
TUGboat, Volume 11 (1990), No. 2 171

Philology

Character Set Encoding

Nelson H.F. Beebe

Introduction

The article by Janusz S. Bieri [3] which follows this

paper complements an earlier one by Yannis Hara-

lambous [5] on the subject of support for larger char-

acter sets.

Because this is an area of international interest

in the computing community, it seemed worthwhile

to review some of the issues. in order to provide

background for those readers who are not actively

following the subject.

There are currently at least two IS0 groups that

are actively engaged in the standardization of char-

acter set encoding. They are identified here by the

reference numbers of the standards on which they

are working, IS0 8859 and IS0 10646.

The IS0 8859 group deals with ASCII and

EBCDIC character set issues and with standardiza-

tion of 8-bit character sets. The IS0 10646 group

deals with multi-byte character set issues.

I have been following the IS0 8859 work for

more than two years, and recently joined the IS0

10646 discussions. Based on that experience, it

seems clear that the problem is much more difficult

than most people realize.

Both groups have active electronic mailing lists;

the end of this article has information on how to

subscribe to them.

256 Does Not Suffice

There is a need for more than 256 characters to sup-

port even just those languages written in the Latin

alphabet. As long as people (and computers) in-

sist on using 8-bit characters, this gives rise to the

problem of multiple 'code pages'.

Text encoded according to one code page must

be accompanied by separate information stating

what code page is to be used. This is difficult

in attribute-free file systems such as WNIX and PC

DOS, since there is no guaranteed way to keep that

information with a text file. Embedding of attribute

headers in the file itself is unacceptable.

Few electronic mail systems support the spec-

ification of a code page in the message header, al-

though the Internet mail headers are sufficiently ex-

tensible that such support could be easily added.

Electronic mail is subject to character set trans-

lations, and these are often inconsistent, particularly

if the mail has passed through Bitnet nodes or IBM

mainframes; multiple code pages increase the likeli-

hood of such corruption.

Switching Between Character Sets

Should it become necessary to switch code pages

in the middle of a document (e.g. for a business in

Sweden to address a letter to a customer in Turkey),

some mechanism must be provided to do so. The

IS0 8859 encodings of &bit characters define escape

sequences that permit changing code pages.

For multi-byte character sets, the situation is

more complex. JISCII 17, 81, the Japanese Industrial

Standard Code for Information Interchange, is a 14-

bit character set defined on a 94 x 94 grid addressed

by two 7-bit characters, using characters in the range

33.. .126, but biased downward by 32 so that the

rows and columns are numbered from 1 to 94. The

Chinese GB-2312 and Korean KS C 5601 standards

also use a 94 x 94 grid.

The JISCII character set includes special sym-

bols and punctuation, the printable ISO/ASCII

character set, Cyrillic, Greek, the Japanese syl-

labic alphabets (hiragana and katakana), followed

by Level 1 kanji (2965 Chinese characters commonly

used in Japanese), and Level 2 kanji (3388 lesser-

used Chinese characters). JISCII does not include

the ISO/ASCII control characters or European al-

phabetic extensions, nor does the ISO/ASCII subset

occupy consecutive positions.

There are at least three ways of encoding doc-

uments in JISCII:

0 16-bit characters as &bit byte pairs;

0 7-bit ISO/ASCII with shift-in and shift-out es-

cape sequences to enter and leave 16-bit char-

acter sections;

7-bit ISO/ASCII where character pairs whose

first member has the high-order (8th) bit set

are taken to be JISCII.

The last two are more compact than the first, but

suffer from what may be called the substring prob-

lem.

Because these two involve a mixture of 8-bit

and 16-bit characters, extraction of a valid substring

requires examination of surrounding context. In the

second method, it may be necessary to scan back to

the start to determine whether there is a preceding

escape sequence. In the third method, if the first

character in the substring does not have its high

bit set, one need only examine a single preceding

TUGboat, Volume 11 (1990), No. 2

character to find out whether the first character is

a normal one, or the second half of a pair.

Since string searching and substring extraction

are among the commonest operations performed on

text by a computer, these are very serious draw-

backs.

There is also the problem of determining string

lengths: is the length the number of characters, or

the number of memory cells used to hold the string?

Which one is needed depends on the application.

Use of a 16-bit representation eliminates these

problems for JISCII, and could as well for a character

set that supported all those derived from the Latin

alphabet.

However, when Chinese is included, about

50,000 more characters are needed [4]. There are

also differences in characters used in the People's

Republic of China (due to simplifications instituted

after 1949) and those in the Republic of China

(Province of Taiwan).

When the 2800 syllabic characters of Korean

Hangul are thrown in [4], plus the 900 or so letter

variants of classical Arabic [9, 10,2], and the dozens

of writing systems used in India, it seems that even

a 16-bit set of up to 65536 characters may be insuffi-

cient to cover the world's major languages. Because

speakers of Chinese, Indian languages, and Arabic

account for more than half of the world's population,

these languages cannot be ignored.

Overlapping with the work on IS0 10646 is an

effort to develop a comprehensive 16-bit character

set called Unicode; some Unicode traffic was origi-

nally broadcast to the IS0 10646 list, but that prac-

tice was discontinued while this article was in prepa-

ration. Subscription details are given in the last sec-

tion below.

The IS0 10646 list review contains the following

paragraph:

As of March, 1990, two coding schemes have

emerged. The International Organization

for Standardization (ISO) Subcommittee 2,

Working Group 2 (SC2/WG2) has developed

the IS0 10646 Multi-Octet Code. It is now

a "draft proposed" standard (two levels re-

moved from being an international standard).

The IS0 working group has been working on

this project for the last 6 years and it has

been subject to unusually wide review for a

proposed standard. The other draft stan-

dard is the result of the work of a consor-

tium of U.S. companies, mostly from the west

coast. It is called Unicode. Both of these

draft standards enable the world's communi-

cation (newspapers and magazines) and busi-

ness characters, ideographs, and symbols to

be encoded for storage and communication

between computers. However, each uses a

different approach to making the inevitable

tradeoffs.

In my view, Unicode seems short-sighted, and too

small. An 18-bit set would probably suffice, so

maybe 36-bit machines like our venerable DEC-20,

and the UNIVAC 1100 series, will someday be rein-

carnated! What is more likely, though, is that falling

memory prices will make 32-bit characters practica-

ble.

Inadequate Display Support

There is a serious problem of character display. How

is a person to read a document that requires charac-

ters unavailable on the terminal or printing device?

This becomes particularly relevant as we enter an

era of international electronic mail and document

exchange.

While personal computers and workstations are

increasingly offering support for multiple character

sets, much remains to be done before the display

problem can be eliminated.

Impact on Programming Languages

If character sets are enlarged, computer program-

ming languages must be modified.

rn 3.0 added only one bit to the character set

encoding, and is riddled with assumptions that 256

is the size of the character set. These assumptions

are of course introduced in the interests of compact-

ness, so that T@ can run on small machines. With

effort, some of these could be eliminated, but prob-

ably not all of them; doing so would introduce in-

compatibilities, and thus lose the right to the name

rn.
With the exception of the ANSI C standard [I],

adopted in December 1989, existing programming

languages (or at least their compilers) assume 7-bit

or 8-bit characters; the last machines using only 6-

bit characters were retired in the early 1980s.

ANSI C provides support for 'wide' characters;

wide strings take the form L" . . . I t and wide charac-

ter constants are written as L ' . . '. Hexadecimal es-

cape sequences, \xhhh. . . are introduced; they may

have any number of hexadecimal digits. The under-

lying representation of wide character strings may

use one or more bytes per character, allowing room

for future expansion. Shift-in and shift-out repre-

sentations are permitted. However, ANSI C states

that a byte with all bits zero shall be interpreted

as a null character (and therefore, a C string ter-

minator), independent of the shift state, and a byte

TUGboat, Volume 11 (1990), No. 2 173

with all bits zero may not occur in the second or

subsequent bytes of a multibyte character. Also, a

comment, string literal, or character constant shall

begin and end in the initial shift state, and shall

consist of a sequence of valid multibyte characters.

Impact on Collating Sequences

Any assignment of characters to a numerical code

introduces collating sequence problems.

For example, the Danish and Norwegian alpha-

bets are A . . . Z, ffi, 0, A, while Swedish reverses the

order of the last three and uses umlauts: f i , 0, A.
Note that these Scandinavian accented letters

are considered separate letters; this differs from

French and German, which alphabetize such letters

without regard to accents. Danish, Norwegian, and

Swedish also occasionally use acute accents on the

letters 'e' and 'o', for disambiguation of homonyms,

and for a few foreign words; these accents are ig-

nored in alphabetization.

With the orthography reform of 1948, Denmark

ceased to capitalize nouns, introduced the new letter

A in place of the old Aa, and moved it from the front

of the alphabet to the end. Under the reform, Aa is

collated as if it were spelled A, so some people moved

from the front of the telephone book to the back.

When Aa occurred in proper names, the owners were

permitted to retain the old form, so both continue

to exist: Aarhus University is in Wrhus, Denmark,

and both the University and city listings are found

at the end of the telephone book.

In German, 8 ('scharfes s' or 'es-zet') capitalizes

to SS (or rarely, SZ), does not occur as an initial

letter, and is alphabetized as 'ss'.

In Spanish, 'ch' is treated as a single letter

falling between c and d , '11' is treated as a letter be-

tween 1 and m, and fi is treated as a letter between

n and o.

Although several languages in Eastern Europe

and the Soviet Union employ the Cyrillic alphabet,

there are variations between countries in both order,

and the exact letters used. The reforms introduced

after the Russian revolution in 1917 removed some

letters from the alphabet, but scholars of pre-1917

literature still require them. A good treatment was

given by David Birnbaum in a posting of 30-Nov-

1989 to the IS0 8859 list.

The New York Stock Exchange listings are al-

ways by corporate abbreviations, yet collation is

according to company name; IBM is listed as if

it were spelled 'International Business Machines'.

Telephone books in some areas move the Macdon-

alds and the McKays in front of other names begin-

ning with M.

In Japanese and Chinese, the order of ideo-

graphic characters is determined by the authors of

each dictionary. Many dictionaries base the order on

the 214 fundamental 'radicals' (character part build-

ing blocks); the dictionary is ordered by groups of

characters having the same radical, and within each

group, by increasing numbers of strokes, and by pro-

nunciation. However, some characters have more

than one radical, many have the same pronuncia-

tion (in Japanese, 5500 kanji have only 336 different

sounds [6]), and pronunciations may vary with di-

alects (Chinese has dozens of dialects that are mutu-

ally incomprehensible, but share a common writing

system). Dictionaries from the People's Republic

of China can also be found with ordering according

to the Pinyin representation in the Latin alphabet,

that is, according to Mandarin pronunciation.

JISCII has yet another assignment of Chinese

(kanji) characters into two levels according to fre-

quency of use. In the JIS Level 1 kanji, order is ac-

cording to dictionary and pronunciation order [ll,

p. 68); subgroupings are mostly according to stroke

count. with exceptions. In JIS Level 2 kanji, or-

der is according to radical and stroke count. These

difficulties have traditionally discouraged the use of

indexes in Japanese books, and also seriously impact

filing of information in computers and offices.

For a readable account, see the chapter Practi-

cal Consequences of a Large Character Set in J . Mar-

shall Unger's book [l l] .

Thus, in many languages, and even in English,

sorting according to a collating sequence is a dif-

ficult problem, and capitalization cannot easily be

changed by a computer program. This has impor-

tant ramifications for BIB^, Ibw, and MakeIn-

dex. In some BIB^ styles, article titles are lower-

cased, and some I4m styles convert titles to upper-

case letters; in both, the result is a disaster if the

language happens to be German.

Internationalization of Software

The chapters on Native Language Support and Reg-

ular Expressions in [12] describe the changes that

must be made to the C run-time libraries, and to

many UNIX utilities, when extended character sets

are used.

For example, international software cannot con-

tain embedded character strings; these must be

moved into separate external files that can be cus-

tomized for each language. In addition, output for-

mat strings must be extended syntactically to per-

mit reordering of output tokens (cf. English "The

White House" and French "La Maison Blanche").

TUGboat, Volume 11 (1990), No. 2

Summary and Conclusions

Character coding is a very complex issue, and de-

spite the vigorous discussions on the IS0 8859 list,

I do not see a solution on the horizon. Because it

uses a different character set (EBCDIC) than every-

one else, IBM will be affected more by character set

issues than other vendors; its conservatism, and his-

torical slowness to respond to the demands of the

market and its users, also suggests that solutions

will not soon be forthcoming.

In my view, the advent of support for 8-bit char-

acters in TJ$ 3.0 will for some time hinder, rather

than help, document portability. There is a conflict

between the desire for ease of use and readability

of the input file on the part of the author or typist

who enters it by, say, striking the 0 key on a Danish

keyboard, and the co-author in Britain who cannot

display the 0 on the screen, and may have no idea

what character was intended.

Authors who stick to the 7-bit ISO/ASCII char-

acter set and with some labor. enter \OC) instead of

using the 0 key, will promote document portability.

Alternatively, translation filters will be needed,

but it may not be possible to base them entirely on

simple text substitutions, at least in the 7-bit to 8-

bit direction, since \O cannot be substituted if it is

the initial part of another control sequence. Also.

in TEX 3.0, hyphenation opportunities will be lost

if accented characters encoded as single &bit values

are replaced by control sequences.

~IBTEX, I P ' , and MakeIndex will require re-

visions in the future for

support of 8-bit character sets,

more flexible provision for specification of sort-

ing order,

suppression of capitalization changes.

Even itself may need modifications, since

the xchro character translation array is initialized

early in the program to values which depend upon

the local character set, and no provision is made for

switching code pages dynamically.

Joining the Mailing Lists

To subscribe to the IS0 8859 or IS0 10646 mailing

lists, send an e-mail message to the server

LISTSERV@JHWM.BITNET

with the body text (LISTSERV ignores the e-mail Sub-

ject: line)

SUBSCRIBE IS08859 <your-personal-name>

or

SUBSCRIBE IS010646 <your-personal-name>

Letter case is ignored in LISTSERV commands.

Your e-mail return address is automatically ex-

tracted from your mail message. The personal name

is used to annotate the mailing list, which can be

retrieved with a message like REVIEW IS010646, in

case you would like to know your correspondents by

other than cryptic e-mail addresses. The REVIEW

command also provides a summary of the purpose

of the discussions.

All list traffic is archived; a message with the

text INDEX IS010646 will retrieve an index for that

list, and a following message with the text GET

IS010646 f i l e type will fetch a particular file. For

more details on LISTSERV, send a message with the

text INFO GENINTRO.

To get on the Unicode list, send a message re-

questing inclusion to Glenn Wright:

glennw@sun.com

References

American National Stacdards Institute, 1430

Broadway, New York, N. Y., 10018. Amerz-

can Natzonal Standard Programmzng Language

C, ANSI X3-159.1989, December 14 1989.

Joseph D. Becker. Arabic Word Processing.

Communzcatzons of the Assoczatzon for Com-

putzng Machanery, 30(7):600-610, July 1987.

Janusz S. Bien. On Standards for Computer

Modern Font Extensions. TUGboat, 11(2):175-

183. June 1990.

S. Duncan, T. Mukaii, and S. Kuno. A Com-

puter Graphics System for Non-Alphabetic Or-

thographies. Computer Studzes zn the Human-

ztzes, 2(3):113-132, October 1969.

Yannis Haralambous. and Latin Alphabet

Languages. TUGboat, 10(3):342-345, Novem-

ber 1989.

A. V. Hershey. Calligraphy for Computers.

Technical Report TR-2101, U. S. Naval Weap-

ons Laboratory, Dahlgren, Virginia 22448, Au-

gust 1967.

Japanese Standards Association, 1-24, Akasaka

4 Chome, Minato-ku, Tokyo, 107 Japan.

Japanese Industrzal Standard JIS C 6626-1978

Code of the Japanese Graphzcs Character Set

for Informatzon Interchange, 1978.

Japanese Standards Association, 1-24, Akasaka

4 Chome, Minato-ku, Tokyo, 107 Japan.

Japanese Industrzal Standard JIS C 6234-1983

24-dots Matrzx Character Patterns for Dot

Prznters, 1983.

TUGboat, Volume 11 (1990), No. 2

G.A. Kubba. The Impact of Computers on Ara-

bic Writing, Character Processing, and Teach-

ing. Information Processing, 80:961-965, 1980.

Pierre Mackay. Typesetting Problem Scripts.

Byte, 11(2):201-218, February 1986.

J. Marshall Unger. The Fiflh Generation

Fallacy- Why Japan is Betting its Future on

Artificial Intelligence. Oxford University Press,

1987.

X/Open Company, Ltd. X/Open Portability

Guide, Supplementary Definitions, volume 3.

Prentice-Hall. 1989.

o Nelson H.F. Beebe
Center for Scientific Computing

and Department of
Mathematics

South Physics Building
University of Utah
Salt Lake City, U T 84112

USA
Tel: (801) 581-5254

Internet: BeebeQscience .utah.edu

-

On Standards
for Computer Modern Font Extensions

Janusz S. Bien

Abstract

Haralambous' proposal to standardize the unused

part of Computer Modern fonts is discussed, and

some modifications and extensions suggested. The

idea is pursued by designing the extended CM font

layout, and an example is given for one of its possible

uses.

1 Introduction

In my note [4] I advocated an old (115, p. 461, 16,

p. 451) but rarely used idea to place national letters

(actually, the Polish ones, but the generalization is

obvious) in the unused part of Computer Modern

fonts, i.e. as the characters with the codes higher

than 127; this approach allows the handling of na-

tional languages in a way upward compatible with

the standard (American) English TEX. A similar

proposal was made independently by Yannis Hara-

lambous [8], who states also that the use of non-

English letters of latin alphabets should be coordi-

nated, resulting in a single widely used extension

to Computer Modern fonts-I strongly support the

principal idea, and I pursue it in the present paper.

To organize the discussion in a systematic way, I

will use the notions - borrowed from [2] -of text

encoding, typing and rendering.

2 Text encoding

In the context of w, encoding means the character

sets of the fonts in question and their layouts. In

the present section I will focus my attention on the

character sets, as the layouts should be influenced,

among others, by typing considerations.

In an attempt to obtain a general idea about the

use of the latin alphabet worldwide, I looked up the

only relevant reference work I am aware of, namely

Languages Identificatzon Guzde [7] (hereafter LIG).

Apart from the latin scripts used in the Soviet Union

and later replaced by Cyrillic ones, it lists 82 lan-

guages using the latin alphabet with additional let-

ters (I preserve the original spelling):

Albanian, Aymara, Basque. Breton, Bui,

Catalan, Choctaw, Chuana, Cree, Czech,

Danish, Delaware, Dutch, Eskimo, Espe-

ranto, Estonian, Ewe, Faroese (also spelled

Faroeish), Fiji, Finnish, French, Frisian,

Fulbe, German, Guarani, Hausa, Hun-

garian, Icelandic, Irish, Italian, Javanese,

Juang, Kasubian, Kurdish, Lahu, Lahuli,

Latin, Lettish, Lingala, Lithuanian, Lisu,

Luba, Madura. Miao, Malagash, Malay,

Mandingo, Minankabaw, Mohawk, Mossi,

Navaho, Norwegian, Occidental, Ojibway

(also spelled Ojibwe), Polish, Portuguese,

Quechua, Rhaeto-Romanic (Ladin, Ro-

mansh), Rumanian, Samoan, Seneca, Serbo-

Croatian. Sioux, Slovak, Slovene, Spanish,

Suto, Sundanese, Swahili. Swedish, Tagalog,

Turkish, Uolio, Vietnamese, Volapiik, Welsh,

Wolof, Y, Yoruba, Zulu.

This list includes some languages and dialects

with no script at all, for which the information sup-

plied concerns more or less standard transcription.

For most of them this fact is noted explicitly, but

the exception of Kasubian (usually recognized as a

dialect of Polish) suggests that this is not always

the case. I noticed some inconsistencies in the nu-

merous indexes to the book, but only one omission

(described later) in the proper text. Of course, it is

difficult for me to judge the reliability of the work

as a whole.

The number of additional letters in the latin

alphabets listed in LIG - including some variants

of shape but excluding upper case letters - is 176.

