
Keynote Address

Donald E. Knuth

Computer Science Department

Stanford University

Stanford, CA 94305

Notes on the Errors of T)ijX

At this 10th TUG meeting, my goal is to describe a longish paper that I recently had some fun

writing.l That paper [6] contains a complete listing of the errors I noted down as I was developing
and maintaining the 7&X system during a period of more than 10 years. I've always believed that

one of the best ways to learn is by a process of trial and error; hence I decided that the presentation

of a true-to-life list of errors might be the best way to help other people learn the lessons that my

experiences with have taught me. And I suspected that the people at this conference might be as

interested in this history as anybody is.

Of course no single project can be expected to illuminate all the aspects of software development.

But the error log of TEX seems to provide useful data for understanding the problems of crafting a
medium-size piece of software. It's hard to teach students the concept of "scale" - the enormous

difference between textbook examples and larger systems - but I think that a reasonable appreciation

of the complexity of a medium-size project can be acquired by spending about two hours reading

through a complete log such as the one in 161.

My error log begins with all the corrections made while debugging the fmt version of TFJ, which

was a program consisting of approximately 4,600 statements in an Algol-like language. The log ends

with all the changes I made as rn was becoming a stable system, as rn began to have more than a

million users on more than a hundred varieties of computers. By studying the log you can see all the

stages in the evolution of TEX as new features replaced or extended old ones - except that I did not

record the changes I made when I re-wrote the original program m 7 8 and prepared the final one,

m 8 z 2

Altogether the error log contains 865 entries so far. I've tried to analyze this data and to introduce

some structure by assigning each of the errors to one of 15 categories:

Algorithmic Anomaly

Blunder, Botch

Cleanup for Consistency

Datastructure Debacle

Efficiency Enhancement

Forgotten Function

Generalization, Growth

Interactive Improvement

Language Liability

Mismatch between Modules

Promotion of Portability

Quest for Quality

The preparation of this paper was supported in part by National Science Foundation grant CCR-86-10181.

Those changes were summarized briefly in another publication for early users [l].

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

R Reinforced Robustness

S Surprising Scenario

T Trivial Typo

Categories A, B, D, F, L, M, R, S, T are bugs, which definitely needed to be removed from the code;

categories C, E, G, I, P, Q are enhancements, which improved but were not obligatory. I consider

both bugs and enhancements to be errors, for if I had designed a perfect system in the beginning

I would not have made any of these changes and my error log would have been empty.

The most important lessons I learned can be summarized in the following theses, which my paper

[6] defends and explains in detail:

1. TEX would have been a complete failure if I had merely specified it and not participated fully

in its initial implementation. The process of implementation constantly led me to unanticipated

questions and to new insights about how the original specifications could be improved.

2. would have been much less successful if I had not used it extensively myself. In fact, when

'fEX was new I thought of 100 ways to improve it as I was typesetting 700 pages over a period of

several months, at a nearly constant rate of one enhancement per 7 pages typed.3

3. rn would have been much less successful if I had not put considerable effort into writing a user
manual for it myself. The process of explaining the language gave me views of the system that

I never would have perceived if I had merely designed it, implemented it, and used it.

4. 'fEX would have been much less successful if I had not scrapped the first system and written another

system from scratch, after having the benefit of several years' hindsight.

5. T)$ would have been much less successful if I had not had the voluntary assistance of dozens of

people who regularly gave me feedback on how to improve everything. The network of volunteers

eventually became worldwide, perhaps because I decided that 'fEX should be in the public domain.

6. I recommend that everybody keep an error log such as the one I kept for TEX. The amount of

extra time required is negligible (less than l%) , and the resulting records help us to understand

ourselves and our fallible natures.

7. The methodology of structured programming reduced my debugging time to about 20% of what it

was under my habits of the 60s. Furthermore, structured programming gave me enough confidence

in my code that I did not feel the need to test anything for six months, until the entire system

was in place and ready for testing. Therefore I saved considerable time by not having to do any

prototyping.

8. Although certain features of programming languages can justly be considered harmful, we should

not expect that eliminating such features will eliminate our tendency to err. For example, 12 of

my errors can be ascribed to misuse of goto statements [3]; but that accounts for only 1.4% of the

total, and I also made mistakes when using while, case, if-then-else, etc.

9. 'fEX proved to be highly reliable and portable because it was subjected to a "torture test," which

is quite different from anything a sane user would write but which really tries hard to make the

system fail. We should strive energetically to find faults in our own work, even though it is much

easier to find assurances that things are OK.

My experiences agree well with Peter Naur's hypothesis [7] that programming is "theory building,"

and they strongly support his conclusion that programmers should be accorded high professional status.

But I do not share Naur's unproved assertion that "reestablishing the theory of a program merely

from the documentation is strictly impossible." On the contrary, I believe that improved methods of

documentation (which I have called "literate programming" [4, 21) are able to communicate everything

necessary for the maintenance and modification of programs. I think it's fair to claim that more than

100 people, perhaps more than 1000, now understand the "theory" of the rn program after merely

reading its documentation [5]. For I have seen numerous examples of electronic communications in

which many people have demonstrated such knowledge by making excellent special-purpose extensions

to the existing code and by giving highly appropriate advice to users.

Therefore I now look forward to making further errors in my next project.

On the other hand, the new ideas ceased when I went on to type hundreds of additional pages; 700 was enough!

I got most of the later suggestions from other people, and I was able to appreciate them because of my own experiences.

530 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Bibliography

[I] Beeton, Barbara, ed. ''W and METAFONT: Errata and Changes," (dated 09 September 11,
1983). Distributed with TUGboat 4, 1983.

[2] Bentley, Don. "Programming Pearls." Communications of the ACM 29:364-369, 471-483, 1986.

[3] Knuth, Donald E. "Structured Programming with go to Statements." Computing Surveys 6:261-

301, December 1974. Reprinted with revisions in Current Trends in Programming Methodology,

Raymond T. Yeh, ed., 1:140-194, (Englewood Cliffs, N.J.: Prentice-Hall, 1977); also in Classics

in Software Engineering, Edward Nash Yourdon, ed., pp. 259-321, (New York: Yourdon Press,

1979).

[4] Knuth, Donald E. "Literate Programming." The Computer Journal 27:97-111, 1984.

[5] Knuth, Donald E. 'I)$: The Program. Reading, Mass.: Addison-Wesley, 1986.

[6] Knuth, Donald E. "The Errors of m." Software Practice & Experience 19:607-785, 1989.

[7] Naur, Peter. "Programming as Theory Building." Microprocessing and Microprogramming

15:253-261. 1985.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Users Group
Tufts University, July 20 -23, 1986

P. T. Barnum Auditorium

