
616 TUGboat, Volume 11 (1990), No. 4

Any changes made by \everypar are now effected ment, the macro \xevpar unwraps the \temppar to-

inside a qroup. In this case one remedy is to insert ken list and the constant actions into \everypar. - -

a \ leavemode command, or to define

\def\smallcapswords#l(\leavevmode

(\smallcaps #I11

which can be used at any place.

Another remedy would be to let all assignments

controlling indentation be global. However, there

are some subtle objections to this.

3 About macro packages and users

Above I remarked that plain rn does not use

\everypar, and that IPm redefines it a lot. This

means that in plain the user is free to take ev-

ery value of \everypar that he or she likes; in I4"
every attempt of the user to use \everypar is im-

mediately thwarted.

One might ask how the use of \everypar that

I have sketched compares to this. Can the user be

allowed to access \everypar, even if the macro pack-

age needs it all the time?

In my own 'Lollipop' format I have taken the

following way out. The user or the style designer is

allowed to fill in \everypar. as long as the statement

\ the\everyeverypar

is included. Here \everyeverypar is the token list

with the constant actions such as indentation control

that should be performed always.

A format designer who wishes to hide even this

from the user or the style designer, could use the

following piece of code

\newtoks\temppar

\def\everyparagraph

C\af terassignment\xevpar

\temppar)

\def\xevpar

(\edef \act(\everypar=

(\the\everyeverypar

\the\temppar

11%

\ a c t3

so that it becomes possible to write

\everyparagraph={\DoSomething

\everyparagraph=())

while the \everypar will still contain all of the con-

stant actions.

Short explanation: \everyparagraph is a

macro that is made to look like a token paramter by

the use of \af terassignment. This latter command

sets aside \xevpar for execution after whatever fol-

lows is assigned to \temppar. Following the assign-

4 Conclusion

In a systematic layout indentation commands need

never be typed by the user; they can all be hidden in

macros. Using \everypar it is possible to prevent

indentation both in single instances, and throughout

the document. This has the advantage that is is not

necessary to zero the \parindent parameter or use

\ indent and \noindent instructions.

The approach of employing \everypar as

sketched above can also be used for a paragraph skip

schenk, as I will show in the subsequent article.

References

[I] Donald Knuth. The m b o o k , Addison-Wesley

Publishing Company, 1984.

[2] Leslie Lamport. WI&X. a document preparation

system, Addison-Wesley Publishing Company,

1986.

[3] Victor Eijkhout, Unusual paragraph shapes,

TUGboat vol. 11 (1990) #1, pp. 51-53.

[4] Stanley Morison. First principles of typography,

Cambridge University Press, 1936.

[5] J. Braams, V. Eijkhout, N.A.F.M. Poppelier.

The development of national IPTfjX styles. TUG-

boat vol. 10 (1989) #3, pp. 401-406.

A \parskip Scheme

Victor Eijkhout

While I was working on the I P W styles described

in [I], it became apparent to me that lots of people

are rather fond of the sort of layout that can be

described as

\par indent =Ocm

\parskip=6pt % or other pos i t i ve s i z e

Unfortunately, most of them realize this layout by

no more sophisticated means than simply inserting

these two lines at the beginning of the input. The

drawback of such a simple action is that all sorts

of vertical spaces are augmented by the \parskip

when there is absolutely no need to, or where it is

positively unwanted. Examples of this are the white

space below section headings. and the white space

above and below list environments in UTm.

TUGboat, Volume 11 (1990), No. 4 617

In this article I will present an approach that

unifies the paragraph skip and the white spaces sur-

rounding various environments. Since the macros

given below make use of the \everypar token list,

this article may be seen as a sequel to the previous

article in this issue of TUGboat concerning an in-

dentation scheme, which is based on a similar princi-

ple. The \everypar parameter was explained there.

'IQX starts a paragraph when it switches from verti-

cal to horizontal mode. The vertical mode may have

been initiated by a \par (for instance because of an

empty line after a preceding paragraph) or by a ver-

tical skip command; the switch to horizontal mode

can be effected by, for example. a character or a

horizontal skip command (see the list in [2, p. 2831).

Immediately above the first line of the paragraph

will then add glue of size \pa rsk ip to the ver-

tical list1.

Apparently, then, the \ p a r s k i p parameter is

very simple to use. That this is only an apparent

simplicity becomes clear in a number of instances.

For instance. unless precautions are taken. the

white space below headings is augmented by the

paragraph skip. Precautions against this are not

particularly elegant: the easiest solution is to in-

clude a

statement, to backspace the paragraph skip in ad-

vance. Such an approach, however, is somewhat

error-prone. Vertical spacing will be messed up if

what follows is not a paragraph, but a display for-

mula or a box.

Similar considerations apply to the amounts of

white space that surround, for example, list environ-

ments, as in I4m.

2 Paragraph skip: t o be or not t o be

(This section is something of a footnote to the rest

of the article. Readers who are not interested in

layout considerations may skip the rest of it.)

Ordinarily in plain m and in I4'IQX the para-

graph skip is set to Opt p l u s l p t , which gives pages

some 'last resort' stretchability. However, even an

amount of vertical space as small as one point may

become very visible, and often without need (see for

instance the first page of the preface of [2]).

Furthermore, Stanley Morison states that

not indenting paragraphs is 'decidedly an abject

Unless this paragraph is at the start of a ver-

tical list. for instance at the start of a vertical box

or insertion item.

method' [3]. However, reading his intention instead

of his words, he is only concerned with the recogniz-

ability of the individual paragraphs. The positive

value of the paragraph skip is sufficient to ensure

this. If a layout is based on zero values for both

\par indent and \parskip, one may for instance

give the \parf i l l s k i p a positive natural width to

prevent last lines of a paragraph from almost, or

completely, lining up with the right margin.

Neither Donald Knuth nor Leslie Lamport

seems to have given much thought to the case where

the paragraph skip has a positive natural width.

Leslie Lamport dismisses all potential difficulties

with the remark that 'it is customary not to leave

any extra space between paragraphs' [4, p. 941.

3 Environments and white lines

Given that the paragraph skip appears to interact

with explicit vertical spacing in user macros, it may

seem like a good idea to find a unified approach to

both. In the rest of this article I will describe the

implementation of the following basic idea: give t h e

paragraph skip the value zero whenever you do a n

explicit vertical skip.

For the presentation I assume a context with

some form of environments. These are the assump-

tions that I make about such environments:

An environment is a portion of material that

is vertically separated from whatever is before

and after it. Thus, according to this definition,

a portion of a paragraph cannot be an environ-

ment, nor can an environment start or end in

the middle of a paragraph.

An environment has associated with it three

glue parameters: to an environment f oo corre-

spond \f o o s t a r t s k i p (glue above the environ-

ment), \f ooParskip (the paragraph skip inside

the environment), and the \f ooEndskip (glue

below the environment).

0 At the outset of the environment a

\StartEnvironment{foo)

statement is executed; at the end of the envi-

ronment a macro

\EndEnvironmentCfoo)

is executed. These statements are assumed to

contain a \begingroup and \endgroup respec-

tively.

Such assumptions are sufficiently general for the

macros below to be adaptable to existing macro

packages. At first sight it would appear as if sec-

tion headings are not covered by the above points.

However, there is no argument against the start and

end of an environment occurring in the same macro.

TUGboat, Volume 11 (1990), No. 4

4 Tools

First I will present two auxiliary macros: \csarg

and \vspace.

The command \csarg is only needed inside

other macros; it is meant to enable constructs such

as

\csarg\vskipC#lParskip)

Its definition is

\def \csarg#l#2C\expandafter

#l\csname#2\endcsname)

By way of explanation of this macro, consider a

simple example. Let us assume that there exists

a macro

\def\startlist#lC . . .
\csarg\vskipC#lStar tskip)

. . .3

The call

\startlistCenumeratel

will then lead to the following call to \csarg:

\csarg\vskipCenumerateStartskip3

This expands to

Now the \expandafter forces \csname to be exe-

cuted before the \vskip, so the next step of the

expansion looks like

\vskip\enumerat eSt art skip

and this statement can simply be executed.

Next I need a generalization of \vskip, which

I will call \vspace: a number of calls to \vspace

should have the effect that only the maximum argu-

ment is placed.

\newskip\tempskipa

\def \vspace #1C%

\tempskipa=#l\relax

\ifmode \ifdim\tempskipa<\lastskip

\else \vskip-\lastskip \vskip\tempskipa

\f i

\else \vskip\tempskipa \fi3

This may need some explanation, too. First, by the

assignment

\tempskipa=#l

I allow the argument of \vspace to be both a control

sequence, for instance \parskip, and a denotation,

for instance 5pt plus 3pt. If one omits the assign-

ment, the latter option would cause trouble in the

\ifdim test.

The decision to keep the maximum value of the

skip, instead of always replacing the last skip, was

motivated by phenomena such as a display formula

at the end of a list. If the skip below the display

is larger than the vertical glue below the list (which

may for instance be zero), the former should be re-

tained entirely.

Note that this macro will insert its argument

even if it has the same size as the last skip. There

is a good reason for this. If the call to \vspace

follows a \par command at the end of a paragraph,

it is called in vertical mode, but the last item on the

vertical list is a box (the last line of the paragraph)

instead of a glue item. The parameter \lastskip

will then be zero. If the argument to \vspace is

something like Opt plus 5pt we still want it to be

added to the list, even though its natural size is zero.

5 The environment macros

In this section, I will give the implementation of the

macros \StartEnvironment and \EndEnvironment.

There is a remarkable similarity between these

two macros. As I explained above, the basic idea is

to have only explicit spacing above and below the en-

vironment; thus, the value of \parskip should then

be zero both for the first paragraph in the environ-

ment, and for the first paragraph that follows it.

Both macros should then

0

0

For

save the current value of the paragraph skip:

set the paragraph skip to zero;

give Q J X a signal that, somewhere in the near

future, the old value of \parskip is to be re-

stored.

this I allocate a skip register and a conditional:

\newskip\TempParskip

\newif\ifParskipNeedsRestoring

The basic sequence for the starting and ending

macros is then

\TempParskip=\parskip

\parskip=Ocm\relax

\ParskipNeedsRestoringtrue

For both macros, however, this sequence needs

to be refined slightly.

The paragraph skip to be 'restored' a t the start

of the environment is the specific value associated

with that environment. This gives us:

\def \St art Environment

#l~\csarg\vspace~#lStartskip~

\begingroup %% make changes local

\csarg\TempParskipC#lParskip)

\parskip=Ocm\relax

\ParskipNeedsRestoringtrue)

Note that the statement

\csarg\TempParskip~#lParskip)

