
TUGboat, Volume 11 (1990), No. 2

ure environment; i.e. the figure prints by itself on

a page separate from the BTEX document. Two

solutions are: always include a prolog along with

each Macintosh graphics (brute force) or include the

\psglobal inside the first figure environment (lucky

hacque) .

4 Conclusion

The combination of a Macintosh for producing high

quality graphics and IPW for producing high qual-

ity typeset documents is becoming very popular as a

'total' document preparation system in many work-

ing environments. The development of tools, such

as the psf i g macros, that make integrating Macin-

tosh graphics in IPW documents easier, will un-

doubtedly grow in popularity. It is hoped that the

information collected in this article helps more users

produce better documents.

References

Hosek, D., Report from the DVI Driver Standards
Committee, TUGboat, Vol. 10, No. 1, p. 56,

April 1989.

Varian, H. and J. Sterkin, MacDraw Pictures

in Qj$i Documents, TUGboat, Vol. 7, No. 1,

pp. 37-40, March 1986.

Renfrow, J.T., Methodologies for Preparing

and Integrating PostScript Graphics, TUGboat,

Vol. 10, No. 4 - 1989 Conference Proceedings,

pp. 607-626, December 1989.

Woodruff, B.. PostScript and the Macintosh: A
History, MacTech Quarter ly, Volume 1, Num-

ber 2, Summer 1989, pp. 119-120.

Encapsulated PostScript Files Specification Ver-
sion 2.0, Adobe Systems Inc., 1585 Charleston

Road, P.O. Box 7900, Mountain View, CA

94039-7900, (415)961-4400, 16 January 1989.

PostScript Language Reference Manual. Ap-

pendix C: Structuring Conventions, Adobe Sys-

tem Inc., Addison- Wesley Publishing Co., Inc.,

1985, p. 268.

o Len Schwer
APTEK, Inc.
4320 Stevens Creek Blvd.
Suite 195
San Jose, CA 95129
micro2.schwer0sri.com

Combining Graphics wi th o n P C

Sys tems wi th Laser Pr in te rs , Part I1

Lee S. Pickrell

Abs t rac t

In this article we will extend our premise that TEX

affords an excellent mechanism for combining graph-

ics in 'I'EX documents. We propose a method for in-

cluding graphics that brings to bear the full power

and versatility of for positioning the graphics

as well as the text. The technology for implement-

ing this feature will be discussed, including certain

limitations. We will also consider possible benefits

of file conversion utilities, particularly the potential

advantage of converting graphics to the PK/TFM

file format of TEX fonts. One application of this fea-

ture is that the captured graphics can be used with

PostScript drivers. This technique can significantly

increase the number of graphics sources available to

Postscript-based by accessing applications that

support the LaserJet PCL language. Finally screen

capture will be examined as an adjunct to printer

capture in the case that printer capture is not prac-

tical.

1 In t roduc t ion and review

In our first article [I] we made several assertions, in

particular, that TEX provided a natural platform for

mixing graphics with typeset text. Several graphic

plots were included that were obtained from differ-

ent application programs (several more will be in-

cluded in this article), which we hope substantiated

our

0

0

0

assertions:

TEX provides a natural platform for graphics in-

sertion, certainly comparable to any other word

processing system.

has suffered from a perception that it does

not handle graphics well, probably grounded

more in psychology than technical reality, and

possibly due to the broad spectrum of comput-

ing systems and distinct device driver programs

over which is implemented.

The IBM PC and LaserJet printer are the logi-

cal starting place for demonstrating the graph-

ics capabilities of TEX because graphics appli-

cations for the PC/LaserJet combination have

become ubiquitous.

Printer output capture is the best method for

obtaining graphics images because the available

resolution is much higher than screen capture

and the number of graphics sources is much

larger than file conversion.

TUGboat, Volume 11 (1990), No. 2 201

2 Graphics positioning, bringing the full
power of TEX to bear

The thesis of this article and the

premise of the CAPTURE design is that

graphics images should be manipu-

lated by TEX with the same facility

that typeset text is positioned. This

assertion is both practical and con-
\ \

sistent with the TEX design philos-

ophy. ?IEX is considered a "document preparation
system" [2, 31, therefore it should have control over

all the contents of the typeset page. Moreover, if

graphics are included in a typeset document, the

graphics and text should be combined in some har-

monious fashion, or the document will be neither

aesthetic nor readable.

It is quite possible to regard a graphics image

in as the functional equivalent of a font of type.

As an example, the graphic at the beginning of the

preceding paragraph was captured using CAPTURE

and inserted using the code segment:

\drop(\insertplot{logo . pcl)Cl)(i. 12))

The \drop macro is defined in the drop. sty file

which is available in the public domain [4]. It was

designed to start a paragraph with a dropped, large

letter of type, as is done with early Bibles and such.

The \drop macro manipulated the graphic image

just as it would any other font of type. The purpose

of this illustration is to demonstrate that a properly

processed graphics image can be treated identically

to a font of type; indeed, text and graphics can be

indistinguishable for 'I@ operation.

An ancillary benefit of this approach is that

the artificial distinction between and the device

driver programs is reduced. Perhaps the perception

that TEX does not handle graphics well stems from

the somewhat artificial separation of TEX from the

device driver programs [I]. Although graphics must

be included on the device driver level, the distinc-

tion is less severe if controls the location and

space for the graphics.

2.1 File processing and macro definitions

TEX will be able to manipulate a graphics element

if it is operationally equivalent to a "box". A box in

TEX is a typographic unit, which on the most fun-

damental level is an indivisible character of type [3].

Two requirements must be satisfied to establish a

graphics image as the equivalent of a TEX box:

a The space required for the graphics must be de-

fined as an \hbox (\mbox in IPW), with the

same dimensions (height and width) as the ac-

tual graphics.

a The graphics must be positioned inside of the

box.

A box with the proper horizontal and verti-

cal dimensions can be created with a simple T@
macro. Once defined, i t can be manipulated like

any other box in TEX. A typical definition for the

\insertplot command used in CAPTURE [5] is:

\def\insertplot#i#2#3{%

\vbox to #2 true in(

\vf ill

\hbox to #3 true in

{\specialCpcl:#i) \hfill>

3% End of vbox
) %End of Definition

The \insertplot command is functionally

equivalent to an \hbox in 'TEX (an equivalent form

makes an \mbox in BW). It creates a box with the

exact height and width of the graphics, specified by

the 2nd and 3rd parameters, which are obtained from

F I X P I C after processing the captured graphics file.

For example, the plot in Figure 1 was created using

the following code segment:

\begin(f igure) [htbl

\begin(center)

\fbox(\kern ipt \fbox<%

\insertplot(surf.pcl)(i.64)(2.13)))

\caption{This is output . . . 3
\label(surf.pcl)

\end(center)

\end(figure>

GRAVITY DATA (CONTWR IKTERVAL - 8.761

Figure 1: This is output from the demonstration

diskette of the SURFER scientific data plotter by

Golden Software, Inc. A frame has been drawn

around the plot to show the "box" which ma-

nipulates. When the graphics file has been properly

processed, the box defines the location of the graph-

ics, and the image is surrounded by the frame.

This macro is essentially the definition for the

\pfig command contained in the plot.sty file

202 TUGboat, Volume 11 (1990), No. 2

which is part of CAPTURE. I t differs by the use of the

\fbox command. \fbox is a I P ' macro which

creates a box around the the text parameter and

surrounds it with a frame [2]. In this instance, the

\ insertplot box is substituted for the parameter

and a frame is drawn around it. The use of the frame

command again emphasizes that the \ insertplot

command is functionally identical to an \hbox in

w. The \fbox command drew a frame around
the graphic just as it would around any text block.

This construct also conveniently highlights the posi-

tion where TEX thinks the graphics plot is located.

It is immediately apparent viewing Figure 1

and the macro defined above, that the graphics im-

age is relocatable and has been positioned by m.
The insertion macro uses the \begin<center) . . .
\end(center) environment to center the plot in the

current l&X context. Because TUGboat is typeset

in a two column format, the image is centered in a

column, as it should be. However, if this same arti-

cle were typeset in a single column format, the plot

would be automatically centered in a page.

The \ insertp lot command also contains the

\ spec ia l command which instructs the device

driver to load and print the graphics file at the

present cursor location. In order for the graphic

to be positioned properly inside the \hbox (inside

the frame), the location of the graphic must be well

defined with respect to the \ spec ia l command and

the \ spec ia l command must have a well defined

location inside the box. Fortunately, the definition

of the \ spec ia l command from Knuth [6] specifies

that it will have a unique, well defined location on

the page: "Therefore it is implicitly associated with

a particular position on the page, namely the refer-

ence point that would have been present if a box of

height, depth, and width zero had appeared in place

of the whatsit" [6]. If the position of the graphic is

linked to the location of the \ spec ia l command, it

will also have a well defined location that can be

placed inside the \hbox.

The technology for connecting the graphics to

the \ spec ia l command is based on the LaserJet

command structure. The LaserJet PCL language

contains a control code which says in effect: "start

the graphic at the present cursor location" [7]. If

the graphics file contains this control code, then

the image will be inserted starting at the location

of the \ spec ia l command, which is well defined,

and will be centered inside the \hbox defined by the

\ insertp lot command. This is the technique used

by CAPTURE to allow to manipulate graphics in

the same way as text.

An important requirement however, is that the

graphics file contain only this relative positioning

command (start the graphic at the present cur-

sor location) and n o other positioning commands .

The reason is that other positioning commands will

either override the relative position command, or

change the cursor location so that it no longer is

coincident with the location of the \ spec ia l com-

mand. As an example, the graphic in Figure 2 was

inserted using the identical commands as Figure 1.

However, the file in Figure 2 was not processed to

remove the additional positioning commands. The

result is that rn still thinks there is an \hbox con-

taining the graphic, and even draws a frame around

it. However, the graphics image is offset relative

to the \ spec ia l command so the image does not

appear inside the frame. For this reason CAPTURE

contains the F I X P I C utility which is run automati-

cally after every graphics capture. FIXPIC removes

all of the positioning control sequences except the

relative position command, which it may insert if

necessary.

I I GRAVITY DATA c coNT- INTER^^ = 6.76)

Figure 2: This figure is the same as Figure 3, ex-

cept that the positioning commands have not been

removed from the image file. The frame has again

been drawn where th inks the graphic is located.

However, because the graphics file was not properly

processed, additional positioning commands remain,

and the image is offset.

The example shown in Figure 2 is relatively be-

nign. The positioning sequences in the graphics file

specified a relative position, so the image is offset

somewhat from the position of the \ spec ia l com-

mand. However, it is more common to find abso-

lute positioning commands in graphics files. These

commands simply place the graphic image at some

fixed location on the page, and ignore entirely the

present cursor position [7]. Therefore there would

be no correlation at all between the actual location

TUGboat, Volume 11 (1990), No. 2

of the graphics and where TEX thinks the graphics

are located.

All of the application programs we have tested,

which provide LaserJet graphics, have used absolute

positioning commands. This choice is logical. An

application program has no way of knowing a pri-

ori the location of the LaserJet cursor. Attempting

to write the graphics at the present cursor location

would be dangerous, because the graphics could ap-

pear anywhere on the page. Conversely, the devel-

opers of these programs probably want the graphics

to be somewhat centered, and they can control the

graphics position unambiguously with absolute co-

ordinates.

The problem of converting these captured

graphics files into a m-compat ib le format is com-

plicated because there are several different LaserJet

positioning codes. There are 2 codes for specifying

either graphics start at the cursor or at the left hand

side of the page, 6 relative positioning codes (rela-

tive to the old cursor position) and 6 code sequences

which place the cursor at an absolute location on

the printed page. All must be removed from the

graphics file (except the relative positioning com-

mand code) without disturbing any of the graphics

data.

Another problem is the use of additional ver-

tical white space by some graphics applications.

White space is simply a series of null data trans-

fers before or after the graphical image. Most of

the application programs we tested added some ex-

tra white space around the image. These programs

make no assumptions that the images produced

might eventually be included in TEX documents, so

the additional white space may have been included

for convenience. In some extreme cases, white space

was used to position the graphics on the page as

an alternative to the position commands. If it is

not removed, the additional space will distort the

page layout and aesthetic appeal of the document,

pushing the rest of the text and graphics far from

a particular plot. In extreme cases it can force a

premature page eject. Another function of FIXPIC

is to remove all leading and trailing white space in

a graphics file. Spacing between the graphics and

the text can then be determined to satisfy aesthetic

appeal, and is controlled by TEX.

2.2 Absolu te coordinates: the except ion t o

TEX posi t ioning

Unfortunately, some graphics files cannot be pro-

cessed so as to be relocatable. There are appli-

cations which use absolute positioning commands

beginning. The reason is that absolute positioning

commands can considerably reduce the size of the

file and the concomitant time to print. This issue is

important for LaserJet printers without additional

memory space. Most applications which we have

tested do not use this method; rather, white space

is used to position the LaserJet cursor. This method

requires a larger file and more time to print, but the

entire image can be moved by changing the position

of the cursor at the start of printing.

When absolute position commands are embed-

ded throughout the file (as opposed to being placed

at the beginning only), the CAPTUREd file cannot be

positioned by m. The graphics can be captured

and included in a TJ$ document, but the position

will be determined by the application program. If

an attempt is made to force relocation, the image

will be distorted because parts of the image will be

placed at different locations. CAPTURE has an option

which enables absolutely positioned graphics to be

included in TEX without distortion; however, T@

cannot control the position of the graphics. The ap-

plication program must specify the plot location to

be the proper position for the TEX document.

This problem is not entirely intractable. Most

programs which use absolute position coordinates

do so for only the horizontal coordinate. The verti-

cal position is specified only once at the beginning

of the file, and will be removed by FIXPIC. If the

desired horizontal position of the graphics can be

easily defined (centered for example), then the ap-

plication program can generally achieve the proper

position. The plot will appear at the same location

in m, and will have a vertical position depending

on its location in the file.

We hope to address this problem further in a fu-

ture release, by translating an absolutely positioned

file to a relatively positioned one.

3 The P K / T F M format

The logic that graphics should be

functionally equivalent to text can be

extended by converting a graphic im-

age file from the LaserJet PCL lan-

guage to the PK and TFM formats

which are specific to [8, 91. A
graphic image in the combined PK/

TFM format isn't equivalent to a font of type, by def-

inition it is a font of type. For example, the graphic

at the beginning of this paragraph was generated by

converting the graphic seen earlier from the PCL for-

mat to the PK/TFM format using the CONVERT util-

ity in CAPTURE. It was inserted using the same \drop

throughout the graphics file instead of just at the macro described earlier and the code sequence:

204 TUGboat, Volume 11 (1990), No. 2

\f ont\largef ont=logo

\drop{a) The l o g i c t h a t . . .
The immediate benefit of this approach may not

be clear. Operationally, there seems to be little dif-

ference between using the \ i n se r tp lo t command

and the PK/TFM format, except that the PK/TFM

format may be less convenient: two files are created

instead of one. However, the advantages of using

a PK/TFM version of a graphics file accrue from

its device independent nature. For example, none

of the commercial 'l&X page previewers will display

graphic images included with the \ spec ia l com-

mand. However, graphics in the PK/TFM format

can be viewed, although some previewers we have

tested have memory limitations for large images.

Another benefit is that CAPTURE can be used

to supplement the graphics for other systems (non-

LaserJet). We have argued that a graphics capture

utility is unnecessary for Postscript-based systems,

because the PostScript language describes both text

and graphics and the two can be mixed easily. How-

ever, the graphics sources are limited because there

are relatively few applications on PCs which sup-

port PostScript, due t o the high cost, and these

tend to be concentrated in the desk-top publishing

area. Fortunately, many of the PostScript drivers

for PC based systems use the same PK/TFM font

files as the LaserJet drivers [lo]. Therefore, cap-

tured graphics files which are converted to the PK/

TFM format can be used with PostScript drivers for

w. The domain of graphics sources for inclusion

in Postscript is increased considerably because far

more applications support the LaserJet PCL lan-

guage than support PostScript.

This idea can be generalized by realizing that

the PK/TFM format provides a level of device in-

dependence, one of the hallmarks of the de-

sign [3]. Once a PK/TFM file pair has been cre-

ated, the graphics should be usable on any system

that uses the same resolution (300 dots per inch).

This set includes the LaserJet systems for which

CAPTURE was originally targeted, screen previewers,

and PostScript systems. We have yet to fully test

this idea on other 300 dpi drivers, say for the HP
DeskJet, but the idea is intriguing and has been

tested on PostScript drivers [lo].

This approach also suggests a general design

path for future extensions. We have argued that

separate CAPTURE-like programs may be necessary

for each computer/printer combination. However,

the PK/TFM standard provides a level of device in-

dependence such that a CAPTURE-like program may

be needed only for each computer/resolution combi-

nation.

3.1 Na tu ra l conversions for a graphics

sys tem

The benefits of a PK/TFM conversion utility also

suggest other areas where file format conversion may

be useful. File conversion generally does not offer

a new source of graphics because it is somewhat

redundant with printer or screen capture. How-

ever, converting from the LaserJet PCL language

to the formats of graphical drawing or paint pro-

grams would be useful. The application program

would still generate the graphic image, saving the

user a considerable amount of work, but the cap-

tured graphics could be edited into a final form

before inclusion in a document. As a test of this

idea, the CAPTURE CONVERT utility will convert t o

the PC Paintbrush PCX format [5].

4 The case fo r l imited screen c a p t u r e

We maintain that the best method for obtaining

graphics is printer capture because of the large

source of graphics at high resolution. File format

conversion generally offers few additional graphics

sources, and screen capture generally provides low

resolution. However, there are two cases which we

have identified in which printer capture is not prac-

tical. Both are apparently quite unusual. The first

case is an application program which mixes text and

graphics in the printer output. An example is the

scientific program MathCAD, by Mathsoft, Inc.

Printer capture is not practical with MathCAD

because it mixes text characters with the graphics

output. Although the output can be captured, the

resulting file cannot be inserted into a 'I)$ docu-

ment and retain the original likeness. The solution

in this instance is to use the screen capture util-

ity, CPTS, included with CAPTURE. CPTS captures

the screen image and writes it to a file that can be

included in a document [5]. Screen capture ef-

fectively converts the text characters into a graphic

representation because they are displayed in graph-

ics mode and can be resolved into individual pixels.

Moreover, there is no loss of resolution. The Math-

CAD printer output is a direct image of the screen

display. An example of screen capture from Math-

CAD is shown in Figure 3.

Other examples are programs which use instal-

lable device drivers in the DOS conf i g . sys file.

Fortunately, this construct is rare, because device

drivers for a specific application remain in mem-

ory, attached to the operating system regardless of

whether the particular application is being used.

Valuable memory is wasted and the operating sys-

tem is cluttered. However, some applications use

TUGboat, Volume 11 (1990), No. 2

Total

.i

Figure 3: This plot is a screen capture from the

program MathCAD, by MathSoft, Inc. The orig-

inal screen was CAPTURE^, converted to the PCX

format by CONVERT, edited on PC Paintbrush, and

converted back to the PCL format. It was then mod-

ified by FIXPIC to have a resolution of 150 dots per

inch, producing a plot with reasonable resolution

which fits nicely inside the columns of TUGboat.

this approach because it provides a uniform interface

to all display monitors and hard copy devices. An

example is the lens design program, OPTEC-11/87

by SCIOPT Enterprises. The CAPTURE printer util-

ity is unable to capture the printer output because

OPTEC bypasses both DOS and the BIOS for the

printer output. However, the screen capture utility

works fine and there is no loss of resolution. Be-

cause the OPTEC interface uses a common set of

device drivers, a single raster image is maintained

in the program. The output to the printer is de-

rived from the same raster image as the output to

the screen; the only difference is which device driver

is invoked. Therefore, the screen capture acquires

the same image as the printer output. An example

of an OPTEC-11/87 image is shown in Figure 4.

The intent of this discussion is to acknowledge

that screen capture is a necessary utility for a gen-

eral graphics capture system. Although it is not the

best method in most cases, there are instances when

it is the only method that will work.

4.1 M e m o r y managemen t a n d t h e

t e rmina t e a n d s t ay resident op t ion

The last issue to be considered is the general archi-

tecture of a graphics capture utility in the MS-DOS

environment. This issue is not applicable to the

general TEX graphics problem, but is entirely spe-

cific to the IBM/DOS implementation. A distinct

limitation of DOS is the 640k memory limit, which

F igu re 4: This is a plot of a high numeric aperture

wide field of view lens. The plot was obtained from

the lens design program: OPTEC-11/87 by SCIOPT

Enterprises.

has been a particular nemesis for large, complicated,

programs. A premise of the CAPTURE design was that

it could be used with large application programs,

and that both CAPTURE and an application program

would occupy memory simultaneously. Therefore,

memory size became an important issue.

These considerations lead to a design for

CAPTURE which minimizes the use of memory while

the application program is running. For example,

the postprocessing phase is explicitly removed from

the image capture routine, the printer and screen

capture routines are kept to the minimum size pos-

sible, and as many features as possible are incor-

porated into the postprocessing program. Also, the

postprocessor is spawned by the image capture rou-

tines only after the application program has exited.

Finally, CAPTURE does not use a terminate-and-stay-

resident (TSR) design. Although a TSR will take

no more memory than a normal program, a TSR

must be explicitly removed from memory before the

storage is released. If any programs are loaded after

the TSR, memory can be fractured and the released

storage is not contiguous with remaining memory.

Instead, the sequence of operation for CAPTURE

runs as follows. The image capture routines mod-

ify the operating system in order to capture graph-

ics output and then spawn the application program.

The application program runs and presumably at-

tempts to output graphics to the printer. Once the

application program exits, CAPTURE loads the post-

processor program, FIXPIC. When all processing is

complete, CAPTURE meticulously returns the operat-

ing system to its original state, releases all its mem-

ory, and exits. The memory used is a minimum and

is never fractured.

5 Conclusions

We have tried to extend our initial thesis that

provides an excellent medium for including graphics

TUGboat, Volume 11 (1990), NO. 2

with text. In the case of the PC/DOS implemen-

tation in particular, graphics applications are ubiq-

uitous so there is a wide array of graphics sources.

Moreover, we have suggested a method for includ-

ing graphics with 'l$J that allows T# the same

control over graphics images as fonts of type. This

approach affords a seamless blend of graphics and

text in the same document. The distinction between

device driver and w is softened. Although the

graphics insertion occurs at the device driver level,

the control is retained in w.
This idea has been extended to include the n u

tion of converting graphics files to the PK/TFM for-

mat of m. The primary benefit of this approach

is expanding graphics capture to implementa-

tions which do not use the LaserJet printer. In par-

ticular, CAPTURE can support Postscript drivers for

TEX that use the same computer modern fonts in the

PK/TFM format as the LaserJet drivers. The range

of graphics sources available to Postscript users is

considerably increased over the range of applications

which presently support Postscript. Other exten-

sions may also be possible.

We have consistently emphasized that CAPTURE

serves as an example and proof-of-principle that

the graphics capability of m is considerable. We

would like to propose (hopefully without being

presumptuous) that other graphics implementation

programs adopt some of the ideas discussed here.

For example:

should be able to manipulate graphics im-

ages equivalently to fonts of type.

A graphics program for should support the

PK/TFM format to maintain the greatest pos-

sible device independence.

In this way, the distinction between graphics and

text in w should be diminished and a connection

between the various implementations of m can be

maintained by the device independent nature of the

standard formats.

References

Lee S. Pickrell. "Combining Graphics with w
on IBM PC-Compatible Systems with LaserJet

Printers." TUGboat, 11(1):26 - 31, 1990.

Leslie Lamport. fim, A Document Prepara-

tion System, Users Guide 63 Reference Manual.

Addison-Wesley Publishing Company, Read-

ing, Mass., 1986. ISBN 0-201-15790-X.

Donald E. Knuth. The m b o o k . Addison-

Wesley Publishing Company, 1986. ISBN O-

2-1-1344g9.

David G. Cantor. "DROP. STY." Published in

W h a x , number 16, 1988. Available on the

Clarkson Archive Server (public domain).

CAPTURE, A Program for Including Graph-

ics in 7&Y. Wynne-Manley Software, Inc., 1094

Big Rock Loop, Los Alamos, NM 87544, March

1990.

Donald E. Knuth. The m b o o k , pages 228-

229. Addison-Wesley Publishing Company,

1986. ISBN 0-2-1-13448-9.

LaserJet series II User's Manual. Hewlett

Packard Corporation, Boise Division, P.O. Box

15, Boise, Idaho 83707, December 1986. Part

NO. 33440-90901.

[8] David Fuchs. "m Font Metric Files." TUG-

boat, 2(1):12- 17, 1981.

[9] Tomas Rokicki. "Packed PK Font File Format."

TUGboat, 6(3):115- 120, 1985.

[lo] w P R I N T / P S User Guide. Oregon House

Software, Inc., 12894 Rices Crossing Road, Ore-

gon House, CA 95962, 1988.

o Lee S. Pickrell
Wynne-Manley Software, Inc.
C/o Micro Programs, Inc.
251 Jackson Ave.
Syosset, NY 11791

(516) 921-1351

Resources

Data General Site Report

Bart Childs

The distribution with the new versions of l&X and

METAFONT is nearly finished. We are also rewriting

the drivers for the DG, QMS, and LaserJet printers

in Silvio Levy's CWEB. We have decided to use Tom

Rokicki's PostScript drivers.

o Bart Childs
Dept. of Computer Science
Texas A&M University
College Station, TX 77843-3112
bartQcssun.tamu.edu

