
7JjX Macros for COBOL Syntax Diagrams

Unisys Corporation
19 Morgan Avenue
Irvine. CA 92718-2093

ABSTRACT

COBOL syntax diagrams have a unique format that has evolved into an industry-
wide standard. This format is particularly difficult to accommodate without treating the
diagram as artwork. When a manual contains over a hundred syntax diagrams, as several
of our manuals at Unisys do, the production process becomes quite unwieldy.

However, T G ' s math mode can be exploited to allow inclusion of COBOL syntax
diagrams within the document itself. This paper presents macros that typeset COBOL
syntax diagrams. The paper is divided into two parts: the f is t demonstrates how to use
a set of macros to create the diagrams, and the second part lists and explains the actual
macro definitions.

1. The Diagrams
COBOL diagrams are composed of four basic kinds of elements: items that are required, items that
are optional, items that offer a choice, and items that can be repeated. In addition, COBOL diagrams
can contain reserved words, which are displayed in uppercase, and programmer-supplied information,
which is displayed in lowercase.

These elements can be combined to form diagrams that are quite complicated. But first, let's look
at each element by itself. The composition of the macros used to create these elements is discussed
later in this paper (see Section 2).

1.1 Required Elements
Required elements are underlined. For example, the VALUE clause looks Like this:

VALUE IS literal

and can be coded using simply the \req macro:l

\syntax(%

\req(VALUE) IS l i t e r a l

3

If several required items occur in a row, they must be identified individually. For example,

produces

MOVE CORRESPONDING identifier-1 identifier-2

COBOL syntax diagrams always begin with the \syntax macro.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

1.2 Optional Elements

Optional elements are enclosed in square brackets. For example, the IF statement looks like this:

IF condition [THEN] statement-1 [ELSE statement4] -

and is coded using both the \req and \option macros, like this:

\req€IF3 condition \option€!THEN!) statement-1 \option{!\req(ELSE)

statement-2! 3

The function of the exclamation points (!) 2 in this example is not intuitively obvious. They are
necessary to delimit optional elements that are composed of more than one item. When a series of
items appears in an \option macro, it is a good idea to stack them one atop another in the macro
call to keep track of where one item ends and another begins. For example, the RECORD clause
contains a stack of optional items, of which one or none can be chosen:

COMPUTATIONAL CHARACTERS
RECORD CONTAINS [integer-1] integer-2

The coding for the RECORD clause gets a little more complicated and looks l i e this:

\syntax€%
\reqCRECORD) CONTAINS \option< ! integer-1 \req{TO) !) integer-2
\option(!ASCII!

!COMPUTATIONAL!

!COMPUTATIONAL-2!

!DISPLAY !

3 \opt ion€ ! CHARACTERS !

!\req€WORDS)!

1

3

1.3 Choice Elements

Elements that offer a choice are very similiar to optional elements. However, instead of being enclosed
in square brackets, they are enclosed in curly braces to indicate that one of the items within must be
chosen. For example, one form of the OPEN statement looks like this:

OPEN {- } filename REEL - NUMBER
OUTPUT

and is coded thusly:

\syntax€%
\reqCOPEN) \choice{ ! \req€INPUT) !

!\reqCOUTPUT)!

3 f ile-name \req€FEEL-NUMBER) \choice(!literal !
! dat a-name !

1

3
As in optional elements, each of the items in a choice element must be delimited by exclamation points.

1.4 Elements That Can Be Repeated

When an element can occur more than once in the syntax of a command, it is followed by a series of
dots called an ellipsis. For example, the ADD command can operate on any number of variables:

} . . .TO identifier-n
ADD {literal

The exclamation point was chosen as the delimiter because exclamation points are not members of the ANSI-standard
COBOL character set.

744 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

The ellipsis is produced with the \repeatable macro. The ADD command is coded as:

\syntax(%
\req(ADD3 \choice(! iden t i f i e r !

! l i t e r a l !

3 \repeatable \reqCTO3 ident i f ier -n

3

1.5 Formatting Commands

Because COBOL syntax diagrams are quite complicated, their length often exceeds a single line. Left
t o its own devices, TJ$ will break the diagram at some point between two elements. For example, the
MULTIPLY command is automatically broken between the seventh and eighth elements:

MULTIPLY { identifier-1) BY {identifier-2)
- GIVING identifier-3 [ROUNDED] [, identifier-4 [ROUNDED] 1. . .

literal-1 literal-2

You can insert \par commands to override W ' s line-breaking algorithm and instead force the line
to break earlier in the diagram. For example, if you wanted to break the above diagram into two
approximately equal parts, you would code:

\req{GIVING)

\par
ident i f ier -3

\opt ion(%

! \reqCROUNDED) ! 3
\opt ion(%

! , ident i f ier-4

\opt ion(%

producing:

MULTIPLY { identifier-1) {identifier-2)
literal-1

-
GIVING

BY literal-2

identifier-3 [ROUNDED] [, identifier-4 [ROUNDED] I.. .

A \par command can be used only to produce a line break between two elements - it cannot be
used in the middle of the \option or \choice macros. If you want a line break inside an \option or
\choice macro, you should use the \midbreak macro. For example, the RECORD portion of an FD
statement is quite lengthy:

CONTAINS integer-3 CHARACTERS

IS VARYING IN SIZE [[FROM integer-4] [TO integer-5] CHARACTERS] [DEPENDING ON data-nam

CONTAINS integer-6 integer-7 CHARACTERS

A line break is needed in the second item of the choice element. If you insert a \midbreak command
after the CHARACTERS item, you obtain a more satisfactory diagram:

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

CONTAINS integer-3 CHARACTERS

IS VARYING IN SIZE [[FROM integer-4] [m integer-5] CHARACTERS]
[DEPENDING ON data-name-1]

CONTAINS integer-6 TO integer-7 CHARACTERS

2. The Macros
Before we can define the macros, we must declare a few variables, define the font, and make the
exclamation point an active character so that it can be used as the delimiter in the \option and
\choice macros:

\newif\ifmchoice

\newif \ifmoption

\newif \ifmreq

\newif \if mrepeat

\newif \if started

2.1 The \syntax Macro
All COBOL syntax diagrams must begin with the \syntax macro. \syntax sets up the environment
and adds some white space before and after the diagram:

\long\def\syntax#l(%

\begingroup

\cobf ont

\textfontl=\cobfont

\mathcode'-="012D

\let! =\startorstop

\baselineskip=l2pt

\lineskip=2pt

\parindent =Opt

\pretolerance=l0000

\medskip

#I

\medskip

\endgroup

1%

The macro definition must be preceeded by \long so that \par commands can occur within the
diagram to force line breaks.

The macro loads the font defined as \cobf ont, defines \cobf ont to be the font accessed when TEX
is in math mode, and changes the \mathcode of the hyphen. By default, a hyphen maps to a minus sign
in the Computer Modern Math Italic font when it is encountered in math mode (Knuth 1984:153-154,
344, 351). By changing the \mathcode, we map the character to the hyphen in the normal text font.
This is necessary at Unisys because some of our reserved words in COBOL contain hyphens and they
look strange when the hyphen is displayed as a minus sign. Your site may encounter similar problems
with other characters - if anything ends up something other than you expected, you should check the
character's \mathcode and modify it to something more appropriate.

All of this font wizardry is local to the group, so if TJ$ enters math mode outside of a syntax
diagram, it uses the default cmti 10 point font and maps characters using the definitions of plain. tex.

The \syntax macro also defines the active character ! to be a call to the \startorstop macro,
described below in Section 2.5.

The settings of \baselineskip, \lineskip and \parindent control amounts of white space.
\baselineskip determines white space between vertically stacked items in a choice of optional el-
ements. \lineskip determines white space between lines of a diagram when the diagram is too long

746 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

to fit on a single line. And \parindent determines how far the diagram is indented from the left
margin.

The \pretolerance command is necessary to tell rn it is OK to break lines and create under-
full \hboxes. When w ' s own line-breaking algorithm analyzes COBOL syntax diagrams, it finds
breakpoints only when math mode is turned off. This conveniently occurs between each element of the
diagram, but TFJ calculates the badness of each of these breakpoints to be so extreme that it ignores
them all unless \pretolerance is set very high.

Finally, the \syntax macro uses the \medskip macro of plain.tex to surround a COBOL syntax
diagram with a certain amount of white space.

2.2 The \req Macro

All the \req macro does is underline an item. All that is required is to enter math mode and use
W ' s \underline command. However, sometimes TJ$~ encounters the \req macro when it is already
in math mode, so some logic is required to determine if math mode should be turned on and off.

2.3 The \option Macro

The main function of the \option macro is to enclose the parameter text in square brackets ([I) .
The parameter text can be quite complicated and can contain calls to the \req macro or the \choice
macro. The parameter text always contains at least two exclamation points (!) to delimit items in
the optional element.

\long\def\option#lC%

\begingroup

\startedf alse

%
\ifmmode\relax\else\moptiontrue$\fi

%
\lef t\lbrack

\vcenterC%

\vboxI%

\cobf ont

1

1%
3%

\right\rbrack

\ifmoption$\moptionfalse\fi

\endgroup

3%

% Local to the group.

% As with \req, math mode
% may or may not need to be
% entered .

% Left square bracket

% Load the desired font.

% Right square bracket.
% End math mode if need be.

The commands \left and \right allow TEX to determine how tall the square brackets need to
be. These two commands are what make 7JjX so ideal for COBOL syntax diagrams (Knuth 1984:148).
By using them, you make TJ$ stretch and shrink the brackets to correctly enclose the items, so you
don't have to worry about the effect of adding or deleting items as the syntax of a COBOL command
changes.

The entire parameter text is enclosed in a \vbox so that the \vcenter command can be used to
center the text within the square brackets.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

2.4 The \choice Macro

The \choice macro is exactly l i e the \option macro except that it encloses the parameter text in
curly braces ({)) rather than square brackets.

\def\choicet#l(%

\begingroup

\startedfalse

\ifmmode\relax\else\mchoicetrue$\f i

\lef t\lbrace

\vcent erC%

\vbox(%

\cobf ont

1

3%

3%
\right \rbrace

\ifmchoice$\mchoicefalse\fi

2.5 Exclamation Points and the \startorstop Macro

The format of COBOL syntax diagrams requires that if more than one item occurs in an optional or
choice element, the items must be stacked one on top of the other. Since T@ is designed to stack a
series of \hboxes one atop another, this requirement is easily met by enclosing each item in an \hbox.
But typing \hbox{ and) around each item gets a little tedious and takes up extra space on the line;
you can make the exclamation point (or any character you choose) an active character and let do
some of the work.

If you make the exclamation point an active character and then assign it to be a control sequence
that calls a macro, you can use that macro to determine if the exclamation point denotes the beginning
or the end of the item. For example:

\def\startorstopC%

\if started

\egroup
\startedf alse

\else

\hbox\bgroup

\startedtrue

\f i

3%

% Order of commands is important here. Flag

% should be turned on INSIDE the hbox and turned
% off OUTSIDE the hbox.

Thus when the construction !RECORD IS! is encountered, it is transformed into \hbox{RECORD IS).

Using \begingroup and \endgroup in the \option and \choice macro makes the value of the
\started flag always local to the group. This enables nesting of elements, for example:

\opt ion(!LABEL \choice(!RECORD IS !

!RECORDS ARE!) STANDARD!)

If the value of \started is not local to the group, the exclamation point before LABEL is correctly
identified as the starting point, and \started set to true. But when encounters the exclamation
point before RECORD, the \if started command is evaluated as true and T@ attempts to end an
\hbox when actually it is supposed to start a second \hbox!

In fact, the whole concept of using a single character for a macro call can be carried to extremes.
What if, instead of requiring the user to remember that he needs to use the \option macro to get

748 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

the square brackets in his diagram, we allow him to just type an opening square bracket where the
optional element begins and a closing square bracket where the optional element ends? The following
commands would allow this:

This works great, but the analogous situation of allowing curly braces to be used for choice elements
creates complications. Once the curly braces are made active, they can no longer be used as they were
originally intended to define macros, delimit parameters in macro calls, and generally serve as beginning
and end or group markers. So then some other characters, perhaps parentheses, must be redefined to
take on the traditional function of the curly braces, and then what will you do when you want to use
parentheses in their normal context?

Pretty soon things become quite confusing to a person familiar with the traditional workings of
Q X . But if you can keep your character codes straight, all this re-defining of character functions might
be helpful to a person sitting down to code COBOL syntax diagrams who is totally unfamiliar with
w. Users might find it helpful to be able to type:

-RECORD- CONTAINS

[! integer- I -TO- ! 1

[! ASCII
!COMPUTATIONAL!

!COMPUTATIONAL-2!

! DISPLAY !I

[! CHARACTERS !

! -WORDS- ! 1

instead of what was previously described in this paper to obtain a syntax diagram for the RECORD
clause.

2.6 The \repeatable Macro

Like the \req macro, the \repeatable macro is quite simple. It boils down to entering math mode, if
need be, and calling the \ ldots macro of pla in . t e x to create the ellipsis indicating repeatability:

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

