
TUGboat, Volume 11 (1990), No. 1 69

Output Routines: Examples and Techniques.
Part I: Introduction and Examples.

David Salomon

A general note: Square brackets are used through-
out this article to refer to the TEXbook. Thus [400]
refers to page 400, and [Ch. 6], [Ex. 15.13] refer
to chapter 6 and exercise 15.13, respectively, in the
book. Advanced readers are referred to the actual
WEB code by the notation [§1088]. Also, since the
words “output routine” are commonly used in this
article, they are replaced by the logo otr.

“It would be possible to write an entire book
about TEX output routines; but the present ap-
pendix is already too long. . .” This quotation, from
[400], best describes this article. It is not a book,
but it tries to do justice to otrs; justice denied
them in the TEXbook, because of lack of space.

This article is long and is divided into three
parts. Part I is an introduction to otrs and related
concepts, followed by examples. The examples are
mostly simple otrs, useful for common applica-
tions. No advanced techniques are used. In the
second part, various techniques are developed, for
communicating with the otr by means of marks,
special penalty values, kerns, and special boxes
inserted in the text. Some methods require sev-
eral passes, saving information between the passes
either on a file or in memory. Some techniques
examine the contents of \box255, going as far as
breaking it (or a copy) up into individual com-
ponents. Whenever possible, the techniques are
applied to practical cases. Part III treats insertions.
otrs with insertions introduce more complexities
and deserve detailed treatment. Specifically, the
plain format otr is introduced in part III since it
supports insertions.

The reader is encouraged to send the author
problems related to otrs, suggestions for new
techniques, and errors found in this document.

Certain methods described here are not com-
pletely general and may fail in certain situations.
Others are more general and seem to work always.
However, none of them have been thoroughly tested,
and new problems may be discovered at any time.

To make it easy to read and understand the
macros described here, they were deliberately kept
as simple as possible. As a result, they may not be
general and may not handle every possible situation.
The point is that the macros should not be copied
and used verbatim. Rather, they should be studied
and modified for specific problems.

Advanced TEX users hardly need be convinced
that an understanding of otrs is important, since
they must be used whenever special output is
desired. However, the entire topic of otrs has tra-
ditionally been considered complex, and it is! The
reasons are: (1) otrs are asynchronous with the
rest of TEX (this is explained later) and involve diffi-
cult concepts such as splitting boxes and insertions.
(2) Certain features which could be very useful in
otrs are not supported by TEX. Specifically, there
are no commands to identify marks, rules, and
whatsits in a box, and to break up a line of text
into individual characters. One can only hope that,
with more interest in TEX and more demand from
users, there will be a future version of TEX (4.0?)
with the missing features included.

Introduction

A few introductory concepts are introduced in this
section for the benefit of the inexperienced reader.

Boxes. Definition: A box is an indivisible unit
of material, inside which TEX switches to one of
the internal modes. Thus in an \hbox, TEX is in
restricted horizontal mode, which means that items
placed in such a box will be positioned side by side.
If an \hbox is typeset, it is not broken into lines,
but is typeset as one line. Similarly, items placed
in a \vbox are stacked from top to bottom. When
such a box is typeset, the entire box is placed on
the same page. More information on the properties
of boxes can be found in [Ch. 11–12].

Lists. A list is best thought of as a bunch of boxes
(and other items) positioned either horizontally
or vertically. Thus TEX supports horizontal and
vertical lists. The specific items that may appear in
a horizontal list can be found on [95]; those which
may appear in a vertical list can be found on [110].
An example of a horizontal list is the TEX logo. Its
components are the two letters ‘T’, ‘X’, a box with
the letter ‘E’, and two pieces of \kern. An example
of a vertical list is a page of text. Its components
are the individual lines of text and the penalties,
glue, and other items between them.

The Main Loop. This is also known as the Inner
Loop, the Chief Executive, or the Main Control (see
[§1029, §1030, §1035]). This is where TEX spends
most of its time, preparing pages of text which
eventually are sent to the otr. This loop consists
of reading characters from the source file, scanning
them and converting them into tokens, using the
tokens to build boxes, and combining the boxes into
lists.

70 TUGboat, Volume 11 (1990), No. 1

The Main Vertical List and the Page Builder

This section introduces a simple picture of a struc-
ture called the Main Vertical List (MVL). The
precise way the MVL is organized and used is
presented in a later section.

When TEX reads the first character of a para-
graph, it switches to horizontal mode, where it
reads the rest of the paragraph. It then switches
back to vertical mode and invokes the line breaking
algorithm. The resulting lines are saved in the
MVL. Gradually, more and more lines of text are
appended to the MVL and, at a certain point, when
the MVL contains more than enough material for a
page, TEX invokes (exercises) the page builder. The
page builder decides on a good point to break the
page, cuts a chunk of material off the MVL, places it
in \box255, and invokes the otr. The otr usually
adds things such as a page number, a header, or
footnotes, and ships out the page (i.e. writes the
page to the .dvi file).

The otr does not have to ship the page out.
It can ship out just part of it, and save or discard
the rest. It can also return the rest to the MVL.
The rule is that any material left over by the otr
(i.e. any material placed on the otr’s vertical list) is
returned to the MVL. This is a very useful feature.

An important point, which should be empha-
sized at this early stage, is the asynchronicity of the
otr. \box255 is not filled up gradually with text.
It is the MVL that’s filled up with lines of text until
there is more than enough material for a page. The
page builder then cuts a chunk, the size of a page,
off the MVL, and places it in \box255. At that
point, there is normally some material left in the
MVL, for the next page. This means that, when
the otr is invoked, TEX has already read text from
the source file past the end of the current page.
Thus the asynchronous nature of the otr. It is
not synchronized with the main loop but is invoked
from time to time, as the need arises. Another
way to express this idea is to say that the otr lags
behind TEX’s main loop.

Note that TEX does not know the size of the
paper which eventually comes out of the printer.
There are only four parameters that relate to the
size and position of the page, namely: \hsize,
\vsize, \hoffset and \voffset. The first two
become the width and height of \box255. The two
‘offset’ parameters are the amounts by which the
left and top margins differ from the default offsets
of the printer which typesets the .dvi file. Many
drivers default to offsets of 1in, and \hoffset and
\voffset give displacements from that point. Thus

setting \hoffset=0.5in, \voffset=-0.2in creates
a left margin of 1.5in and a top margin of 0.8in.
The right and bottom margins are unknown to
TEX, and are normally only used by the printer
driver. In the rare cases where TEX needs to know
those quantities, they have to be entered by the
user or computed. This is demonstrated in one of
the examples (for printer registration marks) shown
later in this part.

Page Boundaries and the Printed Area
Figure 1

Figure 1 shows how those quantities are related.
It also shows that the depth of \box255 is the depth
of the bottom line of text. As a result, the vertical
size of the printed area is the height plus depth of
\box255, and is slightly larger than \vsize.

\pagetotal and \pagegoal. Two \dimen variables
are maintained by the page builder and are used in
the page breaking algorithm. They are also used
for insertions.
• \pagetotal [114], is the vertical height of the

MVL. We will denote it by t. This variable
starts at zero and is incremented by the page
builder each time something with a height (i.e.,
a box or some glue) is appended to the MVL.
Things like marks, penalties, and whatsits do
not have any dimensions and do not affect t.
Since some vertical glues have flexibility, this
variable is generally flexible. Initially, when
the MVL is empty, t is set to zero.

• \pagegoal [114], which we denote by g, is the
desired height of the page. Generally, it is equal
to \vsize but, when insertions are generated,
g is decremented. Initially, when the MVL is
empty, g is set to \maxdimen. When the first
item is placed in the MVL, g is set to \vsize

TUGboat, Volume 11 (1990), No. 1 71

(“. . .TEX salts away the value of \vsize . . . ”
[114]). When footnotes or other material are
generated, to be inserted in the page, their
heights are subtracted from g [123].
These two variables can be ‘shown’, either in

the document itself (using \the) or in the log
file (using either \showthe or \message). They
can even be modified, but this should be done
very carefully. It is even possible to get the
two values displayed after each line by setting
\tracingpages=1 [112]. This option exists mainly
to show the feasible points for page breaks, and how
the page breaking algorithm works. It is a good
idea, however, to try it once, on a short page which
also has footnotes, and to follow the changes in the
values of the two quantities.

As an example, the two variables will be used
to determine how much space is left on the current
page. If t is zero, the space left on the page is the
entire page (\vsize). Otherwise, it is the difference
g − t. Macro \pagespace calculates that difference.
\newdimen\spaceleft
\def\pagespace{%
\ifdim\pagetotal=0pt
\spaceleft=\vsize

\else
\spaceleft=\pagegoal
\advance\spaceleft by -\pagetotal

\fi}

The Current Page and the List of Recent
Contributions

The discussion so far has been general, ignoring
certain important details. This section presents a
more accurate picture of the MVL, and the way the
page builder operates.

The MVL consists of two parts, the current
page and, below it, the list of recent contributions.
The current page holds the material that will
become \box255. The recent contributions are
used to temporarily hold recently read material.
After an entire paragraph has been read, it is
typeset, and the lines of text appended to the
recent contributions. At that point, the page
builder is invoked (exercised). Its job is to move
lines, one by one, from the recent contributions to
the current page. For each line, the page builder
calculates the cost of breaking the page after that
line. For the first couple of lines the cost is very high
because breaking there would result in an extremely
stretched page. Thus, for those lines, the badness b

becomes 10000 and the cost c, 100000 (see formula
on [111]).

At a certain point, when there are enough lines
in the current page for a resonably looking page, b
(and, as a result, c) start getting smaller. A while
later, there may be too many lines of text in the
current page, and it has to be shrunk, increasing
b and c again. The entire process can be seen, in
real time, by setting \tracingpages=1 [112]. If
the page has to be shrunk more than its maximum
shrinkability, both b and c become infinite. When
c becomes infinite (or when a penalty ≤ −10000 is
found, see below) the page builder goes back to the
line of text where the cost was lowest, breaks the
top of the current page at that point, and places it
in \box255. The bottom part of the current page is
then returned to the recent contributions, and the
page builder invokes the otr.

The page builder is exercised at the end of a
paragraph, the end of a display equation within a
paragraph, at the end of an \halign, and in a few
other cases [122, 286]. The otr is invoked only by
the page builder [§1025], which is why it is never
invoked in the middle of a paragraph (unless the
paragraph contains display math material).

The advanced reader might want to glance at
[§980–1028] for the actual code of the page builder.

Since the page builder is exercised quite often,
the list of recent contributions is usually small or
empty, and the current page gets larger and larger.
When the otr is invoked, the current page is empty.
The \showlists command can always be used to
display the two parts of the MVL in the log file.

The quantity t (\pagetotal) mentioned earlier
as the height of the MVL is, actually, the height of
the current page. It is updated by the page builder
each time a line (or glue) is added to the current
page.

A better understanding of the page builder and
the MVL must include glue and penalties. When a
paragraph is typeset, the lines of text are appended
to the recent contributions, with glue and penalty
items between them. These items are moved to the
current page with the lines of text. If the current
page is empty, all glues, kerns and penalties moved
to it are discarded. This is how discardable items
disappear at the top of a page. When the first box
is moved to the current page, a special \topskip
glue is placed above it, to keep its baseline 10pt
(the value in plain format) below the top of the
page. Following that, glue, kern, and penalties are
moved, with the text, from the recent contributions
to the current page.

72 TUGboat, Volume 11 (1990), No. 1

When a penalty ≤ −10000 is encountered,
the page builder breaks a page. If the resulting
page does not have enough text lines, it may be
underfull. Such penalty values can be used to
eject a page (say, by \vfill\penalty-10000), or
to communicate with the otr (which knows the
penalty associated with the point at which a page
was broken).

It should be stressed, however, that a penalty
of −10000 does not invoke the otr immediately.
If such a penalty is created inside a paragraph,
between lines of text, it is saved in the recent
contributions with the lines, and is only recognized
as special when it is moved, by the page builder,
to the current page. As a result, if a paragraph
contains:
...\dimen0=2pt...\vadjust{\penalty-10000}
...\dimen0=1pt...\par

the otr will be invoked after the entire paragraph
has been read and broken into lines, and will find
\dimen0 to be 1pt.

A page can only be broken at (i.e. just above)
a glue, kern or penalty. If a page is broken at a glue
or kern, the glue stays in the recent contributions
(to be discarded when moved to the top of the
next page). If the page is broken at a penalty, the
penalty is saved in variable \outputpenalty. This
variable can be used to communicate with the otr.
Also, if the otr decides to return some material
from \box255 to the current page, it may want to
place back the original penalty at the breakpoint,
by saying \penalty\outputpenalty.

The precise rules of where a page can be
broken are listed on [110]. One of them says “A
page break may occur at glue, provided that this
glue is immediately preceded by a non-discardable
item.” If a set of successive glues is moved to the
current page, a page break can occur either before
or after that set, but not inside it. If the page
builder decides to break the page before the set, the
entire set is returned to the recent contributions, to
disappear at the top of the next page. If the page is
broken after the set, it becomes glue at the bottom
of the page. This information will be used in part
II, when we try to communicate with the otr by
means of \kern.

The depth of the current page. The discussion
so far has been kept simple (even though some
readers may disagree) by ignoring certain features
that have to do with the depths of the boxes
involved. These features are important since,
normally in a document, successive pages should
have the same (or almost the same) vertical size.

The height of a page is controlled by (actually, it
is equal to) \vsize. The depth of a page should
also be under the user’s control since, in certain
situations, it may spoil the uniform appearance of
the document. This is why it is important to
consider TEX features which have to do with the
depth of a page, and we start by introducing certain
quantities that have to do with the depth of vboxes
in general.

Consider a large \vbox with lines of text,
separated by glue and penalties. The depth of this
\vbox [80] is the depth of the bottom component.
If that component is a glue or penalty, the depth
is zero. If it is a box, then its depth becomes
the depth of the entire \vbox, except that it is
limited to the value of parameter \boxmaxdepth. If
\boxmaxdepth=1pt and the depth of the bottom box
is 1.94444pt, then the depth of the entire \vbox
will be 1pt and its height will be incremented
by .94444pt. This is equivalent to lowering the
reference point (or, equivalently, the baseline) of
the \vbox by .94444pt. In the plain format,
\boxmaxdepth=\maxdimen [348], so it has no effect
on the depths of boxes. However, \boxmaxdepth
can always be changed by the user.

The current page is that part of the MVL
that contains the material for \box255. Its current
height is t, its goal height is g, but what is its depth?
It is, of course, the depth of the bottom line of
text —normally a small dimension which may vary
a little from page to page. This results in pages with
slightly different vertical sizes (i.e. height + depth).
However, if the bottom line of text contains a large
symbol with a depth of, say, 35pt, the vertical size
of the page will be \vsize+ 35pt. The page will be
much taller than its neighbors, spoiling the uniform
appearance of the document. To avoid this, the
page builder uses another parameter, \maxdepth,
when it appends lines to the current page [125].
The plain format sets [348] \maxdepth=4pt. In our
example, when the line with depth = 35pt is added
to the current page, the depth of the current page is
set to 4pt and the difference of 31pt is added to its
height t. A good way to visualize this situation is to
say that the baseline of the current page no longer
coincides with the baseline of the bottom line, but
is located 31pt below it.

The internal quantity \pagedepth (d) contains
the depth of the current page, and is updated each
time a line (or glue) is added to the current page.
d is a ‘relative’ of t, the height of the current
page. It should be noted that t has a few more
‘relatives’ [114], the most important of which are
\pagestretch and \pageshrink, the amounts of

TUGboat, Volume 11 (1990), No. 1 73

stretchability and shrinkability in the current page.
t and its relatives are used by the page builder to
determine a pagebreak (some of them are also used
for insertions).

A simple test can show how those quantities are
updated. First, change \parskip to some flexible
value such as 1pt plus2pt minus1pt, then typeset
text in small pages and place a command such as
\message{(total: \the\pagetotal;
depth: \the\pagedepth;
shrink: \the\pageshrink;
stretch: \the\pagestretch)}

at the start of each paragraph. It will show
the values of the 4 parameters at the end of the
preceding paragraph.

The \message commands will show the value of
t growing from paragraph to paragraph, until a page
is shipped out by the otr. The value of d is usually
1.94444pt (the depth of many letters in cmr10)
but is different when anything other than cmr10 is
used. If the last line of a paragraph happens to
contain letters without any depth, d will be zero at
the end of that paragraph. Note that d can only
be displayed while in vertical mode, between para-
graphs (within paragraphs, \showthe\pagedepth
only shows 0pt, not the depth of the last line of the
previous paragraph). Each time another \parskip
is inserted, between paragraphs, \pageshrink is
incremented by 1pt, and \pagestretch, by 2pt.

Controlling the depth of the current page.
It has already been mentioned that d is lim-
ited to \maxdepth. If a line of text with a
depth>\maxdepth is moved to the current page,
the depth of the current page (\pagedepth) is set
to \maxdepth, and its height t is incremented by
the difference (the baseline of the current page is
lowered, and is now located below the baseline of
the bottom line of text.)

Here is a simple experiment to clear up this
point. First, set

130

142
12pt

154
12pt

12pt

4pt

130

145 3pt

156.94444

2a 2b
Figure 2

\hsize=3.5in \vsize=2in
\tracingpages=1

and typeset some text in font cmr10. Most lines of
text will have a height of 250/36 ≈ 6.94444pt and a
depth of 70/36 ≈ 1.94444pt. The \baselineskip
glue between the lines is thus set to 3.1112pt, to
achieve a separation of 12pt between consecutive
baselines. The last three % lines of TEX’s tracing
report should be:
% t=130.0 g=144.54 b=10000 p=0 c=100000#
% t=142.0 g=144.54 b=204 p=0 c=204#
% t=154.0 g=144.54 b=* p=0 c=*

This shows that t is incremented by 12pt
between lines of text. The last line results in
infinite cost, so the page is broken after the line
with c=204.

Next, repeat the experiment with the depth
of the second line increased to 7pt by placing an
\hbox{\vrule depth7pt} in it. Typesetting the
same material now results in different % lines:
% t=130.0 g=144.54 b=10000 p=0 c=100000#
% t=145.0 g=144.54 b=10 p=0 c=10#
% t=156.94444 g=144.54 b=* p=0 c=*

Fig. 2 shows the layout of the last three text
lines in both cases. In 2a, the lines all have the
same height and depth and are separated with the
same size glue. In 2b, however, the situation is more
complex. A \baselineskip of 3.1112pt is inserted
between the first and second lines, so their baselines
are separated, as usual, by 12pt. Since the second
line has a depth of 7pt, the value of \pagedepth
is set to \maxdepth (= 4pt), and the difference of
3pt is added to the height t. The baseline of the
entire page is thus lowered 3pt below the baseline
of the second line. Normally, t would be set to
130 + 12 = 142pt. Instead, its value now is 145pt.

Because of the large depth of the second line, it
is separated from the third line by \lineskip [78],
which has a plain format value of 1pt. The baseline
of the third line is set 4 + 1 + 6.94444 = 11.94444pt
below the baseline of the page, and t is incremented

74 TUGboat, Volume 11 (1990), No. 1

by that amount, to 156.94444pt. d is reset to the
depth of the third line, namely 1.94444pt.

Again, appending the third line to the current
page has resulted in infinite cost, and it is eventually
returned to the recent contributions.

This is part of the overall task of the page
builder while constructing the current page.

The height of a box of text. We denote the
value of \baselineskip (normally 12pt) by b. A
large \vbox with text consists mainly of lines of
text, each an \hbox, separated by globs of glue,
normally in the (varying) amounts necessary to
separate baselines by exactly b, but sometimes just
the amount \lineskip. We assume a simple case
where no large characters or equations are used. In
such a case, all lines of text are separated by b. The
height of the box is thus

b(n− 1) + the height of the first line
where n is the number of text lines.

The height of \box255. In the case of \box255,
enough glue is placed above the first line of text
to reach to \topskip from the first baseline. We
denote the value of \topskip by h (10pt in plain).
So if the baseline of the first line is now h below the
top of the page, the height H of \box255 should
be b(n − 1) + h (Fig. 3). However, the height of
\box255 is always set, by the page builder, to
\vsize. The difference between the two heights is
usually supplied by the flexible glues on the page,
the most common of which is \parskip.

.......
.......

h

b

b

The Height of a Page Box
Figure 3

Example: \vsize=180pt creates 15-line pages,
since 12(15− 1)+10 = 178. The \parskip glues on
the page are stretched by a total of 2pt. Similarly,
\vsize=189pt creates 15-line pages, but each page
has to be stretched by 11pt.

What if there isn’t enough stretchability? In
such a case, the bottom of the page remains empty.
This is an unusual situation where the height of
a box is greater than the sum of the vertical
dimensions of its components. Normally such a

case is considered an ‘underfull box’ but, in the
case of the page builder and \box255, “underfull
and overfull boxes are not reported when \box255
is packaged for use by the otr” [400].

A simple experiment is recommended, to clear
up this point (note that this experiment uses \out-
put, which hasn’t been introduced yet, nevertheless
it is a useful experiment to perform at this point.)
\vsize=189pt \parskip=0pt
\output={\setbox0=\vbox{\unvcopy255}
\message{[\the\ht0, \the\ht255;]}
\setbox1=\vbox to\vsize{\hrule width3in
\vfil\hrule width3in} \wd1=0pt
\shipout\hbox{\box1 \box255}
\advancepageno}

\vrule height10pt 〈text to be typeset...〉
The \parskip glue is now rigid, so there is no

flexibility on the page at all. The messages will be
[178pt, 189pt;]. \box1 is set to two rules with a
‘fil’ in between, and is superimposed on \box255. A
look at the typeset page will show that the top rule
is placed exactly 10pt above the baseline of the top
line, and the bottom rule is well below the bottom
line of text.

A better understanding of \box255 is gained
by trying
\setbox0=\vbox to\vsize{\unvbox255}

Even though both \box255 and \box0 have
the same height namely, \vsize, they don’t have
the same status. \box255 may be created underfull
without an error message but, when transferred to
\box0, the destination box becomes underfull, with
an error message.

The most natural thing to do, in such a case,
is to try to fill up \box0 by saying \setbox0=\vbox
to\vsize{\unvbox255 \vfill}. Surprise! This
may, sometimes, cause an ‘overfull box’. The
explanation has to do with the depth of \box0.
Without the \vfill, it is the depth of the bottom
line. With the \vfill, it is zero, and the depth
of the bottom line is added to the height of \box0,
which may cause it to be overfull.

Examples of otrs

The following sections show how to write an otr,
and illustrate typical otrs for common applications.
It should again be stressed that the examples are
kept simple and, therefore, are not completely
general. They should be read, understood and
modified for specific needs, rather than copied and
used verbatim.

TUGboat, Volume 11 (1990), No. 1 75

An otr is simply a sequence of TEX commands
assigned to the token-register \output. Thus
\output={...} would cause TEX to execute the
commands ... whenever it decides to invoke the
otr.

The simplest otr is \output={}. When TEX
sees this otr, it substitutes the default otr, which
is: \output={\shipout\box255}. This default otr
is the simplest one which ships out a page.

\shipout is a the TEX primitive which creates a
page in the dvi file. That page reflects the contents
of whatever box follows the call to \shipout.
An interesting feature is that \shipout can be
invoked anytime, not just from an otr. This
is demonstrated in one of the examples below.
Another interesting point is that \shipout can be
redefined (which, of course, is true for any control
sequence, whether a macro or a primitive.) One of
the methods shown later, for double-column pages,
does just that.

The otr itself can be redefined during a TEX
run. The new otr will be used when the page
builder next invokes the otr. It is possible to
define a macro such as \def\newotr{...} and
assign \output={\newotr} at any time. This will
redefine the otr. It is even possible to write an
otr which redefines itself! Here is an example:
\output={
\shipout\box255 \advancepageno
\global\output={
\shipout\vbox{
\box255
\bigskip
\centerline{\folio}}

\advancepageno}
}

This otr typesets the first page without a
page number. It then (globally) redefines itself to
typeset the rest of the document with the page
number centered below the text. The reason for the
\global is the local nature of the otr, which is
explained below.

It should be noted that the otr is expected
to empty \box255; it can ship it out, move it to
some other box, or return it to the MVL. The latter
is done simply by saying \box255 or \unvbox255
inside the otr. An otr which does not do anything
with \box255 will cause the error message “unvoid
\box255.”

The following otr just empties \box255.
\output={\setbox0=\box255}. This does not

cause an immediate error message but is proba-
bly not what you want to do. It amounts to tossing
away the entire document, page by page.

The next example is \output={\uvbox255}.
This otr always returns the page to the MVL,
which will cause the page builder to immediately
find a new page break and invoke the otr again.
The new page break, by the way, may not be the
same as the original one, because of the penalty at
the breakpoint. When the breakpoint is chosen, the
page builder places the penalty found at the point
in variable \outputpenalty, not in \box255. The
otr can return the penalty to its original place
by saying \unvbox255 \penalty\outputpenalty.
This guarantees that the page builder will find the
same breakpoint.

An execution of the otr which does not ship
out anything is called a dead cycle. Dead cycles
have their uses and are illustrated by some of the
examples shown later. However, many consecutive
dead cycles normally indicate an error. This is
why TEX counts the number of consecutive dead
cycles (in register \deadcycles) and stops the run
if \deadcycles ≥ \maxdeadcycles. The plain
format value of \maxdeadcycles is 25, and it can
be changed at any time. Each time \shipout is
invoked, it clears \deadcycles.

The Page Number. The page number can come
from any source. Here is an example where the otr
typesets a page number, from a \count variable,
centered below the printed area:
\newcount\pageNum
\output={
\shipout\vbox{
\box255\smallskip
\centerline{\tenrm\the\pageNum}}

\global\advance\pageNum by1}

Note the \tenrm in the preceding example. It
is necessary because of the asynchronous nature of
the otr. When the otr is invoked, TEX can be
anywhere on the next page. Specifically, it could
be inside a group where a different font is used.
Without the \tenrm, that font (the current font)
would be used in the otr.

In the plain format, the \count0 variable
serves as the page number, and the following two
macros are especially useful.
• \folio typesets \count0 as the page num-

ber. However, if \count0 is negative, \folio
typesets a roman numeral.

• \advancepageno advances the page number by
one. This is done by either incrementing or
decrementing \count0, according to its sign.

76 TUGboat, Volume 11 (1990), No. 1

Any \count variable can be used to typeset the
page number. However, the main advantage of using
\count0 is that TEX writes its value on the dvi file,
so a page preview program can easily display the
page number with the page. Stated more negatively,
driver programs may only understand the values of
\count0 written into the dvi file as page numbers
and may not be able to selectively print pages whose
numbers correspond to some other counter.

Actually, the ten variables \count0. . .\count9
are used as a (composite) page number. Any non-
zero variable in this group is written on the dvi
file. Typesetting and advancing any of them must
be done explicitly by the user. Macros \folio,
\advancepageno only handle \count0.

Grouping and the otr. The otr, as mentioned
earlier, is a list of tokens. It is also implicitly
surrounded by a pair of braces, making it into a
group. This means that anything done inside the
otr is local, unless preceded by \global. This is
a useful feature since, normally, operations within
the otr should be local (i.e. hidden from TEX’s
usual operations of making paragraphs and putting
together math formulas).

Example: A ‘Boxed’ Page

Here is an otr for a ‘boxed’ page. It surrounds the
page with double rules on all sides, and centers the
page number below the double box. Note that the
page shipped out is wider and taller than \box255.
The value of \hsize in this case is, therefore, not
the width of the final page shipped out, but the
width of the text lines in \box255.

Macro \boxit typesets text and surrounds it
with 4 rules (see [Ex. 21.3]). Parameter #2 is the
space between the rules and the text. #1 is a box
containing the text.
\def\boxit#1#2{%
\vbox{\hrule
\hbox{%
\vrule \kern#2pt
\vbox{\kern#2pt #1
\kern#2pt}%

\kern#2pt\vrule}
\hrule}}

\output={
\shipout\vbox{
\boxit{\boxit{\box255}9}3
\medskip
\centerline{\tenrm\folio}}

\advancepageno}

Figure 4 is an example of a small, doubly-boxed
page.

...........

A Boxed Page
Figure 4

Example: Header and Footer

This otr typesets a header and a footer, both token
lists supplied by the user. Typically one of them
contains the page number.
\output={
\shipout\vbox{
\offinterlineskip
\vbox to3pc{
\line{\the\headline}
\vss}

\box255
\vbox to3pc{
\vss
\line{\the\footline}}}

\advancepageno}

The headline and footline occupy 3pc each,
enough for about 4 lines of text. If the user places
more than 3pc worth of material in any of them,
there will be no error message (because of the \vss),
and the extra material will be typeset on top of
the main body of the page. Both \headline and
\footline are token lists, and may contain \if
commands. Examples are
\headline={%

\ifodd\pageno
\line{\hfil\bf Header\hfil
\llap{\tenrm\folio}}%

\else
\line{\rlap{\tenrm\folio}\hfil
\bf Header\hfil}%

\fi}

\footline={\it footer text\hfil}

TUGboat, Volume 11 (1990), No. 1 77

The vertical size of the box shipped out (the
printed page) is 6pc plus \ht255 (which is \vsize)
plus \dp255 (which is limited to \maxdepth and
thus can be kept small).

Figure 5 is an example of such a page.

Header text

...........

Footer text

Header and Footer
Figure 5

Example: A Title Page for a Chapter

Sometimes, the book designer specifies a separate
title page at the start of each chapter. Here is an
example of a \chapter macro which typesets such
a page outside the otr. It starts with an \eject,
to eject the last page of the previous chapter, then
invokes \shipout to ship out a page with the
chapter number and name. Note that, even though
the page number isn’t typeset, \chapter still has
to advance it.
\def\chapter#1 #2;{%
\vfill\eject
\shipout\vbox to\vsize{
\line{\bf Chapter\hfil#1}
\vfil
\vbox{\raggedcenter\bf#2}}

\advancepageno}

There seem to be two problems with our simple
macro:

1. If the first chapter starts on the first page of
the document, our macro will eject a blank
page before any text has been typeset.

2. If a page was ejected just before the new
chapter started, our macro will eject a blank
page.
It turns out that neither of these is a problem.

An \eject is essentially a \penalty-10000 and, if
the very first thing in the document is a penalty, it
gets discarded. Also, if the first thing on a new page
is such a penalty, it gets discarded. Here is a relevant

quote (from [114]) “If you say \eject\eject, the
second \eject is ignored, because it is equivalent to
\penalty-10000 and penalties are discarded after
a page break.”

Example: Printer Registration Marks

We now turn to an otr that optionally typesets
the registration marks, also known as crop marks,
which are used to align the pages for photography
prior to printing and to indicate the size of the final
page. The registration marks should be positioned
at the 4 corners of the page, not at the corners of
the printed area. The top left mark, e.g., should be
located 1in+\voffset above the top of the printed
area, and 1in+\hoffset, to the left. Similarly,
the top right mark should be placed up and to the
right, but by how much?

The problem is that TEX has no idea how
wide and tall the paper is. All it knows is the
left and top offsets, and the dimensions of the
printed area (\hsize and \vsize). To place the
registration marks properly, the user should specify
the dimensions of the paper.

The document should thus start by specifying:
\newdimen\paperheight
\newdimen\paperwidth
\paperheight=..in \paperwidth=..in

It is also possible, although less desirable, to
prompt the user to enter the two dimensions.
\newdimen\paperheight
\newdimen\paperwidth
\message{Enter paper height }
\read-1to\tmp \paperheight=\tmp
\message{Enter paper width }
\read-1to\tmp \paperwidth=\tmp

The next step is to create a \vbox of these
dimensions, with the marks at the corners.
\newif\iffinalrun \finalruntrue
\newdimen\ruleht \ruleht=.5pt
\newdimen\gap \gap=2pt
\def\verrules{%
\hbox to\paperwidth{%
\vrule height1pc width\ruleht depth0pt
\hfil \vrule width\ruleht depth0pt}}

\def\horrules{%
\hbox to\paperwidth{%
\llap{\vrule width1pc height\ruleht
\kern\gap}

\hfil
\rlap{\kern\gap
\vrule width1pc height\ruleht}}}

78 TUGboat, Volume 11 (1990), No. 1

\newbox\rmarks \setbox\rmarks=
\vbox to\paperheight{
\offinterlineskip
\vbox to0pt{\vss
\verrules
\kern\gap
\horrules}

\vfil
\vbox to0pt{
\horrules
\kern\gap
\verrules\vss}}

The dimensions of the box are then set to zero, so
it will be superimposed on the printed page
\ht\rmarks=0pt \wd\rmarks=0pt

and the otr typesets the box (which does not move
the reference point), followed by the printed page.
This causes the top left corner of the printed page
to coincide with the top left registration mark. To
center the printed page, it should be lowered and
moved to the right.
\newdimen\Mdown \Mdown=\paperheight
\advance\Mdown by-\vsize
\advance\Mdown by-6pc \divide\Mdown by 2
\newdimen\Mright \Mright=\paperwidth
\advance\Mright by-\hsize
\divide\Mright by 2
\output={
\shipout\vbox{
\offinterlineskip
\iffinalrun
\copy\rmarks
\kern\Mdown
\moveright\Mright

\fi
\vbox{
\vbox to3pc{
\line{\the\headline}\vss}

\box255
\vbox to3pc{
\vss\line{\the\footline}}}}

\advancepageno}

Sometimes the book designer specifies off-center
pages. Even-numbered pages should be moved to
the right and odd-numbered ones, to the left. This
brings facing pages closer together, and leaves extra
room on the outside margins.
...
\divide\Mright by 2
\newdimen\Mleft \Mleft=\Mright
\advance\Mright.5in \advance\Mleft-.5in
\output={

...
\moveright
\ifodd\pageno\Mleft
\else\Mright\fi
...

This off-centering is only done on the final run.
Figure 6 shows a small page with registration

marks.

Printer Registration Marks
Figure 6

The reader should now realize that three sets
of dimensions should be specified when a book
is designed and published. (1) The size of the
sheet of paper which actually goes into the printer
(specified by the human printer). After coming out
of the printer, this sheet of paper is trimmed, at
the crop marks, to (2) the size of the final page
(\paperheight and \paperwidth). Finally, there is
(3) the size of the printed area (\hsize and \vsize)
on the page.

Example: A Border Around the Page

Here is an output routine which takes a 5” × 3”
page and creates a border of size 5.5”× 3.5” around
it. The border is done with \leaders (see [223]
and [Ex. 21.8]). This example shows how easy it is
to create a border out of a few characters. Ideally,
8 characters should be especially designed (Ref. 1),
4 for the four sides of the border, and 4 for the
corner points. Their sizes should be chosen such
that, e.g., the width of the border will be an integral
multiple of the width of the top character. The
reference point of each of the 8 should be placed
such that they will align properly at the corners
(see discussion of the ‘quarter circle’ characters on
[389–390]).

The border is built in three steps:

TUGboat, Volume 11 (1990), No. 1 79

1. \box2 is set to a \vbox containing the border.
\font\bord=cmsy10
\def\topp{\bord\char’176}
\def\bott{\bord\char’020}
\def\lft{\bord\char’032}
\def\rt{\bord\char’033}
\setbox2=\vbox to3.5in{
\offinterlineskip
\hbox to5.5in{\leaders\hbox{\topp}\hfill}
\hbox to5.5in{%
\leaders
\vbox to3.4in{

\leaders
\hbox to5.5in{\lft\hfil\rt}
\vfil}%

\hfil}
\hbox to5.5in{\leaders\hbox{\bott}\hfill}
\vss}

2. All the dimensions of \box2 are set to 0 by
\wd2=0pt \ht2=0pt \dp2=0pt

3. The output routine now ships out \copy2 (which
does not move the reference point), followed by
\box255.
\output={
\shipout\vbox{
\copy2 \vskip.25in
\moveright.25in\box255}

\advancepageno}

Example: Mailing Labels

This example introduces the concepts of logical and
physical pages. The material placed in \box255
constitutes a logical page. The material actually
shipped out by the otr is a physical page. Usually
one physical page is shipped for each logical page
generated. In this example, since the mailing labels
are small, several mailing labels are combined and
shipped together as one physical page.

The data for the labels is assumed to reside
on an external file, named labels, which contains
information with format:
\name 〈the name〉\\
\address 〈several lines of address〉\\

The mailing labels are 3.5in wide and 1.5in
tall each. There are 4 labels arranged vertically
on a 6in tall page, without any gaps in between.
The data file is \input and macros \name, \ad-
dress invoked automatically. Three approaches are
described:

Approach 1. Macros \name and \address typeset
the name and address in the desired format. The

value of \vsize is set to the size of 4 labels. The
otr is thus invoked with a logical page consisting of
4 labels, and it simply ships it out, as one physical
page.
\nopagenumbers \vsize=6in \hsize=3.5in
\def\name#1\\{\nointerlineskip
\vbox to.25in{#1 \vfil}}

\def\address#1\\{\nointerlineskip
\vbox to1.25in{\kern.1in#1 \vfil}\penalty0}
\output={\shipout\box255}
\obeylines\parindent=0pt
\input labels
\bye

The \obeylines guarantees that each line in
file labels will become a typeset line on the
final page. The \nointerlineskip suppresses
the normal interline glue that would otherwise
be inserted between the boxes in the MVL. The
\penalty0 is necessary to supply a valid page
breakpoint. The reader will recall that a page can
only be broken at a glue, a kern, or a penalty [110].
Without the \penalty0, the page builder would
have no place to break the page, and would place
the entire document, as one page, in \box255 at the
end of the job.

Approach 2. Macro \name typesets the name in
a \vbox. Macro \address typesets the address in
another \vbox. \vsize is set to 1.5in, the size of
one label. The otr is thus invoked for each label
and receives, in \box255, a logical page consisting
of one label. It collects 4 such pages and ships
them out as one physical page. This approach
distinguishes between a logical and a physical page.
Note also that, 3 out of 4 times, this otr goes
through a dead cycle.
\nopagenumbers \vsize=1.5in \hsize=3.5in
\def\name#1\\{\vbox to.25in{#1 \vfil}}
\def\address#1\\{\nointerlineskip
\vbox to1.25in{\kern.1in#1 \vfil}}

\newcount\four \newbox\physpage
\output={
\global\setbox\physpage=
\vbox{
\unvbox\physpage
\box255}

\global\advance\four by1
\ifnum\four=4
\shipout\box\physpage
\global\four=0

\fi}

\obeylines\parindent=0pt

80 TUGboat, Volume 11 (1990), No. 1

\input labels
\bye

The serious reader should try to understand
what happens at the end of the document. Suppose
we have 6 labels. The first 4 will be printed on
the first page, and the last 2 will be accumulated,
in \box\physpage, for the second page. When
\bye is found, TEX finds out that \deadcycles6= 0.
It goes into its ‘endgame’ [264], where it prepares
an empty page and invokes the otr. This is
repeated twice, accumulating two empty logical
pages in \box\physpage, and then the otr executes
a \shipout, which clears \deadcycles, thereby
stopping the ‘endgame’.

Approach 3. Macro \name typesets the name in
a \vbox. Macro \address appends the address to
the same box, sets its height to 1.5in, and invokes
the otr. The otr again collects 4 such boxes and
ships them out as one physical page. This approach
is interesting since it makes minimum use of the
MVL, the page builder, and \box255. It does not
use \vsize which, consequently, can be set to any
value.
\nopagenumbers \vsize=0in \hsize=3.5in
\def\name#1\\{\strut\setbox0=\vbox{#1}}
\def\address#1\\{%
\setbox0=\vbox to1.5in{
\unvbox0
\kern.1in
#1 \vfil}

\eject}
\newcount\four \newbox\physpage \newbox\toss
\output={
\setbox\toss=\box255
\global\setbox\physpage=\vbox{
\unvbox\physpage\box0}

\global\advance\four by1
\ifnum\four=4
\shipout\box\physpage
\global\four=0

\fi}
\obeylines\parindent=0pt
\input labels
\bye

We want macro \address to invoke the otr.
However, the only part of TEX which invokes the
otr is the page builder. It does that when
it calculates a page break with infinite cost, or
when it moves a penalty≤ −10000 to the current
page. Macro \address thus says \eject, which
is essentially a \penalty-10000. The penalty is
placed in the recent contributions and the page

builder is exercised. The page builder tries to
move the penalty to the current page but, since
the current page is empty, the penalty is discarded
[112]. The result is that the otr is never invoked,
and the job terminates without shipping out any
pages.

To avoid this situation, macro \name typesets a
strut. The strut is moved to the current page and,
since the current page is no longer empty, the page
builder agrees to move the \penalty-10000 to the
current page. This causes the page builder to break
the page, place the current page (just the strut) in
\box255, and invoke the otr. The otr does not
need \box255 and simply empties it.

It is possible, of course, to use any text instead
of the strut.

The \vsplit Operation. It is important, when
working with otrs, to fully understand the \vs-
plit operation. Its syntax is: \vsplit〈box num-
ber〉 to 〈dimen〉, and the result is a box. Most
often it appears in an assignment such as: \set-
box1=\vsplit0 to2.6in. This sets \box1 to a
height of 2.6in, moves material from the top of
\box0 to \box1, and keeps the remainder in \box0.

TEX assumes that the new \box1 may have to
be shipped out as part of the page. It therefore
places a glue similar to h at the top of \box1.
This glue is called \splittopskip and has a plain
format value of 10pt [348].

The most important thing to keep in mind is
that a box can only be split between lines of text.
If we perform a \vsplit to an ‘inconvenient’ size,
\box1 will come out underfull.

Example: \vsize=375pt. This creates, in
\box255, a page of 31 lines (since 12(31− 1) + 10 =
370). The assignment \setbox0=\vsplit255 to
184pt will set \box0 to a height of 184pt with 15
lines of text. Since 15 lines of text occupy 178pt,
the remaining 6pt should be filled with some flexible
glue. If there is not enough flexible glue, \box0
will come out underfull. If there are, e.g., two
paragraphs in \box0, then its total stretchability
is 2pt. TEX will stretch it by 6pt and will report
an underfull box with a glue set ratio of 3 (300%).
The remaining 16 lines in \box255 will now occupy
12(16 − 1) + 10 = 190pt. Any flexible glues in
\box255 will return to their natural size.

Here is an otr which splits the page, ships
out the top part and returns the rest to the MVL
(actually, to the recent contributions):
output={\setbox0=\vsplit255 to1in
\shipout\box0 \unvbox255}

TUGboat, Volume 11 (1990), No. 1 81

Splitting a Box in Two

Imagine a box with n lines of text, and with no
flexible vertical glues. How can it be split in two
equal parts? If n is even, this is easy. However, if
n is odd, it is impossible. If H is the height of the
box then H = b(n− 1)+h. Our approach is to split
the box such that the top part will have m = dn/2e
lines, and its height will thus be H ′ = b(m− 1) + h.
To calculate H ′ we start with:

m = dn/2e =
{

n/2, n even;
bn/2c+ 1, n odd; .

Since TEX always performs an integer by integer
division, the case where n is even is simple. It
satisfies m = n/2 or m− 1 = n−2

2 and, therefore,

H ′ = b(m− 1) + h =
b(n− 2)

2
+ h

=
b(n− 1) + h + h− b

2

=
H + h− b

2
.

We therefore split to H + h − b. For even n,
this is ideal. For odd n, the top part will contain
one less line than the bottom. Since we want the
top part, in such a case, to be larger, we loop,
increasing the split size slightly, until the top part
becomes larger than the bottom one.
\halfsize=\ht0
\advance\halfsize by\topskip
\advance\halfsize by-\baselineskip
\divide\halfsize by 2
\splittopskip=\topskip
{\vbadness=10000
\loop
\global\setbox3=\copy0
\global\setbox1=\vsplit3 to\halfsize

\ifdim\ht3>\halfsize
\global\advance\halfsize by1pt

\repeat}

This method is used on [417] to implement
double-column pages (see below). It can also serve
to split a box into k equal parts [397]*. The
principle is to first split the box to size dn/ke, then
to split the rest recursively.

Next, consider the case where the original box
contains flexible vertical glues. This considerably
simplifies the problem, since the box can now be
split to parts of almost any size and the glues will be
flexed to fill up all the individual parts, eliminating
any over/underfull boxes.

Example: Double-Column Pages

Multi-column pages are common in newspapers
and technical publications. Note that, when using
narrow columns, the tolerance usually has to be
increased, leading to low quality results (see the
experiments in [Ch. 6]).

Three approaches are described. The first one
treats the two columns as separate logical pages,
which are combined, in the otr, into one physical
page. This approach is described on [257], and is
shown here for the sake of completeness. See also
[Ex. 23.4] for a generalization of this case to three
columns.

The second approach [417] creates one long
and narrow column, and breaks it into two equal
parts, which are typeset side by side. The problem
of splitting a box into two equal parts has been
discussed earlier.

The third approach uses the technique of the
second approach to make it possible to switch
between one- and two-columns at will.

Approach 1. The quantity \lr is a new control
sequence, which is defined and redefined by the otr
depending on the current column (left or right).
When the otr is invoked for the first time (or the
third, fifth,. . . times) it saves \box255 (containing
the left column) in another box. These are dead
cycles. When it is invoked for the second time (or
the fourth,. . .times), it ships out both columns.
\hsize=3.2in
\newdimen\fullhsize \fullhsize=6.5in
\let\lr=L \newbox\leftcolumn
\output={
\if L\lr
\global\setbox\leftcolumn=\box255
\global\let\lr=R

\else
\shipout\hbox to\fullhsize{%
\box\leftcolumn\hfil\box255}

\global\let\lr=L
\advancepageno

\fi}

Again, it is important to understand what
happens with the last page. If the last page ends
somewhere in the left column, the \bye invokes
the otr, which saves the left column and returns
without shipping out anything (a dead cycle). Since
\deadcycles is now non-zero, TEX places an empty
page in \box255 and invokes the otr again. This

* It seems that the inequality shown there is
wrong.

82 TUGboat, Volume 11 (1990), No. 1

time it ships a full page, so \deadcycles is reset.
The last page comes out with unbalanced columns.

It is easy to add a headline and footline to this
example:
\vsize=2in \hsize=3.2in
\newdimen\fullhsize \fullhsize=6.5in
\let\lr=L \newbox\leftcolumn
\def\fulline{\hbox to\fullhsize}
\output={
\if L\lr
\global\setbox\leftcolumn=\box255
\global\let\lr=R

\else
\shipout\vbox{
\vbox to3pc{%
\fulline{\the\headline}\vss}
\fulline{\box\leftcolumn\hfil\box255}
\vbox to3pc{
\vss\fulline{\the\footline}}}

\global\let\lr=L
\advancepageno

\fi}

\headline{\hfil\bf A Header\hfil}
\footline{\hfil\tenrm\folio\hfil}

Approach 2. The otr is invoked with a long and
narrow column. It splits it into 2 equal parts (see
earlier discussion) and ships out a page consisting
of the two parts, laid side by side. The original
value of \hsize is saved in \ohsize. \hsize is then
set to the width of a single column. \vsize should
be set to twice its original value.
1. \newdimen\ohsize \ohsize=\hsize
2. \hsize=0.5\hsize \advance\hsize -.1in
3. \newdimen\halfsize
4. \output={
5. \setbox0=\vbox{\unvbox255}
6. \halfsize=\ht0
7. \advance\halfsize by\topskip
8. \advance\halfsize by-\baselineskip
9. \divide\halfsize by 2

10. \splittopskip=\topskip
11. {\vbadness=10000
12. \loop
13. \global\setbox3=\copy0
14. \global\setbox1=\vsplit3 to\halfsize
15. \ifdim\ht3>\halfsize
16. \global\advance\halfsize by1pt
17. \repeat}
18. \shipout\hbox to\ohsize{\box1 \hfil\box3}
19. \advancepageno}

On line 5, \box255 is unveiled. This is
necessary since \ht255 equals \vsize but we want
to start with a box of height b(n − 1) + h. Also,
for the last page, \box255 may have a large \vfil
at the bottom, which should be removed before the
split. The right value for the split is calculated on
6–9. If the number of lines, n, is even, the split
produces two equal parts. For odd n, the loop on
lines 12–17 keeps incrementing the left column until
it becomes one line larger than the right one. Both
halves are shipped out, on line 18, side by side.

If the document contains just text, without
equations or figures, the following can be used to
calculate the best value of \vsize.
\newcount\col
\message{Enter number of lines per page: }
\read-1to\ent \col=\ent
\advance\col by-1 \multiply\col by12
\advance\col by10
\vsize=\col pt

It is easy to add a header and footer to the
final page.

Exercise: Do it!

Approach 3. Switching between single- and double-
columns. The principles of this method are de-
scribed here, along with macros taken from the
manmac [417]. They are the macros used to typeset
the index of the TEXbook, which is why they use
values such as 14pc and 89pc. The macros are easy
to modify for different formats. The reader should
also consult reference 2 for two corrections of the
macros.
\newdimen\pagewidth \pagewidth=\hsize
\output{\shipout\box255}

\newbox\partialpage
\def\begindoublecolumns{\begingroup
\output={\global\setbox\partialpage=
\vbox{\unvbox255\bigskip}}

\eject
\output={\doublecolumnout}
\hsize=14pc \vsize=89pc}

\def\enddoublecolumns{%
\output={\balancecolumns}\eject
\endgroup \pagegoal=\vsize}

\def\doublecolumnout
{\splittopskip=\topskip
\splitmaxdepth=\maxdepth
\dimen0=44pc
\advance\dimen0 by-\ht\partialpage
\setbox0=\vsplit255 to\dimen0

TUGboat, Volume 11 (1990), No. 1 83

\setbox2=\vsplit255 to\dimen0
\onepageout\pagesofar
\unvbox255 \penalty\outputpenalty}

\def\pagesofar{\unvbox\partialpage
\wd0=\hsize \wd2=\hsize
\hbox to\pagewidth{\box0\hfil\box2}}

\def\balancecolumns
{\setbox0=\vbox{\unvbox255}
\dimen0=\ht0
\advance\dimen0 by\topskip
\advance\dimen0 by-\baselineskip
\divide\dimen0 by2 \splittopskip=\topskip
{\vbadness=10000
\loop
\global\setbox3=\copy0
\global\setbox1=\vsplit3 to\dimen0

\ifdim\ht3>\dimen0
\global\advance\dimen0 by1pt

\repeat}
\setbox0=\vbox to\dimen0{\unvbox1}
\setbox2=\vbox to\dimen0{\unvbox3}
\pagesofar}

Macro \begindoublecolumns starts by defin-
ing an otr which saves the page so far (single-
column) in \box\partialpage. The \eject in-
vokes this otr. The otr is then redefined to do
double-column by splitting a long, narrow, \box255.

Macro \enddoublecolumns again redefines the
otr to split the page-so-far in two, and typeset the
two halves, side by side, below the single-column in
\box\partialpage.

Example: Facing figures

When two figures are textually related, the user
may want them typeset on facing pages. The first
figure should be typeset on top of the next even-
numbered page and the second one, on top of the
following page.

A macro \facefig#1#2 is defined, with 2
parameters, the heights of the 2 figures. It saves
the two values in \dimen variables \figa and
\figb. The otr checks the two variables. If
the current page number is even and \figa> 0,
room is reserved on top of the current page for the
first figure by placing an empty box on the MVL,
followed by \box255. If the current page number
is odd, \figa= 0 and \figb> 0, the otr reserves
room for the second figure in a similar way. In
either case the otr goes through a deadcycle.
\newdimen\figa \newdimen\figb \newif\ifdead
\def\facefig#1#2{\figa=#1 \figb=#2}
\output={
\deadfalse

\ifodd\pageno
\ifdim\figa=0pt \ifdim\figb>0pt \message{b}
\vbox to\figb{}\unvbox255
\penalty\outputpenalty
\global\figb=0pt \deadcycles=0 \deadtrue

\fi\fi
\else
\ifdim\figa>0pt \message{a}
\vbox to\figa{}\unvbox255
\penalty\outputpenalty
\global\figa=0pt \deadcycles=0 \deadtrue

\fi
\fi
\ifdead\else
\shipout\box255
\advancepageno

\fi}

The simple macros above only use one pair
of variables to save the heights of the figures. In
practice, the user may expand \facefig before the
otr has handled the previous pair of figures. This
will place new values in our variables before the old
ones have been used. Our macros should, therefore,
be extended so that any number of pairs of heights
can be saved. The macros below save such pairs, as
\kern values, in a \vbox.
\newbox\save
\newdimen\figa \newdimen\figb
\newif\ifdone \donetrue \newif\ifdead
\def\facefig#1#2{%
\setbox\save=\vbox
{\kern#1 \kern#2 \unvbox\save}}

\output={
\deadfalse
\ifvoid\save\else
\ifdone
\global\setbox\save=
\vbox{\unvbox\save
\global\figb=\lastkern \unkern
\global\figa=\lastkern \unkern}

\global\donefalse
\fi\fi
\ifdone\else
\ifodd\pageno
\ifdim\figa=0pt \ifdim\figb>0pt
\message{b=\the\figb;}
\vbox to\figb{}
\unvbox255
\penalty\outputpenalty
\global\figb=0pt \deadcycles=0
\deadtrue \global\donetrue
\fi\fi

\else

84 TUGboat, Volume 11 (1990), No. 1

\ifdim\figa>0pt \message{a=\the\figa;}
\vbox to\figa{}
\unvbox255
\penalty\outputpenalty
\global\figa=0pt
\deadcycles=0 \deadtrue

\fi
\fi\fi
\ifdead\else
\shipout\box255
\advancepageno

\fi}

Another boolean variable, \ifdone, is declared.
It is set to ‘false’ when two values are extracted
from \box\save, and to ‘true’, when the two figures
have been typeset. As long as it is ‘false’, we are
in the process of typesetting two facing figures, and
no new values are extracted.

The following extensions are left as an Exer-
cise:

1. Macro \facefig should check to make sure
none of its parameters exceeds \vsize.

2. \facefig should also accept the captions of
the two figures, as additional parameters, and save
them. The otr should later retrieve and typeset
the captions below (or above) the reserved areas.

Note! Our macros do not use insertions and
are therefore incompatible with \midinsert and its
relatives. Using both \midinsert and \facefig,
the figures would be inserted in an unpredictable
order.

Example: Shipping-Out Pages Selectively

The following code, part of the manmac format, can
be used to produce only a subset of pages. The
numbers of the desired pages should be placed on
separate lines in a file called pages.tex.

The first line saves \shipout, which is a
primitive, in macro \Shipout. Later, \shipout is
redefined as either \Shipout or \Tosspage.
\let\Shipout=\shipout
\newread\pages \newcount\nextpage
\openin\pages=pages
\def\getnextpage{%
\ifeof\pages\else
{\endlinechar=-1\read\pages to\next
\ifx\next\empty % we should have eof now
\else\global\nextpage=\next\fi}%

\fi}
\ifeof\pages\else\message
{OK, I’ll ship only the requested pages!}
\getnextpage\fi

\def\shipout{%
\ifeof\pages\let\next=\Shipout
\else\ifnum\pageno=\nextpage
\getnextpage
\let\next=\Shipout

\else\let\next=\Tosspage\fi\fi
\next}

\newbox\garbage
\def\Tosspage{\deadcycles=0\setbox\garbage=}

Detecting the End of the Document

How can the otr find out if the page it has been
given is the last one? The easiest way is to detect
the \vfill at the bottom of that page. This can
be done by:
\def\vfill{\vskip 1sp plus 1fill}
\output={
\setbox0=\vbox to\vsize{

\unvcopy255
\ifdim\lastskip>0pt \message{last page}\fi}

\shipout\box255
\advancepageno}

(The \lastskip command is explained in part
II.) This usually works but may fail in cases where
the last page is full, or almost full. An example
is \vsize=1in, which leaves room for about six
lines of text on the page. Let’s assume that the
document has text for 6 lines, and the last line
contains a deep character, such as a ‘]’, whose depth
is 2.5pt. Setting \tracingpages=1 generates the
following in the log file:
%% goal height=72.26999, max depth=4.0

% t=10.0 g=72.26999 b=10000 p=0 c=100000#

% t=22.0 plus 1.0 g=72.26999 b=10000 p=150 c=100000#

% t=34.0 plus 1.0 g=72.26999 b=10000 p=100 c=100000#

% t=46.0 plus 1.0 g=72.26999 b=10000 p=100 c=100000#

% t=58.0 plus 1.0 g=72.26999 b=10000 p=150 c=100000#

% t=70.0 plus 1.0 g=72.26999 b=1168 p=0 c=1168#

% t=72.5 plus 1.0 plus 1.0fill g=72.26999 b=* p=-20000 c=*

The cost of breaking the page after the first six
lines is 1168, very low. The page builder, however,
waits for a point with infinite cost before it decides
on a page break. It continues reading the source
and finds the \bye. The definition of \bye is
[357] \par\vfill\penalty-20000\end. The page
builder adds the \vfill to the current page, causing
the depth of the current page to become zero. The
depth of the bottom line (2.5pt) is now added to
the height of the current page, with the result that
it is too high (72.5pt). The \vfill is therefore
removed, and the last page is shipped out without
any fill at the bottom.

TUGboat, Volume 11 (1990), No. 1 85

References

1. Knuth, D. E., A Course on METAFONT Program-
ming, TUGboat 5(2)105–118, Nov. 1984.
2. Platt, C., Macros for Two-Column Format, TUG-
boat (6)1,29–30, March, 1985.)

� David Salomon
California State University,

Northridge
Computer Science Department
Northridge, CA 91330
dxs@mx.csun.edu

