
TUGboat, Volume 10 (1989), No. 3

effort studying the results so far and rearrange by
hand any items not yet in proper order. Sooner or

later, automated activity must end, and some other

kind of thought is indicated.

If you prefer the references listed in chrono-
logical order, rather than alphabetical order, you

might use macro names like \ B J I I b r i l l h a r t , etc.,

substituting A , B , . . . I , J for the digits 0, I ,

. . . 8, 9 in dates of publication (with more such
"digits" at the end to cope with authors having

more than one item per year). Then the same sort-

ing process may be used to make the first (rough)
sort of b ib l iog . uns as before.

Some authors, especially historians, favor end-
notes that are much more extensive than mere

bibliographical citations; for endnotes of this kind,

some of which may consist of several paragraphs

(and may contain cross references to one another),
the scheme described above is quite inappropriate.

Such endnotes are typographically equivalent to

solutions for exercises. How to handle solutions for
exercises and discursive endnotes are topics for a
later tutorial in this series.

In the next episode, code will be described
to produce cross references and marginal notes.
In particular, we shall give another version of

b i b l i o . s e t containing provision for displaying the

marginal notes shown in FIGURE 1.

Note. A disk (5.25 DSDD) containing source text

for FIGURE 1 and the code files used to produce

FIGURE 1 is available for MS-DOS users who are

members of the m Users Group. In addition,
code is included for trapping typographical errors in

the bibliographic citations as well as identifying (for
the case of alphabetical order) bibliographic items

not actually cited. The disk also contains source
text, including the code samples displayed, for draft

versions of other tutorials in the pipeline for this

series. Send $6 (which includes a royalty for the

7&X Users Group) to the address below. Outside
North America, add $2 for air postage.

It is a pleasure to acknowledge the generous
help and encouragement of Barbara Beeton and
Ron Whitney, without which these ideas would not
have been developed.

o Lincoln K. Durst
46 Walnut Road
Barrington, RI 02806

Macros for Indexing and
Table-of-Contents Preparation

David Salomon

Introduction

Two macros are presented and described in detail.

The first is very useful for the preparation of an

index; the second prepares a table of contents (toc).
It should be noted that UTEX has macros for similar

purposes. Ours, however, are different. Our index
macro can produce both silent and non-silent index

items, whereas U m ' s only generates silent ones.

Our toc macros can easily be modified by the user

to specify any format for the table of contents.

Another important aspect of the macros is that

they are described in detail, thereby illustrating

the concept of a multi-pass job and the use

of several advanced TJ$ features, such as active

characters, file input/output, \edef, \ f u t u r e l e t ,

and \expandaf t e r .

The Index Macro

A good index is important when writing a textbook.

So much so that Knuth, on several occasions (see
reference 1 pp. 423-425, and reference 6), said that

he does not believe in completely automating the
preparation of an index, and he always puts the

final touches on his indexes by hand. As a result,

"h i s books t end t o be delayed, but the indexes tend

t o be pretty good."

Index preparation by computer is not a simple

problem. References 1-2 discuss certain features

that a good index should have, and how to incor-

porate them in m. The macro described here

is relatively simple (even though some readers may

not think so) and implements only one advanced
index feature namely, silent index entries. However,

as an example of a macro it is very inter-

esting because it illustrates the use of the features
mentioned above.

The macro accepts an index item and writes it
on a file, for the future generation of an index. Its

main feature is the use of optional parameters. The

macro accepts either one, two, or three parameters,

of which only one is mandatory. The main parame-

ter should be delimited, as usual, by braces, and the

optional ones, by square brackets ' [' '1 '. The macro

writes all its parameters on the index file, as one

string. However, only one parameter, the main one,

is typeset. The optional parameters are treated as

silent index items, items that should appear in the

index but not in the text itself. A good example is
a sentence such as:

TUGboat, Volume 10 (1989), No. 3 395

The late Dr .-Mad used to say: "Computers

are good, only people are bad."

When writing such a sentence, the author
might want to generate the three index items:

Mad Nick, 1923--1987

Quotations---Computers

Mad---quotat ions

This is why a good index macro should support
silent parameters. We selected the question mark
'?' as the name of our macro (see below), so the
sentence above should be typed:

The late Dr.'?(Mad)[Nick, 1923--19871 used

to say? [Mad---Quotations1 C) :
"? [quotations---I (Computers) are good,

only people are bad."

If the optional parameters are used, one of
them should precede, and the other one follow, the
main parameter. All the parameters are written
on the index file -with spaces separating - as one
string, followed by the page number. It should be
noted that many IPT@ macros support optional
parameters.

Examples of the use of the index macro are:

? C . . .)
?[. . .I(. . .I
?C.. .)[.. .I
?[. . .I<, . .3[. . .I
?[. . . I 0

?(I[. . .I
Note that the main parameter, in braces, should
always be present; even if it is empty, as in
the last two examples. This happens when the
entire index item should be silent, as in ?[Mad---
Quotat ions] () above.

The main problems in writing this macro are:
1. The macro name should be as short as

possible - since it is going to be used a lot -and
we have selected the question mark '?' as the name
of the index macro. Short macro names consist of
a backslash followed by one character. However,
it is possible to declare a character as a macro
name - by declaring it an active character- and
then the '\ ' is not necessary. The character '?'

is thus declared active by \catcodei?=\active.

Since we still want to be able to typeset a question
mark, we define a control sequence \? as the ASCII
code of '?' by \chardef\?='\?. There is, of
course, nothing special about the question mark.
Any other character can be used as the name of
the index macro. Reference 1 (p. 423) uses the
circumflex '-', but, since the circumflex is also used

in math mode for a superscript, care should be
taken not to mix the two uses.

2. The macro should be able to take 1, 2. or
3 parameters. This is achieved by writing several
macros that examine the next character in the text
and, if it is a ' C ' , treat it as the start of another
parameter, collect the rest of that parameter, and
save it (it is saved in a macro called \save). The
saved text is later writ ten on the index file, together
with the rest of the string. This part of the
macro uses the \futurelet control sequence, and
is described below.

3. Several index items may be declared on a
single page, and their optional parameters should
all be saved, as described above. Since our macro
always saves text in the same place (in macro
\save), we should write the saved text onto the
index file immediately . This is usually accomplished
by \immediate\write, which writes the saved string
on the index file immediately, so the next string can
be saved in the same place.

In our case, however, the actual writing on
the index file must be deferred, since we want to
include the page number with each index item, and
this number is only known in the output routine.
Our macro should, therefore, use \write instead of
\immediate\write. The problem is that, by the
time we get to the output routine, several strings,
from several index items, may have to be saved.
We should, therefore, make sure that macro \save
is emptied, and its contents written somewhere,
before we use it again, for the next item.

This problem is solved by using a combination
of \write and \expandaf ter. The \expandaf ter
makes sure that the saved text is expanded into the
\write immediately. The \write itself, however, is
executed later, in the output routine.

Listing of the macro

Here is a complete listing of the macro:

1. \newwrit e\inx

2.\immediate\openout\inx=\jobname.idx

3. \def \wrx(\write\inx)

4. \def \space{ I
5.\chardef\?='\? % Define \? as a cs whose

6. % value is the ASCII code of ?.

7.\catcode1?=\active % Now change the

8. % cat. code of ' ? ' to 13.
9.\def?(\futurelet\new\macA) % This is the
lo. % new definition of '?'.

ii.\def\macA(\ifx\new[\let\next=\caseA

12. \else\let\next=\caseB \fi\next)

13. \def \caseA [#I] #2C#2\def \save(#l #2)

TUGboat, Volume 10 (1989), NO. 3

token matching in associative memory---page 3;

associative memory ---use for token matching---page 3;

token--- tag fields in---page 4;

token matching ---conflicts---page 4;

incrementing the token label in a data flow computer---page 7;

unique tokens ---generation of---page 7;

token matching---page 12;

token matching by iteration number and destination---page 12;

label in data flow tokens---page 12;

matching store ---token arrival at---page 13;

matching tokens---various methods---page 13;

token matching in order of seniority. A different approach---page 13;
destination and handedness, used in token matching---page 13;

data structure for matching by seniority---page 16;

Fig. l b

3. \if eof \toc

4. \message(! No file \jobname.toc

5. \else

6. \tochead \input\jobname.toc \vf

7. \f i

8. \immediate\closein\toc

9. %
lo. \newwrite\toc

ill\e ject

11. \immediate\openout\toc=\jobname. toc

The . toc file format

The .toc file described here contains, for each toc

item, a simple record with the following fields:

0 One of the codes \ch, \se, \sbs, for a chapter,

section, and subsection, respectively.

The chapter (or section) number, followed by a

colon ' : '.
The chapter (or section) name, followed by the

word '\page'.
The page number, followed by a '\\'.

A typical, simple . toc file may look like the example
below:

\chl:Introduction\page3\\

\sel.l:The Use of Tags\page4\\

\sbsl.i.l:Incrementing the Tags\page7\\

\sel.2:Label of Tokens\pagel2\\

\sbs1.2.1:Seniority Matching\pagel3\\

\sel.3:Sumnary\pagel6\\

Such records are easy to write on the file, and
they make it possible to typeset the entire table of

contents by the single line

\tochead \input\jobname . toc \vf ill\eject

This is achieved by defining macros \ch, \se,
\sbs, to typeset lines in the toc. Macro \ch, for
example, typesets a chapter line in the toc. It is

expanded automatically during the \input, each

time a record starting with a \ch is read off the

file. Macros \se, \sbs behave similarly. These

macros (plus \t ochead, which typesets the heading

of the table of contents) are the only ones that

typeset the toc and, as a result, the only ones that
need to be modified when a different toc format is

required. The following are guidelines for writing

these macros:

\def\tochead((typeset a headzng for the table of

contents))

\def \ch#i : #2\page#3\\{(typeset a line in the

toc, with #I as the chapter number, #2 as the

chapter name, and #3 as the page number))

\def \se#l : #2\page#3\\((similarly for a sectzon))

\def \sbs#l : #2\page#3\\{(szmilarly for a

subsection)I

Writing the . toc file

At the start of each chapter, the user expands macro
\chapter with one argument, the chapter name.

i.\newcount\chnum \chnum=O

2.\newcount\snum \newcount\sbsnum

3. \def \chapter#l{\global\advance\chnum 1

4. \global\snum=O \sbsnum=O

5. (select a font and typeset \the\chnum and #I)

6. \edef\save{\string\ch\the\chnum:#l%

7 \string\~age\noexpand\f olio\string\\>%

8. \write\toc\expandaf ter(\save))

The macro should typeset the chapter name
and take care of vertical spacing and page breaks.
Its last step is to store the information necessary

 boat, Volume 10 (1989), No. 3 399

for the toc in a macro called \save, and to write
\save on the . t oc file.

At the start of each section or subsection,

the user similarly expands \ sec t ion or \ssect ion,

which behave similarly to \chapter.

9. \def \section#l(%

lo. \global\advance\snum i \sbsnum=O

11. (typeset \the\chnum. \the\snum and #1)
12. \edef \save(%

13. \string\se\the\chnum. \the\snum:%

14. #l\string\page\noexpand\f o l i o

15. \s t r ing\ \)%

16. \write\toc\expandafter(\save))

17.

is. \def \ssection#lC%

19. \global\advance\sbsnum by 1
20. (typeset \the\chnum. \the\snum. \the\sbsnum

and #I)

21. \edef \save(%
22. \ s t r ing\sbs

23. \the\chnum.\the\snum.\the\sbsnum:%

24. #l\string\page\noexpand\folio

25. \ s t r ing\ \)%

26. \write\toc\expandafterC\save)3

The macros have to deal with two related

problems, namely the chapter number and the page
number on the toc file.

The page number, \ fo l io , is not known when
the toc record is created. It only becomes known
when the output routine is invoked. The \wri te
should therefore be delayed. This is a common
problem and is solved simply by saying \write
instead of \immediate\write.

The chapter number, \the\chnum, on the other
hand, is known and should be expanded immedi-

ately. If its expansion is delayed to the output

routine, the number expanded will be the chapter

number in effect during the output routine. The
same applies to the section and subsection numbers.

These problems are solved, in macro \chapter,
on lines 6-8.

Lines 6-7 define macro \save with the neces-
sary information for a single toc record. The \edef

control sequence is used, instead of \def, to guar-

antee that the chapter number, \the\chnum, that

is expanded inside \save will be the one in effect

when \save is defined, not the one when \save is
expanded.

The \noexpand\folio, on the other hand,

guarantees that \ f o l i o will not be expanded when
\save is defined; instead, it will be expanded when

the \wr i te is expanded (in the output routine).

The use of \expandafter has been explained
earlier, in connection with index preparation.

Exercise 2: Experiment with lines 6-8 above to

find out what happens when the \edef is changed
to \def, when the \noexpand is omitted, and when

the \expandafter is dropped.

Limitations

1. The size of a record on a file is limited by the

operating system of the computer. Since each

line of the table of contents goes on the file as
a record, its size is limited and, as a result,

we cannot have chapter or section names which

are too long. Note that this limitation has
nothing to do with T&C.

2. When a large document-such as a book-is
typeset, it is common to typeset each chapter

individually, creating its own . toc file. In
such a case it is possible to create the final

table of contents by a special l&X job. Each

of the individual . toc files is input, and the

table of contents is numbered separately, using
roman numerals. This only requires two passes,

and generates a toc similar to the traditional

method.

Exercise 3: Sometimes the book designer wants

the chapter numbers in roman numerals, how can

this be done?

Acknowledgement

The author would like to thank Ron Whitney for his
many important comments and suggestions. They
have caused a major revision of this work, and have

made it much more useful to the readers.

Answers t o exercises

1. Yes, if the text is modified in any of the passes.

Even more than four passes may be necessary in

such a case.

2. Just do the experiments.

3. Use

\uppercase\expandafter

(\romannumeral\the\chnuml

instead of \the\chnum on line 3 in macro \chapter.

This tricky construct is demonstrated in exercise

7.9 of ref. 1.

References

1. Knuth D. E., The W b o o k , Addison-Wesley,

Reading MA: 1987.

TUGboat, Volume 10 (1989), No. 3

2. Winograd, T. & B. Paxton, An Indexing Facility
for TEX, TUGboat l(1) (Appendix A).
3. Chen, P. & M. A. Harrison, Index Preparation
and Processing. Soft. Practice & Exp. 18(9), 897-
915 (Sept. 1988).
4. Bechtolsheim, S., A Tutorial on \ fu tu re l e t ,
TUGboat 9(3), 276-279, 1988.
5. Bechtolsheim, S., A Tutorial on \expandafter,
TUGboat 9(1), 57-61, 1988.
6. Knuth D. E., Typesetting Concrete Mathematics,
TUGboat 10(1), 31-36, 1989.

o David Salomon
California State University,

Northridge
Computer Science Department
Northridge, CA 91330
bccscdxs@csunb.csun.edu

Query

Editor's note: When answering a query, please
send a copy of your answer to the TUGboat editor
as well as to the author of the query. Answers will
be published in the next issue of TUGboat following
their receipt.

A Scr ibe - to -m Converter

One of the SEMATECH consortium members do-
nated a software product with lots of documenta-
tion. Unfortunately it's marked-up using Scribe.
SEMATECH has modified the software product to
meet our needs, but the prospect of un-SCRIBE-
ing and then m - i n g hundreds of large user and
system documentation files with a text editor is not
attractive. Please let us know if you are aware of
any Sc r ibe - to -w translators.

Terry Bush
SEMATECH
Montopolis Research Center
University of Texas
2706 Montopolis Drive
Austin, Texas 78741
(512) 356-3443
terry-bush@sematech.mrc.utexas.edu

Towards I 4 ' ' 2.10

Frank Mittelbach and Rainer Schopf

After the TUG meeting at Stanford, Leslie Lamport
expressed interest in future developments of D m .
He and one of the authors (FMi) agreed on a two-
stage procedure for this [l , 21. The first step will be
a new style file interface. Therefore we are interested
in any style file which implements features that are
not provided in the current document styles.

Independently of these efforts we are planning
to publish the implementation of a number of en-
hancements to the current I 4 m version:

A new verbatim environment.
This includes a \verbat imfi le command to
read in a file of verbatim text, and a comment
environment that discards all text in its body.
Other features are: no limitation on the size of
the verbatim text, and the possibility of using
verbatim inside other environments.

A new version of the doc-option.
One of the most important improvements over
the version published in the previous issue of
TUGboat is the introduction of a check to de-
tect truncations during transmission. We are
very interested in hearing about experiences
other people have had with this style option.
Suggestions for improvements are welcome.

Enhancements to the new ar ray and tabular
environments published in TUGboat 9#3.
Again, suggestions are welcome.

The interface between I 4 w and the new font
selection scheme.
This interface consists of two parts: one emu-
lates the font selection mechanism of standard
I P m and is ready to use. The second part is
made to give full control over the new scheme.
However, field tests have shown that the com-
mands we provided for this are not user friendly
enough to be released yet.

are sorry that we have to report a small but
very important typo in the article on the new font
selection scheme (TUGboat 10#2, pp. 222-238).l It
is very important because it is in the code, namely
in the macro \mathversion (p. 230): in the first line
of the macro definition the primitive \endcsname is
erroneously spelled "\endscname" .

Thanks to Sebastian Rahtz for finding this one.

