
A METAFONT-like System with Postscript Output

AT&T Bell Laboratories

600 Mountmain Avenue

Murray Hill, NJ 07974

hobbyQresearch.att.com

ABSTRACT

The MetaPost system implements a language very much like METAFONT except that

the output is expressed with cubic splines and PostScript commands rather than in METR-

FONT'S raster-oriented Generic Font Format. It is a powerful language for expressing

figures for documents printed on Postscript printers, and it can also be used for creating

Post Script fonts.

The data types are mostly the same as in METRFONT. except that pictures represent

a continuous version of what is scan-converted in order to create METAFONT's pictures.

Some raster-oriented METAFONT primitives are removed and primitives for expressing

PostScript concepts are added. Facilities are also included for adding text to pictures.

This should make it convenient for figures to include labels that match the typography

of the rest of the document.

1. Introduction
In addition to being a font-making tool, METAFONT is also a powerful graphics language. The only

problem is that METAFONT produces raster output which is not very suitable for applications other

than font making. This paper describes a tool for applying METAFONT's power as a graphics language

to applications where PostScript output is more appropriate.

A less ambitious approach to the problem due to Leslie Carr had some success but ran into practical

and theoretical difficulties [2]. Some work by Shimon Yanai avoids many of these problems by using

a slightly altered version of METAFONT [7]. The work discussed here includes a number of important

features that Yanai does not implement. It should avoid most of the difficulties encountered in ear-

lier work, but one practical problem remains: PostScript character definitions based on METRFONT

programs turn out to be rather large. Because of this, we concentrate on turning METAFONT into a

system for typesetting graphics analogous to Brian Kernighan's pzc [3,4].

Even with bitmap output, METAFONT has already found some use as a figure-drawing tool. META-

FONT can be used to create a special font that contains one character for each figure in the document,

and this font can be used to print all the figures. This works reasonably well for some output devices,

but it does require working with characters that may be several inches wide. Another drawback is that

it is difficult to create figures that contain text as well as graphics.

This paper describes a variant of METAFONT that is currently under development. The new system

is called MetaPost. It processes a language very similar to METAFONT, but it produces PostScript

programs instead of a gf file. The new output medium allows MetaPost to be used as a figure-drawing

tool without dealing with enormous characters. It also facilitates MetaPost commands for integrating

text and graphics.

MetaPost produces a sequence of PostScript programs that need to be merged with the rest of

the document before being sent to a PostScript printer. If the document is written in w, then the

dvi-to-PostScript translator should do the merging as indicated by Figure 1. If the T)$ document

uses downloaded fonts, then the translator must be modified to scan the included PostScript programs

and ensure that any required characters get downloaded properly. Of course, the output of MetaPost

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings 505

Figures in MetaPost T@ Document

MetaPost

I
I

Figures in Postscript
1

dvi file

1
I dvips I

Fig. 1: A diagram of the processing for a TEX document with figures in MetaPost

will be designed to make this scanning process as easy as possible.

The description of the language in Section 2 assumes familiarity with The METAFONTbook and

concentrates on the differences between METAFONT and MetaPost.

Section 3 describes two possible extensions. The first is the use of a preprocessor to allow text

included in MetaPost pictures to be coded in ?$$. The second possible extension is a feature to allow

resolution-dependent operations such as those that Knuth discusses in Chapter 24 of The METR-

FONTbook and uses in Computer Modern.

Finally. Section 4 contains a few concluding remarks.

2. The Language
Since MetaPost is essentially an altered version of METAFONT, it is easiest to describe it by comparing

it to METAFONT. We therefore assume some familiarity with METAFONT and describe the alterations

necessary to deal with continuous rather than discrete output.

One important difference is that while METAFONT primitives work in units of pixels, MetaPost

uses points, as 'I&X does. Since MetaPost is intended to be used with a macro package analogous

to plain.mf, some of the differences in the primitives can be shielded from the user by suitable

adjustments to the standard macro package.

2.1 Pens

Of METAFONT's eight data types, boolean, numeric, pair, path, string, and transform have no relation

to the discrete raster and can be used in MetaPost as they are in METAFONT. The other two types

are pen and picture. They both describe concepts that are useful in MetaPost, but their meaning is

altered to eliminate their discrete flavor.

In the case of pens, this means that it is not appropriate for MetaPost to convert elliptical pens into

polygons as METAFONT does [5, pp. 148-1491.l A better strategy for MetaPost is to treat elliptical

pens as ideal ellipses so that appropriate PostScript commands can be given when drawing with them.

For example, in the case of a circular pen.

draw quartercircle scaled 200 withpen pencircle scaled 10

might be rendered in PostScript (Fig. 2) as

newpath

0 0 100 0 90 arc

10 setlinewidth 1 setlinecap stroke

Ideally. the Postscript interpreter should do this.

506 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Fig. 2: The result of a draw command with penci rc le scaled 10

Fig. 3: The result of a draw command with penci rc le xscaled 5 yscaled 10

Using an elliptical pen of a more general shape,

draw qua r t e r c i r c l e scaled 200 withpen penc i rc le xscaled 5 yscaled 10

can be rendered in Postscript (Fig. 3) as:

newpath

0 0 100 0 90 a r c

1 2 s c a l e

5 se t l inewid th I s e t l i necap s t roke

METAFONT also allows polygonal pens to be constructed via the makepen operator or with the

pensquare macro from plain.mf. MetaPost needs to treat such pens as polygons and implement

them via Postscript's f i l l operator. For example,

draw qua r t e r c i r c l e sca led 200 withpen pensquare scaled 10

might be rendered in Postscript (Fig

newpath

105 -5 moveto

5 5 100 0 90 a r c

-5 105 l i n e t o

-5 -5 100 90 0 arcn

closepath f i l l

As explained in [6, part 241, METAFONT already implements drawing with polygonal pens by using

the outline representation. MetaPost does the same thing except it turns the outline into Postscript

commands instead of using it to control scan conversion routines.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 507

Fig. 4: The result of a draw command with pensquare scaled 10

2.2 Pictures

The picture data type loses its discrete flavor in MetaPost, and this affects the set of operations allowed

on pictures. MetaPost pictures function mainly as repositories for the results of draw commands and

differ from METAFONT pictures in that they do not get digitized until after they have been translated

into Postscript and read by the Postscript interpreter. Thus MetaPost does not have METAFONT's

restriction on the types of transformations that can be applied to pictures (see [5 , pp. 117, 1441).

Another consequence of the non-discrete nature of MetaPost pictures is the loss of the totalweight

operator.

One of the more fundamental differences between METAFONT pictures and MetaPost pictures is

in how pixel values are interpreted. In a METRFONT picture, each pixel has a numeric weight, draw

commands add to the weights, and pixels with positive weights are considered to be black. In contrast,

MetaPost adopts Postscript's view of the world where pixels have colors and drawing operators assign

new values to the colors of affected pixels. Thus while the unf ill macro from plain . m f is implemented

with the cull command. the analogous operation in MetaPost is accomplished by filling withcolor

white.2

An important feature of MetaPost pictures is that they can contain textual labels. The text can

come from any font for which there is a tfm file available, but the Postscript version of the picture

assumes that the font is known to the printer and is scaled to match the design size in the tfm file. If

the picture is to be included in a l)+ document, then support code is needed in the dvi-to-Postscript

translator in order to ensure that these conditions are satisfied.

The syntax for generating textual labels involves a single operator inf ont:

(picture secondary) ---t (string primary) inf ont (string primary)

This produces a picture that contains the given string set in the given font at the design size specified in

the tfm file with the reference point of the first character at (0,O). The result can then be transformed

as desired and added to a picture variable, as in:

addto currentpicture also "label" infont "cmrlO" scaled 1.2 shifted (100,100)

Operators for finding the bounding box of a textual label facilitate placing the label and ensuring

that there is enough space for it. This information is available to MetaPost from reading the tfm file

and can be accessed via the following operators:

(pair primary) - llcorner (picture primary)

1 ulcorner (picture primary)

I lrcorner (picture primary)

I urcorner (picture primary)

These operators find the bounding box of any picture whether or not it is the result of inf ont. This

includes all elements of the picture, even those filled withcolor white.

METAFONT's cull command is not implemented in MetaPost because it deals with pixel weights and therefore

does not fit into Postscript's view of the world.

508 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

2.3 Drawing Commands

Drawing commands in MetaPost must differ from those in METAFONT in order to take advantage of

the features of PostScript, but the overall syntax is similar except for the new features. Thus MetaPost

has METAFONT'S primitive commands

addto (picture variable) contour (path expression) (with list)

addto (picture variable) doublepath (path expression) (with list)

and the corresponding macros

f i l l (path expression) (with list)

draw (path expression) (with list)

where a (with list) can be empty or contain various kinds of clauses. New kinds of clauses that provide

access to Postscript features are explained below.

MetaPost interprets addto commands and f i l l and draw macros as assigning a new color to some

region of a picture, and this region is determined according to Postscript's non-zero winding number

rule [I, Section 4.61. Since the safef ill macro defined in The METAFONTbook uses the same rule,

MetaPost behaves roughly as METAFONT would if all calls to the f i l l macros were replaced by calls

to saf ef ill (see [5 . p. 1211).

If the (with list) contains a

withpen (pen expression)

clause, then the affected region is enlarged to include everything swept out by the pen.

The color to be assigned to the affected region is given by a

withcolor (color expression)

clause. For this purpose, there is a three-component numeric type color normally accessed via pre-

defined constants white, black, red. green, and blue. Colors can be added together, multiplied by

numeric constants or used in mediation expressions. For example:

O.3black + 0.7white and 0.7[black, white]

are the same shade of gray. Of course red, green, and blue will seldom be used as long as most

PostScript printers can only handle black and white or use halftoning to render shades of gray.

Another important feature of Postscript is the ability to draw dashed lines. This is accessed by

giving a

dashed (picture expression)

clause in a (with list) and using the picture expression to specify the pattern of dashes desired. For

example, the picture

begingroup c l e a r i t ;

draw (0 , 0) . . (6 , 0) ;

draw (l4,O). . (20 ,0) ;

cur r ren tp ic ture endgroup

illustrated in Figure 5a may be used in a dashed clause to specify the dash pattern in Figure 5b,

created by laying copies of Figure 5a end to end.

- -

Fig. 5a: A dash pattern Fig. 5b: A line created five from copies of it

This dash pattern is specified by the Postscript command

[I2 81 6 setdash

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

In general, dashed (picture expression) means that the pattern of dashes is what would be produced

by laying copies of (picture expression) end to end. This ignores features of (picture expression) such

as color and line width since the only purpose is to tell MetaPost what argument to give to Postscript's

setdash operator.

To provide access to Postscript's clip operator, there is a primitive drawing command

clip (picture variable) to (path expression)

and a macro

clipto (path expression)

equivalent to

clip currentpicture to (path expression)

The region affected by the clip command is determined by the usual non-zero winding number rule:

but instead of being filled with black or some other color, the clipping region is treated as a window.

and all parts of the picture falling outside of the window are removed.

3. Possible Extensions
The MetaPost language described in Section 2 is basically a version of METRFONT with raster-oriented

features removed and features added to provide access to Postscript primitives. A heavy reliance

on Knuth's public-domain code for METAFONT should make this project manageable. This section

describes other features that might not be included in the initial version of the language because either

they are difficult to implement or they require a substantial amount of external software.

3.1 TEX Text in Pictures

Section 2.2 described an inf ont operator that could be used to add textual labels to pictures. While

this is fine for simple applications, it makes no provision for mathematical typesetting or even interword

spaces. Thus words need to be positioned individually, and math formulas require piecing together

many characters from different fonts in a complicated fashion.

These difficulties could be avoided by having a preprocessor that reads a MetaPost input file

with TEX commands interspersed, and outputs an identical file with the T@ commands replaced by

sequences of addto commands involving inf ont operations. This would produce an ordinary MetaPost

input file that could then be processed in the usual way.

The preprocessor would work by running the interspersed commands through Tj$ and then extract-

ing the character placement information from the dvi file. To find the picture expression corresponding

to the 7$jK commands

$\displaystyle{\sqrt{3a+b\over ac})$

the preprocessor could use 9$$ to obtain a dvi file containing this equation on a page by itself. The

preprocessor could then scan the dvi file to find the coordinates of each character and each horizontal

or vertical rule on the page. It is then a simple matter for the preprocessor to create an appropriate

MetaPost picture expression. In the above example, this leads to the following picture expression:

def addalso = addto currentpicture also enddef;

begingroup

save currentpicture;

picture currentpicture;

clearit ;

addalso "r" infont "cmex1O" shifted (0,15.96);

fill unitsquare xscaled 29.2 yscaled 0.4 shifted (10,15.96);

addalso "3" infont "cmrlO" shifted (11.2,6.77);

addalso "a" inf ont "cmmi1O1l shifted (l6.2,6.77) ;

addalso "+I1 infont "cmrl0" shifted (23.71,6.77);

addalso "b" infont "cmmil0" shifted (33.71,6.77);

fill unitsquare xscaled 26.8 yscaled 0.4 shifted (11.2,2.61);

TUGboat, Volume 10 (1989)' No. 4- 1989 Conference Proceedings

addalso "ac" infont "cmmil0" shifted (19.79,-6.86);

currentpicture

endgroup

This MetaPost picture contains all the components of the formula exactly as TEX would typeset

them, except that the horizontal rules have been replaced by calls to the fill macro. If the required

fonts are available, the formula should look as though typeset by w, except that it may be difficult

to ensure that the rounding to pixel units is done according to the rules found in dvitype.

3.2 Pixel Rounding

MetaPost has not been designed to deal with discrete pixels because its Postscript output is continuous

in nature. However. the PostScript interpreter does produce pixel output and it may need help if it is

to do a good job. In order to provide this help, a PostScript program occasionally needs to transform

coordinates into what the PostScript manuals call devzce space to facilitate pixel-oriented rounding

operations.

Techniques for coping with discreteness are discussed in Chapter 24 of The METAFONTbook. Since

many of them are specific to font making, they are most applicable when MetaPost is being used

to create a PostScript font. As Leslie Carr concluded in [2], this seems to be impractical at present

because of the large size of a PostScript font description. However, this problem might be alleviated

by future advances in PostScript interpreters combined with techniques for simplifying the character

descriptions by degrading the outlines slightly.

Regardless of the application, it is worth considering how to implement something like the round

macro from plain.mf. When applied to a pair, the round macro finds the nearest pixel corner. The

following PostScript commands perform the same operation on a coordinate pair at the top of the

operand stack:

itransform round exch round exch transform

The problem in using this is that MetaPost would not know the value of the pair computed by the

round macro. All it would have would be a string of PostScript commands for computing it. Thus

all subsequent operations involving the pair would also have be maintained as sequences of Postscript

commands. For instance. the result of

might be the following PostScript commands:

3 2 itransform round exch round exch transform

1 add exch 4 add exch

Note that the coordinates (3,2) and (4 , l) are in units of points, not pixels.

Not all operations on a pair such as round(3,2) can easily be done in PostScript. For example, in

a path expression such as

round(3,2){up). . (7,3)

MetaPost computes control points according to the rules on pages 130-132 of The METAFONTbook.

Rather than attempt to do this with PostScript commands, it seems more natural to start by converting

into

(3.2) . . controls (3.4.2122) and (5.95897,4.95193) . . (7.3)

as usual. It is then a relatively simple matter to give Postscript commands that compute control

points near (3,4.2122) and (5.95897,4.95193) based on the assumption that the curve begins at the

rounded version of (3,2).

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 511

Generalizing from this example, it would be nice to be able to specify a PostScript procedure and

a MetaPost macro that computes an approximation. For the above example, the PostScript procedure

is

i t r ans form round excharound exch t ransform

and the MetaPost macro is

def round primary p = p enddef

Although in this case, the macro operates on a pair and returns a pair, the basic idea works for other

combinations of types. The only requirement is that the arguments and results be of types that can be

manipulated in PostScript. There is no formal requirement about how well the result of the MetaPost

macro should approximate the result of the PostScript procedure. It just needs to be good enough to

achieve reasonable results when used for things like path construction. Anything comparable to the

half-pixel accuracy in the above example should be sufficient.

It remains to be tested in practice, but it sLems very promising to be able to delay some com-

putations until the Postscript interpreter is run on MetaPost's output. It wauld certainly be very

flexible and would impose no hard and fast limitations on the techniques to be used to cope with the

discreteness of the pixel grid.

4. Conclusion
We have outlined a language based on METAFONT with modifications to make it more suited to

PostScript output. Except for the extensions discussed in Section 3, the implementation should be a

relatively straightforward modification to the public domain code for METAFONT.

The language is designed for generating graphics such as figures for technical papers, but it could be

used for almost any application involving graphics and the generation of PostScript programs. Because

the language is so much like METAFONT at the user level, it is tempting to consider taking existing

METAFONT programs for a typeface such as Computer Modern and rewriting some of the macros so

that the programs could be processed by MetaPost.

Bibliography

[1] Adobe Systems Incorporated. Postscript Language Reference Manual. Reading, Mass.: Addison-

Wesley, 1986.

[2] Carr, Leslie. "Of METAFONT and ~ o s t ~ c r i ~ t . " l W n i q u e s 5:141-152. 1988.

[3] Kernighan, Brian W. "PIC-A Language for Typesetting Graphics." Software Practzce and Expe-

rzence 12(1):1-21, 1982.

[4] Kernighan, Brian W. PIC-A Graphics Language for Typesetting. Computing Science Technical

Report 116. Murray Hill, New Jersey: AT&T Bell Laboratories, 1984.

[5] Knuth, Donald E. The METAFONTbook. Reading, Mass.: Addison- Wesley, 1984.

[6] Knuth, Donald E. METAFONT: The Program. Computers and Typesetting, Vol. D. Reading, Mass.:

Addison-Wesley, 1986.

[7] Yanai, Shimon. Environment for Translating METAFONT to PostScript. M.Sc. Thesis. Faculty of

Computer Science, Technion: Haifa, Israel, 1989.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

