
TUGboat, Volume 11 (1990), No. 1 5 7

Showing-off math macros

Michael J. Wichura

Introduction

The chore of typing math formulas is made less

onerous by using macros to \define simple abbrevi-

ations (such as \xvec) for complicated constructions

(such as (21.. . . ,x,)) that occur repeatedly in a

document. This saves keystrokes and cuts down

on typographical errors and inconsistencies. The

only difficulty is remembering the al-)breviat,ions and

what they stand for. This article presents a macro-

listing command that is helpful in this regard. The

Macros on file: macros .math

Name and

Parameter Text Vulue

command typesets a file containing math macro

\definitions. such as

\def\xvec{\row x)

\def\row#l{\Row{#l)n)

\def\Row#1#2~(#l-l,\ldots,#1-{#2~)~

\def \ex{\e x3

\def\e#l{e-{-#lA2\2})

\def \ tenth{\fr 1/10 1
\def \f r#1/#2 {\ texts tyle{#l \over #2)}

\def\eunm{{n \eu le r m))

\def\euler{\atopwithdelimso)

\def\tnk{\take k \of n)

\def \ take#l \of #2{{)-{#2)CC{#1)}

in the form of a table. like this:

Replacement Text

(macros. math is the name of the file containing the

\definitions used in this example.) The table is

more informative than a simple print-out because it

shows what each macro does. You can easily locate

the macro that produces a certain construction by

scanning down the middle column.

The macro-listing command is

\ListMacrosOnFile file-name,

where file-name is the name of a file containing

\definitions of math-mode macros. and only such

\defs. This file would be one that you'd ordinarily

\ input as part of a document: no special organi-

zation is required. Several definitions can be given

on a single line. A single definition can extend

over several lines. Blank lines are allowed. as are

\ input commands referring to files containing more

math-mode macros.

The table that \ListMacrosOnFile produces
contains a row for each \def on file-name. Recall

that the syntax for a macro definition is

\def (control sequence name)(parameter text)

{(replacement text)

(see page 203 of The m b o o k) . \ListMacrosOn-

F i l e places the macro's name and parameter text

in the first column of the table, with spaces in the

parameter text being shown as *,'. It's important to

take note of those spaces. because they can play a

role in delimiting arguments to the macro; see pages

203-204 of The m b o o k . The second column shows

the effect the macro has when it is typeset between

a pair of $ signs and invoked with arguments

{\m \#I). { \ r m \#2), . . . corresponding to the
parameters # I , #2. . . . in an obvious manner. For

example. the "value" of the \ take macro in the

TUGboat, Volume 11 (1990), No. 1

opening example was created by the construction

'$\take {(\nu \#l))\of ({\nu \#2))$'. Finally,
the macro's replacement text is given in the third

column. An overwide entry in the first or second

column is allowed to stick out to the right and

causes its row to be continued on the next line. A

long entry in the third column is carried over to

subsequent lines.
There are two significant limitations on the use

of \ListMacrosOnFile. The first has already been

mentioned but is worth repeating: file-name and its

\ input extensions must contain only \definitions
of macros that can be used in math mode.* For ex-

ample. '\def \AB(\alpha + \beta) ' is allowed, but

'\def \ABCα and β)' is not, since
in this case the construction '\AB' would elicit

an error message from TEX. The second limita-

tion is that the expansion of the replacement text

for each macro must be closed with respect to
groups. For example. '\def \BeginBox(\setboxO =

\hbox\bgroup)' is not allowed because the group
opened by \bgroup isn't closed by a matching

\egroup.

\ListMacrosOnFile will correctly handle any

parameter text TEX allows, with two minor excep-

tions: that text must not contain the construc-

tion '->', nor end with the character '#'.

*It would be nice if there were a simple, automatic
way to show what a formatting macro like plain W ' s
\beginsect ion command does. Unfortunately, such
macros typically have a wide-ranging effect that can't
be encapsulated in a table entry.

The macros

\ListMacrosOnFile is implemented through a col-

lection of interrelated macros. I'll first discuss the

ones that deal with alignment. \ListMacrosOnFile

doesn't use an \ h a l i p to construct its table be-

cause extremely wide entries in the first or second

column could push the entire third column off the

page. and because a long list of \defs on file-name
could produce a multipage table exceeding T'X's

memory. An alignment mechanism that uses pre-

set column widths avoids both of these problems

because it allows each row to be typeset indepen-
dently of the other rows. Plain W ' s \+ command

functions in this way, but lets an overwide entry
in one column overlap the following one, producing

illegible effects likkhis. \ListMacrosOnFile em-

ploys an "in house'' alignment in which each row is

individually set using an \ h a l i p , the templates of
which position entries flush left in columns of preset

widths and avoid overlaps by inserting a \ c r and an

appropriate number of &'s after an overwide entry.

The \SetColumnWidths command defined by

\def\SetColumnWidths#1#2#3C%

% # I , #2, and #3 a r e dimensions

\def \NameColumnWidth(#l)%

\def\ValueColumnWidth~#2)%

\def\ReplacementColumnWidth(#3}}

is used to set the three column widths to user-

defined values. The macros specify

\SetColumnWidths
(.25\hsize)(.20\hsize)i.55\hsize>

to establish defaults that experience has shown to
work out fairly well. The alignment macros are

\BeginAlignRow and \EndAlignRow:

and their subsidiaries \Begincolumn and \EndColumnOfWidth:

\def\BeginColumn(\setboxO = \hbox \bgroup)

\def\EndColumnOfWidth#l(%

\ifLastColumn \egroup % now box0 holds t he en t ry

\box0

TUGboat, Volume 11 (1990), No. I

\else

\egroup % now box0 holds the entry
\setbox2 = \hbox to #l(\unhcopyO \hss)%

\copy2

\xdef\AmpsSeenSoFar{\AmpsSeenSoFar &)%

\ifdim\wdO > \wd2
\xdef\DropDownToNextLine{%

\noexpand\LastColumntrue\cr

\noalign{\noexpand\nobreak)%

\AmpsSeenSoFar)%

\xdef\AmpsSeenSoFarC)%

\aftergroup\DropDownToNextLine

\fi

\f i)

\newif\ifLastColumn % false by default

The \ifdim clause at the end of \Endcolumn.. .

is what prevents overlaps. To see what's involved,
suppose the \ifdim test has just discovered that

an entry in the second column is overwide (\wdO >
\wd2). Then the \aftergroup command will

effectively insert the tokens \LastColumntrue \cr
\noalign{\nobreak) && in front of the input text

for the third column, causing TEX to finish off the
current line with an empty third column, issue a

penalty preventing a page break, and start a new
line with two empty columns, before going on to

set the next entry. \ListMacrosOnFile specifies

\LastColumntrue when it's working on the third

column, so that that column is never considered to

be overwide.

\ListMacrosOnFile itself comes next. It first

\inputs file-name, so that all the macros there will

be defined, and creates the header lines for the table.

It then \inputs file-name once again, but with the
meaning of \def changed to \BeginExhibitMacro.

\def's normal meaning is restored after all the

macros on file-name have been exhibited:

\leftline (Macros on file: (\tt #I))

\medskip

\leftline {\it Name and)

\BeginAlignRow

\it Parameter Text\quad &\it Value\quad &\it Replacement Text\cr

\EndAlignRow

\ListMacros

\input #1

\DontListMacros)

\def\ListMacrosC\let\def = \BeginExhibitMacro)

\def\DontListMacrosC\let\def = \PrimitiveDef)

\let\PrimitiveDef = \def

\ExhibitMacro's job is to construct a row and third columns. It turns out, though, that the

displaying a macro's name and parameter text parameter text on file-name has to be used to create

(e.g., \take#l\of,#2), value (e.g., #2C#1), and the value entry in the second column. and that (due
replacement text (e.g.. {)-{#2)C-(#l)). Since the to category code considerations) this precludes the

name and texts immediately follow the \def on use of that same text in the first column. The way
file-name, there would at first sight seem to be out of this bind is to ask TEX for the \meaning
no difficulty in fabricating the entries for the first

60 TUGboat. Volume 11 (1990). No. 1

of (name) and to extract the relevant texts from All the non-space characters in w ' s response have

'J&X's response category code 12. so the extracted texts can be

macro : (parameter text)->(replacement text) typeset without using a verbatim command:

\def\BeginExhibitMacro#l{% #1 = macro's name

\DontListMacros

\smallskip

\BeginAlignRow

\gdef\Name(#l)% save name for later use

\expandafter\ExtractTexts\meming#1\EndExtractTexts

\tt \frenchspacing

\expandafter\string\Name

\expandafter\MakeSpacesVislbleA \ParameterText\EndMakeSpacesVisible

\quad

&

\vtop\bgroup\Argument={]\BuildArgumentA

1

\def\EndExhibitMacro#l{% #1 = macro's replacement text

\ialign C\span\the\ValueTemplate\cr

\expandafter\Name\the\Argument\cr)

\egroup

\quad

&

\vtop C%
\hsize = \ReplacementColumnWidth \tt \frenchspacing

\noindent \hangindent=lem \rightskip=Opt plus 4em \relax

\ReplacementText)%

\Lastcolumntrue

\cr

\EndAlignRow

\ListMacros)

\def\ExtractTexts #l:#2->#3\EndExtractTexts{%

\gdef \ParameterText{#23%

\gdef\ReplacementText{#3))

The replacement text is set ragged right in a (invisible) spaces in the parameter text to visible

paragraph having the width of the third column. characters (u ' ~) before that text is placed in the

The following macros are used in converting the first column:

TUGboat, Volume 11 (1990), No. 1 61

\ExhibitMacroas code for the second column correctly, W ' s rules regarding spaces have to be
starts out by fabricating an "argument text" (e.g.. obeyed, and active characters and control sequences
CC\rm \#l))\of CC\rm \#2))) out the parameter (like the \of in the \take macro) mustn't be

text on file-name. This operation is a little expanded. The following macros are used in

delicate, because category codes have to be assigned building up the argument text token by token.

The value entry for the second column is

created by typesetting the construction '(macro

name) (argument text)' (e.g..

\take CC\rm \#l))\of CC\rm \#2))

) in a one row. one column \halign whose template

is $#$ by default:

\newtoks\ValueTemplate

\def\ShowOffMathMacrosC%

\ValueTemplate={$##$))

\Showof f MathMacros

There are. however. two other possibilities

\def\ShowOffMathMacrosInDisplayStyle~%

\ValueTemplate={$\displaystyle{##)$)}

\def\ShowOffOrdinaryMacros{%

\ValueTemplat e={##))

that weren't mentioned in the introduction. Speci-
fying \Showof f MathMacrosInDisplayStyle causes

math macros to be exhibited in display style so
that, for example.

\ListMacros

\def\SumAC\Sum i I n)

\def\Sum#1#2#3C\sum_(#1=#23-{#3})

\DontListMacros

will produce

instead of the default

Non math-mode macros (e.g.. abbreviations for long

words) can be exhibited by specifying \Showoff-

OrdinaryMacros.

o Miclinel J. Wichura
Drpartinent of Statistics
Coinputation Center
University of Chicago
5734 University Avenue
Chicago. IL 60637
w~chura@galton.uchicago.edu

