
Enslaved

Digital Equipment Corporation

110 Spit Brook Road (ZKO 1-2/C14)

Nashua, NH 03062-2698

ABSTRACT

Several documentation systems incorporate as a text formatter, but use a generic

markup language as a front-end. This means rn is hidden from the users, and usually

has been modified or extended. This paper discusses the advantages and disadvantages

of such systems, as regards international standards, macro packages, and 'I$$ itself.

1. Introduction
w, the mathematical typesetting program, has a number of good qualities and unique features. It

is extremely'precise in its measurements, generous in its use of fonts, sophisticated in its hyphenation,

ultra-sophisticated in its display of mathematical characters, and generally device-independent in its

output. And, it is now fixed and completed; it is the same for everyone.

But, rn has limitations. 'I$$ processes text in a straight line. It cannot rotate characters or text,

and it has difficulty drawing "freehand" lines. Although it can insert graphics at arbitrary locations,

it cannot produce them.

is a general-purpose composition program. It has a relatively large number of commands that

make it hard to learn. Many of its concepts, such as zero-width boxes, are not intuitive. w is often

inconsistent in the way it presents its primitives and arguments.

Programmatically, most of its formatting macros are low-end, aimed at producing basic structures,

such as paragraphs and boxes. For higher-level objects, custom macros are needed.

2. A Front-End
Many, if not most, of the perceived shortcomings of could be solved by placing behind a

front-end system. The front-end would have its own simple, consistent, standardized commands for

formatting documents. These commands would then be translated into w.

2.1 Advantages
Numerous advantages would accrue. Specifically:

1. The front-end could provide consistency and conformance with external standards, such as the

Standard Generalized Markup Language (SGML).'

The syntax of an SGML-encoded document is independent of processing. With SGML, a doc-

ument is ordered as a hierarchy of structural elements. The standard provides conventions for

beginning and ending structural elements; every element is delimited by a pair of start and end

tags. The standard also provides ways of defining document types and limiting the structural

elements permitted within each.

w has been compared unfavorably with SGML standards; it has been labelled as a procedural,

but not descriptive, text processor. Yet, some proposed SGML markup, 'lq' for instance (left

'As defined in International Standard (ISO) 8879 (10186). "Markup" is used here t o mean any non-text added t o
increase understanding of the text.

TUGboat, Volume 10 (1989), No. 4-1989 Conference Proceedings 603

quad? long quote? loose quality?), is as cryptic as anything in T)$.2 It is possible for SGML or

TEX (in the form of macros) to be completely descriptive, depending on the interpretation.

2. The front-end could permit an object-oriented approach to documentation, which would seem

more natural for users.

(a) A front-end language would be considered object-oriented if it supported four specific object

properties (Cox 1987):

i. abstraction - a concise representation for a more complex idea, where the details are

not essential to understanding the function. Each object is an instance of a class, its

behavior limited by the properties of that class.

ii. encapsulation - an object is the unit of encapsulation of an abstraction - is a process

by which an individual component is defined. Encapsulation ensures that an individual

object can have private properties, not shared with other objects in the class.

iii. inheritance - classes that are sub-classes of others can inherit the properties of the

super-classes. For example, in a document, a paragraph within a table would inherit

the left margin of the table.

iv. polymorphism - inherited messages can be re-defined by sub-class; the same message

in different classes could be polymorphically defined.

(b) The front-end could provide a set of object-oriented constructs which would then be used

to form high-level, hierarchical document structures.

3. The front-end could, in fact, provide extensions, or perhaps "pretensions", to m. This would

simplify the operation of the macros. For instance, when an argument in TJ$ is used for several

purposes, such as a chapter title, running head, contents entry, and index entry, each case is

handled differently; the text is a box, mark, or write, depending on the macro. Expansion occurs

at different times. The front-end could copy the text, so it does not need to be done in the

macros.

4. The front-end could be simpler to use and easier to learn. Complex parts of the code would be

located in lower levels, in T@, so that higher levels, the front-end, would be less complex. The

markup would be descriptive and consistent.

It could offer easier error correction. An SGML parser could check the context of elements (for

example, emphasis, double columns, or indents) and issue error messages. Otherwise, this would

have to be built into the T@ macros. Thus, T)$ errors would be minimized. The front-end

would detect errors and relate them to the elements used by the author, not to the arcane

operations in T&X's gut.

5. The front-end could be extraordinarily flexible. It could provide another level of optimization.

It could, in fact, use other text processors under certain circumstances. It could offer multiple

styles of document preparation; the same dataset could be available as a manual, print-file, or

on-line book. The layout would be determined by a style definition.

2.2 Disadvantages
Putting a front-end on TJ$ does have disadvantages, however:

1. A comprehensive front-end may be almost as difficult as T&X to learn, especially if it has to serve

a variety of applications.

2. The interface between the programs becomes complex.

3. Maintenance and debugging also become more complex and lengthy.

'See Coombs et a1 1987.

604 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

4. Running time may be increased.

5. The front-end may not be as portable as m.

3. An Example in Progress: Digital's VAX DOCUMENT
Front-ends have been advertised for a number of years. The Tyxset system (1985, Tyx Corporation,

Reston, VA) was designed to hide Q$ from users with no typesetting experience, while letting them

typeset. Page One (1987, McCutcheon Graphics, Toronto, Canada) offers templates for automatic

book production on the Macintosh, where the skill requirement was listed as the ability to use a mouse.

MARKUP (1987, Hewlett-Packard, Palo Alto, CA) is an SGML parser and application generator that

uses Tp$ to print internal documentation (Price 1987).

Digital Equipment Corporation's VAX DOCUMENT provides a front-end for a formatting engine

that is currently "based on w. The engine has been modified and does not pass the t r i p test.

Changes include making into a callable function, instead of a standalone program, providing 8-bit

support (to permit fonts with 256 characters, instead of 128), raising the memory limit, replacing error

messages with more normal VMS messages, and increasing the number of marks, dimens, and fonts.

This means that a VAX DOCUMENT-produced file cannot run through public domain w, or

similarly, an arbitrary 'I$$ file won't run through VAX DOCUMENT'S text formatter. In fact, end users

are not allowed to load their own format files. VAX DOCUMENT consists of the following components:

1. A proprietary generic markup language, based on preliminary international standards.

2. A tag translator, which reads the source file and produces an intermediate file (with syntax)

that can be read by text formatting software.

3. The text formatter, which uses the input file from the translator and font definition files.

4. Device converters that produce output for different devices: monospaced, LN03 printers, Post-

Script printers.

The text formatter controls page layout, typography, and output dependencies. Text formatting

macros are coded using a proprietary Q$ macro package, dependent on 'I$$ extensions (and inclusive

of future bug fixes). Most of the macros (and language dependencies, font loads, device-dependent

characters) are considered internal to the product and are shipped to customers in machine-readable

form only.

Invoking VAX DOCUMENT begins a chain of processing. One command calls the components of the

system and their associated files. Except for the top level verb component, which parses the command

line and some files and creates an item list to facilitate communication, all the components are data

processors that manipulate an input file to produce a readable file for the next processor. The tag

translator reads an ASCII input file with embedded generic tags and replaces them with definitions

from a saved tag table file, which supplies a mapping from the tags to strings of l)$ macros. The tag

translator output becomes input to the text formatter, which looks up the macros from a format file;

the macros are parameterized by a design file.3 At the end of the chain, a formatted file is displayed

or printed.

The major components of VAX DOCUMENT are the tag translator and text formatter. Both compo-

nents are macro processors, i.e., text substitution programs. Each processor defines a set of primitive

macros that do "work". The primitive macros include a kind of programming language that allows an

algorithm to be written. The tag translator macros are called tags, to conform with generic tagging

and to avoid confusion with macros.

VAX DOCUMENT is still evolving. Currently, it supports government standards (DOD 2167, 2167a).

Other features are being studied: automatic language strings; support for languages that read from

right-to-left and left-to-right, as well as the mixture of the two; a modular form for the text formatter

macros; an on-line bookreader.

3Users are not told how to modify the saved tag table file and format files, only design files.

TUGboat, Volume 10 (1989), No. 4-1989 Conference Proceedings

4. Summary
TI@ is a sophisticated system for setting type. But l)$ has a high learning curve, and TEX does not

meet international standards.

TEX is a public domain program with all the attendant problems of public domain programs,

such as maintenance and improvement - who will support and disburse TEX and for how long? By

extending l$$, making it proprietary, companies such as Digital guarantee interest and investment

in l$$. By using a front-end, they can complement the strengths of l$$ with those of the front-end.

Also, they are flexible in their choice of a formatter.

An object-oriented front-end that conformed to SGML standards could handle the logical struc-

tures of a variety of documents. That front-end could then harness QX's impressive text-formatting
capabilities.

Bibliography

Coombs, J.H., A.H. Renear, and J.S. DeRose. "Markup Systems and the Future of Scholarly Text

Processing." Communications of the ACM 30:933-947, 1987.

Cox, Brad. Object Oriented Programming: An Evolutionary Approach. Reading, MA: Addison

Wesley, 1987.

Price, Lynne. "SGML and m." TUGboat 8(2):221-225.

TUGboat, Volume 10 (19891, No. 4- 1989 Conference Proceedings

