
V m Enhancements to the Language

Michael Vulis
Micropress, Inc., 67-30 Clyde Str., Forest Hills, NY 11375

718-575-1816. Bitnet: cscmlvBccnyvme

Abstract

V W enhances w by providing support for scalable fonts
and thus achieving true device independence. V m turns w
into a compact system (less than 10% of the size of traditional

W) , supports a printer driver definition language, supplements

the T)$ system with a number of new high-quality scalable
typefaces, implements a variety of font effects (compression,
shade, outline, shadow). Support of scalable fonts necessitated

certain changes to the TEX program, syntax, and fonts; this
article describes some of these changes. Since it is likely that

other scalable implementations will follow, the author hopes

that a scalable TEX standard can be defined before appearance

of a conflicting set of definitions.

The Aim of the V w System

Device-independence. From the beginning, TFJ
was designed as a device- and resolution-independ-

ent document processor; however, because of its

reliance on raster fonts, has never achieved this
aim. In a typical T)$ implementation, a user is

confined to particular output devices and particular

resolutions by the mere necessity to maintain a
large volume of raster fonts. A typical 'l&X with

a reasonable collection of fonts requires between
10 and 15 MB of storage; support for a second
device, or just another magnification step, adds a

few megabytes of storage.

The VTEX system is based on vector, rather
than raster fonts. Instead of maintaining multiple

copies of raster fonts at each resolution, V m keeps

only one version of each font. The algorithmic

encoding of characters is expanded into raster
images at run time, allowing instant access to any

needed magnification. Use of vector fonts not only

greatly increases the number of available fonts - it

also shrinks the size of the 'l&X system to under a

megabyte.

Changes in TEX Syntax

Dynamic fonts in V W necessitated certain changes

in TE,X syntax, most importantly in the \font

command. These changes do not interfere with the

TRIP test (so V'l&X is still a m), and provide
much greater flexibility in choosing fonts.

scaled and at . The scaled and a t parameters

work as in standard 'l&X, with an important ex-

ception: any acceptable value that follows these
keywords is fully supported by all device drivers.

s lant . The s lan t keyword is used to specify the
amount of slant in the font. Any VT@ font can
be dynamically slanted. The number that follows

the keyword is the slant coefficient, multiplied by

1000. The s lan t keyword makes the existence of

cmsl, cmssi and cmti fonts unnecessary, since they
can be obtained from other fonts. For instance,

\f ont\sl=crcirlO s lant 167 can be used to declare

a slanted roman font.

aspect. The aspect keyword specifies the aspect
ratio of the font. aspect 1000 is the default,

aspect 500 defines a half-height font, while aspect

2000 defines a font that is twice as high as the

default font. The aspect keyword, in particular,

makes cmdunh unnecessary, since cmdunh is fairly

close to an "aspected" cmr.

smallcaps. The smallcaps keyword defines a font
of caps and smallcaps. Any font can be used with

the smallcaps option. This keyword makes cmcsc

and cmt csc unnecessary.

outl ine, shadow, gray, and f i l lpa t t e rn . These

keywords implement standard font effects: outline,

drop shadow, gray, and pattern shading. The
width of the outline and the length and direction of

shadow can be specified in resolution-independent

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 429

Michael Vulis

units. The gray option is followed by the percent-
age of gray; gray is reasonably device-independent.
The f i l l p a t t e r n option implements non-uniform
shading, such as horizontal or vertical stripes; f i l l -
pa t t e rn is inherently device- and implementation-
dependent. (The current implementation simply
enumerates the available fill patterns).

Changes in Internals

TEX program. Additional features supported by
the \ font command forced deep changes in the
V m program. Character dimensions (widths,
height, depth, and italic correction) are computed
dynamically whenever a character is used. The
dimensions are adjusted when the font has s l a n t ,
aspect, and smallcaps; but no adjustment is made
for shade, out l ine , or shadow. The changes to the
TEX program generally fall into two groups: the
font dimension computations and the \ a l i a s f ont
primitive. The precise specifications for changes
will be made available to interested w users.

TFM format. V m retains the structure of . tfm
files but alters the meaning of some fields. For
instance, the italic correction values in V m . tfm
files are stored for fonts slanted 45" (s l an t 1000).
The actual italic correction is dynamically computed

by v w .
Notice that if a font is defined with s l a n t 1000,

no adjustments are made to the italic correction
specified in the . tfm file. This is used with those
Symbol fonts (e.g., math extensions) that should
never be slanted. These fonts should be defined
with s l a n t 1000; a flag in the font file informs the
drivers that slant should be ignored.

DVI format. The DVI format has been enhanced
to support vector fonts. To retain as much compat-
ibility as feasible, extra font information is passed
as a \ spec ia l that immediately follows a f ontdef
command. Thus, drivers that use raster fonts can
handle enhanced DVI files by ignoring the "tail" of
the f ontdef command.

Font names. As mentioned above, V m does
not support those Computer Modern fonts that
can be obtained as attributes of other fonts. To
retain source compatibility with raster 7&X sources,
VTEX implements the \ a l i a s f ont primitive. This
command maps font names: specifying

\ a l i a s fon t cms110=mvr10 s l a n t 167

forces V m to treat all references to the cmsllO
font as references to the mvrlO font with the s l a n t
167 parameter.

Fonts

VTEX supports vector analogs of Computer Modern
fonts. For compatibility, V'T)$ uses the same
metric files as raster-based m. V'T)$ fonts were
developed with the InstaFont program. InstaFont
is a combination of the optimized METAFONT

algorithms with a user-friendly interface. InstaFont
makes font development a relatively trivial task-
a complete font can be designed by a novice in
less than a week. (For comparison, the Euler font
project sponsored by AMS featured about character-
per-day performance.) About one hundred fonts
have been developed, including look-alikes of such
traditional typefaces as Times Roman, Helvetica,
and Avant Garde.

Font Layouts

Several changes were made to the font layouts,
primarily to eliminate some inconsistencies in the
original 'IjEX layouts. In particular:

V m fonts contain all printable ASCII char-
acters, including the greater and less signs and
braces. The original w approach of borrow-
ing these characters from symbol fonts works
poorly with bold or non-CM fonts.
The " character (\char34) is a straight double
quote, not the closing double quote. Closing
double quote is still available as the ligature
".
Straight quote is available, since it may be
preferred to the opening quote in some abbre-
viations.
V w does not LLcross" L or 1. Instead crossed
L and 1 are included as separate characters. In
professional typefaces, the crossing line in these
letters is not a straight line.
Vl$jX fonts include a number of additional
characters, that are essential for professional
typesetting, Among them are the section,
paragraph and dagger signs, pound and yen,
single and double guillemets, crossed D and d.
Ordinary m lacks some of these characters,
the others are "borrowed" from symbol fonts.
This works poorly even with many CM fonts:
the usual section sign does not blend well with
CM Bold Sans-Serif text (§§1.1).
The changes in the layout are mostly trans-

parent, since they are compensated for by changes
in PLAIN macros. Thus, as long as the user does
not unnecessary refer to characters by their position
and does not use the double quote character for
closing quotes, V!@X stays compatible.

430 TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

V w Enhancements to the w Language

Printer and Screen support

In order to support the maximum number of print-
ers without having to manufacture many different
device drivers, V Q X uses printer definition files.
These files are written in a brief Pascal-like language
that is sufficiently flexible to describe most graphics
printers. A Printer Information Compiler (PINC)
compiles the definitions to a pseudo-code, which is
interpreted by device drivers during printing. Since
compiled printer information files (.PIN) are very
small (100 - 200 bytes each), V w supports many
printers in minimal space. On most printers more
than one resolution is supported. For instance, on
the NEC P-series, the output can be written at
120x240, 240x240, l8Ox 180, 36Ox 180, or 360x360
dots per inch. The variety of PIN files allows the
user to choose the optimal tradeoff between time
and quality. PINs for non-standard printers can be
easily designed by the end-user with PINC.

In a similar fashion, V m supports Screen
Information files (.SIN). The "open architecture"
approach of V Q X resulted in many PINs and SINS
developed by V?jEX users.

Performance

Runtime scaling used by V m drivers does not
seriously slow down printing or previewing. The
following factors contributed to the performance:

V@ scaling algorithms are very fast (up to
500 times faster than those used by META-
FONT).
Similar to Postscript, V m drivers maintain
a font cache and reuse characters.
V w allows one to pre-generate commonly
used fonts. If raster fonts are available, they
would be used instead of vectors. Preliminary
timing experiments show that in most cases it
does not pay to pre-generate more than two
or three of the most common fonts. On 386
class computers, pre-generation is completely
unneeded.
The current implementation limits font scaling

to approximately 120 - 150 point fonts (at 300 dpi).
This is because V Q X font effects require drivers to
actually generate the entire bitmaps in memory. By
the time this paper appears, we expect to raise the
limits to about 1000 points (for a 386 CPU).

A Dirty Trick: Find-a-Font

The availability of fonts at any size makes the
following example meaningful: Assume that you
want to fill a box of given width and height with a

given text set in a given font. It is simple to write
a generic TpX macro that will return the required
magnification of the font. In a raster-based m
this macro would not be especially helpful-the
chances are it will return a magnification that is
not available. With V m , however, the computed
magnification (and, if desired, the aspect ratio) can
be used immediately for actually building the box.

The same approach can be used to build an
adjustable \hat macro. w provides the \hat in
just three sizes. It is, however, possible to compute
the dimensions of a \hat that would cover a given
expression, and then construct a font that would
contain a \hat of the correct size. The same
approach can also work with extendable delimiters.

Not Yet Implemented

Single character scaling. The examples given
above will work, as long as you do not use too many
individually scaled characters at once. Defining an
entire font to scale a single character is overkill,
since there are limits on the number of fonts and
the amount of font memory available. A possible
mechanism would be to allow individual scaled
characters with a syntax similar to

\charc\^ xscaled 4000 yscaled 1200

Such an extension would not be difficult and may
be implemented in V w in the future.

Rotation. Vector font representation, used in
V m , allows easy rotation of fonts. A 90" rotation
may be particularly useful. A possible syntax for
such an extension would be the rotated keyword
on \hbox and \vbox commands. Again, changes to
the 'l$J program would not be too difficult.

Much more exciting is a possibility of incorpo-
rating an arbitrary-degree rotation. The algorithmic
font representation used by V w makes genera-
tion of rotated fonts relatively simple. On the
other hand, A. Hoenig demonstrated in a recent
TUGboat article (volume 11, number 2, pages 183 -
190) a set of macros that position text along
slanted lines and a circle. Hoenig's approach relies
on pre-generation of a large number of fonts via
METAFONT; if a 50-letter sentence is to be posi-
tioned along a circle, 50 different fonts are to be
generated. Combining his ideas with V m would
remove the font pre-generation element. However,
an unmodified 'l$X engine will still have to allocate
50 fonts, which will be extremely memory consum-
ing. Thus, additional changes will have to be made
to QX internals to make Hoenig's techniques truly
useful.

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 431

Michael Vulis

Graphics. A natural complement to scalable fonts
would be scalable graphics. We are currently eval-
uating several possible approaches and would very
much appreciate input from the m community.

Accent Positioning. V m currently follows
w ' s centering approach to accent positioning.
While experimenting with CM and non-CM fonts,
we have discovered many glitches in positioning
(L for one). Ideally, every font should include a
correction table that specifies the amount an accent
should be shifted from the default position. This
type of positioning is rather similar to kerning and,
in fact, can and should be specified as part of the
. tfm kern table. Changes to the m program will
be minimal.

Support for older implementations

V m typefaces can be used with raster-based m.
Doing this defeats the main goals of V m since with
older implementations adding more typefaces
makes the system much more bulky. However, this
would be a solution for those outside of MS-DOS
world (V m currently runs only under DOS), and
those who are not yet ready to accept scalable fonts.

To install V'&X typefaces in other '&X's one
would use the PXLGEN font scaling utility that
creates raster fonts in PXL or GF format. PXLGEN
supports most of font attributes described above.
PXLGEN uses the same scaling kernel as V m , so
scaling is extremely fast. For instance. generating a
cmrlO variant at 300 dpi takes under 10 seconds on
3861 16mhz machines.

PXLGEN's companion program TFMGEN adjusts

V m . tfm files for use with non-scalable m s .
This is necessary, since non-scalable m s require
different . t fm files each setting of s l an t . aspect ,
and smallcaps parameters.

Availability. If you are interested in trying PXL-
GEN, send a self-addressed stamped disk mailer to
Micropress.

The question whether V m is or a different
program came up during the discussion of this
paper at the TUGboat Annual Meeting. While the
ultimate judgement lies with the '&X community,
I would like to begin the dicussion with a few
remarks:

0 V m is 7$jX since it supports a compatibility
mode, where all enhancements are disabled.
Documents (and .dvi) files created in the

compatibility mode are fully compatible with
any other T)$.
V m is TpX since V m enhancements cannot
be detected by TRIP. (But one can surely de-
sign a special single-purpose TRIP that V m
will fail).
V m is not really T)$, because the way one
uses it is different. Many new macros can be
written that would be Vm-specific.
VTpX is not really m, because switching to
V m is like following a one-way street. V m
can read generic m files, but the reverse is
not always true.

And, finally:
VT)$ is not really m, because ultimately it
will not be. Historically, a successful program
has a life span of only 3-5 years. just
celebrated its eleventh birthday, which is in
itself an unparalleled achievement. However,
rn is losing ground to more modern packages
(notably, Wordperfect). Long-time survival of

requires substantial improvements to the
program, and some compromises on compati-
bility. We would like to consider current V m
as just a first tentative step in this direction.
and (let us hope) not the last.

Acknowledgements

The author would like to thank Lin Tay, Donald
Tsai, Denny Chen and others for their help in
creating V m , early V m users for struggling
with embarassing bugs but not giving up, and last,
but not least, Lincoln Durst, for greatly improving
the readability of this paper.

432 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

V m Enhancements to the m Language

Appendix

Examples of VTJQC Fonts

The fonts below are all at 30 points. The examples were printed on an HP LaserJet printer at 300 dpi.

This is like Hobo
T h i s is like Broadway
This is lilrc I t : ill:wlr

Thir ir like Blippo
This is like Palatino Regular
Elis is' Like CLoiGter (@~b ~ngl is 'b)

This is like Korinna Regular

This is like Times Roman
This is like Windsor Bold

This is like Clarendon Bold
This is like Amer. Typewriter
This is like Handel Gothic
This is like Avant Garde Bold

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Michael Vulis

Examples of V m Effects

The examples below were printed by V m on an HP LaserJet I1 printer at 300 dpi.

\font\test=mvavnb scaled 3000 outline ...

\font\test=mvhlvb scaled 3000 shadow outline ...

\f ont\test=mvtmsb scaled 3000 smallcaps f illpattern 3.. .

\font\test=mvkorb scaled 3000 outline fillpattern 7...

\font\test=mvfrac scaled 3000 shadow fillpattern 12 ...

\font\test=nivavnm scaled 3000 aspect 800 ...

This is an expanded font.
\font\test=mvavnm scaled 3000 aspect 1200...

This is a compressed font.
\font\test=mvpalr scaled 3000 slant 250.. .

This is slanted right.
-

\font\test=mvpalr scaled 3000 slant -250.. .

This is slanted left.
\font\test=mvssbxlO scaled 3000 slant 200 outline smallcaps fillpattern 6...

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

