum). In both
the examples the words are formed of prefix (raz-)
and stem, but in the first case this prefix can be
distinguished while in the latter case it can't be
recognized any more, and the word is hyphenated
according to the previous rules ((a)-(d)).

Although it follows from this rule that the
recognized prefix can be further hyphenatedG as a
separate word, it is considered a good typographic
practice not to hyphenate a polysyllabic prefix. For
instance, the word novootvoren with prefix novo-
should be hyphenated novo-o-tvo-ren rather than
no-vo-o-tvo-ren.

The recognition of vowels is fundamental for
hyphenation in Serbo-Croatian, as hyphen positions
often coincide with syllable boundaries and syllables
are formed around the central phonemes which are
usually vowels. The Serbo-Croatian alphabet, both
Latin and Cyrillic, has five vowels: a, e, i, o, u.
However, the phoneme r can take on the role of a
vowel and be a central phoneme of a syllable in the
following circumstances:

- in interconsonantal position (svr-stavanj e);
- when preceding a consonant, at the beginning

of a word (r-vanje);
- when following a vowel, in compounds (po-r-

v a t i se).

Besides that, the sonants r , 1, m and n when
preceded by a consonant, at the end of a word,
also behave as vowels (ma-sa-kr and bi-ci-kl).
Marginal phonemes are consonants. Two types of
syllables can be distinguished: open syllables, with
the structure -V- or -CV-, where V is any vowel in
the sense described above and C is any consonant,
and closed syllables, with any other structure.

The application of recommendations (a)-(c) is
almost self-evident and beyond questioning. Rec-
ommendation (d) refers to the identification of
closed syllables which means that the consonant
cluster has t o be divided. Still, the Serbo-Croatian
0&hography Book gives no strict rules for the divi-
sion of consonant clusters, but only introduces the
intuitive notions of consonant clusters that are easy

or difficult to pronounce and illustrates them by few
examples.

A semantic criterion, whose automatic imple-
mentation can be difficult to achieve, is introduced
into hyphenation by recommendation (e). For ex-
ample, ob- is a prefix in the word o b - i s t i n i t i but
not in the word o-bi-Eaj . The particular problem
here is to decide whether the constituent parts of a
compound word can be distinguished. The Serbo-
Croatian Orthography Book gives no hints on how
to make such a decision (for instance, whether the
parts in the word preduzeti can be recognized).
An additional problem to the application of this
recommendation is posed by homographs. For in-
stance, in the word podiCi, podidem the prefix
is pod- while in the word podiCi, podignem the
prefix is po-.

Definition of Hyphenation Rules

Research into some aspects of consonant clusters
in Serbo-Croatian has been undertaken before [8],
but their occurrences in contiguous text have not
been investigated. It was thus necessary to establish
which consonant clusters do occur in Serbo-Croatian
in order to state precisely the notions of easy-
and difficult-to-pronounce consonant clusters. For
that purpose, the analysis of consonant cluster
occurrences has been undertaken that was based
on the corpus of modern Serbo-Croatian texts
of ekavian dialect [9]. In addition to frequency
dictionaries that take into account the position of
a consonant cluster in a word-initial, final or
medial-results were obtained pointing out the
occurrences of consonant clusters d j , dZ, n j and l j
as well as of those occurring only at the junction of
the prefix and the word stem.

This analysis has made it possible to formulate
the following rules for consonant cluster division in
Serbo-Croatian:

I Binary consonant clusters.
(a) Two consonants are carried over to the next line
(-C1C2V) only if they are usual at the beginning of
a word in Serbo-Croatian, that is, if ClC2 belongs
to one of the following sets:

1. C1 E {s, z, S, Z) (C1 is a fricative) and
C2 is any consonant; or

2. C1 = m and Cz E {n, 1, r); or
3. Cl = v and Cz E (1, r); or
4. Cl 4. {r , 1, l j , V, j ,m,n , n j) and

C2 E {r , 1, l j , V, j,m, n, n j) (Cz is asonant).

(b) In all other cases, one consonant must be left in
the current line (CI-C2V).

TUGboat, Volume 12 (1991), No. 2 217

11 Three-member consonant clusters.
(a) Three consonants are carried over to the next
line (-CLC2C3V) only if they are usual at the
beginning of a word in Serbo-Croatian (for instance,
izdajni-gtvo) , that is if

C1 E {s: z , 5, Z) and
C2 is any consonant, and
C3 E {r , 1, l j , v, j) (C3 is a sonant);

(b) Two consonants are carried over to the next line
(C1-C2C3V) only if two consonants C2C3 are usual
at the beginning of a word in Serbo-Croatian (for
instance, rot-kva- see Ia).

(c) One consonant is carried over to the next line
(C1C2-C3V) only if the two consonants that remain
in the current line (C1C2) are usual (or possible) at
the end of a word in Serbo-Croatian (for instance.
f unk-ci j a) , which means that ClC2 belongs to one
of the following sets:

1. C1 E {r , 1, 1 j , v, j , m, n, n j) (C1 is a sonant)
and
C2 is any consonant; or

2. C1 E {s, z , S, Z, f , h) (C1 is a fricative) and

C2 @ {r , l j , V, j , m, n, n j) (C2 is not a
sonant); or

3. C1C2 E {ps, bz, ks, gz, p t , bd, k t , gd).

I11 Four-member consonant clusters.
(a) Three consonants are carried over to the next
line (C1-C2C3C4V) only if these three consonants
are usual a t the beginning of a word in Serbo-
Croatian (see IIa). For instance, demon-straci j e.

(b) Two consonants are carried over to the next line

(C1C2-C3C4V), only if the two consonants which
are left in the current line are usual at the end
of a word in Serbo-Croatian (see IIc) and if the
two consonants which are carried over to the next
line are usual at the beginning of a word in Serbo-
Croatian (see Ia) . For instance, s tudent-ski .

Moreover, it should be stressed that no four-
member consonant cluster was identified on the
analyzed corpus that would not have the structure

(a> or (b).

In order to enable the implementation of recom-
mendation (e) given by the Codex it was necessary
to analyze the use of prefixes in Serbo-Croatian. For
that purpose a list of 79 common Serbo-Croatian
prefixes of 2 or more letters in length was composed
on the basis of traditional Serbo-Croatian grammar
textbooks, consisting of 52 basic prefixes and 27
phonologically altered prefixes that occur as a result
of phonological changes at the junction between the
prefix and the word stem. For instance, the basic

prefix i z - has three altered prefixes: is- (in front
of p. t, k. f , c, h). i Z - (in front of d and d ~) and
is- (in front of E and C) .

The occurrences of all these prefixes were
analyzed on the corpus of modern Serbo-Croatian
texts of ekavian dialect [lo] . For each prefix string,
it was thus possible to establish its productivity
and its ability to be combined with other prefixes.
Also, such prefix strings were identified that are
prefixes in some, but not all, cases (for instance,
ob- is a prefix in obuhva t i t i but not in ob ica j) .
Finally, instances were identified where the prefix
is not the longer but the shorter prefix string (for
instance, naj- is the prefix in na j e l egan t n i j a
while in najednom the prefix is na-).

The Serbo-Croatian prefixes were, exclusively
for the purpose of hyphenation, classified on the
basis of this analysis in such a way that the
recognition of prefixes of the same group requires
the same conditions. The prefix types are as follows:

1. The break point is always after a prefix
string of type 1. A prefix was assigned type 1

either because all instances of the prefix string in the
corpus were prefixes or because it never occurred.
For all the prefix strings that never occurred in the
corpus the additional check was done in the Serbo-
Croatian dictionary that supported the decision
to categorize them as type 1. For instance, the
prefixes of type 1 are a n t i - (a n t i h r i s t) - always a
prefix - and iz- (iZdZikl j a t i) -never occurred.

2. The break point is after a prefix string of
type 2, except when a difficult-to-pronounce
consonant cluster follows it. A prefix falls into
this group if it is monosyllabic and ends with a
vowel. The prefix za- is of type 2 (za-svodi t i , but
zaE-kol j i c a because Ek is a difficult-to-pronounce
consonant cluster, that is, condition Ia is not
satisfied).

3. The break point is after a prefix string of
type 3, except if it is followed by a vowel,
when additional information is needed. All
prefixes of type 3 end with a consonant. If a prefix
string of type 3 is followed by a consonant, it cannot
be wrong to break the word after it, because the
prefix string without that last consonant can't be a
prefix for various reasons. For instance, eks- is a
type 3 prefix because ek- is not a prefix at all. On
the other hand, na j - is a type 3 prefix although
na- can be a prefix, but as no initial consonant
cluster beginning with consonant j exists, na- can't
be a prefix when the prefix string na j - is followed
by a consonant. On the other hand, eks- and n a j -

218 TUGboat, Volume 12 (1991), No. 2

are not prefixes in the words ekser and n a j a v i t i ,
respectively.

4. Additional information is always necessary
to decide whether a prefix string of type 4 is
a prefix. Prefix strings of type 4 are polysyllabic.
If we consider the break point after the prefix to
have a higher priority than other possible break
points and if, on the other hand, we do not want to
miss any break point, we can never tell beforehand
if the first break point in a word is after a prefix
string of type 4. For instance, polu- is a prefix in
the word polu-pismen while in the word polupa t i
the prefix is po-. In the former case the break point
after po- is possible but should be avoided due to
typographical conventions, while in the latter case
the break points after po- and polu- have equal
value.

5. Additional information is always necessary
to decide whether a prefix string of type 5

is a prefix, except when its final consonant
and consonants that follow form a difficult-
to-pronounce consonant cluster. Prefixes of
type 5 end with a consonant and for all of them the
prefix string without the final consonant can also
be a prefix. We can be sure that a word can be
hyphenated after a longer prefix string only if the
final consonant and consonants that follow form a
difficult-to-pronounce consonant cluster, no matter
whether that prefix string is really a prefix. For
instance. the word ob-zidat i must be hyphenated
after ob- because bz doesn't satisfy the condition Ia
(and ob- is actually a prefix). On the other hand.
ob- is a prefix in ob - l i z a t i while in o-bl iZnj i
the prefix is o-.
6. The additional information is always nec-
essary to decide whether a prefix string of
type 6 is a prefix, except when its final
consonant and consonants that follow form
the difficult-to-pronounce consonant cluster.
Prefixes of type 6 end with a consonant and are fol-
lowed by a consonant, as they are all phonologically
altered prefixes. Also, for all of them a prefix string
without the final consonant can also be a prefix.
As for the prefixes of type 5 , we can be sure that
the longer prefix string is a prefix in a word only
if the final consonant and consonants that follow
form a difficult-to-pronounce consonant cluster. For
instance. the word is-psovat i must be hyphenated

Production of Hyphenation Patterns

For Serbo-Croatian. as for some other languages -
French and Polish, for example - dictionaries that
indicate the hyphenation break points for all the
entries do not exist [12. 131. Thus, in order to
apply the PATGEN program [14] for the automatic
generation of a pattern dictionary to be used
with the typesetting system TJ$ [15]. it would
be necessary to include that information in some
machine-readable dictionary of Serbo-Croatian. But
that would not be enough as this dictionary would
have to contain. in addition to the usual dictionary
entries, all the derived forms. As Serbo-Croatian is a
language with a very rich morphology, this extended
dictionary would be at least ten times larger than
the original one. and it would be time-consuming
and erroneous to prepare it for PATGEN.

For this reason, the decision was made to
produce the pattern dictionary "by hand", founding
the generation on the precise hyphenation rules
described in previous sections and checking the
obtained results on the sample words extracted from
the existing Serbo-Croatian paper dictionaries. In
this section will be described the procedure which
generates the pattern dictionary to be used for
Serbo-Croatian texts of the ekavian dialect that use
digraphs d j , l j , n j and d2 encoded as two separate
codes [l l] .

(a) The break point is between two vowels
(recommendation (a) of the Orthography Book).
From this rule. 25 patterns were generated of the
form

VlV,

where V belongs to the set {a, e, i, o, u} of "real"
vowels.

(b) The break point is before a consonant
surrounded by two vowels (recommendation (c) of
the Orthography Book). From this rule. 105 patterns
were generated of the form

where C belongs to the set A \ {a, e , i, o, u, d j , n j ,
1 j , d ~) , where A denotes Serbo-Croatian alphabet.

(c) As the analysis of consonant cluster oc-
currences showed, the strings d j , n j , l j , dz are
much more frequently digraphs than consonant clus-
ters. Therefore, the following four patterns were
produced which disable the division of digraphs:

- -
after is- as sps isn't an initial consonant cluster in ld2 j in2 j 112j Id22
Serbo-Croatian. On the other hand, is- is a prefix The same analysis also showed that the consonant
in i s - k i t i t i while in i - skaka t i the prefix is i-. clusters d j , n j , 1 j and dZ occur only at the junction

of a prefix with a stem, so these cases will be covered
in items (j)-(0). At this point, only 4 patterns were

TUGboat, Volume 12 (1991), No. 2 219

added for the identification of prefixes in- and kon-
which had not been included in the prefix analysis
as they are not usual in Serbo-Croatian:

. i n 3 j ekc . i n 3 j unkt

. ko2n3jug . ko2n3 j unk

(d) The break point is not between two conso-
nants of a binary consonant cluster if this consonant
cluster is usual a t the beginning of Serbo-Croatian
words (rule Ia for consonant cluster division). From
this rule, 205 patterns were generated of the form

1 Cl c2

where C1 and C2 are such consonants that ClC2
satisfies rule Ia.

Having in mind that consonant clusters mnj and
v l j . whose existence is confirmed on the corpus, do
not satisfy rule Ia, in contrast to mn and v l , two
more patterns were introduced:

2m3n j 2v31 j

The patterns of form (c) function as desired if a
digraph is followed by a vowel. On the other hand,
if the digraph is followed by a consonant, the break
point before the digraph has to be disabled in all the
cases where the resultant consonant cluster does not
satisfy rule Ia. So, 11 more patterns were added:

21jn 21jk 21js 21jS
21jc 21jd 21jb 2nj s

2njc 2d js 2dZ3b

The generation of these patterns was based on
the results of the analysis of consonant cluster
occurrences.

(e) The phoneme r between two consonants
behaves as a vowel, which means that the break
point can, in principle, be after r. Analysis of the
occurrences of the phoneme r in interconsonantal
position, as part of the analysis of consonant cluster
occurrences, showed that only 106, of 576 possible
strings of the form ClrC2, were actualized. Besides
that, the actualized strings had such a form that
the pattern 1C12r was generated in step (d) while
pattern l r 2Cz was not generated at all. When
pattern 1C12r is applied to string ClrC2, the
obtained result is

and that is precisely the pattern necessary to iden-
tify the phoneme r in interconsonantal position-
no new patterns need to be generated.

(f) The break point is before a three-member
consonant cluster that is usual at the beginning
of Serbo-Croatian words (rule IIa). It may seem
that the implementation of this rule requires the
generation of 460 patterns of the form

1C12C22C3

However. analysis of consonant cluster occurrences
showed that C2 is actualized only as a plosive
consonant (p. b, k, g, t , d), the fricative f , the
affricate c or E . or the sonant m or v. That means
that patterns of the form 1C12C2 and 1C22C3 have
already been generated in step (d) as C1 E {s, S, z,

z), C2 $ {r , 1, l j , j , n, n j) and C3 is a sonant.
When these two patterns are applied, the necessary
pattern 1C12C22C3 is obtained. This means that
for implementation of this rule no new patterns
need to be generated.

(g) The break point in a three-member con-
sonant cluster that is not usual at the beginning
of Serbo-Croatian words is between the first and
the second consonant only if the two last conso-
nants of the cluster are usual at the beginning
of Serbo-Croatian words (rules IIb and IIc). The
three-member consonant cluster C1C2C3 that can
match no pattern of form (f), while C2C3 cannot
match any pattern of form (d) either, will be divided
as C1C2-C3, because C3V matches the pattern of
form (b). This means that for the implementation
of these rules no new patterns need to be generated
either.

However, the analysis of consonant cluster
occurrences. as well as the interactive checking of
the correctness of the generated patterns, showed
that there are some cases when it is better to divide
a three-member consonant cluster as C1C2-C3,
although C2C3 is usual at the beginning of Serbo-
Croatian words, which means that pattern 1C22C3
exists. Those cases occur mainly in the words of
foreign origin and very often in derivative forms.
For instance, it is better to hyphenate konkursni
as konkurs-ni than as konkur-sni, or t e k s t i l as
t e k s - t i 1 than as t e k - s t i l . In order to cover these
cases too, 6 more patterns were generated:

ur2s3n k2s3t k2t3n
12t3n n2t3n or2f 3n

(h) The majority of four-member consonant
clusters in Serbo-Croatian appear at the junction
of a word stem with suffixes - s k (i) and - s t v (o) .
Namely, the analysis of consonant cluster occur-
rences showed that only 3 of the 22 four-member
consonant clusters that were identified on corpus
did not have the form C C s k or C s t v . The
breaks between the stem and the suffix will thus
be provided by the patterns of form (d) and (f)
respectively. The remaining identified consonant
clusters are also correctly handled, as they match
the patterns of type (f) or the appropriate patterns
for prefix recognition: n s t r in demon-stracija is
controlled by the pattern of type (f) while k s p l

220 TUGboat, Volume 12 (1991), No. 2

in eks-plozija and j s t r in n a j - s t r a s n i j i are
controlled by the patterns of form (1) for prefixes
eks- and naj- respectively.

(i) The break point cannot be before the final
consonants (recommendation (b) of the Orthography
Book). The patterns of form (b) provide that at
least one vowel is carried over to the next line.
However, the patterns of form (d) and (f) that match
the consonant clusters satisfying the conditions Ia
and IIa respectively would allow the break points
before these consonant clusters at final positions as
well. The analysis of consonant cluster occurrences
showed that only 4 of the 33 final consonant clusters
that were identified on corpus match the patterns
of form (d). In order to overcome this problem it
would thus be necessary to add 4 more patterns:

2 s t . 2 s l . 2St. 2kl .

But as the hyphenation routine of 'I&X hyphenates
the words in a way that enables at least three
letters to be carried over to the next line, these
patterns were not included in the pattern dictionary
for Serbo-Croatian.

Aside from these final clusters, the special case
of the phonemes r, m, n and 1 at the end of a
word behind a consonant should be mentioned. An
example is the word masakr, in which the final r
behaves as a vowel. But the final consonant cluster
k r matches the pattern of form (d). which means
that this word would be correctly hyphenated:
ma- s a-kr .

Before we continue to describe the generation
of patterns that control the hyphenation at the
junction of prefixes and word stems. it should be
noted that the pattern dictionary produced thus far
has 362 patterns.

(j) Prefix strings of type 1 are always prefixes.
In other words, the break point is always after a
prefix string of type 1. For the 27 prefixes of type
1, 36 patterns were generated which make break
points after the prefix strings possible. For instance.
for the prefix an t i - only one pattern was generated.
. an2t i, while for the prefix bes-, which is a variant
of the prefix bez- that is realized in front of ?

and €, two patterns were generated: .be283E and
.be2S3€. On the other hand, for the prefixes nat-.
op-, ot-, pot- and pret- , which are also variants
of the basic prefixes, no pattern was generated as
the hyphenation after these prefixes is controlled by
the patterns for consonant cluster division (steps

(a)-GI).
(k) The question whether a prefix string of type

2 is a prefix in a word or not, does not influence

word hyphenation. So, for the 19 prefixes of type 2
no pattern was generated.

(1) The break point is after a prefix string of
type 3, except when it is followed by a vowel when
additional information is needed. The generation of
patterns for prefixes of this type will be illustrated
on the example of the prefix naj-, which has a
high frequency in Serbo-Croatian as it is used to
express the superlative of adjectives. First of all.
the prefix .na2j3 is generated. Then, the cases
when naj- in front of a vowel is not a prefix
have to be covered, because naj- can, in principle,
be a prefix for all Serbo-Croatian adjectives that
begin with a vowel. So. for instance, the patterns
. na3j4av (for words as na- ja -v i - t i or na-jav-
l j i-va-Ei-ca) and .na3j4el (for words as na-
je - la or na-je-lo) are generated. Finally, as
the adjectives ave t in jsk i and elementaran, which
have superlatives exist, the patterns .na4j5avet
and .na4j5elem had to be generated. In that way,
19 patterns were generated for the prefix naj- and
a total of 108 patterns for the 9 prefm strings of
type 3.

(m) Additional information is always necessary
in order to decide whether a prefix string of type 4 is
a prefix in a word or not. It should be remembered
that all prefixes of type 4 are polysyllabic and, de-
spite the recommendation given by the Orthography
Book. it is usually considered better not to hyphen-
ate the prefix itself. Patterns should, therefore.
prevent the hyphenation of a prefix string in the
cases when it is a prefix. The generation of patterns
for prefixes of type 4 will be illustrated on the exam-
ple of the prefix preko-, that occurs, for example,
in words prekomerno or prekosutra. However, the
analysis of occurrences of the prefix string preko-
in the corpus. as well as a lookup in Serbo-Croatian
dictionaries, showed that the instances where pre-,
rather then preko-, is a prefix, are more frequent.
Some examples are pre-koraEiti , pre-kosi t i ,
and pre-komandovati. Because of that, only the
patterns that provide the correct hyphenation in
the cases when preko- is prefix were entered in
the pattern dictionary. For instance, for the ex-
amples given above two patterns were generated:
. pre2kome and . pre2kosu. Similarly, 9 patterns
were generated for the prefix preko-, and a total of
59 patterns for the 14 prefix strings of type 4.

(n) The break point is compulsory after a
prefix string of type 5 only if the last consonant of
the prefix string and the initial consonants of the
word stem form a difficult-to-pronounce consonant
cluster. In all other cases, additional information
is needed. The generation of patterns for prefixes

TUGboat, Volume 12 (1991): No. 2

of type 5 will be illustrated on the example of
the prefix od-, that occurs, for instance, in words
o d r a d i t i or odsv i ra t i . In view of the fact that
the analysis of occurrences of this prefix string in
the corpus, as well as a lookup in Serbo-Croatian
dictionaries, showed that it is a very frequent prefix.
pattern . od3 was entered in the pattern dictionary.
However, in front of the vowel i the prefix string
od- very often is not a prefix (for instance. in
words odignuti or od is ta) , so the pattern .od4i
is generated. At the end, in the word o d i g r a t i the
prefix string od- is a prefix, so the pattern . od5igr
is added. In that way, 35 patterns were generated
for the prefix od-, and a total of 151 patterns for
the 6 prefixes of type 5.

(0) Prefix strings of type 6 are similar to the
prefix strings of type 5, except that. being variants
of the basic prefixes, they can be prefixes only if
they are followed by a consonant of a certain kind.
The generation of patterns for the prefixes of type 6
will be illustrated on the example of the prefix ras- ,
which occurs, for instance, in words rastumaEiti
or r a s c v e t a t i . The prefix ras - is a variant of the
prefix raz- that emerges from the substitution of
the voiced consonant z by its unvoiced counterpart
s in front of the unvoiced consonants p, k. t, f . c

or h. Thus, for the prefix r a s - we introduce the
pat terns

. ra2s3p . ra2s3k . ra2s3t

. ra2s3f . ra2s3c . ra2s3h

However, ras - is not always a prefix in front of
these consonants. Moreover, in words r a s t a v i t i
and r a s t e z a t i . for instance, the prefix is ra - and
therefore the patterns . ra3s4 ta and . ra3s4 te are
added. At the end the pattern . ra4s5 tan j is
generated because the word r a s t a n j i t i has the
prefix ras - . Similarly, for the prefix r a s - 20
patterns were generated. and a total of 82 patterns
for the 4 prefixes of type 6.

(p) Combinations of two, rarely three, prefixes
can be identified in Serbo-Croatian. Examples of the
latter case are, for instance, is-po-raz-bol jevat i
or po- iz -o-s tav l ja t i . For the solution of the hy-
phenation problem, only those combinations are in-
teresting for which additional information is needed
to identify the second prefix. The analysis of occur-
rences of a combination of prefixes in the corpus.
as well as a lookup in Serbo-Croatian dictionaries,
showed that besides the very frequent prefixes na j -,
which expresses the superlative of adjectives. and
ne-, which expresses the negative form of nouns.
adjectives and adverbs, prefixes that combine with
other prefixes are o-. po-, pro-, za- and novo-.

The generation of patterns needed to identify the
combination of prefixes will be illustrated on the
example of the combination o-bez-, which occurs
in the words obezvred i t i and obezglavi t i , while
in the word obezubi t i the combination o-be- ap-
pears. Bearing in mind that patterns . ob3 and
. ob4e were generated in step (n), two patterns,
. obe2z3v and . obe2z3g, were added for the exam-
ples given above.

To the prefixes naj- and ne- a partial solution
was applied. For prefix na j - only the patterns that
correspond to the combinations of the prefix naj-
with prefixes that participate in adjectival deriva-
tion were generated. Similarly, for the prefix ne-
only patterns that correspond to the combinations
of the prefix ne- with prefixes that participate in
adjectival, adverbial and nominal derivation were
generated. At the same time, for the second prefix
in each combination, only the patterns that .'reflect
the rule" were taken into consideration. For exam-
ple, for the combination naj-bez- (for instance, in
words najbezgreSni j i and na jbezvol jn i j i) only
one pattern was generated .najbe2z3 while the
other patterns generated for the recognition of the
prefix bez- were not taken into account. In this
manner. for the recognition of the combination of
prefixes 90 patterns were generated.

(r) The pattern dictionary was amended with
an exception dictionary which contained only seven
words. The words were added to the exception
dictionary for one of these two reasons:

- The pattern dictionary would have to be ex-
panded with a pattern that matches only one
word. Such is the case of the undeclined word
po-dne which due to the pattern . po2d3 gen-
erated in step (0) wouldn't otherwise have any
break point.

- The word is a homograph and its break points
depend on the meaning. For instance, the word
form uzo r i can be the nominative plural of the
noun uzor, in which case the break points are
u-zo-ri, or the second person singular of the
imperative of the verb uzora t i , which has a
prefix uz-, and in that case the word should be
hyphenated as uz-ori. Such a word forms are
added to the exception dictionary to suspend
all the break points.

The complete pattern dictionary has 888 pat-
terns. The highest coefficient that appears in some
pattern is 5. The analysis of occurrences of prefixes
of a particular type in the corpus showed that the
362 patterns generated in steps (a)-(i) and which
reflect the hyphenation rules can be expected to

222 TUGboat, Volume 12 (1991), No. 2

provide the breaks for approximately 97% of the should be added: for example, patterns Ida. etc.
words in some document. and l d r , etc. Also, in all patterns for prefix recog-

nition every occurrence of the string d j in which d
Conclusion and j are not separated by a digit should be re-

T)jX has been in steady use at the Faculty of Math-
ematics at the University of Belgrade for several
years now. The Latin alphabet is predominant, but
Cyrillic has been used too. However, the Serbo-
Croatian version of Q X has not been produced yet,
in the sense that there are no font tables, neither for
the Latin nor for the Cyrillic alphabet. that would
reflect the national standard 7-bit codes. This
means that for the Latin alphabet the commands
\v and \ ' are used to set the diacritics. It is well
known that words containing such diacritics can't
be hyphenated by T@L For this reason, the gener-
ated pattern dictionary has still not been included
in any TEX implementation.

The validity of the generated pattern dictionary
was. thus, tested with the command \showhyphens.
As a Serbo-Croatian dictionary in machine-readable
form was not available, chosen words found in
corpus and traditional dictionaries were used as
the arguments of this command. All the words
were coded using only the letters of the English
alphabet. The words were chosen in a way to
reflect most of the problems of digraphs, consonant
clusters and prefix recognition. On the basis of
this test it can be said that the generated pattern
dictionary provides word hyphenation according to
the formulated hyphenation rules. However. the
undertaken test can, by no means. be considered
exhaustive enough and the true validity of the
produced pattern dictionary will be confirmed only
through regular use.

There are some aspects of Serbo-Croatian hy-
phenation that have not been covered by the per-
formed analysis. First of all, the problem of
compound words is still unsolved. As in Serbo-
Croatian many compound words are formed by
inserting the vowel o-/-e- between the constituent
parts (for example, glavo-bolja or gluvo-nem).
all those words will be correctly hyphenated by the
existing rules. As for the compound words that
are formed simply by connecting the constituent
parts. many of them will be correctly hyphenated.
as krompir-Eorba or s tar-mali .

In the end, it should be stressed that this
pattern dictionary was generated for use with the
Latin alphabet which uses the four digraphs d j , 1 j ,
n j and dz. If the letter 6 were used instead of
the digraph d j , the dictionary would have to be
extended. First of all. patterns of form (b) and (d)

placed by 8. For instance, the pattern .na4d5redj
should be replaced by .na4d5red. It should be
noted that during the generation of patterns for
prefix recognition, the digraphs were always treated
as separate letters. For instance, two patterns
were generated - . na4d5red and . na4d5redj - al-
though one pattern, .na4d5red, would have been
enough. This strategy would facilitate the replace-
ment of a digraph with a separate letter. Of course,
all the patterns that refer to the digraph d j could be
deleted, but that is not necessary at all. Namely, for
the hyphenation routine of m, the letters d and
d j could be considered as two different letters that
can occur in the same document, which sometimes
even happens.

If the Cyrillic alphabet were used instead of
the Latin alphabet, then the same procedure that
was suggested for the replacement of the digraph
d j by the letter d should be applied to the letters
~ b , B and I,I. Of course. the patterns that refer to
digraphs should be deleted as they would have no
meaning any more.

It should be stressed once again that the
obtained results apply only to Serbo-Croatian of
ekavian dialect as some crucial results are based on
the analysis of corpus of texts of ekavian dialect.
However, besides some small lexical differences, the
differences between the two dialects are mostly the
result of the different pronunciation of the sound k.
As a result, in jekavian dialect some new consonant
clusters may be introduced: for instance, cvje-
tova (jekavian) us. cvetova (ekavian) or snjegova
(jekavian) us, snegova (ekavian). According to
hyphenation rule Ia, most of those consonant clus-
ters wouldn't be hyphenated which is in this case
appropriate. Nevertheless, the produced pattern
dictionary should be applied to the texts of jekavian
dialect only with due precaution.

Version 3.0 of TEX introduces some new pos-
sibilities. For example, with 'IkX 3.0 the user can
specify the smallest number of letters that may be
left in a current line and the smallest number of
letters that may be carried over to the next line. For
Serbo-Croatian this is an important improvement,
as the old restrictions lead to situations where many
6-letter words with 2 legal break points would not
be hyphenated (for instance, u-sko-ro) and even
some 7-letter words, as u - s t r e - l i . If some user
would want to set the smallest number of letters
that may be carried over to the next line to 2 . the

TUGboat, Volume 12 (1991), No. 2

only change that has to be made in a pattern dictio-
nary is the addition of the 4 patterns generated in
step (i). The further reduction of the limits would,
however, require the detailed check of all patterns,
especially those for the prefix recognition.

Acknowledgement

I want to express my gratitude to Dr. Janusz
Bieri. from the Institute of Informatics at Warsaw
University, for all the support and information he
gave me during my work as well as for the careful
reading of the manuscript. I also owe a lot to
Prof. Jacques Dksarmknien from "Laboratoire de
typographie informatique" at the University Louis-
Pasteur. Strasbourg, whose work in solving the
hyphenation problem for French guided me during
my research. In addition, I thank Prof. Ljubomir
PopoviC, from the Faculty of Letters at Belgrade
University, who helped me define the hyphenation
rules for automatic application.

References

International Organization for Standardization,
Information processing-IS0 7-bit coded char-
acter set for information interchange, IS0 646,
(1983)
Savezni zavod za standardizaciju, Skup znakova
za razmenu podataka kodiranih sa 7 bitova za
srpskohrvatsko latinitno pismo, [7-bit coded
character set for Serbo-Croatian Latin alphabet
for information interchange], JUS I.Bl.002,
(1986)
Savezni zavod za standardizaciju, Jedinice za
unos podataka-Tastatura sa 47 tipki za slo-
uenatko i hrvatsko latinitno pismo, [Data entry
units-Keyboards 47 keys for Slovenian and
Croat Latin alphabet], JUS I.Kl.002, (1986)
BeliC, A., Pravopis srpskohrvatskog knjiievnog
jezika, [Standard Serbo-Croatian Orthography
Book], Belgrade, pp. 15-18, (1934)
StevanoviC, M., Sauremeni srpskohruatski jezik,
[Contemporary Serbo-Croatian Language] , Bel-
grade, pp. 152-156, (1964)
Pravopis srpskohrvatskog knjiievnog jezika,
[Standard Serbo-Croatian Orthography Book]
Novi Sad - Zagreb, 130-131, (1960)
Vitas, D., Podela na slogove srpskohrvatskih
reti, [Syllable Division of Serbo-Croatian
Words], Informatika, Ljubljana, 311981
Tolstoja, S. M., NaEal'nye i koneEnye soteta-
nija soglasnyh v serbsko-horvatskom jazyke,

[Initial and Final Consonant Clusters in Serbo-
Croatian], Issledovanija po serbsko-horvatskom
jazyku, Moskva, pp. 3-38, (1972)
Krstev, C., Frekvencijski retnik konsonantskih
grupa u srpskohruatskom jeziku i problem ras-
tavljanja na slogove, [A Frequency Dictionary
of Consonant Clusters in Serbo-Croatian and
the Problem of Syllabification], Proceedings of
the 2. Scientific Meeting "Computer Processing
of Linguistic Data", Institute "Joief Stefan",
Bled, pp. 389-404, (1982)

[lo] Krstev, C., Rastavljanje reEi srpskohrvatskog
jezika na kraju retka, [Hyphenation of Serbo-
Croatian words at the end of the line], Pro-
ceedings of the 3. Scientific Meeting "Computer
Processing of Linguistic Data", Institute "Joief
Stefan", Bled, pp. 289-301, (1985)

[ll] Krstev, C., Programski sistemi za obradu tek-
sta, [Text Processing Systems], Master Thesis,
Faculty of Mathematics, Beograd, (1989)

[12] Dksarmknien, J., French hyphenation by com-
puter: application to TEX, Technology and Sci-
ence of Informatics, Gauthier-Villars & John
Wiley & Sons, Vol. 6, No. 1. (1987)

[13] Kolodziejska, H., Dzielenie wyrazdw polskich w
systemie T&X, [Hyphenation of Polish words by
w], Report No. 165, Institut of Informatics,
Warsaw University, (1987)

[14] Liang, F. M., Word Hy-phen-a-tion by Com-
put-er, Ph. D. Thesis, Department of Com-
puter Science, Stanford University, Report No.
STAN-CS-83-977, (1983)

[15] Knuth, D. E.: The Z&Xbook, Addison-Wesley,
Reading, Mass., (1984)

o Cvetana Krstev
Computer Laboratory
Faculty of Sciences
Studentski trg 16
11000 Belgrade
Yugoslavia
Bitnet: xpmf lOl(9yubgss21

TUGboat, Volume 12 (1991), No. 2

O n TJ$% a n d Greek . . .

Yannis Haralambous

1 Some historical background

The first person who made greek characters for
was D. E. Knuth; each CM font contains the greek
uppercase characters. These are excellent for greek
text as well as for mathematics. Only two remarks
could be made: first, the 'Y is actually a calligraphic
form of Y and the latter is more frequently used in
Greece; second, the typewriter T, A , . . ., .Q don't have
much in common with greek typewriting.

Knuth also did the well known lowercase greek
characters a , /3 . . . w for use in mathematics. These
are not suitable for greek text.

The American Mathematical Society added a
digamma (F), probably for the sake of completeness
(the author would be interested to find out in which
area of mathematics a digamma is or could be used).

Then came Silvio Levy [1], who created an en-
tirely new family of greek fonts (roman, slanted,
boldface, typewri ter) . These fonts are partly
coded in 8-bit and Silvio uses ligatures and macros
to obtain the characters in the ASCII range 129-256.

As a matter of fact, Silvio's idea was to have as
many combinations of accents, breathings and sub-
script iota as possible and at the same time integrate
a new feature concerning sigmas, namely an auto-
matic choice between the medial o and the final <.
For this. he included every possible combination a
+ (character) as characters of the font (obtained by
ligatures) and defined s to be < in all other cases.
This is a brillant idea, but has a major disadvan-
tage: instead of 2 font positions a, 5 it needs 58.
This forces him, because of lack of space, to use the
\accent primitive in the case of the combination
(breathzng) + (grave accent) (", "). Of course. as
he already points out, this doesn't harm hyphen-
ation since these accent combinations appear only
on monosyllables. Also, Silvio announced an hy-
phenation table. without specifying for which kind
of Greek.

A year later, Klaus Thull and the author [2]
made some changes to Silvio's fonts:

reducing them to 128 characters, because of
problems with some drivers,

making a new family of one-accent fonts (the
official system in Greece),

adding a SMALL CAPITALS font, a few ancient
greek characters (F, F, 5, q. h, A) and hyphen-
ation patterns for modern "post-1974" greek
(F ~ L O T L X T ~) .

2 W h a t comes next

Since the release of T@ 3.0, many efforts have been
undertaken to establish standards for 256-character
CM fonts. These fonts - or at least tentative versions
of them-have been presented in Cork 1990 and in
Vienna 1991 and contain a maximum of accented
characters to suit most of the occidental languages.

Besides supporting 8-bit input, the new lQ,X
also allows hyphenation of different languages in the
same document. In this way, soon we will have dif-
ferent pattern tables included in the plain format of
the standard m-distr ibut ion. As a matter of fact,
Mike Ferguson has proposed to coordinate such a
collection of hyphenation patterns.

And what about greek? Before considering hy-
phenation problems, a standard font table should be
fixed! I think it is time to take this step: choosing a
standard greek font table and starting to work with
it. In the appendix of this note, I propose a font ta-
ble. All combinations of characters, accents, breath-
i n g ~ and subscript iota are present as individual
characters, reached by ligatures. Special symbols by
Oxford in epigraphical texts [3] are included. Note
that positions '013 and '040 are blank on purpose
to maintain compatibility with Post Script fonts1.

Of course this is just a proposal and I would like
to collect your opinions and ideas. Other possible
choices are:

1. Silvio's font table (see [I , p. 24]),

2. the greek standard 8-bit ASCII code,

3. greek PC (for example [4, p. 2121) or Macintosh
(greek family script) 8-bit ASCII code, and fi-
nally

4. an entirely new one.

Choices 2 and 3 are more "open to the outside
world" but have a major disadvantage: they don't
contain all characters needed for classical greek.

Concerning multi-accent and one-accent sys-
tems. I think it is only natural to share the same
font table (in the second case all breathings and
the subscript iota will be missing and all accents re-
placed by the "universal accent", which also needs to
be standardized!). Of course many greek 'I)-$-users
will say that Lmulti-accented characters are only old
junk'; I would answer that the first principle of Q$
is universality. therefore the fonts used for classical
or modern greek should be compatible.

Have you ever tried to use cmrlO in Illustra-
tor 3.0?

TUGboat, Volume 12 (1991). No. 2

3 Problems.

Besides a choice of the font table, there are some
problems which should be discussed, concerning the
transliteration of Greek in 7-bit ASCII. The latter
can still be useful for electronic mail and other me-
dia or devices which don't allow 8-bit. I think that
Silvio's transliteration

has become a standard (I still get messages from
people using x for X, t h for 0, y for u. which can cause
quite a confusion. . .). In [2] a slight modification to

Silvio's transliteration is proposed: c for <. I have
another modification to propose: v, V for the letter
digamma r, F. This is some kind of rehabilitation
of this Ietter, which was rather common in some
ancient greek idioms (who would deny the beauty of
Sapfo's

ixhhb xby ykv $6oaa ye. hkxzov
6' crS~rxu ~ p 6 ~ x6p bxabe6p6yaxev,
6xxkreor 6' 066' Ev dpprjp' Ex~pp6y/3e~or

[6' &xouar)

But there is a problem: the circumflex accent. Sil-
vio encodes it as " which-at least visually-is the
most natural choice. But " is active in TEX and
plays an important r81e in line breaking. Silvio
has to enclose greek text inside a group where is
non-active; this brings several inconveniences, which
could be avoided. I propose to change the translit-
eration of the circumflex accent. The next most
natural choice would be ^ (in french "accent czr-
conflexe "). But unfortunately, the same problem
would appear. If you look at the standard ASCII
table (see 15. p. 3671) only the four characters *,
+, =, I are possible choices. The characters * and I
should be eliminated because of their uses in various
m-construct ions. Only + and = remain unused.
Therefore I propose = as a 7-bit transliteration of
the circumflex accent. A sequence like

no6 nijye b (ijAo< z6v nuXr6v fiyep3v;

would be typed as

Po=u p=hge <o z=hloc t=wn pali=wn
<hmer=wn?

For the minor inconvenience of typing $=$ when you
really want a =2 you will be using greek fonts in a
straightforward manner, like CM fonts.

according to Knuth (15, p. 511): You can also
type + and =, to get the corresponding symbols +
and =; but it's much better to use such characters

Similar problems arise with diaeresis (F~ahuzLxci)
and subscript iota (bxoyeypcryyivq). All this has to
be discussed.

4 A Greek TEX Users (sub-) Group

There is a lot of work which remains to be done
-and more and more people wanting to use for
greek, and potentially being able to contribute - :

hyphenation tables should be made according
to 7&X 3.0 and the new standard font (once
it's established). The recent release of a greek
dictionnary on electronic media should be ex-
ploited;

0 I4m and AMSTEX styles should be created;

0 new fonts, like a typewri ter font which would
look like greek typewriting, and sans-serifs
should be made;

0 greek Postscript fonts should be gathered and
the corresponding . tfm files created. They then
could be used as virtual fonts;

0 introductory and w-educa t iona l material
should be translated to greek; and finally the
most important:

0 all this should be gathered, ordered, docu-
mented and made available by the maximum
number of servers. Some part of it could also
be included in the standard 7QX distribution.

And before even starting, there should be a solid
discussion on the standardization problems I men-
tioned in previous sections.

Therefore I solemnly propose the creation of
some structure (or sub-structure of TUG) which will
take the responsibility for distributing and coordi-
nating the tasks. Please send me your opinions,
ideas and proposals, either to my bitnet address or
to my physical address. I propose that the deadline
(minus a week) for submission of technical papers
for the first regular issue of TUGboat, volume 13
(November 19), be a (tentative) deadline for your
answers, after which I'll collect the informations and
statistics, and announce them through the TUGboat
(that is, after agreement of the editorial board).

I especially invite 7&X users in Greece to con-
tact me, because of my lacunary knowledge on TEX-
activities in Greece.

5 Say it in Greek.. .
Kui ozh ihhqvrxb rhpcr: npi3za ixx'8hu 8b ij0eha vh
~BppimZJjoo zobq kx66ze< TOG TUGboat xob yo6 kdzpe-
+crv vh txppaor6 orb ihhqvixb yiou bx'zi< atfjheq TOG

xepro6rxo6. KL uBtb y ~ b vb ~ p o t ~ i v o , pk mb xohhfi

signs, since that tells to insert the proper spac-
ing for mathematics. only in math mode, i.e., enclosed between two $

TUGboat, Volume 12 (1991), No. 2

Zprgaoq vb ouvepyao00i,pe b~or phb yrb vb rgtrb~oupe EVU
ihhqvrxb xoL vb ~~x~pvdrer ziq v6ppeq zGv Fru(g6pov
xopi jv , vb E Z V ~ L xorvb yrL. t b bpxaiu xai tb via, xui xot
vb ~xptahke~e ta r Bheg ti; 8uvaz6tqre< G v kxexzdroeov
zoi, m: UT@, AMS-W x.8.x.

IIpoqyoupivog bvtcpepa prb oerpL. &xb Lpyuoieg xoL
npfxer hx6pcr vb yivouv. Nopirw 8tr p6vo pk prb
Bpyavopkvq xpooxh0era pxopo6pe vb drvraxe~ih~oup~
a' u h b zb Zpyo, ak xexepaapkvo ~p6vo. IIpoteivw horxbv
xpijta vb xdrvo prb xatcryparqfi

0 toi, xu& x6aov ~ A E T E , bhhb xai pxopeite vb
PO$~OET&.

'Exiaqg xpoteivw z+p "Ipwq prh< ihhqvrxfjq BphFuq
rgihwv3 to6 m, EITE abv bxoop&baq sob Q X Users
Group, J t e &ve&ptqtqq (tb dvopcr 0b pxopoi,ae vb elvar
E Q m : "Ehhqveq aihor to5 T@ ij xdrtr uhko). ABtb
0b xpow0oGae t f iv auvepyaoia4 xai 0b Freuxdhuve 24v

xhqpocpcipqoq t i j v B~okva xai xib xohhdv -'Ehh.ijvwv
xui &WV-- XOL 0khouv vb yp&+ouv otb 'Ehhqvrxb pk tb

w.
Biig xpoaxahij horxbv vb 66aete Fuvuprxb tb xapbv

xui vb poi, petargkpet~ ziq bx6+erq, iFkeg, xai xpoxavtbq
ti5 xpozdraerq aorq. 'Exioqq xpopAkxovtar ourqt.ijaerq
xdrvo o'cibtb tb 0fpa otb BuvkFpra to5 T@ xoL 0b
yivouv atb Dedham (HIIA) ad; 15 pk 18 'Iouhiou, otb
nupior otiq 23 $ 26 Cexzepppiou xui utb 'Appobpyo
(xcrtb xhaa xr0av6tqta) x&xote rb (p0rv6xwpo to6 1991.

6 And a motto

Following the tradition of the The W b o o k of plac-
ing the motto at the end, here is mine:5

Ti5 terqp086~ouq xheioav ok %pup$ axqkrb
xai phq xouhhve Lvkaerq eB0upia~.

o Yannis Haralambous
101/11, rue Breughel
59650 Villeneuve d'Ascq
France
FAX: +33 20 91 05 64
Bitnet: yannisQfrcitl81

dour (pihog; yive pkhog!. . .
f l 0b T ~ V x d r h ~ y ~ teheioq. . .
sorry for the lack of greek sans-serif quotation

fonts, it's one of the things which have to be done.

' 0 6 x 0

'Ox

"Dx
'33% - i , 6 2

'34x b
"Ex

'35x k Z t 6 8 d 6

'Ox

' 2 1 x &

8

Silvio Levy: Using Greek Fonts with 'l&X:
TUGboat, 9 (1988) 20-24.

Klaus Thull and Yannis Haralambous: Type-
setting Modern Greek with 128 Character
Codes, TUGboat, 10 (1989) 354-358.

Marcus N. Tod (ed), A Selection of Greek His-
torical Inscriptions, Oxford 1948.

Xpfjatog Koihrag, 'OFqybq XpJiasq zoi, MS-DOS
v. 3.3, 'A0.ijva 1988.

Donald E. Knuth, The m b o o k (9th printing),
Reading 1989.

b

'36x

' 3 7 ~

9

h

&

References

i

cl

"8

1 2

:

h

u

i

n
"9

3

h

B

t

9

"*

4
=

$

i

P
"*

5
- -

b

i j

P
"C

6

$

i j r i j .

b

"D

7
' . ,

,,8x

"3x

0
u

"E

G
-

"F

"Fx

TUGboat, Volume 12 (1991), No. 2

JernQiJX 2.00 available for Japanese

Franqois Jalbert

I have just released Version 2.00 of my Japanese
[P]m system.

J e m m is a freeware package containing ev-
erything needed to typeset beautiful Japanese text.
You should, of course, already have a Japanese text
editor, mJ and METAFONT. Turbo-Pascal sources
and executables are included for DOS computers.
UNIX users are now supplied with a C program
(gcc) so they too can enjoy J e m w .

If you are interested in METAFONT code for
japanese and chinese, the program j is2mf will in-
terest you. This much improved program generates
METAFONT code automatically out of 24 x 24 bit-
map files. Smoother and better positioned japanese
characters are the main improvements. METAFONT

code for 61 japanese fonts of 128 characters cov-
ering punctuation, english, hiraganas, katakanas,
and kanjis (level 1 and 2) is included indirectly in
Je-.

My program jem2tex will turn the output of
your favorite DOS or UNIX japanese text editor
into a standard w, IPW, or MQQX document.
Thanks to several users from Japan, it handles
fine points of japanese punctuation, spacing, and
hyphenation much better than before. Switching
to C for jem2tex. exe has also improved the speed
substantially since Turbo-C has buffered 110 for
non-text files, unlike Turbo-Pascal.

The file JEMTEX2. ZIP includes a 40-page-long
user's guide jguide .tex where you can find all the
details. It is (or soon will be) available from:

SIMTEL (USA) (26.2.0.74)
(tenex FTP or e-mail server)
utsun (Japan) (133.11.11.11) (binary FTP)

Please feel free to contact me if you wish more
information, or to be added to the mailing list which
is only now officially being started. I plan on using
it to keep everybody informed of new versions and
bug fixes.

0 Frangois Jalbert
220 Forest
ChLteauguay, QC
Canada J6J 1R1
jalbertQIRO.UMontrea1.CA

Fonts

Labelled diagrams in METAFONT

Alan Jeffrey

1 Diagrams in METRFONT

In TUGboat 11(5), Alan Hoenig described a method
of producing diagrams in METAFONT with labels
provided by w. His method relied on passing
information around via font dimensions. This is
a standard method of passing information from
METAFONT to m. but it has some drawbacks:

There are only a limited number of font dimen-
sions available, and each label uses up two of
them.

As METAFONT can only communicate with
via font dimensions. each label has to be

assigned a font dimension, and it is difficult
for the correspondence between font dimensions
and labels to be kept automatically.

Since is providing the labels. and META-

FONT is providing the diagrams, the diagrams
have to be kept in a different file from the labels.

There is no communication between l$J and
METAFONT, so METAFONT cannot change the
diagram depending on the size and shape of the
labels. This is rather inconvenient for diagrams
such as

where the shape of the ovals depends on the size
of the contents.

Fired with enthusiasm by Alan's talk at the Euro-
pean m Users Group meeting, I stole the best of
his ideas; and slightly modified them to produce a
simple METAFONT- rn interface. This allows
code to be embedded within a METAFONT program,
for example

begindiagram(2,30pt#,7pt#,2pt#);

hboxes (0) ;

pickup pencircle scaled 0.4pt;

.5 [hboxlo, hboxr01 = (.5w, 0) ;

draw hboxb10..hboxt10

---hboxtrO..hboxbrO

---cycle;

setbox0 I1$g \circ h$";

enddiagram;

produces the diagram m. The new facilities
used are:

228 TUGboat, Volume 12 (1991), No. 2

begindiagram(2,30pt#,7pt#,2pt#) starts off dia-
gram 2. which is 30pt wide, 7pt tall and 2pt
deep.

hboxes(0) says that the only label we'll be us-
ing is number 0. This has a similar syntax
to labels. so you can say hboxes (I ,2,7) or
hboxes(3 upto 9).

hboxlO is the left point of label number 0, at the
baseline. Similarly, hboxblO is the bottom left,
hboxtrO is top right, and so on. In this exam-
ple, these points are

hboxt 10 hboxtrO

hboxl hboxrO

hboxblO

You can also use the numeric variables hboxwd0,
hboxhto and hboxdpo which are the width,
height and depth of label 0, and hboxwd#O,
hboxht#O and hboxdp#O which are their sharp
equivalents.

setbox0 "$g \circ h$" sets label number 0 to be
g 0 h.

enddiagram finishes it all off.

The rest of the diagram is standard METAFONT.

Within a 7&X document you can use

\diagramfile(example) to load in the diagrams
kept in example .mf,

\diagramf C2) to get the second diagram, and

\everylabel which is a token register added to ev-
ery label, in the same fashion as \everymath.
It should be set before saying \diagramf ile.

These commands behave well inside groups, so if you

say

\diagramf ileif 00)

{\diagramf ileibaz)\diagramf (1))

\diagramf i2)

you get the first diagram from baz and the second
diagram from f oo.

2 How it all works

In the diagramf package, rn and METAFONT

communicate by auxiliary files, in a similar fash-
ion to the M G m-Postscr ip t interface ('Problems
on the 'QX/PostScript/graphics interface', TUG-
boat 11 (3)).

When you run METAFONT on example.& it
reads in example. dim, which specifies the dimen-
sions of all the boxes. In our example, part of
example. dim is

wd# [2] [O] : = 20.3344pt# ;

ht# [2] LO] : = 6.94444pt# ;

dp# [2] [O] : = 1.94444pt# ;

So, in diagram 2, label 0 has width 20.3344pt1
height 6.94444pt and depth 1.94444pt. From this.

METAFONT calculates where to put each label, and
outputs a .dia file, containing TEX code. For ex-
ample example. dia contains1:

\newdiagrami2)

\diagramlabel(O)C4.88908pt)iOptl

$g \circ h$

\enddiagramlabel

\diagramchar(2)

\endnewdiagram

This tells TEX that diagram number 2 contains la-
bel 0 at coordinates (4.88908pt,Opt) consisting of
$g \circ h$. The diagram is character number 2
in the example font.

Similarly, when TEX encounters the instruction
\diagramf ile(example1 it loads in example .dia
and produces example. dim. And so we can have
our METAFONT cake and eat it in m.

Well, almost. Unfortunately for all these grand
ideas, METAFONT has n o file-handling capabilities
at all! The only files METAFONT generates are the
.tfm. .gf and .log files.

This is rather annoying. but fortunately we can
steal an idea from Section 7 of the Dirty Tricks ap-
pendix in The METFIFONTbook. There, Knuth uses
the .log file as a means of communicating between
METAFONT jobs. Similarly, we use the .log file as
a way of sending messages to m. Our texoutput
macro is defined

def texoutput text t =

for s = t:

message s & "% diagramf";
endf or

message " "
enddef ;

So texoutput "Fred", "Ethel" produces the out-

put

Fred% diagramf

Ethel% diagramf

You can then use your favourite file-handling utility
to filter the . log file, keeping only the lines contain-
ing % diagramf . On my UNIX set-up, for example,
I have an alias diagramf example which expands
out to

touch example.dim

mf example

grep "% diagramf" example.log > example.dia
echo Labels written on example.dia.

' Actually. each line ends with % diagramf.

TUGboat, Volume 12 (1991)' No. 2

The crucial line in this is the grep, which ta,kes all
the lines from example. log containing % diagramf

and puts them in example. dia.

And so we've achieved labelled diagrams in
METAFONT. The diagramf package is free software,
and is available from the Aston archive.

3 Acknowledgements

The inspiration, and many of the original ideas, for
this article came from Alan Hoenig's talk on the
same subject at Cork. I'd also like to thank Jeremy
Gibbons and Damian Cugley for comments, advice
and allowing me to bounce ideas off them.

o Alan Jeffrey
Programming Research Group
Oxford University
11 Keble Road
Oxford OX1 3QD
Alan.JeffreyQprg,ox.ac.uk

@ 1990 Alan Jeffrey

Graphics

X Bitmaps in

Reinhard Foameier

Abstract

A new I4m style, bitmap.sty, allows the direct
inclusion of bitmaps from the X Window System in

documents. With a tiny modification, the
macros can be used with plain 7!$X, too.

Resumo

Nova ordonaro bitmap. s t y por permesas rek-
t a n enkludon de bit-matricoj el la fenestro-sistemo X
en D w - a j dokumentoj. Post eta modzfo, la mak-
rooj estas uzeblaj ankati por simpla m.
1 Introduction

The X Window System uses a special C language
syntax to describe bitmaps, images made up from
black and white pixels. The syntax consists of sev-
eral C definitions that specify the width and height
of the bitmap and possibly the position of a "hot
spot", and the declaration of a character array for
the bitmap information, with initializers in hexadec-

imal notation (see figure 1). Each pixel line starts
with a new byte; the last byte in a line is normally
padded with zero bits.

#define bildo-width 50

#define b i l d o l e i g h t 30

s t a t i c char b i ldo-b i t s [] = i
0x00, 0x60, Oxff , . . .

. . .
. . . OxeO, 0x013;

Figure 1: Example of the C bitmap format in X

Apart from being suited for inclusion in C
programs where it can be processed by the Xlib
routines XCreat eImage or XCreat ePixmapFromBit -
mapData, this format can be read by the Xlib rou-
tine XReadBitmapFile or written by XWriteBit-

mapFile. It is also supported by several programs,
including a graphic editor (bitmap), conversion pro-
grams from/to ASCII character maps (atobm, bm-
toa), and a screen dump utility (Bruce Schuchardt's
xgrabsc). So it has become a true standard for the
representation of bitmaps.

Figure 2: An example from the X Window System
bitmaps (xlogo64)

2 The bitmap. s t y style

A new style "bitmap" provides a macro to
include and print such bitmaps in documents.
The macro is called \Bitmap and has two arguments:
the name of the file containing the bitmap, and the
pixel size desired. The latter is saved in \bmpsiz

and

1

2

3
4

5
6

used to set the value of \baselineskip:

\newcount\bmhpoz

\newcount\bmwid

\newif \ifbmblack

\newdimen\bmrlen

\newdimen\bmpsiz

\catcode' ,= \ac t ive

TUGboat, Volume 12 (1991)' No. 2

Figure 3: Example of an included bitmap, taken
from an Asterix cartoon

The comma, separating the hex-numbers in the file,
is made an active character; its function is to an-
alyse the hexadecimal information and translate it
into \vrules. It also throws away the leading
Ox of the hex numbers: the second and third argu-
ment (the hex figures) are swapped and each given
to \HexFig for further analysis. Then. \bmhpoz is
incremented by 8 columns and checked against the
width of the bitmap; if the former exceeds the latter,
the line is terminated and \brnhpoz is reset to 1.

12 \ ca t code l ,= \ ac t i ve
13 \def,##iOx##2##3{%
14 \HexFig{##3)\HexFig{##2)%

15 \advance\bmhpoz 8

16 \ifnum\brnhpoz>\bmwid
17 \O\hf i l \vskip Opt
18 \bmhpoz=l \bmrlen=Opt
19 \ f i)

The \HexFig macro analyses a hexadecimal figure
and translates it to four calls of the macros \ O or
\ l , for white and black pixels, respectively. As the
hex figures A to F normally are not capitalized in
bitmap files, \uppercase is used to convert them if
necessary.

20 \def\HexFig##l{%
21 \uppercase{\if case "##I)
22 \O\O\O\O\or
23 \l\O\O\O\or
24 \O\l\O\O\or
25 \l\I\O\O\or

Figure 4: Another example (Abraracourcix, Gaul-
ish tribe chief)

Figure 5: The bitmap logo of the Akademio Inter-
nacia de la Sciencoj (AIS) San Marino

Black pixels are printed as rectangular spots, pro-
duced by \vrule . To save space in m ' s memory,
\ O and \1 collect sequences of equal bits and put
them together to longer \vrules. Invisible \vrules
of height 0 are used for the white space rather than
\hskips because they, too, save a little memory
space. The length of the current sequence of 0 or
1 bits is kept in the dimension \bmrlen, the color
of the current pixel is remembered in the value of
\ifbmblack.

39 \def\O{\ifbmblack
40 \vru le width \bmrlen height \bmpsiz
41 \bmrlen=\bmpsiz \bmblackfalse
42 \ e l s e
43 \advance \bmrlen\bmpsiz
44 \ f i)

TUGboat, Volume 12 (1991), No. 2

(discarded)
width

(discarded)
(discarded)

Table 1: Arguments of \BmContent in the example
of figure 1

45 \def \l(\ifbmblack

46 \advance \bmrlen\bmpsiz

4 7 \else

4 8 \vrule width \bmrlen height Opt

49 \bmrlen=\bmpsiz \bmblacktrue

50 \fi)

The only pieces of information used from the bitmap
file are the width of the bitmap and its picture
information; height and hot spot coordinates are
discarded. The contents of the file are read with
\@@input; a macro \BmContent gathers the width
as its second and the picture information as its fifth
argument. The other arguments are ignored; their
only purpose is to get rid of the rest of the bitmap
header. \BmContent is prefixed with \expandafter,
to capture the result of \@@input in its arguments.

51 \def\BmContent

52 ##I-width ##2 ##3[1 ##4 ##5;(%

53 \bmwid=##2

54 \bmhpoz=l

55 ,##5

56 1% end of \BmContent
57 \expandafter\BmContent\@@input #1

58 \egroup>% end of \Bitmap

Finally, the comma's \catcode is reset to "other":

59 \catcode',=12 % other

In the example of figure 1, the arguments of \Bm-
Content would be like shown in table 1. Obvious-
ly, the 3rd and 4th argument could be combined
into one; yet this way provides some more security
against erroneous use.

The macros can be used with plain TEX, too, if
\@@input in the last line of \BmContent is replaced
with \input. The L4-m macro \input doesn't
work with the \expandafter technique.

Figure 2 shows the X logo bitmap, included in
this document from the X bitmap file xlogo64. Fig-
ures 3 to 7 show some more examples, which may
serve to show the versatility of even small bitmaps.
All bitmaps presented here are far under 100x100
pixels.

Figure 6: Yet another example . . .

3 Possible extensions

To draw boxes around bitmaps, they can be put
into a \vbox. In its present form, the macro doesn't
compute the necessary width of such a box, although
this information is available from the bitmap header.
This functionality can be achieved by adding to
\BmContent, after the definition of \bmwid in line
53, the statement

\hsize \bmwid\bmpsiz

Sometimes it is interesting to have statistics about
the complexity of a bitmap. To this end, a \new-
count\Complty may be introduced, initialized to
zero and incremented by

\advance\Complty I

either in \I before the \ifbmblack at line 45 (to
count black pixels) or in \O within the \ifbmblack
at line 39 (to count \vrules). The result may be
issued by a \message statement.

4 Problems, conclusion

Unfortunately, typesetting bitmaps is slow. A 60x85
bitmap (like the one shown in figure 6) can easily
consume more of m ' s time than an ordinary text

page. Moreover, the many \vrules consume a lot
of W ' s space, even with runlength encoding. Tests
show that drawing bitmaps with two printing char-
acters (e. g., - and +) for \O and \ I saves some time
but needs even more space. For really big bitmaps,

Big may have to be used; it was, however, not
necessary for this article.

TUGboat, Volume 12 (1991), No. 2

Figure 7: . . . and another.

This problem could be alleviated by creating 16
special drawing characters for the bitmap patterns
corresponding to the 16 hexadecimal figures. The
complexity of a bitmap, however, will always be re-
flected in the cost of its typesetting. Remember that
the aforementioned bitmap contains about as many
pixels as there are characters on an average page.

Serious problems may arise if the bitmap file
contains C language comments. They are discour-
aged when using bitmap.sty. The brtmap editor
discards them anyway, so they aren't normally used;
however. the termznal bitmap used in the X System
contains a comment.

If the bitmap width is not a multiple of 8, the
algorithm in "\," depends on the last byte in each
line being padded with 0's. This could be changed
by putting the check of \bmhpoz against \bmwid into

\l. It turned out to be hardly ever necessary in
practice.

Pictures with small pixel sizes come out better
if a multiple of the printer resolution is chosen for
the pixel size. (Oh well, I know !QX input should
be device independent.. .) Here sometimes the "big
point" (lbp = 1/72 in) unit is useful if the resolution
is related to inches; e.g. the resolution of a 300dpi
printer is 0.24bp; with 400dpi. 0.18bp.

Although the use of bitmaps in documents is
limited by w ' s resources, they provide a comfort-
able way to put small images into documents and
a useful interface to the X Window System, e.g. for
documentation.

o Reinhard Foflmeier
iXOS Software GmbH
Bretonischer Ring 12

D-W-8011 Grasbrunn
Germany
refo@ixos.de

Output devices

Report on the D V I Driver Standard

Joachim Schrod
Secretary
TUG D V I Driver Standards Committee

The D V I Driver Standard will be available in several
stages. The basic stage is now called level 0.
It covers only those driver capabilities which are
really necessary to output a D V I document on an
output device. All other driver capabilities will be
called features (and may even be realized outside
a driver). In the future we will publish several
additional standard documents which will cover
ranges of features; those documents will represent
"tiers" built upon level 0 or on previous tiers. In
this way they will be available as future stages of a
complete standard. (One may doubt whether the
standard will ever be complete as there may be
always new features to standardize.)

The basic stage, level 0, consists of three parts:

(1) The pure standard document telling what a
driver must be able to do.

(2) Definitions of all file formats spoken of in
part 1.

(3) A rationale describing why the committee has
chosen the given definition in part 1, recalling
discussions that led to particular decisions.

A draft of the level 0 document is about to be
published for public review. Part 1 of the draft is
(almost) ready: a few spelling errors and such have
to be removed. Part 2 was ready, but D.E. Knuth
has changed the GF documentation, and this change
must be incorporated. Part 3 exists only in part.

The committee will publish the draft as soon as
possible. It may be that the draft of the rationale
will not be finished in time; in that event we will
publish part 1 by itself. This is considered to
be useful (although not desirable) so that we will
get responses very soon - and especially to change
the status from "draft" to 5eleasedn as soon as
possible. The file formats will not be published in
TUGboat; they are available on several file servers.
For people who do not have access to file servers
I've prepared a brochure covering all file formats.

When complete, the standard will be published
in the m n i q u e s series. The style will be modified
slightly to follow formal standards conventions. The
body of the standard will form the main text; this
will be followed by a number of "annexes". The

TUGboat. Volume 12 (1991), No. 2 233

file formats will come immediately after the main
text, as "normative" annexes; that is, these format
specifications are an integral part of the standard,
but the presentation of each is self-contained and
too large to be appropriate in the main text. Finally,
the rationale will appear as an "informative" annex,
to present information that is not an integral part
of the standard, but is intended to help a user in
understanding it.

Future work

What tier will come next, i.e., what driver feature
will be looked at next, is still unclear. There
is public pressure to tackle the area of graphics
inclusion at an early date; others want to touch
areas such as page selection, etc., first. So this
remains an open problem. We invite all parties
to bring proposals to the committee. My personal
opinion is that a proposal for a new tier received
early will be handled early. So if someone is
eager to see a specific topic addressed. he or she
should do work on this topic and send us the result
of the work. (We will be glad to acknowledge
contributors.)

o Joachim Schrod
Technical University of Darmstadt
Institut fiir Theoretische

Informatik
Alexanderstrafle 10
W-6100 Darmstadt
Federal Republic of Germany
Bitnet: xiti jschQddathd21

Resources

Review of 3 : 16 Bible Texts Il luminated

Karl Berry and Kathryn A. Hargreaves

3 : 16 Bible Texts Illuminated, by Donald E. Knuth.
A-R Editions (801 Deming Way, Madison, WI
53717-1903; (608) 836-9000), 1991. ISBN 0-89579-
252-4. 268 pages, paperbound.

In about three-fourths of 3 : 1 6 . his first book
since Computers & Typesetting, Knuth studies -
indeed gives an exegesis of-chapter 3, verse 16 of

everyt book in the Bible. 59 calligraphers (from
26 countries) fill the remaining quarter of the book
with their renderings of the verses. Hermann Zapf.
one of the world's leading typographers, contributed
the illustration for John 3 : 16 and the cover design.

The main text consists of four pages per Biblical
book: a left-hand page with a summary of the
book as a whole, the page of calligraphy, and
two pages of discussion about the 3 : 16 of that
book. In a foreword, Knuth discusses how he came
to study the Bible using the statistical procedure
of stratified sampling, and describes his reactions
to the experiment (including a few quantitative
conclusions) in an afterword. Mathematically-
minded people will appreciate this novel application
of statistics to the Bible. We wished we could have
attended the Sunday morning Bible classes led by
Knuth upon which he based the text.

The book design is attributed to both Knuth
and Zapf. The typeface is Computer Modern
(Knuth didn't do any of the calligraphy, so it seems
only fair that all the typeset letters should be his
own design). The book designers and calligraphers
use up to four colors: the text is black, the name
of the Biblical book is minted in rust red on the
summary page, and the verse is printed in a blue-
green on the left-hand discussion page. inset in the
text. (It must have been a lot of fun to figure
out those 59 parshapes.) The calligraphy also
uses a light ochre. The book designers reduced
the calligraphic works (or perhaps just had the
calligraphers make them) so they would all fit
in approximately the same rectangle, and then
set the calligrapher's name and Biblical reference
well underneath in sans -giving credit without
detracting from the calligraphy.

We can read the title's word "Illuminated" in
two different ways. First, through linguistic and
historical analysis, Knuth "sheds new light on" the
meanings of the Bible verses-finding humanistic
interpretations that reinforce our contemporary ex-
perience. In fact, he gives his own fresh translation
of the verses. (He wholeheartedly recommends this
to anyone interested in Bible study.) He also gives
a generous sprinkling of those personal insights for
which he is well-known. Knuth's writing has the el-
egance to which we've grown accustomed: the book
can be enjoyed even by those with no background

t Well . . . , almost every. Some books don't have
that many verses. Knuth "decided to omit all such
books, because they turn[ed] out to be similar to
other books that are long enough to be included."

234

in Bible study, and even no particular enthusiasm
for it.

The other way we can read the title's "Illumi-
na t ed is in the sense of "illuminated manuscript".
Manuscript books from the Middle Ages were hand-
written and illuminated by monks (although they
sometimes used outside illuminators). As in 3: 16,
the monks used black ink for the text and a red
ink (made from clay) for titles. Gold, red, and
blue were the illuminators' favorite colors. Instead
of gold leaf. the book designers use an ochre ink.
Knuth chooses to "illuminate" his text not with
illustrations and decorations subservient to it. but
with calligraphic renderings of the verses. That
calligraphy is commonly used today for producing
religious artifacts is not lost on us, but Knuth is
more likely incorporating in 3 : 16 two of his areas
of interest - theology and typography.

Many of 3 : 16's calligraphers "illuminate" their
verses in a straightforward way using literal illus-
trations: Ismar David (p. 19) uses a pyre for a verse
about burning offerings. John Prestianni (p. 27)
a map for a verse about to whom God assigns
what territories, Satyanarayan Mallayya Wadish-
erla (p. 47) an eye (elegantly drawn by extending
the letterforms) with a teardrop for a verse about a
man sobbing, Andrzej Kot (p. 55) a fish for a verse
about the promise of a dry riverbed being filled
with water, Allen Q. Wong (p. 63) a pomegranate-
decorated pillar for a verse about such, Lili Cassel
Wronker (p. 131) a broad-leafed branch for a verse
about a plant springing up to shade Jonah's head.

We think the real power of calligraphy, however,
is that calligraphers can use graphic manipulation
to "illuminate", if you will. a text's meaning(s): for
instance, they can (1) modulate letters in regards
to weight. color, shape, drawing quality (i.e., rough,
smooth, quickly executed or carefully rendered)
or rendering method (traditional broad-edged pen,
brushes. drawing, or cutting), or (2) choose par-
ticular letterforms that evoke either historical (e.g..
ecclesiastical or avante-garde) or formal (e.g., del-
icate or bloated) meaning. They can also arrange
things in an evocative composition or manipulate
the background. When they do this, we can see
the words in addition to reading them-and callig-
raphy becomes a vzsual language. Some of 3: 16's
calligraphers do this:

R. Williams (p. 11) gives the word 'troubles'
in his verse an unstable baseline, and 'desire' a
decorative style. Fritz Eberhardt (p. 75) evokes
shredded clothes by rendering words about such
using a dry pen. By putting hands atop the outer
stems of the verse's first letter. 'W', Luigi Cesare

TUGboat, Volume 12 (1991), No. 2

Maletto (p. 79) evokes a supplicant with arms
outstretched skyward for Job's wish he'd never
been born. Kris Holmes (p. 83) configures her night
prayer verse (the familiar "Now I lay me down to
sleep . . . ") in a circle, evoking daily repetition of
such. Sheila Waters (p. 91) uses a rough chiaroscuro
to darken the background for the two instances of
'wickedness' in a verse about the abundance of
evil in the world. Georgia Deaver (p. 107) uses
violent brushstrokes to slash out the 'V' starting
the lamentation "Viciously he ground my teeth on
gravel . . . " . Steven Skaggs (p. 119) renders a block
of intertwining repetitions of the word "orgies" for a
verse about such. Peter Fraterdeus (p. 127) uses all
caps for the command "LISTEN TO THIS", round,
fat brush-painted letters for the words "you fat
cows of Bashan", and gold background for words of
warning directed at some affluent women. Karlgeorg
Hoefer (p. 143) puts words about terror on heaving
baselines and words about calm waiting on smooth.
straight ones. Timothy R. Botts (p. 167) renders
in elongated, thin red strokes, words about baptism
with fire. Alfred Linz (p. 179) uses as background
what looks like either an aerial photograph or a
close-up photograph of a rock and rough, broken
letters (graffiti left behind?) for a verse about a "trail
of wreckage and misery". Neenie Billawala (p. 203)
incorporates "staff" lines (which can double as
typographic rules) and handwritten "musical notes"
into a verse about singing. Margo Snape (p. 207)
puts a verse discouraging sexual immorality on a
gold background marbled to evoke licking flames.
Leonid Pronenko (p. 215) puts (almost) each word of
a verse about the mystery of true religion on a piece
of torn paper reminiscent of ransom notes pieces.
He emphasizes the word 'mystery' both by making
it heavier and by splitting it across two pieces of
paper. Jean Evans (p. 235) reduces letterforms to
geometric black shapes, making the words hard to
read - a modernist play on the verse's "making his
words hard to understand" and "people distort his
words". Rick Cusick (p. 243) splatters with ink a
verse about metaphoric spitting and lashes out the
word "spit" with quick, rough penstrokes.

Knuth's illuminations of the verses reveal to
us what a complex, multilayered book the Bible
is, whose understanding requires much work on the
part of the reader. Historically, it has produced a
range of interpretations. Calligraphy can also layer
meaning and form, requiring the readerlviewer to
sort things out; for instance, Robert Borja (p. 35)
cuts up the background of his rectangle with color
to get a sword-shape for a verse about such. He also
plays on the word 'double-edged' by mirroring on

TLGboat, Volume 12 (1991), No. 2 235

the left side the darker text (which is about a sword
strapped onto a right thigh) on the right. Both the
Bible and calligraphy can require us to participate
in the interpretation. and the reward for doing so is
a satisfaction worth seeking.

o Karl Berry
135 Center Hill Rd.
Plymouth, MA 02360
karl@cs,umb.edu

o Kathryn A. Hargreaves
135 Center Hill Rd.
Plymouth, MA 02360
letters@cs.umb.edu

UTEX for engineers and scientists

Book review by Nico Poppelier

LA!&$ for Engineers and Scientists, by David J.
Buerger. McGraw-Hill: 1990. ISBN 0-07-008845-4.
198 pages, paperbound.

Although the I P W manual is a useful book. it is not
suitable as an introduction, as a book for beginning
users. for engineers and scientists by David
J. Buerger, published last year. at first sight ap-
pears to be a good introduction. In the preface the
author writes: '[this book] was written to provide
a fast and easy way to learn how to produce tech-
nical documents with I P W . ' And indeed, L A W
for engineers and scientists is a book that doesn't
frighten readers by its length and is easy to read. It
describes BIB^ and Makelndex, it gives exercises
- with answers - that are really not bad, and it con-
tains an index - although I find that a bit short -
and a glossary.

Unfortunately my general opinion about this book
is not positive: both the contents of the book and
the quality of the book as a printed product leave a
lot to be desired.

My overall impression of the contents of the book
can be summarised in a few points.

The author has not quite grasped the concept of a
document style and the separation between logical
and visual structure, two fundamental concepts of

I P w .
The author does not distinguish between I4T@

proper and I 4 W plus the standard document

styles. There are many document styles beside the
standard ones, so this distinction is essential.

0 In several examples I4W and l&X commands are
mixed. My opinion is that in examples only I P W
commands should be used. If the author insists on
mentioning the m equivalents, he should explain
what sort of functionality I P W adds.

Some functions of I P W , among which at least
one important function, are not explained in the
book.

0 Explanations in the book are sometimes confusing
or sloppy. In a few cases they are even incorrect.

I will give some examples:

0 In chapter 4, Formatting environments, the
author starts with the cen te r , f l u s h l e f t and
f lushr igh t environments, and then goes on to treat
the l i s t and quotat ion environments. The main
purpose of UTEX'S markup instructions is describ-
ing the logical structure of the text. In a book on
I P W , descriptions of logical design should come be-
fore descriptions of visual design.

0 The custom description list on p. 28 refers to lay-
out parameters of the l i s t environment that cannot
be found in the index or the glossary. Although
the author includes in his book instructive page-
layout diagrams1 that are unfortunately absent in
the I 4 W manual, he forgets to include the equally
useful list-layout diagram that is printed on p. 113
of the I 4 W manual.

The custom description list given as an example
on p. 28 is a variation on the descr ip t ion environ-
ment described in the manual. In this exam-
ple the items are typed as \item[C\bf Fox)]; as a
result there is no clear separation between form and
contents. A better way would be to define the lay-
out of the items in the definition of the customised
list. That way, one only has to type \itemCFoxl.

On p. 39 the author gives a table of the typeface
sizes that correspond to I 4 W commands such as
\small, \normalsize and \ la rge . The correspon-
dence given in the table is valid only for the stan-
dard document styles and not for every document
style. By failing to make this distinction, the author
suggests that the table is universally valid, which it
isn't.

0 In chapter 6 the author treats only the $. . . $

and not the \ (. . . \) construction for in-line
mathematical formulae. $. . . $ and $$. . . $$

give formulae in a more or less fixed layout. If one
uses M m ' s \ (. . . \) and equation environment

Similar diagrams have appeared in TUGboat.

236 TUGboat. Volume 12 (1991), No. 2

instead, the user lets the document style control the
formula layout. Furthermore, the I4m notation
for formulae has opening and closing tags that are
not identical, which results in fewer errors.

In chapter 7, on p. 52, the author introduces the
\ l e f t eqn command without any explanation. This
is a command that a lot of users find confusing: they
often think that \ l e f teqn puts an equation flush
with the left margin of the text.

In chapter 8 the author gives a confusing descrip-
tion of the two environments t a b l e and t abular .

The t abu l a r environment produces a table, i.e. an
arrangement of cells in rows and columns, possibly
with horizontal and vertical rules2. The t a b l e en-
vironment creates a floating object. i.e. a part of
the document for which I 4 m tries to find a good
place to print it. In most cases, the t a b l e environ-
ment contains a caption that starts with the word
'Table'3 and a t abu l a r environment for the actual
table contents.

However, Buerger writes (italics mine):

Tables created with the tabbing or tabular

environments- . . .
The \begin{table [1 or \begin{f igure [1
command will create a table or figure.

On p. 64 the author explains the use of \ l a b e l
and \ r e f . He instructs the reader to put the \ l a b e l

command after sectional-unit commands and after
the \ cap t ion command of a f i g u r e or t a b l e envi-
ronment. However, there is no information on where
to put the label in equation and eqnarray environ-
ments.

In chapter 10, Organizing a document, the author
uses in an example

\topmargin Om

\def\BibTeX{ . . . 1
instead of the I 4 m equivalents

\setlength(\topmargin~{Om}

\newcommand{\BibTeXH . . . 1
0 In chapter 10 the author fails to distinguish be-
tween IPm proper and the standard document
styles. On p. 68 the author writes:

Title information is automatically centered.

and (italics by the author):

You can produce an abstract placed below the
title information . . . by typing the following
command before the \maketitle command.

An imprecise definition of a table, I know!
To be precise: this is specified by the docu-

ment style, but it should be 'Table' or something
equivalent.

In both cases the behaviour the author describes is
that of the standard document styles: in other docu-
ment styles a title could be left-justified and empha-
sised phrases could be printed in a boldface font. In
the second case. the author is also definitely wrong
since the \maket i t le command defined in the stan-
dard document styles does not print the abstract.
but only the title, author and date.

The author is also inconsistent with notation: for
example, in pages vii-xiii, the table of contents, list
of figures and list of tables, I found ' U m ' , 'LaTeX'
and ' L a m ' ! I sometimes got the feeling that the
book was written or at least finished in some haste.

Some examples of features of I 4 w that are missing
in L A W for engineers and scientists:

0 The author writes that the \ include command is
similar to the \ input command, except that it starts
on a clean page. He doesn't mention one of the
nicest mechanisms in U r n : cross-referencing be-
tween sub-documents if some of the sub-documents
are excluded from the current formatting run by
means of \includeonly.

0 The only information on w ' s units was the sen-
tence 'There are 72.27 points to an inch', and I found
it in the chapter on error messages!
0 One of the sample input files contains the \; com-
mand, without explanation and without treating
other, similar commands.

So far, I have only criticised the author. However, I
think the publisher of this book, McGraw-Hill, can
be blamed for a few things as well. Concerning the
quality of the book as a printed product: the book
was produced from camera-ready pages prepared by
the author on a laser printer. Computer Modern is a
good typeface, if only you use it on a printing device
of sufficiently high quality. Laser printer quality is,
I'm afraid, not good enough and I hope this book
is one of the last books on m - r e l a t e d matters pro-
duced in such a way. As for the contents of the book:
it seems likely that McGraw-Hill did not ask an ex-
pert to review the book, otherwise they would have
asked the author to rewrite parts of it.

I4w for engineers and scientists is not a bad book,
but it is not a good book either. It can be used, but
I can't really commend it.

Nico Poppelier
Elsevier Science Publishers
Academic Publishing Division
R&D Department
Sara Burgerhartstraat 25
Amsterdam, The Netherlands
n.poppelierQe1sevier .nl

TUGboat, Volume 12 (1991), No. 2

JUST PLAIN Q&A: The Russians are Coming!

Alan Hoenig

We've received three good questions, all of them
from Andrei Khodulev of Mir Publishers in Moscow
(Soviet Union). I hope more people will re-
spond. Contact the TUG office or me directly
(ajhj jQcunyvm on Bitnet, or by telephone, (516)
385-0736) with your m questions.

Cutouts Spanning Paragraphs

Mr. Khodulev needs to know how to use \parshape
to cross several paragraphs. Suppose, for example,
he needs to leave space for a 3cm high cutout.
Suppose the paragraph at which the cutout starts
is only 24pt high. Can we ask T)$ to somehow
continue the effects of \parshape across paragraph
boundaries? Furthermore, we need to specify the
cutout in absolute measure, not using the numbers
of lines, as \parshape expects. Is this possible?

The answer to this question formed the subject
of an earlier article by Tom Reid in TUGboat 8,
no. 3. 315-320 (November 1987). This article
contains many useful T@ hack tricks and deserves
to be better known than it is. Tom presents a set
of macros which do what the Russians require. We
note that his macros don't use numbers of lines.
Simply set a box to the required height and width:

\setbox\figbox=

\vbox to 4 cm C\hbox to2cmC\hss)\vss)

for example. Tom's macros do the rest.
An alternative solution to the same problem

appears in [I].
By the way, can easily be asked to convert

from measure to lines. We can determine the lines
by "dividing" the given measure by the value of
\baselineskip. Here's one way to define a macro
\tolines t o do that. In practice, the command
\t olines 5pt or \tolines 3cm places the number
of lines equivalent to the measure in the register \n.
Note that we don't need any grouping symbols in
the argument.

\newcount\n

\def \t olinesC%

\af terassignment\dotolines

\dimeno= 3
\def\dotolines{\n=\dimenO

\ifdim\dimenO<Opt \n=-\n \fi

(A brief explanation. The register \n stores the
results of the calculation. The \afterassignment
trickery is necessary so we may use the macro
as \tolines lin or \tolines 4.5\baselineskip
without using braces around the argument to the
macro. We add one scaled point less than an extra
value of \baselineskip to make sure we always
round up after the divide operation; normally,
T@'s \divide operation truncates the fractional
portion.) Positive values of \n refer to lines down
the page, while negative values refer to lines up the

page.

Nested Loops

Mr. Khodulev both poses and answers his own
question. The problem: something seems wrong if
you use nested loops in what would appear to be
an obvious way, such as the following.

The nai've user would expect nine pairs of num-

bers, but you see only these: (0, O) , (0, l), (0.2),
(1,3), and (2,4). The difficulty vanishes when one
surrounds the inner loop with braces:

(The output is nine pairs of numbers as you expect.)
The \loop macro of plain is not primitive, and
its definition demands that inner loops be grouped
as shown.

TUGboat, Volume 12 (1991), No. 2

The moral: Always surround nested loops with
curly braces.

Fontdimens and Physical Fonts

associates a series of parameters with each
font, and looks for these values in the tfm file.
These font dimensions are accessible to a user
via the \f ontdimen command. (Their significance
is summarized in tables on pages 433 and 447
of The m b o o k .) Mr. Khodulev has uncovered
some puzzling behavior when he tries to alter the
\f ontdimens for his own uses.

For the sake of concreteness, we will use
\f ontdimen2, which specifies the normal interword
space for a font. Suppose you wanted to increase the
interword space for a certain font in special places
in the document. You might try (as he apparently
did) something like the following.

\font \rm=cmrlO

\font\specrm=cmrlO

\fontdimen2\specrm=9.99pt

You might expect that when you typeset using
\rm, you get the normal interword spacing (3.33 pt),
while you would extra large spaces only when
using \specrm. In fact, after the \fontdimen
declaration above, any \fontname tied to the
physical font cmrl0 has its \fontdimen changed.
As if to add insult to injury, you cannot attempt
to surround changes to \f ontdimen within a group.
since \f ontdimen assignments are always global.

The following lines of code present one way
of resolving the problem. The font definitions are
encumbered with longer names than usual, but the
actual of mechanics of changing fonts are relegated
to macros with names that closely resemble normal
font calls. These macros have been designed to be
used so the user thinks they are font calls, and the
rare appearance of \aftergroup helps make this
syntax possible.

%% First, fonts.
\font \roman=cmrlO

\f ont\specroman=cmrlO

%% Next, the special registers
\newdimen\savedvalue

\savedvalue=\fontdimen2\roman

\newdimen\specialvalue

\specialvalue=9.99pt

%% Finally, definitions.
\def \rm-C%
\fontdimen2\roman=\savedvalue)

\def \specrm(%

\aft ergroup\restoredimen

\fontdimen2\specroman=\specialvalue

\specroman 1
\def\restoredimenI%

\fontdimen2\roman=\savedvalue 1

Mr. Khodulev did not specify his need in any
more detail, so these macros should be revised as
necessary. With these macros and definitions in
force, the source text

\rm Here is some text.

{\specrm Here is some spaced out text.)

Here is more text, hopefully

back to normal.

\rm Here is more text.

\specrm Here is some spaced out text.

\rm Text is back to normal.

produces

Here is some text. Here is some spaced
out text. Here is more text, hopefully back to
normal.

Here is more text. Here is some spaced
out text. Text is back to normal.

Bibliography

[I] Hoenig, Alan, "Line-Oriented Layout with m,"
in m: Applications, Uses, Methods, ed. Malcolm
Clark. London: Ellis Horwood (1990).

o Alan Hoenig
17 Bay Ave.
Huntington, NY 11743 USA
(516) 385-0736
a j h j j (9cunyvm.b i tne t

Tutorials

The \if, \ifx and \if cat Comparisons

David Salomon

Large, small, long, short, high, low, wide, narrow, light, dark,

bright, gloomy, and everything of the kind which philosophers

term accidental, because they may or may not be present in

things,-all these are such as to be known only by comparison.

- Leon Battista Alberti

TUGboat, Volume 12 (1991), No. 2 239

A general note: Square brackets are used through-
out this article to refer to the W b o o k . Thus [209]
refers to page 209, and [Ex. 7.71 to exercise 7.7,
in the book. Advanced readers are referred to the
actual WEB code by the notation [§495].

The ability to make decisions is a mandatory
feature of any programming language, and m,
being a programming language (with emphasis on
typesetting), is no exception. There are 17 control
sequences [209, 2101 that compare various quanti-
ties, and they are used to make decisions and to
implement loops. Most are easy to use even for
beginners, but the three commands \ i f x , \ i f and
\ i f c a t are different. They are harder to learn. are
executed in different ways, are intended for different
applications, and are confusing. Hence this tutorial.

All three have the same syntax, and must
follow one of the forms below

(command) (comparands) (then part) \e lse
(else part)\f i

will compare the two macros and, since their
definitions are the same, the then part will be
executed. displaying 'yes' in the log file and on
the terminal. Similarly, the test \ ifx\qwe\rty
True\else False\f i results in the tokens 'True'.

A comparison always results in the expansion
of either the then or the else parts. As mentioned
before, each part may contain any tokens. Thus we
may have, e.g.:

\basel ineskip=\ifx\a\b 24pt \else 36p t \ f i
\pageno=\count\ifx\a\b 0 \ e l s e I \ f i
\message(\ifx\a\b success\else f a i l u r e \ f i)
\ i fx \a \b t r ue \ e l s e f a l s e \ f i
\def\M(\ifx\a\b yes\else no \ f i)

Or even something more sophisticated, such as:

\newif\ifSome
\csname
Some\ifx\a\b t r u e \ e l s e f a l s e \ f i

\endcsname
\ifsome . . .

(command) (comparands) (then part) \f i The \csname, \endcsname pair creates one of the

(command) (comparands)\else(else part)\f i

They start with one of the commands \ i f . \ i f x
or \ i f c a t , and test their comparands, in a way
that will be described later, to see if they agree or
match. If the test is successful, the then part is
executed: otherwise, the then part is skipped and
the else part is executed. The two parts may consist
of any tokens (control sequences, text. and even
other i f s) .

The two parts are optional. Any of them, or
even both, may be omitted (in practice, of course,
one never omits both). If the else part is omitted.
the \ e l s e , of course, should be omitted as well.
It may also happen that the process of evaluating
the comparands creates extra tokens, which become
included in the then part. The \ f i is important.
It serves to indicate the end of the else part or, in
the absence of that part, the end of the then part.
Even more important, in the case of nested i f s ,
there should be \ f i s to indicate the end of any of
the inner \ i f s, as well as that of the outer one.

Of the three comparisons, \ i f x is the simplest and
most useful one. It compares its two compara-
nds without looking too deep into their values or
meaning. The test

\def \qwe<tr ip) \ de f \ r t y (t r i p)
\ i f x\qwe\rt y
\message(yes)\else\messageCno)

\f i

control sequences \Sometrue, \Somef a l s e , after
which the test \ i f Some is meaningful. Refs. 2 and
3 discuss \csname.

The following example is interesting. It shows
the meaning of the words ". . . the then or else parts
are expanded."

\ i fx \a \b \x(argument) \ e l s e \y(argument) \ f i

Depending on how \a, \b are defined, either \x
or \y is expanded, and its argument used in the
expansion. However, if the argument is left outside
the \ i f x , it is not used in expanding either macro:

\ i fx \a \b \x \ e l s e \y \ f i (argument)

If \x is expanded, its argument will be the \ e l s e ; if
\y is expanded, its argument will be the \ f i . This
is easy to verify with \tracingmacros=l.

The macros compared may have parameters.
Thus

\def \qwe#l(samething)
\def\rty#lIsamething)
\ifx\qwe\rty

evaluates to 'yes'. This suggests one use for \ i f x
namely, comparison of strings. To compare two
strings, place them in macros, and compare the
macros. \ i f x is, in fact, heavily used in ref. 1 for
this purpose. However

\def\qwe#l<samething)
\def\rty(samething)
\ i f x\qwe\rty

TUGboat, Volume 12 (1991), No. 2

will result in 'no'. Macros must have the same
number of parameters to be considered equal by
\ i f x.

Can \ i f x be used to compare a macro and a
character? After defining \def \a{*), both tests
\ i fx\a*, \ i fx* \a are, surprisingly, a failure. How-
ever. after defining \def \ a s t er{*), both compar-
isons \ i f x \ a \ a s t e r , \ i f x \ a s t e r \ a are successful.

A similar example is a test for a null macro pa-
rameter. A straight comparison \ i f x#l\empty . . .
does not work. We first have to define a macro
\ inner whose value is # I , and then compare
\ i f x\inner\empt y (See definition of \empty on

WI 1.
\def\testnull#l\\C\def\innerC#i)

\ ifx\inner\empty
\message(yes)\else\message{no)

\f i)

The test ' \ t e s t n u l l \ \ ' displays 'yes' on the ter-
minal, while ' \ t e s t n u l l *\ \ ' displays 'no'.

To understand these results, we obviously need
to know the rules for evaluating \ i f x . They are
numbered

if both quantities being compared are macros,
they should have the same number of param-
eters, the same top level definition, and the
same status with respect to \long and \outer ;
in any other case. the quantities compared
should have the same category code and the
same character code.

A macro does not normally have either a character-
or a category code. However, for the purpose of
rule 2, a macro is considered to have character code
256 and category code 16. So when a macro is
compared to a character. they will not match.

Rule 1 implies that \ i f x can be used to
compare macros, but it does not expand them and
does not look too deep into their meanings. They
are considered equal if they look the same on the
surface (see examples later). Rule 2 implies that
\ i f x can compare two characters, but not, e.g., a
character and a string, or two strings. Thus

\ i f x AA is a match by rule 2.
\ i f x A#l can be used, inside a macro, to see

whether the first parameter is the letter .A'.
\ i f x Aa is a failure since the comparands have

different character codes.
\ i f x {abc){abc) fails since it compares a '{' to

an 'a'.
\ i f x A(B3 fails since it compares the 'A ' to the

.{'.
The test \ i f x* \ a above fails because of rule 1.

With these rules in mind, the following discus-
sion and examples are easy to understand.

To compare a macro \ a to a string {abc).
we first define \def\b(abc), and then compare
\ i fx \a \b . If the string is a parameter of a
macro, we can say \def \mac#l(\def \ inner{#i)
\ i f x\a\ inner . . .). However, to compare #1 to a
single character, we can simply say

\def\mac#l{\ifx*#l . . .)
after which the expansion \mac* will be success-
ful. There are some complex examples using this
construct on [375-3771.

To understand the meaning of 'top level defi-
nition', consider the following. Defining \def \a{*)
\def\bC*), the test \ i fx \a \b is a success. How-
ever, the test

\def \aC\b) \def \c(\d)
\def\b{tests) \def \dCtests)
\ i f x \ a \ c

is a failure, since \ i f x compares only the top level
definitions, and does not bother to expand \b and
\d to find out that they are equal. Both tests

\def\qwe{\par) \def\rtyC\par) \ i fx\qwe\r ty

and

\let\qwe=\par \ l e t \ r t y= \pa r \ifx\qwe\rty

are successful, but

\ le t \xxx=\par \def \qwe{\par)
\def \ r ty i \xxxl \ ifx\qwe\rty

fails, since \ i f x does not expand its comparands to
find their deep meaning.

This is an important feature of \ i f x that
has several consequences. One consequence is
that \ i f x is not bothered by undefined control
sequences. It simply considers them all to be equal,
so an \ i f x comparison of two undefined control
sequences always results in a match. Another con-
sequence of the same feature is that two defined
control sequences-such as e.g., \ i f and \ i f cat-
can be compared by \ i f x without worrying about
side effects resulting from their expansions. The
comparison \ i f x \ i f \ i f c a t is a failure, whereas
\ i f x \ i f \ i f is a success. It is also possible to com-
pare the control sequence \ i f x to itself, by means of
\ i f x . Thus \ i f x \ i f x \ i f x yes\else no\f i results
in 'yes'. Note that the \ f i matches the first \ i f x .
and the other i f s shouldn't have any matching \f i s
since they are being compared, not executed. Con-
sequently, the test \ i f x\f i \ f i yes\else no\f i
also produces 'yes', as does \ i f x\message\message
\messageCyes) \ e l s e \message{no)\fi

TUGboat, Volume 12 (1991). No. 2 241

An interesting effect occurs when we try (per-
haps as a serendipitous error)

The \ i f x compares the two tokens following, which
are \message and \message. They are equal, so the
word 'yes' is typeset. It is not displayed in the log
file or on the terminal because the control sequence
\message, which would normally have displayed
it, has been used in the comparison. Continuing
along the same lines, the test \ i f x \messageiyes)
\ e l s e \messageCno)\f i compares the control se-
quence \message to the 'C'. They are not equal,
because of rule 2 and, as a result, the else part is
expanded, displaying 'no' in the log file, etc. Note
that the string 'yes)' becomes part of the then
part, and is skipped.

The reader should be able, at this point. to
easily figure out the results of the following tests:

Tests 1-3 are similar, the control sequences
\qwe, \qw, \q are compared to \message, which
results, of course, in a 'no'. The undefined \qw
and \q do not produce any errors. In 4, the
control sequence \ \ (which is normally undefined)
is compared to the first 'm' of 'message' and, in 5,
\message is compared to the 'C'. Test 6 compares
the first two letters 'me' of 'message' to each other.
The 6 tests result in a 'no' being displayed in the
log file.

Test 7 compares the first two letters 'mm' of
'mmessage' to each other. They are equal, so
everything up to the \ e l s e is expanded. This
results in the tokens 'essageyes'.

Exercise 1. What are the results of:

\def\\Cmessage)
(a) \ifx\\message~yes)\else\messageCno)\fi
(b) \ i f x \ \ \ \ yes\else no \ f i

and why?

More about undefined control sequences. The
test \ i fx \a \b , where \a, \b are undefined, results
in a match. This means that all undefined control
sequences have the same meaning. On the other
hand, the test \ i f x\a\relax. where \ a is undefined,
is a failure. This means that an undefined control
sequence is not equal to \ r e l ax (at least not its
upper level meaning).

However, when the name of an undefined
control sequence is synthesized by a \csname-
\endcsname pair, that control sequence is made
equal to \ re lax. Thus if \ a is undefined, the
construct \csname a\endscsname (which creates
the name \a) is set equal to \ re lax , and the test
\expandafter\ifx\csname a\endcsname\relaxis
a success. This is the basis of [Ex. 7.71. It describes
a macro \ i f undef ined that determines if any given
string is the name of a defined macro.

\def\ifundefined#lC%
\expandafter\ifx\csname#l\endcsname\relax)

The test

\ i fundefined a
\messageCyes~\else\messageCno~\fi

displays 'yes' in the log file if \ a is undefined.

Exercise 2. Define a macro \ i fdef ined#l that
will be the opposite of \ i fundefined and be used
in the same way.

What if \ a has been defined as \ re lax? Pre-
dictably, the test ' \ l e t \ a= \ r e l ax \ i f undef ined
a' is successful. It is (somewhat) more surprising
that the test '\def \a{\relax) \ifundef ined a' is
a failure. This difference is a direct consequence of
the difference between \ l e t and \def. Following
is a short discussion of that difference, which is
important in advanced applications, where macros
are defined and compared.

The general form of \ l e t is

\ l e t (control sequence)=(token)

It defines the control sequence as being identical
to the token. This is similar, but not identical
to, \def (control sequence)C(token)) and the fol-
lowing illustrates that difference. After \def \aCX)

\ l e t \g=\a \def \h{\a), the sequence \g\h pro-
duces 'XX'. If we now redefine \a, the meaning of
\h will change (since it was defined by \def) but \g
will not change. Thus \def\a{*) \g\h produces
'X*,.

As a result, we can say that \ l e t \ a= \b assigns
\ a that value of \b which is current at the time the
\ l e t is executed, and this assignment is permanent.
In contrast. \def\aC\b) assigns \ a the name \b.

242 TUGboat, Volume 12 (1991), No. 2

When \ a is expanded, its expansion causes an
expansion of \b, so the result is the value of \b.

Each expansion of \ a may, therefore, be different
since \b may be redefined.

A more formal way of saying the same thing is:
A \ l e t makes a copy of the definition of \b, and
that copy becomes the definition of \a; in contrast
\def sets a pointer to point to the definition of \b,
and that pointer becomes the definition of \a.

Back to \ i f x. The comparands of an \ i f x are not
limited to just macros, primitives, or characters.
They can also be:
rn font names. \f ont\abc=cmrlO \f ont\xyz=cmrlO
\ re lax \ifx\xyz\abc produces 'yes'.
rn Active characters (see [Ex. 7.31). The result of
\ l e t \a=" \ i fx \ae is a match.

Exercise 3. Why does \def \a{") \ i f x\a" fail?

rn Names of the same register. A test such as

\countdef\me=3 \countdef\you=3 \ifx\you\me

is a success.
m Macros defined at run time, such as in:

\def\toneC\countO=9 A 1%
\messageIEnter a def in i t ion)%
\read16 to \no te
\ i fx\ tone\note
\messageCyes)\else\messageCno~

\f i

If the user enters '\count0=9 A' from the
keyboard, in response to the message, there will
be a match. Entering anything else, such as
'\count0=9 a'. will result in a failure. In either
case the value of \count0 will not be changed
(by the way, what is it?), nor will the letters 'A'
or 'a' be typeset. Notice that a message entered
from the keyboard must terminate with a carriage
return which, in tam, is converted by ?'EX into a
space. This is why the definition of \ tone must
end with a space (to avoid that, change the value
of \endl inechar as explained on [48]).

The second comparison, \ i f , is executed in a
completely different way. expands the token
following the \ i f (if it is expandable), then expands
its expansion (if possible), and so on until only
unexpandable tokens (characters or unexpandable
control sequences) are left. If less than two un-
expandable tokens are left, the process is repeated
with the next input token. The process ends when
there are two or more unexpandable tokens to be

compared, or when an \ e l s e or a \ f i are encoun-
tered. The final result is a string of unexpandable
tokens, the first two of which are compared by
character code but not by category code. The rest
of the tokens, if any, are added to the then part.

If a comparand is an unexpandable con-
trol sequence, rather than a character, it is as-
signed a character code 256 and a catcode of 16.
Thus the tests \ i f \hbox\vbox, \ i f \hskip\vskip,
\ i f \hbox\kern, succeed. (See [209] for exceptions
regarding the use of \ l e t .) This also implies that
comparing a primitive to a character always fails.

There is also the case where evaluating the
comparands results in just one unexpandable token.
Such a comparison should not be used since its
result is undefined. Unfortunately, no error message
is given by W. The advanced reader is referred to
[$495] for the details of such a case.

The first example is simple \def \a{*). Both
tests \ i f \a*, \ i f *\a are successful (compare with
the similar \ i f x test above).

After \def \aC\b), \def \cC\d), \def \bC*).
\def\dC*), the test \ i f \ a \ c is a 'yes'. How-
ever, \def \aI\b), \def \cC\d), \def \bCtesting).
\def \ d I t e s t ing), \ i f \a \c will fail, since the two
tokens compared are the first two characters result-
ing from the expansion of \a, which are ' te ' . As
mentioned above, the rest of \ a (the string 'sting')
and the whole of \ c (the string 'testing') do not
participate in the comparison, are added to the then
part, and are therefore skipped. More insight into
the working of \ i f is provided by the test

\def \aI\b) \def \cI \d)
\def \bCtts t ing) \def \d{t ts t ing)
\ i f \ a \ c \messageCyes)\else \messageCno)\fi

It compares the first two t's of \a. They are
equal, so expands everything up to the \e l se .
It displays 'yes'. and also typesets the rest of \ a
('sting') and the whole of \ c ('ttsting'). Note that,
again, \ c is not used in the test.

Similar results are obtained in the experiment

\def\toneI*)
\messageCEnter a)\readl6 to\note%
\ i f \ tone\note

Assuming that the user enters '*\count90=89',
the result will be a match, and \count90 will
also be set to 89. However, if the user en-
ters '?\count90=89', the comparison will fail, and
\count90 will not be affected. Similarly, if the user
enters '*abc', the comparison will be successful, and
the string 'abc' will be typeset. Entering, '?abc'
however, will result in 'no', and the string 'abc' will
be skipped.

TUGBoat, Volume 12 (1991), No. 2 243

The test \ i f \ s , where \s is undefined, results
in the message ! Undefined cont ro l sequence,
since \ i f always tries to expand its comparands.

Defining \def \w{xyz), the test

is a success, since the first token of \ w is an
'x'. However, The other two tokens are added to
the then part, and the result of the test is the
string 'yzyes'. Sometimes it is desirable to discard
that part of \ w that does not participate in the
comparison. This is a special case of the general
problem of how to extract the first token of a macro
\w and discard the rest.

One way of doing it is:

When \W is expanded, the first step is to expand
\w, and the second, to expand \tmp. The first
argument of \tmp is thus the first token of \w. and
the second argument, the rest of \w. The result
of expanding \tmp is thus the single token 'x', and
that token becomes the definition of \W. The test
\ i f x\W yes \e l se no\f i now results in the string
'yes'. This method works even if \ w is \empty.

Exercise 4. Perform the test:

for \count90 set to 1, 11 and 12.

The next example is the two tests \ l e t \ a= -
\ i f \ a e , \def\b(") \ i f \ b - . In the first test, the
\ l e t makes \ a equivalent to the active character
'-'. In the second one, the \def makes \b a macro
whose definition is the same active character '"I.
The \ i f expands its comparands, so it ends up
comparing '- ' to '"'. Both tests thus result in a
match.

Having mentioned active characters, let's use
them to further illustrate the behaviour of \ i f . The
following:

\def\a(*-)
\hboxiMr . Drof na t s)
\hboxCMr.\if*\a\fi Drofnats)
\hbox{Mr . \ i f +\a\f i Drofnats)

results in:
Mr. Drofnats
Mr. Drofnats
Mr.Drofnats

which is easy to explain. The test \ i f *\a\f i
expands \ a and only uses its first character (the
'*'). The second character (the tilde) remains and
affects the space between 'Mr.' and 'Drofnats' (it
has the effect of \frenchspacing). In contrast,
the test \ i f+ \ a \ f i expands \a and, since there is
no match, skips the second character. As a result,
there is no space between 'Mr.' and 'Drofnats'.

The \noexpand command can be used to sup-
press expansion during an \ i f . Assuming the defini-
tions \def \q(A). \def \p(9), the test \ i f \p\q fails
since it compares the characters 'A', '9'; however,
the test \ i f \noexpand\p\noexpand\q is a success
(even if the macros involved are undefined).

\ i f c a t

The third comparison, \ i f c a t . is less useful. It

works like \ i f , expanding its comparands, and
resulting in a string of characters. of which the first
two are compared by category codes 1371, but not
by character codes. For example, the catcode of
'&' is 4 (alignment tab) and the catcode of '8' is
12 (other). If we change the catcode of '8' to 4
and compare \catcode' \8=4 \ i f c a t 8&, we get a
'yes'. It is hard, however, to find simple, practical
examples for \ i f c a t (the examples on the notorious
13771 are hardly simple or practical).

Similar to an \ i f . there is also the case
where expanding the comparands results in a non-
expandable control sequence, rather than a charac-
ter. In such a case, assigns it a character code
256 and a catcode of 16. Thus all the following com-
parisons \ i f cat\hbox\vbox, \ i f cat \hskip\vskip,
\ ifcat\hbox\kern, succeed. (Again, see [209] for
exceptions concerning the use of \ l e t .)

The category code of a character can be typeset
by the command \the\catcodeC\A. It can be dis-
played in the log file by \showthe\catcode'\A. This
does not work for control sequences since they have
no catcode. When comparing control sequences
with an \ i f ca t . they are first expanded, and the
first two tokens are compared. For example, af-
terdefining\def\a{&) \def\bI+=) \def\c{true)
the comparison \ i f ca t \a \b fails, since the catcodes
of .&' and '+' are different. However. the comparison
\ i f ca t \ b \ c is a 'yes' since the comparands are '+'
and '='. The string 'true' is typeset.

It is possible to compare macros without ex-
panding them. Assuming the definitions of \a. \b
above. the test \ i f cat\noexpand\a\noexpand\b
results in a match since it does not expand the
macros, and they are treated as undefined (category
code 16).

244 TUGboat, Volume 12 (1991), No. 2

Exercise 5. With \c defined as above, what is the Since \ i f evaluates its comparands, they can
result of \ i f c a t \ c ? be other i f s. Defining \def \a{). \def \b{**), the

test
Perhaps the simplest practical example of

\ifcat is a test for a letter. ~~~~~i~~ that \if \if x \a \b l \ e l s e \ i f \a\b23\f i \ f i \ e l se4 \ f i -
the parameter of macro \suppose is supposed to (see [Ex. 20.13gl) is an \ i f with an \ i f x as a

be a letter or a string starting with a letter. The comparand. The \ i f x . in turn, has another \ i f

macro can be defined as: \def \suppose#l{\if c a t nested in its else part.
A#l. . . \ f i . . .3. The process starts when the outer \ i f evaluates

Exercise 6. If the parameter of \suppose is a
string, only the first character will be used by the
\ i f c a t , and the rest will be added to the then
part, perhaps interfering with the rest of the macro.
Generalize the definition of \suppose to suppress
the rest of the parameter during the \ i f ca t .

The examples

\def \a{") \ i f c a t \ a -
\ l e t \b=- \ i f c a t \ b e

are identical to the ones shown earlier. in connection
with \ i f . They behave the same as in that case,
resulting both in a 'yes'.

Active characters may also be compared with
an \ i f c a t , since they all have the same catcode
(13). After defining \catcoder\?=13 \def?{:).
\catcode1\!=13 \def ! { ; I , the test \ i f c a t ? ! is a
success, seemingly confirming the above statement.
A deeper look. however, shows that the test ex-
pands the two active characters, and compares the
catcodes of their values! The values just happen
to have the same catcode. To actually compare
the catcodes of the active characters, a \noexpand
should be used to prevent their expansions. Thus
the test \ifcat\noexpand?\noexpand! compares
the catcodes of the active characters without ex-
panding them (and is also a success).

Nested ifs

In principle, it is possible to nest i f s one inside
another. An i f may be a comparand of another
i f , or it may be nested in either the then or the
else part of another i f . However, because our three
i f s work in different ways, not every combination
of nested i f s is valid. In general, a nested i f is
written as

\ i f . . \ i f (inner)\f i . . \ e l s e . . \ i f (inner)\f i . . \f i

where any of the inner i f s may have an else part,
and may itself be nested by other i f s . However,
as the examples below show, such an i f should be
carefully analyzed before it is used, since it tends to
produce unexpected results.

its comparands in order to come up with two tokens
for comparison. It activates the \ i f x which, in
turn, compares \ a and \b. They are not equal.
so the '1' is skipped, and starts executing the
else part of the \ i f x. This part contains the inner
\ i f , which evaluates \ a and \b, compares the two
asterisks. and results in the '23'. The outer \ i f is
now equivalent to \ i f23\else4\f i. which typesets
the '4'.

The test

\if\ifx\a\bl\else\if\a\b22+\fi\fi\else3\fi

is similar, it has the '+' left over after the compari-
son. so it gets typeset.

Exercise 7. What gets typeset by the following?
\ i f \ i f x \b \b l \ e l s e \ i f \a\b2\f i \ f i+ \e l se3 \ f i

The \ i f c a t comparison is similar to \ i f in
that it first evaluates its comparands. As a result,
other comparisons may be used as comparands, and
may also be nested inside an \ i f ca t . The following
tests can be analyzed similarly to the ones above:

\ifcat\ifx\a\bl\else\if\a\b234\fi\fi\else5\fi

\ifcat\ifx\a\bl\else\if\a\b22+\fi\fi\else3\fi

\ifcat\ifx\b\bl\else\if\a\b2\fi\fi\else3\fi

Since \ i f x does not evaluate its compara-
nds. they cannot be other \ i f s . Trying. e.g..
\ i f x \ i f \a\b . . . , the \ i f x would simply compare
the \ i f to the \a. We cannot even use braces to sep-
arate the inner and outer i f s \ i fxC\if \a \b. . .) . . .
since the \ i f x will compare the 'C ' with the \ i f ,
and 'IQX will eventually complain of an 'Extra 3'.

We can, however. nest an i f (of any type) in
the then or else parts of an \ i f x . The test

\ i f x \ a \b \ e l s e \ i f \ a \b o k \ f i \ f i

(with \a , \b defined as above) typesets 'ok'. The
\ i f x compares \ a and \b and finds them different.
It skips to the else part and expands it. The inner
\ i f is thus executed in the usual way; it finds
two identical tokens (the two asterisks of \b), and
typesets 'ok'.

Examples

1. A practical example is macro \ f l ex in s below.
It lets the user decide, at run time, whether any

TUGboat, Volume 12 (1991), No. 2 245

floating insertion should be a \midinsert or a
\topinsert. The user is prompted to enter either
'mid' or 'top' from the keyboard. In response,
the macro uses a nested \ifx to create either a
\midinsert or a \topinsert.

\def \f lexinsC%

\def\bCmid) \def\dItop)

\message{mid or top?)\read-1 to\a

\csname

\ifx\a\b mid%

\else

\if x\a\d top\f i

\fi insert%

\endcsname

1

\f lexins

(Insertion material)

\endinsert

What if the user enters none of these inputs.
Clearly \flexins should be extended so it can
recover from a bad input. It is a good idea to
expand \f lexins recursively. in such a case, to give
the user another chance to enter a valid input. The
first try is:

\def\flexinsI%

\def\b{mid 3 \def\dCtop)
\message{mid or top?)\read-1 to\a

\csname

\ifx\a\b mid\else

\if x\a\d top\else \f lexins\f i

\f i insert\endcsname

1

It does not work! When TEX expands \f lexins
recursively, it is still inside the \csname. During the
recursive expansion it finds \def \b, but \def is not
expandable, and thus not supposed to be inside a
\csname [40]. The result is an error message (which
one?).

We now realize that we have to delay the
recursive expansion of \f lexins until we get out of
the \csnme-\endcsname pair. The final version is:

\def\flexinsC%

\def\b{mid) \def\d(top 3
\def\badinsert{\flexins)

\message{mid or top?)\read-1 to\a

\csname

\ifx\a\b mid\else

\ifx\a\d top\else bad\f i

\f i insert\endcsname

In the case of bad input, the \csname-

\endcsname pair creates the control sequence name
\badinsert. We predefine it to simply expand
\flexins. which then asks the user for another
input.

2. (Proposed by R. Whitney.) This is a
generalization of the previous example. Macro
\yesno below prompts the user to respond with a
'Y' or a 'N', but also accepts the responses Ly', 'n'.
It does the following:

Prompts the user with a question where the
response can be 'Y', 'N', 'y', or 'n'.
rn Reads the response into \as.
m Uses \ifx to compare \ans to macros containing
one of the valid responses.
m If a match is found, uses \csnme to create
the name of, and expand. one of the macros
\yesresult, \noresult. These macros should be
predefined to do anything desirable.

If no match is found. expands \badresult. which,
in turn, should expand \yesno recursively.

\def\yCy 1 \def\nCn 1 \def\YIY 3
\def\NIN) \def\badresultC\yesno3

\def \yesresultC(whatever))

\def \noresult {(whatever))

\def\yesnoC%

\message{Respond with a Y or N!)

\read-I to\ans

\csname

\ifx\y\ans yes\else

\ifx\Y\ans yes\else

\ifx\n\ans no\else

\ifx\N\ans no\else bad%

\f i

\f i

\fi

\fi result\endcsname

>
\yesno

A different version of \yesno uses \if instead
of \ifx. We start with:

\def\badresultC\yesno)

\def \yesresultI(whateuer))

\def \noresult((whatever) 3
\def\yesno{%

\message{Respond with a Y or N!)

\read-1 to\ans

\csname

\if y\ans yes\else

\if Y\ans yes\else

\if n\ans no\else

\if N\ans no\else bad%

TUGboat, Volume 12 (1991), No. 2

It compares \ans to the token 'y' instead of
the macro \y, but it does not work! Macro \ans
contains a .y' (or 'Y' or whatever), followed by a
space. The space gets added to the then part. which
then becomes 'uyes'. creating the control sequence
\uyesresult. To get this to work. the first token
of \ans has to be extracted. and all the other ones
discarded. This can be done. as shown elsewhere.

by

\def\tmp#l#2\\C#l)

\def\sna(\expandafter\tmp\ans\\)

Macro \sna now contains just one character, and
the next version is:

\def\badresult{\yesno)

\def \yesresulti(whateve~)~

\def \noresult {(whatever))

\def\yesno{%

\message{Respond with a Y or N!)

\read-1 to\ans

\def \tmp##1##2\\C##ll

\def\snaC\expandafter\tmp\ans\\)%

\csnarne

\if y\sna yes\else

\if Y\sna yes\else

\if n\sna no\else

\if N\sna no\else bad%

\f i

\f i

\f i

\fi result\endcsname

>
Note that it works for any response that's a

string starting with one of the four valid characters.

Exercise 8. Extend this example. Define a macro
\triresponse that accepts the responses 'left',
'right', 'center', or any strings that start with
'1'. 'r ' , or 'c'. The macro then expands one of the
(predefined) macros \dolef t, \doright. \docenter
or \dobad.

3. A practical example of the use of \ifcat
arises when style files are used. If such a file
has internal macros, they can be made private by
declaring \catcoder\O=ll, and giving the macros
names that include the '0'. At the end of the file,
a matching \catcoder\Q=12 should be placed. The
problem occurs when such a style file, say b . sty, is
\input by another file, a. sty, that also contains the

pair \catcoder \Q=ll, \catcoder\Q=12. A simple
test should reveal the problem to readers who still
don't see it. The solution is to place the test

\if cat @A\chardef \catcount=12

\else

\chardef \catcount=\catcode'\Q

\f i

\catcoder\Q=ll

at the beginning of b.sty, and reset at the end to
\cat code ' \Q=\catcount.

Exercise 9. Use \if cat to solve the following
problem: Given \def\foo#lC. . .), devise a test
to see if, in the expansion \f oo. . . , the argument
is delimited by a space. Normally, such a space
is automatically absorbed by and cannot be
recognized.

4. A compound macro argument.
Macro \compndArg accepts a compound argu-

ment and breaks it down into its components. The
argument should be of the form xxx , xxx , . . . , xxx ;
(the ',' separates the individual components and
the '; ' delimits the entire argument). The macro
accepts the argument (without the ';'. of course),
it appends ' , ; ,' to the argument, and makes the
whole thing the argument of \pickup, which is then
expanded.

\def \compndArg#l ; {\pickup#l, ; ,)

\def\pickup#l,C% Note that #I may be \null

\if;#l\let\next=\relax

\else\let\ne~t=\~icku~

\messageCr#l')% use #I in any way

\f i\next)

Macro \pickup expects its arguments to be
delimited by a comma, so it ends up getting the first
component of the original argument. It uses it in any
desired way and then expands itself recursively. The
process ends when the current argument becomes
the semicolon. Note the following:
rn This is also an example of a macro with a variable
number of parameters. The compound argument
may have any number of components (even zero,
see below).
rn The method works even for an empty argument.
The expansion '\compndArg ; ' will cause \pickup
to be expanded with a null argument.
rn The macros do not create spurious spaces. In
many macro lines, the end-of-line character gets
converted to a space, which is eventually typeset
if the macro is invoked in horizontal mode. Such
lines should be identified, with a test such as
C\compndArg g;D. and should be terminated by a

TUGboat, Volume 12 (1991); No. 2

'%'. Try the above test with and without the '%' in
the first line of \pickup.

Conclusion

The main source of the confusion surrounding the
various \if comparisons is the inability to find
out exactly what is comparing. In future
extensions of TJ$ it would be useful to have a
control sequence \tracingcornparands such that
setting \tracingcomparands=l would show, on the
terminal, the actual quantities compared.

Answers to exercises

1. (a) displays 'no' on the terminal since it com-
pares the macro \\ to the letter 'm'; (b) typesets
'yes' since it compares two identical macros.

2. Macro \if undef ined supplies the \if x, and the
matching \else and \f i are provided outside. We
want \if def ined also to supply an if that can be
completed outside. We start with the test for an
undefined macro

\expandafter\ifx\csname#l\endcsname\relax

and create either an \iffalse (if the macro is
undefined) or an \if true (in case it is defined), to
be matched outside. The first version is:

\def\ifdefined#l C%
\expandafter\ifx\csname#l\endcsname\relax

\let\next=\iffalse\else\let\next=\iftrue\fi

\next

But it fails! The reason is explained at the bottom
of [211]. The next, working, version is:

\def \maca(\let\next=\if f alse}

\def\macb(\let\next=\iftrue)

\def\ifdefined#l C%
\expandafter\ifx\csname#l\endcsname\relax

\maca\else\macb\f i \next)

After which, we can say:

\ifdefined a \message(yes)\else

\message(no)\fi

3. Because \let\a=" defines \a as an active char-
acter, where as \def\a{-} defines \a as a macro
(whose value is the active character '"'). The
\ifx does not look too deep into the meaning of
its comparands, so it decides that a macro is not
equal to an active character. In contrast, the \if
comparison, discussed later, which looks deeper into
the meaning of its comparands, returns a 'yes' for
both tests.

4. Just do it. It's worth it. Then do the similar
test

\if\the\count90\the\count90

\messageCyes~\else\messageO\fi

5. A success, since it compares the catcodes of the
two letters 't', 'r'. It also typesets 'ue'.

6. Macro \tmp expands to the first character of the
parameter.

\def\suppose#lC\def\tmp##1##2\\~##1~%

\ifcat A\tmp#l\\ . . . \else . . . \fi . . . I

7. The \if x compares \b and \b, and they, of
course, match. The '1' is thus the first token left
for the outer \if to compare. The rest of the \if x
(\else\if \a\b2\f i\f i) is skipped. Next comes
the '+', followed by the else part of the outer \if,
with the '3'. The outer \if can now be written as
\if l+\else3\f i which, of course, typesets the '3'.

8. Answer not provided.

9. We place an expansion of \isnextspace at the
end of \foo. This sets \next to the token following
the parameter of \f oo. The \if cat can then be
used to compare the category of \next to that of a
space. The following test

\def\spacecheckC%

\ifcat\next\space

\messageCyes3\else\message~no~\fi~

\def\isnextspace~\futurelet\next\spacecheck~

\def\foo#1{#l\isnextspace)

\f ooCA) \f ooIB) . \f ooCC) D
produces 'yes no yes' on the terminal.

References

1. Greene, A. M., BASIX-An Interpreter Written
in m, TUGboat 11 (1990), no. 3, pp. 385-392.
2. Bechtolsheim, S., \csname and \string, TUG-
boat 10 (1989), no. 3, pp. 203-206.
3. Hendrickson, A., Getting m n i c a l , TUGboat 11

(1990), no. 3: pp. 359-370.

o David Salomon
California State University,

Northridge
Computer Science Department
Northridge, CA 91330
dxs@ms,secs.csun.edu

TUGboat, Volume 12 (1991), No. 2

Some tools for making indexes: Part I

Lincoln Durst

Three previous episodes in this series of tutorials ap-
pear in earlier issues of TUGboat [10#3 (November
1989, pages 390 - 394), 1 l#1 (April 1990, pages 62 -
68), and 11#4 (November 1990, pages 580 - 588)].
The present installment is more or less independent
of its predecessors; the approach, however, is similar
in spirit. In fact, some of the ideas here inspired
development of tools described in the earlier pieces.

There are four or so main steps in making an
index using as, indeed, there are when one
makes one by hand. as in the good old days. These
steps are (1) selecting the items that seem to be
reasonable candidates for index entries, (2) sorting
them into the proper order (alphabetical order for
words, numerical order for page numbers) or into
something near to the proper order, (3) combining or
eliminating duplicates and resolving inconsistencies
between entries that may have come from widely
separated parts of the book but that turn up near
each other after the sort, and (4) arranging to have
the index typeset the way an index is supposed to
look. Times have not really changed; these steps,
listed in the order they must be performed are still,
in spite of technical advances, arranged in order of
increasing difficulty.

It is an easy matter to mark the terms in the
text that are reasonable candidates for the index
and cause them to be written into a file in the order
in which they appear in the text. Sorting that file
is not as simple as sorting the file of macro names
for entries in the bibliography since the terms are
paired with page numbers and. unless you're careful
or cunning, a simple ASCII sort of numerals, may
give you things like

1 < 11 <111<2<21...
(cognoscenti call this "lexicographic order") . After
an automatic sort, there will be other problems as
well. Any inconsistencies resulting from capitaliza-
tion vs. noncapitalization, plural forms vs. singular
forms, etc., will have to be resolved. And, finally,
there is the problem of distinguishing between major
entries and subsidiary ones.

It is a matter of taste whether the last question
mentioned here should be considered first of all
or last of all: The problem is philosophical since
it comes down to whether such logical distinctions
must be settled before one starts writing (this makes
the problem of what is to be arranged or rearranged
quite an abstract question) or whether it only makes
sense to worry about the problem after the list of

items to be organized is at hand. Long-time readers
of TUGboat may notice here an echo of the variant
of the chicken-and-egg dilemma posed by Richard
Southall over 6 years ago [5#2, November 1984,
page 801 about whether it is desirable (or even
possible) to create a manuscript before its printed
version has been designed.

This installment is devoted to the first two
steps discussed above: The creation of the file of
reminders and some of the problems encountered in
sorting it.

Creation of the file of reminders. Here we con-
sider a simplified version of Knuth's indexing macros
for The m b o o k , described there in Appendix E.*

Knuth makes provisions for four kinds of items
in his index, of which

Arabic, by, \char, <dimen>

are examples. Ordinary mortals may be able to
survive with one category of items for an index.
It is surely easier to grasp what's happening if we
restrict our attention to the first of Knuth's four
cases. Once you understand the elementary case,
please feel free to proceed on your own if you decide
to write a book about m.

Knuth's scheme is to mark terms in the text
file that he may want to include in the index (The
m b o o k , pages 415 - 416, 423 -424). One point
here is that this marking can be done at the time
of writing, or at any time during revision. Knuth
refers to these selections as "index reminders", since
they will not automatically create the final entry;
many will be edited during later stages of index
construction. Suppose Gauss is mentioned in the
text, then the word "Gauss" should be marked as
a reminder, even though the entry in the index
corresponding to it may in the end be expanded to

Gauss, Karl Friedrich (1777- 1855) . . .
Knuth's way of marking a term in the text is to
write ^{Gauss) or ^^<Gauss): in the former case,
if the word "Gauss" is to be printed in the text at
that point and, in the latter case, if it is not to be
printed in the text although it is being considered
for the index. For example, the source file for
FIGURE 1 contains the following passage:

* Other ways to make indexes have been discussed in
earlier issues of TUGboat, beginning with the first issue,
October 1980 (1#1, Winograd & Paxton, Appendix A,
pages [I] - 12) and. more recently, in the November 1989
issue (10#3, David Salomon. pages 394-400). Readers
interested in alternatives to what we consider here may
profitably consult those sources.

TUGboat, Volume 12 (1991), No. 2

By means of ^{stops) the performer has
within his power a number of combinations
for varying the -{tone) and
-^{power, dynamic)
dynamic power.

In The m b o o k , items of the second category.
those with two "hats", --{. . .), are said to be
"silent". (There is a reason, as we shall see below,
for putting the silent entry just before the word(s)
to which it applies; putting it on a separate line
may make reading the text on the screen a little
easier because the whole line can then be skipped.)

Knuth gives code that will write the marked
items into a file (in the order of their appearance in
the text), as well as code that provides the option
of listing them in the margin of the page, such
as shown in FIGURE 1. Here is a stripped-down
version [cf. The ?')$book, pages 415, 4231:

%%% index.rem, first fragment %%%
\newinsert\margin \dimen\margin=\maxdimen
\count\margin=O \skip\margin=Opt

\newif\ifsilent \newwrite\inx
\immediate\openout\inx=\ jobname. inx
\def\specialhat{%

\if mmode\def \next{-)%
\else\let\next=\beginxref
\f i
\next)

\catcode1\-=\active
\let ^=\specialhat

First we have the allocation of an insert to hold
the list in the margin. The dimension of the
insert is allowed to be as long as the whole page
(\maxdimen), but it occupies a vertical space of zero
length (\count\margin=O) so that it takes no text
area away from the current page: As we have seen
before, TQX can swallow, with no noticeable qualms.
some assertions that might seem to be outrageously
contradictory. [For more about inserts, which are
covered with characteristic brevity in The w b o o k ,
see David Salomon's tutorial in the November 1990
issue of TUGboat (11#4, pages 588-605).] Next.
an \if-switch is allocated to distinquish between
the one-hat and the two-hat items and then the file
to hold these things is allocated and opened. is
ultimately made active and \ spec ia lha t is defined
to replace it. It is, of course, necessary to account
for the fact that - may perfectly well be used in
math mode in its usual way, thus \ spec ia lha t is
defined so that for \ifnunode true, \ spec ia lha t
is merely ^, but for \ifmmode false, it becomes
\beginxref, the next item on the agenda [ibzd . ,
page 4231:

%%% index.rem, second piece %%%
\def \beginxref {\futurelet\next

\beginxrefswitch)

We step through this fast shuffle gingerly. At this

point TQX has just seen one - not in math mode
and \next is now \beginxref. The immediate
question that must be settled is whether there
is another just after the first one. Consider
the two cases -{Gauss) and --{Gauss): In the
first case, the next token TEX will find is "C"
and, in the second case "-", i.e., \ spec ia lha t .
\ f u t u r e l e t (cf. The W b o o k , page 207) permits
TQX to sneak a peek at that token and set \next
equal to it; then \beginxref switch is expanded.
If a second hat is seen, the macro \ s i l e n t r e f
removes the -, sets the switch \ i f s i l e n t to true,
and calls the macro \x re f ; in the other case.
\xref is called but \ i f s i l e n t remains false. [The
discussion of \ f u tu r e l e t on page 207 is certainly
terse; readers interested in other examples of its
use may wish to consult Stephan v. Bechtolsheim's
tutorial in TUGboat, 9#3, December 1988, pages
276ff.j Anyway, what happens here is that the
macro \beginxrefswitch is expanded first, after
which the \ i f s i l e n t switch is properly set and
\xref is called.

Now it is time for \xref :

%%% index.rem, third part %%%
\def\xref#i{\def\text{#l)%

\let\next=\text\makexref}
\def\makexref{%

\ifproofmode\insert\margin{%
\hbox{\marginfont\text))%

\xdef\writeit{\write\inx{%
\text\space!O\space
\noexpand\number\pageno.))%

\writeit
\else

\ifhmode\kernOpt\fi
\f i
\ifsilent\ignorespaces\else\next\fi)

The first two lines here replace fifteen (much longer)
lines of code in the middle of page 424. where the
four-way branch is made to accomodate the four
types of index entries Knuth has to juggle. Notice
that two copies of the text in the brackets are
made by \xre f , one of them, \ t ex t , is for the
index file and the marginal note, and the other,
\next, is the item to appear in the text for the
case \ s i l e n t f a l se . The steps just mentioned are
carried out by \makexref. Note \space ! O\space
in the definition; this is used to separate the term

TUGboat, Volume 12 (1991), No. 2

for the index from the number of the page on
which it appears. The only relevant criterion for
selecting a separator for this purpose is that it
should be something that will never appear in a

candidate for the index. Thus any sufficiently
unlikely juxtaposition of characters will do. Knuth
uses ! 0, ! 1, !2, and !3, for his four cases and our
notation is consistent with his. The period after
\pageno is there to mark the end of the reminder.
If your page numbers include periods (see below),
you should terminate the reminder with some other
character here and later (e.g., :). Two subtle points
here: (1) The \kernopt suppresses hyphenation
when not in proof mode, for consistency with the
result in the insert case (cf. Appendix H of The
m b o o k . pages 454, 455). (2) \ignorespaces
suppresses any space, explicit or implied, at the end
of "--(Gauss) ", which means that with. say,

$l+i$ is a ^-(Gauss) gaussian prime.

or

$l+i$ is a
-^{Gauss)
gaussian prime

in the text file, a page break cannot occur between
--{Gauss) and gaussian: These two items are
firmly attached to one another (as if by superglue
which, of course, has no stretch).

To complete the construction of FIGURE 1, we
have to monkey with the output routine, in order
to get the insert into the margin when we are in
proof mode. Knuth's version is on page 416; ours is
a bit simpler because we're not trying to do all that
he must:

0 , .
index.rem, output routine %%%

\newdimen\pageheight \pageheight=\vsize

\def\onepageout{\shipout

\vbox{\offinterlineskip
\makeheadline\pagebody)\advancepageno~

\def\makeheadline(\vbox to 2pc{%
\ifodd\pageno\rightheadline
\else\lef theadline\f i\vf ill}}

\def \pagebody{\vbox to\pageheight{%
\ifproofmode\InsertNotes\fi
\unvbox255})

\def \InsertNotes{\if void\margin\else
\rlap{\kern\remkern\vbox to Opt

{\box\margin\vss})\f i)

This writes over the \output defined in p l a in . t ex ,
replacing it by \onepageout; here \ o f f i n t e r l i -
neskip pushes the two boxes (\makeheadline and
\pagebody) together by eliminating the space be-
tween them, and \vbox255 is the box that holds a
full page of text. \ Inser tNotes puts in the contents

of the insert \margin when there are any. Finally
(more or less) we need fonts for the reminders in
the margin:

%%% index.rem, reminders in margin %%%
\font\remfont=cmtt8 \font\strutfont=cmr9
\newbox\rembox
\setbox\rembox=\hbox(\strutfont) }

\def\remstrut{\vrule height l\ht\rembox
depth l\dp\rembox width Opt)

\def\marginfont{\remstrut\remfont)

Knuth puts his index reminders in the right
margin; in our case we choose the left one because
the right side is already overworked. Conventional
wisdom among professional designers of books and
other printed material, based on readability studies,
dictates that printed text should contain an average
of about ten words per line or fewer. This works
out to a maximum line measure (\hsize) for ten
point type of about 24 picas, with as many as 30
picas only for twelve point type. It follows that
one column of lOpt text on an 8.5" x 11" sheet
should always have left and right margins whose
combined width is close to 411, i.e., nearly half the
width of the sheet; this leaves plenty of room for
marginal notes on both sides of the text. See,
for example. Southall, zbid., page 86. See also
Designing with type. by James Craig (New York,
Watson-Guptill; London, Pitman; revised edition
1980), page 128. Typography: How to make it most
legible, by Rolf F. Rehe (Carmel. Indiana, Design
Research International; fifth edition. 1984) has an
extensive bibliography of the research reports of the
relevant legibility studies.*

As usual, we have something for prepare. tex:

\new if \if IndRemMark \IndRemMarkf alse
\def\hdexRemindersMarked{\IndRemMarktrue}
\newif\ifproofmode \proofmodef alse
\def\WriteIndexReminders{\proofmodetrue}

and something for compose. t ex:

There are two more options here for the driver file:

\IndexRemindersMarked
\WriteIndexReminders

The first option inputs index. rem in the composi-
tion run, in order to cope with all the \ spec ia lha ts ,
and the second writes the reminders into the file and
displays them in the margin at the time the index
is to be prepared just prior to the final composition
run. (prepare. t ex , compose. tex, and driver files

* Can it be possible that there are graduate schools in
the U. S. whose policies require that theses be presented
in a form intended to make them difficult, tedious. or
impossible to read? Anti-dissemination. surely!

TUGboat, Volume 12 (1991): No. 2

HARPSICHORD

Pianoforte

strings, 2, 3, or 4
strings

case, harp shape

case, wing shape

pianoforte, grand

harpsichord

strings

stops

tone

power, dynamic

strings

struck, by tangents

tangents, See struck

struck, by hammers

hammers, See struck

strings, plucked

quill

strings, twanging of

tone, brilliant

tone, incisive

power of expression

accent

pianoforte

harpsichord

orchestra

harpsichord makers

Ruckers

Antverp, See Ruckers

Antwerp

HARPSICHORD, HARPSICON. DOUBLE VIRGINALS (Fr.
claveczn: Ger. Clavzcymbel, Kzel-Flugel; Ital. arpzcordo.
cembalo, clavzcembalo, gravecembalo; Dutch. clavzsznbal).
a large keyboard instrument (see PIANOFORTE), belonging
to the same family as the virginal and spinet, but having 2,

3, or even 4 strings to each note, and a case of the harp or
wing shape. afterwards adopted for the grand pianoforte.
J. S. Bach's harpsichord, preserved in the museum of the
Hochschule fiir Musik at Charlottenburg. has two manu-
als and 4 strings to each note, one 16 ft., two 8 ft. and
one 4 ft. By means of stops the performer has within his
power a number of combinations for varying the tone and
dynamic power. In all instruments of the harpsichord fam-
ily the strings. instead of being struck by tangents as in
the clavichord. or by hammers as in the pianoforte, are
plucked by means of a quill firmly embedded in the cen-
tred tongue of a jack or upright placed on the back end of
the key-lever. When the finger depresses a key. the jack is
thrown up, and in passing the crow-quill catches the string
and twangs it. It is this twanging of the string which pro-

HARPY

duces the brilliant incisive tone peculiar to the harpsichord
family. What these instruments gain in brilliancy of tone,
however, they lose in power of expression and accent. The
impossibility of commanding any emphasis necessarily cre-
ated for the harpsichord an individual technique which in-
fluenced music composed for it to so great an extent that
it cannot be adequately rendered upon the pianoforte.

The harpsichord assumed a position of great importance
during the 16th and 17th centuries, more especially in the
orchestra. which was under the leadership of the harpsi-
chord player. The most famous of all harpsichord mak-
ers. whose names form a guarantee for excellence were the
Ruckers. established at Antwerp from the last quarter of
the 16th century. (K. S.)

[The writer is Kathleen Schlesinger, editor of T h e Port fol io
of Musical Archaeology and author of T h e Ins t ruments of
the Orchestra. This text appears in T h e Encyc loped ia
Bri tannica. Eleventh Edition, Cambridge, England, 1910,
Volume XIII, pages 15: 16.1

252 TUGboat. Volume 12 (1991), No. 2

are discussed in the second of the tutorials in this

series, cited above.)
A word of warning: In order to keep things

simple, avoid all non-letters in reminders, except

for ordinary punctuation, or you will have a terrible

time when you try to sort the file. Do not use any
diacritical marks, ties ("), or control sequences of

any kind, and avoid math mode at all costs. These

omissions may be corrected when the file for the

index is brought to its final form. If necessary, put

. . . described in detail in his
^-{Heiligenstaat Testament}
Hei\-li\-gen\-staat Test\-a\-ment. . . .

(See also the Postscript, below.)

Sorting the file of reminders. The first thing
that must be done to the file of reminders is to sort

it in order to get things into alphabetical order.
If brevity has blessed you with no page numbers

having more than one digit (or if, for some reason,
they all happen to have the same number of digits),

the problem is simple; use the utility sort that came

with your operating system. otherwise, heavier

artillery may be indicated.

Kernighan & Ritchie, in The C programming

language (second edition), Prentice-Hall 1988, show
(section 5.6, pages 108- 110) how to sort a file
using Hoare's quick sort. If you prefer Shell's

sort to Hoare's. see Harbison & Steele, C: A
reference manual (second edition), Prentice-Hall

1987, pages 210, 211, for the souped-up Knuth-

Sedgewick-Harbison-Steele version and incorporate
that into the K & R code. It is not hard in either
case to modify the code so that the parts of the
lines preceding " ! 0" are sorted alphabetically and

the parts following " ! 0" are sorted numerically.

The trick is to change the criterion for swapping
t o require tha t two lines are to be interchanged if
the alphabetic strings (a) are in the wrong order or

(b) they are the same, but the page numbers are in
the wrong order. If you are pig-headed enough to

insist on page numbers having the form 1-12 [IBM,

here 1-2 < 1-12], 2.17 [Zenith, here 2.2<2.17],

K-9 [pcTpX], etc., you deserve the consequences.
which you might as well interpret as a challenge.'

As hinted above, there's another way to skin

the cat, if your page numbers are plain old natural

numbers. Fortunately for us, ASCII codes (unlike

* A lesser challenge is generated by typographical
errors in the passages cited at the beginning of this
paragraph. In K& R's code, replace maxlines by
MAXLINES; in H&S's explanation, replace "smallest
number" by "largest number". (The errors appear in at
least the first printings of these two second editions.)

telephone dials and typewriter keyboards) are set

up so that 0 precedes all the other digits. Hence by
padding \pageno with enough initial zeros to give

all page numbers the same number of digits, we can

force lexicographic order to coincide with numerical
order. You can use the following code, unless you
have a thousand pages or more (if you do, you're

the only one to be blamed),

\def \Pageno{%
\if num\pageno>99

\noexpand\number\pageno
\else\ifnum\pageno>9

O\noexpand\number\pageno
\else

and put "\Pageno." in the definition of \makexref
instead of "\noexpand\number\pageno . " . With

this change, you can use the utility sort that came

with your operating system, and after you've done
the sorting you can arrange to drop the, by then,

superfluous zeros.

Postscript. On another occasion, we propose to
consider steps one may take to convert the sorted

file of reminders into a respectable index. One must
expect that some "hand-work will be necessary, if

only to insert middle names, dates. or other details
the author considers relevant or important. But

there is quite a bit of routine work that may be

automated. In addition, with some cunning, it is

even possible to overcome the restrictions imposed

so far that prohibit diacritical marks and other
control sequences within reminders.

Note. The current version of the disk referred to
in previous tutorials in this series contains the files

index. rem and the source for FIGURE 1, in addition
to the things mentioned earlier.

It is a pleasure, as always, to acknowledge the help,
guidance, and encouragement, of those who have
provided any of the above. In addition to all the
usual suspects (cited here several times before), I
must acknowledge my gratitude to Costa Mylonas.
of Brown University and Athens, Greece, who
challenged me to produce a collection of flexible
tools, preferably simple ones, that might prove
useful for authors who want to sit down at their
computers and write books. These tutorials are a
result of that challenge. I hope that others find
them useful or, at the very least. instructive.

o Lincoln Durst
46 Walnut Road
Barrington, RI 02806
lkdOmath.ams.com

TUGboat, Volume 12 (1991); No. 2

The structure of the processor

Victor Eijkhout

The inner workings of QX are explained by its au-
thor [I] in terms of an analogy with the digestive
tract. Apart from the fact that this gives rise to
a whole genre of jokes1, the analogy becomes defi-
nitely strained when regurgitation takes place in the
mouth, or when the eyes take part in the process.

In this article2 I will describe the 7QX proces-
sor as a multi-layered engine that successively trans-
forms characters into tokens, tokens into lists, and
from these lists builds a typeset page.

Four T ' X processors

The way T@ processes its input can be viewed as
happening on four levels. One might say that the
7QX processor is split into four separate units, each
accepting the output of the previous stage, and de-
livering the input for the next stage. The input of
the first stage is then the t e x input file; the output
of the last stage is a d v i file.

For many purposes it is most convenient and
insightful to consider these four levels of processing
as happening after one another, each one accepting
the completed output of the previous level. In reality
this is not true: QX is not something like a four-
pass compiler. All levels are simultaneously active,
and there is interaction between them.

The four levels are

1. The input processor. This is the piece of QX

that accepts input lines from the file system
of whatever computer runs on, and turns
them into tokens. These are typically charac-
ter tokens that comprise the typeset text, and
control sequence tokens that are commands to
be processed by the next two levels.

2. The expansion processor. A number of tokens
generated in the first level - macros, condition-
als, and a number of primitive 'QX commands -
are subject to expansion. Expansion is the pro-
cess that replaces some (sequences of) tokens
by another (possibly empty) sequence.

3. The execution processor. Control sequences
that are not expandable are executable, and

Tokens being 'sicked up again' [2], output being
"l&Xcrement' [3], or the particularly deplorable title
of [4] . . .

This is basically the first chapter from my
book, called (tentatively) 'A w n i c i a n ' s Reference
Guide', and which is to appear with Addison-Wesley
late this year.

this execution takes place on the third level of
the processor.

One part of the activity here concerns
changes to w ' s internal state: assignments
and macro definitions are typical activities in
this category. The other thing happening on
this level is the construction of horizontal, ver-
tical, and mathematical lists.

The visual processor. In the final level of pro-
cessing the visual part of w processing is per-
formed. Here horizontal lists are broken into
paragraphs, vertical lists are broken into pages,
and formulas are built out of math lists. Also
the output to the d v i file takes place on this
level. The algorithms working here are not ac-
cessible to the user, but they can be influenced
by a number of parameters.

1 The input processor

The input processor is that part of that trans-
lates whatever characters it gets from the input file
into tokens. The output of this processor is a stream
of tokens: a token list. Most tokens fall into one
of two categories: character tokens and control se-
quence tokens. The remaining category is that of the
parameter tokens; these will not be treated here.

1.1 Character input

For simple input text, characters are made into char-
acter tokens. However, 7QX can ignore some input
characters: a row of spaces in the input is usually
equivalent to just one space. Also, Q X itself can in-
sert tokens that do not correspond to any character
in the input, for instance the space token at the end
of an input line, or the \par token after an empty
line.

Not all character tokens represent characters
that are to be typeset. Characters fall into six-
teen categories - each one specifying a certain func-
tion that a character can have - of which only two
contain the characters that will be typeset. The
other categories contain such characters as (, 1 , &,

and #. A character token can be considered as a
pair of numbers: the character code - usually the
ASCII code - and the category code. I t is possible to
change the category code that is associated with a
particular character code.

When the escape character \ appears in the in-
put, w ' s behaviour in forming tokens is more com-
plicated. Basically, 'QX builds a control sequence
by taking a number of characters from the input
and lumping them together into a single token.

The behaviour with which w ' s input proces-
sor reacts to category codes can be described as

TUGboat, Volume 12 (1991), No. 2

a finite-state automaton with three internal states:
N, new line, M, middle of line, and S, skipping
spaces. These states and the transitions between
them are treated in chapter 8 of The W b o o k .

1.2 Two-level input processing

W'S input processor is in fact even a two-level pro-
cessor. Due to limitations of the terminal, the ed-
itor. or the operating system, the user may not be
able to input certain desired characters. Therefore,
7&X provides a mechanism to access with two super-
script characters all of the available character posi-
tions. This may be considered a separate stage of
TEX processing, taking place prior to the three-state
finite automaton mentioned above.

For instance, the sequence - ^ + is replaced by k

because the ASCII codes of k and + differ by 64.

Since this replacement takes place before tokens are
formed, writing \vse^+ip 5cm has the same effect
as \vskip 5cm. Examples more useful than this ex-
ist.

Note that this first stage is a transformation
from characters to characters, without considering
category codes. These come into play only in the
second phase of input processing, where characters
are converted to character tokens by coupling the
category code to the character code.

2 The expansion processor

7&X's expansion processor accepts a stream of to-
kens and, if possible, expands the tokens in this
stream one by one until only unexpandable tokens
remain. Macro expansion is the clearest example of
this: if a control sequence is a macro name, it is
replaced (together possibly with parameter tokens)
by the definition text of the macro.

Input for the expansion processor is provided
mainly by the input processor. The stream of to-
kens coming from the first stage of 7&X processing
is subject to the expansion process, and the result
is a stream of unexpandable tokens which is fed to
the execution processor.

However, the expansion processor comes into
play also when an \edef or \wri te is processed.
The parameter token list of these commands is ex-
panded as if the lists would have been on top level,
instead of the argument to a command.

There is a special fascination to macros that
work completely by the expansion processor. See
the recent articles [4], [5], and [6] for some good
examples.

2.1 The process of expansion

Expanding a token comprises the following steps:

See if the token is expandable.

If the token is unexpandable, pass it to the to-
ken list currently being built, and take on the
next token.

If the token is expandable, replace it by its ex-
pansion. For macros without parameters, and
a few primitive commands such as \jobname,
this is indeed a simple replacement. Usually,
however, needs to absorb some argument
tokens from the stream in order to be able to
form the replacement of the current token. For
instance, if the token was a macro with param-
eters, sufficiently many tokens need to be ab-
sorbed to form the arguments corresponding to
these parameters.

Go on expanding, starting with the first token
of the expansion.

Deciding whether a token is expandable is usually a
simple decision. Macros and active characters, con-
ditionals, and a number of primitive l&X commands
(see the list on page 215 of The W b o o k) are ex-
pandable, other tokens are not. Thus the expan-
sion processor replaces macros by their expansion,
it evaluates conditionals and eliminates any irrele-
vant parts of these, but tokens such as \vskip and
character tokens, including characters such as dollar
signs and braces, are passed untouched.

2.2 Special cases: \expandafter, \noexpand,
and \ the

As stated above. after a token has been expanded
will start expanding the resulting tokens. At

first sight the \expandafter command would seem
to be an exception to this rule, because it expands
only one step. What actually happens is that the
sequence

\expandaf ter(tokenl) (token2)
is replaced by

(tokenl) (expansion of token2)
and this replacement is in fact reexamined by the
expansion processor.

Real exceptions do exist, however. If the cur-
rent token is the \noexpand command, the next to-
ken is considered for the moment to be unexpand-
able: it is handled as if it were \ r e l ax (more about
this control sequence follows below), and it is passed
to the token list being built.

Example: in the macro definition

\edef\aC\noexpand\b)

the replacement text \noexpand\b is expanded at
definition time. The expansion of \noexpand is the
next token, with a temporary meaning of \ re lax .
Thus, when the expansion processor tackles the next

TUGboat. Volume 12 (1991), No. 2

token, the \b, it will consider that to be unexpand-
able, and just pass it to the token list being built,
which is the replacement text of the macro.

Another exception is that the tokens resulting
from \the(token variable) are not expanded further
if this statement occurs inside an \edef macro def-
inition.

2.3 Braces in the expansion processor

Above, it was said that braces are passed as unex-
pandable character tokens. In general this is true.
For instance, the \romannumeral command is han-
dled by the expansion processor; when confronted
with

\romannumerall\number\count2 3{4 .'..
will expand until the brace is encountered: if

\count2 has the value of zero. the result will be the
roman numeral representation of 103.

As another example.

\iftrue <\else 3\fi

is handled by the expansion processor as if it were
\iftrue a\else b\f i

The result is a character token. be this a brace or
a letter.

However, in the context of macro expansion the
expansion processor will recognize braces. First of
all. a balanced pair of braces marks off a group of
tokens to be passed as one argument. If a macro has
an argument

\def\macro#l{ . . . >
one can call it with a single token

\macro I \macro \$

or with a group of tokens, surrounded by braces

\macro Iabc) \macro Cd{ef>g)

Secondly, when the arguments for a macro with
parameters are read, no expressions with unbal-
anced braces are accepted. In

\def\a#l\stopC . . . 1
\a bc<d\stople\stop

the argument is bcCd\stop)e. Only balanced ex-
pressions are accepted here.

3 The execution processor

The execution processor builds lists: horizontal, ver-
tical, and math lists. Corresponding to these lists,
it works in horizontal, vertical, or math mode. Of
these three modes 'internal' and 'external' variants
exist. In addition to building lists, this part of the
TEX processor also performs mode-independent pro-
cessing, such as assignments.

Coming out of the expansion processor is a
stream of unexpandable tokens to be processed by

the execution processor. From the point of view of
the execution processor, this stream contains two
types of tokens:

Tokens that signal an assignment (this includes
macro definitions), and other tokens that are
independent of the mode, such as \show and
\aftergroup.

Tokens that build lists: characters, boxes, and
glue. Handling of these tokens depends on the
surrounding mode.

Some objects can be used in any mode; for in-
stance boxes can appear in horizontal, vertical, and
math lists. The effect of such an object will of course
still depend on the mode. Other objects are specific
to one mode. For instance, characters (to be more
precise: character tokens of categories 11 and 12) are
intimately connected to horizontal mode: if the exe-
cution processor is in vertical mode when it encoun-
ters a character, it will switch to horizontal mode.

For the expansion processor a character token
is just an unexpandable object. On the level of the
execution processor, however, something is actually
done with it. Some characters are typeset. but the
execution processor can also encounter, for instance,
math shift characters (usually $), or braces. When a
math shift character is found in the stream of tokens.
math mode is entered (or exited if the current mode
was math mode); when a left brace is found, a new
level of grouping is entered.

One control sequence handled by the execution
processor deserves special mention: \relax. This
control sequence is not expandable. but the execu-
tion is 'empty'. Compare the effect of \relax in

\countO=l\relax 2

with that of \empty defined by

\def \empty<>

in

\countO=l\empty 2

In the first case the expansion process that is form-
ing the number stops at \relax because it is un-
expandable, and the number I is assigned. In the
second case \empty expands to nothing, so 12 is as-
signed.

4 The visual processor

m ' s visual processor encompasses those algo-
rithms that are outside direct user control: para-
graph breaking, alignment, page breaking, math
typesetting, and dvi file generation. Various param-
eters control the operation of these parts of m.

Some of these algorithms return their results in
a form that can be handled by the execution proces-

256 TUGboat, Volume 12 (1991), No. 2

sor. For instance, a paragraph that has been broken
into lines is added to the main vertical list as a se-
quence of horizontal boxes with intermediate glue
and penalties. Also, the page breaking algorithm
stores its result in \box255, so output routines can
dissect it. On the other hand, a math formula can
not be broken into pieces, and, of course, shipping a
box to the dvi file is irreversible.

5 Further examples

5.1 Skipped spaces

Skipped spaces provide an illustration of the view
that W ' s levels of processing accept the completed
input of the previous level. Consider the commands

Faulty reasoning
"The \ a is encountered, expanded, the space
then delimits the number"

would lead to the conclusion that this is equivalent
to \penalty200 0. It is not. Instead, what results
is

because the space after \ a is skipped in the input
processor.

5.2 Internal quantities and their
representations

TEX uses various sorts of internal quantities, such as
integers and dimensions. These internal quantities
have an external representation, which is a string of
characters, such as 4711 or 91.44cm.

Conversions between the internal value and the
external representation take place on two different
levels. depending on the direction the conversion
goes. A string of characters is converted to an in-
ternal value in assignments such as

or statements like

and all of these statements are handled by the exe-
cution processor.

On the other hand, the conversion of the inter-
nal values into a representation as a string of char-
acters is handled by the expansion processor. For
instance,

value was 'automatic'. The conversion the other way
has to be forced by a command such as \number.
Thus there is no danger that the sequence

will result in assigning either 15 or 35 to \Mycount.
As a final example, suppose \count2=45, and

consider the statement

The expansion processor tackles \number\count2 to
give the characters 45, and the space after the 2 is
absorbed because it only serves as a delimiter of the
number of the \count register. In the next stage of
processing, the execution processor will then see the
statement

and execute this.

6 Conclusion

TJ$ is harder to understand than most program-
ming languages. One reason for this is that the 'm
processor' consists of more than one level. In this
article I have identified four levels of processing in
Tj& and described what goes on on what level. Of-
ten the key to understanding W ' s behaviour is to
consider the four levels as working not simultane-
ously, but one after the other.

References

[I] Donald Knuth, The QXbook, Addison-Wesley
Publishing Company, 1984.

[2] Angela Barden, Some 7$J manuals, TUGboat
12(1991), no. 1, 166-170.

[3] Ron Whitney, private communication.

[4] Victor Eijkhout, Oral 7$J, TUGboat 12(1991),
no. 2, 272.

[5] Alan Jeffrey, Lists in w ' s mouth, TUG-
boat 11(1990), no. 2, 237-245.

[6] Sonja Maus, An expansion power lemma, TUG-
boat 12(1991), no. 2, 277.

o Victor Eijkhout
Center for Supercomputing

Research and Development
University of Illinois
305 Talbot Laboratory
104 South Wright Street
Urbana, Illinois 61801-2932, USA
eijkhout@csrd.uiuc.edu

are all processed by expansion.
Note that in the \basel ineskip example above

the conversion from string of characters to internal

TUGboat, Volume 12 (1991), No. 2

Warnings

Initiation rites

Barbara Beeton

Initial conditions always have to be looked at care-
fully if one wants to avoid nasty surprises, a fact
known all too well to students of fluid dynamics,
programmers, and other assorted technoids. Bound-
aries between 'I).$ mode changes and other 'I).$

structures are no exceptions to this rule.

Paragraph beginnings

Automatic hanging indent. There are times
when one wants several successive paragraphs to be
hanging indented. It's a great nuisance to have to
type the instructions for a hanging indent into every
paragraph, and though it's easy enough to make a
simple substitution macro

\def \X{\par\noindent
\hangindent\parindent \hangaf t e r l 3

using it a t the beginning of every paragraph is also
a nuisance.

But wait -there's \everypar. Why can't
we use that to make the hanging indented style
automatic? Most of the time we can, but there
are occasional problems, as the following example
shows.

%% f o r a t e s t , make it small and loose

{\it Hlowdy boys and g i r l s .
How a re you doing today?

% But, wow! A s t r u t f i x e s i t !
\ s t r u t {\it H)owdy boys and g i r l s .

How a re you doing today?

% Also, not nest ing it works
\it H \ r m owdy boys and g i r l s .

How a re you doing today?

% Ordinary paragraphs work f i n e t oo .
Well, now i s the time f o r a l l good men

t o come t o the a id of t h e i r par ty .

Here's what the output looks like.

Howdy boys and girls. How are you
doing today?

Howdy boys and girls. How are you
doing today?

Howdy boys and girls. How are you
doing today?

Well, now is the time for all good
men to come to the aid of
their party.

Not exactly what we had in mind.
Why has the hanging indent disappeared from

the first paragraph? It turns out that TkX applies
\everypar immediately after it encounters a token
in vertical mode that will cause it to shift into
horizontal mode (The m b o o k , p. 105). In this
example, the initial "H" is such a token. Unfortu-
nately, this is inside a group, and all the default
conditions are restored upon exiting the group; the
transcript of a trace (slightly edited) shows this
very clearly:

{begin-group character {)

\it ->\f am \ i t f am \ t e n i t

I \ f am)
{se lec t font cmtil0)
{the l e t t e r HI
\everypar->\hangindent .5 in \hangafter =1

{horizontal mode: \hangindent)
C\hangaf t e r)
{the l e t t e r H)

{end-group character)) ***
{res tor ing \hangafter=l)
{ res tor ing \hangindent=O.Opt)
{ res tor ing current font=\tenrm)
{res tor ing \fam=O)
{the l e t t e r 01

Here are some more things that won't work, because
they don't put 'I).$ into horizontal mode:

\ r e l a x ;
an empty \hbox or \vbox; this has an ad-
ditional nasty side effect - it leaves a "blank
line" above the paragraph that is occupied by
nothing but the empty box;
an \hrule with widthopt, with an effect
similar to that of an empty box; in this case,
extra blank space depends on the height of the
\hrule .

And here are several more things that do work:

\ leavemode (the most neutral option);
\noindent:
\ indent (because \parindent=Osp):

258 TUGboat, Volume 12 (1991), No. 2

a \ m u l e with widthopt ;

0 math mode with no contents: $ $; just be
sure not to leave any space between the closing
dollar sign and the first word of the sentence.
or it will be there in the output.

Although this is a warning about beginnings, it
seems prudent to put in just a few words about
endings, at least of hanging indented paragraphs.

A paragraph doesn't actually end until T&X
comes to \ pa r , \endgraf , or some implicit shift
to vertical mode, e.g. \vskip. If a paragraph
that's supposed to be hanging indented is in a

group, and the group ends before the shift into
vertical mode, the hanging indentation is lost.
only applies certain "shape" adjustments (among
them \ l e f t s k i p , \ r i gh t sk ip , \base l inesk ip ,
and the like) upon the transition to vertical mode,
so whatever those settings are at that transition,
those are the ones that take effect.

Paragraphs that begin with boxes. This has
already been touched on above. Neither an \hbox
nor a \vbox will cause T)jX to enter horizontal
mode. (If Tj$ is already in horizontal mode, it will
stay that way.) Instead, the box is set on a line
by itself, at the absolute left margin. If you are
using \ l l a p to tack something on to the left of the
&st word in a paragraph, you should remember to
precede it by \ leavemode; the answer to exercise
14.28 in The m b o o k works because the first
command activated by \ s t r u t is \unhcop y, which
causes to go into horizontal mode, and the
answer to exercise 14.29 works because \everypar
is not invoked until QX is already in horizontal
mode.

Table cells

The start of data in a cell of a table can also
be an invitation for something to go wrong. The
reason is simple: 'I@ will always expand the first
token to see if it is \noalign or \omit , to make
sure that items that must be processed before the
template, or that ignore it, are handled properly.
The m b o o k (p. 240) tells us that macros are
expanded until the next non-space token is found:
if it is not \noalign or \omit, it will be put back
to be read again after the first part of the template
has been read. However, the order of expansion
will now be something other than intended, and
for some macros whose proper application depends
on their being expanded in a particular order. the
results may be unexpected.

An example from the AMSFonts User's Guide
will illustrate the problem. I wanted to present the
cyrillic transliteration conventions in the form of a
table. Since two columns (upper- and lowercase)
would always be cyrillic. it seemed obvious that the
cyrillic command should be put into the template.
Here's what I tried first.

\halign{{\cyr#)\hfil\quad&#\hfil . . . \ c r
\ u \ i % \ u \ i . . . \ c r
. . . 3

What I wanted was
E i

What I got was
I@ i

This only makes sense if you happen to know the
layout of the cyrillic font, and even then not much
sense at first.

Here's what happened. \u is expanded and
determined to be an accent. Unfortunately, \ cyr
in the template hasn't been expanded yet, and one
of the functions of \cyr is to invoke some special
macros that treat certain combinations of accents
and letters as single letters in the cyrillic alphabet.
So the accent is assigned as a separate character
(to be found in the position \charJ25 as in the
default text font), and it is superimposed according
to the usual accenting rules over whatever is found
as \char ' 20 .

Actually. this is fixed relatively easily; all that
is needed is to begin each cyrillic cell with \ r e l ax
(or some other "harmless" control sequence, as Don
Knuth expressed it when I asked if he'd please
explain to me what was happening). So:

\ r e l ax \ u \ i & \ u \ i \ c r

As it turned out, I finally used another technique
entirely to create the table. But I learned the
dangers of macros being expanded out of order,
and was also prepared for the questions that arose
when users of the cyrillic font hadn't included the
special accent macros in their definition of \cyr-
the output looks just the same! Dreadful!

Moral: If the contents of some cells in your
table don't look quite like what you expected. it
may be worth putting \ r e l ax at the beginning
and trying again before you start digging into the
macros.

TUGboat, Volume 12 (1991), No. 2 259

solutions to the *iddie from TUG^^^^ 11#4 questioned. It would be nice if this short example
arouses enough curiosity in you to play with them.3

Frank Mittelbach
One learns by experience - most of W3.s - - -

world is still unexplored.4

Puzzle:

Given a simple document containing
only straight text. is it possible for the
editor, after deleting one sentence, to end
up with a document producing an extra
page?

We assume that the deleted text
contains no l) jX macros and that the
document was prepared with a standard
macro package like the one used for
TUGboat production.

When I wrote down the riddle, I had a real life
experience with the TUGboat layout in mind. In
ltugboat .sty we have

Suppose that. a four line paragraph is broken across
two pages. If we now reduce this paragraph to three
lines, then will no longer find any breakpoint
in this paragraph.1 So it will move the whole para-
graph to the next page, thereby enlarging the doc-
ument by a t least one line. Similar problems might
arise before displayed formulas if the default value
for \predisplaypenalty is used.

Three other solutions were communicated to me
by Bogoslaw Jackowski and Marek RyCko. They all
might occur in situations where only one word is
removed from the input.

\lineskip might get inserted when a para-
graph is reformatted after deletions. If this
parameter is positive2 it will enlarge the para-
graph height.

If, after deletions, a footnote marker would have
to be placed on the last line of a page, will
move the whole line to the next page.

If the value of \bef oredisplayskip is smaller
than \bef oredisplayshortskip removal of
words preceding a formula might enlarge the
document.

While the last solution might be classified under
"obscure layouts", all solutions show that param-
eter setting in TE,X is a difficult art and might result
in surprising results. There are many parameter set-
tings buried inside plain TEX that have never been

Before, there was a permissible breakpoint be-
tween the second and the third line.

The default in I4QX is lpt.

You probably won't believe this, but when I
entered a few corrections to this note (as suggested
by Chris Rowley), the current paragraph became a
bit shorter, so that the word "them" moved up one
line. Now, ltugboat .sty sets \widowpenalty to
10000, so that the column break could not be taken
at the same place as before. Therefore one line from
the preceding column was moved to this one.

An interesting and wide open field is the para-
graph breaking mechanism, especially with the new
\emergencystretch feature. Don Knuth has given
us some hints about its potential but this has been
never been systematically researched (or at least
such research has never been published), which is
a pity.

TUGboat, Volume 12 (1991), No. 2

Macros

The bag of tricks

Victor Eijkhout

Hello everyone.
Using TEX, you inevitably gather a collection

of useful little macros. Most of them are probably
of use only to you, but maybe you have something
that you're willing to share with the rest of the TUG
audience. In that case, here's an outlet.

Starting this issue. I will present in this corner
one or more handy little macros, without too much
explanation, but otherwise ready for use. If you have
something that you think is appropriate, send it to
me or to TUGboat, and you may see it printed here,
with due acknowledgements of course.

Here's this issue's gadget: saving and restoring
category codes.

The plain format, the IPw format, and the
TPW document styles contain lots of commands
with the 'at' character (a) in them, in order to hide
such commands from the user. Now, if you write
some macros, you may want to do the same for the
internal macros that should not be accessible to the
user. You write at the start of the file containing
these macros

(or maybe you use another character than 8). and
at the end you reset

\cat code' \Q=12

But wait a second! Who told you that in the envi-
ronment from which your file is \input the charac-
ter Q has category 12?

The following macros allow you to write

or, if you suspect that the character may have a
strange category code such as 9, 14, or 15.

The two forms can also be mixed.
Here are the macros.

\escapechar=-l\relax

\csarg\edefCrestorecat\string#l}%

<\catcode'\string#l=

\the\catcode\expandafter'\string#l)%

\catcode\expandafter'\string#l=12\relax

\escapechar=\tempcount)

\def\restorecat#lC%

\tempcount=\escapechar

\escapechar=-l\relax

\csname restorecat\string#1\endcsname

\escapechar=\tempcount)

Note that the \storecat macro sets the category of
its argument initially to 12.

And here is some input to test the macros on:

\nonst opmode

\showthe\catcode'\%

\storecat\%

\catcode'%=l3

\showthe\catcode'\%

\restorecat%

\showthe\catcode'\%

\showthe\catcode'\-

\storecat"

\cat code' -=2

\showthe\catcode'\-

\restorecat\-

\showthe\catcode'\"

Share and enjoy!
Note. Macros similar to the above appear in the

macros tugboat. corn. The editors of TUGboat have
found such macros to be vital for maintaining their
sanity in dealing with the incredible inventiveness of
TUGboat authors.

TUGboat, Volume 12 (1991), No. 2

l$jX Macros for Producing Multiple-choice
Tests

Don De Smet

Since many members of the rn community work
in an academic environment, at least some of us
teach. Sometimes we teach large classes. One facet
of teaching is, unavoidably, testing. With a large
class and no assistance in grading tests, the only
reasonable way to give a test is with multiple-choice
"computer-graded" examinations.

As a practical matter, when administering a

students from copying answers from each other.
Most students are inherently honest; however, in
a crowded room where students are sitting close
to each other it is unavoidable that one student
can see his or her neighbor's choices of answers.
Under these circumstances we have an obligation to
keep this from becoming an advantage since, in a
high-pressure situation, almost any normal person
might be tempted to peek. We must prevent such
temptations from occurring. The obvious solution
is, of course, to use a number of different versions
of the test in which questions and answers are
scrambled. This insures that no useful information
can be transferred by simply peeking while at the
same time each student is given the same set of
questions and the same choices for answers so that
all students are treated equally.

provides an ideal solution to this problem
since will let us easily produce different versions
of a test from the same source. With QX we can
scramble the answers to an individual question;
e.g., if the question is "How much is two minus
two?" the answer "zero" can be choice A on one
test and choice C on another. In addition, TEX
allows us to re-arrange the questions; e.g.. question
number 1 on one test might be question number 7
on another. Further, can put the correct
answers to the test into a data file for later use
provided we tell TEX what these answers are. (7&X
is smart, but not quite smart enough to get the
answers on his own.) T@ allows us to separate
the mechanics of preparing a test from the effort

of making good test questions. We can go as
far as creating a different test for each student:
however, there are good reasons to not get carried
away. If it proves necessary to go back and re-grade
a particular question (it happens-fortunately not
very often) it is easier to correct a small number
of different versions of a test. This, combined with
the fact that four versions of a test are enough

so that in a normal rectangular room no student
will have the same version as any nearest neighbor
in any direction (and nine versions are enough to
insure that no student will have the same version as
any nearest or next nearest neighbor) means that
four (or nine) versions of the test are adequate for
most situations. Since a typical multiple-choice test
has five possible answers, and these answers can
be arranged 120 different ways, we have chosen to
scramble only the answers and have a maximum of
nine different versions of a test.

The set of macros given here has been used for

courses and it has worked well. Each student is
assigned a particular seat (in our case the seats are
labeled A-2, . . . , A-9, B-2, . . . , M-9). The tests are
printed in this order with a version number and a
seat designation on each test so there is a minimum
of fuss when distributing them. Each student
is asked to put his name. student identification
number, and the test version number on the answer
sheet for the test. Invariably a few students forget
one of these, but this is not a serious problem,
provided that the student at least sat in the correct
seat, since there is some redundancy here.

At the University of Alabama the office of Test
Services will take the individual answer sheets and
provide a file on magnetic tape, disk, or by elec-
tronic mail that contains a record of each student's
responses, including name, student identification
number, test version number and answers to indi-
vidual questions, known locally as a raw data file.
After editing this file to get it into the correct
format. we use a FORTRAN program that reads this
file and the data file containing the test keys created

by W. The program computes a grade for each
student and also produces a table for statistical
purposes that gives the number of students that
chose a particular literal (unscrambled) answer for
each question. We also produce a crude histogram,
a set of grades by student identification number
that can be posted, a file containing averages, etc.

We have written these macros so that they re-
quire two files for input. The first file, TESTOP . TEX.
is the heading which includes instructions for all
students taking the test. The other file, called
ATEST. TEX contains the actual test questions and
answers. Each of these ends with an \endinput

statement. A sample of each file is included.
The answer key (or keys) is put into a file
TESTKEY. DAT. The names TESTOP . TEX, ATEST. TEX
and TESTKEY. DAT can, of course, be changed.

In ATEST. TEX the macro \qn marks the begin-
ning of each question. This is just an adaptation

TUGboat, Volume 12 (1991), No. 2

of \item that automatically numbers the question.
After this is a statement of the test question.
This is followed by a macro \picks that takes
five arguments, each enclosed between a C 1 pair,
representing the five choices for the answer to the
question. The correct answer should be marked by
**. This will be replaced by a * on the printed
test if we are making a copy for proofreading pur-
poses, but will be suppressed when we are actually
printing tests. The macro \endq marks the end of
the question and answers. Thus a typical question
and its answers would read:

\qn How often have you been

late for class?

\picksCalways1Cusually)Csomet imes**}

CrarelyHnever)

\endq

?X will choose one of four formats for printing
the answers to a question. If all five of the answers
fit comfortably onto a single line. then TEX will do
it this way. If not, m determines the widths of
the individual answers. If the three longest answers
fit on a line, then we let put the first three
answers on one line and the last two on a second
line in tabular format. If not, but if the two longest
answers do fit on a single line, the first two answers
are placed on one line, the second two on a second
line, and the last one on a third line. If the two
longest answers are too long to fit together on a
single line, puts one answer per line. If an
answer is more than one line long, any additional
lines are suitably placed under the first one.

A question and its answers should be a unit:
there should not be a page break between the
start of a question and the end of the answers. I
initially used \nobreak, \goodbreak, and \medskip
to achieve this. but this did not always work.
\filbreak. on the other hand, seems to solve this
problem.

The macros given here have several modes.
When \makingprooftrue, a single copy of the test
is generated. This single copy, version 0, does not
have the answers scrambled. All other versions will
have scrambled answers that can be unscrambled
to compare to version 0. In this mode, the printed
copy does not have a seat number printed on the
test and the correct answer to each question is
marked with a *.

When \makingproof f alse, the correct answers
are not marked and the number of copies generated
depends on \if smallset. For \smallsettrue only
one copy of each version of the test is generated with
the version number printed on it (except when there

is only one version), but without a seat number.
This is useful if we have limited disk space or a
slow printer. since we can still have many versions
of the test. In this case we can make additional
copies with a copy machine and put seat numbers
on the tests by hand. It is not as pretty (or as
automatic) as m, but it is sometimes the most
efficient way to do things. When \smallsetf alse.
a test is printed for each seat number.

There is also a parameter \alternationnumber
that should be set to either one, two, or three. This
lets us select the number of different versions of the
test. If \alternationnumber=i we get a single ver-
sion of the test, which does not require a seat num-
ber or a version number, so these are suppressed. If
\alternationnumber=2 we get tests that alternate
every second row and seat for a total of 4 versions
of the test. If \alternationnumber=3 we get 9
versions of the test. Thus \alternationnumber=l
\smallsettrue gives one copy of the test without
seat or version numbers, \alternationnumber=l
\smallsetfalse gives a set of tests without seat
or version numbers, \alternationnumber=2 or 3
\smallsettrue gives one copy of each version of
the test that includes a version number but no
seat number. while \alternationnumber=2 or 3
\smallsetfalse gives a complete set of tests with
seat and version numbers. These parameters are
set near the beginning of the macros. Also, several
other parameters (e.g., the number of seats in a
row) are given values here. Assuming that we call
this set of macros TESTMAKE.TEX. TEX is run on
TESTMAKE, and TESTMAKE reads the test heading and
the test.

For one class in which we used these macros.
we printed 90 copies of a test that was a little less
than two pages long, thus the amount of time it
took T@l to process this set of tests was about
the same as it would be for a 180-page document.
The size of the .DVI file and the time required
to print the tests were also comparable to those
for a 180-page document. With a large computer
and a fast printer this is acceptable; with a small
computer or a slow printer it might not be.

A few closing words: Answers such as "none
of the above'' and "both A and C are true" should
be avoided, since the answer scrambler is going to
move the answers around. An answer such as "none
of these choices", however, seems quite reasonable.
It is not a good idea to put additional \newcount.
\newdimen, etc. statements in TESTOP or ATEST; it
is better to put these at the beginning of TESTMAKE
along with your own favorite macros. As given
here, TESTMAKE can put a maximum of 10 answers

TUGboat, Volume 12 (1991), No. 2 263

into TESTKEY. but the extension to longer tests is
straightforward. Simply look in the macros for
\ansx: wherever it appears add \ansxi, \ansxii.
etc. in the same context.

Although this set of macros has been used in
its present form for more than a year, it has evolved
from a few simple definitions and it will continue to
evolve as new situations arise. There are probably
better ways to do many of the things described here
(a few of them were found by trial and error), but
these macros have worked reasonably well for me.
After using them a few times you get accustomed
to the error messages generated when you make
the usual typographical errors. Further, we can
accumulate questions in TEX format, so when one
last question is needed to finish writing a test, we
will have a selection to choose from.

Finally, students prefer Tj$ made tests to
typed tests. (Remember purple ditto masters?) In
fact, on one occasion a student asked me how I
prepared my tests, and when I told her I used 7l$,X,
I received a knowing nod of approval and after that
she began to sit in the front row during class. I
think there is some psychology involved in this.

A spoon full of sugar helps the medicine go down.
-Mary Poppins

An ounce of prevention is worth a pound of cure.
-Old proverb

A sample of TESTOP . TEX

\rightline(NAME $\underline(

\phantom(a\hskip3in a))$)

\vskip2mm

\line(\bf PHYSICS 102 \hfil

FIRST EXAMINATION \hfil SPRING 1990)

\vskipl.5mm

\ifprintcode\line(\bf\hfil TEST

CODE NUMBER \number\version \hfil)

\f i

\vskip l.Oex

{\multiply\baselineskip by 5

\divide\baselineskip by 4

This test consists of 4 multiple-choice

questions. Answer each question in the

space provided on the answer sheet. There

is one 'best' answer to each question.

Also (\bf PLEASE FILL IN YOUR NAME)

(last name first) on this sheet.

Remember to darken the appropriate

circles for your name.

\if printcode

At the top of this test is a code number.

i\bf Fill in this number on your answer

sheet. It must be put in the first

column of (\sl SPECIAL CODES)).

\f i

Do not consult with anyone

during the test .)
\def\ldrfl~\leaders\hrule\hfill\ 1
\vskiplmm

\line(\ldrf 1 {Good luck!) \ldrf 1)

\vskip 1.2ex

\endinput

A sample of ATEST. TEX

\qn If a man and a half can dig a hole

and a half in a day and a half, how many

holes can three men dig in three days?

\picks(3)(6**){2.25){4)(4.5)

\endq
\qn \TeX\ is

\picksCa very small mouse.)

(a great big dog.Ha lonesome cowboy.)

{a state of the union.)

(a state of mind.**) \endq

\qn
A good way to recall the spectral classes

of main sequence stars is to remember the

phrase \picks(All Cows Eat Grass.)

(Spectroscopy Prevents Daddy From Going

Home.)

{Old MacDonald Had A Farm EIEIO.)

(Oh Be A Fine Girl, Kiss Me.**)
(Twinkle Twinkle Little Star.)

\endq

\qn We need a question and some answers

that each fill up more than one line.

In order to accomplish this we will ask

the following question: "What are the

basic food groups?"

\picks(Sugar, salt, caffeine and fat.)

{Burger, fries, coke and a candy bar.)

(Fruit, cereal, meat

or fish and dairy products.**)

(Nuts (eeech!) , berries (eeech! 1 ,
honey (rnmmmm!) and anything we can beg,

borrow or steal from the picnic basket

of an unsuspecting camper .)
(A book of verses underneath the Bough,

a Jug of Wine, a Loaf of Bread---and

Thou Beside me, singing in the

Wilderness---Oh, Wilderness were

Paradise enow !)

\endq

\endinput

264 TUGboat, Volume 12 (1991), No. 2

And Finally, TESTMAKE. TEX

% no guarantees---use at your own risk.
\font\twentypointbf=cmbxlO scaled\magstep4 % use a large bold font
\newcount\firstseatnum \newcount\lastseatnum

\newcount\firstseatletter \newcount\lastseatletter

\newcount\alternationnumber \newwrite\keywrite

\newif\ifmakingproof \newif\ifsmallset

0 0 0 0 0 0 0 0 0 L PUT CHANGES BETWEEN HERE %%%%%%%%%%%%%%%%%%%
\hsize=6.00in\hoffset=0.250in

\vsize=7.50in\voffset=0.250in

% size and offset adjusted for margins of both printer and driver
% page number should appear at the bottom of the test

\f irstseatnum=2 % there is no first row in our room
\lastseatnum=2 %I1 % row goes from 2 to 11, but 2 for testing
\firstseatletter=l % starts with A
\lastseatletter=i %I2 % ends with M (but no I), but A for testing

% here is the name of the test heading
\def\getthetopCC\input testop \relax))

% here is the name of the file containing the test
\def \getthetestCC\input atest \relax))

%%% define a file for the test keys %%%%%%%%%%%
\immediate\openout\keywrite=testkey.dat

\makingprooffalse % set either true of false
\alternationnumber=2 % use either 1, 2 or 3 here

% \smallsettrue % set either true of false
\smallsetf alse

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LLLLLLLLLLLLLL AND HERE
0 LLLLLLLL LLLLLLLLLLLLLLLLLL

\newif\ifprintversion \newif\ifprintseatnumber

\newif\ifprintstar \newif\ifprintcode \newcount\numberofcopies

\numberof copies=l \print codetrue

\ifsmallset \printseatnumberfalse \else \printseatnumbertrue \fi

\ifmakingproof \printstartrue \printseatnumberfalse

\else \printstarf alse \f i

\ifnum\alternationnumber=l \printversionfalse \else \printversiontrue \fi

% numberofcopies is set to 1 for a single copy, 2 for a single copy of
% each version and 3 for a fullblown set of tests

\if smallset \else \ifmakingproof \else \numberof copies=3 \f i \f i

\if smallset \ifnum\alternationnumber=l \else

\ifmakingproof \else \numberof copies=:! \f i \f i \f i

\ifprintversion \printcodetrue\else\printcodefalse\fi % redundant

TUGboat, Volume 12 (1991), No. 2

% next necessary to get alignment right: 01 . . . 10 in output file
\def \qwyIO\number\seatcounter)\def \qwz(\number\seatcounter)

% this writes a line to the test key file
\def\writeitout~\def\qwaC\ifnum\seatcounterlO \qwy\else\qwz\fi)

\immediate\write\keywrite(%

VERSION-\number\version . . SEAT-\LETTERPUT-\qwa . . .
\number\ansi \number\ansii \number\ansiii \number\ansiv \number\ansv

\number\ansvi \number\ansvii \number\ansviii \number\ansix \number\ansx))

\def\pickansform#i#2#3#4#5(% formats answer depending on \qsizecounter

\aayy=C#l)\bbyy=C#23\ccyy=C#3)\ddyy=(#4)\eeyy=(#53

\global\anct=O \global\anscor=O

% find the right answer for this version
\ctest\aayy\ifresult\global\anscor=l \advance\anct by 1 \fi

\ctest\bbyy\ifresult\global\anscor=2 \advance\anct by 1 \fi

\ctest\ccyy\ifresult\global\anscor=3 \advance\anct by 1 \fi

\ctest\ddyy\ifresult\global\anscor=4 \advance\anct by I \fi

\ctest\eeyy\ifresult\global\anscor=5 \advance\anct by 1 \f i

\ifnum\anct<l \messageCno right answer for question \the\questionno) \fi

\ifnum\anct>l \message(more than one correct answer given

for question number \the\questionno) \fi

\ifcase\qsizecounter % \qsizecounter=O: one line for all answers
(\line(\hskiplpt a) #i \quad

\hf il b) #2 \quad\hf il c) #3 \quad\hf il dl #4 \quad\hfil e) #5))

\or % \qsizecounter=l: one or more lines per answer
(\parindent=0.8em % 1 .Oem is too much
\vbox(\parindent=0.8em % 0.9 is too much
\vboxI\itemitemCa)) #l)\vskip0.5ex \vboxC\itemitemIb)) #23 \vskip0.5ex

\vbox~\itemitemIc)~ #33\vskip0. 5ex \vbox(\itemitem(d)) #43 \vskipO .5ex

\vboxi\itemitem(e) 1 #5) 33
\or% \qsizecounter=2: need 3 lines; 2 on first, 2 on second, one on third

(\vboxC\halign to \hsize(\hskiplpt ##\hf il

\tabskip=5em plus5em minus5em&##\hf il\cr

a) #i &b) #2 \cr

C) #3 &dl #4 \cr

el #5 &\cr3 13

\else% \qsizecounter=3: three on first, two on second line

TUGboat, Volume 12 (1991), No. 2

\newif\ifresult % for the result of a test (taken from the TeXbook)
\def\ctest#1~\resultfalse\expandafter\c\the#l\ctest~

\def\c(\afterassignment\cc\let\next=

\def\cc{\ifx\next\ctest \let\next\relax

\else\ifx\next*\resulttrue\fi\let\next\c\fi \next)

% here is the answer scrambler
% computes \qsizecounter depending on lengths of answers and
% scrambles answers depending on value of \version
\def\picks#1#2#3#4#5{\nobreak\vskipImm\nobreak

\ifnum \questionno > 10 \message{OOPS . . . this test has more than
10 questions. Time to fix things! ! !) \fi

\setbox\testbox=\hbox~\hskiplpt a) #I \hfil\quad b) #2 \hfil\quad

C) #3 \hfil\quad d) #4 \hf il\quad e) #5 \quad)

\sizeline=\wd\testbox

\ifdim\sizeline<\widp \global\qsizecounter=O % answers fit on one line
\else% compute widths of individual answers--with a little extra space

\setbox\aaabox=\hboxCia) #l\quad~\setbox\bbbbox=\hboxCia) #2\quad)

\setbox\cccbox=\hbox~ia) #3\quad~\setbox\dddbox=\hboxCia) #4\quad)

\setbox\eeebox=\hboxCia) #5\quad)

%%p. 121 TeXbook

\aaazz=\wd\aaabox \bbbzz=\wd\bbbbox \ccczz=\wd\cccbox

\dddzz=\wd\dddbox \eeezz=\wd\eeebox

\global\bubblbb=l

\loop \ifnum\bubblbb>O % bubble sort answers according to length
\global\bubblbb=O

\ifdim\aaazz<\bbbzz\temzz=\aaazz\aaazz=\bbbzz\bbbzz=\temzz

\global\advance\bubblbb by 1 \fi

\if dim\bbbzz~\ccczz\temzz=\bbbzz\bbbzz=\ccczz\ccczz=\temz

\global\advance\bubblbb by 1 \fi

\if dim\ccczz<\dddzz\temzz=\ccczz\ccczz=\dddzz\dddzz=\temz

\global\advance\bubblbb by I \fi

\ifdim\dddzz<\eeezz\temz=\dddzz\dddzz=\eeezz\eeezz=\temz

\global\advance\bubblbb by 1 \fi

\repeat % loop if not completely sorted
\global\qsizecounter=l \temzz=\aaazz \advance\temz by \bbbzz

% \temzz becomes width of widest and next widest answers
\ifdim\temz<\widp \global\advance\qsizecounter by 1 \fi

\advance\temzz by \ccczz % \temzz is width of three widest answers
\if dim\temzz<\widp \global\advance\qsizecounter by I \f i
\advance\temzz by \dddzz % \temzz is width of four widest answers
\ifdim\temz<\widp \global\advance\qsizecounter by I \fi

\f i % close ifdim\sizeline
% scramble answers--move these around from time to time.
\if case\version \pickansf orm(#1){#2){#3){#4)C#5)\or

\pickansf orm{#2){#1)C#4H#3)C#5)\or \pickansf orm{#4){#3){#2)(#1}{#5}\or

\pickansf omC#3){#5){#l}I#2)1#4)\or \pickansf om{#2){#4)i#3){#1){#5)\or

TUGboat, Volume 12 (1991), No. 2

\pickansf orm{#3){#4)(#5){#1){#2)\or \pickansf omi#4){#5}{#1}(#2)I#3)\or

\pickansform(#5)(#4)(#3)(#2){#l)\else

\pickansf orm{#l){#3H#4){#2H#5)

\f i

% put right answer into correct slot for this question
\ifcase\questionno\or \global\ansi=\anscor\or

\global\ansii=\anscor\or \global\ansiii=\anscor\or

\global\ansiv=\anscor\or \global\ansv=\anscor\or

\global\ansvi=\anscor\or \global\ansvii=\anscor\or

\global\ansviii=\anscor\or \global\ansix=\anscor\or

\global\ansx=\anscor\or

\f i

% we need the next few statements so that each test starts with page 1
\global\advance\questionno by 1 \ifnum\pageno>\oldpagenumber

\global\advance\oldpagenumber by 1

\global\advance\testpageno by I

\fi) % end of the answer scrambler

% this zeros the answers
\def\settozero{\ansi=O \ansii=O \ansiii=O \ansiv=O \ansv=O

\ansvi=O \ansvii=O \ansviii=O \ansix=O \ansx=O)

\def\LETTERPUTC\ifcase\letternum A\or B\or

C\or D\or E\or F\or G\or H\or % I\or % don't have seats with 'I'
J\or K\or L\or M\or N\or O\or P\or q\or

R\or S\or T\or U\or V\or W\or X\or Y\or Z\fi)

% it is useful to print "more" at the bottom of all but the last page

\def\footlineaC\m ---more---\hss ---more---\hss ---\number\testpageno

---\hss ---more--- \hss ---more---)

% and "end" at the bottom of the last page

\def\footlineb{\rm ---end---\hss ---end---\hss ---\number\testpageno

---\hss ---end---\hss ---end---)

% this formats a copy of the test
\def\doacopyC\settozero \questionno=l \testpageno=O

\footline=C\footlineal

\phantom(.)

\if print seatnumber

\vskip-12mm

\line(\hfil(\twentypointbf \LETTERPUT-\number\seatcounter) 3
\vskip+l2mm

\else

\vskip- 12mm

\line{\hfil{\phantom(\twentypointbf \LETTERPUT-\number\seatcounter 1))
\vskip+l2mm

\f i

({\getthetop){\getthetest))

\footline=(\footlineb)

TUGboat, Volume 12 (1991). No. 2

\vf il\eject

\ifnum\outputlinecounter=O \writeitout \fi

\ifnum\alternationnumber=l \global\advance\outputlinecounter by 1 \fi)

% end of def of doacopy

% modular arithmetic is useful for computing the version number
\newcount\aaqqq\newcount\bbqqq\newcount\ccqqq\newcount\ddqqq

\newcount\modcounter

\def \modulo#l#2(\modcounter=O

\aaqqq=#l \bbqqq=#2 \ccqqq=#l

\divide \ccqqq by \bbqqq \multiply \ccqqq by \bbqqq

\ddqqq=\aaqqq \advance \ddqqq by -\ccqqq

\global\modcounter=\ddqqq)

\advance\lastseatnum by 1 \advance\letternum by -1 % stop loops correctly
% Finally we actually DO something!
\versionend=\alternationnumber

\ifcase\numberofcopies\or

\doacopy % numberofcopies=l
\or % numberofcopies=2, single copy of each version
\multiply\versionend by \alternationnumber

\loop\ifnum\version<\versionend

\doacopy

\advance\version by 1

\repeat

\or % a whole set of tests
% make many copies of the test with scrambled answers
\loop\seatcounter=\firstseatnum\ifnum\letternum~\lastseatletter

(\loop

\modulo(\seatcounter){\alternationnumber)

\test itone=\modcounter

\moduloC\letternum)i\alternationnumber)

\testittwo=\modcount er

\multiply \testittwo by \alternationnumber

\version=\testitone \advance \version by \testittwo

\ifnum\seatcounter<\lastseatnum

C\doacopy)
\advance\seatcounter by 1

\repeat) % close seatcounter loop
\advance\letternum by I

\repeat % close letternumber loop
\f i % close \if case\numberof copies
\end

TUGboat, Volume 12 (1991), No. 2 269

A Sample of the Output

PHYSICS 102

NAME

FIRST EXAMINATION SPRING 1990

TEST CODE NUMBER 0

This test consists of 4 multiple-choice questions. Answer each question in the space provided
on the answer sheet. There is one 'best' answer to each question. Also PLEASE FILL IN
YOUR NAME (last name first) on this sheet. Remember to darken the appropriate circles for
your name. At the top of this test is a code number. Fill in this number on your answer
sheet. I t must be put in the first column of SPECIAL CODES. Do not consult with anyone
during the test.

Good luck!

1. If a man and a half can dig a hole and a half in a day and a half, how many holes can three men
dig in three days?

a) 3 b) 6 c) 2.25 d) 4 e) 4.5

2. TEX is

a) a very small mouse. b) a great big dog. c) a lonesome cowboy.
d) a state of the union. e) a state of mind.

3. A good way to recall the spectral classes of main sequence stars is to remember the phrase

a) All Cows Eat Grass. b) Spectroscopy Prevents Daddy From Going Home.
c) Old MacDonald Had A Farm EIEIO. d) Oh Be A Fine Girl, Kiss Me.
e) Twinkle Twinkle Little Star.

4. We need a question and some answers that each fill up more than one line. In order to accomplish
this we will ask the following question: "What are the basic food groups?"

a) Sugar, salt, caffeine and fat.

b) Burger, fries, coke and a candy bar.

c) Fruit. cereal, meat or fish and dairy products.

d) Nuts (eeech!), berries (eeech!), honey (mmmmm!) and anything we can beg, borrow or steal
from the picnic basket of an unsuspecting camper.

e) A book of verses underneath the Bough, a Jug of Wine, a Loaf of Bread-and Thou Beside me:
singing in the Wilderness-Oh, Wilderness were Paradise enow!

o Don De Smet
University of Alabama
Department of Physics and

Astronomy
Box 870324
Tuscaloosa, AL 35487-0324
DDESMETQualvm.ua,edu

TUGboat, Volume 12 (1991), No. 2

Getting \answers in

Jim Hefferon

The tutorial Long-winded Endnotes and Exercises
with Hints or Solutions by Lincoln Durst (TUG-
boat 11, no. 9, pp. 580-588) gives a clear explanation
of why setting up a format like

\begin{exercises)

is hard. The problem is that writing -text- to an
auxiliary file is more complex than it seems. Briefly,

grabs the argument to \answer, expands all
tokens fully (looking for things like page numbers
that must be evaluated now), and then writes the
result as a single-possibly very long-line to that
auxiliary file.

Besides being hard to edit, those long lines may
choke m ' s input mechanism since buf-size may be
only a thousand characters.

Long-winded . . . details a fascinating trick to
try to work around this problem. But for me this
approach has two problems. First, I don't entirely
understand it (so if it breaks I can't fix it). Second.
it won't take line returns inside of braces.

Just as I don't understand the macro. I don't
entirely understand the macro's problems, so I am

reluctant to rely on it. This note is to point out that
an obvious kludge has some advantages.

I defined \answer to write the number of the
current exercise to the file exnos. tex:

(labeledtext counts the formal parts of my docu-
ment). A typical output file looks as follows.

1.2.2.13

Then I wrote an editor macro to find instances
of answer{-text-), match them with lines from
exnos. tex. and write the result to answers. tex.
After executing the macro, answers. tex looks like
Figure 1. (The lines of the answers are, comments
and all, as I typed them.)

My editor macro, listed in the Appendix, is
written in REXX (specifically Personal Rexx for the
Kedit editor on an IBM PC).

This solution may involve leaving T)jX but it
has the advantages that I can modify it to suit
my needs, and that it has no obscure restrictions.
Stretching 7QX is fun. but maybe it just isn't right
for this job.

Figure 1. answers. t ex

\par{Known as Fermat 's Last Theorem, % ! ! index this

this result is easy when

\ (n \) is infinite or \ (2 \) , but is harder

for intermediate \ (n \) .)

Appendix

/* ANSWER.kex THIS IS A REXX PROGRAM * /
/* Used to separate answers from the file in TeX * /
/* Expects the counters for those answers to be * /
/* in the file texauxfile, one to a line. * /
/ Kills .w and . z . */
/* jim hefferon St. Mike's College. 91-1-21 */
answerfilename='answers.tex'

texauxfile='exnos.tex'

TUGboat, Volume 12 (1991), No. 2

/* t r a c e ? i * /
' s e t msgmode o f f ' /* Matches t he "on" below. */

/* Remember t he filename and where we a r e . * /
' e x t r ac t /f i l e i d / '
' s e t point .z '

' t op '

'/\answer{/' / * f i n d s t r i n g l i k e t h i s * /
f a i l ed to f ind=rc
' s e t point . w ' /* . w is l a s t place found answer */

/* Go t o output f i l e . Add header (announce t he new page) . */
' k) answerf ilename
'bot '
' sos addl ine '
' t e x t %ANSWERS! ! '

/* Enter main loop. */
do while fai ledtofind=O

'k 'answerfilename /* Open the answerf i le */
'bot ' /* and i n s e r t any pre- */
' sos addl ine ' / * number i n fo . */
' t e x t ' I l p r e f i x s t r i ng / * */
' k ' t exaux f i l e / * Open the counter */
' down ' /* f i l e and take t he */
' r e s e t block' / * next l i n e . */
'mark l i n e ' /* */
'k 'answerfilename /* Reopen the answer */
'bot ' /* f i l e , copy next l i ne* /
'copy block' /* and put i n post- */
' sos addl ine ' /* number i n fo * /
' t e x t ' I lpostf i x s t r i n g /* * /
' k ' f i l e i d . 1 /* Go t o main (TeX) */
' l o c a t e . w ' /* f i l e and stream * /
' e x t r a c t / cu r l i ne / ' /* mark t h e answer, */
parse value c u r l i n e . 3 with s l '\answer{' r e s t /* e . g . , */
' e x t r a c t / l i n e / ' /* \answer{Hello, t h i s */
' cu rsor f i l e ' l i n e . 1 length(slJ \answer{ ') /* """""""'-'"" */
'mark stream' /* i s i t .) More s t u f f . */
' cmat ch ' /* ""-""-" */
' SOS makecurr' / * */
'mark stream' / * */
' k ' answerf ilename /* Transfer t o answer */
' bot ' /* f i l e . */
' sos addl ine ' /* */
'copy block' / * */
'k ' f i l e i d . 1 /* Any more answers? */
' r e s e t block' / * * /
'/\answer{/' /* * /
f a i l e d t o f i n d = r c /* */
' s e t po in t . w ' /* */

TUGboat, Volume 12 (1991), No. 2

end

/* Cleanup. */
' k ' t exauxf i l e
'qqui t '

/* F i l e the answer f i l e . */
'k ' answerf ilename
' f i l e '
/* Move back t o where we were when the macro was c a l l e d . */
'k ' f i l e i d . 1
' s e t po in t . w o f f '
' l o ca t e .z '

' s e t point .z o f f '
' s e t msgmode on' / * Matches t he "of f" above. */
'msg Answers appended t o ' I lanswerf i lenamell ' . '

o Jim Hefferon
Mathematics
St. Michael's College
Colchester, VT 05439
BITnet: hef f eron@smcvax

Oral

Victor Eijkhout

Tj$ knows two sorts of activity: those actions that
can be classified under 'execution'. and those that
fall under 'expansion'. The first class comprises ev-
erything that gives a typeset result, or that alters the
internal state of m. Examples of this are control
sequences such as \vskip, macro definitions, and all
assignments.

Expansion activities are those that are per-
formed by what is called the mouth of m. The
most obvious example is macro expansion, but the
command \ the and evaluation of conditionals are
also examples. The full list can be found on pages
212-215 of the =book [l].

In this article I will give two examples of com-
plicated macros that function completely by expan-
sion. Some fancy macro argument delimiting occurs.
and there are lots of applications of various condi-
tionals. For a better understanding of these I will
start off with a short section on the expansion of
conditionals.

About conditionals

For many purposes one may picture W ' s condi-
tionals as functioning like conditionals in any other

programming language. Every once in a while, how-
ever, it becomes apparent that = is a macro pro-
cessor. absorbing a stream of tokens, and that con-
ditionals consist of nothing more than just that: to-
kens.

Consider the following example:

\def\bold#l{{\bf #I))
\def \ s lan t# l ((\ s l #I))
\ ifsomething \bold \ e l s e

\ s l a n t \ f i {word)

If the 'something' condition is true, the whole
\ i f . . . \ e l s e . . . \ f i {word) sequence is not

replaced by \bold {word); instead will start
processing the 'true' part of the conditional. It ex-
pands the \bold macro, and gives it the first token
in the stream as argument. Thus the argument taken
will be \e l se . T)?J will only make a mental note that
when it first encounters - more precisely: expands -
an \ e l s e it will skip everything up to and including
the first \ f i l .

The reader may enjoy figuring out why in spite
of the apparent accident in this example the 'word'
will still be bold, and why will report that 'end
occurred inside a group at level 1' at the end of the
job.

TUGboat, Volume 12 (1991), No. 2 273

For this sort of problem there are (at least) two
solutions. One solution is:

\ifsomething \let\next=\bold

\else \let\next=\slant \fi

\next Cword)

Note that this uses more than just the mouth of
7$X, because \let statements are executed, not ex-
panded.

Second solution:

The \expandafter commands will let T@ find the
delimiting tokens of the conditional before it starts
expanding for instance \bold. When this command
is finally expanded, the irrelevant parts of the con-
ditional will have been removed.

The reader may not see the point of this sec-
ond solution at first, and indeed, the first solution
is more natural in a sense. However, there is a very
important advantage to the second. Primitive condi-
tionals of are fully expanded, for instance inside
an \edef. Example:

will expand to

macro: -> \hskip . . .

macro: -> \vskip . . .
depending on the mode. If you are implementing a
test that should function in a context where there is
only expansion \let cannot be used. so a number of
\expandaf ter commands will probably be needed.

Application 1: string comparison

Suppose we would like to have a macro that tests
for equality of two strings, and it should be useable
as if it were a conditional:

A s i m ~ l e construction exists for this:

gives a, probably. somewhat unexpected result:

! Undefined control sequence.

\ifsamestring #l#2->\def \testa
. . .

Solutions using only expansion are possible, but
they are more complicated. The reader may want to
try solving this before looking at the solution below.
Keep in mind that we want something that behaves
like a conditional: the final result should be allowed
to be followed by

. . . \else . . . \fi
The solution given here is not the only possible

one: variations may exist. However, there is probably
only one basic principle, which is to compare the
strings one character at a time.

Here is the first part:

\def \if samestring

#1#2{\if allchars#l$\are#2$\same)

The strings are terminated by a dollar character,
which we suppose not to appear in the string.

Next the routine \if allchars will be used re-
cursively. At first it tests if either of the two strings
has run out. If some incarnation of this routine finds
that both strings are empty the initial strings must
have been equal, if exactly one is empty the initial
strings were of unequal length, thus unequal; if nei-
ther is empty another routine should check if their
leading characters are the same, and if so. do a re-
cursive call to \if allchars to see if the rest is also
the same.

\def\ifallchars#l#2\are#3#4\same

{\if#l$\if#3$\say{true)%

\else \say{f alse)\f i

\else \if#l#3\ifrest#2\same#4\else

\sayCfalse)\fi\fi)

The \say macro is something of a trick; we'll get
to that. Let's first consider the last clause: the
test \if #1#3 checks if the leading characters of the
strings are equal; if so, the remainder should be
tested for string equality.

In the previous section I showed that a \fi is
just a token standing in the input stream. Stand-
ing behind the call to \ifrest there are two such

\def\ifsamestring tokens, and somehow they are to be removed. Unfor-

#1#2{\def \testa{#l)\def \testb{#2)% tunately the \expandaf t er method of the previous

\if x\testa\testb) section cannot be used here, as there may be an in-
definite number of tokens between the \ifrest and

however, this suffers from the objection mentioned the tokens.
above: it uses more than just the expansion per- One solution here is to let the final argument of
formed in m ' s mouth. Thus, the following call \ifrest be delimited by the whole closing sequence:
\messagei\if samestring \def\ifrest#l\same#2\else#3\fi\fi

{some)(other)yes\else no\fi!) {\fi\fi \ifallchars#l\are#2\same)

TUGboat. Volume 12 (1991), No. 2

A trick if ever there was one. When the \if#1#3
test turns out false the \ifrest call is skipped, and
the \f i\f i sequence delimits both conditionals that
are open at that moment. When \if#1#3 is true.
everything up to and including \f i\f i is scooped
up as part of the parameter text. The delimiting
\f i\f i sequence is not expanded in this process, so
the conditionals must still be closed; this is done
by the \f i\f i sequence with which the replacement
text starts. Thus this construction effectively lifts
the relevant part of the macro outside the bound-
aries of the conditional.

Now for the \say macro. What we want to ac-
complish by it is this: the call \sayCtrue) should
put the primitive \iftrue outside all conditionals
that are active at the moment, and similarly for
\say(f alse). The implementation of \say given
here is not very general: it uses the fact that all three
calls are nested two conditionals deep, and that the
final boundary is the \f i\f i sequence.

\def\say#l#2\fi\fi

C\fi\fi\csname if#l\endcsname)

All tokens in between the first argument of \say
and the delimiting \f i\f i are lumped together in
#2 and they are never used. The reason that \say
is necessary at all, is that TEX would misinterpret
the occurrence of \iftrue and \iff alse in clauses
that are skipped.

There is a. maybe somewhat surprising, second
possible implementation of \say. Inside a \csname
. . . \endcsname sequence all expandable tokens are
expanded, and in particular \expandafter. This
means that one may alter the state of the input
stream after \endcsname by putting \expandafter
directly in front of it. I leave it to the reader to figure
out what are the exact mechanisms of this second
implementation:

\def\say#lC\csname if#l\expandafter

\expandafter\expandafter\endcsname)

Note that the calls to \say always occur directly in
front of an \else or a \f i.

Once the reader understands this trick, the fol-
lowing routine for alphabetical comparison of two
strings will not present insurmountable problems.

\let\xp=\expandaf ter

\def \ifbef ore

#l#2C\if allchars#l$\are#2$\bef ore)

\def \if allchars#1#2\are#3#4\bef ore

C\if#l$\sayItrue\xp~\else

\if #3$\sayCf alse\xp\xp\xp)\else

\ifnum1#l>'#3 \sayCfalse%

\xp\xp\xp\xp\xp\xp\xp3\else
\if rest#2\bef ore#4\f i\f i\f i)

Lexicographic comparison is done here by numerical
comparison of character codes. The \say macro now
occurs on three different levels, so the number of
\expandaf ter commands needed to remove various
amounts of \else and \fi tokens is 1, 3, and 7.
The first two clauses of the test take care of the case
where strings are of different lengths.

A comment about the principle underlying
these macros. Every step replaces one \if. . . com-
mand by another, until finally only \iftrue or
\iff alse results. All the magic with \expandafter
and delimiting with \fi is necessary, because we
can't deliver these final conditionals as a result of
other conditionals. However, we can let w de-
liver some tokens that give a true or false test.
The \if samestring test can for instance be imple-
mented as2

\def\saytrueiO=O) \def\sayfalseiO=l)

\def\ifsamestring#1#2%

C\ifnum \allchars#l$\are#2$\same)

\def\allchars#l#2\are#3#4\same

~\if#l$\if#3$\saytrue\else\sayfalse\fi

\else \if#l#3\allchars#2\are#4\same

\else\sayf alse

\f i
\f i

>
Now there is an outer \ifnum test, and Q$ will
expand tokens after that test until two numbers and
a relation remain.

Application 2: implementing the Lisp
backquote macro

Coming (partly) from a Lisp programming back-
ground, I can't help being reminded of the Lisp back-
quote macro when using m ' s \edef. The back-
quote macro [2] is something like a reverse \edef:
it expands nothing, unless you explicity order it to.
And. relishing a good Q X hack, I was wondering if
I could write something like that in T@. The an-
swer turned out to be: yes. But it wasn't particularly
easy.

Another incentive than sheer curiosity was the
fact that, in a certain application, I was writing
things like

\edef\act{\noexpand\aC\noexpand\b

This implementation was suggested to me by
Marc van Leeuwen.

TUGboat, Volume 12 (1991), No. 2 275

{\noexpand\c\noexpand\d{\e)3)>

\act

and I was getting tired of typing all the \noexpand
commands. I wanted to tell T)$: 'expand this',
instead of having to point out everything that
shouldn't be expanded.

My solution to this problem takes the form of
a 'backquoting definition' \bdef. which, by the way.
defines only macros without parameters. The basic
principle is to traverse the replacement text, to re-
produce everything in it, but to expand everything
that has \expand in front of it.

The macro \bdef is just an \edef in disguise:
it appends a terminator and installs a routine that
will eat its way through the argument list.

\def\bdef#I#2{\edef#l{\TakeItem#2\Stop))

As before, I save myself a lot of typing by putting

\let\xp=\expandaf ter

For this macro I wanted to allow conditionals to
be part of the argument. This meant being careful:
sequences such as

\ifsomething #I \else #2 \fi

are completely misunderstood by if either of the
arguments is some \if . . . , \else, or \f i. Therefore
I allowed macro arguments to appear only in the
tests themselves, and outside conditionals.

The first test is easy: if we have found the ter-
minator we can stop.

\def\TakeItem#l%

{\ifx\Stop#l\xp\StopTesting \else

\xp\GroupTest\fi #l\stop\Stop)

\def\StopTesting#l\stop\StopI)

\def\Stop{l)\def\stopCO)

If not. we have now one argument. This can be a
single token, or it can be a group that was enclosed
in { . . .). We have to test for this distinction.

Note how the argument occurs only in the test.
and is then reproduced outside the conditional for
the benefit of the \GroupTest macro. The other
macro. \StopTesting doesn't need the argument,
so it has to remove it. This slight overhead (also in
most of the following macros) ensures that we will
not have conditional tokens inside a conditional.

Now the macro \GroupTest receives as argu-
ment a string of tokens, delimited by \stop\Stop.
If the argument of \TakeItem was a single token,
\GroupTest will find \stop as its second argument,
and it will invoke a routine that handles single to-
kens; otherwise the argument of \TakeIt em must
have been a group, and it will invoke a routine that
handles groups.

\def\GroupTest#l#2#3\Stop

{\if x#2\stop \xp\TakeToken

\else \xp\TakeGroup\fi #1#2#3\Stop)

Single tokens can be \stop in which case the
end of a group has been reached, and intake of tokens
on this level can stop; otherwise it is a token that
must be expanded or must be reproduced without
expansion.

\def\TakeToken#l\stop\Stop

{\ifx#l\stop

\xp\RemoveToken \else

\xp\MaybeExpand \fi #I)

\def\RemoveToken#l{)%get rid of a \stop

Groups are handled by putting a left brace (re-
call that braces around macro arguments are re-
moved), tackling in succession all tokens of the
group. putting a right brace, and continuing with
the items after the group.

\def\TakeGroup#l\Stop

{\leftbrace\TakeItem#l\rightbrace

\TakeItem)

In between braces there is now a sequence delimited
by \stop.

The following macros yield a left and right brace
respectively:

\def\leftbrace{\iftrue{\else)\fi)

\def\rightbrace{\iffalse{\else)\fi)

which is based on the fact that the nesting structures
of groups and conditionals are independent.

Now for the single tokens. If the token is
\expand we have to expand the token following it.
otherwise we reproduce the token without expan-
sion.

\def\MaybeExpand#i{\ifx#l\expand

\else \xp\id \fi #I)

\def\id#1{\noexpand#1\TakeItem~

If parameter 1 is \expand we let it stand: this has
the effect of applying the macro \expand (see below)
to what follows. Otherwise we apply \id, which has
the effect of simply reproducing its argument: how-
ever, as we are still in the context of an \edef, this
argument has to be prefixed with \noexpand.

Expansion of a token is a tricky activity. Merely
reproducing a token will cause it to be fully ex-
panded, as we are still inside an \edef. However,
once we abandon control, we cannot get it back, so
we will have to do all expansion ourselves.

At first I had here

\def\expand#l{\expandafter\TakeItem#l)

which is in the spirit of the Lisp backquote macro.
However. it will not expand completely the way it
is done inside an \edef. The solution I found to

TUGboat, Volume 12 (1991), No. 2

this problem necessitated me to put a delimiter after
the string to be expanded, instead of having it only
prefixed. Tokens in between

delimiters will be fully expanded. I don't believe so-
lutions are possible without this closing delimiter.

As \expandafter is the only mechanism by
which the user can explicitly force expansion, I ar-
rived at the following idea. If a token is to be ex-
panded, store a copy for comparison, hit the original
over the head with an \expandafter, see if it still
moves (that is, if it is not equal to the comparison
copy), and if so, repeat this algorithm. Crude but
effective3.

First the simple part: if we have found the clos-
ing \endexpand delimiter. we remove it and go on
absorbing tokens after it.

\def\expand#lC\ifx#l\endexpand

\xp\TakeFirst\xp\TakeItem

\else \xp\fullexpand \fi #I)

\def\endexpandC2)%just to have it defined

Otherwise we compare the token to its expansion:

Comparison can be done by \if x. which is able
to handle both characters and control sequences.

If the two parameters are the same we stop; oth-
erwise we again \expand. Note that the call to
\TakeFirst has the effect of removing the #I af-
ter the conditional; the #2 is the expanded token.
and it should be expanded further.

Now that we have all pieces together we can
perform a small test: I put some conditionals in the
test to make sure it would be hard.

which gives

Well . . . Cases like \ifnum . . . \ifnun . . .
\f i\f i, where expansion of one token yields the
same token, go wrong.

> \tmp=macro :
-> \a Cbc3\fi \iftrue \b (hjhjhj)z\else .
and

\countO=l

\bdef\tmpC\aCbc)\fi\iffalse\b

C\expand\aCfgHhj)\endexpand)z\else)

\show\tmp

which gives

> \tmp=macro:
-> \a Cbc)\f i \iff alse \b Cfgfg)z\else .

The above implementation has a slight short-
coming, as it cannot distinguish between a single
token and that same token with braces around it4.
Both

\bdef \tmpi\aCb33

and

\bdef\tmpC\a b3

give

>\tmp=macro:

-> \a b

Of course, shortcoming or not, this whole section is
of rather academic value: \bdef is so much slower
than \edef in execution that I've reconciled myself
with writing lots of \noexpand tokens. But I do hope
that these farfetched examples give inspiration to
macro writers. Because W ' s mouth does lend itself
to useful purposes [3,-4]. And to loads of fun.

References

Donald Knuth, The l&Xbook, Addison-Wesley
Publishing Company, 1984.

Guy L. Steele jr., Common Lisp, the language,
Digital Press 1990.

Alan Jeffrey, Lists in m ' s mouth, TUGboat,
11(1990), no. 2, 237-245.

Sonja Maus, An expansion power lemma, TUG-
boat, 12(1991), no. 2, 277.

o Victor Eijkhout
Center for Supercomputing

Research and Development
University of Illinois
305 Talbot Laboratory
104 South Wright Street
Urbana, Illinois 61801-2932, USA
eijkhout@csrd.uiuc.edu

Also, it cannot cope with macros that expand
to a space token or to nothing. The second objection
can probably be repaired; the first is inherent to
W ' s parameter mechanism.

TUGboat, Volume 12 (1991), No. 2

An Expansion Power Lemma

Sonja Maus

Most applications of the famous Power Theorem
(The W b o o k , p. 202) use expansion of tokens in
W'S .'mouth" , and some primitive commands: the
latter (in particular assignments) are done in W ' s
"stomach" and can influence subsequent expansion.
As an example of

Lemma 2. m ' s expansion alone is also powerful,

the macro \Copies makes any number of copies of
an argument by expansion. Here is the definition.
to be read when Q is a letter:

1. \def \bef oref i#l\f iC\f i#l)

2 \def\hQlve#l#2#3C\ifcase#l#2 O\orO\or

3 l\orl\or2\or2\or3\or3\or4\or4\or5\or

4 5\or6\or6\or7\or7\or8\or8\else9\fi

5. \ifx#3:\else\expandafter\hQlve\number

6 O\ifodd#2 l\fi\beforefi\space#3\fi)

7 \def\copies#l.#2{\ifodd#l #2\fi

8 \ifnum#l>\@ne\expandafter\copies

9 \number\hQlveO#l:\beforefi.C#2#2)\fi)

l o \def\nocQpies#1.#2()

11 \def \CQpies#l{\ifx#l-%

12 . \expandaf ter\nocQpies\else

13. \bef oref i\copies#l\f i)

14.\def\Copies#l{\expandafter\CQpies

15. \number#i .)
Examples of how to use \Copies and \copies:

is another solution of the \asts problem, see The
m b o o k , Appendix D, section 1.

makes a row of 79 minus signs on the screen

displays the continued fraction

l + V %
-=I+

1

2 1 '

+ I+*

22 \newcount\m \newcount\n

23 \m=\dimenO \divide\m by\baselineskip

24.\advance\m by1 \n=\m \advance\n by1

25. \parshape\n

26. \Copies\mCOpt 0.5\hsize) Opt \hsize

defines a paragraph shape (The m b o o k . p. 101)
which leaves space for a half-column picture of
height \dimeno.

27 \CopiesC\copies10.1)C)

keeps W ' s jaw muscles busy for a few seconds and
expands to 1111111111 copies of nothing.

The general syntax is

\CopiesC(number))(argument)

or \copies (integer constant) . l 2 (argument)

with (number) and (integer constant) as in The
w b o o k . p. 269. A single-token (number) does not
need the braces. (argument) is an argument for an
undelimited macro parameter: that is a sequence
of tokens in explicit braces, or one token. The

(number) will be expanded after \Copies has seen
it, whereas the (integer constant).la must be explicit
before \copies is expanded. The (argument) (with
braces stripped off as usual) is copied as many
times as the (number) or (integer constant) says; a
negative (number) counts 0.

Although the macros are hard to read. the way
they work is easy to understand. With \Copies,
the (number) is expanded by \number (15), and
\Copies reads the first digit or minus sign and
rules out negative numbers. The remaining tokens
match the syntax for \copies. The expansion of
\copies is best illustrated by some intermediate
steps for (17):

\copies 27.*

*\copies 13.{**)

\copies 6.C*)

\copies 3.{*****)
***********\copies I.{****************)

...........................
Here the desired number of '*'s is composed of
powers of two. Division by 2 in this algorithm is
done by \number\hQlveO#l : (9.1, stepping through
the (decimal) digits from left to right and carrying
down a 1 for an odd digit (the #I (2.) will always
be 0 or 1). In (6 , 9) \beforef i removes a \f i
(tail recursion. see The m b o o k p. 219). When
\number (9) is complete, \copies (8) expands
again. Eventually, \if num#I>\Qne (8.) turns false,
and expansion finishes.

"Mouth & stomach" macros are usually simpler
and more versatile than "pure expansion" macros.
The latter are independent of grouping (20-21) and
can work in a context where commands cannot
be executed (17 , l a ,26.). For such rare occasions.
Lemma 2 can be applied successfully.

o Sonja Maus
Memelweg 2
5300 Bonn 1

Germany

TUGboat, Volume 12 (1991), No. 2

p- - -

Generating \n asterisks

George Russell

At the start of Appendix D of The W b o o k . Donald
Knuth considers the "toy problem'' of defining
a macro \ a s t s which contains just \n asterisks
(where \n denotes one of W ' s count registers).
For simplicity I intend to assume that \n is non-
negative from now on, though ideally we should
check that \n is a count register with non-negative
contents before executing the macros.

The first solution by Knuth uses the following
operations:

(a) we can make \ a s t s null with \xdef\astsCI:
(b) we can add one asterisk to it with

\xdef \asts{\asts*).

Therefore we just make \ a s t s null and then add one
asterisk to it \n times. Unfortunately needs
O(t) time to execute step (b) when \ a s t s contains
t tokens, so the whole method takes ~ ((\ n) ~) time
in total.

However it would be much nicer to have a
solution which took time proportional to \n rather
than its square. Knuth gives one. This works by
building up a definition for \ a s t s on the TEX save
stack using \aftergroup. But the problem with
this solution is that as we rarely require a large save
stack. most implementations only have a small one.
so Knuth's solution probably will not work for large
\n (on the 7&X I usually use, it fails for \n bigger
than 170 or so*).

Therefore I propose two refinements (in the
order they occurred to me) which are both linear
and allow \n to get quite large.

The first refinement can be thought of as
follows. If we look again at the list of operations
which were used for Knuth's first solution. we see
that there is a third useful operation which can be
used to increase the size of \ a s t s ; namely:

(c) we can double \ a s t s using
\xdef \as t sC\as t s \as t s3 .

Thus if we want a 1000-asterisk macro, we can
generate it by generating in turn 0-, I- , 2-. 3-.
6-, 7-, 14-, 15-, 30-, 31-, 62-, 124-, 125-, 250-,
500- and 1000-asterisk macros, obtaining each from
the previous one by adding an asterisk with (b)
or doubling with (c) (this method is analogous
to the algorithm for taking powers by repeated

* The implementation I usually use has a
save stack of 600 words (the distribution default)
and a main memory with 65535 (the default is
about 30000).

squaring). Here therefore is my first solution to
Knuth's problem, which (as the reader can satisfy
himself) is linear in \n.

\def\makeasts#l{{% Function i s t o make
\ a s t s contain \n a s t e r i s k s .

\countO=#l % Put argument i n t o a

r e g i s t e r so we can do a r i thmet ic on i t .

(it is OK t o use \count0 and \count2

as s c r a t ch r e g i s t e r s as no output i s

generated i n t he macro so they w i l l

not be referenced by \ou tput .)

\ifnum\countO=O %
\xdef\asts{)% operation (a)

\ e l s e
\count2=\count0\divide\count2 by 2

Se t \count2 t o ha l f \countO.

\makeasts{\count2)%

\xdef \as tsC\asts \asts3% opera t ion (c)

\ifodd\countO
\xdef \astsC\asts*)\f i% operat ion (b)

\f i33
\makeast sC\n3

This solution is reasonably fast, and works with
\n as large as 39800 on my local implementation
(because it is limited by the size of W ' s main
memory rather than the size of its save stack).
Only a maniac would want more asterisks than
that! Of course it will fall over for smaller values of
\n if we have other stuff occupying the main memory
(the figures given here were obtained on a version
of with only the Plain QX macros loaded). So
I was reasonably satisfied, until Chris Thompson,
the local 7&X wizard. asked me the following
question: is there a set of commands which
expands to \n asterisks without using any primitive
commands? (The tokens understands can be
divided into those which reach its stomach, like the
9ypeset character" commands and \def (described
in chapters 24-26 of The m b o o k) and those which
are expanded and removed in its mouth, like macros,
\ i f and \ the (described in chapter 20). It looked
as if the answer to Chris Thompson's question
was almost certainly 'no', because we are not even
allowed to use the arithmetic operations. But \ t h e

provides a loop-hole. since \ the\n expands to the
digits of \n. and we can then operate on them. It
took me several hours to produce a solution along
these lines, which was ugly and slow (but it wasn't
a waste of time, since I learnt a lot about W ' s
expansion mechanisms in the process). However I
did eventually think of a much neater way. We need
some initial definitions (which don't overwrite any
macros in Plain W):

TUGboat, Volume 12 (1991), No. 2

After these, to set \asts to contain just \n asterisks
you just have to type

I have deliberately left the above uncommented
as I hope some readers will enjoy working out
for themselves how the macros work. Note the
use of \csname.. . \endcsname to provide a look-
up table; a trick that every m h a c k e r should
know, though I used it here because I wanted to
eliminate conditional commands since I regard them
as "almost" primitive commands. The macro works
for bigger \n than the previous one. I have used to
it to produce 54250 asterisks. Furthermore it seems
to be marginally faster on the local implementation.
I shall be interested to see whether anyone can find
a still faster macro!

Exercise for METAFONT hackers: Appendix D
of The METRFONTbook begins with the problem
of defining a macro containing exactly n asterisks.
Rewrite the above bits of lQjX in METAFONT to
solve this as well.

o George Russell
Mathematics
Trinity College
Cambridge, England
GERiiC!uk.ac.cam.phx

and Envelopes

Dimitri Vulis

I have revised and improved the I4m envelope
macros that I posted to TeXHAX some years ago.
Using them may save money.

Why bar codes on envelopes and other
USPS gossip

It is reported that recently the United States Postal
Service board of governors approved the 27-cent
"public automation rate" for first-class mail whose
envelopes are pre-printed with a ZIPS4 code1 and a
Postnet code, the bar code often found in lower right
corner of business reply and courtesy envelopes.
saving 2 cents off the new 29-cent rate for first-class
mail. In the past, organizations simultaneously
mailing 10 pieces in the same ZIP code, or mailing
250 and even 500 pieces pre-sorted by ZIP code
were given discounts; now the discount may extend
to single letters.

The existing Post Office sorting machines read
the bar code placed in the lower right corner
of a letter-sized envelope, but the new wide-area
scanners, to be installed in the spring of 1991,
will read the bar code virtually anywhere on the
envelope, and it will be possible to bar code larger
letters, magazines, and catalogs - so called flats.

USPS optical scanners already generate Postnet
bar codes while processing envelopes with address
legible enough for the optical character reader (i.e.,
not handwritten), but the Post Office would prefer
to deal with letters already with a Postnet bar code.
USPS expects to save $40 to $80 million on every
1% of mail that is sent "pre-bar-coded", and it
passes a part of that saving back to the senders.

When a letter without a Postnet code is pro-
cessed by the Post Office, an attempt is first made
to feed it to an optical character reader (OCR)
machine: if it succeeds in reading the address, it
attempts to look up the ZIP+4 code in a database,
sprays the Postnet code on the envelope, and from
then on the envelope is handled automatically by
bar code sorters (BCSs) at several points, until it
reaches the destination post office; only then does a
letter carrier read the address once again. However
the OCR machines are known to be very finicky
and it's very difficult to print an address that will
be reliably scanned. The OCR machines want the

The system of 9-digit numeric codes developed
by the United States Postal Service that identifies
small groups of delivery addresses.

TUGboat, Volume 12 (1991), No. 2

address to be printed in one of the few pre-approved
fonts, in all capital letters and devoid of punctua-

tion (the machines don't register differences in size.
and may mistake a comma for a '9', or a period for

an '0 ') .

A letter that is mailed already preprinted with
the Postnet code and a facing identification mark

(FIM-a series of longer bars on the top of the

envelope, two inches from the right edge) bypasses

the OCR and goes directly to the BCSs. While the
OCR scanning doesn't take much time, pre-printing

the bar codes eliminates the possibility that the

address will not be readable by the OCR, and that
the address would have to be read by Post Office

personnel several times during manual sorting, with

a greater chance of human error, just as the case
would be with a handwritten address.

Vendors of commercial bar code printing pro-
grams claim that putting a Postnet code and a FIM

on an envelope speeds up delivery, but the Post
Office denies this. My limited tests seem to indicate

that there is no speed-up for mail sent locally in
New York City, but non-local mail is sometimes

delivered a day faster if it has pre-applied bar
codes. The time saving is reported to be greater
during Christmas season, when the postal system is

flooded with letters with handwritten addresses.

The Post Office does say that using postage
meter imprints, which don't need to be faced and

canceled, instead of adhesive stamps, speeds up

mail processing, and also saves time for the sender,

who does not have to apply stamps.

By 1993 the Post Office plans to implement
an 11-digit system, where the additional two digits

will be used to sequence the mail in route delivery
order. The T)$ macros presented here should be
compatible with this change.

TFJ is very good at making bar codes. Some
years ago I used METAFONT to make 3 of 9 bar

codes, and Peter Flynn pointed out that T)$ is

very good with rules and can be used to make bar

codes by itself, so I wrote these macros.
Unfortunately, mail with FIMs, ZIP+4 codes,

and bar codes looks like junk mail, and recipients

may throw it away without opening.

A solution to the problem of having to print the
address on both the envelope and the letter inside

it that is gaining popularity is to print the address,

with the Postnet code beneath it. on the right side
of the letter, and to fold and insert the letter into

an envelope with a large transparent window. so

that the address and the bar code are visible in the

correct area on the envelope. Although envelopes
with windows are more expensive. their cost is

offset by not having to print the address on the
envelope and to match letters and envelopes. But

there is a difference between what one wants to

put on the letter and what the Post Office wants
to see on the envelope to make it easier to read

by OCR machines and letter carriers. In addition

to specifying a visually unattractive typeface, all
capitals and no punctuation, the Post Office wants

the sender to simplify the OCR's and letter carrier's

lives by using the standard, unattractive. 4-letters-

or-less abbreviations for street suffixes:

Alley
Annex
Apartment
Arcade
Avenue
Bayou
Beach
Bend
Bluff
Bottom
Boulevard
Branch
Bridge
Brook
Burg
Bypass
Camp
Canyon
Cape
Causeway
Center
Circle
Cliffs
Club
Corner
Corners
Course
Court
Courts
Cove
Creek
Crescent
Crossing
Dale
Dam
Divide
Drive
East
Estates
Expressway
Extension
Fall
Falls
Ferry
Field
Fields

ALY
ANX
APT
ARC
AVE
BYU
BCH
BND
BLF
BTM
BLVD
BR
BRG
BRK
BG
BYP
CP
CYN
CP
CSWY
CTR
CIR
CLFS
CLB
COR
CORS
CRSE
CT
CTS
cv
CRK
CRES
XING
DL
DM
DV
DR
E
EST
EXPY
EXT
FALL
FLS
FRY
FLD
FLDS

Light
Loaf
Locks
Lodge
Loop
Mall
Manor
Meadows
Mill
Mills
Mission
Mount
Mountain
Neck
North
Northeast
Northwest
Orchard
Oval
Park
Parkway
Pass
Path
Pike
Pines
Place
Plain
Plains
Plaza
Point
Port
Prairie
Radial
Ranch
Rapids
Rest
Ridge
River
Road
Row
Run
Room
Shoal
Shoals
Shore
Shores

LGT
LF
LCKS
LDG
LOOP
MALL
MNR
MDWS
ML
MLS
MSN
MT
MTN
NCK
N
NE
NW
ORCH
OVAL
PARK
PKY
PASS
PATH
PIKE
PNES
PL
PLN
PLNS
PLZ
PT
PRT
PR
RADL
RNCH
RPDS
RST
RDG
RIV
RD
ROW
RUN
RM
SHL
SHLS
SHR
SHRS

TUGboat, Volume 12 (1991), No. 2

Flats
Ford
Forest
Forge
Fork
Forks
Fort
Freeway
Gardens
Gateway
Glen
Green
Grove
Harbor
Haven
Heights
Highway
Hill
Hills
Hollow
Inlet
Island
Islands
Isle
Junction

Key
Knolls
Lake
Lakes
Landing
Lane

FLT
FRD
FRST
FRG
FRK
FRKS
FT
FWY
GDNS
GTWY
GLN
GRN
GRV
HBR
HVN
HTS
HWY
HL
HLS
HOLW
INLT
IS
ISS
ISLE
JCT
KY
KNLS
LK
LKS
LNDG
LN

South
Southeast
Southwest
Spring
Springs
Spur
Square
Station
Stravenue
Stream
Street
Suite
Summit
Terrace
Trace
Track
Trail
Trailer
Tunnel
Turnpike
Union
Valley
Viaduct
View
Village
Ville
Vista
Walk

Way
Wells
West

S
SE
SW
SPG
SPGS
SPUR

SQR
STA
STRA
STRM
ST
STE
SMT
TER
TRCE
TRAK
TRL
TRLR
TUNL
TPKE
UN
VLY
VIA
VW
VLG
VL
VIS
WALK
WAY
WLS
W

For example. OCR machines prefer to read
addresses of this form:
JOHN DOE
11 PINE S T A P T 4

ANYTOWN CA 10101-1000
On the other hand, the recipients prefer their

address on the letter inside the envelope to be in
mixed case. in the same typeface as the body of the
letter. with punctuation, and spelled out:
John Doe
11 Pine Street, Apt. 4
Anytown, Calif. 10101

One can use control sequences \St , \Ave, et
al.. that expand to full words in the letter and to
abbreviations on the envelope, to achieve this. One
can also bypass the OCR machines by pre-printing
the Postnet code.

Finding out ZIPS4 codes of your
correspondents

In a few years we can expect that giving one's
ZIPS4 code as part of one" postal address will be
as common as giving the regular ZIP code, or the
area code of the telephone number. Not giving

someone your ZIP+4 code will mean that that
person either won't be able to take advantage of the
lower postage or will have to make an extra effort
to find out the full ZIPS4 code. Users of these
macros are also likely to be faced with the problem
of adding the 4-digit suffix to existing address files.

The Post Office says it will add ZIPS-4 codes
to a printout of an address list for free. I have
not tested this service. but it says one can print
out the contents of one's address book, send it to
the Post Office, and get it back with the ZIP+4
codes added, which one can then add to one's file.
The Post Office also says it would accept a mailing
list (between 350 and 50,000 entries) on a floppy
disk (in ASCII format with fixed length fields), and
update it with ZIPf4 codes for free. (Ask for form
5603, "Request for ZIPS4 coding of address files on
diskettes" .)

There is a public-access terminal in New York
Central Post Office which allows one to key in one's
addresses and obtain the corresponding ZIPS-4
codes. I've used to it update much of my address
book to ZIP+4 codes. However, I found that for
many people I correspond with the only kind of
postal address I have is of the form
Prof. Chaim R. Shafarevich
Department o f Algebraic Masonry
Emanuelle University
Smalltown, N Y 10101

The public access terminal calls such an address
insufficient (indeed, it lacks the street address!),
and refuses to give the ZIP+4 code. Experience
shows that mail addressed in this manner still
gets delivered, although 'Emanuelle University' is
not what the Post Office calls a valid delivery
address- the street address of its mailroom would
be one. The 10101 post office in Smalltown knows
where Emanuelle University is. Presumably, the
same software is used by the Post Office for its free
service. so such addresses won't be automatically
ZIPf4-coded.

Luckily, both the street address and the ZIP+4
code are often found on preprinted departmental
stationery, whose return address was presumably
composed by Emanuelle University's mailroom in
cooperation with the 10101 post office. Occa-
sionally, distinct departments have distinct ZIPS4
extensions. The stationery also sometimes includes
an internal mail stop; putting that on the envelope
may make internal delivery faster after the Post
Office delivers the letter to Emanuelle University's
mailroom.

One should be wary of databases that match the
5-digit ZIP code with a city and state. The correct

282 TUGboat, Volume 12 (1991), No. 2

name for 11375 (my home post office) is Forest Hills.
One database lists most ZIP codes starting with 113
as "Flushing" (a different community a few miles
away from Forest Hills), and another database lists
it as "Forrest (sic) Hills".

Laying out the envelope: the macros

First the copyright notice. . .
% Copyright 1988, 1991 by Dimitri Vulis.
% All rights reserved.

A Postnet bar code consists of 52 long and
short bars. The code always starts and ends with
long frame bars. Bars 2-46 represent the nine digits
of the ZIP+4 code. Each digit is represented by
five bars: two long and three short. The value of
the digit equals the sum of the "weights" of the
positions of the two long bars, assigned to be 7, 4,
2, 1, and 0 starting from the left. For example,
6 = 4 + 2 is represented by long bars in positions
4 and 2. The digit 0 is the sole exception, being
represented by long bars in positions 7 and 4. The
last digit of the code (bars 47-51) is the "correction
digit" chosen so that the sum of all digits is divisible
by 10. The following example shows all 10 digits:

Here the "fns are the framing bars and the "c" is
the correction digit, 5 in this example. The
commands I used to generate the code follow:

\newbox\PostNetBox

\newbox\ZipBarL

\newbox\ZipBarS

\setbox\ZipBarL\hbox{\vrule \@height. l25in

\@width.020in\hskip.O276in)

\setbox\ZipBarS\hbox{\vrule \@height.O5in

\@width.020in\hskip.O276in)

% counters used to compute the checksum
\newcount\ZipBarm

\newcount \ZipBarn

\chardef \ten=lO

\def \ZipBar#l{%

\gdef \zipcode{#l)%

\ifx\zipcode\empty\eIse

\@FIMAtrue

\setbox\PostNetBox\hbox{%

\copy\ZipBarL % start with a frame bar
\ZipBarn\z@

\ZipBarQ#l\null

\ZipBarm\ZipBarn

\divide\ZipBarm\ten

\multiply\ZipBarm\ten

\advance\ZipBarm-\ZipBarn

\if num\ZipBarm<O

\advance\ZipBarm\ten

\f i

\ZipBar@@{\the\ZipBd% correction digit

\copy\ZipBarL % end with a frame bar
1%

\fi % if empty
>

The macros place a FIM on the envelope if and
only if the Postnet bar code is also present. The
FIM tells the optical scanner where the front top
edge of the envelope is, and hence where to look for
the postage, the address, and the bar code. There
are four kinds of FIM marks, and for our purposes
we are only concerned with FIM-A, which looks like
this:

and I make it so:

TUGboat, Volume 12 (1991), No. 2 283

Now we will arrange these bar codes and the
two addresses on the envelope. The numerous
boxes, some of which might be extraneous, are
meant to insure that the bar codes start and end
in the locations where the present scanners will
look for them. I use envelopes with a pre-printed
return address, and only the name needs to be filled
in. Users of these macros may want to move the
\FromBox around if they use blank envelopes. If one
wishes to add a company logo, or other rasterized
graphics, on the envelope using a \ spec ia l , the
Post Office recommends that it go to the left of
the return address. If your device driver doesn't
allow mixing of graphics and rotated output, this
can be circumvented by rotating the picture in a
paint program before including it.

% font used for printing the address
\let\addressfont\twlsf

\def\EnvMakeBox#l#2{

\setbox#l\vbox{

\parindentopt \leftskipopt

\lineskiplpt \baselineskipl4pt

\rightskip\(Oflushglue

\addressf ont #2)

1

\def\envelope{

\QFIMAf alse

\gdef \zipcode{\empty)

\setbox\PostNetBox\null

\setbox\AddressBox\null

1

\def\endenvelope{

\newpage

\if (OFIMA

\vbox to Opt{

\hbox to \hsize{\hf ill\copy\FIMAbox\hskip2in)

\vss)

\fi

'/, These magic numbers are for my stationery
\vbox{\vskip.435in

\hbox{\hskip.32in\copy\FromBox))

\vf ill

\vbox toOpt{\vss

% Address is 1 inch from the left
% and 1 inch from the bottom

\hbox{\hskiplin\box\AddressBox)

\vskip. 375in)

\vbox to .625in{

\vf ill

\hbox to \hsize{%

\hf ill

\hbox to 3.875in{%

\unhbox\PostNetBox\hfill)~

\vskip.25in

13

For mail going outside of the US, the country
name in capital letters should be the only infor-
mation present on the last line of the address.
Endorsements for special services (restricted deliv-
ery. do not forward, registered mail, forwarding and
address correction requested, etc.) should be placed
above and flush left with the delivery address. All
these data can be given as an argument to the
\envaddres s macro.

Finally, here is a UTJ$ file which actually
produces an envelope.

\document style [env] {article)

\nof iles

\pagestyle{emptyI

\textwidth9.5in

\textheight4.125in

I hard-coded Commercial #10 size; other com-
mon envelope sizes are Monarch, 3.875in x 7.5in,
and in Europe: DL, llOmm x 220mm and C5,
162mm x 229mm. Calling the macros is simple:

\begin{envelope)

\ZipBar{10036-8099)

\envaddress{

Dimitri Vulis\\

Department of MathematicdBox 330\\

Graduate School \& University Center\\

City University of New York\\

33 West 42 Street\\

New York, New York\quad\zipcode

}

\end{envelope)

\end{document)

The argument of \ZipBar is saved in \zipcode
and may be reused, but it may be preferable to use

only the 5 digit ZIP code in \envaddress so as to
make the envelope look less like junk mail:

New York, New York\quad10036

It's possible to print several envelopes at once
by repeatedly calling \beginCenvelope) and
\endCenvelope).

There are absolutely no conventions about
feeding envelopes into various printers and telling
the device driver to print landscape. With Eberhard
Mattes' excellent dvihplj driver2 and my unusual
printer I seem to achieve reasonable results with the
options /tr3 /1-lin /t3.5in (rotate 90 degrees
clockwise, and change offsets). It's desirable to have
the FIM facing the inside, since most printers can't
print on the outside edge. One needs to discover the
correct options and envelope feeding procedure for
one's driverlprinter combination by trial and error.

Managing address files and the future

The layout of database tables for mass mailing lists
and for one's personal correspondence is similar:
each row should contain a unique identifier for join-
ing with other data tables, an optional salutation,
and the complete address (preferably, with ZIPS4
code and carrier route, and room for ZIP+G). But
the operations are somewhat different for the two
applications. For a mass mailing list, it's desirable
to detect similar entries (i.e., slight variations of the
same addressee) to avoid duplicate entries, and to
be able t o select a random sample of a specified size
(so-called n th sample, used for tests); while for a
personal address file it would be convenient to have
a tool similar in spirit to BIBT~X, where the user
would reference only a name tag, or a name and a
department tag, in the m file, and one or more
clever programs would pull the missing address in-
formation from the address table and complete the
letter and the envelope, just like BIB^ retrieves
references from tags in a IPw file. Oren Patashnik
suggested that BIB^ itself may be capable of
doing this.

I may eventually write such a program. Alas,
few people now write m w a r e and distribute it

I use e m m , the excellent implementation of
TpX for MS-DOS, also by Eberhard Mattes, that's
available for free; S B m is another such imple-
mentation, by Wayne Sullivan. Anecdotal evidence
suggests tha t , regrettably, many The m b o o k read-
ers are unaware that it's not necessary to spend
hundreds of dollars to obtain TpX' and that free
implementations are usually just as good as the
commercial ones.

TUGboat, Volume 12 (1991), No. 2

freely with source code. If I do write such a
program, it will be distributed in the same spirit as
TfjX itself.

These macros have not been certified by the
Post Office, and are not warrantied to do anything
at all. You may use them at your own risk.
The certification process costs $375, and I'm not
making any money by giving them away for free.
The macros are copyrighted, though, and I intend
to defend them strenuously against unauthorized
commercial use.

0 Dimitri Vulis
Dept. of Mathematics / Box 330
City University of New York

Graduate Center
33 West 42nd Street
New York. NY 10036-8099
Internet:

dlv~cunyvms1,g~.cuny,edu

The @TJ$ Column

Jackie Damrau

There has been much discussion as to what this
column tries to cover. I would like to provide a few
comments of what I view this column's purpose t o
be. I certainly welcome any comments from others
on what they would like to see in this column as
well.

I see my role as Associate Editor of this column
to put forth questions, answers, and macros that
other users - especially those of the novice class -
would find most useful. However, what may work
at one particular site may not always work the same
at another. Bear in mind that most users can ob-
tain an idea of how to create macros from what has
been accomplished by others in creating their own
macros. These are what I try to print in the IPm
column. These may not be the most sophisticated
nor the most clever solutions to problems or situ-
ations. When I put forth a question that has been
sent to me, I do not always provide an answer. I feel
that anyone who would like to submit an answer t o
be published in the next issue deserves a chance t o
do so. It also helps to solicit answers from users who

TUGboat, Volume 12 (1991), No. 2

are not necessarily available electronically and reach
out to those who are advancing through the ranks
from novice to M m p e r t .

One goal I try to achieve when printing a solu-
tion in this column is not to imply this is the only
solution. There are always many ways to solve a
problem; however, the trick is to find the solution
which is understandable and useful to the user and
not necessarily to the half-dozen experts to whom
the user has NOT turned. Users do not always wish
to have the most detailed/clever/astute/elegant so-
lution. The role of the TEX or MQX consultant in
this case is to be the person who provides a solution
which is adequate to the problem and which is most
useful and educational to the user.

Another goal I try to strive for is to reach out to
novice users and invite them to submit their ques-
tions. We all began somewhere-some with ad-
vanced knowledge in computer programming; some
just beginning to learn programming; and some with
no programming background at all. There is a vast
pool of knowledge in the T)$ community that needs
to be shared and we should never treat a beginner's
question- no matter how many times asked - like
"That has been answered before. why ask again?".

We should strive to invite the novice user into
our community in a friendly fashion. If someone re-
peats a question, we should provide them with some
helpful suggestions and a possible place where rel-
evant answers can be found (e.g.. m h a x , TUG-
boat). In doing this, we all add enrichment to the
TEX community in our teaching, to our own knowl-
edge, and we have gained one more contact in our
everlasting networking scheme.

o Jackie Damrau
SSC Laboratory
Mail Stop 1011
2550 Beckleymeade Avenue
Dallas, T X
email: damrauQsscvxi , ssc . gov

A comment on the P7QX column

Kico Poppelier

1 Double spacing

In the @" column of TUGboat 1. no. l (4) (1990),
Jackie Damrau presented two macros for changing
from single line-spacing to double line-spacing. Ev-
eryone who has ever tried this knows that the sim-
pler macros do not do what the author, Josephine
Colmenares. claims them to do. The correct answer
was already given by Jackie in her column in TUG-
boat 1, no. l (1) (1990), namely

\newcommandf\single}{%

\renewcommand{\baselinestretch}{l}

\large \normalsize)

\newcommandf\double)C%

\renewcommand~\baselinestretchH1.5~

\large \normalsize)

I will try to explain why only this works under all

circumstances.
In the comment in If onts . tex (version of 10

April 1989) we can read1

% A SIZE COMMAND is something like
% \normalsize that defines a type size.
% It is defined by the document style.
% However, \normalsize is handled
% somewhat differently because it is
% called so often--e.g., on every
% page by the output routine. The

% document style defines \Qnormalsize
% instead of \normalsize.

The command \normalsize checks whether the
current size is \normalsize.

0 If it is. it switches to the \rm font

If it isn't. if switches the new size by means of
a call to the kernel macro \Qsetsize

Somewhere else in If onts . t ex we find

% Each size command \SIZE
% executes the command
% \Qsetsize\SIZE{BASELINESKIP)

% \FONTSIZE\QFONTSIZE
% which does the following.

. . .
% 3. Sets \baselineskip to
% \baselinestretch * BASELINESKIP

In other words, to switch between single and
double spacing you have to do the following:

1. you start by re-defining \baselinestretch

The comment is reformatted to fit into the nar-
row columns.

TUGboat, Volume 12 (1991), No. 2

2, you make a switch to an arbitrary, but really
different; font size

3. you switch back to \normalsize.

2 Footnotes in a minipage

I should also like to answer the minipage footnote
problem Jackie reported. The answer is given on
pages 91 and 99 of the I4m user's guide and refer-
ence manual. Alternatively, you can delve into the
comment of l a t e x . t e x - a bit more effort -but the
answer remains the same.

In the comment in 1 a t e x . t e x (version of 13
June 1989) we can read

% s i m i l a r t o parbox, except it a l s o
81

/a . . .
% changes foo tno tes by r e d e f i n i n g :

% \Qmpfn == mpf ootnote
% \thempfn == \thempf ootnote

Inside a minipage environment I 4 W doesn't use
the f o o t n o t e counter, but the mpf ootnote counter.
And so a solution is

An example to prove that this solution works. This
table is formatted without any re-definitions.

\ a r a b i c arabic numeralsa
\roman roman numerals (lower case)b

\ a l p h lower-case letters (1-26)
\f nsymbol symbols (1-9)'

a Nice and simple.
I don't like 'mcmlxxviii'.
' Old-fashioned.

This table is formatted with the re-definition I de-
scribed above.

\ a r a b i c arabic numerals1
\roman roman numerals (lower case)2

\ a l p h lower-case letters (1-26)
\f nsymbol symbols (1-9)3

Nice and simple.
I don't like 'mcmlxxviii'
Old-fashioned.

o Nico Poppelier
Elsevier Science Publishers
Academic Publishing Division
R&D Department
Sara Burgerhartstraat 25
Amsterdam, The Netherlands
n.poppelierQe1sevier.nl

- - -

WTEX Tree Drawer

Glenn L. Swonk

Abstract

Today; many software systems are analyzed, de-
signed and developed in a top-down hierarchical
manner. This is especially apparent with Object
Oriented Programming and Design. Diagramming
a hierarchical relationship can be cumbersome in
TfjX or UW. This paper describes a MS-DOS tool
that can be used to simplify the diagramming pro-
cess by taking a simple input format and producing
a picture environment source which can be
input in a I 4 W document.

Introduction

While trying to document a hierarchical directory
structure. I manually placed the directory nodes'
coordinates in a source file from calculations made
from a rough sketch. Not only was this a tedious
operation. it was prone to error and required many
iterations before the exact result was achieved.

What I really wanted was a simple way specify
the hierarchical relationship and an automated way
to generate the output I4W file. Using the UNIX
f ind(1) utility. it was easy to generate a list of files
or directories that were to be plotted in a I4W pic-
ture environment. In the simplest case, f i n d (I) can
be used to generate a list of all files under a speci-
fied directory using the command f i n d <dirname>
- p r i n t .

What resulted from this problem is a MS-DOS
tool which I call the Tree Drawer (LTD). It
takes input from a file in the form of a f ind(1)
output and generates a I4T@ picture output that
can be used as input to a I4W document. This
paper describes the implementation and use of this
tool.

Samples

To best illustrate what LTD can do, a few samples
are in order.

Example 1 illustrates the simplest example -a
single parent node and its two children. From the
input file in figure 1, the resultant picture is shown
in figure 2.

parent
p a r e n t / c h i l d l
pa ren t /ch i ld2

Figure 1: Example 1 Input File

TUGboat, Volume 1 2 (1991), No. 2

child1
Shape

parent Shape/Ellipse

child2 Shape/Ellipse/Circle
Shape/Triangle

Figure 2: Example 1 Output Shape/Triangle/Equilateral

Shape/Triangle/Isosceles

Shapehectangle
The second example illustrates a partial UNIX- Shape/Rectangle/Empty

like directory filesystem. From the input file shown Shape/Rectangle/Gray
in figure 3, the diagram in figure 4 is the final output. Shape/Rect angle/Solid

root

root/bin

root/lib

root/tmp

root /usr

root /usr/bin

root/usr/lib

root/usr/acct

Figure 3: Example 2 Input File

bin

[lib

Figure 5: Example 3 Input File

[Circle]

Figure 6: Example 3 Output

Figure 4: Example 2 Output

The third example illustrates a shape class hi- eter values are assumed to be specified in points

erarchy.
(l/72I1).

From the input file in figure 5, the diagram in ~ , ~ ~ ~ ~ t
figure 6 is the final output. Note the boxing of the
nodes. LTD can box all or either branch or leaf The layout mechanism is based on an algorithm de-

nodes. veloped by Sven Moen from Brown University and
is described in his paper in the July 1990 issue of

Implementation IEEE Software. The layout algorithm uses informa-

The LTD implementation comprises four basic pro- tion from the command line parameters and node

cessing steps. The following provides a short de-
information (such as width, height, and border) to

scription of each. produce a tree layout based on the node and sub-tree
contours. The layout algorithm produces horizontal

Input trees with the following characteristics:

The input phase of the program interprets the com- A parent is drawn to the left of its children.

mand line parameters specified by the user and sets 0 Trees are drawn from left to right to accommo-
the appropriate internal variables. It then reads date varying length strings.

in the nodes from the specified file and stores the Subtrees look the same, regardless of position.
nodes in an internal data structure representing its . Left children are drawn above the parent, right
child/parent/sibling relationship. All input param- children below.

TUGboat, Volume 12 (1991), No. 2

Planting

After the layout process, each node contains relative
positional information that needs to be converted to
absolute positions that can be used to generate the
output code. The planting process performs this on
the nodes to produce absolute positions compatible
with the IPm picture environment (x increasing
left to right, y increasing bottom to top).

Output

Up to now, all processing has been device indepen-
dent (with the exception of assuming a point size
coordinate system). The output process now tra-
verses the internal data structures to produce the
specified output code. The output code also con-
tains additional information such as the command
line parameters, node width and height, and source
input lines that can be used for debugging.

Currently two types of output formats are im-
plemented, I4m and raw data.

The MTEX data can be redirected to a file and
input into a document via the \ i n p u t 0 command.

The raw data format may be useful to users who
wish to write their own output drivers for displaying
the node layout information.

Node Layout Specification

To understand how the parameters from the LTD
command line affect the layout. the picture in figure
7 defines the dimensions used in the layout algo-
rithm. The dimensions are defined by the following:

0 w - Width of the node. This dimension is calcu-

lated from then length of the string times the
nominal font width parameter specified by -w
<n>.

h - Height of the node. This dimension is spec-
ified from the -h <n> command line parameter.

b - Border of the node. This dimension is spec-
ified from the -b <n> parameter. It is used
to provide the spacing around a node from its
parent, siblings and children. By varying this
parameter you can get the layout process to
spread the height of the diagram. Negative val-
ues can be used to provide very tight spacing.

pd - Parent Distance (not shown). This dimen-
sion is specified from the -pd <n> parameter.
It is a global parameter to the layout algorithm
for the layout process. By varying this parame-
ter you can get the layout process to spread the
width of the diagram.

Figure 7: Node Dimensions

Command Line Parameters

The following list describes the command line pa-
rameters that can be used to modify the behavior of
the LTD.

-h <height> - Height of font, used for layout.

-b <border> - Border distance, used for lay-
out.

-w <width> - Width of a single character. used
for layout.

-pd <parent-distance> - Minimum distance
needed between a child and its parent, used for
layout.

- f i x - A flag that can be used to create fixed
sized widths for each level. Typically creates
more visually pleasing diagrams.

-f <filename> - Filename used for input.

-0 <filename> - Filename used for output.

-ba - Switch to form box around all nodes.

-bb - Switch to form box around branch nodes.

-bl - Switch to form box around leaf nodes.

- tex - Generate I4m output format (default).

-xy - Generate XY output format.

-help - Print help text of usage to stderr.

-xo <xof f s e t > - a parameter that is used to
shift the x position of the picture.

-yo <yoff s e t > - a parameter that is used to
shift the y position of the picture.

-xs <xsize> - a parameter that is used t o ad-
just the x size of the output picture.

-ys <xsize> - a parameter that is used to ad-
just the y size of the output picture.

Other parameters are available in the most recent
version of LTD and should be defined in the help
text. The actual parameters used are printed out as
comments for debugging and repeatability.

TUGboat, Volume 12 (1991)' No. 2 289

Using LTD

Invoking LTD

Typically, LTD is invoked from the DOS command
line with a filename and any parameters to modify
its default configuration. In order to use the output,
you need to redirect the output to a filename which
is eventually used for the picture environment.

In most cases. following is the simplest form:

ltd -f test.fi1 >test.ltd

Using LTD's Output

Once you have a file with the plotted data, you must
input the file into a IPw file. I suggest using a
base file that includes the output file similar to the
following form:

%
% base. tex
%

\begin{f igure) [h]

\begin{center)

\fbox{ {\tt \input{test.ltd))

\end{cent er)

\caption{LaTeX Tree Drawer Demo)

\end{figure)

\end{document 1
%% .
%% / / / eof .
%% .

Note that you have full control of the font type
and size that is used for the picture. By varying the
font size with the command line parameters, you can
vary the appearance of the final picture to provide
the most aesthetic diagram.

Note that the fbox command is optional and
is used to create an enclosure for the final output.
This provides the user with an idea of the extent
of the diagram. The box that borders the diagram
can be shiftedlsized by the optional command line
parameters.

Limitations

The LTD has the following limitations:

0 An input file character that is interpreted as
a control sequence to or I4W can cause

problems, specifically the '-' (underscore) char-
acter.

0 Since the font that is being used is completely
under the control of the user, we can only guess
at the width of the parent node. Therefore,

some of the connectors to the parent node may
fall short or exceed the desired point. To solve
this, it may be necessary to specify the -w pa-
rameter and/or use a fixed width font. Some
hand tweaking may also be required to get the
optimal results.

0 The program is written to use defaults for a
12pt character font.

Maximum number of nodes is z 500, but will
vary depending on size of the strings.

The size of the picture is calculated based on
the minimax of the x and y dimensions. The
width of the string is not taken into considera-
tion, therefore some shifting of the picture may
be necessary to center the picture.

Availability

Version 1.0 of LTD is in the public domain. I hope
to submit the DOS executable to an archive server
in uuencoded format for general availability.

Any ideas or general comments should be di-
rected to the author at uunet ! toshais ! swonk.

References

[I] Moen, Sven. "Drawing Dynamic Trees". IEEE
Software (July 1990).

[2] Lamport, Leslie. M W : A Document Prepara-
tion System. Reading, Mass.: Addison-Wesley,
1986.

o Glenn L. Swonk
25302 Fairgreen
Mission Viejo, CA 92692

uune t ! tosha is !swonk

The input file must define the parent nodes be-
fore the child nodes can be defined. If this is
not the case, some nodes may not be displayed
properly.

The ' / ' character is assumed to be the separator
character.

TUGboat, Volume 12 (1991), No. 2

"See also" indexing with makeindex

Harold Thimbleby

Makeindex (a program by Pehong Chen[l]) allows
an author to construct an index by writing \index{)
entries in his I4w document. Thus, writing
\index(LISP} in the source file gets (by juggling
through makeindex) an index entry of the form,
"LISP, 23" -that is, if the index entry for LISP
happens to land on page 23 when the document is
typeset.

In many indices, it is useful to have index en-
tries that redirect the reader to an alternative or
more appropriate heading. Makeindex provides a
simple facility for this. For example, by writing.
\index(artificial intelligenceIseeIAI)),

makeindex inserts \seeCAI) just in front of the page
number.

If \see is defined to gobble up its second argu-
ment, then the index ends up with just the "see":
for example,

\index(artificial intelligenceIsee(AI3)

results in an index entry:
"artificial intelligence, see AI".

Now if an index entry has both page numbers
and a "see" entry, two things go wrong. First.
it is more appropriate to say "see also". and sec-
ondly makeindex puts the "see" entry in the wrong
place - that is. so far as it is concerned, in the 'right'
place corresponding to the gobbled-up page number.
which we're not interested in.

The following macros provide the appropriate
facility, and also indent the "see also" neatly as if
was a subitem. (By using !zzzzz, the subitem is
guaranteed to come at the end of the index entry -
unless you have some obscure entries that come al-
phabetically after zzzzz!)

\def\subsee#l#2({\em see also\/) #I)

% the #2 consumes a comma

\def\nosee#lC)

% consume the page number

\def\seealso#l#2(%

\index~#l!zzzzzQ\subseeC#2)lnosee~

Given these definitions, and supposing index entries
for "Scheme" occur on pages 147 and 401, this is how
\seealso(Scheme){LISP) would end up in the in-
dex:

Scheme, 147, 401
see also LISP

As with the normal makeindex s e e 0 construc-
tion. it does not matter where in your document

the index entry. So you can place it anywhere con-
venient.

Reference

[I] Pehong Chen and Michael Harrison, "Automat-
ing Index Preparation", Tech. Report No. 871347,
Computer Science Division, University of California,
Berkeley, March 1987.

o Harold Thimbleby
Stirling University
Stirling
Scotland, FK9 4LA

\seealso is used: it will get placed at the end of

TUGboat. Volume 12 (1991), No. 2 29 1

Babel, a multilingual style-option system for use with U w ' s standard
document styles*

Johannes Braams

Abstract

The standard distribution of I 4 W contains a number of document styles that are
meant to be used, but also serve as examples for other users to create their own
document styles. These styles have become very popular among IPW users. But
it should be kept in mind that they were designed for American tastes and contain
a number of hard-wired texts. This article describes a set of document-style options
that can be used in combination with the standard styles, which makes the latter
adaptable to other languages.

1 Introduction

Although Leslie Lamport has stated [5] that one should not try and write one

document-style option to be used with all the standard document styles of I P W ,
that is exactly what I have done with this system of style options. The reasons for
this approach will be explained in section 2.

A lot of the ideas incorporated in this set of files come from the work of Hubert
Partl [4], german. tex. Some parts in the implementation are different, others are the
same. It will be shown that german.tex can be modified to fit into this scheme of
style options.

2 Why Babel?

When I first started using I4QX I was very happy with just the style files that are
distributed with the standard distributions of and I P W . That means. as long
as I made texts in English I was happy. Then as other users found out about IPT@
and its advantages, they started using it for texts in languages other than English. As
I was the most experienced I P W user at the time, they came to me and asked me
'When I'm writing a report in Dutch I don't want chapters to be named "Chapter",
I want them to be named "Hoofdstuk", how do you change that?' At that time I didn't
know, but I soon found out. The first thing I found was that Leslie Lamport states [2,
pages 85-86] that you have to redefine the command \Qchapapp to get the desired
result. This looked rather promising to me, so I had a look at the style files to find out
how other such strings as "Figure" might be redefined. It was then that I found out
that \Qchapapp is the only string defined this way, whereas all others are hard-wired
into the style.

My first solution to this problem was to create a new document style file called
a r t i k e l . s t y as a "Dutch" counterpart to a r t i c l e . s ty . The same was done for
r epo r t . s t y . This is exactly what Leslie Lamport suggests 151. This approach has one
major drawback however: you get two copies of basically the same file to maintain.
This was discovered when newer releases of the styles reached our site. The stan-

dard styles had to be replaced and edited all over again to get the "Dutch" versions
back. About the same time, in early 1988, a discussion on this subject appeared in
W h a x . One of the persons commenting was Hubert Partl. The method he sug-
gested was to modify the standard document styles by replacing the hard-wired texts
by macros such as \Qchapapp. This led me to my second attempt at a solution. I mod-
ified the standard styles (all four of them) as suggested, but while doing that added
an option. implemented like the option d r a f t , by defining a command \dsQdutch.

* During the development ideas from Nico Poppelier and Piet van Oostrum have
been used.

TUGboat, Volume 12 (1991), No. 2

This command would set a variable to indicate which language was requested. This
variable I used later on in a \case statement. In this \case statement a choice is
made between English, Dutch and possibly other languages for texts such as "Figure"
and "Contents". Unfortunately, some of this implied changing the secondary style
files xxxlO.sty, xxxl l . s t y and xxxl2.s ty. This was unfortunate because one of the
research groups in our laboratories complained their document style didn't work prop-
erly. It turned out that their style was a modified a r t i c l e . s t y that had been given a
different name, but it still loaded a r t 10 . s t y etc. I found a temporary solution, but I
still wasn't exactly happy with the situation. Besides this, the drawback of replacing
the document styles with newer versions still existed.

When after a while a new version of the I4m distribution arrived at our site, I began
to think about a different way to solve the problem. In the meantime Hubert Part1 had
his german. s t y published in TUGboat [4]. His article pointed the way to a different
solution. Triggered by the discussion in W h a x in early 1989 about how to detect
which is the main (primary) style when processing a document, I started work on
what is now available as du tch . s ty version 1.0, dated May 1989'. While working on
this style option I discovered that some parts could be borrowed from german. s t y .
This 'discovery' and some discussions I had with others at E u r o m 8 9 , the fourth
European Conference, held in September 1989 in Karlsruhe, led me towards a
more universal approach. The basic idea behind it was, starting from the algorithm
to detect the main style, to design an approach with one common file that contained
macro definitions needed by a number of language-specific style options. Users specify
the name of any of these language-specific options as an option to the \documentstyle
command. and internally the common file is read.

3 @= and document-style files

Before I discuss some of the code in the babel system I would like to discuss the
document-style mechanism used by I P W . Every I P W document should start with
a line like:

\documentstyle Coptl, opt2, . . . I Cdocstyle)

This line of code instructs I4m to first load the file docs ty le . s t y . When that is
done the 'options' are processed in the order speczfied, by reading the files o p t l .sty2,
opt2.s tyl etc. This implies that definitions made in the file docs ty l e . s t y can be
overridden in one of the option files. It is even possible to redefine code from the very
kernel of U r n , but you have to know what you are doing.

Some care has to be taken in writing document-style options, because a number of
problems can occur. First of all, a document-style option should be modest in size; if
it tries to redefine most of the code in docs ty l e . s t y I think you should write (and
maintain) your own, complete, document style. Next, as it was possible to override
definitions from the main file in an option file, it is of course also possible to override
definitions made in another option file. When this happens, your document might
depend on the order in which you have specified your document-style options.

This mechanism of overriding definitions from the main document style is exploited
in the babel system. The macros that contain the hard-wired texts are redefined in
the common part of babel, replacing each of these texts with a unique macro. These
macros have to be defined in the language-specific files.

4 Islw and multilingual documents

In a european environment it sometimes happens that one wants to write a document
that contains more than one language. I have an example of a document, published

' This file is available from 1is tservQhearn. b i t n e t as file dutch.old.
Except when the documentstyle defines the control sequence \dsQ(optl); in that

case this control sequence will be executed.

TUGboat, Volume 12 (1991), No. 2 293

by the EEC, that contains 9 (nine) different languages. Also in linguistics one can find
documents written in more than one language, i.e. to compare two languages.

If you have to write such a multilingual document you should try to conform to the
typographical conventions in use for each language. A well known example is the
type of quotation marks used. Tj$ supplies the user with "quoted text", but a Dutch
user might want to have ,,quoted text", whereas a German text should contain ,,quoted
text" and a Frenchman would perhaps like to see something like <quoted text>. These
language-specific conventions should be implemented in a document-style option file
for each language. These files should then be useable with all document styles.

- -

In such a multilingual document a user would specify the languages used as options
to the \documents ty le command. He would also want a mechanism to be able to
switch between these languages in a simple way. When he would use version 3.0
for processing his document, he would also want the hyphenation to come out right
for the different languages.

5 Overview of the babel solution

5.1 The core of the system

The problems described in sections 3 and 4 can be solved using the babel system of
document-style options.

The core of this system currently performs three functions.

1. It defines a user interface for switching between languages;
2. It contains code to dynamically load several sets of hyphenation patterns;
3. It 'repairs' the document styles provided in the standard distribution of IPW.

Obviously part 2 can only be used while running i n i w to create a new format,
whereas part 3 should not be read by i n i w . Part 3 should even disappear when
IPm version 3.0 arrives, as the style files supplied with the new I4m will no longer
be language specific. Part 1 can either be loaded into the format with multiple hy-
phenation patterns, or it can be read while processing a document.

For this reason the core of the babel system is stored in two separate files, babelswitch,
containing parts 1 and 2, and b a b e l . s t y which contains part 3. The file b a b e l . s t y
will instruct IPW to load b a b e l . s w i t c h if necessary; the file b a b e l . s w i t c h checks
the format to see if hyphenation patterns can be loaded.

5.2 Language specifics

The language switching mechanism contains a couple of hooks for the developers of
language-specific document-style options.

First of all the macro \or ig inalTeX should be defined. Its function is to disable
special definitions made for a language to bring TQX into a 'defined' state. A language-
specific document-style option might, for example, introduce an extra active character.
It would then also modify the definitions of \ d o s p e c i a l s and \ Q s a n i t i z e . Such an
option would then define a macro to restore the original definitions of these macros
and restore the extra active character to its normal category code. It would then \ l e t
\or ig inalTeX to this 'restoration' macro.

To enable the language-specific definitions three macros are provided in the switching
mechanism, \ c a p t i o n s (language), \date(language) and \ e x t r a s (language).

The macro \captions(language) should provide definitions for the macros that re-
placed the hard-wired texts in the document style and the macro \date(language)
should provide a definition for \ today. The real fun starts with the macro
\ e x t r a s (language). This macro should activate all definitions needed for (language).

6 The user interface

The user interface to the babel system is quite simple. He should specify the languages
he wants to use in his document in the list of document-style options. For instance,

TUGboat, Volume 12 (1991), No. 2

for a document in which both the English and the Dutch language are used. the first
line could read:

Please note that in this case the Dutch-specific definitions are inactive when IPw
has finished processing document-style option files.

If the user then wants to switch from English to Dutch he would include the command

before starting to write Dutch.

If a user wants to write a document-style option of his own he might like to define a
macro that checks which language is in use at the time the macro is executed. For
this purpose the macro \if language(language)(then-clause)(else-case) is available.

7 Implementation of the core of the system

In this section I would like to discuss some parts of the implementation of the babel
system. Not all code will be shown, because some parts of it are just series of slightly
modified code from the standard document styles. The files are fully documented and
interested readers can print them if they have access to the doc option, described by
Frank Mittelbach.

The description of the macros that follows is based on an environment using Tj$ 3.x,
together with a version of 1plain.tex based on plain. tex version 3.x. The actual
implementation allows for other situations as well, i.e. a version of babel. s t y for
Tl$ 2.x will be available.

7.1 Switching languages

For each language to be used in a document a control sequence of the form
\lQ(language) has to be defined. This will be done either while loading hyphen-
ation patterns or while loading the language-specific file. The implementation of
\selectlanguagei(language)) and
\if l a n g u a g e C (l a n g u a g e)) { (t h e n - c l a u s e) (e s e - c a s e) is based on the existence of
\l@(language).

Figure 1: The definition of \selectlanguage.

To switch from one language to another the macro \selectlanguage is available.
Its definition can be seen in figure 1. The first action it takes is to check whether
the (language) is known, if it is not an error is signalled. If the language is known
\originalTeX is called upon to reset any previously set language-specific definitions.
Next the register \language is updated and the three macros that should activate all
language-specific definitions are executed. Finally the macro \originalTeX receives
a new replacement text in order to be able to deactivate the definitions just activated.

TUGboat. Volume 1 2 (19911, NO. 2

Figure 2: The definition of \iflanguage

The macro \if language (see figure 2) will issue a warning when its argument is an 'un-
kown' language. It then goes on to compare the value of \language and \lQ(language}
and executes either its second or third argument.

7.2 Dynamically loading patterns

With the advent of TEX 3.0 it has become possible to build a format with more
than one hyphenation pattern preloaded. The core of the babel system provides
code, to be executed by i n i m only, to dynamically load hyphenation patterns. The
only restriction is that the implementation of TEX that you use has to have rather
high settings of trie-size and trie-op-size to actually load several hyphenation
patterns.

For the purpose of dynamically loading hyphenation patterns a 'configuration file' has
to be introduced. This file will be read by i n i m . Each line should contain either a
comment, nothing or the name of a language and the name of the file that contains
the hyphenation patterns for that language. In figure 3 an example of such a file,
instructing i n i m to load patterns for three languages, English, Dutch and German.

% File : language .dat

% Purpose : tell iniTeX what files with patterns to load

english english.hyphenations

dutch hyphen.dutch % Nederlands
german hyphen.ger

Figure 3: An example configuration file

The configuration file will be read line by line using W ' s \read primitive. Be-
cause the name of a file might be followed by a space-token and comment (as in
the example) a macro to process each line is needed. The definition of this macro,
\processQlanguage, can be found in figure 4. As can be seen in the definition of
this macro, its second argument always has to be followed by a space-token. The
effect of this is that any trailing spaces are removed. The macro strips all spaces fol-

Figure 4: The definition of \processQlanguage.

lowing its arguments. Its first argument is used to define \lQ(language). The macro
\addlanguage is basically a non-outer version of the plain Q j X macro \newlanguage.
The second argument of \processQlanguage is the name of the file containing the

TUGboat, Volume 12 (1991), No. 2

hyphenation patterns. Before the file can be read, the register \language has to
updated.

The configuration file is read in a \loop (see figure 5). When a record is read from
the input file a check is done whether the record was empty. If it was not, a space
token is added to the end of the string of tokens read. The reason for this is that we
have to be sure there always is at least one space token present. When that has been
taken care of the data just read can be processed. The last thing to do is to check the
status of the input file, in order to decide whether has to continue processing the
\loop. When all patterns have been processed the value of \language is restored.

Figure 5: Reading the configuration file line by line

7.3 'Repairing' UTEX'S standard document styles

A large part of the core of the babel system is dedicated to 'repair' the standard
document styles. This means redefining the macros in table 1.

macro

\fnumQfigure
\f numQt able
\ tableof contents
\ l i s t o f f i g u r e s
\ l i s t o f t a b l e s
\thebibliography
\theindex
\abs t rac t

\par t
\chapter
\appendix

\cc
\ e n d
\ps@headings

article report book letter
X X X X

X X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X

X X

X

X

X

Table 1: macros that need to be redefined for the four standard document styles.

As an example of the way the macros have to be redefined, the redefinition of
\ tableof contents is shown in figure 6.

The standard styles can be distinguished by checking the existence of the macros
\chapter (not in a r t i c l e and l e t t e r) and \opening (only in l e t t e r) . The result
of these checks is stored in the macro \docOstyle. When \doc@style already exists
(which is the case when for instance a r t i k e l l . s t y is used [7]) it is not superseded
(see figure 7).

TUGboat, Volume 12 (1991), No. 2

\@ifundefinedCcontentsname)

(\def \tableof contents

C\section*C\contentsname

\~bothC\uppercase\expandafterC\contentsname~~

(\uppercase\expandafter(\contentsname))

Figure 6: An example of redefining a command

Figure 7: Determining the main document style

8 Implementing a language-specific document-style option file

To illustrate the way a language-specific file can be implemented, the file dutch. sty is
discussed here. Note that not all of the code contained in the file dutch. sty is shown
here; only those parts of interest for the scope of this article are included. If the reader
would like to see the complete code, he can print all files in the babel system, using
the file doc. sty, described by Frank Mittelbach in [6].

8.1 Compatibility with plain TEX

The file german. t ex [4] was written in such a way that it can be used by both plain
w users and I 4 w users. This seemed a good idea, so all files in the babel system
can be processed by both plain TEX and I4m. But some of the "useful hacks" from
TPTEX are used, so for a plain TEX user they have to be defined. For this purpose the
format is checked at the start of a language-specific file. If the format is plain an
extra file, called latexhax. tex, is read.

Figure 8: Conditional loading of latexhax. sty

This file should be read only once, so another check is done on the existence of one of
the commands defined there.

A new group is started to keep the definition of the macro \format, which is used in
the following if statement! local. When the current format turns out to be plain w

TUGboat, Volume 12 (1991), No. 2

the file latexhax. sty has to be read. But the definitions in that file should remain
valid after the group is closed. This could be accomplished by making all definitions
global, but another solution is to tell to process the file latexhax. sty after the
current group has been closed. The command \aftergroup puts the next token on a
list to be processed after the group.

8.2 Switching to the Dutch language

In section 7.1 the names of macros needed to switch to a language have been described.
In figure 9 these macros and their definition are shown for the Dutch language.

\gdef\extrasdutchC%

\global\let\dospecials\dutch@dospecials

\global\let\@sanitize\dutch@sanitize

\cat code' \"\active

\gdef"I\protect\dutch@active@dq3

\gdef \"C\protect\@umlaut)

)\endgroup

Figure 9: The macros needed to switch to the Dutch language

The definitions of \captionsdutch and \datedutch are pretty straightforward and
need not be discussed. The macro \extrasdutch will be discussed in some more
detail.

First, because for Dutch (as well as for German) the " character is made active,
the IPw macros \dospecials and \@sanitize have to be redefined to include this
character as well. The new definitions are implemented as two special commands,
so we globally \let the originals to their new versions. Then the " character is
made active and is defined. Then, to prevent an error when \ " appears in a moving
argument, the macro \" is redefined and made robust. All this is done inside a group
to keep the category code change for the " character local.

The macro \extrasdutch has a counterpart, \noextrasdutch, that cancels the extra
definitions made by \extrasdutch. It changes the \catcode of the " character back to
'other' and globally \lets the macros \dospecials and \@sanitize to their original
definitions. The original definition of \" is restored as well.

TUGboat, Volume 12 (1991), No. 2 299

In figure 10 the code needed to redefine \dospecials and \@makeother is shown.

\begingroup

\def\doC\noexpand\do\noexpand)%

\xdef\dutch@dospeciaIs(\dospecials\do\"~%

\expandafter\ifx\csname Qsanitize\endcsname\relax

% do nothing if \@sanitize is undefined . . .
\else

\def \@rnakeother~\noexpand\~makeother\noexpand~%

\xdef\dutchQsanitize{\Qsanitize\@makeother\"~%

\f i

\endgroup

Figure 10: Code needed for the redefinition of \dospecials and \@makeother.

8.3 An extra active character

All the code discussed so far is necessary because we need an extra active character.
This character is then used as indicated in table 2. One of the reasons for this is that
in the Dutch language a word with an umlaut can be hyphenated just before the letter
with the umlaut, but the umlaut has to disappear if the word is broken between the
previous letter and the accented letter.

"a \"a which hyphenates as -a: also implemented for
the other letters.

" I disable ligature a t this position.
11 - an explicit hyphen sign. allowing hyphenation in the

rest of the word.
" ' lowered double left quotes (see example below).
" ' normal double right quotes.

\- like the old \-: but allowing hyphenation in the rest
of the word.

Table 2: The extra definitions made by dutch. sty

In [3] the quoting conventions for the Dutch language are discussed. The preferred
convention is the single-quote Anglo-American convention, i.e. 'This is a quote'. An al-
ternative is the slightly old-fashioned Dutch method with initial double quotes lowered
to the baseline, ,,This is a quote", which should be typed as 'This is a quote" '.

8.3.1 Supporting macro definitions

The definition of the active " character needs a couple of support macros. The

macro \allowhyphens is used make hyphenation of word possible where it oth-
erwise would be inhibited by TjjX Basically its definition is nothing more than
\nobreak \hskip Opt plus Opt.

\gdef\allowhyphensC\penalty\@M \hskip\z@skip)

Then a macro is defined to lower the Dutch left double quote to the same level as the
comma. It prepares a low double opening quote in box register 0. This macro was
copied from german. t ex.

\gdef\set@low@box#1~%

TUGboat, Volume 12 (1991), No. 2

The macro \set@lowQbox is used to define low opening quotes. Since it may be used
in arguments to other macros it needs to be protected.

For reasons of symmetry we also define " ' . This command is defined similar to \dlqq:
except that the quotes aren't lowered to the baseline.

\gdef \@drqqC(%
\if hmode

\edef \QSFi\spacef actor\the\spacef actor}

\else

\let\@SF\empty

\f i

"\@SF\relax))

The original double quote character is saved in the macro \dq to keep it available.

\begingroup \catcode'\"l2

\gdef\dqCH)
\ endgroup

The original definition of \ " is stored as \dieresis. The resason for this is that if
a font with a different encoding scheme is used the definition of \" might not be the
plain TEX one.

In the Dutch language vowels with a dieresis or umlaut accent are treated specially.
If a hyphenation occurs before a vowel-plus-umlaut, the umlaut should disappear. To
be able to do this, the hyphenation break behaviour for the five vowels, both lowercase
and uppercase, could be defined first in terms of \discretionary. But this results in
a large \if -construct in the definition of the active ".
As both Knuth and Lamport have pointed out, a user should not use " when he
really means something like ' ' . For this reason no distinction is made between vowels
and consonants. Therefore one macro, \@umlaut, specifies the hyphenation break
behaviour for all letters.

The last support macro to be defined is \dutchQactiveQdq.

TUGboat, Volume 12 (1991), No. 2

The macro reads the next token and performs some appropriate action. If no special
action is defined, it will produce an umlaut accent on top of argument I .

The last definition needed is a replacement for \-. The new version of \- should
indicate an extra hyphenation position, while allowing other hyphenation positions to
be generated automatically. The standard behaviour of QX in this respect is very
unfortunate for languages such as Dutch and German, where long compound words are
quite normal and all one needs is a means to indicate an extra hyphenation position
on top of the ones that W can generate from the hyphenation patterns.

8.4 Activating the definitions

The last action that should be performed by a language-specific file, is activating its
definitions. Before doing that the macro \originalTeX should be definined.

Also, the macro \lQ(language) should be defined. If it hasn't already been defined,
this means that no hyphenation patterns were loaded for this language.

\Oif undef inedCl@dut ch)C\addlanguageCdutchll{l
\selectlanguage{dut ch)

9 Conclusion

In this article a system of document-style option files has been presented that supports
the multilingual use of IPQX. Some of the code involved has been discussed. The
actual files will be made available through the international networks. They will be
stored in the fileserver in the Netherlands (address: LISTSERVQHEARN.BITNET), the
file babel readme will explain what you need to get to be able to use the system. The
system was developed using the doc option, so the files available are fully documented.

References

[l] Donald E. Knuth, The QjXbook, Addison-Wesley, 1986.

[2] Leslie Lamport. @ w , A document preparatzon System, Addison-Wesley, 1986.

[3] K.F. Treebus. Tekstwzjzer, een gzds uoor het grafisch verwerken van tekst. SDU
Uitgeverij ('s-Gravenhage, 1988). A Dutch book on layout design and typography.

[4] Hubert Partl, German w. TUGboat, 9 (1988) no. 1, pp. 70-72.

[5] Leslie Lamport, in: QXhax Digest, Volume 89, #13, 17 February 1989.

[6] Rank Mittelbach, The doc-optzon, TUGboat 10 (1989) no. 2, pp. 245-273.

[7] Johannes Braams, Victor Eijkhout and Nico Poppelier, The development of na-
tzonal styles, TUGboat 10 (1989) no. 3, pp. 401-406.

[8] Joachim Schrod, Internatzonal UQjX zs ready to use, TUGboat 11 (1990) no. 1,
pp. 87-90.

o Johannes Braams
PTT Research Neher Laboratories
P.O. Box 421
2260 AK Leidschendam
JL-BraamsQpttrn1,nl

TUGboat, Volume 12 (1991), No. 2

Queries

Public Domain SGML Tools Wanted

I'm interested in determining what TJ$-to-SGML
(and vice-versa) translators are available in the pub-
lic domain, or any other public domain tools that
could serve as a starting point for such translators
(i.e., w- to- t rof f?) . I'm familiar with some of the
commercial packages (i.e., ArborText's Publisher)
providing document import/export capability, but
am specifically seeking public domain materials.

Jeff Lankford
Northrop Research and

Technology Center
Palos Verdes, CA 90274
j lankf ordD

nrtc.nrtc.northrop.com

Edttor's note: A public domain parser has been
developed under the auspices of the Xational In-
stitute of Standards and Technology (NIST). but
at this time it is incomplete; it also does not
understand QX. No other prospects had turned
up by press time. However. a group known as
the "Text Encoding Initiative" is composed largely
of humanities scholars who are interested in such
tools. and any information on the subject is likely
to be made public on their discussion list. TEI-
LQUICVM.Bitnet.

Reporting W ' s Hyphenations

Is there a macro (or a version of w) which can
create a file containing a complete list of hyphenated
words in a document? For work with rather long
texts it would be desirable and it also should help
in improvements of national hyphenation tables.

Jifi Vesel3;
Sokolovsk& 83
CS-186 00 Prague 8
Czechoslovakia
Bitnet: UMMJVQCSEARN

Editor's note: To our knowledge. there isn't any
version of that will produce such a list au-
tomatically. and though it's undoubtedly possible

to create a macro to do this, none is known at
present. However, we discovered quite by accident
a technique that may be of help: setting \hsize
to some ridiculously small value will have the effect
of reporting the entire text to consist of overfull
boxes. Since the hyphenations are shown in such
reports, the information sought will included. Un-
fortunately, some words will be broken at these
hyphenation points. and would have to be recon-
structed. Another technique that might be worth
tinkering with is to save up each paragraph as a to-
ken string and send it through \showhyphensI . . .);
we didn't have time to try it out, though.

A technique for printing out a word with hy-
phens assigned by TEX is given by the kacro
\printhyphens in the file for the TUGboat hy-
phenation list report; this file, TBOHYF . TeX, can
be found at labrea. Stanford . edu in the directory
/tex/tugboat and also at other TEX archives.

Letters

Response to Victor Eijkhout

I thank Victor Eijkhout for his knowledgeable and
generally favorable review of the book ?&X for
the Impatient that I wrote with Karl Berry and
Kathryn Hargreaves (TUGboat 11(4), Nov 1990,
p. 572). I particularly appreciate his comments
about the book being written very clearly and
the information in it being readily accessible, since
those were primary goals for us when we wrote it.
I'm also pleased that he feels that the book would
make it easier for new users to learn TEX. I do want
to respond, however, to a few of his comments.

He mentions being perturbed by small errors
in the book and cites two of them:

1. " T h e del imiters around \ . .withdelims com-
m a n d s don't grow as the authors claim." In
fact, we made no such claim; our description
on page 201 simply states that a construct
is surrounded by delimiters. It says nothing
about how big they are.

2. " T h e remarks about the depth (height) of a
\vbox (\vtop) o n pages 52 and 161/2 are a t
odds." True, but the discrepancy is pretty
minor; the difference shows up only in the case

TUGboat, Volume 12 (1991), No. 2 303

where the first or last item in the vertical list is
a whatsit. Tm would probably be better off,
in fact, if a \write at the start of the vertical
list of a \vtop had no effect on the height of
the \vtop.

rn for the Impatient has a great many refer-
ences to particular pages of The m b o o k . Eijkhout
concludes from this that !l$J for the Impatient is
not aimed at aspiring hackers. I'd agree that the
book is not sufficient by itself for rn hackers-we
didn't intend it to be. We expect that hackers will
use it in conjunction with The W b o o k , and we
say as much in our preface.

Used this way, rn for the Impatient largely
compensates for The m b o o k ' s well-recognized
shortcomings. The W b o o k is indispensable as
the definitive source of information on W, but
a big problem with The m b o o k is that it's very
hard to retrieve information from it. Essential
topics appear in odd places, e.g., the description of
registers in the middle of the chapter on How T)JX
Makes Lines into Pages. The index has so many
references under each entry that it's hard to locate
the definitive one, and the one that's marked as
definitive often gives just the syntax of a command,
not its semantics. Part of our reason for often
referring to The m b o o k was to make for the
Impatient useful as a guide to The W b o o k as well
as a guide to TpX.

In my own work I use both books. I refer to
rn for the Impatient for quick answers to most
questions and to The m b o o k for things such as the
details of particular algorithms and the definitions
of the plain T@i macros. Even though I was the
principal author of TJjX for the Impatient, I don't
claim to remember everything that's in it!

Paul Abrahams
214 River Road
Deerfield, MA 01342
abrahms%wayne-mtsQ

um.cc.umich.edu

Response to Paul Abrahams

Paul Abrahams mentions two instances where my
review cited errors in T&Y for the Impatient; his
explanations do not remove the problems.

Regarding whether or not delimiters grow, he
is correct that no such claim is made on page 201;
instead, it appears on page 58 with the defini-
tion of "delimiter" : "However, 'I)$ performs the
adjustment only if the delmiter appears in a 'de-
limiter context' . . . (see pp. 201, 204)." Maybe
"Even though I was the principal author of m
for the Impatient, I don't claim to remember ev-
erything that's in it!" can be used as attenuating
circumstance.

As to differences between the depth (height) of
a \vbox (\vtop), the discrepancy ("the difference
shows up only in the case where the first or last
item in the vertical list is a whatsit") is minor but
important. I might not have known this fact if
some rather befuddled user hadn't asked me what
on earth was going on when he wrote

\def \caption#lC\hboxi\hboxi . . .)\vtopi#l33
and subsequently used this as

\captioni\labeli. . .3 . . .3
and found the text dropping a line because of the
\label command. So it does occur in practice.

Victor Eijkhout
eijkhout@csrd.uiuc.edu

in Schools: Why Not?

In the March issue of TUGboat, Konrad Neuwirth
claims that there is no place for 'I)$ in schools. He
claims, "No, there is no place where 7&X fits into
schools. It is too big, too powerful."

My experience is that nothing is too powerful
for schools. In fact, one of the biggest problems
with schools in America (and, it seems, world-
wide) is that people underestimate the intellectual
capabilities of young people.

We have been using at Woburn High
School in Woburn, Massachusetts, for about five
years, and its popularity is growing with both
faculty and students. Before describing what we
do with let me first say that we don't write
programs in it. I don't ask my students to write a
rn program to filter primes from a list. Neither
do I ask them to write a Logo program to format a
paper. Different tools have different uses.

Here's how has been used by the faculty:

TUGboat, Volume 1 2 (1991), No. 2

Two of us put together a series of over 100
problem sets in linear algebra. We took years
of handwritten and poorly typed worksheets,
and, at a rate of one per day, formatted them
in w. These sets were bound and passed
out to students as workbooks, and the reaction
from students has been quite positive. Not
having to decipher our handwriting is one less
hurdle for them.
We conducted a Q X based course for the fac-
ulty. The goal of the course was simple: Each
week, teachers brought an exam or problem
set to format, and we developed the w con-
structions as they were needed (we used the
AMS-T@ macros). The teachers produced
some very nice materials.

Students have also been using w:
I teach a directed study course in mathematics.
One of the goals of the course is for students to
write up their work and put together a journal
that contains their papers. Last year we used
TEX for the first time, and the students were
quite proud of the appearance of the journal.
This year's students have already begun writing
up their work.
This year we initiated a technical word pro-
cessing course. Students studied a variety
of systems, including a WYSIWYG system for
mathematical typing, and they studied m.
Next year the course plans to spend even more
time on m.
Is 7&X too hard for students? Of course not.

Using the A M S - ~ macros, students quickly get
used to the rhythm of composing formulas. Here's
what one of my students, Jason Gerry, has to say:

During the past school year I have been
working with T@. I have found rn to be a
very interesting and exciting program. I feel
that learning the basics of w does not take
that much time and I see no reason for w
not to be used in a school environment. TEX
may not be appropriate for all areas of school
or for all students. Just as you do not teach
assembly language programming to a beginning
programmer, you would not teach 7&X to a
beginning math student or a beginning word
processor.

In our school, we have taken TEX in two
routes. The first is offered to the advanced
mathematics students involved in the indepen-
dent study course here at Woburn High School.
Here, we use 7&X in the generation of reports

and papers that need the high quality appear-
ance of w. The students in this course are
very adept at learning new things and QjX is a
program that is understood by these students
very quickly. Another route we are taking is
through the Business Education Department
at Woburn High School. Here students learn
rn along with Word Perfect and Techwriter.
By doing this they get to see the high quality
output of TEX compared to other systems and
can appreciate the work they put in a TEX
document better. Last semester in this course
we concentrated on imitating pages from en-
gineering textbooks using w. We got used
to using some of the easier to moderate w
codes and using special formats, including
the A M S - ~ macro package and I P w . This
course was set up so that you could go at
your own pace which made many students very
proficient at w .

w does take more time than an ordinary
word processor, and that is a problem with our
43 minute period system here at Woburn High,
but the creation of many batch files and easy to
follow menus set up by our teachers have taken
some of the time out of w i n g a document.

I feel that TJ$ does have a place in school,
if and only if you take it for what it is, a tool
for creating high quality documents.

Don't forget, young people take to programming
languages much faster than adults. I even have
an untested conjecture that the kind of mental
visualization required to envision a typeset page
from TEX code helps students with mathematical
abstractions.

Many of us who teach and study in schools are
growing tired of the attitude that we should confine
ourselves to toy environments. We are quite capable
of reading real books. of doing real mathematics, of
using real computers, and of formatting our work
with real typesetting systems.

A1 Cuoco
Mathematics Dept.
Woburn High School
Woburn, MA 01801
U.S.A.
alcQmedia-1ab.media.mit.edu

TUGboat, Volume 1 2 (1991), No. 2

Abstracts

Abstracts of Cahiers GUTenberg # 7
(November 1990)

Editorial committee

Title: ~ d i t o r i a l : GUTenberg et 1'Europe de 92
Author: Jacques A N D R ~
A presentation of this issue with a few comments
about Europe.

Title: Logiciels T&$f s u r serveurs
Author: Peter FLYNN
A translation (by Christophe DE MONCUIT) of
a document published on the networks by Peter
FLYNN about the (I 4) w servers in the world (how
to access, how to use, how to retrieve files . . .).

Title: Le gestionnaire B I B L I O W
Author: Dr J.-F.VIBERT
B I B L I O W is a package to manage a bibliographic
file and to produce specific B I B W or I 4 W output
files. This paper gives functional and usage descrip-
tions.

Title: Tra i tement d'index avec iYW
Author: Philippe LOUARN
As I P W handles structured documents. it is easy
to create some features, such as table of contents
or bibliography. But it is more difficult to create
an index. This article attempts to evaluate several
methods of index generation utilizable with I 4 W .
A real example will illustrate our purpose.

Title: Fontes latines europe'ennes et Q$i 3.0

Author: Michael J . FERGUSON
A translation of the Report on the Extended ?'EX
Font Enconding scheme which has been officially ap-
proved by TUG.

Title: "La typographie" << entre guillemets >)
Author: Fernand BAUDIN
This article is a discussion about the different
glyphs used in Europe to bracket quotations. called
"guillemets" .

Title: w 9 0 , Fa'zlte z gCola'zste n a hOllscozle,
Corcazgh
Author: Denis MEGEVAND
A report on the European meeting in Cork.

Title: Bal lades irlandaises
Author: Bernard GAULLE & Olivier NICOLE

During the Cork euro-T@ conference two impor-
tant meetings were planned: a western and eastern
european T@X users groups leaders summit and the
meeting of the TUG board of directors. This paper
gives a report of these two events.

Title: C o m m e n t le faire e n
Author: Responsable de la rubrique :

~ r i c Picheral
This new regular chronicle will give (more or less
dirty) tricks doing specific things in I P W that are
not always known and can help the user. In this
issue we have the opportunity to learn more about
usage of special characters, inserting a listing in a
verbatim environment and also defining a new de-
scription environment.

Title: Les fiches cuisine d ' 0 n c ' PostScript
Fiche N o 4 : T@f et PostScript uont
chez l ' impr imeur

Author: Bruno BORGUI
This column will teach us regularly how to use
PostScript for different tasks. The author proposes
here a technique to produce good PostScript output
for the print shop.

o Editorial committee
Cahiers GUTenberg
C/o IRISA
Campus de Beaulieu
F-35042 Rennes Cedex, FRANCE
<gut@irisa.fr>

Abstracts of Cahiers GUTenberg # 8
(March 1991)

Editorial committee

Title: L 'aven i r de 5!&X e t METRFONT

Author: D.-E. KNUTH
French translation of TUGboat Vol. 11 # 4, p489.

Title: La composition typographique
Author: Alan MARSHALL
Computers have radically altered the organisation
of editorial and typographical production processes.
However, the basic activities involved have remained
largely untouched by technical change. This article
describes the principal typographical task which has

306 TUGboat, Volume 1 2 (1991), No. 2

to be carried out, whether it be with traditional or
new technologies.

Title: La typographie et la loi
Author: Andr6 R. BERTRAND
This article is a re-print of one published in Car-
actires # 297 and gives the status of the laws, es-
pecially in France but also at the european level, re-
garding typography: protection of characters, fonts,
glyphs, etc.

Title: Serveurs de fichiers et de fontes pour 7&X
Author: Raymond TREPOS and Philippe LOUARN
This article presents computer networks, software
available with networking (mail, news and file trans-
fer) and the way to connect to the french net (Fnet).
A special case for II1EX users is shown.

Title: M&trique des fontes Postscript
Author: Jacques ANDRE and Justin BUR
This note is concerned with Postscript font metrics.
Bounding boxes and the Adobe Font Metric file are
presented, as well as how to use them for justifica-
tion, pair and track kerning, etc.

Title: Analyses bibliographiques
Author: Olivier NICOLE and Jacques ANDRE
The major part of this article is a discussion about a
new edition of the "Lexique des rbgles typographiques
en usage d l'imprimerie nationale" which is consid-
ered an indispensable tool for authors. Following
are a few other new books, catalogs, proceedings or
journals which are commented on by the editorial
board.

Title: Comment le faire en
Author: ~ r i c PICHERAL
A few solutions to common LATEX problems are
given in this issue. The first is a solution to sup-
press page numbering in and another one to
obtain indentation on the first line of the first para-
graph of a section or any other subsection. The last
item is devoted to the verse environment which is
often unknown or unused.

Title: Le coin des gourous
Author: Georges WEIL
This regular column proposing macros to do basic
things in p l a i n offers here a few macros for
printing complex matrices.

Title: Les distributions GUTenberg
The association GUTenberg explains how to obtain
its public domain distributions for DOS or Unix sys-
tems.

Title: Journe'e SGML
Here are given details about the one-day course
organized by GUTenberg about SGML in May
(teacher: ~ r i c van Herwijnen).

o Editorial committee
Cahiers GUTenberg
C/o IRISA
Campus de Beaulieu
F-35042 Rennes Cedex, FRANCE
<gutOirisa.fr>

Title: Sommaire ge'ne'ral
The editor presents here a table of contents of all
articles published since number zero of April 1988.
An index of authors is also provided.

TUGboat, Volume 12 (1991), No. 2 307

Calendar

1991

Sam Houston State University,
Huntsville, Texas

Jun 10 - 14 Advanced m / M a c r o Writing

Jun 10 - 14 Intensive I4\w

Jul 8 - 12 Advanced m / M a c r o Writing,
Northeastern University, Dedham
Campus, Dedham, Massachusetts

Jul 11 - 13 AMS-IPW, American Mathematical
Society, Providence, Rhode Island

TUG91 Conference
Dedham, Massachusetts (suburban Boston)

J u ~ 8-11 METAFONT

Jul 11-12 SGML

Jul 13 TEX for Publishers

Jul 14 Publishing Books with DTP Tools

Jul 15- 18 TUG'S Annual Meeting

Jul 19 Introduction to Typography

Jul 19-20 Output Routines

Jul 22 - 25 Intensive I P m

Northeastern University, Dedham Campus,
Dedham, Massachusetts

Jul 22 - 23 Macro Writing

Jul 24 - 26 Postscript

Jul 25 TUGboat Volume 12,
Proceedings issue:
Deadline for receipt of news items,
reports.

Jul 29 - Intensive Beginning/Intermed. W,
Aug 2 Providence College,

Providence, Rhode Island

Florida State University,
Tallahassee, Florida

Aug 5 - 9 IPm Style Files

Aug 12 - 16 Intensive Beginning/Intermed. TEX

Aug 12-16

Aug 10-12

Aug 13

Intensive Beginning/Intermed. w,
California State University,
Northridge, California

Intensive BeginningIIntermed. T@i,
University of Houston, Clear Lake,
Houston, Texas

TUGboat Volume 12,
2nd regular issue:
Deadline for receipt of technical
manuscripts.

University of Illinois, Chicago, Illinois

Aug 12 - 16 Intensive I P W

Aug 19 - 23 Intensive BeginningIIntermed.

Aug 26-30

Sep 10

Sep 23-25

Sep 26

Sep 30-
Oct 3

Advanced m / M a c r o Writing.
University of Maryland,
College Park. Maryland

TUGboat Volume 12,
2nd regular issue:
Deadline for receipt of news items,
reports.

6th European Conference
Paris, France. For information,
contact GUTenberg, 6th European

Conference, B.P. 21. 78354
JOUY EN JOSAS cedex, fiance.
Phone: +33 1 34 65 22 32;
Fax: f 33 1 34 65 20 51;
E-mail: gutairisa. i r i sa . f r .

(See also page 309.)

GUTenberg.91 Congress, Paris,
fiance. "Technical and scientific
edition". For information, same as
6th European TEX Conference.
(See also page 310.)

Computer Publishing Conference.
San Jose Convention Center and
Fairmont Hotel, San Jose, California.
For information, contact Seybold
Publications, (213-457-5850).

Status as of 10 May 1991

TUGboat, Volume 12 (1991), No. 2

Oct 1 - 3 Desktop Publishing in
Astronomy and Space Sciences.
Strasbourg Astronomical
Observatory, Strasbourg, France.
For information, contact Dr. And&
Heck (Bitnet: HeckQFRCCSC21.
or +33-88.35.82.22). (See also
page 311.)

Oct 15 - 16 RIDT 91, The second international
workshop on raster imaging and
digital typography, Boston,
Massachusetts. For information.
contact Robert A. Morris
(ridt91-requestQcs.umb.edu.

or 617-287-6466). (See also
TUGboat 11, no. 4, page 668.)

Nov 19 TUGboat Volume 13,
lSt regular issue:
Deadline for receipt of technical
manuscripts (tentative).

Nov 21 NTG Fall Meeting, "Fun with
m", Technische Universiteit te
Eindhoven, The Netherlands.
For information, contact
Piet Tutelaers (rcptQURC . TUE . NL).

Dec 17 TUGboat Volume 13,
lSt regular issue:
Deadline for receipt of news items,
reports (tentative).

1992

Feb 18

Mar 17

Apr 7

May

Aug 18

Sep 15

-

For additional information on the events listed
above, contact the TUG office (401-751-7760) unless
otherwise noted.

TUGboat Volume 13,
2nd regular issue:
Deadline for receipt of technical
manuscripts (tentative).

TUGboat Volume 13,
2nd regular issue:
Deadline for receipt of news items,
reports (tentative).

10 EP'92
Swiss Federal Institute
of Technology, Lausanne,
Switzerland. For information,
contact ep92Qeldi. epf 1. ch
(see also page 311).

NTG Spring Meeting, "Science
with T@" , CWI, Amsterdam,
The Netherlands. For information,
contact Gerard van Nes
(vannesQECN . NL).

TUGboat Volume 13,
4th regular issue:
Deadline for receipt of technical
manuscripts (tentative).

TUGboat Volume 13,
4th regular issue:
Deadline for receipt of news items;
reports (tentative).

TUGboat, Volume 12 (1991), No. 2

I News & Announcements I
6th European Conference
& GUTenberg'91

Official announcements

The 6th European QX Conference, organized by
GUTenberg, will be held in Paris from September
23rd to 25th. This conference will be followed on
the 26th by the GUTenberg'gl conference. During
the preceding week four 4-day courses are organised.

6th European w Conference

Paris
23rd-25th September 1991

This major conference has support from:

Imprimerie Louis- Jean
w Users Group

Institut Blaise Pascal
~ c o l e Normale Superieure (ULM)

Programme Committee

Bernard GAULLE. Chairman (GUTenberg, France)
Chris ROWLEY (Open Univ., United Kingdom)
Kees van der LAAN (NTG, the Netherlands)
Joachim LAMMARSCH (Heidelberg Univ., Germany)
Roswitha GRAHAM (KTH. Sweden)
Michael FERGUSON (I N R S - T ~ ~ ~ C O ~ . , Canada)
Nicolas BROUARD (INED, France)
Pierre DAGNELIE (Sc. Agro., Belgium)
Maurice LAUGIER (Imprimerie Louis-Jean, France)
Didier COLLIN (Toulouse. France)
Denis MEGEVAN

(Observatoire Genkve, Switzerland)

Organisation Committee GUTenberg

Olivier NICOLE, Chairman (INRA)
Jacques ANDRE (INRIA-IRISA)
Philippe LOUARN (INRIA-IRISA)
Malcolm CLARK, tutorials Organiser (PCL)
And& DESNOYERS (Institut Blaise Pascal)
Jacques BEIGBEDER (~ c o l e Normale Supkrieure)
Michel BLANCHARD (Universit6 d'Orl6ans)
Alain POSTY (INRA)

Preliminary programme

. Russian TpJ (A. SAMARIN)

. QX and Africa (J . KNAPPEN)

. TEX: the limit of multilingualism (M. FANTON)

, Towards an arabicized version of
(M. FANTON & al.)

. m n i q u e s in Siberia (Th. JURRIENS)

. Babel, a multilingual style options system
(J . BRAAMS)

. An internat. version of Makelndex (J. SCHROD)

. A s w : An integrated and customisable multi-
window environment (M. LAVAUD)

. Managing the interface to T&X (S. LARSEN)

. Shell for T@ (B. MALYSHEV)

. ColourQX (Ch. CERIN)
, GWEZ builds tree structures and print them

(B. LEGUY)

. Form letters in with mailing label
(J . DAMRAU)

, Conversion of Microsoft WORD into
(P. BACSICH & al.)

. S c h o l a r w : last enhancements
(Y. HARALAMBOUS)

. Q X dismembered (A. WITTBECKER)

. Maths into BLUes (K. VAN DER LAAN)
, Organising a large collection of style files for

different QX macro packages (A. BINDING)

. Typesetting SGML documents using
(A. DOBROWOLSKI)

Other talks are under consideration at the time we
publish this announcement.

Official languages will be English & French and
the conferences will be simultaneously translated.

Panels such as:
. Teaching (I4)QX to a diverse audience

. (I 4) w in Europe
will be chaired by well-known panelists.

A Question Time will also take place during the
congress.

BoFs will be set up on topics to be decided upon
during the conferences.

Vendors will exhibit their latest products. A com-
mercial session will be organised so they can talk
freely about their products.

A Special Event Dinner

A dinner will be held on Tuesday evening at the
restaurant of the Villette center of Sciences and In-
dustry. The dinner will follow the showing of a
film using hightech sound and light systems on the
ge'ode's 1,000 m2 hemispheric screen. Special effects
take the viewer on an imaginary journey to another
place and time. A coach tour of Paris by night will
conclude the evening.

All those taking part in the congress will be
admitted free. Guests are welcome to join in the
evening's entertainment for a F F 270 charge.

TUGboat, Volume 12 (1991), No. 2

Conference fees

The registration fees for the 6th European confer-
ence are F F 1700. But, please, notice that a reduc-
tion of F F 200 applies for all TUG or European
users groups members. A surcharge of 10% must be
added if registration is made after June 30th.

Tutorials/Courses

Paris
17th-20th September 1991

Each course is 4 days long. Instructors will teach in
english.

Tutorial I - Advanced TEX and TEX Macros
(Philip TAYLOR, RHBNC)

This course is intended to cover the more advanced
features of macro programming, including such
esoteric aspects as \afterassignment, \ f u t u r e l e t ,
\expandafter, \uccode, etc. Some time will be de-
voted to the area of cross-referencing, both via exter-
nal files and via control sequences. and the manipu-
lation of \catcodes will be covered in some detail.

Tutorial II - LATEX Style Files

(Chris ROWLEY, Open University)
Ever wondered how to make I P W do what you
wanted? This course will help you understand how
to modify I4m style files to give quality typeset-
ting, and may even give you the confidence to write
your own. Some experience with and TEX
would be an advantage.

Tutorial 111 - METAFONT
(Doug HENDERSON, Blue Sky Research and

Yannis HARALAMBOUS, Universitb de Lille)
The course will cover the basics of METAFONT, but
should provide participants with enough informa-
tion to generate their favourite CM fonts at any de-
sign size, tinker with the multitude of parameters,
and even start to design their own characters.

Tutorial IV - Beginning and Intermediate LATEX
(Malcolm CLARK, PCL)

Become proficient in I P m in just four days! The
course covers the fascinating world of I P m , con-
centrating on the joys of structured documentation,
whilst trying to maintain a facade of quality typeset-
ting. Suitable for technical and non-technical alike.

istration for the 6th European Conference for
the participants in a tutorial.

GUTenberg'91

Paris
September 26th, 1991

Technical and Scientific Edition

The day will be devoted more specifically to issues
connected with the French language; selected topics
will cover French publishing problems. The follow-
ing topics are among the planned speeches:

- 7&Yv3 ou MlTjjX?
- Les disquettes GUTenberg191 (N. BROUARD)
- L'impression des formules chimiques

(M. LAUGIER)
- Un programme pour modifier les . dvi

(M. LAUGIER & al.)
Other presentations are under consideration

but have not been yet finalised.
Conferences will be simultaneously translated.
A "Question Time" about the networks is

planned on this day.

GUTenberg'91 fees

The registration fees are FF 700 (minus FF 200 in
case of joint registration with the 6th European
conference). Other discounts apply. Call us for reg-
istration and accommodation forms.

Contacts:

GUTenberg
6th European Conference

BP 21
F-78354 Jouy en Josas Cedex

France

Telephone: +(33 1) 34 65 22 32
Fax: +(33 1) 34 65 22 28
E-mail: on@ j ouy . i n r a . f r

Call and ask us for your Registration and
Accommodation forms

Tutorial fees

Registration fees for one course are FF 2500. Please
notice that a discount of FF 500 applies to the reg-

TUGboat, Volume 12 (1991), No. 2

Desktop Publishing in Astronomy
and Space Sciences

Strasbourg Astronomical Observatory
1-3 October 1991

Strasbourg Observatory/Astronomical Data Centre
will be organizing from Oct. 1 to 3, 1991, a meeting
on 'Desktop Publishing in Astronomy and Space
Sciences'.

Desktop publishing is widespread nowadays and
a number of packages are used by astronomers, space
scientists. engineers and technicians for producing
their papers, reports. etc.. as well as their everyday
mail (typically Word, TEX, IPW, . . .). The
motivations behind the choice of a given package
are varied and not always rational ones (such
as availability, financial constraints, mouth-to-ear
recommendations).

There is in any event an experience to be
shared openly for the benefit of everybody and it
would certainly be useful to confront performance.
capabilities. as well as possible complementarities
of the text processing software packages that are
presently most frequently used in astronomy and
space sciences. There is most likely no 'best' system,
but it might be possible to get a digest of the best
parts of the major ones without having to review
computer journals at length.

Not only the point of view of the authors,
writers or scientific editors should matter here, but
also the reasons behind the choices that a few
publishers have already made (typically Springer
W Macros, . . .). On this side, the advantages
are obvious: the manuscripts are delivered directly
by the authors/scientific editors in a standardized
machine-readable way (saving time and money)
and the final appearance of the publications is
substantially enhanced, be it only through its har-
monization.

What happens in other communities of related
fields will also be investigated. Some publishers
represent up to 500 scientific journals. It will be
interesting to listen to their explanations as to how
their choices have been made and for them to hear
what scientists have to say in that respect.

Another aspect of this colloquium is related to
the developments carried out by auxiliary software
companies or individuals. They are producing self-
sustained packages, complementary tools and/or
utilities to be plugged into already well-established
text processing systems. Here again scientists
should express their views, needs and wishes.

The meeting is timely as desktop publishing
reaches such a level of development that it would be
appropriate now for our scientific communities and
for publishers to issue recommendations for stan-
dardization, compatibility and/or complementarity
from the software producers.

Sessions will be organized in such a way that
each of the parties wiIl be able to present their
viewpoints on the advantages of specific packages,
the constraints they have to comply with, the
requirements they have for further developments.
We shall also attempt to set up exhibitions and/or
demonstrations.

The meeting will also aim at issuing recom-
mendations for publishing standards, as well as
for compatibility and/or complementarity from the
software producers. A special session involving the
editors of the major scientific journals is being set
up by James Lequeux (aandaOf rmeu5 1. bi tnet) .

Proceedings will be published and distributed
free of charge to the persons who actually attend
the meeting.

If you are interested in attending this collo-
quium, please request a registration form in order
to receive additional information (list of hotels, pre-
liminary programme, and so on). As the audience
might have to be limited, we advise you to do it as
soon as possible; the deadline for registering will be
15 July 1991.

Dr. Andr6 HECK
Observatoire Astronomique
11, rue de l'Universit6
F-67000 Strasbourg
France

telephone: +33-88.35.82.22
telex: 890506 starobs f

telefax: $33-88.25.01.60
EARNIBITNET: HeckOFRCCSC21

Call for papers: EP92
International conference on electronic
publishing, document manipulation, and

typography

Lausanne, Switzerland, 7-10 April 1992

An International Conference on Electronic Pub-
lishing, Document Manipulation and Typography

312 TUGboat, Volume 12 (1991), No. 2

will be held in Lausanne, Switzerland, at the Swiss
Federal Institute of Technology, on April 7-10, 1992.

This conference will be the fourth in a series
of international conferences organised to promote
the exchange of novel ideas in the area of computer
manipulation of documents.

The first two conferences in the series, EP86
held in Nottingham, England, and EP88 in Nice,
France, concentrated mainly on the specific aspect
of the production of documents by computer, from
composition to printing. EP90, which was held in
Washington, adopted a broader definition of the
term Computer Assisted Publication, and accord-
ingly included more materials on new topics such as
the application of data-base techniques to document
handling, hypertext and hypermedia systems, and
document recognition and analysis.

EP92 will follow this trend. Its objective will
be to present the state of the art by reporting
original and recent contributions to this area. The
conference proceedings will be published by Cam-
bridge University Press and will be available at the
conference.

A day of tutorials is planned for April 7.
Suggestions for contributions with introductory and
survey topics are requested.

Topics

Modelling and representation of documents

o Document structures
o Integration of text, images and graphics
o Integration of document manipulation

systems with other software tools
o Standards: evaluation and implementation
o Object oriented approaches

0 Documents management -
o Document preparation systems
o Hypertext: production, editing and

visualisation
o Large text data-bases
0 Distributed documents: parallel

algorithms, multi-user documents
0 User-machine interfaces

Typography and graphics
o Character design
o Use of gray levels and colour technology
o Pagination and layout

0 Document manipulation and education
o Computer assisted document production
o Experiences in teaching EP
o The place of EP in Computer Science

curricula

Main deadlines

Today. Send for information. Write to the Confer-
ence Secretariat either by post or e-mail, at

EPFL - EP92
DBpartment dlInformatique
IN (Ecublens)
CH - 1015 Lausanne
Switzerland

Phone: (41) 21 693 25 75
Fax: (41) 21 693 52 63
E-mail: ep920eldi. epf 1. ch

August 15, 1991. The full paper should be
received by the Conference Secretariat.

October 31, 1991. Notification of acceptance or
rejection.

December, 1991. Distribution of the program.

December 15, 1991. Final version of the ac-
cepted paper should be received by the Conference
Secretariat.

April 7-10, 1992. EP92 Conference.

Organization -

The Conference Chair is Christine Vanoirbeek of
the Swiss Federal Institute of Technology, Lausanne.
The Program Committee Chair is Giovanni Coray,
also of the Swiss Federal Institute of Technology.

The following are some members of the Pro-
gram committee whose names should be familiar
to the TUG community: Jacques And& (INRIA/
IRISA, Rennes, France), Charles Bigelow (Stanford

Document recognition and interpretation
University), Richard Furuta (University of Mary-

0 Structural recognition of documents
land), Roger D. Hersch (Swiss Federal Institute of

0 Filtering and image handling techniques
Technology, Lausanne), Brian Kernighan (AT&T

0 Multi-lingual documents
Bell Laboratories), Dario Lucarella (University of

0 Semantic text structures
Milan), Pierre MacKay (University of Washington),

0 Indexing techniques
and Robert A. Morris (University of Massachusetts,
Boston).

TUGboat, Volume 12 (1991), No. 2

1 Late-Breaking News

Fixed-Point Glue Setting: E r r a t a

Donald E. Knuth

I thank Eberhard Mattes for calling my attention
to an error in the demonstration WEB program I
published in TUGboat 3,l (March 1982), 10-27.
After looking more closely at that program, I
noticed that it actually contains at least two errors.
I should have known better than to rush into print
with the second draft of a program on which I had
spent only a few hours of time; but I was just
beginning to learn how to program in WEB, and the
new methodology had lulled me into thinking that
I understood what I was doing.

The most serious error occurs in line 9 of the
program in section 14. That line should be:

i f a + b + k - h = 1 5 t h e n
c t (q + l) d i v 2 { l = 1 6 - k)

This error caused the answers for test data set 4.
on page 23 of the article, to be only about half as
big as they should have been; the correct value of c
for that data set is 30670, not 15335.

The other error arises when the number b in
the algorithms turns out to be greater than 30. I
believe the best way to correct it is to replace the
four lines beginning with 'if b < 0' in section 12 by
the following:

if (b < 0) V (b > 30) t h e n
if b < 0 t h e n write-ln('!uExcessive,glue. ');

{ error message)
b + 0: c +- 0: { make f (x) identically zero)
e n d

After writing that article I learned that stan-
dard Pascal also wants the specification ': 0' to
become ': 1' in wrzte and write-ln statements (sec-
tions 21, 24. and 25; five places altogether).

I also learned that the language is properly
called Pascal, not PASCAL; and I began calling
scaled points 'sp' instead of 'spt'.

Although the comments in section 1 state
that my algorithm uses only 16-bit multipliers and
divisors, the truth is that it also might use larger
multipliers and divisors that happen to be powers
of 2. Such multiplications and divisions can be
replaced by binary shifts, in a language like C.

I overlooked a few typographic errors: 'process
or' should be 'processor' on the first line of page 11,

and 'as' should be 'that' on line 8 from the end

of that page; 'hve' should be 'have' in section 4,
line 20, and '12-"xJ' should be 'L2-"x-i]', a few
lines further down. Also 'x-1' should be 'x-i' in
line 5 of section 21.

Finally, I should have used the same notation
in the program of sections 12-14 as I used in the
theoretical discussion of section 4.

A corrected version of the program, incorpo-
rating the remarks above and a few other things, is
now available in standard electronic archives
under the file name g lue . web.

Looking on the bright side, I'm pleased to
report that now processes the entire woven
program in only 10 seconds on my home computer;
according to the article, the same task took 40
seconds in 1981, using the KLlO mainframe on
which I did all the development of m.

And oh yes, one further correction is necessary:
The amount of time spent proofreading and debug-
ging, mentioned on page 11 of my article, should
now be increased from 'about two hours' to 'about
six hours'.

Product ion Notes

Barbara Beeton

Inpu t a n d i npu t processing

Electronic input for articles in this issue was re-
ceived by mail and on floppy disk. Most articles
were fully tagged for TUGboat, using either the
plain-based or UTEX conventions described in the
Authors' Guide (see TUGboat 10, no. 3, pages
378-385). Several authors requested copies of
the macros (which we were happy to provide);
however, the macros have also been installed at
l abrea . stanf ord . edu and the other archives, and
an author retrieving them from an archive will most
likely get faster service. Of course, the TUG office
will provide copies of the macros on diskette to
authors who have no electronic access.

The number of articles in this issue was split
about evenly between "plain" and U w ; pages
too were about evenly divided. In organizing the
issue, attention was given to grouping bunches
of p l a in or UTEX articles, to yield the smallest
number of separate typesetter runs, and the least
amount of handwork pasting together partial pages.
This also affected the articles written or tagged

314 TUGboat, Volume 12 (1991)' No. 2

by the staff, as the conventions of tugboa t . s t y
or l t u g b o a t . s t y would be chosen depending on
what conventions were used in the preceding and
following articles; no article was changed from one
to the other, however, regardless of convenience.

This issue was mercifully free of insidious
redefinitions of macros that already exist in the
styles used; either authors were more careful, or the
mechanism that isolates one article from another
when several are being combined into a single
run is finally working at that level. We had
some problems of interaction within the TUGboat
macros, however, that more than made up for the
lack of author-provided problems.

As has been customary for the past few issues,
several articles required font work; these included
the articles by Alan Jeffrey (p. 227) and Yannis
Haralambous (p. 224). The latter rooted out some
bugs in the laser printer device driver used at AMS
(it hoes not deal well with 256-character fonts) and
forced a delay when no one was available during a
weekend to process proof from the typesetter.

One article, by Malyshev, Samarin and Vulis
(p. 212), required the new I 4 w font selection
scheme; another. by Hefferon (p. 270). required
the multicols option. Other U r n articles were
processed with whatever version was convenient.

The following articles were prepared using

p w .

- Barbara Beeton, Editorial comments,
page 208.

- Walter Obermiller, T&Z in Germany.
page 211.

- Michel Goossens, DT&Z meeting in London,
page 212.

- Reinhard FoL3meier, X bitmaps in m,
page 229.

- Nico Poppelier, a book review, page 235.
- Victor Eijkhout, three articles, pages 253, 260,

and 272.
- Jim Hefferon, Getting \answers, page 270.
- all items in the IPQX section, pages 284 ff.
- abstracts of the Cahiers GUTenberg,

page 305.
- announcement of w 9 1 and GUTenberg'91 in

Paris, page 309.

Output

The bulk of this issue was prepared at the American
Mathematical Society from files installed on a
VAX 6320 (VMS) and QX'ed on a server running
under Ultrix on a DECsystem 5000. Output was
typeset on an APS-p5 at the AMS using resident
CM fonts and additional downloadable fonts for
special purposes.

No pasteup of camera-ready items or illustra-
tions was required for this issue.

The output devices used to prepare the ad-
- Nelson Beebe, President's introduction, vertisements were not usually identified; anyone

page 205. interested in determining how a particular ad was
prepared should inquire of the advertiser.

TUGboat. Volume 12 (1991), No. 2 313

Coming Next Issue TUG Business

Inside Type & Set Financial Reports of the ?jEX Users Group

Graham Asher describes the Type & Set system, Ron Whitney, Acting Business Manager

which consists of m, several macro packages,
a suite of C programs including a style sheet
editor, an automatic page make-up system that
replaces m ' s output mechanism, and a family
of device drivers. This system was developed to
overcome problems which make Q X difficult to use
for commercial journal and book publishers.

Invisibility using virtual fonts

Sebastian Rahtz proposes an alternate method for
generating "invisible" fonts as used by S L ~ . This
method makes it possible to use the standard Post-
Script fonts in place of Computer Modern. [Delayed
by technical problems.]

Arrows for technical diagrams

David Salomon, requiring arrows of more varieties
than are available in unextended (I 4) w , has
created a font of arrowheads. Since w does not
have diagonal rules, only horizontal and vertical
arrowheads were developed. However, the methods
used can easily be extended for diagonal arrowheads.

Some Basic Control Macros for ?jEX

Jonathan Fine uses techniques that require only
m ' s mouth to define and describe macros \break,
\continue, \switch, \ re turn. \ e x i t , \chain, and
labels \end and ' : ' that make it easier to write T&X
macros.

Following are the TUG balance sheets along with
revenue and expense statements for the years 1989
and 1990. In years prior to 1990, our accountant
has performed financial reviews, as opposed to full
audits. We felt that it was time the organization
underwent an audit of its books and so went through
this closer inspection at the end of year 1990. Also
included below is the 1991 budget approved by the
TUG Board in March of this year.

These are difficult times for TUG, as they
are for many similar organizations. Although
we had been operating at close to a breakeven
level for several years through 1989. there was a
considerable operating deficit (z $93,000) for 1990.
Roughly half of this total was due to a general
decrease in sales and attendance at meetings and
courses. the other half being involved with changes
in administration within the TUG office (see the
prototype issue of and TUG N e w s for a full
description of those changes). Our assets entering
1991 were equivalent to about 40% of the operating
budget.

The 1991 year-to-date figures will appear in
the next regular issue of TUGboat (12#4). The
1991 budget forecasts a small surplus, but at this
point we believe we will be looking at deficit figures
by the end of the year. The cause again is due
to a decrease in traffic for sales and courses, and
perhaps also, in membership.

If you wish to see more detailed information or
have any further questions. please write or call the
TUG office at

P. 0. Box 9506
Providence, RI 02940

Phone: (401) 751-7760

TUGboat , Volume 12 (1991), No. 2

Users Group

Balance Sheet and Revenue & Expense Statements

December 31, 1989 (unaudited) and 1990 (audited)

Prepared by Michael D. Aaronson and Associates C.P.A.

1991 budget, approved by the TUG Board, March 1991

Current assets
Cash
Certificates of deposit
Accounts receivable
Inventory
Prepaid expenses

Total current assets

Property and equipment
Vehicle
Office furniture and equipment
Computer software and equipment

Less accumulated depreciation

Net property and equipment

Other assets
Rent and utility deposits

Total other assets

Total assets

LIABILITIES A N D FUND BALANCES

Current liabilities
Accounts payable
Accrued payroll and payroll taxes payable
Accrued vacation pay
Accrued pension expense
Other payables
Deferred income

Total current liabilities

Total liabilities

Fund balances
Property and equipment
Unrestricted funds

Total fund balances

Total liabilities and fund balances

TUGboat , Volume 12 (1991), No. 2

REVENUES

Membership income
Individual
Institutional - educational
Institutional - noneducational

Annual meeting and course income
Meeting
Regional courses
In-house courses
Meeting and courses, Europe

Sales income
Resale of books
Resale of software
In-house publications and software
Video tape rental
Back issues
Shipping and handling fees

Other income
Advertising
Mailing lists
Contributions
Promotional items
Interest
Other

Total revenue

EXPENSES

TUGboat expenses
Editorial
Computing
Printing
Mailing
Other

Newsletter
printing and mailing

Annual meeting and course expenses
Meeting
Regional courses
In-house courses
Meeting and course expense, Europe
Knuth scholarship

TUGboat. Volume 12 (1991), No. 2

EXPENSES (cont'd)

Sales expenses
Cost of goods sold (resale)
Cost of goods sold (software)
Cost of goods sold (in-house)
Promotional merchandise
Bankcard processing fees
Bad debt expense
Shipping

Personnel expenses
Salaries and wages
Payroll taxes
Health insurance
Pensions
Other employee benefits
Consultants and temporary services

Operational expense
Rent
Telephone
Utilities
Office supplies
Postage and mailing
Printing/photocopying
Business insurance
Legal and accounting fees
Off-site computer usage
Cleaning and maintenance
Equipment repairs and maintenance
Equipment depreciation
Car expense
Other

Other expenses
TUG Committees
m h a x
Radel collection
 BIB^ project
Staff training
Exhibitslmeetings
Graphic design, promotion

Sub-total expenses

Extraordinary expense
Expense associated with departure of ED
Transfer of interest earned on funds

held for employee

Total expenses

Net income

203 586

10 goo
6 885

3 019

T U G b o a t , Volume 12 (1991), No. 2

Institutional
Members

The Aerospace Corporation,
El Segundo, California

Air Force Institute of Technology,
Wright-Patterson AFB, Ohio

American Mathematical Society,
Providence, Rhode Island

ArborText, Inc.,
Ann Arbor, Michigan

ASCII Corporation,
Tokyo, Japan

Belgrade University,
Faculty of Mathematics,
Belgrade, Yugoslavia

Brookhaven National Laboratory,
Upton, New York

CERN, Geneva, Switzerland

Brown University,
Providence, Rhode Island

California Institute of Technology,
Pasadena, California

Calvin College,
Grand Rapids, Michigan

Carleton University,
Ottawa, Ontario, Canada

Centre Inter-RBgional de

Calcul ~ l e c t r o n i ~ u e , CNRS,
Orsay, France

College of William & Mary,
Department of Computer Science,
Williamsburg, Virginia

Communications
Security Establishment,
Department of National Defence,
Ottawa, Ontario, Canada

Construcciones Aeronauticas, S.A.,
CAE-Division de Proyectos,
Madrid, Spain

DECUS, Electronic Publishing
Special Interest Group,
Marlboro, Massachusetts

Department of National Defence,
Ottawa, Ontario, Canada

E . S. Ingenieres Industriales,
Sevilla, Spain

Edinboro University
of Pennsylvania,
Edinboro, Pennsylvania

Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands

European Southern Observatory.
Garching bei Miinchen,
Federal Republic of Germany

Fermi National Accelerator
Laboratory, Batavia, Illinois

Florida State University,
Supercomputer Computations
Research, Tallahassee, Florida

Fordham University,
Bronx: New York

General Motors
Research Laboratories,
Warren, Michigan

Grinnell College,
Computer Services,
Grinnell, Iowa

G T E Laboratories,
Waltham, Massachusetts

Hatfield Polytechnic,
Computer Centre,
Herts, England

Hughes Aircraft Company,
Space Communications Division,
Los Angeles, California

Hungarian Academy of Sciences,
Computer and Automation
Institute, Budapest, Hungary

IBM Corporation,
Scientific Center,
Palo Alto, California

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Communications Research
Division, Princeton, New Jersey

Intevep S. A., Caracas, Venezuela

Iowa State University,
Ames, Iowa

The Library of Congress,
Washington D. C.

Los Alamos National Laboratory,
University of California,
Los Alamos, New Mexico

Louisiana State University,
Baton Rouge, Louisiana

Macrosoft, Warsaw, Poland

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wiscon

Mathematical Reviews,
American Mathematical Society,
Ann Arbor, Michigan

Max Planck Institut
fiir Mathematik,
Bonn, Federal Republic of Germany

McGill University,
Montre'al, Que'bec, Canada

Michigan State University,
Mathematics Department,
East Lansing, Michigan

NASA Goddard
Space Flight Center,
Greenbelt, Maryland

National Institutes of Health,
Bethesda, Maryland

National Research Council

Canada, Computation Centre,
Ottawa, Ontario, Canada

Naval Postgraduate School,
Monterey, California

New York University,
Academic Computing Facility,
New York, New York

Northrop Corporation,
Pales Verdes, California

The Open University,
Academic Computing Services,
Milton Keynes, England

Pennsylvania State University,
Computation Center,
University Park, Pennsylvania

Personal m, Incorporated,
Mill Valley, California

Princeton University,
Princeton, New Jersey

Purdue University,
West Lafayette, Indiana

T U G b o a t , Volume 12 (1991), No. 2

University of British Columbia,
Mathematics Department,
Vancouver, British Columbia,
Canada

University of Maryland
at College Park,
Computer Science Center,
College Park, Maryland

Queens College,
Flushing, New York

Rice Univel.sity,
Department of Computer Science,
Houston, Texas University of Massachusetts,

Amherst, Massachusetts
University of Calgary,
Calgary, Alberta, Canada

Roanoke College.
Salem, VA University of California, Berkeley,

Space Astrophysics Group,
Berkeley, Californza

University of Oslo,
Institute of Mathematics,
Blindern, Oslo, Norway Rogaland University,

Stavanger, Norway
University of California, Irvine,
Information & Computer Science,
Irvine, California

University of Ottawa,
Ottawa, Ontario, Canada Rutgers University, Hill Center,

Piscataway, New Jersey
University of Salford,
Salford, England St. Albans School,

Mount St. Alban, Washington,
0. C.

University of California,
Los Angeles, Computer
Science Department Archives,
Los Angeles, California

University of Southern California.
Information Sciences Institute,
Marina del Rey, Calzfornia Sandia National Laboratories,

Albuquerque, New Mexico University of Canterbury,
Christchurch, New Zealand

University of Stockholm,
Department of Mathematics,
Stockholm. Sweden

Smithsonian Astrophysical
Observatory, Computation Facility,
Cambridge, Massachusetts

Universidade de Coimbra,
Cozmbra, Portugal University of Texas a t Austin,

Austin, Texas Software Research Associates,
Tokyo! Japan

University College,
Cork, Ireland University of Washington,

Department of Computer Science,
Seattle, Washington

Space Telescope Science Institute,
Baltimore, Maryland

University of Crete.
Institute of Computer Science,
Heraklio. Crete, Greece Springer-Verlag,

Heidelberg, Federal Republic of
Germany

University of Western Australia,
Regional Computing Centre,
Nedlands, Australia

University of Delaware,
Newark, Delaware

Springer-Verlag New York, Inc.,
New York, New York

University of Exeter,
Computer Unit,
Exeter, Devon, England

Uppsala University,
Uppsala, Sweden

Stanford Linear
Accelerator Center (SLAC).
Stanford, California

Vereinigte Aluminium-Werke AG,
Bonn, Federal Republic of Germany University of Glasgow,

Department of Computing Science,
Glasgow, Scotland

Villanova University,
Villanova, Pennsylvania Stanford University,

Computer Science Department,
Stanford, California

University of Groningen,
Groningen, The Netherlands

Vrije Universiteit ,
Amsterdam, The Netherlands

Talaris Systems, Inc.,
San Diego, California

University of Heidelberg,
Computing Center Heidelberg,
Germanv

Washington State University,
Pullman, Washington

Texas A & M University,
Department of Computer Science,
College Station, Texas

Widener University,
University of Illinois a t Chicago, Computing Services,
Computer Center, Chester, Pennsylvania
Chzcaqo. Illinois UNI-C, Aarhus, Denmark

Worcester Polytechnic Institute,
University of Kansas, Worcester, Massachusetts
Academic C o m ~ u t i n g Services.

University of Alabama,
Tuscaloosa, Alabama -

Lawrence, Kansas Yale University,
Department of Computer Science,

Universitat Koblenz-Landau, New Haven, Connecticut
Koblenz, Federal Republic of

University of British Columbia,
Computing Centre,
Vancouver, British Columbia,
Canada Germany

University of Maryland,
Department of Computer Science,
College Park, Maryland

Bylaws of the Users Group 321

BYLAWS
of the TEX Users Group ("TUG")

Article I

PURPOSES, POWERS AND
NON-PROFIT STATUS

Section 1. Purposes. The 'I)$ Users Group (the
"Corporation") has been formed exclusively for
charitable, educational and scientific purposes as
such terms are defined in Section 501(c)(3) of the
Internal Revenue Code of 1986, or the corresponding
provision of any future United States internal rev-
enue law (hereinafter the Internal Revenue Code of
1986), and specifically to identify, develop, operate,
fund, support, promote and encourage charitable,
educational and scientific programs and projects
which will stimulate those who have an interest
in systems for typesetting technical text and font
design; to exchange information of same and as-
sociated use of computer peripheral equipment;
to establish channels to facilitate the exchange of
macro packages, etc., through publications and oth-
erwise; and to develop. implement and sponsor
educational programs, seminars and conferences in
connection with the foregoing and for any lawful
purpose or purposes permitted under the Rhode
Island Non-profit Corporation Act.

Section 2. Powers. The Corporation shall have
the power, directly or indirectly, either alone or
in conjunction or cooperation with others, to do
any and all lawful acts and things and to engage
in any and all lawful activities which may be
necessary, or convenient to effect any or all of the
purposes for which the Corporation is organized,
and to aid or assist other organizations whose
activities are such as to further accomplish, foster,
or attain any of such purposes. The power of the
Corporation shall include, but not be limited to,
the acceptance of contributions in cash. in kind or
otherwise from both the public and private sectors.
Notwithstanding anything herein to the contrary,
the Corporation shall exercise its powers only in
furtherance of exempt purposes as such terms are
defined in Section 501(c)(3) of the Internal Revenue
Code of 1986 and the regulations from time to time
promulgated thereunder.

Section 3. Non-Profit Status. The Corporation
shall be nonprofit and shall not have or issue

shares of capital stock, and shall not declare or
pay dividends. No part of the net income or profit
of the Corporation shall inure to the benefit of
any member, director, officer, or other individual,
or to the benefit of any organization not qualified
for tax exemption under Section 501(c)(3) of the
Internal Revenue Code except as permitted by
law. No substantial part of the activities of the
Corporation shall be carrying on propaganda, or
otherwise attempting to influence legislation (except
as otherwise provided by Internal Revenue Code
Section 501(h)), or participating in, or intervening
in (including the publication or distribution of
statements), any political campaign on behalf of any
candidate for public office. Upon the dissolution
of this organization, assets shall be distributed for
one or more exempt purposes within the meaning
of Section 501(c)(3) of the Internal Revenue Code
or corresponding Section of any future Federal
tax code, or shall be distributed to the Federal
Government, or to a state or local government, for
a public purpose.

Article I1

OFFICES

The Corporation will have offices at such places
both within and without the State of Rhode Island
as may from time to time be determined by the
board of directors.

Article I11

MEMBERS

Section 1. Constitution. The members of the Cor-
poration will be such persons, natural or legal, who
will meet such qualifications and requirements (in-
cluding without limitation payment of initiation fees
and dues) as from time to time may be established
by the board of directors. The board of directors
will be the sole judge of the qualifications of the
members and its determination as to whether a per-
son is or is not a member will be final. The board
of directors may, in its discretion. create different
classifications of members and prescribe different
rights, privileges, qualifications or requirements for
each class.

322 Bylaws of the TEX Users Group

Section 2. Place of Meetings. All annual meetings
of the members and all special meetings of the
members called by the president or the board of
directors will be held at such place, either within or
without the State of Rhode Island, as will be stated
in the notice of meeting.

Section 3. Annual Meetings. Meetings of the mem-
bers will be held in conjunction with TUG con-
ferences. Such conferences will normally be held
annually; otherwise, an annual meeting of the mem-
bers will be held on the first Monday of August in
each year if not a legal holiday in the place where it
is to be held, and. if a legal holiday, then on the next
day following which is not a legal holiday, beginning
at 10:OO a.m. or at any other time designated in
the notice of the meeting. At each annual meeting.
the members will transact such business as may
properly come before the meeting. In the event
of the failure to hold said annual meeting at any
time or for any cause. any and all business which
might have been transacted at such meeting may be
transacted at the next succeeding meeting. whether
special or annual.

Section 4. Special Meetings. A special meeting of
the members, for any purpose or purposes, may be
called by the President or by the Board of Directors.
Any such call will state the purpose or purposes of
the proposed meeting.

Section 5 . Notice of Meetings. Written notice of
each annual or special meeting stating the place,
day and hour of the meeting (and the purpose or
purposes of any special meeting) will be given by
or at the direction of the president, the secretary
or the person or persons calling the meeting to
each member entitled to vote at such meeting not
less than ten nor more than sixty days before the
meeting. Business transacted at any special meeting
of members will be limited to the purposes stated
in the notice of the meeting or any written waiver
thereof.

Section 6. Quorum. Fifty (50) members present in
person, will constitute a quorum at all meetings
of the members. If, however, such quorum will
not be present at any such meeting, the members
entitled t o vote thereat will have power to adjourn
the meeting from time to time, without notice other
than announcement at the meeting, until a quorum
will be present. At such adjourned meeting at
which a quorum will be present any business may
be transacted which might have been transacted at
the meeting as originally called. If adjournment is
for more than thirty days, a notice of the adjourned

meeting will be given to each member entitled to
vote at the meeting. When a quorum is present at
any meeting, the vote of the holders of a majority
of the votes entitled to be cast and present in
person will decide any question brought before such
meeting, unless the vote of a greater number is
required by law. A voice vote will normally be
considered sufficient for business actions. A show
of hands may be requested when the outcome is in
doubt.

Section 7. Access to Documents. Nothing in these
bylaws shall be construed to limit the access of
TUG members to TUG documents. Members
requesting copies of any TUG document may be
charged a reasonable copying fee and members
requesting publications or mailing lists presented
to the public for sale may be charged the same
fee as the general public. Members requesting
copies of documents to be used in performance of
TUG related duties may request that the copying
fee be waived. TUG documents include, but
are not limited to: contracts, Board minutes,
Executive Committee minutes, Finance Committee
minutes, office procedure manuals, IRS filings, and
written communications from or to the TUG office.
This section does not authorize the release of any
information that federal or state law protects from
disclosure.

Article IV

DIRECTORS

Section 1. Powers. The affairs of the Corporation
will be managed by the Board of Directors.

Section 2. Number. The number of directors will
be not more than thirty. Under very special
circumstances, particularly deserving individuals
may be designated as permanent honorary members
of the Board, without vote, and without being
included in the number of members specified in this
section.

Section 3. Composition. The Board of Directors
will consist of the TUG President, Elected Board
Members, Honorary Members, and Non-elected Vice
Presidents. Prior to the first election of Elected
Board Members, the Board of Directors will consist
of the Finance Committee, Site Coordinators, Wiz-
ards and other active members nominated by the
Board of Directors.

Section 4. Honorary Members. The Grand Wiz-
ard, Donald E. Knuth, the Wizard of Fonts, Her-
mann Zapf, and the Founding Executive Director,

Bylaws of the Users Group 323

Raymond Goucher, are designated as permanent Section 9. Quorum. At all meetings of the board of
honorary members of the Board. directors, twenty-five (25%) percent of the number

of directors fixed pursuant to Section 2 of this
Section 5 . Non-elected Vice Presidents. The leaders

Article will constitute a quorum for the transaction
of other Q X user groups may be appointed to the

of business, and the act of a majority of the directors
Board with the title of vice president. An increase

present at a meeting at which a quorum is present
in the number of members on the Board shall be

will be the act of the board of directors, unless the
made as appropriate.

act of a greater number is required by the Rhode

Section 6. Nominations, Election and Term. Any Island non-profit corporation act or by the articles
member may have their name placed in nomination of incorporation.
for election to the board by submitting a petition,
signed by two (2) other members, to the TUG
Office at least thirty (30) days prior to the election.
In addition, any member may be nominated for
the board during the annual business meeting.
Members nominated at the annual business meeting
shall have seven (7) days to notify the TUG Office
that they accept the nomination in writing. Election
of the directors shall be by written mail ballot of
the entire membership. Each director will hold
office for a term of two (2) years. Directors may be
re-elected for successive terms. Directors need not
be members of the Corporation or residents of the
State of Rhode Island.

Section 7. Meetings. The board of directors may
hold meetings, both regular and special, either
within or without the State of Rhode Island. The
first meeting of each newly elected board of directors
will be held at such time and place as will be
specified in a notice delivered as hereinafter provided
for special meetings of the board of directors, or
as will be specified in a written waiver signed by
all of the directors. Regular meetings of the board
of directors may be held without notice at such

Section 10. Directors' Consent Vote. Any action
required or permitted to be taken at a meeting of
the board of directors or of any committee thereof
may be taken without a meeting by instead taking a
vote by mail, according to the following procedure.
Any board member may submit a motion in writing.
Any other board member may second the motion.
Amendments to the motion are allowed, but not
amendments to amendments. From the point that
the motion on the floor has been seconded, there
shall be a two-week period of discussion regarding
the motion. After the discussion period, there shall
be an active voting period of two weeks. after which
voting shall be terminated. The votes shall then
be tallied, counting the number of yeas, nays, and
abstentions. The total number of votes cast must
be at least 50% of total members permitted to
vote, otherwise the motion fails. When the 50%
requirement is met, a motion shall pass when two-
thirds of votes cast are in the affirmative. Members
may use standard mail, electronic mail, or facsimile
to cast a written vote. Upon approval of the motion,
the entire board or committee shall be notified by
standard mail of the results of the vote.

time and at such place as will from time to time
Section 11. Committees of Directors. The board of

be determined by the board of directors. Special
directors may, by resolution adopted by a majority

meetings of the board of directors may be called by
of the board, designate one or more committees,

the president on two days' notice to each director,
including an executive committee, each committee

either personally or by mail or by telegram. Special
to consist of two or more directors appointed by the

meetings will be called by the president in like
board. The board may appoint one or more direc-

manner and on like notice on the written request
tors as alternate members of any committee, who

of two directors. Meetings of the directors may be
may replace any absent or disqualified member at

held by means of a telephone conference circuit and
any meeting of the committee. Except as otherwise

connection to such circuit will constitute presence
provided by the Rhode Island non-profit corpora-

at such meeting.
tion act or these bylaws, any such committee, to

Section 8. Vacancies. Any vacancy occurring on the
board of directors may be filled by the President. A
director appointed to fill a vacancy will be appointed
for the unexpired term of his or her predecessor in
office. Any place on the board to be filled by reason
of an increase in the number of directors may be
filled by the President for a term of office continuing
only until the next appointment of directors.

the extent provided in the resolution, will have
and may exercise all the authority of the board of
directors; provided, however, that in the absence or
disqualification of any member of such committee
or committees, the member or members thereof
present at any meeting and not disqualified from
voting, whether or not he or she or they constitute a
quorum, may unanimously appoint another member

Bylaws of the Users Group

of the board of directors to act at the meeting in
the place of any such absent or disqualified member.
Such committee or committees will have such name
or names as may be determined from time to time
by resolution adopted by the board of directors.
Each committee will keep regular minutes of its
proceedings and report the same to the board of
directors when required.

ARTICLE V

COMMITTEES

Section 1. Executive Committee. There will be
established an Executive Committee which will
consist of the President, plus three other board
members. It will be the responsibility of the Exec-
utive Committee to adopt interim procedures and
policies when necessary on behalf of the Corpora-
tion, subject to the ultimate approval of the Board
of Directors.

Section 2. Technical Council. There will be es-
tablished a Technical Council which will consist of
Site Coordinators, Wizards and other active Q X
contributors. The initial members will be appointed
by the Board of Directors. After the initial ap-
pointment of Council members by the Board, the
Technical Council shall determine its own composi-
tion and operating procedures. The purposes and
goals of the Technical Council shall be determined
by the Technical Council; however, the purposes
and goals shall be consistent with the purposes,
powers, and non-profit status of the T@ Users
Group. The Grand Wizard and the Wizard of
Fonts shall be permanent honorary members of the
Technical Council. The Technical Council shall
designate a representative to attend meetings of the
TUG board in an advisory capacity.

Section 3. Planning Committee. There will be
established a Planning Committee responsible for
establishing, with approval by the Board, TUG'S
strategic goals for recommending to the Board a
three- (or more) year strategic plan to implement
these goals. Members of the Planning Committee
will be appointed by the President with the approval
of the Board.

Section 4. Nominating Committee. Prior to the
annual meeting, a Nominating Committee will be
appointed by the Board for the purpose of suggest-
ing candidates to fill those offices. This committee
shall nominate at least one member to fill each office
up for election.

Section 5. Ad Hoc Committees. The Board of
Directors may from time to time, by resolution
adopted by a majority of the Board, appoint one or
more Ad Hoc Committees to perform such functions
as may be designated in said resolution.

Article VI

NOTICES

Section 1. How Delivered. Whenever under the pro-
visions of the Rhode Island non-profit corporation
act or of the articles of incorporation or of these
bylaws written notice is required to be given to any
person, such notice may be given by mail, addressed
to such person at his or her address as it appears
in the records of the Corporation, with postage
thereon prepaid, and such notice will be deemed to
be delivered. if mailed, at the time when the same
will be deposited in the United States mail. Notice
may also be given by telegram or personally to any
director.

Section 2. Waivers of Notice. Whenever any notice
is required to be given under the provisions of
the Rhode Island non-profit corporation act or the
articles of incorporation or these bylaws, a waiver
thereof in writing, signed by the person or persons
entitled to such notice, whether before or after the
time stated therein, will be deemed equivalent to
the giving of such notice. Attendance of a person
at a meeting will constitute a waiver of notice of
such meeting. except when the person attends a
meeting for the express purpose of objecting to the
transaction of any business because the meeting is
not lawfully called or convened.

Section 3. Specification of Business. Neither the
business to be transacted at, nor the purpose of,
any meeting of the members of the Corporation
or of a committee of the board of directors of
the Corporation need be specified in any written
waiver of notice except as otherwise herein expressly
provided.

Article VII

OFFICERS

Section 1. Number. The officers of the Corporation
will be a president, a vice president, a secretary, and
a treasurer. The board of directors may from time
to time elect or appoint such other officers including
more vice presidents and assistant officers, as it may
deem necessary. Any two or more offices may be

Bylaws of the Users Group 325

held by the same person with the exception of the and such other duties as from time to time may

offices of president and secretary. be assigned to him by the President or Board of
Directors.

Section 2. Eligibility for Nomination. Any member
may be nominated for TUG President, and any Section 10. Vacancies. When an office becomes
board member may be nominated for the other vacant for any reason, the President will appoint a
board offices. member to serve out the remainder of that term.

Section 3. Nomination Procedure. Any member
may have their name placed in nomination for elec-
tion to the office of TUG President by submitting
a petition, signed by two (2) other members, to
the TUG Office at least thirty (30) days prior to
the election. In addition, any member may be
nominated for the office of TUG President during
the annual business meeting. Members nominated
at the annual business meeting shall have seven (7)

days to notify the TUG Office in writing that they
accept the nomination.

Section 4. Election and Term. During the 1991
annual meeting. officers will be selected by the
Board of Directors. Thereafter, the president will
be elected by the general membership in accordance
with the election procedures.

All Officers shall be selected for a term not to
exceed two years. Officers other than the President
shall be appointed by the Board of Directors. Any
officer may be removed by the Board of Directors
whenever. in its judgment, the best interests of the
Corporation will be served thereby.

Section 5 . Election Procedures. All elections will be
conducted in accordance with election procedures
approved by the Board of Directors. The election
of the president shall be by written mail ballot of
the entire membership. The candidate receiving the
most votes will be elected.

Section 6. President. The President will preside at
meetings of the General Membership, the Board of
Directors and the Executive Committee.

Section 7. Vice President. The Vice President will
serve in the absence of the President and will
undertake other administrative duties as designated
by the President.

Section 8. Secretary. The Secretary will maintain
the records of the Corporation and see that all
notices are duly given in accordance with the pro-
visions of these Bylaws or as required by law. The
Secretary will also conduct Corporate correspon-
dence.

Section 9. Treasurer. The Treasurer will serve as
chief financial officer and in general, will perform
all of the duties incident to the office of Treasurer

When the office of the President becomes vacant,
the Vice President will become President for the

remainder of the President's term and will then,
as President, appoint a member to serve as Vice
President.

Section 11. Signing of Instruments. All checks,
drafts, orders, notes and other obligations of the
Corporation for the payment of money, deeds, mort-
gages, leases, contracts, bonds and other corporate
instruments may be signed by such officer or offi-
cers of the Corporation or by such other person or
persons as may from time to time be designated by
general or special vote of the board of directors.

Section 12. Voting of Securities. Except as the
board of directors may generally or in particular
cases otherwise specify, the president or the trea-
surer may on behalf of the Corporation vote or take
any other action with respect to shares of stock or
beneficial interest of any other corporation, or of
any association, trust or firm. of which any securi-
ties are held by the Corporation, and may appoint
any person or persons to act as proxy or attorney-
in-fact for the Corporation, with or without power
of substitution, at any meeting thereof.

Article VIII

EXECUTIVE DIRECTOR

Section 1. Duties. The Board of Directors shall
select and employ an Executive Director who shall
be responsible for the general administration of the
Corporation's activities.

Section 2. Immediate Supervision. The Executive
Director shall work under the immediate direction of
the Executive Committee. The Executive Director
shall attend meetings of the Executive Committee,
the Finance Committee, and the Board of Directors,
but shall not be a member of any of these bodies.
The presiding officer of any of these meetings may
request the absence of the Executive Director.

Article IX

SEAL

The corporate seal will have inscribed upon it the
name of the Corporation and such other appropriate

326 Bylaws of the Users Group

language as may be prescribed by the Rhode Island
non-profit corporation act or from time to time by
the board of directors.

Article X

FISCAL YEAR

The fiscal year of the Corporation will be determined
by the board of directors and in the absence of such
determination will be the calendar year.

Article XI

INDEMNIFICATION

Section 1. Agreement of Corporation. In order to
induce the directors and officers of the Corporation
to serve as such. the Corporation adopts this Article
and agrees to provide the directors and officers of
the Corporation with the benefits contemplated
hereby.

Section 2. Acceptance of Director or Officer. This
Article will apply, and the benefits hereof will be
available, to each director and officer of the Corpo-
ration who executes and delivers to the Secretary
of the Corporation a written statement to the effect
that the director or officer accepts the provisions
of this Article and agrees to abide by the terms
contained herein.

Section 3. Definitions. As used herein. the following
terms will have the following respective meanings:

"Covered Act" means any act or omission by
the Indemnified Person in the Indemnified Person's
official capacity with the Corporation and while
serving as such or while serving at the request of
the Corporation as a member of the governing body.
officer, employee or agent of another corporation.
partnership. joint venture, trust or other enterprise.

"Excluded Claim" has the meaning set forth in
Paragraph 6, hereof.

"Expenses" means any reasonable expenses in-
curred by the Indemnified Person in connection with
the defense of any claim made against the Indem-
nified Person for Covered Acts including, without
being limited to. legal, accounting or investiga-
tive fees and expenses (including the expense of
bonds necessary to pursue an appeal of an adverse
judgment).

"Indemnified Person" means any director or
officer of the Corporation who accepts election or

"Loss" means any amount which the Indemni-
fied Person is legally obligated to pay as a result of
any claim made against the Indemnified Person for
Covered Acts including, without being limited to.
judgments for, and awards of, damages, amounts
paid in settlement of any claim, any fine or penalty
or; with respect to an employee benefit plan, any
excise tax or penalty.

"Proceeding" means any threatened, pending
or completed action, suit or proceeding, whether
civil, criminal, administrative or investigative.

Section 4. Indemnification. Subject to the exclu-
sions here inafter set forth, the Corporation will
indemnify the Indemnified Person against and hold
the Indemnified Person harmless from any Loss or
Expenses.

Section 5. Advance Payment of Expenses. The
Corporation will pay the Expenses of the Indem-
nified Person in advance of the final disposition
of any Proceeding except to the extent that the
defense of a claim against the Indemnified Person is
undertaken pursuant to any directors' and officers'
liability insurance (or equivalent insurance known
by another term) maintained by the Corporation.
The advance payment of Expenses will be subject
to the Indemnified Person's first agreeing in writing
with the Corporation to repay the sums paid by
it hereunder if it is thereafter determined that the
Proceeding involved an Excluded Claim or that the
Indemnified Person was otherwise not entitled to
indemnity under these Bylaws.

Section 6. Exclusions. The Corporation will not be
liable to pay any Loss or Expenses (an "Excluded.
Claim"):

(a) With respect to a Proceeding in which a
final non-appealable judgment or other adjudication
by a court of competent jurisdiction determines that
the Indemnified Person is liable to the Corporation
(as distinguished from being liable to a third party)
for: (i) any breach of the Indemnified Person's duty
of loyalty to the Corporation or its members; (ii)
acts or omissions not in good faith or which involve
intentional misconduct or knowing violation of law;
or (iii) any transaction from which the Indemnified
Person derived an improper personal benefit; or

(b) If a final, non-appealable judgment or other
adjudication by a court of competent jurisdiction
determines that such payment is unlawful.

appointment as a director or officer and agrees to Section 7. Notice to Corporation; Insurance.
serve as such in the manner provided in Paragraph Promptly after receipt by the Indemnified Per-
2 hereof. son of notice of the commencement of or the threat

Bylaws of the Users Group 327

of commencement of any Proceeding, the Indem-
nified Person will, if indemnification with respect
thereto may be sought from the Corporation under
these Bylaws, notify the Corporation of the com-
mencement thereof. Failure to promptly notify the
Corporation will not adversely affect the Indem-
nified Person's right to indemnification hereunder
unless and only to the extent that the Corporation is
materially prejudiced in its ability to defend against
the Proceeding by reason of such failure. If, at the
time of the receipt of such notice, the Corporation
has any directors' and officers' liability insurance
in effect, the Corporation will give prompt notice
of the commencement of such Proceeding to the
insurer in accordance with the procedures set forth
in the policy or policies in favor of the Indemnified
Person. The Corporation will thereafter take all the
necessary or desirable action to cause such insurer
to pay, on behalf of the Indemnified Person, all Loss
and Expenses payable as a result of such Proceeding
in accordance with the terms of such policies.

Section 8. Indemnification Procedures. (a) Pay-
ments on account of the Corporation's indemnity
against Loss will be made by the Treasurer of
the Corporation except if. in the specific case. a
determination is made that the indemnification of
the Indemnified Person is not proper in the cir-
cumstances because such Loss results from a claim
which is an Excluded Claim. If the Corporation so
determines that the Loss results from an Excluded
Claim (although no such determination is required
by the Corporation hereunder prior to payment of
a Loss by the Treasurer), the determination shall
be made:

(i) By the Board of Directors by a majority
vote of a quorum consisting of directors not at the
time parties to the Proceeding; or

(ii) If a quorum cannot be obtained for pur-
poses of clause (i) of this subparagraph (a). then
by a majority vote of a committee of the Board of
Directors duly designated to act in the matter by
a majority vote of the full Board (in which desig-
nation directors who are parties to the Proceeding
may participate) consisting solely of three or more
directors not at the time parties to the Proceeding;
or

(iii) By independent legal counsel designated:
(A) by the Board of Directors in the manner
described in clause (i) of this subparagraph (a),
or by a committee of the Board of Directors
established in the manner described in clause (ii) of
this subparagraph (a), or (B) if the requisite quorum
of the full Board cannot be obtained therefor and a

committee cannot be so established, by a majority
vote of the full Board (in which designation directors
who are parties to the Proceeding may participate).
If made, any such determination permitted to be
made by this subparagraph (a) will be made within
60 days of the Indemnified Person's written request
for payment of a Loss.

(b) Payment of an Indemnified Person's Ex-
penses in advance of the final disposition of any
Proceeding will be made by the Treasurer of the
Corporation except if, in the specific case, a de-
termination is made pursuant to Paragraph 8(a)
above that indemnification of the Indemnified Per-
son is not proper in the circumstances because the
Proceeding involved an Excluded Claim.

(c) The Corporation will have the power to
purchase and maintain insurance on behalf of any
Indemnified Person against liability asserted against
him or her with respect to any Covered Act, whether
or not the Corporation would have the power to
indemnify such Indemnified Person against such
liability under the provisions of this Article. The
Corporation will be subrogated to the rights of
such Indemnified Person to the extent that the
Corporation has made any payments to such In-
demnified Person in respect to any Loss or Expense
as provided herein.

Section 9. Settlement. The Corporation will have
no obligation to indemnify the Indemnified Per-
son under this Article for any amounts paid in
settlement of any Proceeding effected without the
Corporation's prior written consent. The Cor-
poration will not unreasonably withhold or delay
its consent to any proposed settlement. If the
Corporation so consents to the settlement of any
Proceeding, or unreasonably withholds or delays
such consent, it will be conclusively and irrebut-
tably presumed for all purposes that the Loss or
Expense does not constitute an Excluded Claim. If
the Corporation reasonably withholds its consent
solely on the ground that the Proceeding constitutes
an Excluded Claim, the Indemnified Person may
accept the settlement without the consent of the
Corporation, without prejudice to the Indemnified
Person's rights to indemnification in the event the
Corporation does not ultimately prevail on the issue
of whether the Proceeding constitutes an Excluded
Claim.

Section 10. Rights Not Exclusive. The rights pro-
vided hereunder will not be deemed exclusive of any
other rights to which the Indemnified Person may be
entitled under any agreement, vote of disinterested

directors or otherwise, both as to action in the In-
demnified Person's official capacity and as to action
in any other capacity while holding such office, and
will continue after the Indemnified Person ceases to
serve the Corporation as an Indemnified Person.

Section 11. Enforcement. (a) The Indemnified Per-
son's right to indemnification hereunder will be
enforceable by the Indemnified Person in any court
of competent jurisdiction and will be enforceable
notwithstanding that an adverse determination has
been made as provided in Paragraph 8 hereof.

(b) In the event that any action is instituted
by the Indemnified Person under these Bylaws, the
Indemnified Person will be entitled to be paid all
court costs and expenses, including reasonable at-
torneys' fees, incurred by the Indemnified Person
with respect to such action, unless the court deter-
mines that each of the material assertions made by
the Indemnified Person as a basis for such action
was not made in good faith or was frivolous.

Section 12. Severability. If any provision of this
Article is determined by a court to require the
Corporation to perform or to fail to perform an act
which is in violation of applicable law, this Article
shall be limited or modified in its application to
the minimum extent necessary to avoid a violation
of law, and, as so limited or modified, this Article
shall be enforceable in accordance with its terms.

Section 13. Successor and Assigns. The provisions
of this Article will be (a) binding upon all succes-
sors and assigns of the Corporation (including any
transferee of all or substantially all of its assets)
and (b) binding on and inure to the benefit of the
heirs, executors, administrators, and other personal
representatives of the Indemnified Person.

Amendment. No amendment or termination of this
Article will be effective as to an Indemnified Person
without the prior written consent of that Indemni-
fied Person and, in any event, will not be effective
as to any Covered Act of the Indemnified Person
occurring prior to the amendment or termination.

Article XI1

AMENDMENTS

The power to alter, amend or repeal the bylaws or
to adopt new bylaws will be vested in the Board of
Directors by affirmative vote of the directors in the
manner provided in these bylaws.

Finally, you can use
superior MicroPress
scalable typefaces
with your version of

Choose from 150+ quality typefaces
Generate PXL/PK files in seconds
Font effects: compressed/expanded fonts.
shading, outline. smallcaps. and more
Creates matching TFM files
As low as $10 per font

Contact Micropress for pricing and
availability for your CPU.

MICROPRESS INC.
6 8 - 3 0 H A R R O W STREET, FOREST HILLS, NY 11 3 7 5
TEL: 7 1 8 - 5 7 5 - 1 8 1 6 FAX: 7 1 8 - 5 7 5 - 8 0 3 8

A Gentle Introduction to T@
A Manual for Self-study by Michael Doob

A Gentle Introduction to T$ is perfect
for the beginning T$ user.

Easy-to-follow and straightforward, this 89 page, softbound
manual reveals the basics behind

-

characters and words
paragraphs and pages

mathematics

@Lions, The Tgbook. 1986; used by permission of ... with dozens of helpful examples and
~ddison-wesley Publishing GO. solutions in 11 friendly chapters.

-
\ @ *y $;;@v . . &$- :

--
&

Available now
Special offer for TUG members . . . $10 from TUG
10 or more copies (members) . . . $ 8 '@ Users Group

Regular price . $1 5 I! 0. Box 9506

Providence, RI 02940 U. S. A.
Phone: (401) 751-7760

S h ~ p p ~ n g U S $ 2 per copv Fax: (401) 751-1071
Outside of U S $3 per copy surface $4 alr

Mastercard/v~sa, checks and
Ask about TUG'S other publications for beginning T$ws *;_.-* = -_ money orders accepted

Publications for the TEX Community

Available now:

1. VAX Language-Sensitive Editor (LSEDIT)

Quick Reference Guide for Use with the LATEX Environment and L#TEX

Style Templates by Kent McPherson

2. Table Making - the INRSTEX Method by Michael J. Ferguson

3. User's Guide to the ldxT~X Program by R. L. Aurbach

4. User's Guide to the GIoTEX Program by R. L. Aurbach

5. Conference Proceedings, TEX Users Group Eighth Annual Meeting,

Seattle, August 24-26, 1987, Dean Guenther, Editor

6. The QCTEX Manual by Michael J. Wichura

7. Conference Proceedings, TEX Users Group Ninth Annual Meeting,

Montreal, August 22-24, 1988, Christina Thiele, Editor

8. A Users' Guide for TEX by Frances Huth

9. An lntroduction to L ~ E X by Michael Urban

10. L ~ E X Command Summary by L. Botway and C. Biemesderfer

11. First Grade TEX by Arthur Samuel

12. A Gentle lntroduction to TEX by Michael Doob

13. METAFONTware by Donald E. Knuth, Tomas G. Rokicki, and

Arthur Samuel

Coming soon:

14. A Permuted Index for TEX and FTEX by Bill Cheswick

15. EDMAC: A Plain TEX Format for Critical Editions

by John Lavagnino and Dominik Wujastyk

TEX Users Group
PI 0. Box 9506

Providence, R. 1. 02940, U.S. A.

USERS
GROUP

Complete and return this form with
payment to:

Tfl Users Group
Membership Department
F! 0. Box 594
Providence, RI 02901 USA

Telephone: (401) 751-7760
FAX: (401) 751-1071
Email: tugC3Math. AMS . corn

Membership is effective from Jan-
uary 1 to December 31 and includes
a subscription to TUGboat, The Com-
munications of the T@ Users Group.
Members who join after January 1
will receive all issues published that
calendar year.

For more information . . .
Whether or not you join TUG now,
feel free to return this form to
request more information. Be sure
to include your name and address
in the spaces provided to the right.

Check all items you wish to receive
below:

0 Institutional membership
information

13 Course and meeting information

13 Advertising rates

Products/publications catalogue

Public domain software
catalogue

More information on T@

Individual Membership Application

Name

Institutional affiliation, if any

Position

Address (business or home (circle one))

City

State or Country Zip

Daytime telephone FAX

Email addresses (please specify networks, as well)

I am also a member of the following other T)$ organizations:

Specific applications or reasons for interest in T@:

Hardware on which Tfl is used:

Computer and operating system Output deviceiprinter

There are two types of TUG members: regular members, who pay annual
dues of $45; and full-time student members, whose annual dues are $35.
Students must include verification of student status with their
applications.

Please indicate the type of membership for which you are applying:

Amount enclosed for 1991 membership: $

(Prepayment in US dollars drawn on a US bank is required)

ChecWmoney order payable to T@ Users Group enclosed

Charge to MasterCardMSA

Card # Exp. date -

WYSIWYG ->

View your equation as
you create it. Then
insert into your TEX
document with one
command.

Tm Edition ONLY $129.00

30 West First Avenue KTALE CoIumbus, Ohio 43201
C O M M U N I C A T I O N S = (614) 294-3535

~iofessional Edition $199.00
Shipping: $4 (U.S.A.), $25 (Canada), $35 (Overseas)
VISA, Mastercard and University and Government P.O.'s accepted.

FAX (614) 294-3704

Publishing Companion@ translates

WordPerfect

IN ONE EASY STEP!

With Publishing Companion, you can publish documents using TEX or bT with little or no
TEX knowledge. Your Wordperfect files are translated into TEX or bT$ fi p es, so anyone using
this simple word processor can immediately begin typesetting their own documents!

Publishing Companion translates EQUATIONS, FOOTNOTES, ENDNOTES, FONT STYLES.
and much more!

Retail Price . $249.00
. Academic Discount Price $199.00

For more information or to place an order, call or write:

30 West First Ave, Suite 100
Columbus, Ohio 43201

(614)294-3535
FAX (6 l4)294-3704

TYPESET QUALITY WITH THE EASE OF WORD PROCESSING

Finally, a beffer way to use T@

TEX v3 1
T ~ X "A Typesetting Language"

Copyrrght @ 1982-1 991 D E. Knuth

Ava~lable Memory 10241:

Unused Memory 3371:

Vrnacs v l .O

Copyright 6) 1991 Interactive Document Systems. Inc. I
Memory Used 13781;

Free Macro Space .. 1711:

T$ in a multitasking WindowsTM environ- An enhanced Emacs-style editor helps you

ment gives you the freedom to compose long jobs avoid common T# errors. The integrated spell
without tying up your computer. The interactive checker catches spelling errors before someone

previewer shows your documents before printing. else does. And, the hypertext help system guides
And, WindowsTM allows you to choose among a you directly to the information you need to get

wide variety of output devices, from dot matrix the job done.

printers to typesetters.

It's About Time.. .AzTEX

Interactive Document Systems, Inc.

P.O. Box 25323 Tempe, AZ 85285-5323 (602) 967-2563 FAX: (602) 780-2472

The American Mathematical Society can offer you a basic Tfi publishing service. You provide the
DVI file and we will produce typeset pages using an A U ~ O I O ~ ~ ~ A P S ~ i c r o - 5 phototypesettkr. The low
cost is basic too: only $5 per page for the first 100 pages; $2.50 per page for additional pages, with a
$30 minimum. Quick turnaround is important to you and us . . . a manuscript up to 500 pages can
be back in your hands in just one week or less.

As a full service TEX publisher, you can look to the American Mathematical Society as a single source
for all your publishing needs.

For more information or to schedule a job, please contact Regina Girouard. American Mathemat-
ical Society, P.O. Box 6248, Providence, RI 02940 or ca11401-455-4060 or 800-321-4AMS in the
continental U.S.

ore and do it better
with new PCTEX.
PC TEX, PC T~X/386 & Big PC T$/386, Versions 3.0

Big

PCTEX P C W P C w / 3 8 6 P C w / 3 8 6

2 . 9 1 3.0 3.0 3.0

This all adds up to.. .
More power, greater performance, and increased memory capacity for
the latest versions of popular macro packages like &TEX and A,uS-TEX.
And all three new PCTEX products feature the character sets and
hyphenation tables to handle even the most complex European languages.

Order today. Call (415) 388-8853.

Page & Memory Capacity mem-rnax

You won t see TF> Capaciti Exceeded 1

Hyphenation Table Size trle-slze

Space for hvphenation patterns

Trie Op Size trle-op-slze

Complexit\ of hvphenat~on patterns

Maximum Trie Ops Per Language

Espec~allj important for Dutch and Gernian h\phenation

Buffer Size buf -sue

Maxmum # of character5 ori input lines

Stack Size stack-slze

'llax~nium # of siniultmeous input source5

Maximum # of Strings max-strlngs

String Pool pool-sue

hlax~m~ini 1L of characttr5 in itrlngs

Save Size save-slze

S p a c ~ for savlng \slues outside current group

Maximum # of Commands hash-slze

Minimum Free RAM Required

Minimum Free RAM Recommended

Memory recommended for optirrium performance

Font Memory f ont-mem-slze

P E R S O N A L

I N C
12 Madrona Avenue
Mill Valley. CA 94941

I

65534 1 3 1 0 7 0 1 3 1 0 7 0

(Double')

3 0 0 0 0

(Double')

1 0 2 4

(4 02)

5 1 2

1 5 0 0

(1 45)

, 2 0 0

11 00)

5 0 0 0

(1 111

6 0 0 0 0

(1 20)

2 0 0 0

(3 31)

5 0 0 0

(1 66)

1 . 3 M

(3 38)

1 . 3 M

(2 36)

6 5 5 3 4

(1 00)

l5000

(1 00)

255

(1 00)

N/ A

1024

(1 00)

200

(1 00)

4500

(1 00)

50000

(1 00)

600

2 6 2 1 4 0

(Quadruple')

6 0 0 0 0

(Quadruple')

2 0 4 8

(8 03)

5 1 2

3 0 0 0

(2 93)

1 3 0 0

(1 50)

1 0 0 0 0

(2 22)

6 0 0 0 0

(1 20)

4 0 0 0

(6 67)

1 1 0 0 0 0

(3 3 3 ,

1 . 3 M

(3 38)

4.OM

(7 27)

6 5 5 3 4

(1 28)

1 2 7

(1 00)

$295

(1 18)

$99

(1 98)

(Double ')

3 0 0 0 0

(Double')

1 0 2 4

, (4 02)

5 1 2

1 5 0 0

(1 46)

2 0 0

(1 00)

' 5 0 0 0

(1 11)

5 0 0 0 0

(1 00)

2 0 0 0

(1 28)

1 2 7

(1 00)

$249

(1 00)

$ 5 0

(1 00)

For TFhl data storage

Maximum Fonts Per Job font-max

List Price

Order \ours today'

Upgrade Price

~ l o m PC 2 93 or earher >erslon

(1 28)

2 5 5

(2 00)

$349

(1 40)

$149

(2 98)

(1 00)

127

(1 001

$249

(1 001

$50

(1 00)

(1 00)

3000

(1 00)

385h

(1 00)

i 5 0 k

(1 00)

51199

(3 331

5 0 0 0

(1 66)

3 8 5 K

(I 00)

5 5 0 K

(1 00)

6 5 5 3 4

In fact, it's created by the same Your input is mathematics, and your
scientists who brought you T3t,, output is TEX.
TCI S o h a r e Research Inc. Discover the genius when you
Scientific Wordt, is the latest in PC combine the power of TEX with the
word processing for Windows 3.0. simplicity of Scientific Wordt,.

1 The file storage format is TEX It's a To be a part of this exciting new
I full document editor, not a previewer. discovery, contact TCI Software

You compose and edit directly on ~esearch 1nc. Call today, toll free
the screen without being forced to 1-800-874-2383. and ask to be put
think in TEX.

I

I

on the list for this summer's speiia~
Scientific Wordt, introductoq offer.

1190 FOSTER ROAD TEL:(505)522-4600
LAS CRUCES, NM FAX:(505)522-0 1 16

I SOF7MfARE RESEARCH, INC. 8800 1 TELEX: 3 1 7629

~3 and Sclentjfic Word ace trademarks of TCI Software Research Inc TEX IS a trademark of the Amerlcan Mathematical Soclety

TYPESETTING: JUST

2 50
PER PAGE!

Send us your TEX DVI files and we will typeset your material
at 2000 dpi on quality photographic paper - $2.50 per page!

Choose from these available fonts: Computer Modern,
Bitstream FontwareTM, and any METAFONT fonts. (For each
METAFONT font used other than Computer Modern, $15
setup is charged. This ad was composed with PCTEX@ and
Bitstream Dutch (Times Roman) fonts, and printed on RC
paper at 2000 dpi with the Chelgraph IBX typesetter.)

And the good news is: just $2.50 per page, $2.25 each for
100+ pages, $2.00 each for 500+ pages! Laser proofs $SO
per page. ($25 minimum on all jobs.)

Call or write today for complete information, sample
prints, and our order form. TYPE 2000,16 Madrona Avenue,
Mill Valley, CA 94941. Phone 4151388-8873.

T Y P E

VECTOR TEX FOR THE 90's

Are you still
struggling with

Move on to scalable
fonts:
Save megabytes of storage-entire WEX fits on

one floppy.

Instantly generate any font in any size and in any

variation from j to 100 points.

Standard font effects include compression, slant.

smallcaps, outline. shading and shadow.

Sew: landscape. New: scalable graphics.

Discover the universe of MicroPress Font Library

professional typefaces: not available from any

other TEX vender.

List price $299

Includes the VTEX typesetter (superset of TEX), 10 scalable

typefaces, VVIEW (arbitrary magnification on EGA. CGA, VGA,

Hercules, AT&T), VLASER (HP LaserJet), WOST (PostScript),

VDOT (Epson, Panasonic, NEC, Toshiba. Proprinter, Star. DeskJet)

and manuals.

S/H add S j. COD add $5 .
Wordperfect Interface add $100. Site licenses available.

Deaiers' inquiries welcome. Professional typefaces

available for older implementations of TEX.

MICRO
m

d MicroPress Inc.
68-30 Harrow Street, Forest Hills, NY 11375

PRESS Tel: (718) 575-1816 Fax: (718) 575-8038

VTEX IS a trademark of MicroPress Inc Other Praducts mentioned are tiademarks
-
of their
-
respective companies

The Joy of TEX

A Gourmet Guide to Typesetting with the AMS-TEX
Macro Package, Second Edition

M. D. Spivak

This is the second edition of The Joy of TEX, the user-friendly guide to
AMS-TEX, which is a software package based on the revolutionary
computer typesetting language TEX. A,~/IS-TEX was designed to simplify
the typesetting of mathematical quantities, equations, and displays, and to
format the output according to any of various preset style specifications.
This second edition of Joy has been updated to reflect the changes
introduced in Version 2.0 of the AMS-TEX macro package.

The first two parts of the manual, "Starters" and "Main Courses," teach
the reader how to typeset the kind of text and mathematics one ordinarily
encounters. "Sauces and Pickles," the third section, treats more exotic
problems and includes a 60-page dictionary on special techniques. The
manual also includes descriptions of conventions of mathematical
typography to help the novice technical typist. Appendices list handy
summaries of frequently used and more esoteric symbols.

This manual will prove useful for technical typists as well as scientists
who prepare their own manuscripts. For the novice, exercises sprinkled
generously throughout each chapter encourage the reader to sit down at a
terminal and learn through experience.

1980 Mathematics Subject Classifications: 00, 68
ISBN 0-8218-2997-1, LC 90-1082
309 pages, Softcover, 1990
List Price $38, AMS institutional member $34,
AMS individual member $30
To order, please specify, JOYTPT

All prices subject to change. Free shipment by surface; for air delivery, please add
$6.50 per title. Prepayment required. Order from American Mathematical Society,
P. 0. Box 1571, Annex Station, Providence, RI 02901-1571, or call toll free 800-321-
4AMS in the continental U.S. and Canada to charge with VISA or Mastercard.

For fast answers to common TM questions, you need . . .

TEX for the Impatient
a practical handbook for

new and current TEX users

I l by Paul W. Abrahams
I
11

with Karl Berry and Kathryn A. Hargreaves

Clear, concise, and accessible, this handy reference manual is organized
easy retrieval of information. Thoroughly indexed and carefully
designed, @X for the Impatient is packed with explicit instructions,
useful tips, and a wealth of witty and illuminating illustrations.

384 pages include:
Complete descriptions of TEX commands, arranged for

lookup either by function or alphabetically

Clear d
sllected

of essential
.ate cha~te r

TEX concepts,
so that the - ---. .

k I f command descriptions remain brief and accessible

Explanations of common error messages and
I advice on solvine, ~roblems that freauently arise

w A

A collection of useful macros
/

@X for the Impatient is for busy people
o have discovered the unmatched benefits of TEX, but
o lack the time to master its intricacies. It is for

everyone-new user to expert-who needs a quick
reference guide to TEX.

Available now from

TFX Users G r o u ~
P. 0. Box 9506
Providence, RI 02940, USA
Phone (401) 751-7760
FAX: (401) 751-1071
Mastercard/Visa, checks and money orders accepted

TUG Members . $25
Regular price . . . $27

Shipping in US: $3/copy
Outside US: $8/copy air

TM
The converter that produces resolution-
independent ~ o s t ~ c r i ~ t output using
outline fonts.

Now you can really exploit outline font technology in T@. . .

A DVI-to-PS converter that uses outline fonts makes it possible to use
fonts other than Computer Modern-and to use Computer Modern fonts

in unusual sizes and orientations.

It is, of course, always possible to 'permanently' download outline fonts to a Post-
Script printer and then treat these fonts as if they were printer resident. Trouble is,
typical outline fonts take over 50 kbytes of printer memory, and so only a handful
can be loaded at a time. And this means that very many DVI files cannot be printed,
since it is not uncommon for a DVI file to call for 30 or more fonts.

. . .without running out of printer memory,

DVIPSONE's advanced font management techniques make it possible to

use outline fonts as efficiently as one can use bitmapped fonts with older
DVI-to-PS converters.

Disks no longer have to be cluttered up with those huge high-resolution bitmap
font files. It is also no longer necessary to reconvert from DVI to PS format every
time an output device of different resolution is used. The very same Postscript file
used for proofing on a laser printer can be sent to a high resolution image setter.
This greatly reduces the chance of 'surprises' when the final copy is run off.

. . .while enjoying considerable cost savings.

Many service bureaus will image resolution-independent Postscript files

for a little over $2 per page, while it can cost as much as four times that for

someone knowledgeable about T@ to process DVI files.

D V I P S O N E ~ ~ runs on IBM PC compatibles and can use any Adobe Type 1 outline
font, including printer resident fonts, Computer Modern outline fonts, as well as any

ojfhe over 7,000 Type 1 fonts availablefrom 30 vendors, including more than 7,000 in
the Adobe Type Library alone.

Y&Y, 1 0 6 Indian Hill, Carlisle, M A 0 1 7 4 1 U S A (508) 371 -3286

Typesetting Software
Executables $150

Now
Windows

Compatible!

N
ow you CAN run the TEX
typesetting system in the
powerful and convenie-
nient graphical environ-

ment of Microsoft Windows, with the

new Windows-compatible TurboT~X

Release 3.1.

TurboT~X brings you the latest
TEX 3.1 and METRFONT 2.7 stan-
dards and certifications: preloaded

plain TEX, IbTEX, AMS-TEX and AM^-
JbTEX, M ETA FONT, preview for
EGA/VGA displays, Computer

Modern and BTEX fonts, and printer
drivers for HP LaserJet and DeskJet,

Postscript, and Epson LQ and FX
dot-matrix printers. This wealth of

software runs on your IBM PC (MS-
DOS, Windows, or OS/2), UNIX, or
VAX/VMS system.

W Best-selling Value: TurboT~X sets
the standard for power and value
among TEX implementations: one

price buys a complete, commercially-
hardened typesetting system. Com-
puter magazine recommended it
as "the version of TEX to have,"

IEEE Software called it "industrial
strength," and thousands of satisfied

users worldwide agree.

TurboT~X gets you started quickly,
installing itself automatically under

MS-DOS or Microsoft Windows, and
compiling itself automatically under
UNIX. The 90-page User's Guide in-

cludes generous examples and a full
index, and leads you step-by-step

A , .

through installing and using TEX and
M E T A FONT.

W Classic TEX for Windows. Even it

you have never used Windows on
your PC, the speed and power of

TurboT~X will convince you of the
benefits. While the TEX command-

line options and T ~ X b o o k interaction
work the same, you also can control
TEX using friendly icons, menus, and

dialog boxes. Windows protected

mode frees you from MS-DOS lim-
itations like DOS extenders, over-
lay swapping, and scarce memory.

You can run long TEX formatting
or printing jobs in the background
while using other programs in the

foreground.

W MS-DOS Power, Too: Tur-

~oTEX still includes the plain M S
DOS programs. Even without ex-
panded memory hardware, our vir-

tual memory simulation provides the
same sized TEX that runs on multi-

megabyte mainframes, with capac-
ity for large documents, complicated

formats, and demanding macro pack-
ages.

W Source Code: The portable C

source to TurboT~X consists of over
100,000 lines of generously com-

mented TEX, TurboT~X, M E T R FONT,

previewer, and printer driver source
code, including: our WEB system in

C; PASCHAL, our proprietary Pascal-
to-C translator; Windows menus

and text-mode interface library; and
preloading, virtual memory, and

graphics code, all meeting C porta-
bility standards like ANSI and K&R.

W Availability & Requirements:

TurboT~X executables for IBM PC's
include the User's Guide and re-

quire 640K, hard disk, and MS-DOS
3.0 or later. Windows extensions re-
quire Microsoft Windows 3.0. Order

source code (includes Programmer's
Guide) for other machines. On the

PC, source compiles with Microsoft
C 5.0 or later (and Windows SDK

for Windows extensions), Watcom
C 8.0, or Borland C++ 2.0; other op-

erating systems need a 32-bit C com-
piler supporting UNIX standard I/O.
Media is 360K 5-1 /4" or 720K 3-1 /2"

PC floppy disks (please specify).

W Upgrade at Low Cost. If you

have TurboT~X Release 3.0, upgrade

to the latest version for just 540 (ex-
ecutable~) or $80 (including source).
Or, get either applicable upgrade free
when you buy the AP-TEX fonts (see

facing page) for $200!

No-risk trial offer: Examine the
documentation and run the PC Tur-

~oTEX for 10 days. If you are not sat-
isfied, return it for a 100% refund or

credit. (Offer applies to PC executa-

bles only.)

Free Buyer's Guide: Ask for the

free, 70-page Buyer's Guide for de-
tails on TurboT~X and dozens of TEX-
related products: previewers, TEX-to-
FAX and TEX-to-Ventura/Pagemaker
translators, optional fonts, graphics

editors, public domain TEX accessory
software, books and reports.

Ordering TurboT~X

Ordering TurboT~X is easy and deliv-
ery is fast, by phone, FAX, or mail.

Terms: Check with order (free media
and ground shipping in US), VISA,

Mastercard (free media, shipping ex-
tra); Net 30 to well-rated firms and
public agencies (shipping and media

extra). Discounts available for quan-
tities or resale. International orders

gladly expedited via Air or Express
Mail.

The Kinch Computer Company

501 South Meadow Street

Ithaca, New York 14850 USA
Telephone (607) 273-0222

FAX (607) 273-0484

AP-TJ~X Fonts Avant Garde BoM

Avant Garde :"bue
7QjX-compatible Bit-Mapped Fonts

Identical to
Adobe Postscript Typefaces

Avant Garde Demlboid

Avant Garde E t d

Bookrnan Light
If you are hungry for new TEX fonts, here is a feast guar-
anteed to satisfy the biggest appetite! The A P - w fonts

serve you a banquet of gourmet delights: 438 fonts cov-
ering 18 sizes of 35 styles, at a total price of $200. The
AP-TEX fonts consist of PK and TFM files which are ex-
act 'I)ijX-compatible equivalents (including "hinted" pix-
els) to the popular Postscript name-brand fonts shown
at the right. Since they are directly compatible with any
standard TEX implementation (including kerning and liga-
tures), you don't have to be a expert to install or use

them.

Bookman :%!
Bookman DemboM

Demibold BOO kman italic

C o u r i e r

C o u r i e r Obliaue

Cour ie r ~ d d

C o u r i er ;:&ue

Helvetica

Helvetica Oblique When ordering, specify resolution of 300 dpi (for laser

printers), 180 dpi (for 24-pin dot matrix printers), or 118
dpi (for previewers). Each set is on ten 360 K B 5-114"
PC floppy disks. The $200 price applies to the first set
you order; order additional sets a t other resolutions for
$60 each. A 30-page user's guide fully explains how to
install and use the fonts. Sizes included are 5, 6, 7, 8, 9,
10, 11, 12, 14.4, 17.3, 20.7, and 24.9 points; headline styles
(equivalent to Times Roman, Helvetica, and Palatino, all

in bold) also include sizes 29.9, 35.8, 43.0, 51.6, 61.9, and
74.3 points.

Helvetica Bold

Helvetica Narrow
Helvetica Narrow Oblique

Helvetica Narrow

Helvetica Narrow Efque
Schoolbook :::,"Rntury

Schoolbook lzEcentu"
Schoolbook :Ecemury The Kinch Computer Company

PUBLISHERS OF TURBO~QX

501 South Meadow Street

Ithaca, New York 14850
Telephone (607) 273-0222

FAX (607) 273-0484

Schoolbook
New Century
Bdd I tak

Palatino Roman

Palatino italic

P alaf in0 B O I ~

Palatino
Helvetica, Palatino, Times, and New Century Schoolbook are trademarks of
Allied Linotype Co. ITC Avant Garde, ITC Bookman, ITC Zapf Chancery,
and ITC Zapf Dingbats are registered trademarks of International Typeface
Corporation. Postscript is a registered trademark of Adobe Systems Incorpo-
rated. The owners of these trademarks and Adobe Systems, Inc. are not the
authors, publishers, or licensors of the AP-T@ fonts. Kinch Computer Com-
pany is the sole author of the AP-'QX fonts, and has operated independently
of the trademark owners and Adobe Systems, Inc. in publishing this soft-
ware. Any reference in the AP-'QX font software or in this advertisement to
these trademarks is solely for software compatibility or product comparison.

LaserJet and DeskJet are trademarks of Hewlett-Padcard Corporation. '&X
is a trademark of the American Math Society. T u r b o w and AP-'I)$ are
trademarks of Kinch Computer Company. Prices and specifications subject to
change without notice. Revised October 9, 1990.

Times Roman

Times I tdk

Times ~ d d

Times ::$

Zapf Dingbats % e C 1

For TEX Users,, , ,
New Services and Prices from

Computer Composition Corporation

We are pleased to announce the installation of several
new output servicesnow available to TEX users:

1. High Resolution Laser Imaging (1 200 dpi) from Postscript diskette
files created on either Mac- or PC-based systems.

2. High Resolution Laser Imaging (960 dpi) from DVImagnetic tape or
diskette files using a variety of typefaces in addition to the Computer
Modern typeface family.

3. High quality laser page proofs at 480 dpi.

4. NEW PRICING for high resolution laser imaging:

a. From Postscript text files in volumes over 400 pages $2.00 per page

b. From Postscript text files in volumes
between 100 & 400 pages . $2.25 per page

c. From Postscript text files in volumes below 100 pages . . $2.40 per page

d. From DVI files in volumes over 400 pages $2.15 per page

e. From DVI files in volumes between 100 & 400 pages $2.30 per page

f . From DVI files in volumes below 100 pages $2.45 per page

NOTE: DEDUCT $1.00 FROM THE ABOVE PRICES FOR HIGH QUALITY
LASER PAGE PROOFS.

5. All jobs shipped within 48 hours.

Call or write for page samples or send us your file and
we will image it on the output unit of your choice.

COMPUTER COMPOSITION CORPORATION - r -_ -<- <--
-;I - - - - - 140 1 West Girard Avenue Madison Heights, MI 4807 1 - - = < = - . - - - . - - - . - - - . - - - - . - . - . - - = - - - - - -- - m (31 3) 545-4330 FAX (313) 544-161 1

= - - - - - - - - -- -- - Since 1970 -

Public Domain TJ$

The public domain versions of software are available from Maria Code - Data Processing

Services by special arrangement with Stanford University and other contributing universities. The

standard distribution tape contains the source of and METRFONT, the macro libraries for

AMS-TEX, UTEX, SliTj$ and HP TI$, sample device drivers for a Versetec and LN03 printers,

documentation files, and many useful tools.

Since these are in the public domain, they may be used and copied without royalty concerns. A

portion of your tape cost is used to support development at Stanford University.

Compiled versions of T@ are available for DEC VAXIVMS, IBM CMS, IBM MVS and DEC

TOPS systems. Systems using a standard format must compile TEX with a Pascal compiler.

TEX Order Form

TEX Distribution tapes: Font Library Tapes (GF files)

- Standard ASCII format - 300 dpi VAXIVMS format

- Standard EBCDIC format - 300 dpi generic format

- Special VAXIVMS format Backup - IBM 382013812 MVS format

- Special DEC 20/TOPS 20 Dumper format - IBM 3800 CMS format

- Special IBM VMICMS format - IBM 4250 CMS format

- Special IBM MVS format - IBM 382013812 CMS format

Tape prices: $92.00 for first tape, $72.00 for each additional tape. Postage: allow 2 lbs. for each

tape.

Documents:

W b o o k (vol. A) softcover .
W : The Program (vol. B) hardcover
METAFONT book (vol. C) softcover
METAFONT: The Program (vol. D) hardcover . . .
Computer Modern Typefaces (vol. E) hardcover

UTEX document preparation system
WEB language * .
m w a r e * .
B i b w * .
Torture Test for * .
Torture Test for METAFONT *
METAFONTware * .
Metamarks * .

* published by Stanford University

Price $

30.00

44.00

22.00

44.00

44.00

30.00

12.00

10.00

10.00

8.00

8.00

15.00

15.00

Weight Quantity

2 -

Orders from within California must add sales tax for your location.

Shipping charges: domestic book rate-no charge, domestic priority mail-$1.50/lb, air mail to

Canada and Mexico-$2.00/lb, export surface mail (all countries)-$1.50/lb, air mail to Europe,

South America-$5.00/lb7 air mail to Far East, Africa, Israel-$7.00/lb.

Purchase orders accepted. Payment by check must be drawn on a U.S. bank.

Send your order to: Maria Code, D P Services, 1371 Sydney Drive, Sunnyvale, CA 94087

FAX: 415-948-9388 Tel.: 408-735-8006.

Finally . . .

. . . a complete TEX solution that implements all the

new TEX 3.0 capabilities, virtual fonts, and the Extended

Font standard adopted at the TUG '90 meeting in Cork.

ArborText put it all together. You don't have to!

TEX 3.0 kornplett. Die ArborText-Losung.

Ar-borText a tout prkpark pour vous. Projtez-en!

Al-bor-Text opracowai wszystko. Wy nie musicie!

ArborText's Tfl3.14 provides everything you need in a complete, ready-to-use package:

Utilize the Extended TEX Font Encoding capability with pre-built virtual fonts

for Computer Modem and Postscript
Use the conversion utilities we supply to make your own extended fonts from

existing TEX 2.0 style fonts

Easily accent characters from your foreign language keyboard

Create multi-language documents

Choose from included hyphenation patterns for English, French, Geman, Dutch,

Spanish, Portuguese, or add your own

Use the extended version of Plain T$ and LATEX

IVe've provided access to the New Extended Fonts directly-macro source included!

TES 3.14 and support software is available for Sun, Apollo,

DECRisc-Ultrix, IBM PCs, HP 9000 Series 300 & 400.

Conling Soor?: TEX 3.14 for IBM RS/6000,
Silicon Graphics, HP 9000 Series 700 & 800.

535 W. William St. Ann Arbor, MI 48103 (313) 996-3566 FAX (313) 996-3573

This collection has been compiled over the past several years by Jon Radel and will continue to be
updated by him in the future. It contains a wide variety of T@ and T@-related programs including:
front ends and editing tools, graphics support, drivers, fonts, style files and macros, and programming
tools. It also contains A Gentle Introduction to T&X by Michael Doob, as well as compilations of
various electronic QX digests from around the world.

TEX -

USERS
GROUP

For a free catalogue contact: Prices:

Tm Users Group US Foreign
E 0. Box 9506 Providence, FU 02940 $3.50each $4.00each 1-lodisks
Tel: (401) 751-7760 Fax: (401) 751-1071 $2.50 each $3.00 each 1 1 + disks
Email: tugQmath . a m . com Postage t9 handling included

Public Domain
Tflware

Now available through the T@ Users Group

A new and unique service from the Printing Division ofthe Oldest h s in the World

The CAMBRIDGE service that lets you and your publisher decide how your

mathematical or scientific text will appear.

Monotype output in Times and Helvetica as well as a complete range of

Computer Modern faces from your TEX keystrokes

Fordrtarls contact

T E C H N I C A L A P P L I C A T I O N S G R O U P C A M B R I D G E U N I V E R S I T Y P R E S S
U N I V E R S I T Y P R I N T I N G H O U S E S H A F T E S B U R Y R O A D C A M B R I D G E C B 2 2 B S E N G L A N D

T E L E P H O N E (0 2 2 3) 3 2 5 0 7 0

VALUABLE ADDITIONS TO YOUR TEX TOOLBOX

CAPTURE texpic Voyager
Capture graphics generated by With texpic graphics package. Macros to produce viewgraphs
CAD, circuit design, data plot- you have the tools to integrate quickly and easily using w.
ters. and other application pro- simple graphics-boxes, circles. They provide format, indenta-
grams that support the LaserJet. ellipses, lines, arrows-into your tion. font, and spacing control.
Make LaserJet images cornpati- TljX documents. Maintains out- Macros included to produce ver-
ble with TEX. Create pk files from put device independence. tical and horizontal bar charts.
p c l or pcx files. $115.00 $79.00 $25.00

Micro Programs Inc. 251 Jackson h e . Syosset, NY 11791 (516) 921-1351

SPRINGER FOR TEX
A Beginner's Book of TEX

Raymond Seroul, Universite Louis Pasteur, Strasbourg, France;
Silvio Levy, Princeton, New Jersey

Many other TEX books are simply manuals. This book is a friendly
introduction t o T ~ x the powerful typesetting system by Don Knuth. It is
addressed primarily to beginners, but it contains much information that
will be useful to aspiring T~Xwizards. Moreover, the authors kept firmly
in mind the diversity of backgrounds that characterizesT~Xusers: authors
in the sciences and in the humanities, secretaries, and technical typists.

The book contains a careful explanation of all the fundamental concepts
and commands, but also a wealth of commented examples and "tricks"
based on the authors' long experience wi thT~X. The attentive reader will
quickly be able to create a table, or customize the appearance of the page,
or code even the most complicated formula. The last third of the book is
devoted to a Dictionary/Index, summarizing all the material the text and
going into greater depth in many areas.

Chapter I: What isT,X ?

Chapter 2 : The characters of TEX

Chapter 3: Groups and Modes

Chapter 4: The Fon t sT~X uses

Chapter 5: Spacing, glue and sprlngs

Chapter 6: Paragraphs

Chapter 7: Page L q o u t

Chapter 8: Boxes

Chapter 9: Alignements

Chapter 10: Tabbing

Chapter 11: Typesetting Mathematics

Chapter 12: TEX Programmrng

Chapter 13: Dictlonaty and Index

Buy at your local technical bookstore.
T o order, call 1-800-SPRINGER or
201-348-4033 in NJ. Please reference S838
to expedite your order. Or mail this ad to:

Springer-Verlag New York, Inc.
175 Fifth Avenue

New York, NY 1C010
Attn.: John DiStefano

Add $2.50 for shlppmg (CA, NJ & NY residents

please add sales tax.)

Name

Address ...
9

Springer-Verlag
New York . Berlin Heidelberg . Vienna . London . Paris . Tokyo Hong Kong . Barcelona

Index of Advertisers 342.343

334.339 American Mathematical Society 328.338

346 ArborText 348

Cover 3 Blue Sky Research 335

347 Cambridge University Press 348

344 Computer Composition 336

345 DP Services 329,330,340,347

334 IDS (Interactive Document Systems) 337

332,333 K-Talk Communications 341

Kinch Computer Company

MicroPress, Inc.

Micro Programs, Inc.

Personal TF$ Inc.

Springer-Verlag

TCI Software

Users Group

Type 2000

Y&Y

Supplement, Page 1 : Bugs in Computers & Typesetting 26 March 1991

Bugs in Computers & Typesetting

26 March 1991

This is a list of corrections made t o Computers & Typesetting, Volumes A-E. since the last

publication of the Errata and Changes list (21 September 1990). Corrections to the softcover

version of The 2)jXbook are the same as corrections to Volume A; corrections to the softcover

version of The METRFONTbook are the same as corrections to Volume C.

Pane A137, lines 2 and 3 from the bottom (11/9/90)

and you shouldn't even be reading this manual,

which is undoubtedly all English to you.

Page A141, line 15 from the bottom (10/18/90)

Thus if you type '$l\over2$' (in a text) you get i, namely style S over style S';

Page A377. the bottom 14 lines (3/26/91)

ASCII (space); the macro also decides whether a space token is explicit or implicit.

\newif\ifspace \newif\iffunny \newif\ifexplicit
\def\stest#l{\expandafter\s\the#l! \stest)
\def\s{\funnyfalse \global\explicitfalse \futurelet\next\ss)
\def\ss{\ifcat\noexpand\next\stoken \spacetrue

\ifx\next\stoken \let\next=\sss \else\let\next=\ssss \fi
\else \let\next=\sssss \fi \next)

\long\def\sss#l #2\stest{\def\next{#l)%
\ifx\next\empty \global\explicittrue \fi)

\long\def\ssss#l#2\stest{\funnytrue {\uccodei#l='-
\uppercase{\ifcat\noexpand#l)\noexpand-% active funny space
\else \escapechar=\if*#l'?\else'*\fi

\if#l\string#l\global\explicittrue\fi \fi))
\long\def\sssss#l\stest{\spacefalse)

Page A444, lines 15-26 (3/26/91)

14. If the current item is an Ord atom, go directly to Rule 17 unless all of the
following are true: The nucleus is a symbol; the subscript and superscript are both
empty; the very next item in the math list is an atom of type Ord, Op, Bin, Rel, Open,
Close, or Punct; and the nucleus of the next item is a symbol whose family is the same
as the family in the present Ord atom. In such cases the present symbol is marked as
a text symbol. If the font information shows a ligature between this symbol and the
following one, using the specified family and the current size, then insert the ligature
character and continue as specified by the font; in this process, two characters may
collapse into a single Ord text symbol. and/or new Ord text characters may appear. If
the font information shows a kern between the current symbol and the next, insert a
kern item following the current atom. As soon as an Ord atom has been fully processed
for ligatures and kerns, go to Rule 17.

Supplement, Page 2 : Bugs in Computers & Typesetting 26 March 1991

Paee C11. re~lacement for second auotation at bottom of ~ a n e /9/27/90\

To anyone who has lived in a modern American city (except Boston)
at least one o f the underlying ideas o f Descartes' analytic geometry

will seem ridiculously evident. Yet, as remarked,
i t took mathematicians all o f two thousand years

t o arrive at this simple thing.

- ERIC TEMPLE BELL, Mathematics: Queen and Servant o f Science (1951)

Page C262, line 15 (3/26/91)

string base-name, base-version; base-name="plain"; base-version="2.7";

Pane C262, lines 19-21 (11/9/90)

for commonly occurring idioms. For example, 'stop "hello1" displays 'hello' on the
terminal and waits until (return) is typed.

def upto = step 1 until enddef; def downto = step -1 until enddef;

Pane C271, line 17 from the bottom (3126191)

currentpen-path shifted (z.t-) withpen penspeck enddef;

Page C329, line 325 (12/29/90)

which can be used to specify a nonstandard file area or directory name for the gray

Pane ~ 3 4 7 . left column (9127190)

Bell, Eric Temple, 11.

Page C347, Bront'!e entry (1/29/91)

[The accent was clobbered: her name should. of course, be Bronte. Fix the entries for Diirer,
Mobius, and Stravinsky in the same way.]

Page C349, left column (9/27/90)

Descartes, R e d , 6, 11, 19.

Page C356, right column (9/27/90)

[remove the entry for Rex Stout.]

Pane C358. rieht column (9/27/90\

[remove the entry for Nero Wolfe.]

Supplement, Page 3 : Changes to the Programs and Fonts 26 March 1991

Changes to the Programs and Fonts

26 March 1991

TEX
Changes subsequent to errata publication, 21 September 1990:

Note: When making change 376, I forgot to delete the redundant

code in module 883, and I should also have changed the name of that
module. These cosmetic changes (and some changes to the comments)

were made in version 3.14, in addition to the following two changes.

393. Show unprintable characters in font id's (Wayne Sullivan, Dec 1990)

Qx module 63

print (s) ;

QY
slow-print (s) ;

Qz

Qx module 262 can now be spruced up

else begin print-esc("") ; slow-print (text (p)) ;

QY
else begin print-esc (text (p)) ;

Qz

Qx and module 263 likewise

else begin print-esc (" ") ; slow-print (text (p)) ;

end ;

QY

else print-esc(text (p)) ;

Qz

394. Avoid range check if total_pages>65535 (Eberhard Mattes, Dec 1990)

Qx module 642

dvi-out (total-pages div 256) ; dvi-out (total-pages mod 256) ;Q/

QY
dvi-out ((total-pages div 256) mod 256) ; dvi-out (total-pages mod 256) ;Q/

Qz

395. The absolutely final change (to be made after my death)

Qx module 2

Qd banner=='This is TeX, Version 3.14' {printed when \TeX\ starts)

QY
Qd banner=='This is TeX, Version π' {printed when \TeX\ starts)

Qz

My last will and testament for TeX is that no further changes be made

under any circumstances. Improved systems should not be called simply 'TeX';

that name, unqualified, should refer only to the program for which I have
taken personal responsibility. -- Don Knuth

Supplement, Page 4 : Changes to the Programs and Fonts 26 March 1991

META FONT

Changes since 21 September 1990.

557. The absolutely final change (to be made after my death)

Qx module 2

Qd banner=='This is METAFONT, Version 2.7' {printed when \MF\ starts)

QY
Qd banner=='This is METAFONT, Version e' {printed when \MF\ starts)

Qz

My last will and testament for METAFONT is that no further changes be made

under any circumstances. Improved systems should not be called simply

'METAFONT'; that name, unqualified, should refer only to the program for which

I have taken personal responsibility. -- Don Knuth

Computer Modern fonts

Changes since 25 March 1990.

No current changes.

Forty faces of Computer Modern

designed by Donald Knuth

published in Adobe Type 1 format

compatible with

Adobe Type Manager

and all Postscript printers

$345.00 Educational $195.00

Macintosh or MS-DOS

Blue Sky Research

534 Southwest Third Avenue

Portland, Oregon 97204 USA

(800) 622-8398, (503) 222-9571

FAX (503) 222-1643

General Delivery

Philology

Fonts

Graphics

Output Devices

Resources

Questions

Tutorials

Warnings

Macros

Queries

Letters

Abstracts

News &
Announcements

Late-Breaking News

TUG Business

Forms

Advertisements

Supplements

Volume 12, Number 2 / June 1991

Addresses

President's introduction / Nelson H. F . Beebe

Editorial comments / Barbara Beeton
!I)$ in Germany / Walter Obermiller

Russian !I)$ / Basil Malyshev, Alexander Samarin and Dimitri Vulis

Serbo-Croatian hyphenation: a !I)$ point of view / Cvetana Krstev

On w and. Greek. . . / Yannis Haralambous

J e m m 2.00 available for Japanese / Fran~ois Jalbert

Labelled diagrams in METRFONT 1 Alan Jeffrey
'

X bitmaps i n w / Reinhard Fofimeier

Report on the DVI Driver Standard / Joachim Schrod

Review of 3: 16 Bible Texts Illuminated / Karl Berry and Kathy Hargreaves

Review of .@m for engineers and sczentzsts / Nico Poppelier

Just p la in Q&A / Alan Hoenig

The \ i f , \ i f x and \ i f ca t comparisons / David Salomon

Some tools for making indexes: Part I / Lincoln Durst
The structure of the m processor / Victor Eijkhout

Initiation rites / Barbara Beeton

Solution to the riddle from TUGboat 11, no. 4 / Rank Mittelbach

The bag of tricks / Victor Eijkhout

7$$ macros for producing multiple-choice tests / Don De Smet
Getting \answers in w / Jim Hefferon

Oral w / Victor Eijkhout
An expansion power lemma / Sonja Maus
Generating \n asterisks / George Russell

w and envelopes / Dimitri Vulis

The L A W column / Jackie Damrau

A comment on The @!I)$ column / Nico Poppelier
LAW tree drawer / Glenn L. Swonk

"See also" indexing with Makeindex / Harold Thimbleby
Babel, a multilingual style-option system for use with LAW'S standard document styles

/ Johannes Braams

Public domain SGML tools wanted / Jeff Lankford
Reporting W ' s hyphenations / Jifi' Veselj.

Response to Victor Eijkhout / Paul Abrahams

Response to Paul Abrahams / Victor Eijkhout
T)$ in schools: Why not? / Al Cuoco

Cahiers GUTenberg #7 and #8

Calendar
?jEX91/Congres GUTenberg'91, Paris, 23-26 September 1991
Desktop Publishing in astronomy and space sciences, Strasbourg, 1-3 October 1991

Call for papers: EP92: International conference on electronic publishing, document
manipulation, and typography, Lausanne, Switzerland, 7-10 April 1992

Fixed-point glue setting: Errata / Donald Knuth

Production notes / Barbara Beeton
Coming next issue

TUG financial statements

Institutional members

TUG Bylaws

TUG membership application

Index of advertisers

Computers & epesett ing: Errata and Changes, Supplement

TUG Resource Directory

