
w r e a t i o n - Playing Games with W's Mind

Project Athena

Room E40-342

and

Student Information Processing Board

Room W20-557

Massachusetts Institute of Technology

Cambridge, MA 02139

amgreene0athena.mit.edu

Please address all correspondence to the Project Athena addrese.

ABSTRACT

TEX can be used to write applications that have little or no connection with document

preparation. Games such as ANIMALS and BATTLESHIP are just a few of the recreational

uses to which TEX can be put - mostly to show that it can be done, but also to pro-

vide an entertaining medium for both experimentation and presentation of programming

techniques that can be used in more serious macro packages. Database management is

exemplified by the program ANIMALS, and array handling is developed in BATTLESHIP.

1. Introduction
At some point, most T@ users find it necessary to extend the language of T@ to perform some task.

Whether the task is as simple as defining a macro to alleviate repeated typing of some lengthy string,

or as complicated as rewriting output routines, we sit a t our keyboards alternately cursing and blessing

Donald Knuth.

Few, if any, of us ever write a program in T@ that has nothing to do with typography. TEX is

slower than C, more obtuse than assembler, and harder to trace than BASIC. Nevertheless, writing

programs in TI$ is possible and will occasionally yield results that are useful in "real" TI$ programs

(or macro packages).

This paper will present two such programs, both of which are games. ANIMALS, a simple "artificial

intelligencen program, resulted in a set of T@ database management routines. BATTLESHIP, the

classic game of naval battle on a grid, was a perfect candidate for implementation of array handling

and indexed variables in TEX.

2. The Game of ANIMALS
ANIMALS was written in response to a dare from a friend a t the Student Information Processing Board

a t MIT. I t is a simple expert system, in which the computer asks questions and tries to guess which

animal the user has selected based on the user's responses. An annotated listing of ANIMALS appears

in Appendix A.

2.1 Rules
The user thinks of an animal which the computer will attempt to guess. On each round, the computer

asks a yes/no question, which the user must answer truthfully. Eventually the computer will take its

guess; if it is correct then the program ends, otherwise the computer will amend its database to include

the new animal and a question distinguishing the new animal from the original guess.

These rules imply that the database should be arranged in a binary tree, such as the sample in

Figure 1. Since TEX doesn't have random access files, this would be difficult to implement. However,

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 691

I Does it fly?

I Does it live on statues? Is it in the TeXbook?

PIGEON I I I I EAGLE LION

Figure 1: A sample ANIMALS tree
pF.1 pq

it should be noted that progress is always towards the bottom of the tree; therefore it is possible to

simulate a random-access database whose records will always be read in a certain order using W'S
sequential f le operators \openin, \read, and \closein.

2.2 Database Routines
For ANIMALS, three fields are required for each record: the question to ask, the record to go to for

a "Yes" response, and the record to go to for a "No" response. These are stored in the data file as

separate lines of text, with the record number prepended to each record. Thus, the data file for the

sample tree in Figure 1 begins:

I

Does it f l y ?

2

2

Does i t l i v e on s t a tues?

4

6

What is needed next is a routine to go to a specific record in the file, keyed by the record number.

The \Scan routine does just that, assuming that 'I&$ is already aligned at the start of a record. Once

W is at the correct record, the \query routine deals with extracting the data and selecting the next

record.

This solves the problem of reading a quasi-random-access database. If the database needs to be

modified, however, we run into difficulties. QjX allows a fle to be open only for input or output, but

not both. Furthermore, modifying a variable-length field within a file would be impossible, even if we

could modify (rather than replace) an existing file.

The solution, of course, is to read in the original data from the beginning of the data file, copying

each field to a temporary file. For ANIMALS, we find that one record needs to be replaced and two new

ones added. Therefore, the record number is watched and, when the record to be replaced is reached, a

modified version is output. Finally, the two additional records are output to the temporary file, which

contains the revised database.

The process is now repeated in the other direction. The original file is replaced by a line-by-line

copy of the temporary file. Since \openout overwrites the original file, this is an effective way to

"modify" that original file.

Users of UNIX have another option to this way of modifying the data file, although it violates the
spirit of this exercise. They can run, in the background, t a i l -f / tmp/shel l . t e x : /bin/csh and

output editor commands to /tmp/shell. tex. This is cheating, however, since the goal is to write

seemingly useless programs entirely in W.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Figure 2a: A typical BATTLESHIP setup

2.3 Other Database Applications in TEX

Figure 2b: Box representation

-

Despite the intentions of the author to avoid presenting any useful (i.e., typographic) code in this

paper, there is one program that ought to be mentioned.

The author is in charge of "CokeCommn a t the Student Information Processing Board at MIT.

CokeComm is a debit-based system in which members deposit money, Coca-Cola products are delivered

in bulk, and members mark a space on a list whenever they take a can. This calls for a program that

can maintain balances and print out new sheets, properly formatted.

The code for coke. tex, which appears in Appendix B, should be compared to the ANIMALS code.

The comments in coke. t e x are intended to illustrate how to splice the database routines into other

programs.

3. BATTLESHIP
BATTLESHIP is the most well-known variation of a game also known as "Salvo" or "Naval Battle." The

implementation described in this section is based on the Milton Bradley version. BATTLESHIP was
written as an excuse to experiment with arrays and indexed variables in 7&X.

3.1 Rules
This version is simplified slightly by having fixed ship positions. The computer places four ships,
each of a different length, in a ten-square grid. The ship designations and their lengths are "Carrier"

(5 squares), UBattleshipn (4), "Destroyer" (3), and "Submarinen (2). The ships are aligned either

vertically or horizontally, so that each takes up the appropriate number of adjacent grid spaces. A

typical arrangement is shown in Figure 2a.

Once the ship positions have been entered, the second player begins. On each turn, the player selects

a grid location a t which to shoot. The computer responds with the result - either the designation of

the damaged ship or the text "You m i s ~ e d . ~ If all cells of a particular ship are damaged, the ship is

considered sunk; when all ships in the fleet are sunk the game is over.

It is obvious that the naval grid is a two-dimensional array. Unfortunately, does not support
array variables. The command string \array refers to typesetting a collection of elements in row-

column format, surrounded by large delimiters. This is not what we want.

3.2 The Wrong Way
One's first impulse might be to implement arrays as nested boxes, as depicted in Figure 2b. An

array variable might be declared with \neubox\~yGrid and initialized appropriately. In the diagram,

\ b o x \ ~ ~ ~ r i d is the large, dark \vbox, inside of which are ten light grey \hboxes, inside each of which

TUGboat. Volume 10 (1989), No. 4- 1989 Conference Proceedings 693

are ten white \hboxes containing the array elements.

There are a number of disadvantages to this approach. An admittedly trivial objection might be

that there are only 256 box registers, and some of those are reserved. Any programmer who needs

more than 250 different arrays would have difficulties.

A more realistic objection arises when one considers how to extract element (i, j) from \MyGrid.

\ ~ y G r i d needs to be \unvcopyled; the first i - 1 boxes need to be thrown away. The next box needs

to be copied into a scratch box register, which is then \unhcopy'ed. Again we throw away j - 1

boxes, saving the next box, and tossing out 18 - i - j more boxes, before returning the saved value of

\MyGriaj.

If that seems convoluted, consider how to modify the value stored in position (i, j). The neglected

subarrays from the last paragraph now need to be stored up and re-combined correctly. An English

description of how this can be accomplished is left as an exercise to the masochistic reader.

3.3 A Better Way
First, let's examine the simpler problem of a one-dimensional array. What is needed is a way to refer

to a unique value pointed to by the two fields ArrayName and Index.

Fortunately, Q,X has a pair of primitives (\csnarne and \endcsname) that allow us to do just that.

Everything between the \csname and \endcsnarne is evaluated and formed into a control sequence.

This control sequence can then be used like any other.

One needs to exercise caution in setting this up. If the Index is a \count, then it needs to be

forcibly expanded into characters by using \the. If it's a constant (or a macro), however, using \ the

will cause a TEX error. The solution, of course, is to examine the category of the unexpanded Index

and only use the \ the if Index isn't already a constant.

In code, that results in:

The \ i f \ r e l a x #2 handles the category testing by comparing \relax, a control sequence (which is

considered to be \char256 and have \catcode=l6), and #2, the hdex. If these match, then Index is a

control sequence and the \ i f should insert a \ the to force expansion of #2 to a constant. The period

after the #I serves to separate the ArrayName from the hdex.

There are a number of advantages to this method. First, \csname allows digits to be part of the

control sequence, which is normally not allowed. This protects the array elements from direct access.

Second, since TEX has to do minimal evaluation for any array reference, this method is the fastest

for both reading and writing array elements.

Third, the contents of the array can be anything, and need not be the same between elements. One

control sequence can be a macro, another can be a \count register, and yet another can be a \vbox.

Fourth, the h d e x of the array can be any string, including alphabetics. Space is allocated only for

the elements that are used, and arrays can be indexed on, for example, the last names of students in

a class.

3.4 Using \ e l t

Reading an array element is as simple as \elt{My~rid}{l7). Writing to an array element is a bit

more tricky, since \def\elt{~~~rid}{l7}{value} will result in redefining \ e l t to be MyGrid and

typesetting the striig i7value. Using \expandafter, we can have the \ e l t macro expanded into the

control sequence that we want to define:

To save typing \expandafter, it is convenient to define \put as follows:

\put is called with three arguments. The first is the version of \def to use (e.g., \defy \edef,

\outer\def). The second and third are the ArrayName and Index, respectively. \put first finds the

694 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Array-Index Name and stores it in \ A I N A M E . I t then constructs the correct version of the \expandaf t e r

technique, causing the token after the third argument to be taken as the value.

This will be problematic once an element has already been assigned a value, since the \edef will

expand the desired element all the way to that value. Therefore, we need to copy over the definition

of \ e l t into the definition of \put, which also saves us the effort of using \AINAME:

\def \put#i#2#3{%

\expandaf t e r #l\csname #2. \ i f \ r e l ax #3\the\f i #3\endcsname)

3.5 Two-Dimensional Ar r ays and t h e Naval B a t t l e

It is not difficult to modify this code to use two index variables and act as a two-dimensional array,

which is what the BATTLESHIP program, whose listing is in Appendix C, does. The program starts

off by defining \put and its counterpart, \ ge t (which is a better name than \ e l t now that we are

not putting a call to \ e l t in \put). It then initializes the ten-square grid to d "Zn (for zero). This

version does not feature random ship placement, so the four ships are hard-coded in the next section.

The macro \damage will record damage to the ship whose counter is passed; it then uses \ s t r i n g

to use the name of the counter as the name of the ship in the message.

The main loop follows. One of its distinguishing features is the use of - ^ C to prevent the user

from confusing '&X by inputting something other than a coiirdinate in the form <letter><digit>,

with <letter> in the range A to J and <digit> any digit from 0 to 9. Another useful point is that

\csname will make an unknown control sequence expand to \ re lax , which is how BATTLESHIP checks

for invalid coiirdinates.

3.6 Po ten t i a l Applicat ions

There are a number of uses for array variables in '&X. The most significant of these is a combination

of an array of records with the database routines discussed in Section 2. A fde could be read into an

array, manipulated as a truly random-access database, and then written out (over the original file)

at the end of the session. Code to do this, as well as all the code in the appendices, is available for
anonymous FTP from 18.72.1.4 (geva l t . m i t .edu).

4. Conclusion
There are other games that offer interesting challenges to the TEX programmer. For example, a full

implementation of BATTLESHIP, not to mention any card game, would require a fairly good pseudo-

random number generator, using '&X's simple integer arithmetic facilities.

Why program games, or any non-typographical code, in 'l&X? First, as can be seen from the

COKECOMM application, routines written for games can find use in Ureal'7 '&X programs. Second, one

is more likely to experiment if the end result is actually fun. Third, the results are more interesting to

other people, who can learn from one's experiment, as this paper testifies.

And, besides, it's nice to have something to show people who still use Scribe.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Appendix A: ANIMALS

1 % begin: animals %ex-----------------------

2 % Animals (in TeX, no less! ! !)

3 %
4 % This is the program that uses a binary tree of questions to

5 % guess the type of animal of which the user is thinking.

6 %
7 % Andrew Marc Greene

8 % <amgreene(Dathena.mit.edu>

9 % Student Information Processing Board, MIT

lo % March-April 1988

11 %
12 % Cleaned up April 1989

13 %
14 % Moral support (i. e., "You can' t do that! Show us! ' ')
15 % provided by the Student Information Processing Board

16 % of MIT.

17 %
18 % Instructions on running this program:
19 %
20 % tex animals

21 %
22 % Think of an animal. The program will try to guess your animal.

23 %
24 % YOU will be asked a whole bunch of yes/no questions. This is a

25 % Spartan implementation, so answer with a capital Y or W. When

26 % the program finishes going through its tree, it will either have
27 % guessed your animal or it will ask you to enter a question that
28 % it can ask to differentiate between your animal and its guess.
29 % It will then ask you which one is 'yes. '
30 %
31 % Here's where I declare all my variables, etc.
32 %
33 % "curcodefl is the current index into the data file.

34 :! "tempu is a temporary holding variable.

35 % "1~" is a loop counter
36 % "ifamg" is a general-purpose flag. amg are my initials.

37 % "ifreploopn controls loop repetitions.

38 % "ifmainlooprep" controls repetitions of the main loop.

39 % "inp" is the input file.

40 % "outpH is the output file.

41 :! "amgY" and "amgNJ' are character constants. Why I did it this way I

42 % don't remember.

43 %
44 \ n e w ~ ~ ~ n t \ ~ ~ ~ ~ ~ d e \ ~ u r c o d e = i \ n e w ~ ~ u n t \ t e m p \ t e m p = O \ n e ~ c o ~ t \ l ~

45 \newif\ifamg\newif\ifp\newif\ifreploop\newif\ifmaidrep

46 \newread\inp\newwrite\outp\def\foofi

47 \def \amgY(Y)\def \amgN<N>

48 %
49 % The data file consists of records stored in the following format:
50 %
51 % Record Number <newline>
52 % Question <newline>

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

/, If-Yes-Goto-Record lumber <newline>

f, If-No-Goto-Record lumber <newline>

%
% The following routine scans the data file until it reaches the
% record requested in \curcode
x
\def \Scan(

{\loop

\global\read\inp to \thisrecnum

\ifnum\thisrecnum=\curcode\amgf'alse\else\~gtrue\fi

\if amg

\read\inp to \foo % Discard unwanted record
\read\inp to \foo

\read\inp to \foo

\repeat33

%
% The following routine displays the question and waits for a Y or N
% answer
%
\def \query(

<\read\inp to \question

\immediate\writei6<)

\message~\question3

\GetYN

\if yn

\read\inp to \foo\global\curcode=\foo\read\inp to \foo

\else

\read\inp to \foo\read\inp to \foo\global\curcode=\foo

\f i

33
%
% The following routines deal with the user's input

% \vread (verbatim read) ignores <newline>s and makes <space>s normal
% \GetYN gets input and repeats until it gets a Y or N response.
%
\def\vread#l~\catcode'\^^~=9\catcode'\ =12\global\read-I to #I3

\def \GetYN(

<\loop

\vread(\bar>

\def\baz(\bar3

\reploopfalse

\if \amgY\baz\global\yntrue\else

\if\amgN\baz\global\ynfalse\else\replooptrue\fi\fi

\ifreploop

\immediate\writel6(Hey, you! Answer Y or N, please.)

\message(Please enter Y or N -->>

\repeat

33
%
% The following routine is called if the "Goto-Recordyy is -1,
% meaning that the program didn't guess correctly and is clueless.

% It gets the new animal and the differentiating question, and
% modifies the data file. Actually, it makes a modified copy of

% the file, then copies the temporary new one over the old outdated

TUGboat, Volume 10 (1989), No. 4-1989 Conference Proceedings

107 % one.
108 %
loo \def\WewAnimal<

110 \immediate\writel6<Well, I'm stumped. What animal did you have in mind?)

111 \vread(\usersanimal)

112 \immediate\writel6(OK. What question would let me tell the difference?)

113 \vread<\userquery)

114 \immediate\writeI6(Is the answer to that question Yes or No if I ask about)

115 \message(\usersanimal?>

116 \curcode=-I

117 \GetYN

118 \Scan

110 \read\inp to \lastcode\lc=\lastcode

120 \closein\inp

121 %
122 % Open up the files. These names are system-dependent. *FLAG*

1 2 3 %
124 \openin\inp=/mit/amgreene/TeXhax/animals.dat

12s \immediate\openout\outp=/tmp/animals-new . dat
126 %
127 7, Read through the inp file, copying all records that don't need to
128 % be changed, outputting modified versions of the changed ones (and
n o % discarding the old), and appending the new records.

130 %
131 (\loop

132 \read\inp to \foo

133 \amgtrue

134 \ifnum\f oo=\temp\amgfalse\fi

135 \ifnum\foo=-i=\amgf alse\fi

136 \if amg\immediate\write\outpC\ioo)

137 \read\inp to \foo\immediate\write\outpC\foo)

138 \read\inp to \foo\immediate\write\outp<\foo)

130 \read\inp to \foo\immediate\write\outpC\foo)

140 \amgtme

141 \else\ifnum\foo=\temp

1-12 \immediate\write\outpC\foo)

143 \imediate\write\outpi\userquery)

144 \immediate\write\o~tp(\number\lc)

145 \global\advance\lc by I

146 \immediate\write\outp(\number\lc)

147 \read\inp to \animal\read\inp to \foo\read\inp to \foo

148 \amgtme

i re \else

150 \lc=\lastcode

151 \ifyn\WriteUsers\WriteAnimal

152 \else\WriteAnimal\WriteUsers

153 \amgfalse\f i

154 \fi\fi

155 \ifamg

156 \repeat3

157 \immediate\write\outp(-1)

158 \immediate\write\outp(\number\lc)

15s \closeout\outp

160 \closein\inp

698 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

161 %
162 % low copy the temporary file over the original one
163 %
164 % These filenames are also system-dependent. *FLAG*

165 %
166 \openin\inp=/tmp/animals-new . dat
167 \ immediate\~pen~~t\~utp=/mit/amgreene/Teax/mals.dat

168 (\loop

169 \read\inp to \foo

170 \immediate\write\outpC\ioo)

171 \amgtrue

172 \ifeof\inp\amgf alse\f i

173 \ifamg

174 \repeat)

175 3
176 %
177 % This routine is called by NewAnimal and writes the record for
178 % the user's new animal
179 %
180 \def\WriteUsers(

181 \immediate\write\outp<\number\lc)

182 \immediate\write\o~tpCIs it \usersanimal?)

183 \immediate\write\outpO

184 \immediate\write\outp<-1)

185 \global\advance\lc by I)

186 %
187 % This one writes the modified old animal
188 %
189 \def \WriteAnimal(

190 \immediate\write\outp<\number\lc)

191 \immediate\write\outp(\animal)

192 \immediate\write\outpCO)

193 \immediate\write\outpC-l)

194 \global\advance\lc by 1)

195 \~penin\inp=/mit/amgreene/TeXhax/animals.dat % *FLAG*

196 %
197 % NOW we get into the main routine.
i s 8 % It simply repeats the scan-query loop until it gets a 0 (right answer)
199 % or a -1 (wrong answer, I'm stumped), and calls the appropriate routine.

200 %
201 \loop

202 \temp=\curcode

203 \Scan\query

204 \maidreptrue

205 \ifnum\curcode=O

206 \immediate\writel6(Thank you for using Animals. I'm glad I got it right.}

207 \maidrepf alse

208 \else

20s \ifnum\curcode=-l\~ewAnimal\mainlrepfalse\fi

210 \fi

211 \if mainlrep

212 \repeat

213 %
214 % Ah, the joys of a job well-done. We can now exit to the system, knowing

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

215 % that the world is a slightly better place for our efforts.
216 %
217 % The following line of code, probably the most profound in the entire
218 % program, sums up this philosophy of life in four characters. The

210 % Puritan work ethic is embodied in this amazingly meaning-laden
220 % command designed by Donald Knuth.
221 %
222 \bye
223 end: animals,tex--------------------------

Appendix B: CokeComm
1 begin: coke.tex---------------------------

2 %
3 % CokeComm program for SIPB

4 %
5 % Andrew Marc Greene

6 % <amgreene(Dathena.mit.edu>

7 % Student Information Processing Board, MIT

s % March 1989

9 %
lo \newif\ifamg

11 %
12 % Macros for typesetting each person's entry on the list

13 %
14 \def\person#1#2#3#4{% Name, username, cans, paid

15 \v~ox{%

16 \hboxC%

17 \hbox to i.5in{\strut#l\hfill)\hbox to .5in{\hfill#3\quad)%

18 \hbox to .7in~\hfill\$#4\quad)\bubbles)%

10 \hbox{\hbox to 2.7in{\strut\tt #2\hfill)\bubbles))\hnile)

20 %
21 %
22 \newbox\fivebubbles

23 \ s e t b o x \ f i v e b u b b l e s = \ h b o x ($ \ c a l ~ \ c a l (O \ c a l O \ c a l O \ c a l O \ $3
24 \def \f ive{\copy\fivebubbles~

25 \newbox\bubblebox

26 \setbox\bubblebox=\hbox{\five\five\five\five\five\qquad\five\five\five)

27 \def\bubbles{\copy\bubblebox)

28 %
ZQ \hsize=8in\hoffset=-.75in

30 %
31 \font\title=cmbxiO at 17.2667pt

32 \font\coltit=cmbxl2

33 %
34 \headline={\hfil)

35 {\centerline{\title CokeComm Sheet3

36 \bigskip{)

37 \vbox(\hbox{

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

38 \strut\hbox to 1.5in(\coltit ~ame\hfill)\hbox to .5in(\coltit cans\Mill>%

39 \hbox to .7in(\coltit Balance\Mill)\hbox to \wd\bubblebox~\coltit

40 Soda\hfill {\sl --Fill in circle--)\Mill Juice)>\hrule))

41 \f ootline=C\hfil)

42 %
43 \def\flu~h(\immediate\closeout3\closein2~

44 %
45 % Here3 s an old friend. . . (from Animals)

46 %
47 \def \vread#1#2{\catcode '\--M=S\catcode ' \ =12\global\read#l to #23
48 %
49 %
50 % ---- END PREAMBLE ----
51 %
52 % Last changed 20-Mar-89

53 %
54 \def\NextRecord(

55 \vread{2)(\pname)

56 \vread(2){\obalance)

57 \vread<Z)<\ocans)

58 3
59 %
60 \immediate\openout3=coke.dat

61 \immediate\openin2=oldcoke. dat

62 \new~~unt\balance\newcount\cans\newcount\numb\newcount\dollars\newcount\rcount

63 \loop

64 \immediate\writel6<---------------- ~~~t person----------------- 3
6s \ifeof2\amgfalse\else\amgtrue\fi

66 \ifamg

67 \NextRecord

68 \balance=\obalance

69 \cB~s=\oc€U~S

70 \immediate\writel6(\pname (\uname)3

71 \message(Total Deposits :)

72 \vread(-l)(\adddep)

73 \advance\balance by\adddep

74 \message(Enter sodas: 3
75 \vread(-l>(\sodas)

76 \advance\cans by \sodas

77 \numb=\sodas

78 \multiply\numb by 35

79 \advance\balance by -\numb

80 \message(Enter juices: 3
81 \vread(-I)(\ juices)

82 \advance\cans by \juices

83 \numb=\juices

84 \multiply\numb by 45

85 \advance\balance by -\numb

86 \edef \nbalance(\the\balance)

87 \dollars=\balance

88 \divide\dollars by100

89 \multiply\dollars by100

90 \numb=\balance

91 \advance\numb by-\dollars

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Appendix C: BATTLESHIP

1 begin: battle.tex-----------------------

2 % Battleship in TeX

3 %
4 % Andrew Marc Greene

5 % MIT Project Athena

6 % and

7 % Student Information Processing Board

8 % Version 1.0 April 1989

9 %
10 % Battleship is a registered trademark of the Milton Bradley Corp.

11 %
12 %'ttttL%%%%%%%%%'ttttL%%%'ftrL%YL%%%%%%%%'tttLYL%%YtL%%%YL%'tLftL%%'tL%%%'ttttL

takes four arguments:

the variant on \def

the array name

the two index values

Array-handling code (modified to handle two-dimensional arrays)

AIN .t#l#2#3#4C\expandafter #I% \def -- but first find the AME

22 \csname #2% begin the \csname and use the arrayname

23 .\if \relax #3\the\f i #3. % first index

24 \if\relax #4\the\fi #4\endcsname 3% second index and end the \csname
25 %
26 %
27 % \get takes three arguments:

28 % the array name

702 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

29 % the two index values

30 %
31 \def \get#l#2#3<\csname #I% same as above....

32 .\if \relax #2\the\fi #2%

33 .\if \relax #3\the\f i #3%

34 \endcsname)

35 %
36 %%'A%%%'A%'t/tt~A%'X'f~rtA'~A%'rrA%'rrA%'f/rrt~~A%'~~r/~h%'!tA%'~rrr/~A%'tA%'~A%'rflA%%
37 %
38 % \say is a useful shorthand for "output to screen"

39 %
40 \def\~ay#l<\immediate\write16<#1))

41 %
42 %%'l/ftA%'t~rrA%%'A%'~tA%'fA%'A%'t~tt~rA%'A%'A%'~h%%%'A%%'t/t~%'r~A%%'tlr/rr~rA%%%'t~%%
43 %
44 % Initialize the array to all "Z"

45 %
46 \newcount\idx\newcount\idy

47 \idx=O\idy=O

48 \loop

49 \edef\~dx<\ifcase\idx A\or B\or C\or D\or E\or F\or G\or H\or I\or J\fi)

50 \put<\def)IMyGrid>C\Idx)C\idy)o%

51 \advance\idx by 1

52 \ifnum\idx=lO

53 \advance\idy by 1

54 \idx=O

55 \fi

56 \ifnum\idy<lO

57 \repeat

58 %
5 9 %%%'A%'rrrttrlrrrrrtrrA%'rrtrrA%'rrrA%'A%'rrrA%'rrA%%'A%'A%'A%%'A%'A%'rtttrrA%'A%%'L%
60 %
61 % Display welcome message

62 %
63 \say<Welcome to Battleship.)

64 \say<(Battleship is a trademark of Milton Bradley))

65 \say<)

6s \say<This version uses fixed-position ships.)

67 %
68 %%%%%%%%%%%'rlr~~rf~rA%'rlr~%'~fA%'rA%'~X'A%'~A%'A%'~/L%'~lA%'/lA%%%'~ttr/~/A%'l~A%
69 %
70 % Position the ships. Future versions will use a random-number

71 % generator to provide a different game each time.

72 %
73 \~ut<\def)<MyGrid)<D3<43<Cl% Carrier has 5 spaces

74 \put<\def)<MyGrid)<E><4)<Cl

75 \~ut<\def l<MyGridlCFl<41<C>

76 \~ut(\def)<MyGrid)<G)<4)<C)

77 \put<\def)<MyGrid)<H><4HC3

78 \put<\def)<MyGrid)<l3<Bl% Battleship has 4

79 \~ut<\def)<MyGrid)CBl<23CBY

80 \~ut(\def 3<MyGridl<Bl<3HBl

81 \putC\def lCMyGridl<B3<4HB3

82 \put<\def)<MyGridl<G3<3><Dl% Destroyer has 3

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

83 \put{\def)(MyGrid)<G3{83{D>

84 \put{\def){My~rid){G>{9>CD>

85 \put<\def)<MyGrid)<J3<G>CS3% Submarine has 2

86 \put{\def){MyGrid>{J3{7><S3

87 %
88 %'ttttCrLrtttA%'LrLttrLttAY;ttrLtrrr~rLrrCttLrrrttrL/;trtttLrLrttrLrrrrLtA
89 %
so % Initialize some counters

91 %
92 \newcount\turns\turns=O% Number of turns it takes to win

9s \newcount\hits\hits=i4%% Number of hits it takes to win

94 \newcount\carrier\carrier=5% Number of hits to sink each ship

95 \newcount\battleship\battleship=4

96 \newcount\destroyer\destroyer=3

97 \newcount\submarine\8ubmarine=2

98 %
99 %
100 %%%%%%'ttttttA%%%%%%%'rtA%%'tA%%%%'tA%'ttttLA%%YttA%YtA%rtA%rA%'ttArtA%%'tA
101 %
102 % Routines to handle damage to a ship

103 %
104 % \gobble (as defined in the TeXbook, page 308)

105 %
106 \def \gobble#l()% Remove one token

107 %
108 % \damage takes the name of a counter and damages that ship:

109 %
110 \def\damage#l(\advance#l by -1 % Lose one 'hit point'

111 \ifnun #l=O % If there are no more,

112 % Print a 'sank' message:

113 \say{You sank my \expandafter\gobble\string #l ! 3
114 \else% Otherwise, a 'hit' message:

115 \say{You have hit my \expandafter\gobble\string #I.)

11s \fi3

117 %
118 % Note that the above messages used \expandafter\gobble\string #I

119 % to get the name of the counter and strip the \escapechar off the

120 % front of it. The resulting string (because of the way we named

121 % our counters) is the name of the appropriate ship.

122 %
1 2 3 %%%rA%~A%'A%%rA%'t~%'tt//A%'~fk%'Ltt/~~f~/t~t~///~/t/~/ft~~t/~/~/~~L/tt/k
124 %
125 % Give the player a chance to specify a coordinate.

126 % If it's already been used, or is out-of-bounds, \say an error.

127 :! Otherwise increment \turns and print an appropriate message;

128 % If it is a hit, decrement \hits;

129 '/. Whether it is a hit or not, blat the space.

130 % If \hits is non-zero, keep going
131 %
132 %
133 \def \def ab#l#2#3"~{\def \a{#l]\def \b<#~]>

134 \loop

135 \message{Your turn: 3
136 \read-I to \usrinp

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

137 \expandaf ter\def ab\usrinp--C

138 \ e d e f \ ~ (\ ~ e t (~ ~ ~ r i d) C \ a) C \ b >)

139 \if \c\relax

140 \say(~orry, that's not a valid coordinate.)

141 \else

142 \if\c X\say(Sorry , you already shot there . 3
143 \else\advance\turns by I

144 \if \C Z\say(You missed. 3
145 %
146 % Drat! The user hit one of our ships! Record damage to the correct one.

147 %
148 \else\if \C C\damage(\carrier)

149 \else\if\c ~\damage(\battleship)

150 \else\if \c ~\damage(\destroyer)

151 \else\if\c S\damageC\submarine)

152 \fix submarine

153 \fix destroyer

154 \fix battleship

155 \fix carrier

156 %
157 % And record that there was a hit someplace:

158 %
159 \advance\hits by -1

160 \fi% End of the hit-or-miss section

161 %
162 % Record that this space has been shot:

163 %
164 \putC\def3(HyGrid3<\a3~\b)(X)
165 \fix End of the 'shoot here1 section

lee %
167 \fix End of the (in)valid spot section

188 %
169 % We've finished a cycle. If there is any part of the fleet left,

170 % we go around again:

171 %
172 \if num\hits>O\repeat

173 %
174 % Otherwise, we display the player's score and exit.

175 %
176 \say(You have destroyed my fleet. It took you \the\turns\gobblei turns.)

177 \bye
178 end: battlestex---------------------------

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

TQC Users Group
Tufts University, July 20 -23, 1986

P. T. Barnum Auditorium

