
TUGboat, Volume 11 (1990), NO. 2

Finally, it should once more be emphasized

that -if you have a good knowledge of the Post-

Script language - it is generally much more efficient
to create the picture PostScript file by directly edit-

ing the picture rather than using the automated but

necessarily clumsy version which is provided by the

program TEX2PS.

7 The picture implementation

The method described above yields the following

steps of procedure:

1. Start your main text file with the line

\immediate\openout\bilder=(name of

parameter file)

and close it by the line

\closeout\bilder.

2. Introduce the option neubild into your docu-

ment style.

3. Write your text file and introduce the line

\varpsbild . . .
with the appropriate parameters as explained

above at any place where you want to insert a
picture.

4. Compile the text file to the corresponding dvi

file. This also produces the parameter file.

5 . Create all the pictures in a PostScript set-

ting either manually or by help of the program

TEX2PS, taking into account the correct size

and name of every picture (the parameter file
contains these parameters for each picture in-

volved).

6. Convert the main dvi file by help of the PTIPS

driver, using all of the PostScript picture files,

to the final PostScript file.

7. Print the final PostScript file either on a Post-

Script printer or via a soft interpreter like

FREEDOM OF PRESS.

8 Conclusion

The two procedures described above are certainly

not the most elegant ones for implementing graph-

ics in TEX. As has been shown, the first method,

however, has the advantage of not using any graph-

ics input apart from that which is admissible in the

L4W picture environment. and it is completely
driver-independent. A somewhat similar approach

to this problem is, for instance, given by M. Ballan-

tyne and collaborators8; their method, however, is

M. Ballantyne et al., TUGboat 10, no. 2,

p. 164, 1989

at the moment not applicable within a I4m envi-

ronment and. moreover, does not seem to work very

well if the pictures are to be surrounded by text pas-

sages. On the other hand, that method can also be
used to include complex tables into a 7QX file.

We have not discussed the various methods

which use graphics input from different drawing pro-
grams to be included into TEX source files. These

methods depend heavily on the output format of

the drawing programs (e.g. whether or not they are

pixel oriented) as well as the ability of TEX drivers
to implement the different graphic formats (usually

by means of \special commands).

The second procedure allows the insertion of

much more complex pictures into LAW text files at

the price of using part of the PostScript machinery.

We feel that it might be a good compromise if the
time factor does not have first priority and the pic-

tures to be inserted into the text are of moderate

complexity.

A diskette containing the files used in these

approaches can be ordered from the author.

Please, enclose an empty diskette and DM 5,-

for postage.

o Gerhard Berendt
Institut fiir Mathematik I
Freie Universitat Berlin
Arnimallee 2-6
1000 Berlin 33
Germany
berendtQfubinf.uucp

Including Macintosh Graphics

in Documents

Len Schwer

Abstract

The basics of including Macintosh graphics in I4m
documents are discussed for the person who is inex-

perienced at doing so. Because there is no universal

way to incorporate such graphics, other than with

scissors and glue, this article tries to be as general as

possible, but ultimately references specific software

and hardware, e.g. ArborText's DVIPS, Trevor Dar-

rell's psf ig macros, and an Apple Laserwriter+.

The reader is assumed to have some knowledge of

TUGboat, Volume 11 (1990), No. 2 195

the Macintosh interface, PostScript programming,

and W'Q$ document preparation.

1 Background

The method of including Macintosh graphics in

U'Q$ documents is very simple:

0 create the graphic with the user's favorite Mac-

intosh application;

convert the graphic into its PostScript repre-
sentation;

0 transfer the PostScript file to the I4m host

machine;

0 include the PostScript file in the Ml&X docu-

ment via the DVI-Postscript driver's \ spec ia l

command.

While this sounds like a relatively straightforward

procedure, it gets complicated. sometimes very com-

plicated. The complications arise from three ele-

ments:

1. There are several DVI-Postscript drivers avail-

able and they all treat the \ spec ia l command
differently. Many of the differences are sim-

ply syntactical, but some are more subtle and

involve differences in the PostScript prologue
which precedes the material from the I4m

document. The good news here is that there

is an organized movement within the l&X com-

munity to develop standards for DVI drivers [l]
and someday users may benefit from these stan-

dardization efforts.

2. Not all Postscript devices are the same. Macin-

tosh QuickDraw, a PostScript language short-

hand: in combination with various PostScript

implementations of DVI drivers produces differ-

ent results on different PostScript devices. For
example, the ArborText DVI driver, DVIPS.

and Laserwriter+ apparently cannot be coaxed

into including Macintosh figures according

to ArborText's instructions, while the same

DVIPS generated file works flawlessly with an

NEC PostScript printer.

3. Lastly, but of equal importance, the individuals

who decide to dabble in this topic need a work-

ing knowledge of the Macintosh interface, Post-

Script programming, and m or I4l&X docu-

ment preparation.

The original TUGboat article on this topic by

Hal Varian and Jim Sterken [2] appeared in March

1986. Since that time, there has been a dramatic in-
crease in the number1 of users of both and the

Macintosh. New and 'old' I4W users are becoming

The growing number of these users is evident
to those who monitor electronic information groups

Macintosh users for many reasons, not the least of

which is the ability to easily produce high quality

graphics for inclusion in their high quality typeset

documents. Many of these new users are seeking

ways to include Macintosh graphics in I4QX docu-

ments by means other than scissors and glue.
This article updates the information presented

in the original TUGboat article and complements
the information provided in a more recent article by

J.T. Renfrow [3]. The present article is intended to

serve as a general overview for the person who is

new to including Macintosh graphics in I4m doc-

uments. It tries to be general, when possible. by

indicating how things are supposed to work, but in
many places it is very specific. Where appropri-

ate, mention will be made of available public domain

software and possible sources for obtaining it.

There are two major sections in this article:

Macintosh graphics. This section describes cap-
ture or conversion of Macintosh graphics to

an equivalent PostScript representation and

changes needed for the Laserprep file.

Using B B F I G and p s f i g t o include graphics.

This section describes a very useful set of
macros that simplify inclusion of Macintosh

graphics in L A W documents.

2 Macintosh Graphics

The Macintosh was designed to be used with an Ap-
ple Laserwriter printer, a PostScript device. Thus

all Macintosh applications need to support Post-

Script if they are to allow printing. We would like

to capture the PostScript representation of a graphic

in a file, transfer the file to the host machine where

I4m is used, and include the PostScript graphic

file in a J3W document. This section describes a
'universal' method for capturing the PostScript rep-

resentation of a graphic in a file.

2.1 Captur ing Macintosh graphics in a
PostScript file

Unfortunately, few Macintosh applications. other
than Cricket Draw and Adobe Illustrator, provide

a menu option for generating a Postscript file. This

is probably due to the existence of a universal tech-

nique for capturing any printer-directed application

output into a PostScript file. The technique is quite

simple:

After completing the graphic, select the Print

option under the File menu. This produces

such as comp.text.tex, comp.lang.postscript,

and comp.sys.mac on Usenet and TeXhax on the
Internet or Bitnet.

TUGboat, Volume 11 (1990), No. 2

the 'Print Dialog Box' which allows the user

to select various options before sending a

graphic to the printer. In the upper right-
hand corner of the 'Print Dialog Box' is an

OK button. Click the mouse down, but do
n o t release, on the OK button. With the
mouse still clicked down. depress and hold

down the F key and then the Command (Ap-

ple or Flower) key (this combined key stroke

is usually refered to as Command-F), then re-

lease the mouse button. A dialog box should
appear stating that a PostScript file is now

being created. Note: In most applications

the Command key need not be depressed.

Recently, a very handy Macintosh applica-

tion named m y p a g e s e t u p by D.G. Gilbert has

appeared2 which activates a previously hidden se-

lection box in the Print Dialog. The activated box

is called Disk File and selecting it will cause the

Laserwriter application to create a Postscript file

rather than sending the file to the printer when

the OK button is clicked. This eliminates the need
for the somewhat clumsy Command-F keystroke se-

quence just described.
The above techniques will cause a file named

'PostScriptO' (or, more generally, 'PostScriptn'
where n is incremented by one for each PostScript

file generated) to be created in one of several places:

the folder where the generating application re-

sides, e.g. where you keep MacDraw;

the folder where the graphic was launched, e.g.

where you have stored the graphic file;

the DeskTop level of your startup disk;

the System folder.

The exact location is application dependent3, but

the Macintosh FINDER may be used to locate

these PostScript files in any case.

Although these files are labeled as PostScript

files, the files generated using the Command-F tech-

nique are not quite PostScript files, but are more

correctly referred to as QuzckDraw files. QuickDraw

This freeware application is available via

anonymous F T P from sumex-aim. stanf ord. edu in

the directory /inf o-mac/util and probably from
many other such Macintosh archives.

An init named LaserFix by David P. Sumner

modifies the print dialog box in the same manner

as myPageSe tup , but invokes a standard file lo-

cation dialog box after the OK button is clicked.
This allows a user to specify a folder name where

all such PostScript files will be created. This init
is also available from sumex-aim. stanf ord . edu in

the directory /inf o-mac/init .

is a special PostScript shorthand created by Ap-

ple C ~ m p u t e r . ~ NOTE: QuickDraw files will not

produce a graphic image when sent to a PostScript

printer unless a special initialization file has previ-

ously been sent to the printer.
The QuickDraw initialization file is commonly

called a LaserPrep file and various versions of it are

known as AppleDict Version #nn, where nn is the

version number, e.g. AppleDict Version 870 (a.k.a.

LaserPrep 70). The LaserPrep is a dictionary that

translates QuickDraw into PostScript. The resulting

translation does produce a printable graphic image
on PostScript printers. Usually the LaserPrep file is

downloaded only once to a PostScript printer con-

nected to a Macintosh. This PostScript dictionary,
called 'md' (for Macintosh Dictionary?), remains

resident in the printer's volatile memory until the

printer is powered down. A copy of the Macintosh's

current LaserPrep file may be generated by follow-

ing the Command-F procedure described above, but

substituting Command-K before releasing the mouse

clicked down on the OK button in the 'Print Dialog
Box'. Using the Command-K key sequence gener-

ates a file named 'PostScriptn' that contains both

the LaserPrep file and the contents generated by the

Command-F key sequence; z. e. the LaserPrep file is

inserted as a prologue to the QuickDraw file. The
boundary between the LaserPrep and QuickDraw is

located at the first occurrence of the string %%EOF,

which is the last line of the LaserPrep file.
One more note about the LaserPrep file: near

the bottom of the LaserPrep file are lines of hexadec-

imal numbers followed by several lines of zeros. The
lines of hexadecimal numbers are very long and will

break most file transfer programs. These lines may

be shortened by inserting carriage returns at appro-

priate distances along the string. Alternatively, for

the less faint-of-heart, these lines may be deleted

from the LaserPrep file. More specifically, the lines

between and including:

currentfile ok userdict/ . . .
. . .
cleartomark

may be deleted. According to Bill Woodruff [4]

The dictionary [LaserPrep] includes some

special encrypted assembly-language proce-
dures that are proprietary to Apple Com-

puter. If you check the "Faster BitMap Print-

ing" option in the generic Macintosh Page

Setup dialog, for example, you activate an

Apple bitmap smoothing routine that will

Some very interesting comments on the devel-

opment of QuickDraw are provided in a brief article
by Bill Woodruff [4].

TUGboat, Volume 11 (1990)' No. 2 197

not work if the installation of 'md' recognizes

the printer is not from Apple.

2.2 Modifying the LaserPrep File

Woodruff [4] also comments:

LaserPrep was patched and fixed and ex-

tended and patched and fixed until it has

reached its current state where even within

Apple it is considered an embarrassing

morass. Yet, it remains the world's most
used PostScript program and the fundamen-

tal bottleneck through which almost all Mac-

intosh printing is done. But to change it.

even slightly, is to move a gigantic tectonic
plate on which the entire superstructure of

civilized Macintosh printing hangs in fragile

balance.

In order to include Macintosh PostScript files

generated with the Command-F technique described

above with any DVI to PostScript driver, the Laser-

Prep file must be modified. There are two major

types of changes:

1. Changes to keep the LaserPrep from altering

the printer's status, i.e. changes to s t a t u s d i c t .

2. A change to prevent the included PostScript

file from issuing a showpage or copypage com-
mand.

Listings of the modified Macintosh LaserPrep

files, even 'differences' listings, are too lengthy for

this article. Suitably modified versions of Macin-

tosh LaserPrep #65 and #68 files5 are available via
anonymous FTP from ymir . claremont . edu. The
modified version of LaserPrep #65 is derived mostly

from the instructions issued by ArborText for their

DVIPS driver.
The modified version of LaserPrep #68 was

created by Trevor Darrell who claims that it

should be compatible with Tony Li's public do-

main PostScript device driver DVI2PS when used

with the appropriate TEX prologue. DVI2PS, the
TEX prologue file, modified LaserPrep #68 file,
and associated information are available via anony-

mous FTP from l i n c . c i s .upem. edu [130.91.6.8]
in files dvi2ps. t ar . Z and lprep68. t a r of the sub-

directory d i s t / p s f ig . These files are in Unix TAR

format and, in the case of the dvi2ps . t a r . Z file,

Unix TAR and compressed binary format. How-
ever, after uncompressing the dvi2ps. t a r . Z file and

extracting the files (unTARing), you will find it
also contains modifications for implementation on

VMS systems; the unTARed lprep68. t a r file con-

The hexadecimal strings at the bottom of the

LaserPrep files have been deleted.

tains plain text files. Another source for these files

is the recent Digital Equipment Corporation Users

Society (DECUS) WII4W tape collection, pre-
pared by Ted Nieland; for availability call DECUS

at (505)480-3418 or contact your Local User's Group

(LUG).
The modified LaserPrep file should be given an

appropriate name, e.g. LaserPrep68. ps, and placed

in a directory where DVIPS or DVI2PS can find

it to include in DVI files. A suggested directory

location is one of the directories searched by the
logical TeX$Inputs. Also, the modified LaserPrep

file must be included in I P ' documents before

the occurrence of the first Macintosh PostScript file.

The LaserPrep file is usually included prior to the

\begin{document) statement e.g. by using Arbor-

Text's \ spec i a l command.

\special(ps: plotfile LaserPrep68.p~ global)

It is important to use the modified version of

the LaserPrep file that corresponds to the Laser-

Prep used to generate the Macintosh graphic with
the Command-F procedure. To determine which

version is appropriate, search for a line like the fol-
lowing near the top of the file:

%%IncludeProcSet : " (AppleDict md-f igure)" 68 0

The number 68 in this example indicates that

modified LaserPrep #68 should be used.
To determine the current version number of the

LaserPrep file on your Macintosh, either (1) select

the LaserPrep icon in the System folder and use Get
Info under the File menu. or (2) when attempting

to print a document from the Macintosh, look just

to the left of the 'OK' button in the Print Dialog
Box. In either case the number should be 4.0 or 5.2.

4.0 is equivalent to LaserPrep #65 and 5.2 is equiv-

alent to LaserPrep #68. Basically, Macintosh sys-

tem software 5.x' LaserPrep Version 4.0, and 'md'

Version 65 all go together, as do Macintosh system

software 6.x, LaserPrep Version 5.x, and 'md' Ver-

sion 68. Simple. huh? This means that, technically,

LaserPrep files such as LaserPrep #68 are referring

to the version of the Apple dictionary and not the

actual LaserPrep version number. Hopefully, some-

day soon. Apple will get all these numbers in sync.
The most recent version of the Macintosh Laser-

Prep file is #70, which is associated with Laserwriter

version 6.0 and accompanies the latest release of the

Macintosh operating system. LaserPrep #70 is con-

siderably different from previous versions in that it
contains information for Apple's implementation of

Color QuickDraw. Requests to various electronic

forums, and Trevor Darrell, for a suitably modified

LaserPrep #70 indicate that knowledgeable Laser-
Prep hackers have not modified version #70. An ef-

198 TUGboat, Volume 11 (1990), No. 2

fective work-around is to install LaserPrep #68, viz.

LaserWriter 5.2, on your Macintosh and rename it,

for example to LaserWriter68. This version of the

LaserWriter can then be selected via the Chooser
before creating PostScript files.

3 Using BBFIG and p s f i g to Include

Macintosh Graphics

Acknowledgement: BBFIG was authored by Ned

Batchelder. psf i g was developed and placed in the

public domain6 by Trevor J. Darrell. This subsec-

tion borrows quite liberally from Mr. Darrell's very
nice documentation, Incorporating PostScript and

Macintosh Figures in T&$i. Current versions of the

software and documentation are available via anony-

mous FTP from l i n c . c i s .upem. edu [130.91.6.8]
in the sub-directory d is t /psf ig. This author, and

undoubtly many other psf i g users, are indebted to

Mr. Darrell for his outstanding programming skills

and his unselfish willingness to share this software

and knowledge with others. The author hopes that
this document continues Mr. Darrell's spirit of freely

sharing knowledge.

psf i g is a m macro package that facili-
tates the inclusion of arbitrary PostScript figures

in I4m documents. The real advantage of us-

ing the psf i g macros is that they work within the

Adobe constructs for Encapsulated PostScript Files

(EPSF) [5] . For the psf i g user, that means that
graphics can both be easily placed within a L A W
document and be printed on their own directly to a

PostScript device; other systems for including Post-

Script graphics require a currentpoint to be set
and the showpage to be explicitly disabled, thus dis-

abling direct printing of the file.

To properly locate a PostScript figure, the DVI
driver must know the size of the figure and its rela-

tive position on the printed page. This information

is implicitly available within the various graphic con-

structs used in the PostScript file. The information
should also be available explicitly in the Bounding-

Box comment [6] of the PostScript file's prologue.

The bounding box encloses all the marks made
on a page as a result of executing (printing) a Post-

Script program. The BoundingBox comment has

four parameters:

%%BoundingBox: 11, lly ur, urg

The four integer parameters, in units of points, rep-

resent the coordinates of the lower left (ll,,lly) and

upper right (ur,,ury) corners of the bounding box

in the default user (creator) coordinate system.

Although good PostScript programming prac-

tice dictates that the BoundingBox comment be pro-
vided in Postscript files, few Macintosh programs

provide this information. Either the BoundingBox

parameters are not specified, e.g. as with

%%BoundingBox: ? ? ? ?

which is the case for all Command-F generated Post-

Script files, or an entire 8.5 x 11 page is specified,
e.g. with

%%BoundingBox: 0 0 612 792

To supply the proper bounding box informa-

tion. one can measure the required dimensions or

use the PostScript utility BBFIG. which calculates

the bounding box parameters from the graphic infor-

mation implicit in the Postscript file. The BBFIG

PostScript file is prepended to the PostScript file7

for which the bounding box is to be determined, 2nd
the combined file is sent to a printer. The result is

a printed image of the PostScript graphic with the

bounding box drawn around the graphic and bound-

ing box parameters listed below the bounding box;
the bounding box parameters are also returned via

the print job's log file, if the log file feature is im-

plemented for the host machine's print queue.
The accuracy of BBFIG in determining the

bounding box information is not as good as may be

needed in some circumstances. If you notice your
figures missing parts or wandering around the page,

check the bounding box information. Of course, the

exact bounding box information can be obtained by

simply printing the figure and using a ruler, in points

if possible, to measure the four coordinates. Mea-

suring the bounding box coordinates is also neces-

sary for graphics from some Macintosh applications

such as Cricket Software's Cricket Graph. For some

unknown reason, Cricket Graph figures contain an

invisible (un-stroked) path around the entire edge of

Copyright notice from the psf i g source: "All the paper.

software, documentation, and related files in this Once the proper bounding box information has

distribution of psfigltex are Copyright (0) 1987 been added to the BoundingBox comment of a Post-

Trevor J. Darrell. Permission is granted for use and Script file, the file may easily be included in a L A W

non-profit distribution of psfig/tex providing that document by using the macro \&)sf ig . Simply

this notice be clearly maintained, but the right to
If the PostScript file was generated using

distribute any portion of psfigltex for profit or as
Command-F (QuickDraw), then a non-modified

part of any commercial product is specifically re-
LaserPrep must also be prepended to the Quick-

served for the author."
Draw file.

TUGboat: Volume 11 (1990), No. 2 199

load the psf ig macros at the beginning of your doc-
ument with

\inputfpsf ig)

then invoke the macro

where input is the name of a PostScript file. psfig

will automatically position the figure at the current

place on the page, and reserve the proper amount of

space in I4m so that it does not conflict with any

other objects.

For example, if we have a file called
piechart .ps that contains the PostScript code to

draw a pie chart, we would use the command

Since no mention of size is made in the above ex-

ample, psfig would draw the figure at its natural
size (as if it were printed directly by a PostScript

printer.) If the pie's natural size is several inches

across, which is a little large, the pie could be re-

duced with:

\centerline{%

\psfig{figure=piechart.ps,height=1.5in))

The height option specifies how tall the figure

should be on the page. Since no width is specified.

the figure would be scaled equally in both dimen-

sions. By specifying both a height and a width,

figures can be scaled disproportionately. with inter-

esting results.

There are a few caveats associated with using
psf ig:

For psf ig to find the natural size of a figure, the

figure must have a proper bounding box com-

ment; see previous bounding box discussion.

Some versions of I.4m will fail to center a lone
figure properly in a center environment; a good

work-around is to precede the figure with a hard

space, e.g.

\begin{center)

\ \psfig{figure= . . .)
\endCcenterl

On very large documents with many figures, the

printer memory allocated to DVIPS may have

to be limited; refer to ArborText documenta-

tion for setting Laserwriter memory.

The \psfig macro will be confused by extra

white space or new lines in its argument. e.g.

\psfig(figure=piechart.ps, height=1.5in)

causes psf ig's parsing routine to termi-

nate at the space; LPm will interpret the
height=l .5in as text. Long psf ig command

lines may be split using % line terminators, e.g.

\centerline\psfigCfigure=piechart.ps,%

height=l.5in,width=2.3in,clip=)}

Certain PostScript figures (such as large bitmap

images being transmitted at 9600 baud) can tie up

a slower Postscript device such as an Apple Laser-

Writer for quite some time. To circumvent this, a

figure may be printed in draft mode, which will re-

serve the same space on the page, but will print

just the name of the files from which the figure

is derived and not actually include it. The macro

\psdraf t will switch into draft mode, and all subse-

quent psf ig macros will produce draft figures. The
macro \psfull will switch out of draft mode.

The preceding discussion of psf ig is appro-

priate for PostScript graphics generated by Cricket
Draw and any other type of EPS file. The only ex-

ception to this broad statement is a QuickDraw file
generated by the Command-F option. QuickDraw

files require a suitably modified LaserPrep file to be

prepended to the QuickDraw file. psf ig provides

an easy mechanism for including the LaserPrep file

as described below.

There is a psf ig macro prolog option for spec-

ifying a file that should be prepended to the figure.

The name of the prolog is, of course. site dependent:

we have used lprep68. pro. For example, if you had
a file frog.mac that contained the QuickDraw to

draw Kermit (The Frog). he could be included with:

\psf ig{f igure=frog.mac ,prolog=lprep68 .pro}

If there are many such figures, it is probable that
the repeated inclusion of the prolog file will cause

a significant increase in the size of the print file and

its transmission time. An alternative method is to

load the prolog file once globally, so that it will be

available throughout the rest of the document. Use

\psglobal{lprep68.pro)

at the beginning of your document to achieve this

effect. For this to work properly, the \psglobal

must appear before any Macintosh figures, and the
final output must not be page r e ~ e r s e d . ~

Recent experience has shown that the use of

\psglobal with the ArborText DVIPS driver con-

flicts with Macintosh graphics included inside a fig-

s The current implementation of psf ig does not

support underscores (-) in file names for draft mode.

Since psfig places the file name on the page using
m commands, reserved I4m characters cannot

be used in the file name.
A page reversed document prints the last

page first and first page last. It is possible to use

\psglobal in a page reversed document; place it

just before the last figure in your document. This is

living dangerously, and you do so at your own risk.

TUGboat, Volume 11 (1990), No. 2

ure environment; i.e. the figure prints by itself on
a page separate from the BTEX document. Two

solutions are: always include a prolog along with

each Macintosh graphics (brute force) or include the

\psglobal inside the first figure environment (lucky

hacque) .

4 Conclusion

The combination of a Macintosh for producing high

quality graphics and IPW for producing high qual-

ity typeset documents is becoming very popular as a

'total' document preparation system in many work-

ing environments. The development of tools, such

as the psf i g macros, that make integrating Macin-

tosh graphics in IPW documents easier, will un-
doubtedly grow in popularity. It is hoped that the

information collected in this article helps more users

produce better documents.

References

Hosek, D., Report from the DVI Driver Standards
Committee, TUGboat, Vol. 10, No. 1, p. 56,

April 1989.

Varian, H. and J. Sterkin, MacDraw Pictures
in Qj$i Documents, TUGboat, Vol. 7, No. 1,

pp. 37-40, March 1986.

Renfrow, J.T., Methodologies for Preparing
and Integrating PostScript Graphics, TUGboat,

Vol. 10, No. 4 - 1989 Conference Proceedings,

pp. 607-626, December 1989.

Woodruff, B.. PostScript and the Macintosh: A
History, MacTech Quarter ly, Volume 1, Num-

ber 2, Summer 1989, pp. 119-120.

Encapsulated PostScript Files Specification Ver-
sion 2.0, Adobe Systems Inc., 1585 Charleston

Road, P.O. Box 7900, Mountain View, CA

94039-7900, (415)961-4400, 16 January 1989.

PostScript Language Reference Manual. Ap-
pendix C: Structuring Conventions, Adobe Sys-

tem Inc., Addison- Wesley Publishing Co., Inc.,

1985, p. 268.

o Len Schwer
APTEK, Inc.
4320 Stevens Creek Blvd.
Suite 195
San Jose, CA 95129
micro2.schwer0sri.com

Combining Graphics wi th o n P C

Sys tems wi th Laser Pr in te rs , Part I1

Lee S. Pickrell

Abs t rac t

In this article we will extend our premise that TEX
affords an excellent mechanism for combining graph-
ics in 'I'EX documents. We propose a method for in-

cluding graphics that brings to bear the full power

and versatility of for positioning the graphics

as well as the text. The technology for implement-

ing this feature will be discussed, including certain

limitations. We will also consider possible benefits

of file conversion utilities, particularly the potential

advantage of converting graphics to the PK/TFM

file format of TEX fonts. One application of this fea-

ture is that the captured graphics can be used with
PostScript drivers. This technique can significantly

increase the number of graphics sources available to

Postscript-based by accessing applications that

support the LaserJet PCL language. Finally screen

capture will be examined as an adjunct to printer
capture in the case that printer capture is not prac-

tical.

1 In t roduc t ion and review

In our first article [I] we made several assertions, in

particular, that TEX provided a natural platform for
mixing graphics with typeset text. Several graphic
plots were included that were obtained from differ-

ent application programs (several more will be in-

cluded in this article), which we hope substantiated

our

0

0

0

assertions:

TEX provides a natural platform for graphics in-

sertion, certainly comparable to any other word

processing system.

has suffered from a perception that it does

not handle graphics well, probably grounded

more in psychology than technical reality, and

possibly due to the broad spectrum of comput-

ing systems and distinct device driver programs

over which is implemented.

The IBM PC and LaserJet printer are the logi-

cal starting place for demonstrating the graph-
ics capabilities of TEX because graphics appli-

cations for the PC/LaserJet combination have

become ubiquitous.

Printer output capture is the best method for

obtaining graphics images because the available

resolution is much higher than screen capture

and the number of graphics sources is much

larger than file conversion.

