
A Permuted Index for and UTEX

AT&T Bell Laboratories
Room 2C416
600 Mountain Ave
Murray Hill, NJ 07974
chesQresearch.att.com

ABSTRACT

The Permuted Index for m and UT$ was written to help Y)$ designers find the
right command among the extensive list of m, plain m , and UT$ commands.

To prepare the index, a one-line definition was written for each command. These
definitions were run through the UNIX ptx filter, which created an entry indexed by each
key word in each definition. UNIX tools were used to massage the text, and convert the
ptx troff-style output into TJ$ macro calls.

This paper discusses some technical aspects of preparing the Index, and some of the
problems encountered.

1. Introduction
It is easy to tell when someone is having trouble with a typesetting package: they are surrounded by
heaps of nearly-identical printout. Their goal is often simple: to lower a headline or adjust spacing.
When the struggle lasts more than a day, it becomes an Epic Battle.

Epic Battles seem to be a common result when a programmer attempts to stretch typesetting
software beyond the novice examples. They often occur when the "safe driver" winds up on dangerous
curves. The problems can be daunting, especially when the user has no m n i c i a n available. The
m b o o k [Knuth] covers everything, of course. But it is actually three books in one: a beginner's
manual and two levels of reference manual guarded by dangerous-bend signs. Some dangerous curves
are vital, others extremely arcane and usually irrelevant. Which ones should be read, and which
ignored, and by what level of user?

Epic Battles are not confined to l)$ - I have seen proficient troff users in the same state. It
seems that typesetting is a fundamentally difficult task, and these battles come from an incomplete
understanding of complex typesetting programs, languages, and macro packages.

1.1 My problem

My early Epic Battles lasted as long as two days. (I was a manager at the time, and could ill-afford
the time. I took it anyway.) One day I was creating a UTEX style file for a newsletter, including a
table of contents. When I wrote out my contents line to a file, UTEX added lots of strange goo to my
string. I had to tell to stop expanding my macros and just write out the stuff I wanted. There
had to be a command in the T&Xbook somewhere, but how could I find it? I was the w n i c i a n , and
'QXHaX wasn't available. It turns out that I wanted the \string command. It was hiding behind a
double-dangerous curve on page 22 in the m b o o k . (I found it in an example dug out of latex. tex.)
At this point I started thinking about a permuted index for l$$ commands.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 707

% a s i l l y de f in i t i on f i l e

f rog green amphibian found near water

gnat black in sec t found i n the a i r

P U animal found on land
toad green amphibian found on land

gnat- black insect found in the
frog- green
toad- green

gnu-
gnat-

frog-
toad-

gnat- black
gnu- animal found on

toad- green amphibian found on
frog- green amphibian found

frog- green amphibian found near

air. ..
amphibian found near water.
amphibian found on land.
animal found on land.
black insect found in the air.
frog- green amphibian found near water.
gnat- black insect found in the air.
gnu- animal found on land.
green amphibian found near water.
green amphibian found on land.
insect found in the air.
land.
land. ..
near water.
toad- green amphibian found on land.
water. ...

gnat

frog
toad

gnu
gnat

frog
gnat

gnu
frog
toad
gnat

gnu
toad

frog
toad

frog

Figure 1: Some sample definitions and a permuted index of their definitions

1.2 A permuted index
A permuted (or keyword-in-context) index contains an alphabetical listing of each keyword in each
command's definition. Figure 1 shows a short, silly example. The UNIX manual [Unix] has a permuted
index for locating the correct text filter or command. There wasn't one for T@, so I decided to write
one. I even had a shot at the first definition:

\ s t r i ng : don't mess with the following t e x t I a m writ ing out

2. Building the Index
The Permuted Index is generated from a file of definitions. The file is processed by a few UNIX filters
to create a file of T@ macros. These are read into a UTEX file to create the Permuted Index. The
index consists of three chapters summarizing the commands for T@, plain w, and BTEX, and a
combined permuted index of all these commands. It is well over one hundred pages long.

2.1 Command definitions
The first chore in creating the Index was to collect a complete list of commands. I had decided to
index plain 'l&X and IAT@ commands as well as 'QjX. Most of the 'QjX commands came from t ex . web.
The plain T@ commands were extracted from p la in . tex, including a couple of internal commands
that I have found useful. Barbara Beeton supplied a list that was a useful cross-check. la tex. tex,

l p l a i n . tex , and I f onts . t e x supplied the IATG commands.
It has taken a long time to create and correct the definitions. I have tried to keep the style uniform

and the definitions useful. A definition should give a fair description of the command's semantics using
consistent keywords. For example, commands that manipulate tokens should have the word "token"
in the definition. A symbol's definition contains the word "symbol", and math mode symbols have
"math symbol" in the definition. Wording should be consistent: does \parskip define the "space",
the "separation", or the "glue" between paragraphs?

708 TUGboat, Volume 10 (19891, No. 4- 1989 Conference Proceedings

frog----green amphibian found near water Note: the four underbars signify

a single tab character

s/-\(. *\I---J\\comC\13U

s/\([- . ? !] \)$ / \ I . / These are the sed commands that

s/$/3/ create the macro call.

1

\com{f rog){green amphibian found near water. 1

Figure 2: Generation of the command description macros

I battered my copy of the W b o o k hunting down definitions, and annoyed several mathematicians

about the math symbols. I suspect real W p e r t s could improve on some definitions, and novices could

suggest keywords that should appear in some definitions.

Most command definitions are easy. For example:

[\time1 current time of day

Some are not. Consider \expandafter, which has the following definition in the l)#book (p. 213):

T)TJ first reads the token that comes immediately after \expandafter, without expanding

it; let's call this token t . Then 'lJ$ reads the token that comes after t (and possibly more
tokens, if that token has an argument), replacing it by its expansion. Finally 7l&X puts t

back in fiont of that expansion.

My definition:

I\expandafterI expand the token following the next token

It doesn't have to be complete, just enough to guide the careening driver.
Proficient w p e r t s (and others) can certainly find definitions that miss the mark. I welcome

corrections and suggestions.

2.2 The command definition input files
The definitions for UTEX, plain w, and T)$ are stored on separate files. The definitions are

used in three different ways:

1. The filters in Figure 2 generate the com macros in three separate files. These are used in the

chapters that summarize the command definitions.

2. They are processed by ptx to create the file with the index macro calls.

3. Lines beginning with %%%\def are extracted and the %%% is stripped off. These are special

definitions that are read directly into the document before the commands and index are read.

Figure 3 demonstrates the processing steps on a very simple command definition file. Notice that

a single command definition permutes to five index entries.
Each definition fle has a simple format. There is one line per definition. Each line has a command,

followed by a tab character, followed by the definition. Lines beginning with %%%\def are special

definitions, described below. Other lines beginning with a % are ignored. Figure 4 shows some actual

w definitions.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 709

% This is a sample input file
% Comments and special lines have '%' in column one
% Note: four underbar characters stand for a single tab character
frog----green amphibian found near water

I egrep -v " - % " Strip comments and special en-
tries &om the file.

frog----green amphibian found near water

auk -Fn C----I" \
'C print $1 type "1" \ Format for the ptx -r option.

11 ---- --- I1 $2 1' \ type is set to "P" in this exam-

type=P ple.
t

frog{P)----frog--- green amphibian found near water

I sed 's/\(C-. !?]\)$/\I./' Suffix period if no punctuation
present.

frogCP)----frog--- green amphibian found near water.

1 ptx -r -f -t -w 200 -i eign

. .xx "" I1f rog--- green" "amphibian found near water. " "" frogCP3

. .xx " I t "I1 "frog--- green amphibian found near water." "" frogCP)

..xx "I1 "frog---" "green amphibian found near water." "" frogCP)

..xx " " "frog--- green amphibian found" "near water." "" frogCP)

. . xx "I1 "frog--- green amphibian found near" "water. It I t " frogCP)

Convert from troff to T@-style
sed 's : -\ . xx "\ ([-"I *\) " 'I\ ([-"I *\) " \ macros. Discard unused macro

"\([-"I*\)" " \ ([-" I* \)" \
parameters. (The actual com-

\(Ĉ Cl*\>C\(C-)1*\>3$: \ mand is on a single line. It is
\\ptxC\2)C\3H\5)C\s) : broken up here to accommodate

t
this annotation.)

\ptxCfrog--- greenHamphibian found near water.)Cfrog)CP)

\ptxOCfrog--- green amphibian found near water.)Cfrog)CP)

\ptxCfrog---)(green amphibian found near water.)Cfrog)CP)

\ptxCfrog--- green amphibian foundHnear water.3Cfrog)CP)

\ptxCfrog--- green amphibian found near)Cwater.)Cfrog)IP)

Figure 3: Sample processing of a command file

TUGboat, Volume 10 (1989), No. 4 1 9 8 9 Conference Proceedings

!\-I discretionary hyphen

1\/1 italic correction

%%%\def\showspaceCC\tt\char'\ 33
+showspace+ space character

I \above 1 fraction with rule thickness

I \abovedisplayshortskip I extra glue above displays following short lines

I\abovedisplayskipI extra glue above displays

I\abovewithdelims) fraction with specified rule and delimiters

I \accent 1 put an accent over the next character

Figure 4: Sample command definition input file

2.3 Editing the Index
The machine-generated permuted index in the UNIX manual was extensively hand-edited. Knuth said
in the Wbook that he prefers hand-editing of index entries. But I expect to make many revisions to
the command definition file, and hand edits to my ptx output would be lost. I must make do with
automated editing. There are a few things that help.

For one thing, not all words in a definition are useful keywords. By default, ptx consults a file
named eign for a list of uninteresting words. The default file was not useful, since it included words
like "left" and "right", which are certainly important keywords for the Index. So in the end, I built a
list based on the original file and careful examination of the Index.

I built a script to locate pairs of adjacent lines that define the same command. In such cases,
something is usually wrong: perhaps a command is defined twice, or something is amiss in the definition.

Finally, there is a filter to remove lines that are sorted in a non-obvious way. Ptx sorts on the
ASCII character set, but it isn't obvious to a human where entries like % should appear. Also, actual
command names tended to clutter the listing. Here are some entries that were rejected:

$- dollar sign symbol. $

. %- percent sign (1 . %
\above- fraction with rule thickness. \above

'- acute accent (6).

I can print a full list the rejected entries to make sure nothing important is ignored.

2.4 Macros

The \ptx macro formats each definition. It used to be fairly complex when I tried to wrap long
definitions around on a line. The problem led me deep into W ' s paragraph-formatting algorithm,
a wonderful but dangerous territory. After an Epic Battle, I gave up. A fairly simple version of the
macro now truncates definitions.

Since the Index has to display the name of every T)$ command within a line of text, it needs a
good embedded verbatim environment. I took the macro from the 2&Xbook7s manmac .tex that uses
pairs of vertical bars to delimit verbatim text. It works fine in straight text, but fails in some cases
when used in an argument to a macro. Since all definitions in the Index are formatted by macros, this
was quite a problem. The failure stems from the argument processing: ?&K pre-scans the arguments
with varying attention to the text's meaning. The 14TEX \verb command demonstrates the problem
in Figure 5.

The f i s t \mac call works. The second and third die from unmatched curly braces. The fourth
doesn't work because I4TEX's \verb is not defined with \long. I am not sure why the fifth call fails. It
appears to be trying to process the \newif command. (Other \newxxx definitions fail as well.) Also, a
few commands caused problems with my filters: double quotes would confuse the patterns that match
the troff macro fields; commands containing a blank would cause unwanted permutations by ptx.

It took an Epic Battle to convince me that I couldn't figure out a solution to the parameter

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 71 1

\long\def\mac#lC

\beginif lushlef tl

#I

\endiflushleft33

\macCThis is a test of string: \verbl\stringl)

\macCThis is a test of string: \verbl)lI

\macCThis is a test of string: \verbliI)

\mac(This is a test of par: \verbl\parl)

\mac(This is a test of newif: \verbl\newifl)

Figure 5: Attempted verbatim in a macro call

problem using verbatim. I now use pairs of plus signs to delimit the names of macro calls that display
the offending commands.

3. Results
The Permuted Index has been well-received. It clearly meets a need for many TEX users. I found that
it was useful in its own preparation, a good sign.

The \string command now has the following definition in the Index:

I\stringl expand a control sequence into character tokens

This is a reasonably accurate definition. Would it have helped me three years ago? I am not sure.
Does a precise definition help the user find the command? Or should some commands be less precise
but contain more familiar words to aid the novice.

Constructing the Index has taken far more work than I expected. Even so, further work is needed
on several problems:

1. Better definitions are needed for some commands, especially those with difficult semantics.

2. I'd like to improve definitions for the novice.

3. I'd still like to solve the problems of line wrap in the index.

4. Foreign language versions could be useful. Also, other macro packages could be included.

4. Update
The Conference attendees made a number of useful suggestions. First, I am indebted to a number of
people for improved definitions, especially Barbara Beeton and John Hobby. Here are a few suggestions
that I will try to adopt in the next release of the Index:

1. The command names will be included in the Index, as well as listed separately as they are now.

2. The separate list of command names should be hidden in the back of the index: they are not as
useful as I thought.

3. Several simple keywords, like 'page' and 'paragraph', don't yield as many entries as they should.

4. Simpler words are probably preferable to more accurate ones. For example, 'space' should prob-
ably be used where 'glue' is more precise.

712 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

5. Availability
The Permuted Index is available as Computer Science Technical Report 145 from Computer Science
Research at Bell Laboratories. Send inquiries to neera9research. att . corn or

Neera Kuckreja
Room 2C551
AT&T Bell Laboratories
600 Mountain Ave
Murray Hill, NJ 07974

After some review and revision it will be published in the m n i q u e s series, which will be available
from the Tj$ User's Group.

At present, the source code is not available. For now, I would like to have some idea of the actual
number of copies in use. I will consider special requests for the source for foreign language and other
macro package versions.

Bibliography

Knuth, Donald E. The 7)jXbook. Reading, Mass.: Addison-Wesley, 1984.

UNIX Time-sharing System Programmer's Manual, Vol. 1. 10th ed. 1989.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Users Group
University of Washington

August 23 - 26, 1987

